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Abstract—Online Class Incremental Learning (OCIL) aims to
learn new classes from a data stream where samples arrive in
batches, one after the other. Avoiding catastrophic forgetting,
the phenomenon of forgetting old classes when learning new
ones is the main challenge in OCIL. Replay-based methods
counteract catastrophic forgetting by storing around 10% of the
data stream in a memory buffer. Upon learning new classes,
the model is updated by replaying old class images sampled
from memory. OCIL holds significant promise for smart de-
vices, such as home robots or smartphones, as incrementally
learning new object instances enables personalized interactions
with the environment. Although, these devices present limited
computing and storage capabilities to allow on-device training in
real-time. In this paper, we propose a novel replay-based method
called ILOVA (Incremental Learning of One-Vs-All classifiers)
and show that it achieves the best balance between accuracy,
forgetting, computing time, and memory footprint on three
benchmark datasets. Additionally, we conduct a comparative
analysis of existing replay-based methods for OCIL with respect
to embedded constraints. Specifically in the studied scenarios,
models can store only one to ten samples per class. In the most
challenging configuration, where only one sample per class is
stored, our method outperforms the second-best method by up
to 16 points in accuracy within 2.5 times less computation time.

Index Terms—Online learning, Incremental learning, Catas-
trophic forgetting, Replay

I. INTRODUCTION

Smart devices including home robots, smartphones or
VR/AR headsets must respond to user inquiries about their
surroundings or personal needs [1], [2]. For example, visually
impaired individuals could rely on such systems to recognize
and retrieve their personal belongings [3]. These devices
should quickly learn and memorize information about object
instances in their environment.

The field of study addressing these issues is known as
Online Class Incremental Learning (OCIL) [4]. In this learning
setting, the model is trained on a continuous stream of small
data batches. They are processed one after the other and
previously seen batches are no more accessible. One of the
main challenges in this area is to counteract the accuracy drop
on previously learned classes when accumulating knowledge
on new ones, which is known as catastrophic forgetting [5]–
[7].

Replay-based methods have shown significant improve-
ments in this challenging configuration [4]. In these ap-
proaches, an external memory buffer is allocated to store
examples of classes seen so far and replay them during training
to mitigate forgetting.

Experience Replay (ER) [8] is a common and simple replay
baseline used in OCIL [8]–[14] as it enables a vision model
to continually learn without modifying neither its architecture
nor its training scheme. At each training step, ER updates the
model with new and old data by augmenting the current batch
from the stream with examples randomly selected from the
memory buffer.

Current ER-based methods require a large memory buffer
to effectively counteract catastrophic forgetting, e.g. on the
Cifar-100 dataset, some experiments save up to 10,000 images
in the memory buffer [4], equivalent to 20% of the stream
size. Additionally, existing methods require heavy regular-
ization techniques to retain past knowledge [9]–[11], invest
computing time to select the optimal examples to store in the
memory [12], or perform additional computations to improve
the memory sampling [13]. The main methods do not align
with the specific demands of embedded systems [14].

In this paper, we propose an approach that achieves a better
balance between accuracy, forgetting, and the utilization of
computational resources than existing methods for OCIL. Our
method ILOVA (Incremental Learning of One-Vs-All classi-
fiers) extends the ER baseline with two main contributions to
learn new classes and retain knowledge with tiny memories of
one to ten examples per class only.

First of all, we use a pre-trained and frozen Convolutional
Neural Network (CNN) encoder for feature extraction. Our
empirical findings provide evidence that, contrary to intuition,
freezing the pre-trained encoder can yield better results than
the common practice adopted by ER-based approaches which
fine-tune the CNN encoder on the data stream.

Finally, we introduce a novel and simple training scheme for
the classification layer. In our approach, logits of the last layer
are separately trained, i.e. when processing an image sample
in the data stream, only the respective class logit is trained in a
one-vs-all fashion. This contrasts with the ER baseline, which
jointly trains all logits using a softmax classification layer.

In the hardest configuration where only one exemplar per
class is stored in memory, ILOVA shows a significant im-
provement over the second best performing method of 14, 16
and 6.3 points in accuracy on three challenging datasets while
reducing the computing time by a factor of 2.5 on average
(see Table II).

This paper is organized as follows. In section II we present
in detail our method called Incremental Learning of One-Vs-
All classifiers (ILOVA). In section III, we present the experi-
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Figure 1: Training flow proposed in ILOVA: pairs consisting of the current stream image and a randomly sampled image from
memory are forwarded to the encoder and the classifier corresponding to the stream image class. The classifier is updated with
a binary cross-entropy loss function in a one-vs-all scheme.

mental setup and evaluation results on three different datasets.
Finally, in section IV, we provide a comparative analysis of
our method with existing state-of-the-art approaches.

II. METHOD

A. Problem statement

We consider the supervised classification problem with C
classes in the Online Class Incremental Learning (OCIL)
configuration [4] which enables the catastrophic forgetting
phenomenon study.

The input data stream of images X and their respective Y
labels is broken down in T successive tasks (D0, D1..., DT−1).
A task Di is a subset of input images X and target labels
Y from the data stream. Additionally, all tasks are mutually
exclusive, meaning that a class encountered in task Di never
appears in any other tasks Dj ̸=i.

Data are processed in batches of size b, one after the other.
The model does not have access to previous data batches, even
if they belong to the current task.

Training a neural network in a naive way on the sequence
of tasks would lead to suboptimal performances as the model
would be efficient only on the last seen task DT−1 and forget
previously acquired knowledge.

B. Experience Replay for OCIL

Experience Replay (ER) [8] is a common and simple
baseline to train a neural network in the OCIL configuration by
allocating a memory buffer of fixed size to store a collection
of images from past classes.

During training on an incoming data batch of size b, the
model increases this batch with b examples randomly sampled
from the memory buffer. The model is updated with this batch
of size 2b formed by new examples from the data stream and
old examples from the memory buffer. In this way, the model
is jointly trained on new and old data which allows to acquire
new knowledge while retaining old one.

ER updates the memory buffer at each received data batch
with the reservoir sampling strategy [15]. It ensures that a
representative subset for all classes encountered is maintained
in the buffer while keeping a fixed memory size.

Effectively countering catastrophic forgetting with ER re-
quires intensive use of memory [14] as it generally needs
to store thousands of images in memory. Existing methods
based on ER also implement more sophisticated memory
management systems or perform additional regularization
computations to retain past knowledge [9]–[13] which further
increases the resource requirements of ER-based methods.

Our method ILOVA extends ER for OCIL with the aim of
improving the balance between accuracy, forgetting, compu-
tation time and memory size. As introduced in the previous
section, our approach is based on two main contributions: the
choice of using a pre-trained and frozen CNN encoder, and a
new training flow with a one-vs-all classification layer.

C. Pre-trained and frozen CNN encoder

We use a pre-trained CNN encoder gϕ for feature extraction
and freeze it for the whole training procedure. Pre-training in
OCIL is advantageous since the model lacks sufficient time to
converge on the data stream in a single pass [4], [16].

Moreover, by freezing the encoder, knowledge acquired dur-
ing pre-training is not forgotten and training time is improved.
This approach results in greater model performance in some
of our experiments.

D. Training flow and one-vs-all classifier

As the model encounters new classes in the data stream,
the number of classes stored in memory increases over time.
Thus, the number of classes in an incoming data batch does
not match the number of classes represented in the memory
buffer and leads to an imbalanced learning issue [4], [17].

We bypass this issue with a one-vs-all linear classification
layer and a novel training scheme. For an incoming image xs

of label ys from the stream, an image xm of a different label



ym ̸= ys is sampled from the memory. The pair (xs, xm) is
fed into the encoder gϕ and only the logit oys corresponding
to the class ys in the classification layer is activated, rather
than the whole classification layer as in ER [4], [8]. Each
logit oy is defined as oy(z; θy) = w⊤

y z + by with parameters
θy = (wy, by). The training procedure is shown in Figure 1.

The one-vs-all classification layer is trained as a logistic re-
gression on the encoder features. Specifically, when receiving
the image pair (xs, xm), we train the logit oys

of parameters
θys

with stochastic gradient descent using the following loss
function:

l (oys
((xs, xm); θys

)) =

− 1

2
(log (hys

(xs; θys
)) + log (1− hys

(xm; θys
))) (1)

with hy(x; θy) = σ(oy(gϕ(x); θy)) the probability that the
image x belongs to class y and σ the sigmoid function.

The separately trained logits operate as independent clas-
sifiers for each class. We empirically show that our training
scheme performs well with tiny memory buffers in the follow-
ing section. Indeed, one example per class stored in the buffer
is sufficient to efficiently train the one-vs-all classification
layer.

During inference, the class with the highest classification
score is selected:

ŷ = argmax
y∈{0,...C−1}

oy(x) (2)

E. Consolidation step
Since the classifiers are separately trained in our model,

if a given classifier for a class in a task Di is not trained
with class samples of the forthcoming tasks Di+1, Di+2 . . . ,
these samples would then be considered out-of-distribution.
Thus, the classifier may assign scores with high confidence
predictions to class samples from upcoming tasks, potentially
resulting in classification errors as we select the class with the
highest score in (2).

Inspired by the review trick [18], we perform a consolida-
tion step every τconsolidation images seen from the data stream.
This consolidation step consists in training all logits of the
classification layer using every image of the memory in a
single pass. In this way, classifiers from past tasks are also
trained on more recently added class samples. This approach
and its benefits are detailed in section IV-C.

III. EXPERIMENTS

A. Datasets
We evaluated our method on the three datasets outlined in

table I, which are commonly used as benchmarks by the OCIL
community [4].

# tasks # classes per task # images per class
train test

Split CIFAR-10 5 2 5000 1000
Split CIFAR-100 20 5 500 100
Core50-NC [19] 9 10 (D0), 5 (D1...D8) 2400 900

Table I: Benchmark datasets for OCIL

B. State of the art

We compare our approach to the following methods. Each
one implements a memory buffer with a reservoir sampling
[15] for replaying exemplars from past tasks to alleviate
catastrophic forgetting.

iCaRL [11]: class samples stored in memory are used to
build a nearest mean classifier. The feature extractor is updated
as new samples become available using a combination of
knowledge distillation and binary cross entropy loss. In order
to apply this method in OCIL, we adopted the modifications
proposed by [4] which implements iCaRL with a reservoir
sampling buffer. Other comparative studies revealed that this
method proposed in 2017 is still competitive: in 2021 in the
OCIL context [4] and in 2023 with pretrained encoders [16].

ER [8]: is the baseline in OCIL. During training, samples
are randomly selected from the memory buffer to augment the
current data batch. The model is updated with the resultant
batch composed of new and past data.

MIR [13]: is an ER-based approach which improves the
memory sampling strategy. Rather than randomly selecting
examples, MIR performs virtual model updates on a subset
of the memory and select those which provide the largest loss
function increase.

f-ER: In addition to existing methods, we implemented a
modified version of ER which uses a frozen CNN encoder.
This method allows us to perform a fair comparison between
our one-vs-all classification layer and a more traditional soft-
max classification layer.

In the state of the art on OCIL, the model is usually trained
from scratch. For a better comparison with our method, we
initialized the CNN enccoder gϕ for every method with a
pretrained model. In addition, the offline consolidation step
described in section II-E is also applied to all methods. As in
[18], we conclude that additional learning steps with all the
samples in the memory increase the overall performance, even
with tiny memories.

C. Experimental setting

For each experiment, following the literature on OCIL [4],
[8], [13], we use a ResNet-18 pre-trained on ImageNet for the
encoder gϕ, a learning rate of 0.01, and a batch size of 10.
The consolidation period is set to τconsolidation = 2500 images.
The training was done on a laptop with an Intel i7-11850H
CPU and an NVIDIA T600 GPU. Each experiment is run 10
times on Split CIFAR-10, Split CIFAR-100 and 3 times on
Core50-NC.

We evaluate our model by computing the following metrics:
average accuracy, average forgetting, average computing time
(including both training and testing time) and NetScore [20].
The first three metrics characterize the overall performance
over the entire training period. In particular, average accu-
racy is measured on all classes at the end of training on
the data stream. Average forgetting quantifies the degree to
which a learning system loses previously acquired knowledge,
represented by the maximum decrease in accuracy. We refer
the reader to the survey [4] for additional information on



Split CIFAR-10
Average accuracy (↑) Average forgetting (↓) Average computing time (s) NetScore Ω (↑)

M=10 M=30 M=100 M=10 M=30 M=100 M=10 M=30 M=100 M=10 M=30 M=100

iCaRL [11] 29.5 ±3.3 34.4 ±2.5 37.9 ±4.2 48.8 ±3.9 56.5 ±3.1 54.5 ±5.0 124.4 132.4 136.6 26.41 32.24 35.91
ER [8] 18.9 ±0.7 22.0 ±1.1 34.8 ±1.4 74.5 ±1.4 65.4 ±2.7 48.9 ±2.2 149.4 137.5 144.0 11.15 17.61 35.63

MIR [13] 18.5 ±0.8 20.0 ±0.6 28.8 ±2.5 73.1 ±1.6 65.8 ±2.7 52.9 ±2.7 278.5 286.4 306.2 7.18 10.13 24.29
f-ER 20.7 ±0.7 27.1 ±1.6 41.6 ±1.5 71.4 ±1.6 62.3 ±3.6 44.9 ±2.1 53.9 55.1 55.9 19.89 30.53 47.51

ILOVA 43.5 ±1.8 46.0 ±1.5 52.6 ±1.0 15.4 ±2.3 15.1 ±1.7 13.6 ±1.3 53.7 54.8 55.6 49.61 51.72 56.92

Split CIFAR-100
Average accuracy (↑) Average forgetting (↓) Average computing time (s) NetScore Ω (↑)

M=100 M=300 M=1000 M=100 M=300 M=1000 M=100 M=300 M=1000 M=100 M=300 M=1000

iCaRL [11] 11.2 ±0.5 18.5 ±0.5 27.2 ±0.3 28.0 ±0.8 25.3 ±1.0 15.6 ±0.8 182.3 183.1 307.8 -14.29 5.63 20.31
ER [8] 8.8 ±0.9 16.2 ±0.8 24.1 ±0.5 61.2 ±1.8 41.6 ±1.5 24.0 ±1.0 190.6 202.7 224.4 -20.76 3.09 17.68

MIR [13] 7.2 ±0.6 13.9 ±0.7 22.5 ±0.4 66.0 ±1.4 53.4 ±1.5 34.6 ±0.8 291.6 333.9 433.5 -30.91 -5.53 11.64
f-ER 11.6 ±0.5 21.1 ±0.6 28.1 ±0.5 64.7 ±1.2 40.0 ±1.3 17.0 ±1.0 73.4 79.9 92.3 -4.94 18.32 28.27

ILOVA 27.2 ±0.6 28.0 ±0.2 28.6 ±0.2 10.3 ±0.6 11.2 ±0.8 10.9 ±0.6 64.2 68.2 90.7 29.82 30.43 29.06

Core50-NC
Average accuracy (↑) Average forgetting (↓) Average computing time (s) NetScore Ω (↑)

M=50 M=150 M=500 M=50 M=150 M=500 M=50 M=150 M=500 M=50 M=150 M=500

iCaRL [11] 51.1 ±3.6 61.7 ±2.5 69.8 ±2.9 26.4 ±9.0 21.2 ±5.4 14.4 ±5.0 1375.1 1415.6 1543.6 36.35 43.68 47.96
ER [8] 25.6 ±5.0 42.4 ±1.6 57.9 ±11.0 70.5 ±4.6 53.4 ±1.6 36.8 ±9.4 1437.5 1452.2 1570.9 11.91 31.92 43.56

MIR [13] 25.1 ±2.5 42.3 ±1.8 58.9 ±6.4 70.9 ±1.5 53.0 ±1.7 35.2 ±4.8 2540.7 2623.0 2966.1 8.28 28.87 41.07
f-ER 28.6 ±2.0 41.2 ±1.4 54.1 ±2.9 63.5 ±1.5 50.4 ±1.5 35.5 ±2.8 715.4 763.5 754.2 19.84 33.98 44.52

ILOVA 57.4 ±4.4 59.9 ±2.1 61.5 ±2.8 10.1 ±7.7 5.7 ±9.1 1.6 ±4.0 694.1 743.8 764.8 47.85 49.08 49.58

Table II: Results on Split CIFAR-10, Split CIFAR-100 and Core50-NC. Average accuracy, average forgetting and average
computing time are presented for three experiments with different memory sizes M (number of images). The best performances
are shown in bold.

these OCIL evaluation metrics. The NetScore metric Ω [20] is
used in studies on continuous learning on embedded devices
to characterize the accuracy, computational complexity, and
network architecture complexity trade-off. It is computed as
follows:

Ω(M) = s log

(
a(M)α

p(M)βc(M)γ

)
(3)

where for an agent M, a(M) is the accuracy, p(M) is the
total number of parameters required to store both the CNN
and the memory buffer, c(M) is the time in seconds of the
experiment execution and α, β, γ are three parameters that
control the influence of each quantity. Following [14], we set
α = 2, β = 0.25 and γ = 0.25.

The specified metrics are measured at the end of training on
the stream and then averaged for all runs. Results are presented
in Table II.

IV. DISCUSSION

A. Comparison with the state of the art

The NetScore metric Ω is useful for seeking the best
trade-off between model performance, memory footprint, and
computing time. In regards to this metric, our method ILOVA
outperforms all others in the three experiment datasets.

Our method exhibits very low forgetting on all memory
configurations. On Split CIFAR-10 with M = 10, ILOVA
demonstrates an average forgetting improvement of 59.1 points
compared to the ER baseline. On Split CIFAR-100 with a
substantial memory of M = 1000 images, our method forgets
4.7 points less compared to the second-best method iCaRL.

The superior forgetting performance of ILOVA translates to
higher accuracy, even with tiny memories where one example
per class is stored while other methods show high forgetting
and are effective on the last seen task only. In terms of global
performance (accuracy and forgetting), iCaRL performs rela-
tively well with tiny memories. The regularization component
of iCaRL is likely to preserve the generalization capabilities
of the pre-trained encoder. Although, this benefit comes at the
cost of an increased memory footprint, as it requires storing a
duplicate copy of the CNN encoder weights

ILOVA significantly reduces computing time compared to
other methods. This is mainly due to the absence of encoder
training and the simplicity of memory management, as op-
posed to an approach such as MIR [13].

In comparison to f-ER, ILOVA shows a similar low com-
puting time: both methods do not train the encoder, which
significantly decreases the computing time. The one-vs-all
classification layer and training scheme in ILOVA result in
less forgetting and a higher accuracy across all experiments
than a traditional softmax layer.

B. Memory footprint reduction with Latent Replay

Following existing work on OCIL, all compared models in
our experiments store raw images X in the memory buffer.
However, storing the feature vectors gϕ(X) is possible for
ILOVA as it uses a frozen encoder. This technique known as
Latent Replay [21] reduces the computational time and the
memory footprint. Table III shows the gains brought by this
approach.
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Figure 2: Task accuracy as new tasks are learned on Split CIFAR-10 with M=100. Each graph illustrates the accuracy achieved
on test images corresponding to each task, without consolidation (first row) and with consolidation (second row).

Storing Computing Memory
time (s) usage (MB)

Split Cifar10 images 55.6 1.17
M=100 features 40.7 0.20

Split Cifar100 images 90.7 11.72
M=1000 features 52.5 1.95

Core50-NC images 764.8 93.8
M=500 features 629.1 0.98

Table III: Comparative results between storing raw images or
computed features on three experiments using ILOVA.

C. Stability-plasticity trade-off

The problem of catastrophic forgetting is often outlined
through the stability-plasticity dilemma [22]. We show in this
sub-section how consolidation discussed in section II-E affects
this trade-off through an experiment on Split CIFAR-10 with
M = 100 images.

Without consolidation, ILOVA shows remarkable stability
as illustrated in Figure 2: the accuracy on each task remains
constant. However, this stability comes at the cost of decreas-
ing the initial accuracy for newly learned tasks. As stated in
section II-E, former one-vs-all classifiers are not updated with
more recent class samples in the absence of consolidation.
Thus, classifiers are overconfident in examples of classes
subsequently observed in the data stream and the model is
biased towards the first learned classes. Indeed, a significant
number of false positives are present in the confusion matrix
3a, in particular for the first task classes plane and car.

The consolidation step effectively resolves this issue: the
confusion matrix of Figure 3b shows a significantly reduced
number of false positives in the first classes. The accuracy
curves depicted in Figure 2 demonstrate a more favorable
trade-off between the stability and accuracy of newly learned
tasks.
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Figure 3: Confusion matrices on Split CIFAR-10 with M=100
for ILOVA, classes are sorted by order of appearance in the
data stream.



Moreover, ILOVA reaches a lower accuracy than ER when
learning a new task, but provides better long-term stability.
Accuracy curves of ER drop over time, which is a character-
istic of catastrophic forgetting. Thanks to the balance between
stability and plasticity, our method reaches a higher task-
averaged accuracy than ER at the end of the stream.

V. CONCLUSION

Overcoming the catastrophic forgetting with limited com-
puting resources in the Online Class Incremental Learning
(OCIL) context is a real challenge for existing methods. In this
paper, we proposed a new method called ILOVA that yields a
better balance between accuracy, forgetting of previous knowl-
edge and computation time than existing methods when using
tiny memories. These strengths make it a suitable method for
on-device training with constrained computing resources.

We show that the consolidation step allows a better conver-
gence for all visited classes. Future research on an adaptive
consolidation period could be considered. This would allow to
reach the best trade-off between stability and plasticity with a
minimal number of consolidations.
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