
HAL Id: hal-04218166
https://hal.univ-grenoble-alpes.fr/hal-04218166v1

Submitted on 28 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving Single-Trace Attacks on the
Number-Theoretic Transform for Cortex-M4
Guilhèm Assael, Philippe Elbaz-Vincent, Guillaume Reymond

To cite this version:
Guilhèm Assael, Philippe Elbaz-Vincent, Guillaume Reymond. Improving Single-Trace Attacks on
the Number-Theoretic Transform for Cortex-M4. 2023 IEEE International Symposium on Hard-
ware Oriented Security and Trust (HOST), May 2023, San Jose, United States. pp.111-121,
�10.1109/HOST55118.2023.10133270�. �hal-04218166�

https://hal.univ-grenoble-alpes.fr/hal-04218166v1
https://hal.archives-ouvertes.fr

Improving Single-Trace Attacks on the
Number-Theoretic Transform for Cortex-M4

Guilhèm Assael*†, Philippe Elbaz-Vincent†, Guillaume Reymond*

*STMicroelectronics Rousset, 190 avenue Celestin Coq, 13106 Rousset, France
guilhem.assael@st.com, guillaume.reymond@st.com

†Univ. Grenoble Alpes, CNRS, IF, 38000 Grenoble, France
philippe.elbaz-vincent@math.cnrs.fr

Abstract—The Number-Theoretic Transform (NTT) is a key
feature for the efficiency of numerous lattice-based cryptographic
schemes. The arithmetic structure of that operation makes it
an important target for soft-analytical side-channel attacks,
that are powerful single-trace side-channel attacks exploiting
known arithmetic structure to improve noise tolerance. Among
others, Pessl et al. used the belief-propagation technique to
attack a software implementation of the Kyber key encapsulation
mechanism for Arm Cortex-M4 microcontrollers. However, that
implementation has since been thoroughly optimized, in particu-
lar through the use of an improved version of Plantard modular
arithmetic. In this paper, we describe how we successfully attack
the latest available version of this implementation. We show
that precise knowledge of the implementation at hand allows
for better performance of the belief-propagation technique. By
modeling each individual arithmetic operation performed by the
microcontroller, we are able to recover the secret values processed
during the NTT, even with very noisy side-channel leakage. We
also study some strategies for the attacker to either maximize
the success rate, or minimize the runtime of the attack.

Index Terms—single-trace side-channel attacks, NTT, post-
quantum cryptography, CRYSTALS-Kyber, belief propagation

I. INTRODUCTION

In response to the threat that increasingly powerful quantum
computers pose to the security of current public-key cryptog-
raphy, such as RSA and elliptic-curve cryptography, several
organizations (e.g. [1]) have pushed for the development of
new public-key cryptography algorithms that resist attacks
by quantum computers: they are called Post-Quantum Cryp-
tography (PQC). In particular, the US National Institute of
Standards and Technology (NIST) started a process for the
standardization of PQC schemes [2]. After three rounds of
evaluating and selecting the various candidates, NIST recently
announced the algorithms that will be standardized, and the
ones that will be subjected to further evaluation [3]. The sole
Key-Encapsulation Mechanism (KEM) that has been selected
for standardization as of now, CRYSTALS-Kyber [4], is a
lattice-based algorithm that is both fast and relatively compact.

However, lattice-based schemes remain vulnerable to side-
channel attacks [5], [6], [7], in particular when they are
combined with chosen-ciphertext attacks [8], [9]. Among

these, single-trace attacks are especially troubling, since they
allow an attacker to determine secret information by observing
a single cryptographic operation, and are often difficult to
protect against.

Notably, Primas et al. [10] showed a single-trace attack
against the Number-Theoretic Transform (NTT), an arithmetic
operation notably used in Kyber. This attack used belief
propagation, a technique first introduced in the context of so-
called soft-analytical side-channel attacks (SASCA) by Veyrat-
Charvillon et al. [11]. Pessl et al. [12] improved the attack,
making it more tolerant to noise and reducing the initial effort
for templating the targeted implementation. Hamburg et al.
[13] later showed that by using sparse chosen ciphertexts,
noise tolerance could be further improved and some assump-
tions of the previous attack could be relaxed, at the cost of hav-
ing to acquire several traces to recover the complete long-term
secret key. Finally, Hermelink et al. [14] recently studied how
to adapt the attack for it to handle shuffled computations, and
managed to carry it out successfully in some specific cases.

Among these attacks, those that were performed on real
traces targeted an ARM Cortex-M4 microcontroller, either
running the reference implementation of Kyber, or running
an older version of the Kyber implementation proposed by
the pqm4 project [15]. Besides being an important target
for practical applications using PQC algorithms, Cortex-M4
microcontrollers have been chosen by NIST as the primary
evaluation platform for embedded devices during the PQC
standardization process. However, to the best of our knowl-
edge, no such attacks target the most recent version of the
Kyber implementation provided by pqm4, which is thoroughly
optimized for Cortex-M4 microcontrollers. Hamburg et al.
[13] hint that attacking that implementation requires some care
to account for its specifics. In the following, we show that by
closely modeling this implementation, we can perform very
effective single-trace attacks.

Our contribution

We apply the belief-propagation attack to an optimized
software implementation of the NTT making use of the
specific arithmetic instructions available in the ARMv7E-
M instruction set. We show that considering a reasonable

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists,
or reuse of any copyrighted component of this work in other works.

This is the author version of G. Assael, P. Elbaz-Vincent and G.
Reymond, "Improving Single-Trace Attacks on the Number-Theoretic
Transform for Cortex-M4," 2023 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), San Jose, CA,
USA, 2023, pp. 111-121, doi: 10.1109/HOST55118.2023.10133270.
https://ieeexplore.ieee.org/abstract/document/10133270

https://dx.doi.org/10.1109/HOST55118.2023.10133270
https://ieeexplore.ieee.org/abstract/document/10133270

leakage model, the attack succeeds even in the presence of
noise, despite the compactness of the implementation, that
limits the amount of side-channel leakage. We also study
the influence of measurement-noise variance on the success
rate and the execution time of the attack, and show that a
precise knowledge of the amount of noise is not required to
get satisfactory results.

By specializing our attack to situations when the NTT is run
over small-valued coefficients, we are able to recover all secret
coefficients with high probability up to much stronger noise
levels, while keeping the computational effort well within the
capabilities of any individual attacker.

Outline

In Section II, we give the notations used in this article, and
introduce the relevant background. In Section III, we detail
the implementation of our attack, and evaluate its results on
simulated side-channel traces in Section IV. We explore in
Section V how the attack can be exploited in practice, and
how to protect against it. Finally, in Section VI we conclude
on our contribution and describe various possible follow-ups
to our work.

II. PRELIMINARIES

After introducing some notations and recalling the use
and structure of the NTT, we briefly describe Kyber key-
encapsulation mechanism, then summarize how Huang et al.
[16] optimize the implementation of its NTT for Cortex-M4
microcontrollers, and wrap up with a description of the Belief
Propagation algorithm in the context of Soft-Analytical Side-
Channel Attacks.

A. Notations

We denote vectors by bold lowercase letters, e.g. x, and
matrices by bold uppercase letters A. Given two polynomials
𝑢 and 𝑣, we denote by 𝑢𝑣 their convolution product (usual
polynomial product).

When 𝒮 denotes a set, notation 𝑢 ← 𝒮 describes the
sampling of quantity 𝑢 uniformly at random from 𝒮. When
𝒮 denotes a probability distribution, that notation describes
the sampling of 𝑢 according to said probability distribution.
When that set or that law is raised to some 𝑘th power, 𝑢
is a 𝑘-element vector each of whose elements is sampled
independently, or a 𝑘× 𝑘 matrix when the exponent is 𝑘× 𝑘.

Given a fractional number 𝑟, we define ⌈𝑟⌋ to be the nearest
integer to 𝑟, ties being rounded up. That operation is applied
coefficient-wise to polynomials and polynomial vectors.

For two integers 𝑥 and 𝑦 expressed over some defined
number of bits, 𝑥 ‖ 𝑦 denotes the concatenation of their rep-
resentative bit-strings, 𝑥 being placed in the most-significant
part. The top and bottom part of that concatenation are
respectively written as (𝑥 ‖ 𝑦)t = 𝑥 and (𝑥 ‖ 𝑦)b = 𝑦.

For a prime 𝑞, we denote by F𝑞 = Z/𝑞Z the field of integers
modulo 𝑞.

B. Number-Theoretic Transform

Cryptography algorithms based on module or ideal lattices
make a large use of arithmetic operations on integer poly-
nomials, in particular polynomial multiplication. To optimize
the efficiency of these operations, several schemes [4], [17],
[18] have parameters that allow (or mandate) the polynomial
multiplications to be performed using the NTT, which is
asymptotically the most efficient algorithm for that task.

The NTT is the equivalent of the Discrete Fourier Transform
(DFT) for prime-order finite fields. It provides a bijective map-
ping from a polynomial ring 𝑅 to the corresponding so-called
NTT domain. Polynomial multiplication (or convolution) in the
former domain translates to point-wise multiplication in the
latter. More concretely, given two polynomials 𝑓 and 𝑔 from
𝑅, their product can be computed as 𝑓𝑔 = NTT-1(NTT(𝑓) ∘
NTT(𝑔)) where ∘ represents point-wise multiplication and
NTT, NTT-1 are the NTT in the forward and inverse direction
respectively.

The implementation of an 𝑛-point NTT (𝑛 being a power
of two) can be done efficiently with a regular structure of so-
called butterfly operations, arranged in several layers. These
butterflies take as input a pair of coefficients, perform simple
modular arithmetic on the pair together with one root of unity
(in the sense of modular exponentiation), and output another
pair of coefficients that will be processed by the next layer.
The roots of unity are often called twiddle factors. In the case
of Kyber, the NTT is processed in 7 layers, each applying 128
butterfly operations.

The NTT is often implemented with Cooley-Tukey (CT)
butterflies in the forward direction, and Gentleman-Sande (GS)
butterflies in the reverse direction [16]. These operations,
applied to two integer values 𝑎 and 𝑏 and parameterized by
twiddle factor 𝜁, are respectively described by Equations (1)
and (2). We note that the GS butterfly sometimes includes
modular divisions by 2, but they are often left out from the
butterfly and carried out during a pre- or post-processing.

CT𝜁(𝑎, 𝑏) =
(︀
(𝑎+ 𝜁𝑏) mod 𝑞 (𝑎− 𝜁𝑏) mod 𝑞

)︀
(1)

GS𝜁(𝑎, 𝑏) =
(︀
(𝑎+ 𝑏) mod 𝑞 ((𝑏− 𝑎)𝜁) mod 𝑞

)︀
(2)

C. Kyber

Kyber [4] is a key-encapsulation mechanism based on the
classical and quantum hardness of the Module Learning-With-
Errors (MLWE) problem. Recently, NIST chose this KEM for
standardization due to its simplicity, performance and security
[3].

In all its security levels, Kyber uses matrices and vectors
of polynomials from a fixed ring 𝑅𝑞 = F𝑞[𝑋]/(𝑋𝑛 + 1),
where the degree of the reducing polynomial is 𝑛 = 256
and the integer modulus is prime 𝑞 = 3329. The security
level is chosen by varying the dimension 𝑘 of matrices and
vectors between 2 and 4. The error sampling required by the
MLWE framework makes use of binomial distributions. We
denote by ℬ𝜂 the distribution over polynomials, such that each
coefficient independently follows a binomial law of parameter

𝜂, having support {−𝜂,−𝜂+1, . . . , 𝜂}. Since it heavily relies
on polynomial arithmetic, Kyber mandates the use of the NTT
in its specification, and optimizes some operations by sampling
some random elements already in the NTT domain.

We now describe the simplified layout of Kyber’s key gener-
ation, encryption and decryption operations1. We omit several
aspects from this description, in particular the compression
and decompression of the ciphertext, as well as the conversion
from polynomial representation to byte strings and conversely.

We give in Algorithm 1 below the procedure for key
generation. A private key for Kyber is given by a polynomial
vector s whose coefficients are sampled from a binomial
distribution, while the corresponding public key is a tuple
containing a matrix A of polynomials sampled uniformly at
random, and the product of the public matrix by the private
vector with the addition of secret noise.

Algorithm 1: Kyber key generation (simplified)

Output: Private key 𝑠𝑘 = ŝ ∈ 𝑅𝑘
𝑞

Output: Public key 𝑝𝑘 = (Â, t̂) ∈ 𝑅𝑘×𝑘
𝑞 ×𝑅𝑘

𝑞

1 Â← 𝑅𝑘×𝑘
𝑞

2 s← ℬ𝑘𝜂1
3 e← ℬ𝑘𝜂1
4 ŝ = NTT(s)
5 ê = NTT(e)

6 t̂ = Â ∘ ŝ+ ê

7 return 𝑠𝑘 = ŝ, 𝑝𝑘 = (Â, t̂)

Algorithm 2 below shows how the encryption of a 256-bit
message 𝑚 is performed: a one-time secret vector r is sampled
from a binomial distribution, and multiplied on one hand by
public matrix A, and on the other hand by public vector t.
Before being released, these two results are added with some
independently-sampled noise (e1 and 𝑒2 respectively), and the
second one is further added with a polynomial representation
of the message (each coefficient being either 0 or ⌈𝑞/2⌋
depending on the corresponding message bit).

Algorithm 2: Kyber encryption (simplified)

Input: Public key 𝑝𝑘 = (Â, t̂) ∈ 𝑅𝑘×𝑘
𝑞 ×𝑅𝑘

𝑞
Input: Message 𝑚 ∈ {0, 1}𝑛
Output: Ciphertext 𝑐 = (u, 𝑣) ∈ 𝑅𝑘

𝑞 ×𝑅𝑞

1 r← ℬ𝑘𝜂1
2 e1 ← ℬ𝑘𝜂1
3 𝑒2 ← ℬ𝜂2
4 r̂ = NTT(r)

5 u = NTT-1(ÂT ∘ r̂) + e1
6 𝑣 = NTT-1(t̂T ∘ r̂) + 𝑒2 + ⌈𝑞/2⌋𝑚
7 return 𝑐 = (u, 𝑣)

Finally, decryption (shown in Algorithm 3 below) involves
multiplying the first part u of the ciphertext with the private
vector, subtracting it from the second part 𝑣 of the ciphertext,
and decoding one message bit per coefficient of the resulting
polynomial, by determining for each bit whether it is closer
to 0 or to ⌈𝑞/2⌋.

1Kyber is specified as a KEM which is secure in the model of Indis-
tinguishability under a Chosen-Ciphertext Attack (Ind-CCA). That KEM is
built upon the underlying public-key encryption scheme composed of the
key-generation, encryption and decryption algorithms we describe here.

Algorithm 3: Kyber decryption (simplified)

Input: Private key 𝑠𝑘 = ŝ ∈ 𝑅𝑘
𝑞

Input: Ciphertext 𝑐 = (u, 𝑣) ∈ 𝑅𝑘
𝑞 ×𝑅𝑞

Output: Message 𝑚 ∈ {0, 1}𝑛
1 𝑤 = 𝑣 −NTT-1(ŝT ∘NTT(u))
2 𝑚 = ⌈(2/𝑞)𝑤⌋ mod 2
3 return 𝑚

D. Optimized implementation of Kyber NTT for Cortex-M4

Being based on the ARMv7E-M 32-bit architecture, Cortex-
M4 microcontrollers have a number of arithmetic instructions
that can efficiently operate on half-word (16-bit) and byte (8-
bit) quantities. Thanks to these, Huang et al. [16] propose a
fast implementation of the NTT, able to perform two simulta-
neous butterfly operations (either CT or GS) in seven single-
cycle instructions. One novelty of their implementation is the
use of an improved version of Plantard modular reduction [19]
with wider input range and narrower output range, thus being
beneficial to lazy-reduction techniques.

We recall their solution for a CT butterfly in Algorithm 4
below. That solution is specifically tailored for Kyber’s mod-
ulus 𝑞 = 3329 using an additional constant 𝛼 = 3 such that
𝑞2𝛼+1 < 216. To be able to use that technique, the twiddle
factors 𝜁 used for the NTT need to be expressed over 32 bits
and multiplied by some constant, but we do not develop that
step here and refer the reader to [16] for details.

Algorithm 4: Double Cooley-Tukey butterfly for Cortex-M4

Input: Packed pairs of signed 16-bit coefficients 𝑎 = 𝑎t ‖ 𝑎b, 𝑏 = 𝑏t ‖ 𝑏b
Input: 32-bit corrected twiddle factor 𝜁 (from real twiddle factor 𝜁0)
Input: 𝑞 and 𝑞2𝛼 in two separate registers
Output: 𝑎 ≡ (𝑎t + 𝑏t𝜁0) ‖ (𝑎b + 𝑏b𝜁0), 𝑏 ≡ (𝑎t − 𝑏t𝜁0) ‖ (𝑎b − 𝑏b𝜁0)

1 smulwb 𝑡, 𝜁, 𝑏 // 𝑡 = 𝜁𝑏b≫ 16
2 smulwt 𝑏, 𝜁, 𝑏 // 𝑏 = 𝜁𝑏t≫ 16
3 smlabb 𝑡, 𝑡, 𝑞, 𝑞2𝛼 // 𝑡 = 𝑡b𝑞 + 𝑞2𝛼

4 smlabb 𝑏, 𝑏, 𝑞, 𝑞2𝛼 // 𝑏 = 𝑏b𝑞 + 𝑞2𝛼

5 pkhtb 𝑡, 𝑏, 𝑡, asr#16 // 𝑡 = 𝑡b ‖ 𝑏b
6 usub16 𝑏, 𝑎, 𝑡 // 𝑏 = (𝑎t − 𝑡t) ‖ (𝑎b − 𝑡b)
7 uadd16 𝑎, 𝑎, 𝑡 // 𝑎 = (𝑎t + 𝑡t) ‖ (𝑎b + 𝑡b)
8 return 𝑎, 𝑏

Due to its benefits, that optimized implementation is cur-
rently used for Kyber’s forward and inverse NTT in the pqm4
project [15], which proposes implementations of candidates to
NIST PQC, optimized for Cortex-M4 microcontrollers.

E. Belief Propagation

We base our work upon the attack of Primas, Pessl and
Mangard [10] and its improvements by Pessl and Primas [12],
that use belief propagation in the context of soft-analytical
side-channel attacks (SASCA). This approach starts with a
side-channel template attack, that recovers probability distribu-
tions for some intermediate values manipulated by the target,
depending of its leakage. Then, the operations performed by
the implementation under attack are modeled, and that model
is used to solve for the secret values that satisfy the leaked
information.

Belief Propagation is an optimization algorithm that is well
adapted to that task. We here give a high-level overview of that

𝐹1

𝐹2 𝐹3

𝑉a

𝑉b

𝑉c

𝑉d

𝑣1→a

𝑢a→2

𝑣3→a

𝑢a→3

𝑢d→3

𝑣3→c

Fig. 1. Example of a factor graph with update rules depicted for two messages:
from variable a to factor 2 (blue arrows) and from factor 3 to variable c (red
arrows).

technique, and refer the reader to MacKay [20] for details
and definitions. The aim of belief propagation in our setup
is to marginalize a joint probability distribution, that is, to
derive from it independent probability distributions for each
involved random variable. Practically, our joint probability
distribution is the sum of the information we have on the
algorithm being attacked, together with the information we get
through side-channel leakage. Belief propagation then helps us
determine probable values for each variable, which represents
a secret or intermediate value used by the algorithm. To do
so, the algorithm is modeled as an undirected graph having
variable nodes, that represent the secret and intermediate
values, and factor nodes, that represent the information we
have on variables, in the form of joint probability distributions
over subsets of them. Edges in that factor graph link factor
nodes to the variables they depend on. The core of the
belief-propagation algorithm then consists in passing messages
between nodes, that is, local approximations of the marginal
probability distributions of variables.

Let us illustrate how message passing works with a simple
example. We depict in Fig. 1 a simple factor graph having three
factor nodes 𝐹1, . . . , 𝐹3 and four variable nodes 𝑉a, . . . , 𝑉d.
Each factor has a potential, that is, a function that assigns a
probability to each possible tuple of outcomes for the variables
it is linked to. Two types of messages are exchanged between
nodes: variable-to-factor messages, where the message from
variable 𝑛 to factor 𝑚 will be denoted by 𝑢𝑛→𝑚, and factor-
to-variable messages, similarly denoted by 𝑣𝑚→𝑛 for the
same pair of nodes. Both 𝑢𝑛→𝑚 and 𝑣𝑚→𝑛 represent an
approximation of the probability distribution of variable 𝑛.

The rule for updating variable-to-factor messages is straight-
forward: the message from variable 𝑛 to factor 𝑚 is the point-
wise product of all messages sent to variable 𝑛 by factors other
than 𝑚. For instance, the blue-framed message in Fig. 1 is
updated though (3) for each outcome 𝑥 of variable a.

𝑢a→2(𝑥) = 𝑣1→a(𝑥)𝑣3→a(𝑥) (3)

The update of factor-to-variable messages is more computa-
tionally expensive. The message from factor 𝑚 to variable 𝑛 is
updated by computing the probability distribution of variable 𝑛
from (i) the prior probability distributions of the other variables
linked to factor 𝑚 (as given by the message each other variable

𝑎0t

𝑎0b

𝑏0t

𝑏0b

𝑎1t

𝑎1b

𝑏1t

𝑏1b

𝐿𝑎0

𝐿𝑏0

𝐿𝑎1

𝐿𝑏1

𝐼𝑏0t

𝐼𝑏0b

𝑉𝑏0

𝐵𝑎𝑏0t

𝐵𝑎𝑏0b

Fig. 2. Excerpt from the factor graph showing one double-butterfly operation
with inputs 𝑎0t||𝑎0b and 𝑏0t||𝑏0b, and outputs 𝑎1′t||𝑎1′b and 𝑏1′t||𝑏1′b

sends to factor 𝑚) and (ii) the joint probability distribution of
all variables involved in factor 𝑚 (as given by the potential
of the factor). Practically, the red-framed message in Fig. 1
is updated according to (4) for each outcome 𝑥 of variable c,
where (𝑥𝑎, 𝑥𝑑) in the sum runs over the Cartesian product of
the possible outcomes for variables a and d.

𝑣3→c(𝑥) =
∑︁
𝑥𝑎,𝑥𝑑

𝐹3(𝑥𝑎, 𝑥, 𝑥𝑑)𝑢a→3(𝑥𝑎)𝑢d→3(𝑥𝑑) (4)

These message updates are repeatedly applied to each edge
of the factor graph until convergence or another termination
condition is reached2. Then, the marginal probability distribu-
tion of each variable is determined by point-wise multiplying
all its incoming messages, and normalizing.

III. ATTACK IMPLEMENTATION

A. Factor graph

We model Kyber’s optimized NTT implementation from the
pqm4 project as a factor graph, taking into account the actual
operations performed by the microcontroller. In particular, the
model includes that most input, intermediate and output values
are processed in pairs.

We assume that each arithmetic operation leaks information
on the result that it writes to a register, and that each load or
store operation between RAM and registers leaks information
on the corresponding data word. In that latter case, we assume
a single leakage point for each pair of coefficients in each layer
of the NTT.

We show in Fig. 2 our factor graph for a 1-layer forward
NTT over 4 coefficients. We represent variable nodes with
circles, and factor nodes with rectangles.

We use three types of factors denoted by 𝐿, 𝑉 and 𝐼 to
encode the information acquired through side-channel leakage.
These factors assign to each outcome of the corresponding
variable (for type 𝐼) or pair of variables (for types 𝐿 and 𝑉)
the probability of the variable taking that outcome, conditioned

2For acyclic factor graphs, convergence to the optimal solution is guaranteed
independently from the order in which messages are updated; when, instead,
the graph contains cycles, the message-passing order matters and neither
optimality nor convergence are guaranteed.

by the actual side-channel measurements associated with the
factor. To that end, the measurements are supposed to be in the
Hamming-weight metric, with Gaussian noise having a fixed
standard deviation 𝜎𝐹 . Bayes’ theorem is used to recover the
desired probability from the knowledge of the measurement
outcome.

∙ Factor type 𝐿 represents one load or store operation of
a pair of coefficients, and its potential is based on the
measured leakage of the corresponding load or store, be-
fore or after the processing of the corresponding double-
butterfly operation. That leakage corresponds to the mea-
surement of 𝑎 or 𝑏 in input or output of Algorithm 4.

∙ Factor type 𝑉 represents the operation of packing a pair
of coefficients, after Plantard multiplication, into a single
32-bit register. Such factors are only included for variable
pairs that are fed to the second input of a butterfly
operation, and they are configured based on the leakage
of the value computed at line 5 of Algorithm 4.

∙ Factor type 𝐼 represents the leakage of the arithmetic
operations that depend on a single variable; its potential
is based on the measurement of the results of the two
arithmetic operations that involve that variable alone; one
is provided for each variable that is fed to the second
input of a butterfly operation. The factor linked to even-
index (resp. odd-index) coefficients is configured based
on the leakage of the values computed at lines 1 and 3
(resp. 2 and 4) of Algorithm 4.

In addition to these, a fourth factor type models the butterfly
operations. Following Pessl et al. [12], we use a single 𝐵-type
factor node to model each butterfly, rather than one node for
each output of each butterfly. Factors of that type assign equal
probability to all tuples of two input values and two output
values that respect the butterfly equation (taking into account
Plantard multiplication and lazy reduction), and assign zero
probability to all other tuples.

Applying that model to a 7-layer NTT over 256 coefficients
gives a factor graph with 2048 variable nodes, 896 unary
factors (type 𝐼), 1920 binary factors (type 𝐿 or 𝑉), and 896
factors having a fanout of four (type 𝐵).

B. Message-updating order

We make use of a message-updating order that is similar
to that of Pessl et al. [12]: we propagate messages from the
first layer to the last one, then back to the first one. More
specifically, we propagate messages one layer after another,
where the order in each layer is the following:

1) from 𝐿, 𝑉 and 𝐼 factor nodes in input of the layer, to
the input variable nodes;

2) then, from the input variables nodes to the 𝐵 nodes of
the layer;

3) then, from the 𝐵 nodes to the output variable nodes;
4) then, from the output variable nodes to the 𝐿, 𝑉 and 𝐼

nodes linked to the output variables3.

3The 𝑉 and 𝐼 factor nodes linked to output variables are not visible in
Fig. 2 since only a single layer of the NTT is represented.

Once the messages have been passed across all layers in the
forward direction, the above steps are done in reverse across
all layers from the last to the first. A single back-and-forth
propagation is referred to as one iteration.

In each of the steps enumerated above, all messages are
independent from one another, and can be computed in any
order, or even in parallel. That property allows the computation
to be highly parallelized, up to 256 times, with a nearly linear
performance gain.

C. Message damping

Similar to [12], we use message damping in order to
get better and faster convergence. Since our factor graph
contains loops, belief propagation can be unstable and make
the messages oscillate. Such oscillations are detrimental to
both convergence speed and accuracy, and should thus be
dampened. To do so, every time a message is updated, a
weighted average between its old value and the value given
by the message-passing rules is used as its new value. We
call damping value the weight 𝛿 given to the message-passing
rule, while the old value of the message is given weight 1−𝛿.
We empirically found a damping value of 𝛿 = 95% to give
satisfactory results, so we use it in all our experiments.

D. Message pruning

To improve the run-time of the algorithm, we adopt a
message-pruning strategy, that only processes nonzero out-
comes when computing message updates. To make full use of
this technique, we also truncate low-probability outcomes to
zero. Care must be taken to select a low enough threshold for
this truncation to minimize the probability of suppressing the
actual value of a variable from a belief. We chose a threshold
of 10−8 times the highest probability in each message, as
we empirically found that value to offer a good compromise
between the success rate and the average runtime for various
parameters.

We note that the efficiency of message pruning somewhat
decreases when also using message damping, since the latter
slows down the rate at which probabilities can decrease.
However, that effect is only significant for experiments that
converge in very few iterations.

E. Termination

We iterate the algorithm, repeatedly updating messages until
one termination condition is met: either the update of messages
changed all their values by less than a chosen threshold
(set to 10−5 to guarantee having reached a stable state);
or, one message is all-zeroes, which means the algorithm
has reached an inconsistent state with no solutions; or, the
number of iterations has reached a given limit (set to 100 after
observing that most of the experiments terminated in less than
20 iterations). Once one of these termination conditions has
been reached, the marginal probabilities of each variable are
computed by multiplying all the messages coming from its
adjacent factors, and normalizing.

F. Progress monitoring

During execution of the belief propagation, we keep track
of the residual Shannon entropy of all variables. That mea-
surement indicates the degrees of freedom that remain in the
state after each iteration.

G. Implementation and computing resources

All parts of our simulation, including the model of the
Cortex-M4 implementation and the belief-propagation algo-
rithm, are implemented in Python (version 3.10.6). The al-
gorithm implementing the message-update rules is carefully
written to be efficient and cache-friendly, and furthermore
compiled using the numba library [21] (version 0.55.1). The
algorithm is run on an AMD EPYC 7713P processor running
at 2GHz. The CPU has 64 physical cores, but at most 32 of
them were used for our algorithm (the CPU being shared with
other unrelated tasks). In the following, we name CPU time
the sum of the runtimes over all active CPU cores. Across all
experiments, the memory usage peaked at 10GB.

We do not claim our attack algorithm to be particularly
efficient in runtime or memory usage, and only intend to
demonstrate its practicality and how its runtime evolves with
attack parameters.

IV. RESULTS

In this section, we show that our attack allows us to recover
a uniformly random polynomial in input of the NTT, even
when the side-channel leakage has moderate noise, having a
standard deviation of 1 (for 99% success rate) or even 1.2 (for
90% success rate). We recall that, since we are measuring the
Hamming weight of 32-bit registers, noiseless measurements
are in the range from 0 to 32, inclusively. We will discuss in
Subsection V-A on what situations correspond to such amounts
of noise in a practical attack.

We also show that the standard deviation of the noise does
not need to be precisely known, and that slightly over- or
under-estimating it during the attack does not significantly
impact the quality or runtime of the secret recovery.

Finally, we specialize our setup to the case when the poly-
nomial input to the NTT is sampled according to a binomial
distribution, and are able to recover the secret perfectly in the
vast majority of cases for much higher measurement noise, up
to a standard deviation of 5.

A. Noise tolerance for uniformly-random input

We start by sampling coefficients uniformly at random
between −⌈𝑞/2⌉ and ⌈𝑞/2⌉ in input of the first NTT layer,
and we simulate the execution of the NTT and measure each
leakage point with some added noise, then use belief propa-
gation on the obtained measurements to attempt to recover the
input and intermediate values. We perform that procedure for
various standard deviations (denoted 𝜎𝑀) of the measurement
noise, and sample 100 such experiments for each value of the
standard deviation. For now, we assume that 𝜎𝑀 is exactly
known, and we accordingly configure the factor nodes of types
𝐿, 𝑉 and 𝐼 such that 𝜎𝐹 = 𝜎𝑀 . These two quantities being

0.2 0.4 0.6 0.8 1 1.2 1.4

40

60

80

100

Noise standard deviation 𝜎

Pr
op

or
tio

n
(%

)

Failed
Non-convergent
Under-determined
Successful

0.2 0.4 0.6 0.8 1 1.2 1.4

104

Noise standard deviation 𝜎

C
PU

tim
e

fo
r

su
cc

es
s

(s
) Extrema

25–75 %
Average

Fig. 3. Effect of noise variance on convergence rate and convergence time

equal, we collectively refer to them as 𝜎. In the following,
unless otherwise noted, an experiment is said to be successful
when it gave the highest probability to the actual value of each
input and intermediate variable.

The influence of the amount of measurement noise on
convergence rate and convergence time can be seen in Fig. 3.
For low measurement noise (𝜎 ⩽ 0.9), all experiments are
successful in less than two hours of CPU time, which only
represent a few minutes of wall-clock time since we can solve
the optimization problem with up to 32 CPU cores in parallel.
Above that value, the success rate stays above 90% up to a
noise standard-deviation of 𝜎 = 1.2. For higher measurement
noise, the success rate then quickly drops, and the runtime
sharply increases, reaching an average value of six CPU hours
per experiment for 𝜎 = 1.3.

Starting from 𝜎 = 1.2, the attack starts showing a variety
of different behaviors: apart from successful experiments, in
which belief propagation converges to a low-entropy state
(practically, a single candidate secret has nonzero probabil-
ity), and failed experiments, in which an inconsistent state
is reached with at least one message having no positive-
probability outcomes, two other behaviors are observed, and
labeled as either non-convergent or under-determined. We call
an experiment non-convergent when belief propagation does
not terminate before the iteration limit, and we mark it as
under-determined when it does terminate before that limit

but with a final state having large residual Shannon entropy
(practically, between 6000 and 14 300 bits in the experiments
reported in Fig. 3).

B. Influence of an incorrect estimation of the amount of noise

Since in practical attacks the standard deviation of the
measurement noise is not precisely known, we study the
influence of an incorrect estimation thereof on the performance
of belief propagation. For a fixed actual value of the standard
deviation of the noise and a fixed set of simulated traces,
we try to recover their secret values using belief propagation.
This time, we sample 100 executions of the NTT, with a fixed
measurement noise of standard deviation 𝜎𝑀 = 1.1, and we
attack each of them several times while varying the noise
standard deviation 𝜎𝐹 configured for the factor nodes of belief
propagation.

The results of that experiment are reproduced in Fig. 4.
Let us first analyze the quality of the outcome of belief
propagation. With the same termination conditions as before,
we measure the quality of the attack results by the number
of variables from the input layer of the NTT, whose most-
probable outcome in the final state is the actual value of the
variable. Since we are attacking a 256-point NTT, there are
256 first-layer variables to be recovered. As expected, the best-
quality results are obtained when the noise assumed by the
factor graph matches the actual measurement noise, that is,
when 𝜎𝐹 = 1.1, represented with a dashed vertical line in
Fig. 4. In that situation, all variables are successfully recovered
in 99% of the experiments, and 248 out of the 256 input
variables are recovered in the remaining one.

We get the exact same quality of results when measurement
noise is slightly overestimated, 𝜎𝐹 = 1.2. When departing
from these values, the results quality progressively decreases,
but more than 90% of the experiments are still perfectly
successful for 𝜎𝐹 ∈ [0.8, 1.4]. Below and above that range, the
results quickly worsen, with only 164 and 144 input variables
being recovered in the median case, at 𝜎𝐹 = 0.6 and 𝜎𝐹 = 1.6
respectively.

With respect to the runtime of the attack, we notice that
the evolution with 𝜎𝐹 differs from the case when 𝜎𝐹 is
held equal to 𝜎𝑀 (Fig. 3): the average runtime of the attack
presents a short plateau from 𝜎𝐹 = 0.7 to 𝜎𝐹 = 1.1, reaching
its minimum at 𝜎𝐹 = 0.9. Moreover, from 𝜎𝐹 = 0.6 to
𝜎𝐹 = 1.0, that average is strongly biased upwards due to a few
experiments being non-convergent and taking much more time
than usual. Consequently, the average time in that range could
be lowered without significantly affecting the results quality
by lowering the iteration limit to terminate non-converging
experiments faster.

Combining these two parameters of runtime and result qual-
ity, we can consider two strategies available to the attacker:
if it targets maximum success rate, then closely matching
or slightly overestimating the measurement noise is best; if,
however, the goal is to minimize the runtime while keeping
exact results in the majority of cases, slightly underestimating
the noise standard deviation might be best, here selecting

0.4 0.6 0.8 1 1.2 1.4 1.6

0

64

128

192

256

𝜎𝑀

Standard deviation 𝜎𝐹 configured for factor nodes

Fi
rs

t-
la

ye
r

va
ri

ab
le

s
re

co
ve

re
d

Extrema
2–98 %
9–91 %

25–75 %
Median

0.4 0.6 0.8 1 1.2 1.4 1.6

103

104

105

𝜎𝑀

Standard deviation 𝜎𝐹 configured for factor nodes

C
PU

tim
e

(s
)

Extrema
25–75 %
Average

Fig. 4. Quality and runtime of the attack depending on the noise standard
deviation known to the factor graph — actual noise standard deviation is
𝜎𝑀 = 1.1.

𝜎𝐹 = 0.9, or 𝜎𝐹 = 0.8 with earlier termination of non-
converging experiments.

C. NTT over coefficients having a small support

In the above subsections, we assumed the NTT to be
run over an input polynomial having uniformly-distributed
coefficients between −⌈𝑞/2⌉ and ⌈𝑞/2⌉. In practice for the
Kyber scheme, that situation only arises when the targeted
implementation is using masked arithmetic, like the imple-
mentation of Bos et al. [22]. Without masking, the NTT
is only ever applied to polynomials having a small support,
that is, having coefficients sampled from a centered binomial
distribution with small parameter. We now specialize our
attack to that situation, by sampling our input polynomials
from the centered binomial distribution with parameter 𝜂 = 3,
and adding that information into the 𝐿-type factors of the
factor graph. That change of distribution is easily taken care
of in the application of Bayes’ theorem, with no other changes
with respect to section III-A.

Since switching input coefficients from a uniform distribu-
tion to a binomial one decreases the Shannon entropy of each
from 11.7 to 2.3 bits, it is expected that higher tolerance to
measurement noise can be achieved. That effect is made clear
in Fig. 5, where perfect accuracy is obtained for relatively
large measurement noise, up to 𝜎 = 4 in all cases but one,

1 2 3 4 5 6 7

160

192

224

256

Noise standard deviation 𝜎
Fi

rs
t-

la
ye

r
va

ri
ab

le
s

re
co

ve
re

d

Extrema
2–98 %
9–91 %

25–75 %
Median

1 2 3 4 5 6 7

104

105

Noise standard deviation 𝜎

C
PU

tim
e

(s
)

Extrema
2–98 %
9–91 %

25–75 %
Average

Fig. 5. Quality and runtime of the attack against an NTT over binomial
coefficients with parameter 3

and up to 𝜎 = 5 more than 75% of the time. Above that
point, the quality of the results drops: for 𝜎 = 6, only 3
out of 100 experiments recover the first layer perfectly, and
229 coefficients out of 256 are recovered in the median case.
Since belief propagation often fails at recovering the first layer
exactly when the noise level is that high, the runtime also
increases, to an average of more than 18 CPU hours.

We note that the parameter of the binomial distribution was
chosen to match the largest one used by Kyber, specifically
the 𝜂1 parameter used in its lowest security level, for sampling
secret-key elements and one of the polynomial vector involved
during encryption. For the other elements and for higher se-
curity levels, the binomial distribution has yet smaller support
𝜂 = 2, and would allow for an even stronger attack.

Similarly to the study we did in Section IV-B, we examine
how an incorrect estimation 𝜎𝐹 of the amount of measurement
noise affects the quality and runtime of belief propagation: this
time, in the case of binomially-distributed input coefficients.
We set the actual standard deviation of the measurement
noise to 𝜎𝑀 = 4.0 and run the belief-propagation algorithm
with various values of 𝜎𝐹 from 2 to 8. The results of these
experiments can be seen in Fig. 6.

In terms of results quality, we observe largely the same
behavior as in the case when input coefficients are uniformly
distributed. When the measurement noise is correctly con-
figured or slightly overestimated (𝜎𝐹 ∈ [4, 5]), 99% of the

2 3 4 5 6 7 8

160

192

224

256

𝜎𝑀

Standard deviation 𝜎𝐹 configured for factor nodes

Fi
rs

t-
la

ye
r

va
ri

ab
le

s
re

co
ve

re
d

Extrema
2–98 %
9–91 %

25–75 %
Median

2 3 4 5 6 7 8

104

105

𝜎𝑀

Standard deviation 𝜎𝐹 configured for factor nodes

C
PU

tim
e

(s
)

Extrema
2–98 %
9–91 %

25–75 %
Average

Fig. 6. Quality and runtime of the attack against an NTT over binomial
coefficients with parameter 3, depending on the noise standard deviation
configured in the factor graph — actual noise standard deviation is 𝜎𝑀 = 4.0.

experiments recover the first layer entirely, and the remaining
one recovers 255 coefficients out of 256. In the whole range
𝜎𝐹 ∈ [3, 6], the input coefficients are still recovered perfectly
in more than 90% of the cases. For lower and higher values of
𝜎𝐹 , however, the attack is less successful, with the median case
recovering 235 and 229 coefficients at 𝜎𝐹 = 2 and 𝜎𝐹 = 7
respectively.

The runtime of belief propagation is closely related to the
results quality, with a very regular increase in the range over
which the recovery is nearly perfect: from 2.5 CPU hours at
𝜎𝐹 = 3 to 3.1 CPU hours at 𝜎𝐹 = 6. When the results quality
decreases, the runtime departs from that regular tendency,
falling to 1.6 CPU hour on average at 𝜎𝐹 = 2, and rising
to 18.7 hours at 𝜎𝐹 = 7. Overall, we thus reiterate our
remark that a close estimation of the measurement noise is not
required, but deliberately over-estimating or under-estimating
it can be beneficial in terms of success rate or runtime,
respectively.

D. Masked implementations

To protect implementations of the NTT against multiple-
trace attacks, a typical measure is arithmetic masking [23].
Using this method, each secret value is replaced with two
shares, each of whose is chosen uniformly at random when
considered independently, but whose sum is equal to the secret.

Since the NTT is a linear operation, it can be separately
computed over each set of shares of the secret polynomial,
and the two resulting polynomials are arithmetic shares of the
expected result.

In this situation, the polynomial coefficients in input of the
NTT are no longer distributed over a small support, so it
seems that the attacker has to fall back to attacking the NTT
over uniformly-distributed coefficients (see Subsection IV-A
and Subsection IV-B). However, Pessl at al. [12] show that
the information over the small support can still be used by
attacking both share sets at the same time, thus using a factor
graph twice the size of the previous one, with additional
factor nodes connecting corresponding shares and encoding
the information over the small support of their sum. Although
their attack tolerates less noise in the masked case than in the
unprotected case, perfect success rates can still be achieved
against masked implementations having low noise.

We argue that our attack still allows for significant noise in
the masked case: indeed, our setup with uniformly-distributed
coefficients in input of the NTT can be applied directly to the
masked case by processing shares independently, thus squaring
the success rate. We are thus guaranteed to obtain nearly-
perfect success up to 𝜎 = 1.0. Specializing the attack to the
masked case as described by Pessl et al. [12] can only bring
further improvements to noise tolerance.

V. PRACTICAL SIGNIFICANCE

A. Attack exploitation

Our attack can recover the polynomial provided in input
to the forward-NTT operation. From Subsection II-C, we can
see that the attack allows for recovering the one-time secret r
used in encryption (thus allowing to recover the corresponding
plain-text message), or the long-term private key s (allowing
to decrypt all past and future ciphertexts for that key pair),
depending on which NTT operation is targeted.

When trying to perform message recovery, the attacker
should target the NTT or r at line 4 of Algorithm 2. Having
recovered r, it is then possible to compute the message as
𝑚 = (𝑣 − tTr)/⌈𝑞/2⌋, where 𝑣 is part of the released
ciphertext and t belongs to the public key.

Much more powerful is a recovery of the long-term private
key, which can clearly be carried out during key generation.
Attacking the NTT of either s or e (lines 4 and 5 of
Algorithm 1) leaks the private vector, either directly or through
s = A−1(t−e). This attack can thus be applied at two points
during key generation; however, since key generation is only
supposed to occur once for a given key pair, and since it
might be performed in a more controlled environment than
subsequent cryptographic operations, such realization may be
difficult for the attacker.

We note that in these practical realizations, the attack must
be run 𝑘 times since 𝑘-element vectors have to be recovered.
Consequently, for the lowest security level of Kyber (𝑘 = 2),
the success rate of the whole attack would be the square of
the success rate of attacking the NTT of each polynomial.

Since the decapsulation of Ind-CCA Kyber involves an en-
cryption step, which is subject to the message recovery attack
described above, private-key recovery can also be performed
during decapsulation, with the help of chosen ciphertexts.
Indeed, Ngo et al. [6] devised a message-recovery attack on
the Saber KEM [24] and introduced techniques to convert it
into a key-recovery attack when combined with a very few
chosen ciphertexts. They showed 8 chosen ciphertexts to be
enough when perfect message recovery is possible, or 16
when message recovery is imperfect. While their attack is
applied to Saber rather than Kyber, their conversion of message
recovery into private-key recovery only relies on high-level
characteristics that are shared by the two schemes. We can
thus expect similar efficiency for that conversion in the case
of Kyber.

The noise levels that our attack can tolerate in simulation
are reasonable, given that most Cortex-M4 microcontrollers
have high leakage in practice. Since we are mainly dealing
with register leakage, we expect that the high signal-to-
noise ratio (SNR) required for the success of the attack in
Subsections IV-A and IV-B can only be obtained with a
high-quality measurement setup and a high templating effort,
but still within the capabilities of a determined attacker. On
the other hand, the low SNR that can be accommodated by
the attack in Subsection IV-C can be obtained with low-cost
equipment and minimal templating. We also stress out that the
Hamming-weight leakage model is relevant, as the SNR in that
metric generally dominates the SNR in the Hamming-distance
metric on these microcontrollers.

In cases when the actual SNR is too low for the attack
to succeed, the attacker may always switch to higher-quality
equipment, for instance switching from power measurement
to electromagnetic measurement, and increase the templating
effort. In some cases, such as when attacking the decapsulation
of chosen ciphertexts, it is also possible to average the acquired
traces over several decapsulations of the same ciphertext,
thereby allowing for arbitrarily low noise with sufficiently
many traces. We can thus confidently assert that the attack
presented here is bound to eventually succeed unless effective
countermeasures are used against it.

B. Countermeasures

As proved in [12] and discussed above, masking is not
a sufficient countermeasure to the attack since it merely
decreases the maximum allowable noise. However, since the
belief-propagation technique relies on correctly associating
each leakage point with a particular variable (or set of vari-
ables), shuffling has already been proposed as an effective
countermeasure [12]. While Hermelink et al. have adapted
belief propagation to attacking shuffled NTTs [14], their attack
assumes a much more powerful adversary, able to inject
reliable zeroing faults. It is also less tolerant to noise, and
most importantly, it requires either the shuffling to be partial,
or the attacker to get sufficient information on the shuffling
order to reduce the situation to the partial-shuffling case.

In addition to the already-high difficulty of attacking a shuf-
fled NTT, the situation can be further worsened for the attacker
by combining shuffling with masking, and selecting different
shuffling orders for the two sets of shares (in the case of first-
order masking). In this case, corresponding shares cannot be
easily associated, so the information on the narrow support of
their sum is lost. For even better protection, the shuffling can
be applied to the two sets of shares simultaneously so that
they are randomly interleaved, thereby forcing the attacker to
consider a much larger number of possible permutations.

VI. CONCLUSION

In this paper, we demonstrated a side-channel attack against
the NTT from a recognized software implementation of Kyber
for ARM Cortex-M4 microcontrollers. By exploiting precise
knowledge of the arithmetic instructions used for intermediate
computations, we were able to cope with high noise levels
in simulation, that should translate to effective attacks against
real-life devices in a wide range of conditions.

As future work, our attack can be optimized to the
case when the NTT is protected with arithmetic mask-
ing, using the technique of Pessl et al. [12]. By attacking
both shares of the masked polynomial simultaneously and
adding factors that give information on the small support of
the sum of shares of each coefficient, we should be able
to obtain intermediate performance between the unmasked
cases of uniformly-distributed input coefficients (Fig. 3) and
binomially-distributed input coefficients (Fig. 5).

Since the performance results of our attack are based on
simulated traces only, a follow-up to our work will be to evalu-
ate it in practice, with real traces. Given that we use a standard
and relatively weak leakage model based on the Hamming
weight of the secrets and intermediates, we expect the attack to
be effective in practice. However, while we hypothesized equal
noise for all leakage points in our simulation, we anticipate
significant variations of the actual noise levels across different
leakage points, in particular since some of them involve values
stored in RAM while others involve values stored in registers.
That possible unbalance will have to be taken into account for
practical attacks to be best effective.

For high noise levels (𝜎 ∈ [4, 6]) when input coefficients are
binomially distributed, our attack correctly recovers many, but
not always all of the secret coefficients. In that case, lattice
reduction can be used to recover the remaining coefficients,
as shown by Pessl et al. [12].

Finally, some room is left for optimizing the runtime and
memory usage of our implementation of belief propagation,
which would allow us to attack slightly more noisy instances
with the same resource cost.

VII. ACKNOWLEDGMENTS

The authors are grateful to the reviewers for their valuable
comments. They would also like to thank Ruggero Susella,
Patrick Haddad, Nicolas Bruneau, Bernard Kasser and Michael
Miller for their helpful contributions.

REFERENCES

[1] “Quantum safe cryptography and security – an introduction, benefits,
enablers and challenges,” White paper, European Telecommunications
Standards Institute, 2015.

[2] “Submission requirements and evaluation criteria for the post-quantum
cryptography standardization process,” Call for proposals, National
Institute of Standards and Technology, Dec. 2016. [Online]. Available:
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptograph
y/documents/call-for-proposals-final-dec-2016.pdf

[3] G. Alagic, D. Apon, D. Cooper, Q. Dang, T. Dang, J. Kelsey,
J. Lichtinger, Y.-K. Liu, C. Miller, D. Moody, R. Peralta, R. Perlner,
A. Robinson, and D. Smith-Tone, “Status report on the third round of
the NIST post-quantum cryptography standardization process,” National
Institute of Standards and Technology, 2022. [Online]. Available:
https://doi.org/10.6028/NIST.IR.8413-upd1

[4] R. Avanzi, J. W. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky,
J. M. Schanck, P. Schwabe, G. Seiler, and D. Stehlé, “CRYSTALS-
Kyber – Algorithm specifications and supporting documentation,” Jan.
2021, version 3.01. [Online]. Available: https://pq-crystals.org/kyber/da
ta/kyber-specification-round3-20210131.pdf

[5] F. Aydin, A. Aysu, M. Tiwari, A. Gerstlauer, and M. Orshansky, “Hor-
izontal side-channel vulnerabilities of post-quantum key exchange and
encapsulation protocols,” ACM Trans. Embed. Comput. Syst., vol. 20,
no. 6, Oct. 2021.

[6] K. Ngo, E. Dubrova, Q. Guo, and T. Johansson, “A side-channel attack
on a masked IND-CCA secure Saber KEM implementation,” IACR
Transactions on Cryptographic Hardware and Embedded Systems, vol.
2021, no. 4, pp. 676–707, Aug. 2021.

[7] S. Marzougui, V. Ulitzsch, M. Tibouchi, and J.-P. Seifert, “Profiling
side-channel attacks on Dilithium: A small bit-fiddling leak breaks
it all,” Cryptology ePrint Archive, Report 2022/106, 2022. [Online].
Available: https://ia.cr/2022/106

[8] P. Ravi, S. S. Roy, A. Chattopadhyay, and S. Bhasin, “Generic side-
channel attacks on CCA-secure lattice-based PKE and KEMs,” IACR
Transactions on Cryptographic Hardware and Embedded Systems,
vol. 2020, no. 3, pp. 307–335, Jun. 2020. [Online]. Available:
https://tches.iacr.org/index.php/TCHES/article/view/8592

[9] B.-Y. Sim, A. Park, and D.-G. Han, “Chosen-ciphertext clustering
attack on CRYSTALS-KYBER using the side-channel leakage of Barrett
reduction,” IEEE Internet of Things Journal, vol. 9, no. 21, pp. 21 382–
21 397, 2022.

[10] R. Primas, P. Pessl, and S. Mangard, “Single-trace side-channel attacks
on masked lattice-based encryption,” in Cryptographic Hardware and
Embedded Systems – CHES 2017, W. Fischer and N. Homma, Eds.
Cham: Springer International Publishing, 2017, pp. 513–533.

[11] N. Veyrat-Charvillon, B. Gérard, and F.-X. Standaert, “Soft analytical
side-channel attacks,” in Advances in Cryptology – ASIACRYPT 2014,
P. Sarkar and T. Iwata, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2014, pp. 282–296.

[12] P. Pessl and R. Primas, “More practical single-trace attacks on the
number theoretic transform,” in Progress in Cryptology – LATINCRYPT
2019, P. Schwabe and N. Thériault, Eds. Cham: Springer International
Publishing, 2019, pp. 130–149.

[13] M. Hamburg, J. Hermelink, R. Primas, S. Samardjiska, T. Schamberger,
S. Streit, E. Strieder, and C. van Vredendaal, “Chosen ciphertext k-
trace attacks on masked cca2 secure kyber,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, vol. 2021, no. 4, pp.
88–113, Aug. 2021.

[14] J. Hermelink, S. Streit, E. Strieder, and K. Thieme, “Adapting belief
propagation to counter shuffling of NTTs,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, vol. 2023, no. 1, pp.
60–88, Nov. 2022. [Online]. Available: https://tches.iacr.org/index.php
/TCHES/article/view/9947

[15] M. J. Kannwischer, R. Petri, J. Rijneveld, P. Schwabe, and
K. Stoffelen. (2022, Nov.) PQM4: Post-quantum crypto library
for the ARM Cortex-M4. Commit 918f379. [Online]. Available:
https://github.com/mupq/pqm4

[16] J. Huang, J. Zhang, H. Zhao, Z. Liu, R. C. C. Cheung, Ç. K.
Koç, and D. Chen, “Improved Plantard arithmetic for lattice-based
cryptography,” IACR Transactions on Cryptographic Hardware and
Embedded Systems, vol. 2022, no. 4, p. 614–636, Aug. 2022. [Online].
Available: https://tches.iacr.org/index.php/TCHES/article/view/9833

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://doi.org/10.6028/NIST.IR.8413-upd1
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210131.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210131.pdf
https://ia.cr/2022/106
https://tches.iacr.org/index.php/TCHES/article/view/8592
https://tches.iacr.org/index.php/TCHES/article/view/9947
https://tches.iacr.org/index.php/TCHES/article/view/9947
https://github.com/mupq/pqm4
https://tches.iacr.org/index.php/TCHES/article/view/9833

[17] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe, “Post-quantum key
exchange: A new hope,” in Proceedings of the 25th USENIX Conference
on Security Symposium, ser. SEC’16. USA: USENIX Association,
2016, pp. 327–343.

[18] V. Lyubashevsky and G. Seiler, “NTTRU: Truly fast NTRU using NTT,”
IACR Transactions on Cryptographic Hardware and Embedded Systems,
vol. 2019, no. 3, pp. 180–201, May 2019.

[19] T. Plantard, “Efficient word size modular arithmetic,” IEEE Transactions
on Emerging Topics in Computing, vol. 9, no. 3, pp. 1506–1518, 2021.

[20] D. J. MacKay, Information theory, inference and learning algorithms.
Cambridge University Press, 2003, ch. 26.

[21] S. K. Lam, A. Pitrou, and S. Seibert, “Numba: A LLVM-based Python
JIT compiler,” in Proceedings of the Second Workshop on the LLVM
Compiler Infrastructure in HPC, ser. LLVM ’15. New York, NY,
USA: Association for Computing Machinery, 2015. [Online]. Available:
https://doi.org/10.1145/2833157.2833162

[22] J. W. Bos, M. Gourjon, J. Renes, T. Schneider, and C. van Vredendaal,
“Masking Kyber: First- and higher-order implementations,” IACR Trans-
actions on Cryptographic Hardware and Embedded Systems, vol. 2021,
no. 4, pp. 173–214, Aug. 2021.

[23] O. Reparaz, S. S. Roy, F. Vercauteren, and I. Verbauwhede, “A masked
ring-LWE implementation,” in Cryptographic Hardware and Embedded
Systems – CHES 2015, T. Güneysu and H. Handschuh, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2015, pp. 683–702.

[24] A. Basso, J. M. B. Mera, J.-P. D’Anvers, A. Karmakar, S. S.
Roy, M. V. Beirendonck, and F. Vercauteren, “SABER: Mod-LWR
based KEM (round 3 submission),” 2021. [Online]. Available: https:
//www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf

https://doi.org/10.1145/2833157.2833162
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/files/saberspecround3.pdf

	Introduction
	Preliminaries
	Notations
	Number-Theoretic Transform
	Kyber
	Optimized implementation of Kyber NTT for Cortex-M4
	Belief Propagation

	Attack implementation
	Factor graph
	Message-updating order
	Message damping
	Message pruning
	Termination
	Progress monitoring
	Implementation and computing resources

	Results
	Noise tolerance for uniformly-random input
	Influence of an incorrect estimation of the amount of noise
	NTT over coefficients having a small support
	Masked implementations

	Practical significance
	Attack exploitation
	Countermeasures

	Conclusion
	Acknowledgments
	References

