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Abstract

Online Object Detection (OOD) algorithms play a cru-
cial role in dynamic and real-world computer vision appli-
cations. In these scenarios, models are trained on a data
stream where old class samples are revisited, a phenomenon
known as Natural Replay (NR). During training, NR occurs
unevenly across object categories, leading to evaluation
metrics biased towards the most frequently revisited classes.
Existing benchmarks lack proper quantification of NR and
depict short-term training scenarios on a single domain. As
a result, evaluating generalization capabilities and forget-
ting rates of models become challenging in OOD. In this pa-
per, we address the challenges surrounding the evaluation
of OOD models by proposing two key contributions. Firstly,
we define a metric to quantify NR in an OOD scenario and
show how NR is related to class specific forgetting. Sec-
ondly, we introduce a novel benchmark, EgOAK, which in-
troduces a long-term training scenario that involves fre-
quent domain shifts. It allows the evaluation of models’
generalization capabilities and forgetting of knowledge on
past domains. Our results in this OOD setting reveal that
Experience Replay, a memory-based method, is particularly
effective for better generalization to new domains and for
preserving past knowledge. Leveraging replay from mem-
ory helps to address the low natural replay rate for rarely
revisited classes, resulting in improved adaptability and re-
liability of models in dynamic environments.

1. Introduction

Online object detection (OOD) is a critical task in com-
puter vision, particularly in real-time applications such as
robotics [11], autonomous driving [24, 25] or recognition
for VR/AR headsets [2]. The goal of OOD algorithms is to
continuously adapt to new tasks while retaining knowledge
from previously learned ones. This phenomenon in which
a model gradually loses its past knowledge as it learns new

tasks is commonly stated as catastrophic forgetting [7].
In OOD scenarios, Natural Replay (NR) occurs as a re-

sult of the continuous streaming of data, mimicking the real-
world experience of a dynamic agent navigating in changing
environments [28]. NR is the process of naturally revisiting
instances of old object classes throughout the data stream
during training [5, 8, 12]. However, we provide evidence in
this paper that NR varies for each class, leading to uneven
exposure to previously seen data. Consequently, classes that
are rarely replayed in the data stream exhibit more forget-
ting than frequently revisited classes.

Evaluating the forgetting rate of an algorithm on past
knowledge becomes challenging due to the presence of
NR, which acts as an important parameter determining the
classes that will be forgotten in a given scenario. Existing
benchmarks for OOD do not explicitly define or quantify
NR [28,29], and this lack of consideration hinders a precise
assessment of forgetting.

Moreover, accurately measuring two key aspects of
model performance, namely forgetting and generalization
[13], is crucial for ensuring their reliability in the long term
[12]. Generalization reflects the model’s ability to perform
well on already known classes, but on unseen data from new
domains [10]. While existing OOD scenarios offer valu-
able insights for short-term evaluations in a single domain,
a deeper investigation of model performance across longer-
term horizons and with domain shifts should be conducted.

In this paper, we aim to address these challenges with
two contributions and provide a comprehensive evaluation
framework for OOD, especially the generalization capabil-
ities and forgetting rates of models in the presence of NR.

First of all, we conduct an extensive experimental study
on the EgoObjects dataset [19], which are thoughtfully de-
signed to exhibit varying degrees of NR across different ob-
ject classes. Our investigations aim to reveal the influence
of NR on model evaluation, particularly its effect on the for-
getting rate. We introduce a novel metric to quantify NR in
OOD scenarios and demonstrate its correlation with forget-
ting.



Finally, understanding how models behave in extended
scenarios and their ability to generalize to other domains
holds significant importance for real-world applications. In
regard to these considerations, we introduce a new bench-
mark, EgOAK, to address the challenges in model evalua-
tion and provide a comprehensive evaluation framework for
OOD models.

EgOAK has been specifically designed to tackle these in-
quiries by offering a comprehensive evaluation framework
that considers the dynamics of NR and domain changes.
The core idea behind EgOAK is the alternating training on
tasks from two datasets, EgoObjects [19] and OAK [28]. It
ensures that the model is exposed to tasks of different do-
mains in a controlled manner. EgOAK provides valuable
insights into the models’ adaptability to new tasks from dif-
ferent domains while retaining knowledge from previously
learned ones.

In the following sections of this paper, we delve deeper
into the topic of OOD evaluation in the presence of NR. Af-
ter reviewing related works, we investigate class forgetting
and its relation to NR, providing insights into the impact of
NR on model adaptability and forgetting rates. Building on
these findings, we introduce a novel benchmark, EgOAK,
designed to address the limitations of current evaluation
methodologies and enable comprehensive assessments of
online object detection algorithms. Finally, we conclude by
summarizing our key findings and discussing their implica-
tions for the development of more adaptive and robust OOD
models.

2. Related Work
Continual Object Detection Object detection has been

extensively studied in the field of computer vision [30, 32].
More recently, the development of object detection models
for Continual Object Detection, where models need to adapt
to new tasks while retaining knowledge from previous ones,
has become an emerging research area [15, 18, 20, 23, 31].
Existing works in Continual Object Detection often evalu-
ate their models on widely used benchmarks such as COCO
[14] and Pascal VOC [6]. However, benchmarks based on
these datasets are artificially built and introduce the issue
of ”background shift” [18], wherein the model is trained on
all images from the dataset, but only a portion of category
annotations is provided across all categories at each task.
In our work, we focus on online object detection, which
presents a more natural and dynamic training scenario. Our
approach involves a data stream mimicking an agent navi-
gating in a natural dynamic environment.

Datasets for OOD OAK [28] stands as the pioneer-
ing benchmark for OOD, offering ego-centric video snip-
pets captured from a student’s perspective at Krishna cam-
pus. Notably, OAK has been used in the context of semi-
supervised OOD [29] as well as the EgoObjects dataset.

EgoObjects was introduced during the CLVision CVPR22
workshop [19]. It depicts ego-centric videos taken indoor
environments focusing on everyday objects. Despite these
efforts, the inherent natural replay present in OOD training
scenarios has not been adequately accounted for in these
datasets. The absence of natural replay consideration hin-
ders a comprehensive evaluation of model performance in
dynamic environments.

Natural replay Unlike OOD scenarios, NR is not in-
tegrated into benchmarks for classification tasks in contin-
ual learning. However, some studies in classification tasks
manually incorporate NR into training scenarios to simu-
late the real-world experience of encountering previously
seen objects in dynamic environments [5, 8]. Additionally,
classification models have been compared in the context of
long-term training scenarios with natural replay in [12]. In
this work, we study NR in the context of OOD. In particu-
lar, we propose a metric to quantify NR and show its impact
on forgetting rates of models.

3. Natural Replay and its Relation to Specific
Class Forgetting

Accurately measuring forgetting in OOD algorithms is a
crucial aspect to assess their performance in the long term
[12]. However, quantifying forgetting in the presence of NR
during training poses significant challenges, making it dif-
ficult to evaluate and compare object detectors accurately.

In OOD scenarios [28], NR occurs as a result of the con-
tinuous streaming of data designed to mimic the real-world
experience of a dynamic agent navigating in changing en-
vironments. As the model is exposed to the stream of in-
coming data, it encounters instances of old classes multiple
times over the course of training.

However, the extent of this NR varies, and certain classes
may be more frequently revisited than others, leading to un-
even exposure to previously seen data. This discrepancy
poses a challenge in accurately evaluating a model’s perfor-
mance, particularly when standard evaluation metrics ag-
gregate results across all classes.

In this section, we delve deeper into the concept of NR
by proposing a metric to quantify its occurrence. Addition-
ally, we conduct experiments to establish a correlation be-
tween NR and class forgetting, aiming to provide a more de-
tailed understanding of their relationship and implications
for model evaluation in OOD scenarios.

3.1. Quantifying Natural Replay

In order to quantify NR on OOD scenarios, we propose
the introduction of two new metrics, denoted as NRR (Nat-
ural Replay Rate) and NRS (Natural Replay Score).

The first metric NRR quantifies the extent to which a
class y is replayed throughout the data stream. It is com-
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Figure 1: Occurrence of classes in EgoObjects [19]. Tasks are composed of video frames focusing on disjoint object cate-
gories. In each frame, all objects, including the focused one and those in the background, are annotated, resulting in Natural
Replay (NRS = 0.51). Class indexes are sorted by class occurrence in their respective tasks. Classes in brown are additional
classes that are not depicted as focused objects in the dataset.

puted as the index of dispersion [27] over the class occur-
rences in each task. It is computed using the following for-
mula:

NRR(y) =
T ((

∑T
i=1 occi(y))

2 −
∑T

i=1 occi(y)
2)

(T − 1)(
∑T

i=1 occi(y))
2

(1)

with T the number of tasks in the scenario and occi(y) the
number of occurrences of class y in task i,

If a class y is present in only one task, its associated
NRR is 0. In contrast, when the occurrences of a class
are dispersed across multiple tasks uniformly, the NRR is
1.

Finally, the second proposed metric NRS (Natural Re-
play Score) is designed to quantify the level of NR in a given
OOD scenario. This score is computed by averaging the
Natural Replay Rates (NRR) across all C classes of the
dataset:

NRS =
1

C

C−1∑
y=0

NRR(y) (2)

3.2. Experiments on EgoObjects

To investigate the impact of NR on training and model
performance in OOD scenarios, we conducted an experi-
ment on the EgoObjects dataset [19].

The EgoObjects dataset was initially introduced in the
CLVision challenge at CVPR 2022 [19] to create a bench-
mark for evaluating continual object detectors. In this chal-
lenge scenario, the EgoObjects videos were divided into
five distinct tasks based on the labels of the focused objects
within each video. This approach ensured that focused ob-
ject classes were predominantly represented in their respec-
tive tasks. However, the presence of background objects,

which are also annotated in each frame, introduces the pos-
sibility of NR. A class object might appear as the main fo-
cused object in its respective task, while also appearing as a
background object in other tasks.

To illustrate the distribution of class occurrences, Fig-
ure 1 displays the occurrence of classes across tasks. While
classes of focused objects are more prevalent in their des-
ignated tasks, NR manifests as peaks in class occurrences
in other tasks. In this scenario, the resulting NRS is 0.51
indicating a consistent presence of NR in the data stream.

For each experiment, we trained a Faster-RCNN [22] ar-
chitecture using Stochastic Gradient Descent with a learn-
ing rate of 2, momentum of 0.9 and weight decay of 0.0001.
As in [21], we found that using a high learning rate enables
the model to quickly adapt to the new data present in the
stream. Specifically, during each training iteration on the
data stream, only the FPN (Feature Pyramid Network), RPN
(Region Proposal Network), and box classifier were fine-
tuned on the data stream. We used a frozen Mobile-Net [9]
encoder, pre-trained on COCO [14] for feature extraction as
it allows fast image processing with online constraints.

The training scenario on EgoObjects follows the scheme
suggested by the challenge [19]. In this approach, the
model is trained sequentially on the five tasks, following
the construction methodology described previously based
on the focused object class label. As in the original sce-
nario, images within each task are shuffled to maintain the
assumption of independent and identically distributed (iid)
data within each task. However, in contrast to the train-
ing scheme proposed by the challenge, we train the model
for only one epoch on each task to accommodate the online
context. This ensures that only a single pass is made over
the data stream.

Two strategies were studied: naive and the replay-based
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Figure 2: AP50 performance (Average Precision with an
IOU of 0.5) on the EgoObjects dataset. The Faster-RCNN
model was trained using two strategies: the naive approach
and the replay-based method ER [4].

method ER [4]. In the naive approach, we trained the model
without accounting for the potential effects of catastrophic
forgetting. This strategy generally leads to high rates of
forgetting.

ER [4] is a common strategy in online continual learn-
ing for classification tasks to mitigate catastrophic forget-
ting [1, 3, 4, 16, 17]. In this method, an external memory
buffer stores samples from previous tasks. When receiv-
ing a new batch from the data stream, a batch of the same
size is randomly sampled from memory. The model is then
trained on the combined batch, which includes data from
the current and previous tasks. This allows the model to re-
inforce knowledge from previous tasks while learning the
new task. For our experiments, we implement the memory
buffer using a Reservoir Buffer [26] strategy with a size of
1000 images.

3.3. Results

Figure 2 illustrates the performance evolution of the
naive approach and the ER method in the presence of NR.
Both strategies exhibit an increasing trend, suggesting over-
all progress in model performance. However, a closer ex-
amination reveals that certain classes are forgotten over time
due to the uneven exposure to NR.

In Figure 3, we give the AP50 performance (Average
Precision with an IOU of 0.5) of four classes with differ-
ent NRR on the experiment on EgoObjects. For the Naive
method, the AP50 evolution follows the NR of each class.
This indicates that the forgetting potential of classes is re-
lated to NR. This is expected as the model, trained in a naive
way, is subject to catastrophic forgetting: it forgets knowl-
edge about past classes when trained on new ones. How-
ever, performance on classes with a high NRR, like plate
tends to generalize better across time.

The replay-based method ER demonstrated the capa-
bility to mitigate forgetting even for classes with limited
NR. These findings suggest that incorporating replay-based
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Figure 3: AP50 performance (Average Precision with an
IOU of 0.5) and occurrence per task of four classes (pear,
cake, apple, and plate) with different Natural Replay Rates
(NRR) on the EgoObjects dataset. The Faster-RCNN
model was trained using two strategies: the naive approach
and the replay-based method ER [4].

strategies in OOD algorithms can significantly contribute to
knowledge retention across various classes, enhancing the
model’s adaptability and robustness over time.



3.4. Discussion

Our investigation into quantifying NR [5, 8, 12] high-
lights its significant impact on model evaluation in OOD
scenarios [19,28]. We emphasize the need for caution when
assessing models on scenarios exhibiting varying levels of
NR across different classes, as this can lead to conclusions.

The issue with Natural Replay (NR) lies in how it affects
forgetting of past classes. On average across all classes, the
performance may seem to steadily improve, giving the im-
pression of overall progress. Both the naive approach and
the ER method demonstrate this trend of increasing per-
formance as depicted in Figure 2. However, The uneven
occurrence of NR among classes can result in the forget-
ting of certain specific classes. This forgetting effect can be
obscured when only considering the overall performance,
masking the fact that some classes are being forgotten over
time.

As the model continually encounters new tasks and do-
mains, the risk of catastrophic forgetting increases, poten-
tially leading to a significant loss of knowledge for specific
classes. Therefore, understanding how models behave in the
long term, especially in dynamic environments with emerg-
ing classes and domains, is crucial for ensuring their relia-
bility and adaptability.

In these considerations, our findings reveal that objects
experiencing limited NR, i.e. a low NRR (Eq. 1), require
an external memory to mitigate forgetting. Memory-based
approaches, like the ER method, emerge as promising so-
lutions to address these long-term challenges and improve
model robustness in OOD scenarios.

To address these questions, we present a new benchmark
EgOAK in the following sections of this paper. This bench-
mark enables comprehensive evaluations for OOD within a
long-term scenario where domain shifts occur.

4. EgOAK: An Evaluation Benchmark for
OOD with Domain Changes

In the subsequent sections of the paper, we introduce
EgOAK, a novel benchmark designed to facilitate a more
robust evaluation of online object detection algorithms in
the presence of NR.

The training scenario of EgOAK is created by alternating
tasks between the two datasets, EgoObjects [19] and OAK
[28]. This approach enables a more reliable assessment of
model adaptability in dynamic environments. At each task
transition, data from a new domain becomes available and
new categories emerge in both the indoor environments of
EgoObjects and the outdoor environments of OAK.

Through this new benchmark EgOAK, we aim to con-
tribute to the advancement and enhancement of OOD algo-
rithms by enabling the development of more adaptive and
robust models tailored for long-term online training in real-

world scenarios.

4.1. Scenario Task Composition

The proposed training scenario involves alternating be-
tween the two datasets, EgoObjects and OAK, which en-
ables a more precise evaluation of forgetting and model gen-
eralization.

It consists of T tasks, alternated between EgoObjects and
OAK datasets. Each dataset is split into T/2 tasks as fol-
lows:

EgoObjects Dataset [19]: We use the decomposition
proposed by the challenge, utilizing the focused object from
each video to sort and separate the videos into T/2 tasks.
To ensure an equal number of images between OAK and
EgoObjects, only one frame out of every two is used from
the EgoObjects dataset. For constructing the test set, we
follow the same strategy as OAK [28] , selecting one frame
out of every 16 from the original videos.

OAK Dataset [28]: We adopt the scenario proposed
by [28] and concatenate the videos of OAK. To create T/2
distinct tasks, we divide the OAK training stream into T/2
segments. The provided test set is used. It is constructed by
taking one frame out of every 16 from the original videos,
while the remaining 15 frames are associated with the train-
ing set.

In this study, we use a total of T = 6 tasks, with 3 tasks
assigned to each dataset. Table 1 provides a summary of the
number of images for each task in this particular configura-
tion.

Train Tasks T1ego T2oak T3ego T4oak T5ego T6oak
# Images 11364 10646 12157 10646 11349 10646

Test Sets Testego Testoak
# Images 2325 1996

Total Totalego Totaloak
# Images 37195 33934

Table 1: Scenario Composition and Image Count for Each
Task in the EgOAK Benchmark for T = 6. The table
presents the number of images in each task from datasets
EgoObjects (EGO) and OAK. Additionally, the total image
count for each dataset and the number of images in the test
sets are included.

When considering the original scenarios on EgoObjects
[19] and OAK [28] datasets separately, they exhibit NRS
scores of 0.51 and 0.92 respectively. In comparison, our
proposed scenario achieves an NRS score of 0.42. This
indicates that our scenario significantly reduces NR com-
pared to using only one dataset. Moreover, employing both
datasets enables a more accurate measurement of models’
generalization capabilities, as it involves testing across two
distinct domains. Consequently, it enables a more accurate



Continual Average Precision (CAP) Final Average Precision (FAP)
C Ccom Cego–only Coak–only C Ccom Cego–only Coak–only

Naive 12.6 21.1 11.5 11.4 18.8 28.4 13.6 20.1
ER 25.5 33.6 32.2 16.8 36.7 43.0 46.2 24.4

Table 2: Evaluation Results on the EgOAK benchmark on different class sets: all classes in both datasets C, classes in
common between EgoObjects and OAK Ccom, classes that exclusively belong to the EgoObjects dataset Cego–only, classes
that exclusively belong to the OAK dataset Coak–only.

evaluation of online object detectors, which we describe in
the following section.

4.2. Class-Set Specific Evaluation

In our proposed scenario, we ensure that the model is
exposed to distinct visual characteristics and new object
categories in a controlled manner with dataset task transi-
tions during training. This controlled exposure allows us
to assess the model’s adaptability to dynamic environments
more accurately.

During evaluation, the model is tested on the constructed
test sets from each dataset. This evaluation setup enables us
to measure the extent to which the model forgets its knowl-
edge when transitioning between datasets or if it can gener-
alize its learning to new data effectively.

Given the two sets of classes from both datasets Cego and
Coak, we propose a more fine-grained evaluation on three
different class sets:

• Ccom = Cego
⋂
Coak, |Ccom| = 29, classes in common

between EgoObjects and OAK.

• Cego–only = Cego \ Ccom, |Cego–only| = 248, classes
that exclusively belong to the EgoObjects dataset.

• Coak–only = Coak\Ccom, |Coak–only| = 56, classes that
exclusively belong to the OAK dataset.

Each class set serves a distinct purpose in the evaluation
process. Firstly, the set of common classes enables the as-
sessment of the model’s generalization capabilities, as these
classes are present in both datasets, spanning two different
domains. Secondly, each exclusive dataset classes set al-
lows us to measure forgetting. For instance, when training
the model on the second task using the OAK dataset, we
can evaluate the model’s performance on the class set ex-
clusive to EgoObjects. This evaluation helps to determine
if the model has forgotten knowledge of class-specific ob-
jects in EgoObjects while learning other classes in the OAK
dataset.

4.3. Evaluation metrics

We employ several evaluation metrics [28] to assess the
performance of online object detection models in the pres-
ence of NR. These metrics enable a comprehensive analysis

of model adaptability and forgetting rates across different
class sets.

Continual Average Precision (CAP): CAP measures
the continual learning performance of the model through-
out the training process. It is computed as the average of the
Average Precision (AP) values across all evaluation steps in
time for each class set. For class set C, CAP can be ex-
pressed as follows:

CAP (C) = 1

T

T∑
t=1

APt(C) (3)

where T is the total number of tasks, and APt(C) repre-
sents the AP for class set C at time step t.

Final Average Precision (FAP): FAP measures the
model’s overall performance at the end of training. It is
computed as the AP value for each class set at the last time
step (T ). The FAP for class set C can be represented as:

FAP (C) = APT (C) (4)

4.4. Results

In all our experiments, we used the same training setup
as in our previous experiments in section 3.2. Specifically,
we compared the Naive and ER strategies on EgOAK. Table
2 shows the CAP and FAP for each training strategy and
class set: all classes C, Ccom, Cego−only and Coak−only.

For the Naive strategy, the CAP values are significantly
lower compared to the ER strategy for all class sets. The
CAP values for all classes is 12.6, indicating that the Naive
strategy performs poorly in terms of overall AP. This sug-
gests that without considering the potential effects of catas-
trophic forgetting, the model’s performance on both com-
mon and specific classes for both EgoObjects and OAK do-
mains is limited.

On the other hand, the ER strategy exhibits much higher
CAP values, with 25.5 for all classes. By mitigating catas-
trophic forgetting through the use of a memory buffer, the
model’s performance is significantly enhanced, particularly
in terms of classifying common and specific classes for both
EgoObjects and OAK domains.

The FAP values also demonstrate the superiority of the
ER strategy. The Naive strategy shows lower FAP values
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Figure 4: Performance Evolution of the Naive strategy and the replay-based method ER [4] on EgOAK. Each graph shows
the evolution of a subset of classes from both datasets: classes in common between EgoObjects and OAK (Ccom), classes that
exclusively belong to the EgoObjects dataset (Cego–only), and classes that exclusively belong to the OAK dataset (Coak–only).

for all classes (18.8), while the ER strategy yields higher
FAP values (36.7). This indicates that the ER strategy not
only performs better overall but also provides improved AP
in detecting focused classes, which are crucial for online
object detection scenarios.

In Figure 4, we present a qualitative analysis of the
model’s performance on three class sets as the training pro-
gresses, comparing the Naive and ER strategies. The re-
sults clearly demonstrate that the ER strategy consistently
outperforms the Naive strategy across all class sets.

Regarding the evaluation of generalization capabilities,
both methods, Naive and ER, gradually increase their per-
formance on the common class set Ccom as the training pro-
gresses. However, the ER strategy exhibits better general-
ization, consistently achieving higher AP compared to the
Naive strategy. This suggests that the ER strategy allows
the model to generalize more effectively on new domains.

Next, we examine the performance on the dataset-
specific class sets, Cego−only and Coak−only. During train-
ing on a task from a specific dataset, the Naive method
shows a significant drop in average precision for specific
classes that belong to the other dataset. This indicates that
the Naive method suffers from catastrophic forgetting at
each task transition. In contrast, the ER models exhibit a
more stable performance and are capable of limiting the
AP drop on one dataset when trained on the other. This
highlights the effectiveness of the ER strategy in mitigating
catastrophic forgetting and retaining knowledge across both
datasets.

Overall, the qualitative analysis supports the quantita-
tive results, showing that the ER strategy consistently out-
performs the Naive strategy in terms of generalization and
forgetting capabilities. The ER strategy demonstrates a
more robust performance, effectively adapting to new tasks
and minimizing knowledge loss during task transitions.
These findings underscore the importance of memory-based
strategies, like ER, for developing adaptive and reliable on-
line object detection models capable of handling dynamic
long-term scenarios.

4.5. Discussion

The EgOAK benchmark is designed to provide a more
robust and comprehensive evaluation of online object de-
tection models. It aims to address the limitations of exist-
ing benchmarks by introducing a controlled training sce-
nario that reflects the challenges faced in long-term sce-
narios with domain shifts. By alternating tasks between
datasets EgoObjects [19] and OAK [28], EgOAK ensures
exposure to distinct visual characteristics and object cate-
gories while minimizing NR.

Our experimental investigations revealed the limitations
of the Naive approach when confronted with scenarios in-
volving NR and domain shifts. Specifically, the Naive
model displayed significant drops in average precision on
domain shift, indicating its susceptibility to catastrophic
forgetting and its limited adaptability in dynamically chang-
ing environments.

In contrast, replay-based methods, particularly ER [4],



emerged as a promising solution to address these chal-
lenges. ER consistently outperformed the Naive approach,
showcasing its generalization capabilities and its effective-
ness in mitigating catastrophic forgetting.

These findings emphasize the crucial role played by
replay-based methods in the context of NR and domain
shifts. Implementing strategies like ER offers a robust
and adaptive approach for online object detection scenar-
ios, ensuring sustained model performance and enhancing
the long-term adaptability of models.

5. Conclusion

In this paper, we addressed the challenges surround-
ing the evaluation of Online Object Detection (OOD) al-
gorithms in the presence of Natural Replay (NR).

The lack of proper quantification of NR in existing sce-
narios makes it difficult to accurately assess model perfor-
mance, particularly concerning their forgetting rate. As dif-
ferent object classes experience varying levels of NR, the
evaluation of model performance becomes biased to more
frequently replayed classes.

Furthermore, current benchmarks with NR primarily fo-
cus on short-term scenarios with only one domain. To over-
come these limitations, we introduced the EgOAK bench-
mark, which enables a more comprehensive evaluation for
OOD on the generalization capabilities and forgetting rates
of models when trained in dynamic and changing environ-
ments.

Memory-based methods emerge as crucial components
for long-term OOD in the presence of NR. By storing and
replaying less frequently encountered class samples, these
methods effectively counteract the uneven class exposure
to NR, enhancing model performance. Moreover, memory-
based approaches contribute to improved long-term perfor-
mance by boosting generalization capabilities and mitigat-
ing forgetting when learning from new domains.

The utilization of memory-based methods proves to be a
promising strategy to address the challenges posed by NR
in OOD, making models more adaptive and reliable over
extended periods of training.
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