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MELLIN TRANSFORMS OF POWER-CONSTRUCTIBLE FUNCTIONS

RAF CLUCKERS, GEORGES COMTE, JEAN-PHILIPPE ROLIN, AND TAMARA SERVI

Abstract. We consider several systems of algebras of real- and complex-valued functions,
which appear in o-minimal geometry and related geometrically tame contexts. For each such
system, we prove its stability under parametric integration and we study the asymptotics of
the functions as well as the nature of their parametric Mellin transforms.
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1. Introduction

In this work we pursue the investigation, started in [CCMRS18], of certain parametric
integral transforms from the point of view of tame analysis (in [CCMRS18] we studied the
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parametric Fourier transform, here we consider the parametric Mellin transform, and in a
forthcoming paper we analyze the combined action of these two operators on certain collec-
tions of tame functions).

The study of parametric integrals of functions belonging to a given tame class arises from
the question of the nature of the volume of the fibres Xy of a tame family (Xy)y∈Y . More
precisely, describing the locus of integrability is a counterpart to establishing the nature of
the set of points y of Y for which Xy has finite volume. The volumes of globally subanalytic
sets have been studied in [LR98, CLR00], where it is proven that, for a globally subanalytic
set X ⊆ Rn+m such that the fibers Xy = X ∩ {{y} × Rm} have dimension at most k, the
set Y0 ⊆ Rn of points y such that the k-dimensional volume v (y) of Xy is finite is again
globally subanalytic. However, it is necessary to introduce a function which is not globally
subanalytic in order to express the volume: the restriction of v to Y0 has the form v =
P (A1, . . . , Ar, logA1, . . . , logAr), where P is a polynomial and the Ai are positive globally
subanalytic functions.

The class of all functions definable in an o-minimal structure is closed under many natural
operations, but is not in general stable under parametric integration. For instance, it follows
from the above results that the family S of all globally subanalytic functions is not stable
under parametric integration. However, the family C of constructible functions (see Definition
2.1) is, and indeed it is the smallest such collection containing S (see [CM12]). Moreover, the
locus of integrability of a constructible function is the zero-set of a function which is again
constructible. The expansion Ran,exp of the real field by all restricted analytic functions and
the unrestricted exponential is an o-minimal structure in which all the functions in C are
definable, which is not stable under parametric integration, as shown in [DMM97, theorem

5.11]. For instance the error function x 7→
∫ x

0

e−t
2

dt is the parametric integral of a very

simple function definable in Ran,exp, but it is not itself definable in Ran,exp.
Nevertheless, some of these integrals are definable in larger o-minimal structures. For

example, all antiderivatives of functions definable in an o-minimal structure R are definable
in a larger o-minimal structure, called the Pfaffian closure of R [Spe99]. Other parametric
integrals and integral transforms of functions definable in Ran,exp (for example, the restrictions
to the real half-line (1,+∞) of the Gamma function, seen as a Mellin transform, and of the
Riemann Zeta function, seen as a quotient of two Mellin transforms) are known to be definable
in suitable larger o-minimal structures [DS00, DS98, RSS23]. However, there is no known
general o-minimal universe in which all such parametric integrals are definable (and indeed
incompatibility results in [RSW03, RSS07, LG10] suggest that such a universe might not
exist).

We therefore turn our attention to subcollections of functions definable in a given o-minimal
structure (here, Ran,exp) which are stable under taking parametric integrals, as is the family
C. There aren’t many known such collections. For example, the collection of all functions
definable in Rpow

an (the polynomially bounded expansion of Ran by all real power functions,
seen as a reduct of Ran,exp) is not stable under parametric integration and indeed some
such integrals are not even definable in Ran,exp (see [Sou02, Prop. 2.1 and Theorem 2.2]
and Subsection 2.1 where this example is discussed in detail). Our first aim is to define a
collection CR of R-algebras of functions definable in the o-minimal structure Ran,exp, extending
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the stable collection C, and, in turn, stable under parametric integration (see Definition 2.2
and Theorem 2.4 below, for the case K = R). The elements of CR are called real power-
constructible functions and they are constructed from real powers and logarithms of globally
subanalytic functions.

Parametric integrals of tame functions also appear in the study of functional and geometric
analogues of period conjectures. Recent breakthroughs in functional transcendence around
o-minimality and periods have been made, concerning the transcendence of the coordinates
of the Hodge filtration, which are ratios of certain period functions. For instance, Bakker,
Klingler and Tsimerman [BKT20] proved that period maps are definable in the o-minimal
structure Ran,exp, yielding a new proof of the algebraicity of the Hodge loci. This provides
an example of an integration process whose resulting functions remain in the original tame
framework. Analogously, our Theorem 2.4 states that parametric integration preserves the
class CR. . In the same spirit, we consider (see Definition 2.13 and Theorems 2.16, 2.19)
larger classes which we prove to be stable under parametric integration.

Another motivation for considering the collection CR lies beyond o-minimality: most in-
tegral transforms (Fourier, Mellin...) are usually applied to rapidly decaying or compactly
supported unary functions, but they can be extended to classes of functions having an asymp-
totic expansion (at 0 and/or at∞) in the scale of real power-log monomials (for example, for
such functions it can be shown that the Mellin transform extends to a meromorphic function
on the whole complex plane, outside the domain of convergence of the integral, see [Zei06,
Section 6.7 (by D. Zagier)]. In order to consider parametric versions of such transforms, one
needs some control over the behaviour of the multi-variable functions in the collection to
which we want to apply the transform. This is clear for example in the study of oscillatory
integrals of the first kind, when the phase and the amplitude are analytic: resolution of
singularities in the class of analytic germs is used to recover information about the asymp-
totic expansion of such parametric integrals. This is the strategy developed, for example in
[AGSV88], [Mal74] and [Var76], in which the powers appearing in the asymptotic expansion
of certain integral transforms with an analytic phase f (and a compactly supported ampli-
tude) are expressed, using resolution of singularities of f , in terms of numerical invariants of
the singularity of f at the origin. When applying parametric integral transforms to a class F
of functions in several variables, it is hence important to have information about the geome-
try of the domain of the functions in F and to have some well-behaved theory of resolution of
singularities adapted to the class F . This is where o-minimality plays a central role: the key
result here is a version of local resolution of singularities called the subanalytic preparation
theorem [LR97], [Par94], together with cell-decomposition and piecewise analyticity argu-
ments to patch together the local results into a global stability statement. This viewpoint
is implemented in [ACRS24], [CCS23], and in the article in preparation [CCMS24], in which
we systematically study the rate of decay of Fourier transforms of subanalytic functions, as
well as of functions of CR. More specifically, we investigate the interplay between rapid decay
and holomorphic extension to certain complex domains around the real axis.

Understanding the stability of wide collections of natural functions under oscillatory inte-
gral transforms appears as a key motivation for the theory of distributions. The reader may
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find in [ACRS24] an illustration of the importance of controlling asymptotics in the study of
certain classes of distributions.

In this paper we study parametric Mellin transforms of functions in CR, exploiting both
the o-minimal (subanalytic) nature of the domain of the functions and a preparation theo-
rem available for the functions in CR. We define a collection of functions which contains the
parametric Mellin transforms of the functions in CR (X), for X ⊆ Rm a globally subanalytic
set, and stable under integration with respect to the variable x ∈ X: our starting point is
CR, a collection of functions defined on subanalytic sets. We then apply an integral trans-
form which depends on a complex parameter s, which we want to keep separate from the
subanalytic variables, in the sense that we will not integrate with respect to s. For this, we
construct a collection CM of C-algebras of functions of the variables (s, x) (where s is a single
complex variable and x is a tuple of variables ranging in a subanalytic set) which contain
the parametric Mellin transforms of power-constructible functions, and stable under para-
metric integration. In [CCMRS18], where we considered the parametric Fourier transforms
of constructible functions, the corresponding system of C-algebras is described in terms of
transcendental elements, which are themselves integral operators evaluated at constructible
functions. Here instead we give an explicit description of parametric Mellin transforms in
terms of series of functions of a simple special form.

The functions in CM will be shown to depend meromorphically on the variable s. This,
together with Theorem 2.16, will be used to provide a meromorphic extension of the para-
metric Mellin transform to the whole complex plane. A classical result in this spirit is proven
in [Ati70] (see also [Gre10, Th. 1.4] for a more recent and simplified proof): given a real
analytic function f defined in a open neighborhood Uof 0 ∈ Rn, for every C∞ function ϕ
whose support is compact and contained in U , the integral of f sϕ, initially defined as a
holomorphic function on < (s) > 0, extends to a meromorphic function on C.

As the Mellin transform is usually considered as a function of a complex parameter, we
leave the realm of real-valued functions and of o-minimality. There is hence no reason to
restrict ourselves to real powers of subanalytic functions. Therefore, we define complex power-
constructible functions, prove that they form a collection CC which is stable under parametric
integration (see Definition 2.2 and Theorem 2.4 below, case K = C) and study their para-
metric Mellin transforms. The purely imaginary powers of subanalytic functions introduce
now some nontrivial oscillatory phenomena, which lead us to invoke results from the theory
of continuously distributed functions mod 1 (see Section 3.1). Despite the presence of oscil-
latory functions, which forces us to leave the realm of o-minimality, Theorem 2.16 and its
consequences show that the class CM is geometrically tame, in a broader sense.

The paper is organized as follows. In Section 2, we introduce several classes of functions, for
which we prove stability under parametric integration: power-constructible functions (Def-
inition 2.2), parametric power-constructible functions (Definition 2.13) and some variants
(Section 2.3.1). The main results about these classes are stated in Theorems 2.4, 2.16 and
2.19. In Section 3 we introduce the three basic tools that will be used in the proofs of the
main results: a non-compensation argument about finite sums of purely imaginary powers,
the properties of parametric strong functions (which are the building blocks in the construc-
tion of the class of parametric power-constructible functions) and the previously mentioned
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subanalytic preparation theorem, from which we derive the consequences needed in our set-
ting. Section 4 is devoted to preparing the functions in the classes under consideration in
a particularly simple way with respect to a given subanalytic variable. This will allow in
Section 5 to provide a first result about integrating a generator of a class with respect to a
single variable. The proofs of the general stability statements are carried out in Section 6.

2. Notation, definitions and main results

A subset X of Rm is globally subanalytic if it is the image under the canonical projection
from Rm+n to Rm of a globally semianalytic subset of Rm+n (i.e. a subset Y ⊆ Rm+n such
that, in a neighborhood of every point of P1 (R)m+n, Y is described by finitely many analytic
equations and inequalities). Equivalently, X is definable in the o-minimal structure Ran
(see for example [DD88]). Thus, the logarithm log : (0,+∞) −→ R and the power map
xy : (0,+∞)×R −→ R are functions whose graph is not subanalytic, but they are definable
in the o-minimal structure Ran,exp (see for example [DMM94]).

Throughout this paper X ⊆ Rm will be a globally subanalytic set (from now on, just
“subanalytic set”, for short). Denote by S (X) the collection of all subanalytic functions on
X, i.e. all the functions of domain X whose graph is a subanalytic set, and let S+ (X) =
{f ∈ S (X) : f (X) ⊆ (0,+∞)}.

Definition 2.1 (Constructible functions). Let C (X) be the R-algebra of constructible func-
tions on X, generated by all subanalytic functions and their logarithms:

C (X) =

{
N∑
i=1

fi

M∏
j=1

log gi,j : M,N ∈ N×, fi ∈ S (X) , gi,j ∈ S+ (X)

}
.

Define C = {C (X) : X ⊆ Rm subanalytic, m ∈ N}.

By [LR97, CLR00, CM11], C is the smallest collection of R-algebras containing S and stable
under parametric integration. Notice that constructible functions are definable in Ran, exp.

A function defined on X and taking its values in C is called a complex-valued subanalytic
(constructible, resp.) function if its real and imaginary parts are in S (X) (in C (X), resp.).

2.1. Power-constructible functions. For K ⊆ C a subfield, write

SK
+ (X) = {fα : f ∈ S+ (X) , α ∈ K} .

Let FK be R if K ⊆ R and C otherwise.

Definition 2.2 (Power-constructible functions). Let CK (X) be the FK-algebra generated by
the logarithms and the K-powers of the subanalytic functions on X, i.e.

CK (X) =

{
N∑
i=1

ci

M∏
j=1

f
αi,j
i,j log gi,j : M,N ∈ N×, fi,j, gi,j ∈ S+ (X) , αi,j ∈ K, ci ∈ FK

}
.

Let
CK =

{
CK (X) : X ⊆ Rm subanalytic, m ∈ N

}
.

The functions in CK are called K-power-constructible functions.
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Remark 2.3. Notice that CQ = C and if K ⊆ R, then the functions in CK are defin-
able in Ran, exp. If K 6⊆ R, then by definition CK (X) is a C-algebra. However, if h =∑
ci
∏
f
αi,j
i,j log gi,j is such that all the exponents αi,j belong to R, then the real and imagi-

nary parts of h belong to the R-algebra CR (X).

Let Ralg be the field of real algebraic numbers and consider the expansion RRalg
an of Ran

by all power functions with exponents in Ralg. It is shown in [Kai12] that the parametric
integrals of all the functions definable in RRalg

an are definable in Ran,exp. However, this is not the
case if we allow the exponents of the power functions to range in the whole field R. Indeed,
in [Sou02, Prop. 2.1] the author produces an example of a function f in two variables x
and y, defined as a composition of subanalytic functions and irrational powers (in particular,
definable in the o-minimal structure Ran, exp and even in Rpow

an ), such that the parametric
integral (with respect to y) of f is not definable in Ran, exp. The argument goes as follows:
Soufflet proves that functions definable in Ran,exp that have a formal asymptotic expansion in
a logarithmic scale (the real scale ER defined in [Sou02, p. 129]) have the property that such
an expansion is convergent (see [Sou02, Theorem 2.5]). Now, in [Sou02, Proposition 2.1] he
shows that the parametric integral of f has a divergent asymptotic expansion in this scale.
More precisely the function f is obtained by right-composing a subanalytic function by a
suitable irrational power of the variable y. This procedure differs from the one in the above
definition, where we left-compose subanalytic functions with irrational powers. Indeed, f is
not power-constructible, as our first result (Theorem 2.4 below) is that CK is stable under
parametric integration.

Theorem 2.4. Let h ∈ CK (X × Rn). There exists H ∈ CK (X) such that

∀x ∈ Int (h;X) ,

∫
Rn
h (x, y) dy = H (x) ,

where
Int (h;X) :=

{
x ∈ X : y 7−→ h (x, y) ∈ L1 (Rn)

}
.

2.2. Strong functions. In the subanalytic and constructible preparation theorems, a special
role is played by the so-called strong functions : these are bounded subanalytic functions which
can be expressed as the composition of a single power series (convergent in a neighbourhood
of the closed unit polydisk) with a bounded subanalytic map. In order to define parametric
Mellin transforms, we will need a parametric version of strong functions, where the parameter
will be the complex number s appearing in the integration kernel of the Mellin transform.

We first give the definition of a subanalytic strong function and then proceed to define its
parametric counterpart.

Definition 2.5. For N ∈ N, we let SNc (X) be the collection of all maps ψ : X −→ RN with
components in S (X), such that ψ (X) is contained in the closed polydisk of RN centered at
zero and of radius 1. We call

Sc (X) =
⋃

N∈N×
SNc (X)

the collection of all 1-bounded subanalytic maps defined on X.
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The following definition is inspired by [CM12, Definition 3.3] and [CCMRS18, Definition
3.6].

Definition 2.6 (Strong functions). We say that W : X −→ FK is an FK-valued subanalytic
strong function if there are N ∈ N×, a 1-bounded subanalytic map ψ : X −→ RN and a series
F ∈ FK JZK in N variables Z, which converges in a neighbourhood of the closed polydisk DN

centered at zero and of radius 3
2
in RN (we will say for short that F converges strongly, see

below), such that W = F ◦ ψ. If furthermore |F − 1| < 1
2
, the function W is called a strong

unit (see [CCMRS18, Remarks 3.7]).

We are now ready to define parametric strong functions: these can be written as certain
convergent series composed with 1-bounded subanalytic maps, but the coefficients of the
series are now (meromorphic) functions of a complex parameter s.

Definition 2.7. Let E be the field of meromorphic functions ξ : C −→ C and denote by DN

the closed polydisk of radius 3
2
and center 0 ∈ RN .

Given a formal power series F =
∑

I ξI (s)ZI ∈ E JZK inN variables Z and with coefficients
ξI ∈ E , we say that F converges strongly if there exists a closed discrete set P (F ) ⊆ C (called
the set of poles of F ) such that:

• for every s0 ∈ C\P (F ), the power series F (s0, Z) ∈ C JZK converges in a neighbour-
hood of DN (thus F defines a function on (C \ P (F ))×DN);
• for every s0 ∈ C there exists m = m (s0) ∈ N such that for all z0 ∈ DN , the
function (s, z) 7−→ (s− s0)m F (s, z) has a holomorphic extension on some complex
neighbourhood of (s0, z0)
• P (F ) is the set of all s0 ∈ C such that the minimal such m (s0) is strictly positive.

Remark 2.8. It is easy to see that P (F ) coincides with the set of poles of the coefficients ξI
and that for each s0 ∈ P (F ) there is an integer m ∈ N such that for all I, ords0 (ξI) ≤ m.

Definition 2.9 (Parametric strong functions). Given a closed discrete set P ⊆ C, a function
Φ : (C \ P )×X −→ C is called a parametric strong function on X if there exist a 1-bounded
subanalytic map ψ ∈ SNc (X) and a strongly convergent series F =

∑
I ξI (s)ZI ∈ E JZK with

P (F ) ⊆ P such that,

∀ (s, x) ∈ (C \ P )×X, Φ (s, x) = F ◦ (s, ψ (x)) =
∑
I

ξI (s) (ψ (x))I .

Define A (X) as the collection of all parametric strong functions on X (defined on sets of the
form (C \ P )×X, for any closed discrete P ⊆ C). Note that if X ⊆ R0 then A (X) = E . We
let

A = {A (X) : X ⊆ Rm subanalytic, m ∈ N} .

Remark 2.10. Since the same Φ ∈ A (X) could be presented by two different series F with
different poles, we will say “let Φ ∈ A (X) have no poles outside some closed discrete set
P ⊆ C” to mean that there exist F, ψ such that Φ = F ◦ (s, ψ) and P (F ) ⊆ P . By the same
argument, A (X) is a C-algebra, up to defining the sum and product on a common domain.
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2.3. Parametric powers and the Mellin transform. We introduce two parametric inte-
gral operator which will be the object of our study.

Definition 2.11.

• For X ⊆ Rm subanalytic, define

P (S+ (X)) = {Pf : C×X −→ C such that Pf (s, x) = f (x)s , for some f ∈ S+ (X)}.

The parametric powers of S are the functions in the collection

P (S+) = {P (S+ (X)) : X ⊆ Rm subanalytic, m ∈ N}.

• Let F = {F (X) : X ⊆ Rm subanalytic, m ∈ N} be a collection of real- or complex-
valued functions and Σ ⊆ C. If f ∈ F (X × R) is such that for all (s, x) ∈ Σ ×
X, y 7−→ ys−1f (x, y) ∈ L1 (R>0), define the parametric Mellin transform of f on
Σ×X as the function

MΣ [f ] (s, x) =

∫ +∞

0

ys−1f (x, y) dy, ∀ (s, x) ∈ Σ×X.

The parametric Mellin transforms of F on Σ are the elements of the collection

MΣ [F ] = {MΣ [f ] : f as above, for some X} .

Our next aim is to define a collection of algebras of functions which is stable under paramet-
ric integration and which contains both the parametric powers of S and the Mellin transforms
of CC on C (Definition 2.13). In order to motivate the definition, let us give three simple
examples.

Examples 2.12. Let X ⊆ Rm be subanalytic and a, b ∈ S (X) be such that for all x ∈
X, 1 ≤ a (x) ≤ 2 ≤ b (x).

(1) Let χ1 (x, y) be the characteristic function of the set

B1 = {(x, y) : x ∈ X, 0 < y < a (x)}

and consider the subanalytic function

f (x, y) = χ1 (x, y)
a (x) b (x)

a (x) b (x)− y
∈ S (X × R) .

Since 1 ≤ f (x, y) ≤ 2, the parametric Mellin transform of f is well defined on
Σ1 = {s ∈ C : < (s) > 0}, is holomorphic in s and is given by

MΣ1 [f ] (s, x) =

∫ a(x)

0

ys−1 a (x) b (x)

a (x) b (x)− y
dy

=

∫ a(x)

0

ys−1
∑
k≥0

(
y

a (x) b (x)

)k
dy.



MELLIN TRANSFORMS OF POWER-CONSTRUCTIBLE FUNCTIONS 9

The series in the above integral converges normally on B1, hence we can permute sum
and integral and write

MΣ1 [f ] (s, x) =
∑
k≥0

(a (x) b (x))−k
∫ a(x)

0

ys−1+kdy

= (a (x))s
∑
k≥0

(b (x))−k

s+ k
.

Notice that in this computation we create both the parametric power of a subanalytic
function, and a series of functions depending on the complex variable s and on the
real variable x. The above series defines a parametric strong function on C×X, with
poles at zero and at the negative integers.

(2) Let Σ2 = {s ∈ C : < (s) < 1} and χ2 (x, y) be the characteristic function of the set

B2 = {(x, y) : x ∈ X, y > a (x)} .

Consider the subanalytic function g (x, y) = χ2 (x, y) y
(

1 + a(x)
b(x)y

)
∈ S (X × R). We

aim to compute the parametric integral (with respect to the variable y) of the function
y−2 (g (x, y))s. Since 0 ≤ a(x)

b(x)y
≤ 1

2
on B2, such an integral exists on Σ2 ×X and

I (g; Σ2 ×X) :=

∫ +∞

a(x)

ys−2

(
1 +

a (x)

b (x) y

)s
dy =

∫ +∞

a(x)

ys−2
∑
k

(
s

k

)(
a (x)

b (x) y

)k
dy

=
∑
k

(
s

k

)(
a (x)

b (x)

)k ∫ +∞

a(x)

ys−2−kdy = − (a (x))s−1
∑
k

(
s

k

)
(b (x))−k

s− 1− k
.

Again, the above series defines a parametric strong function on C×X, with poles at
the positive integers.

(3) Let h (s, x, y) = f (x, y) ys−1 + y−2 (g (x, y))s. Direct calculation shows that, letting

Int (h; (C \ Z)×X) :=
{

(s, x) ∈ (C \ Z)×X : y 7−→ h (s, x, y) ∈ L1 (R)
}
,

we have

Int (h; (C \ Z)×X) = {s ∈ C \ Z : 0 < < (s) < 1} ×X.

However, the function H defined on (C \ Z)×X by

H (s, x) = (a (x))s
∑
k≥0

(b (x))−k

s+ k
− (a (x))s−1

∑
k

(
s

k

)
(b (x))−k

s− 1− k

depends meromorphically on s and can be seen as an interpolation of the integral of
h on the whole C×X.

Given a subanalytic set X ⊆ Rm, recall the definitions of the algebras A (X) of paramet-
ric strong functions and CC (X) of C-power-constructible functions, and of the collection
P (S+ (X)) of parametric powers of subanalytic functions (Definitions 2.9, 2.2 and 2.11).
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Definition 2.13. If X ⊆ R0, then define CM (X) = E . If X ⊆ Rm, with m > 0, then we let
CM (X) be the A (X)-algebra generated by CC (X)∪P (S+ (X)). Every function h ∈ CM (X)
can be written on (C \ P )×X (for some closed discrete P ⊆ C) as a finite sum of generators
of the form

(2.1) Φ (s, x) · g (x) · f (x)s ,

where g ∈ CC (X) , f ∈ S+ (X) and Φ ∈ A (X) has no poles outside P .
If h ∈ CM (X) can be presented as a sum of generators in which the parametric strong

functions have no poles outside some common set P ⊆ C, then we say that h has no poles
outside P . We let

CM =
{
CM (X) : X ⊆ Rm subanalytic, m ∈ N

}
be the collection of algebras of (complex) parametric power-constructible functions.

Remark 2.10 also applies to the functions in CM (X).

Remark 2.14. If h ∈ CM (X) has no poles outside some closed discrete set P, then for all
s ∈ C \ P, x 7−→ h (s, x) ∈ CC (X) and the dependence on the variables x is piecewise
analytic, by o-minimality. Moreover, by definition of A (X), for all x ∈ X, s 7−→ h (s, x) is
meromorphic on C.

The main goal of this paper is to study the nature of the parametric integrals of functions
in CM. Let X ⊆ Rm be subanalytic, and consider a function h ∈ CM (X × Rn) without
poles outside some closed and discrete set P ⊆ C. Then h depends on a complex variable s
and on (m+ n) real variables (let us call them x, ranging in X, and y, ranging in Rn). We
integrate h in the variables y over Rn, whenever the integral exists, and study the nature of
the resulting function.

The set of parameters (s, x) ∈ (C \ P )×X for which the integral exists is the integration
locus of h.

Definition 2.15. For h ∈ CM (X × Rn) and a closed discrete set P ⊆ C such that h has no
poles outside P , define

Int (h; (C \ P )×X) :=
{

(s, x) ∈ (C \ P )×X : y 7−→ h (s, x, y) ∈ L1 (Rn)
}
.

Our main result is the following.

Theorem 2.16. Let h ∈ CM (X × Rn) be without poles outside some closed discrete set
P ⊆ C. There exist a closed discrete set P ′ ⊆ C containing P and H ∈ CM (X) with no
poles outside P ′ such that

∀ (s, x) ∈ Int (h; (C \ P ′)×X) , H (s, x) =

∫
Rn
h (s, x, y) dy.

Moreover, P ′ \ P is contained in a finitely generated Z-lattice.

The above examples and Theorem 2.16 suggest to introduce the following definition.

Definition 2.17. Let G (X) be a collection of functions f : C × X −→ C, where X ⊆
Rm is subanalytic and f depends meromorphically on its complex variable s. We say that
G = {G (X) : X ⊆ Rm, m ∈ N} is stable under generalized parametric Mellin transform if
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whenever f ∈ G(X × R) has no poles outside some closed discrete set P ⊆ C, there exist a
closed discrete set P ′ ⊆ C containing P andMf ∈ G (X) without poles outside P ′ such that,
if g (s, x, y) = ys−1f (s, x, y)χ(0,+∞) (y), then

∀ (s, x) ∈ Int (g; (C \ P ′)×X) , Mf (s, x) =

∫ +∞

0

ys−1f (s, x, y) dy.

Corollary 2.18. CM is the smallest system of A-algebras containing CC and stable under
the generalized parametric Mellin transform.

Proof. By Theorem 2.16, CM is such a system. Let us show that it is the smallest.
Let f ∈ S (X). Let y be a single variable and let χ (x, y) be the characteristic function of

the set {(x, y) : 0 < y < |f (x)|} and consider the parametric Mellin transform of the function
(s, x, y) 7−→ f (s, x, y) = s · χ (x, y) on Σ = {s ∈ C : < (s) > 0}:

MΣ [f ] (s, x) =

∫ +∞

0

sys−1χ (x, y) dy

= s

∫ |f(x)|

0

ys−1dy = |f (x)|s .

If D is a system of A-algebras containing CC, then D contains the function f , and if D is
stable under the generalized parametric Mellin transform, then D contains the extensionMf

ofMΣ [f ] to the whole complex plane. Hence P (S+) ⊆ D, i.e. CM ⊆ D. �

2.3.1. Parametric powers of K-power-subanalytic functions. We consider several collections,
defined via minor variations of the definition of CM, and which we will prove to be stable
under parametric integration.

Let K ⊆ C be a subfield.
In Definition 2.9, we replace E by

EK := {ξ ∈ E : P (ξ) ⊆ K}
(where P (ξ) is the set of poles of ξ) and we define AK accordingly.

We let CK,M (X) be the AK (X)-algebra generated by CK (X)∪P (S+ (X)). Every element
of CK,M (X) can be written as a finite sum of generators of the form (2.1), where now
Φ ∈ AK (X) and g ∈ CK (X).

Next, we define a similar system of algebras which furthermore contains the parametric
powers of K-powers of subanalytic functions. For this, given X ⊆ Rm subanalytic, let

P
(
SK

+ (X)
)

= {Pf : C×X −→ C such that Pf (s, x) = f (x)αs , for some f ∈ S+ (X) and α ∈ K}
and CP(K),M (X) be the AK (X)-algebra generated by CK (X) ∪ P

(
SK

+ (X)
)
. Every element

of CP(K),M (X) can be written as a finite sum of generators of the form

Φ (s, x) g (x) f1 (x)α1s · · · fn (x)αns ,

where Φ ∈ AK (X) , g ∈ CK (X) , n ∈ N, αi ∈ K and fi ∈ S+ (X).
Let

CK,M =
{
CK,M (X) : X ⊆ Rm subanalytic, m ∈ N

}
,

CP(K),M =
{
CP(K),M (X) : X ⊆ Rm subanalytic, m ∈ N

}
.
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Theorem 2.19. The statement of Theorem 2.16 also holds if we replace CM by either CK,M
or CP(K),M (the closed discrete set P ′ is now contained in K).

Argueing as in Corollary 2.18, it follows that CK,M is the smallest system of AK-algebras
containing CK and stable under parametric Mellin transform. Notice that the collection CK of
K-power-constructible functions coincides with the collection of all functions in CK,M which
happen not to depend on the parameter s.

The system of AK-algebras CP(K),M also contains CK and is stable under parametric Mellin
transform. As a consequence of the proof of Theorem 2.19, we show (see Theorem 6.3 and
Remark 6.5) that the system CP(C),M is strictly larger than CM.

3. Toolbox

Throughout this paper, X ⊆ Rm is a subanalytic set which serves as space of parameters
(we never integrate with respect to the variables ranging in X). Since all the classes D of
functions defined in Sections 2.1 and 2.3 are stable under multiplication by a subanalytic
function, when studying a function f ∈ D (X × Rn), we are allowed to partition X into sub-
analytic cells, replace X by one of the cells of the partition and work disjointly in restriction
to such a cell. In particular, we may always assume that X is itself a subanalytic cell, and
that all cells in X × Rn project onto X.

If D is any of the classes defined in Sections 2.1 and f ∈ D (X × Rn), we often compute
the integral of f with respect to the variables ranging in Rn. If X × Rn is partitioned into
finitely many subanalytic cells, then only the cells which have nonempty interior in X × Rn

contribute to the integral. This motivates the following definition.

Definition 3.1. Let A ⊆ X×R be a subanalytic cell. We say that A is open over X if there
are ϕ1, ϕ2 ∈ S (X) ∪ {±∞} such that for all x ∈ X, ϕ1 (x) < ϕ2 (x) and

A = {(x, y) : x ∈ X, ϕ1 (x) < y < ϕ2 (x)} .

Notation 3.2. For x ∈ X, define Ax = {y ∈ Rn : (x, y) ∈ A}.
Hence, if f ∈ D (A), then

Int (f ;C×X) =
{

(s, x) ∈ C×X : y 7−→ f (s, x, y) ∈ L1 (Ax)
}
.

Given a set A, we denote by χA the characteristic function of A.

3.1. Non-compensation arguments. In this section we prove a result (Proposition 3.4
below) which is a crucial ingredient of the proof of the Stability Theorems 2.4 and 2.16, and
of the study the asymptotics of the functions of our classes. The statement of Proposition
3.4 is stronger than the result that we actually need here, since it involves both purely
imaginary powers and purely imaginary exponentials. However, the full generality of this
result will be used in a forthcoming paper, in which we will study the Fourier transforms of
power-constructible functions.

We first recall the definition of continuously uniformly distributed modulo 1 functions,
which is a key ingredient in Proposition 3.4 (for the properties and uses of this notion, see
[KN74]). In what follows, voli stands for the Lebesgue measure in Ri, i ≥ 1.
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Definition 3.3. Let {x} := x − bxc be the fractional part of the real number x and let
F = (f1, . . . , f`) : [0,+∞) → R` be any map. If I1, . . . , I` ⊆ R are bounded intervals with
nonempty interior, we denote by I the box

∏`
j=1 Ij. For T ≥ 0, let

WF,I,T := {t ∈ [0, T ] : {F (t)} ∈ I} ,
where {F (t)} denotes the tuple ({f1(t)}, . . . , {f` (t)}).

The map F is said to be continuously uniformly distributed modulo 1, in short c.u.d. mod
1, if for every box I ⊆ [0, 1)`,

lim
T→+∞

vol1 (WF,I,T )

T
= vol` (I) .

We use the c.u.d. mod 1 property in the proof of the following proposition. There, we
deal with a family of complex exponential functions having as phases the functions in the
family (σj log(y) + pj(y))j∈{1,...,n}. It turns out that in general we cannot extract from this
family a c.u.d. mod 1 subfamily, since log is not a c.u.d. mod 1 function (although the
family σj log y + pj(y) is, whenever pj is not constant). To overcome this technical difficulty,
we compose σj log y + pj(y) with the change of variables y = et, after which we are able to
extract a c.u.d. mod 1 subfamily from the family of phases (σjt+ pj(e

t))j∈{1,...,n}.

Proposition 3.4. Let r ≥ −1, b ≥ 1, ν ∈ N, n ∈ N\{0} , c1, . . . , cn ∈ C, σ0, . . . σn ∈ R and
p1, . . . , pn ∈ R[X] be such that pj(0) = 0 for j = 1, . . . , n. Suppose that σj log(y) + pj(y) 6=
σk log(y) + pk(y) for j 6= k, and let

f (y) = yr (log y)ν
n∑
j=1

cjy
iσjeipj(y).

The following statements hold.
(1) If f ∈ L1 ((b,+∞)) then cj = 0 for all j = 1, . . . , n.
(2) Let E(y) =

∑n
j=1 cjy

iσjeipj(y), where for at least one j ∈ {1, . . . , n} we have cj 6= 0

and σj log(y) + pj(y) 6= 0. There exist ε > 0 and a sequence of real numbers (ym)m∈N
which tends to +∞, such that for all m ≥ 0, |E(ym)| ≥ ε.

(3) There exist δ > 0 and two sequences of real numbers (y1,m)m∈N, (y2,m)m∈N which both
tend to +∞, such that for all m ≥ 0, |E(y1,m)− E(y2,m)| ≥ δ.

Proof. We may assume that at least one of the functions gj (y) = σj log(y) + pj(y) is not
constant. Indeed, since pj(0) = 0, if gj is constant then it is zero, hence in this case n = 1
and f is not integrable unless c1 = 0. Therefore we may assume without loss of generality
that g1 is not constant, and that c1 6= 0.

If f ∈ L1 ((b,+∞)), the following integral is finite for all x such that ex ≥ b:

I(x) :=

∫ ex

b

|f(y)| dy.

Performing the change of variables t = log(y) we obtain

I(x) =

∫ x

log(b)

tνet(r+1)

∣∣∣∣∣
n∑
j=1

cje
iσjteipj(e

t)

∣∣∣∣∣ dt.
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Set ϕ(t) =
∑n

j=1 cje
iσjteipj(e

t) and fj(t) = σjt+pj(e
t) for j = 1, . . . , n. Assume that f1, . . . , f`,

for ` ≤ n, is a basis over Q of the Q-vector space generated by f1, . . . , fn. We write

fk = rk,1f1 + · · ·+ rk,`f`, for k = `+ 1, . . . , n,

we denote by ρj the least common multiple of the denominators of r`+1,j, . . . , rn,j, and we set
f̃j := fj/2πρj, for j = 1, . . . , ` (note that this family is still Q-linearly independent). Then

fk = 2πmk,1f̃1 + · · ·+ 2πmk,`f̃`, for k = `+ 1, . . . , n,

for some mk,1, . . . ,mk,` ∈ Z, and

ϕ(t) = P (e2πif̃1(t), . . . , e2πif̃`(t)),

where P ∈ C
[
X1, . . . , X`, X

−1
1 , . . . , X−1

`

]
is a Laurent polynomial.

Note that P contains at least the monomial c1X1 (we can always choose f1 as an element
of our basis, since c1 6= 0 and g1 6= 0). Moreover since by hypothesis fj(t) 6= fk(t), (as
functions) for j 6= k, the monomials of P cannot cancel out. It follows that P is not constant,
and therefore the algebraic set V := {P = 0} does not contain the torus T := (S1)`. By
continuity of P , we can find a real number ε > 0 and intervals Aεj ⊂ [0, 1), j = 1, . . . , `, such
that |ϕ(t)| ≥ ε on the set

Wε =
{
t ≥ log(b) :

{
f̃j(t)

}
∈ Aεj , j = 1 . . . , `

}
.

We claim that the map F =
(
f̃1, . . . , f̃`

)
is c.u.d. mod 1 (which implies in particular that

Wε is nonempty). For this, we use the criterion [KN74, Theorem 9.9], i.e. we show that for
any h ∈ Z` such that h 6= 0,

lim
T→+∞

1

T

∫ T

1

e2πi〈h,F (t)〉 dt = 0.

We prove in fact that there exists T0 ≥ 1 such that

J(T ) =

∫ T

T0

e2πi〈h,F (t)〉 dt

is bounded from above. For h ∈ Z` such that h 6= 0, we can write 〈h, F (t)〉 = σt+p(et), with
σ ∈ R and p ∈ XR[X]. Since the components of F are Q-linearly independent, σt + p(et)
is not identically zero (equivalently, not constant). We can assume that p 6= 0, since if not,
then J(T ) is clearly bounded, and we are done. Let us write

ρ(t) =
〈h, F (t)〉

ad
= edt +

ad−1

ad
e(d−1)t + . . .+

σ

ad
t,

for some d ≥ 1, ai ∈ R and ad ∈ R \ {0}. Fix T0 sufficiently large so that t 7→ ρ and t 7→ ρ′(t)
are strictly increasing (to +∞) on [T0,+∞), and perform the change of variables u = ρ(t) in
J(T ) to obtain

J(T ) =

∫ T

T0

e2πiadρ(t) dt =

∫ ρ(T )

ρ(T0)

e2πiadu

ρ′(ρ−1(u))
du.
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By the second mean value theorem for integrals applied to the real part of J(T ), we have

<(J(T )) =
1

ρ′(T0)

∫ τ

ρ(T0)

cos(2πadu) du,

for some τ ∈ (ρ(T0), ρ(T )]. This shows that the real part of J(T ) is bounded from above,
and so is the imaginary part of J(T ) by the same computation.

Therefore F is c.u.d. mod 1 and hence, by definition, the set Wε has infinite measure.
Since

I(x) ≥ ε

∫
[log(b),x]∩Wε

tνe(r+1)t dt

and ν ≥ 0, r ≥ −1, this implies that∫ +∞

b

f (y) dy = lim
x−→+∞

I(x) = +∞,

and proves (1).
To prove (2) and (3) we may still assume that c1 6= 0 and g1 6= 0, by our hypothesis on E.

In this situation, since we have shown that Wε has infinite measure, one can find a sequence
(tm)m∈N which tends to +∞, such that for all m ≥ 0, tm ∈ Wε, and therefore |ϕ(tm)| ≥ ε.
We set, for all m ∈ N, ym = etm , and we obtain ym → +∞ and E(ym) = ϕ(tm), which proves
(2).

We proceed in the same way to prove (3). Since P is not constant on T, by continuity of
P one can find δ > 0 and intervals Aδj , Bδ

j ⊂ [0, 1), j = 1, . . . , `, such that |ϕ(t)− ϕ(t′)| ≥ δ

for any t, t′ such that t ∈ Aδ := {u ∈ R, {f̃j(u)} ∈ Aδj , j = 1, . . . , `} and t′ ∈ Bδ := {u ∈
R, {f̃j(u)} ∈ Bδ

j , j = 1, . . . , `}. But since F is c.u.d mod 1, one can find two sequences
(t1,m)m∈N and (t2,m)m∈N tending to +∞, such that for all m ∈ N, t1,m ∈ Aδ and t2,m ∈ Bδ.
Finally, we set y1,m = et1,m and y2,m = et2,m to obtain (3). �

3.2. Properties of parametric strong functions. In this section we give some examples
of parametric strong functions and list their properties. The results in this section are stated
for E and A for simplicity, but they also hold for EK and AK.

Examples 3.5. All (finite sum of finite products) of the following functions are parametric
strong functions (i.e. they belong to A).

• Any subanalytic strong function (as in Definition 2.6), clearly.
• (U (x))s, where U ∈ S (X) is a subanalytic strong unit of the form U (x) = 1 +
F ◦ ψ (x), with ψ ∈ Sc (X), F ∈ R JZK and supz∈DN |F (z)| < 1 (where DN is
the closed polydisk in RN of radius 3

2
). To see this, notice that the series F̃ =

(1 + F (Z))s =
∑(

s
i

)
(F (Z))i ∈ E JZK is strongly convergent (without poles) and

(U (x))s = F̃ ◦ (s, ψ (x)).

• Let B = {(x, y) ∈ (2,+∞)× R : y > x} and Φ (s, x, y) =
∑
i≥2

ξi (s)
(
x
y

)i
∈ A (B).

Then ϕ (s, x) :=

∫ +∞

x2

Φ (s, x, y) dy ∈ A ((2,+∞)). To see this, integrate term by

term (which is possible, since the series Σiξi (s)Z
i is strongly convergent) and find that
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ϕ (s, x) =
∑

i≥0
ξi+2(s)
i+1

x−i, which is again a strongly convergent series with coefficients
in E , composed with the 1-bounded subanalytic function x−1 ∈ S ((2,+∞)).

Remark 3.6.
• If Φ ∈ A (X) has no poles outside P , then clearly for every fixed s ∈ (C \ P ), x 7−→

Φ (s, x) is a complex-valued subanalytic strong function (in the sense of Definition
(2.6)). In particular, up to decomposing X into subanalytic cells, we may suppose
that Φ depends analytically on x.
• If Φ (s, x) = F ◦ (s, ψ (x)) ∈ A (X) is a parametric strong function then{

ξI (s)ψ (x)I : I ∈ NN
}

is a normally summable family of functions: the family
{

supx∈X

∣∣∣ξI (s)ψ (x)I
∣∣∣} ⊆

[0, 1] is summable. In particular, if F̃ is obtained from F by taking the sum only over
some subset of the support of F and rearranging the terms, then F̃ ◦ (s, ψ (x)) is a
parametric strong function (without poles outside the set P (F )).

Remark 3.7. Let (Z, Y ) be an (N +M)-tuple of variables and F (s;Z, Y ) =
∑

I,J ξI,J (s)ZIY J ∈
E JZ, Y K be a strongly convergent series. Then, for all J ∈ NM , the series FJ :=

∑
I ξI,J (s)ZI ∈

E JZK is strongly convergent. Moreover, for every 1-bounded subanalytic map c : X −→ RN ,
we have ξcJ (s, x) := FJ ◦ (s, c (x)) ∈ A (X). Furthermore the series Fc :=

∑
J ξ

c
J (s, x)Y J ∈

A (X) JY K is strongly convergent, in the sense that the family {ξJ,x (s) := ξcJ (s, x)}J,x ⊆ E has
a non-accumulating set of common poles with bounded order and the series

∑
J ξ

c
J (s, x)Y J

defines a function on (C \ P )×X ×DM which is meromorphic in s and analytic in (x, Y ).
It follows that, for every 1-bounded map γ : X −→ RM , the parametric strong function

Φ (s, x) := F ◦ (s, c (x) , γ (x)) can also be written as the strongly convergent power series Fc
(with suitable parametric strong functions as coefficients), evaluated at Y = γ (x). We call
Fc ◦ (s, γ (x)) =

∑
J ξ

c
J (s, x) (γ (x))J a nested presentation of Φ.

We will often apply the above to the following situation: let B ⊆ Rm+1 a subanalytic
set such that the projection onto the first m coordinates of B is X. Fix coordinates (x, y),
where x is an m-tuple and y is a single variable. Suppose that (c (x) , γ (x, y)) is a 1-bounded
subanalytic map on B, where the first component only depends on the variables x. Then the
nested presentation of F ◦ (s, c (x) , γ (x, y)) ∈ A (B) is of the form

(3.1) Fc ◦ (s, γ (x, y)) =
∑
J

ξcJ (s, x) (γ (x, y))J ,

where the coefficients ξcJ now belong to A (X).

Remark 3.8. Let s be a fixed real or complex number. Then Examples 3.5, Remarks 3.6 and
3.7 also apply to real- or complex-valued subanalytic strong functions.

3.3. Subanalytic preparation. Let K ⊆ C be a subfield and recall that FK is R if K ⊆ R
and C otherwise.

Definition 3.9. Let X ⊆ Rm be a subanalytic cell and
(3.2) B = {(x, y) : x ∈ X, a (x) < y < b (x)} ,
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where a, b : X −→ R are analytic subanalytic functions with 1 ≤ a (x) < b (x) for all x ∈ X,
and b is allowed to be ≡ +∞. We say that B has bounded y-fibers if b < +∞ and unbounded
y-fibers if b ≡ +∞.

• A 1-bounded subanalytic map ψ : B −→ RM+2 ∈ SM+2
c (B) is y-prepared if it has the

form

(3.3) ψ (x, y) =

(
c (x) ,

(
a (x)

y

) 1
d

,

(
y

b (x)

) 1
d

)
,

where d ∈ N.
If b ≡ +∞, then we will implicitly assume that the last component is missing and
hence ψ : B −→ RM+1.
• An FK-valued subanalytic strong function W : B −→ FK is ψ-prepared if ψ is a
y-prepared 1-bounded subanalytic map as in (3.3) and

W (x, y) = F ◦ ψ (x, y) ,

for some power series F ∈ FK JZK which converges in a neighbourhood of the ball
of radius 3

2
. Notice that W has also a nested presentation (see 3.7) as a strongly

convergent power series with coefficients FK-valued subanalytic strong functions on

X, evaluated at γ (x, y) =

((
a(x)
y

) 1
d
,
(

y
b(x)

) 1
d

)
• A subanalytic function f ∈ S (B) is prepared if there are ν ∈ Z, an analytic function
f0 ∈ S (X) and a ψ-prepared real-valued subanalytic strong unit U (for some ψ as in
(3.3)) such that

f (x, y) = f0 (x) y
ν
dU (x, y)

Let us recall some notation from [CCMRS18, Definitions 3.2, 3.3, 3.4 and 3.8]. In par-
ticular, A ⊆ Rm+1 will be a cell open over Rm (it will always be possible to suppose that
the base of A is X ⊆ Rm) with analytic subanalytic center θA and such that the set IA :=
{y − θA (x) : (x, y) ∈ A} is contained in one of the sets (−∞,−1) , (−1, 0) , (0, 1) , (1,+∞),
as in [CCMRS18, Definition 3.4]. We now perform a change of coordinates with the aim of
mapping the set IA to the interval (1,+∞): there are unique sign conditions σA, τA ∈ {−1, 1}
such that

(3.4) A = {(x, y) : x ∈ X, aA (x) < σA (y − θA (x))τA < bA (x)}

for some analytic subanalytic functions aA, bA such that 1 ≤ aA (x) < bA (x) ≤ +∞. Let

(3.5) BA = {(x, y) : x ∈ X, aA (x) < y < bA (x)}

and ΠA : BA −→ A be the bijection

(3.6) ΠA (x, y) = (x, σAy
τA + θA (x)) , Π−1

A (x, y) = (x, σA (y − θA (x))τA) .

We will still denote by ΠA the map C×BA 3 (s, x, y) 7−→ (s,ΠA (x, y)) ∈ C× A.

Remark 3.10. By [CCMRS18, Definition 3.4(3)], if A is a cell of the form A = {(x, y) : x ∈
X, y > f (x)}, then σA = τA = 1 and θA = 0. Hence in this case aA = f, bA = +∞ and
BA = A.



18 CLUCKERS, COMTE, ROLIN, AND SERVI

Proposition 3.11. [LR97][CCMRS18, Remark 3.12]Let F ⊆ S (X × R) be a finite collection
of subanalytic functions. There is a cell decomposition of Rm+1 compatible with X such that
for each cell A that is open over Rm (which we may suppose to be of the form (3.4)) and for
every h ∈ F , h ◦ ΠA is prepared on BA.

4. Preparation of (parametric) power-constructible functions

Let K ⊆ C be a subfield and recall that FK is R if K ⊆ R and C otherwise. In this section,
y will be a single variable. For each of the classes introduced in Sections 2.1 and 2.3, we
will give a prepared presentation of its elements, with respect to the last subanalytic variable
(denoted by y).

4.1. Preparation of power-constructible functions.

Definition 4.1. Let B be as in (3.2). A generator T of the FK-algebra CK (B) is called
prepared if

(4.1) T (x, y) = G0 (x) y
η
d (log y)µW (x, y) ,

where G0 ∈ CK (X) , η ∈ K, µ ∈ N and W is a ψ-prepared FK-valued subanalytic strong
function, for some 1-bounded ψ as in (3.3).

It follows from Remark 3.8 that, in the notation of (3.1), if B has bounded y-fibers (i.e.
b < +∞), then W can be written as

(4.2)
∑
m,n

ξcm,n (x)

(
a (x)

y

)m
d
(

y

b (x)

)n
d

,

and if B has unbounded y-fibers (i.e. b ≡ +∞), then W can be written as

(4.3)
∑
k

ξck (x)

(
a (x)

y

) k
d

.

Proposition 4.2. Let F ⊆ CK (X × R) be a finite collection of K-power-constructible func-
tions. Then there is a cell decomposition of Rm+1 compatible with X such that for each cell
A that is open over Rm (which we may suppose to be of the form (3.4)) and each h ∈ F ,
h ◦ ΠA is a finite sum of prepared generators of the form (4.1).

Proof. The proof is a straightforward refinement of the proofs of [CM12, Corollary 3.5] and
[CCMRS18, Proposition 3.10]: one prepares first all the subanalytic data appearing in h, by
Proposition 3.11, and then observes the effect of applying log or a power η ∈ K to a sub-
analytic prepared function. In particular, notice that if U (x, y) is a ψ-prepared subanalytic
strong unit, then Uη is again a ψ-prepared FK-valued subanalytic strong unit. �

4.2. Preparation of parametric strong functions. Let K ⊆ C be a subfield and refer to
the definitions of EK,AK in Section 2.3.1.

Definition 4.3. Let B be as in (3.2). A parametric strong function Φ ∈ AK (B) is called ψ-
prepared (where ψ is as in (3.3)) if there exists a strongly convergent series F =

∑
ξI (s)ZI ∈

EK JZK such that
(4.4) ∀ (s, x, y) ∈ (C \ P (F ))×B, Φ (s, x, y) = F ◦ (s, ψ (x, y)) .
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Notice that if Φ is ψ-prepared, then Φ has a nested presentation (see Remark 3.7) as a

power series with coefficients in AK (X), evaluated at γ (x, y) =

((
a(x)
y

) 1
d
,
(

y
b(x)

) 1
d

)
:

(4.5) ∀ (s, x, y) ∈ C \ P (F )×B, Φ (s, x, y) =
∑
m,n

ξcm,n (s, x)

(
a (x)

y

)m
d
(

y

b (x)

)n
d

,

where ξcm,n (s, x) =
∑

J ξJ,m,n (s) (c (x))J ∈ AK (X).

Remark 4.4. Let Φ ∈ AK (B) be ψ-prepared, as above. If B has unbounded y-fibers (i.e.
b ≡ +∞ in (3.2)), recall that

(4.6) ψ (x, y) =

(
c (x) ,

(
a (x)

y

) 1
d

)
,

hence the nested ψ-prepared form of Φ is

(4.7) ∀ (s, x, y) ∈ (C \ P (F ))×B, Φ (s, x, y) =
∑
k

ξck (s, x)

(
a (x)

y

) k
d

,

where ξck (s, x) =
∑

J ξJ,k (s) (c (x))J ∈ AK (X).

Lemma 4.5. Let F ⊆ AK (X × R) be a finite set of functions Φ which have no poles outside
some closed discrete set P ⊆ K. Then there is a cell decomposition of Rm+1 compatible with
X such that for each cell A that is open over Rm (which we may suppose to be of the form
(3.4)), each Φ◦ΠA is ψ-prepared on (C \ P )×BA (for some y-prepared 1-bounded subanalytic
map ψ as in (3.3)).

Proof. We will consider the case of a single function Φ for simplicity of notation (the general
case is obtained by taking as Φ the product of the functions in F). Write Φ = G ◦ (s, η),
where G =

∑
I ϕI (s)T I ∈ E JT K is a strongly convergent series in N variables T and η =

(η1, . . . , ηN) : X × R −→ RN is a 1-bounded subanalytic map.
Apply subanalytic preparation (Proposition (3.11)) to the components of η. This yields a

cell decomposition of X × R such that, if A is a cell of the form (3.4), then the components

of η ◦ ΠA are ψ̂-prepared BA, where ψ̂ (x, y) =

(
ĉ (x) ,

(
aA(x)
y

) 1
d
,
(

y
bA(x)

) 1
d

)
is a y-prepared

strongly subanalytic map:

ηj ◦ ΠA (x, y) = cj (x) y
`j
d vj (x, y) (1 ≤ j ≤ N) ,

where cj ∈ S (X) is analytic, `j is an integer and vj is a ψ̂-prepared strong unit. By rescaling
the unit, we may furthermore assume that

∣∣∣cj (x) y
`j
d

∣∣∣ ≤ 1 on the closure of BA. Partition

{1, . . . , N} =
⋃

∗∈{<,=,>}

J∗

=
⋃

∗∈{<,=,>}

{
j :

`j
d
∗ 0

}
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and notice that the subanalytic map c̃ := (c̃1, . . . , c̃N) given by

c̃j (x) :=


cj (x) · (aA (x))

`j
d (j ∈ J<)

cj (x) (j ∈ J=)

cj (x) · (bA (x))
`j
d (j ∈ J>)

is 1-bounded. Hence,

ηj ◦ ΠA (x, y) =


c̃j (x)

(
aA(x)
y

)− `j
d
vj (x, y) (j ∈ J<)

c̃j (x) vj (x, y) (j ∈ J=)

c̃j (x)
(

y
bA(x)

) `j
d
vj (x, y) (j ∈ J>)

and, for I = (i1, . . . , iN) ∈ NN ,

(ηj ◦ ΠA (x, y))ij = c̃j (x)ij fI,j (x, y) ,

where

fI,j (x, y) =


(
aA(x)
y

)− `j
d
ij

(vj (x, y))ij (j ∈ J<)

(vj (x, y))ij (j ∈ J=)(
y

bA(x)

) `j
d
ij

(vj (x, y))ij (j ∈ J>)

.

Notice that the fI,j are ψ̂-prepared subanalytic strong functions, hence so is their product
fI (x, y) :=

∏
j≤N fI,j (x, y). Therefore, there is a strongly convergent power series with

coefficients in FK

FI =
∑
K,m,n

dIK,m,nZ̃
KY m

1 Y n
2 ∈ FK

r
Z̃, Y1, Y2

z

such that fI (x, y) = FI ◦ ψ̂ (x, y).
Therefore, on BA we can write

Φ ◦ ΠA (s, x, y) =

=
∑

I=(i1,...,iN )

ϕI (s) (η ◦ ΠA (x, y))I

=
∑

I=(i1,...,iN )

ϕI (s) (c̃ (x))I fI (x, y)

=
∑

I=(i1,...,iN )

ϕI (s) (c̃ (x))I
∑
K,m,n

dIK,m,n (ĉ (x))K
(
aA (x)

y

)m
d
(

y

bA (x)

)n
d

=
∑

I,K,m,n

dIK,m,nϕI (s) (c̃ (x))I (ĉ (x))K
(
aA (x)

y

)m(
y

bA (x)

)n
.

Now, if we let Ĩ = (I,K) and

ξĨ,m,n (s) = dIK,m,nϕI (s) ,
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then the family
{
ξĨ,m,n

}
is strong and the series

F =
∑
Ĩ,m.n

ξĨ,m,n (s)Z ĨY m
1 Y n

2 ∈ EK JZ, Y1, Y2K

is strongly convergent (with P (F ) = P (G)). Let c (x) = (c̃ (x) , ĉ (x)). Then, in the notation
of (3.3), on BA we have

Φ ◦ ΠA (s, x, y) = F ◦ (s, ψ (x, y)) ,

so Φ ◦ (s,ΠA (x, y)) is ψ-prepared on BA, as required. �

4.3. Preparation of parametric power-constructible functions. In this section we let
D be either CK,M or CP(K),M (see Section 2.3.1).

Definition 4.6. Let B be as in (3.2) and P ⊆ K be a closed discrete set. A generator
T ∈ D (B) with no poles outside P is prepared if for all (s, x, y) ∈ (C \ P )×B,

(4.8) T (s, x, y) = G0 (s, x) y
`s+η
d (log y)µ Φ (s, x, y) ,

where G0 ∈ D (X) , `, η ∈ K, µ ∈ N and Φ ∈ AK (B) is a ψ-prepared parametric strong
function (see Definition 4.3). If D = CK,M, then we require that ` ∈ Z.

Proposition 4.7. Let P ⊆ K be a closed discrete set and h ∈ D (X × R) have no poles
outside P . Then there is a cell decomposition of Rm+1 compatible with X such that for each
cell A that is open over Rm (which we may suppose to be of the form (3.4)), h◦ΠA is a finite
sum of prepared generators on (C \ P )×BA.

Proof. Suppose first that D = CP(K),M. Write h as a finite sum of generators of the form

T (s, x, y) = Φ (s, x, y) · g (x, y) · f1 (x, y)α1s · . . . · fn (x, y)αns ,

with Φ ∈ AK (X × R) , g ∈ CK (X × R) , fi ∈ S+ (X × R) , αi ∈ K. Apply Proposition 3.11
simultaneously to all the fi and to all the subanalytic data in all the Φ and g appearing in
the generators. This yields a cell decomposition of X × R such that on each cell A with
center θA, there is a y-prepared subanalytic map ψ as in (3.3) such that, after composing
with ΠA all the subanalytic functions considered above are prepared. In particular, each of
the fj appearing in the parametric power, after composing with ΠA, has the form

f̃j (x) y
`j
d Uj (x, y) ,

where f̃j ∈ S+ (X) , `j ∈ Z and Uj ∈ S (BA) is a ψ-prepared subanalytic strong unit. Hence,
by the second of Examples 3.5, Ξj (s, x, y) := |Uj (x, y)|s ∈ AK (BA) and is ψ-prepared.

Apply Proposition 4.2 to prepare each g ◦ΠA, which can be hence written as a finite sum
of terms of the form

gj (x) y
ηj
d (log y)νj Wj (x, y) ,

where νj ∈ N, ηj ∈ K, gj ∈ CK (X) is analytic andWj is an FK-valued ψ-prepared subanalytic
strong function on BA.

Apply Lemma 4.5 to ψ-prepare each Φ ◦ ΠA on BA as Fj ◦ (s, ψ (x, y)), where ψ has now
some extra components depending only on the variables x. Notice that this does not affect
the preparation work already done.
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Finally, define Gj (s, x) = f̃j (x)αjs gj (x) and Φj (s, x, y) = Fj ◦ (s, ψ (x, y)) · Wj (x, y) ·
Ξj (s, x, y). Then clearly Gj ∈ CK,M (X) and Φj ∈ AK (BA) is ψ-prepared, with no poles
outside P , hence we have written h ◦ ΠA as a finite sum of terms of the form

Gj (s, x) · y
αj`js+ηj

d · (log y)νj Φj (s, x, y)

and we are done.
If D = CK,M, then repeat the above proof with n = α1 = 1. �

5. Integration of prepared (parametric) power-constructible generators

In this section we let D be either CK,M or CP(K),M.
Given a cell B ⊆ Rm+1, we study the integrability, and compute the integral, of a prepared

generator of D (B).
Let B be as in (3.2) and T ∈ D (B) be a prepared generator with no poles outside P (for

some discrete closed set P ⊆ K). We aim to study the nature of the parametric integral

(5.1)
∫ b(x)

a(x)

T (s, x, y) dy,

for all (s, x) ∈ (C \ P )×X such that y 7−→ T (s, x, y) ∈ L1 (Bx).
We prove that there exist a closed discrete set P ′ ⊇ P and a function H ∈ D (X) with no

poles outside P ′ such that the above integral coincides with H.
We start by recalling the classical formula to compute the antiderivative of any power-log

monomial in y.

Lemma 5.1. Let `, γ ∈ K, d, µ ∈ N with `, d 6= 0. Let s ∈ C such that `s+ γ 6= −d. Then

(5.2)
∫
y
`s+γ
d (log y)µ dy =

µ∑
i=0

cµ,i (log y)i
y
`s+γ+d

d

(`s+ γ + d)µ+1−i ,

where cµ,i = (−1)µ−i µ!
i!
dµ+1−i.

5.1. Cells with bounded y-fibers. Recall that B is as in (3.2) and suppose that b < +∞.
Let T ∈ D (B) be a prepared generator (as in (4.8)) without poles outside some closed
discrete set P ⊆ K. We study the integrability of T on B: since B has bounded y-fibers, the
function y 7−→ T (s, x, y) extends to a continuous function on the boundary of Bx, hence the
integral ∫ b(x)

a(x)

T (s, x, y) dy

is finite. Let us compute it.
Let

P ′ :=

{
P ∪ {s : `s+ η ∈ Z} if ` 6= 0,

P if ` = 0.

There are several cases to consider.
• If ` 6= 0, then, for (s, x) ∈ (C \ P ′) × X, we deduce from Lemma 5.1 and normal

convergence that
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∫ b(x)

a(x)

T (s, x, y) dy(5.3)

=

µ∑
i=0

∑
m,n

cµ,iG0 (s, x) ξm,n (s, x)

(`s+ η + d−m+ n)µ+1−i
(a (x))

m
d

(b (x))
n
d

·
[
y
`s+η+d−m+n

d (log y)i
]b(x)

a(x)

=

µ∑
i=0

cµ,iG0 (s, x) (b (x))
`s+η+d

d (log b (x))i
∑
m,n

ξm,n (s, x)
(
a(x)
b(x)

)m
d

(`s+ η + d−m+ n)µ+1−i

−
µ∑
i=0

cµ,iG0 (s, x) (a (x))
`s+η+d

d (log a (x))i
∑
m,n

ξm,n (s, x)
(
a(x)
b(x)

)n
d

(`s+ η + d−m+ n)µ+1−i

As a consequence of the Dominated Convergence Theorem, the fact that ∀x ∈ X, 1 ≤
a (x) < b (x) < +∞ and the results in Section 3.2, the expressions

∑
m,n

ξm,n (s, x)
(
a(x)
b(x)

)m
d

(`s+ η + d−m+ n)µ+1−i ,
∑
m,n

ξm,n (s, x)
(
a(x)
b(x)

)n
d

(`s+ η + d−m+ n)µ+1−i

define functions in A (X) without poles outside P ′.
• If ` = 0 and η /∈ Z, then the above equation holds for all (s, x) ∈ (C \ P )×X, since the

denominator does not vanish.
• If ` = 0 and η ∈ Z, then we split Φ into the sum of two (still strongly convergent) series,

by isolating the indices which contribute, in T , to the power y−1:

Φ (s, x, y) = Φ= (s, x, y) + Φ 6= (s, x, y)

=
∑
m,n:

m=η+d+n

ξm,n (s, x)

(
a (x)

y

)m
d
(

y

b (x)

)n
d

+
∑
m,n:

m 6=η+d+n

ξm,n (s, x)

(
a (x)

y

)m
d
(

y

b (x)

)n
d

= y−
η+d
d (a (x))

η+d
d

∑
n

ξn+η+d,n (s, x)

(
a (x)

b (x)

)n
d

+
∑
m,n:

m 6=η+d+n

ξm,n (s, x)

(
a (x)

y

)m
d
(

y

b (x)

)n
d

.

The integral of T6= (s, x, y) := G0 (s, x) y
η
d (log y)µ Φ 6= (s, x, y) is computed as in the previous

cases, and the denominators never vanish.
As for T= (s, x, y) := G0 (s, x) y

η
d (log y)µ Φ= (s, x, y), for (s, x) ∈ (C \ P )×X, we have∫ b(x)

a(x)

T= (s, x, y) dy = G0 (s, x) (a (x))
η+d
d

∑
n

ξn+η+d,n (s, x)

(
a (x)

b (x)

)n
d (log b (x))µ+1

µ+ 1

−G0 (s, x) (a (x))
η+d
d

∑
n

ξn+η+d,n (s, x)

(
a (x)

b (x)

)n
d (log a (x))µ+1

µ+ 1
.
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Hence we have shown that there is H ∈ D (X) without poles outside some closed discrete
set P ′ ⊇ P , such that

∀ (s, x) ∈ (C \ P ′)×X, H (s, x) =

∫ b(x)

a(x)

T (s, x, y) dy.

Remark 5.2. If ` = 0 then H has no new singularities. If ` 6= 0, let σ ∈ P ′ \ P . Since for all
(x, y) ∈ B, the function s 7−→ T (s, x, y) is holomorphic and bounded in a neighbourhood of
σ, by differentiation under the integral sign, the integral

∫ b(x)

a(x)
T (s, x, y) dy is also holomorphic

in a neighbourhood of σ. Since such an integral coincides with H on a deleted neighbourhood
of σ and s 7−→ H (s, x) is meromorphic, σ is not a pole of H but a removable singularity.
Hence,

Hσ (x) := lim
s−→σ

H (s, x) = lim
s−→σ

∫ b(x)

a(x)

T (s, x, y) dy

=

∫ b(x)

a(x)

lim
s−→σ

T (s, x, y) dy =

∫ b(x)

a(x)

T (σ, x, y) dy.

The rightmost integral can be computed in a similar way as we did above for the case
` = 0, η ∈ Z (where now we split the series according to the condition m = `σ + η + d + n)
and the computation clearly shows that Hσ ∈ CK (X).

Finally, notice that every σ ∈ P ′ \ P has the form σ = ν0−η−d
`

for some ν0 ∈ Z, so that if `
and/or η are in K, then so is σ.

Hence, we have proven the following statement.

Proposition 5.3. Let B be as in (3.2) with b < +∞, K ⊆ C be a subfield and let D be either
CK,M or CP(K),M. Let T ∈ D (B) be a prepared generator with no poles outside P (for some
discrete closed set P ⊆ K), as in Definition 4.6. Let

P ′ = P ∪ {s ∈ C : `s+ η ∈ Z} ⊆ K.
Then

Int (T ; (C \ P )×X) = (C \ P )×X
and there exist a function H ∈ D (X) without poles outside P ′ such that

∀ (s, x) ∈ (C \ P ′)×X, H (s, x) =

∫ b(x)

a(x)

T (s, x, y) dy.

Moreover, for all σ ∈ P ′ \ P there is a function Hσ ∈ CK (X) such that

∀x ∈ X, Hσ (x) =

∫ b(x)

a(x)

T (σ, x, y) dy

and ∀x ∈ X, the function s 7−→ H (s, x) can be holomorphically extended at s = σ by setting
H (σ, x) = Hσ (x).

Remark 5.4. The proposition also applies to any finite sum of prepared generators on the
bounded cell B, with P ′ a finite union of closed and discrete sets and P ′ \ P contained in a
finitely generated Z-lattice.
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5.2. Cells with unbounded y-fibers. We now introduce a type of function in D (X × R)
which has a particularly simple expression in the last variable y.

Definition 5.5. Let A ⊆ X × R be a subanalytic cell which is open over X (see Definition
3.1). A function h ∈ D (A) without poles outside some closed discrete set P ⊆ K is Puiseux
in y if there are `, η ∈ K, d ∈ N \ {0} , µ ∈ N and a collection {gk (s, x)}k∈N ⊆ D (X) such
that for all s ∈ C \ P , the series of functions

ϕ (s, x, y) :=
∑
k

gk (s, x) y−
k
d

converges normally on A and ∀ (x, y) ∈ A, C \ P 3 s 7−→ ϕ (s, x, y) is holomorphic, and

(5.4) h (s, x, y) = ϕ (s, x, y) y
`s+η
d (log y)µ =

∑
k

gk (s, x) y
`s+η−k

d (log y)µ .

We call the tuple (`, η, d, µ) the Puiseux data of h.

Remark 5.6. Let B be as in (3.2) and T ∈ D (B) be a prepared generator (for some y-prepared
1-bounded subanalytic map ψ as in (3.3)). If B has unbounded y-fibers, then T is Puiseux
in y.

We now turn our attention to prepared generators of D (B), where, in the definition (3.2)
of B, we have b ≡ +∞. More generally, in what follows we will suppose that T ∈ D (B) is
a finite sum of prepared generators (where ψ is as in (4.6)), sharing the same Puiseux data
and without poles outside some closed discrete set P ⊆ K. Hence, for some `, η ∈ K, µ ∈ N,
T has the form

(5.5)

T (s, x, y) =
∑
j≤N

Tj (s, x, y)

=
∑
j≤N

Gj (s, x) y
`s+η
d (log y)µ

∑
k

ξj,k (s, x)

(
a (x)

y

) k
d

= y
`s+η
d (log y)µ

∑
k

hk (s, x)

(
a (x)

y

) k
d

,

where hk =
∑

j≤N Gjξj,k ∈ D (X).
First, we describe Int (T ; (C \ P )×X). Let mk (s, y) = y

`s+η−k
d (log y)µ and notice that,

since a (x) ≥ 1 and since for all s ∈ C the real parts of the exponent of y in mk and mk′ are
different if k 6= k′,

Int (T ; (C \ P )×X) =
⋂
k∈N

Int (hkmk; (C \ P )×X) .

• If ` 6= 0 then

Int (hkmk; (C \ P )×X) = {s ∈ C \ P : < (`s+ η) + d− k < 0} ×X
∪ {(s, x) ∈ (C \ P )×X : < (`s+ η) + d− k ≥ 0 ∧ hk (s, x) = 0}
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and hence, if
(5.6)
S0 = {s ∈ C : < (`s+ η) + d < 0} and Si = {s ∈ C : i− 1 ≤ < (`s+ η) + d < i} (i ≥ 1) ,

then

(5.7) Int (T ; (C \ P )×X) = (S0 ×X) ∪
⋃
i≥1

{
(s, x) ∈ (Si \ P )×X :

∧
k<i

hk (s, x) = 0

}
.

• If ` = 0 then

Int (hkmk; (C \ P )×X) =

{
(C \ P )×X if < (η) + d− k < 0

{(s, x) ∈ (C \ P )×X : hk (s, x) = 0} if < (η) + d− k ≥ 0

and hence, if k0 = b< (η)c+ d, then

(5.8) Int (T ; (C \ P )×X) =

{
(s, x) ∈ (C \ P )×X :

∧
k≤k0

hk (s, x) = 0

}
.

Let

(5.9) P ′ =

{
P ∪ {s ∈ C : < (`s+ η) + d ∈ N} if ` 6= 0

P if ` = 0
⊆ K.

Notice that (P ′ \ P ) ∩ S0 = ∅.
Our next aim is to show that there exists H ∈ D (X), with no poles outside P ′ such that

H coincides with the integral of T on its integration locus.
In the notation of Lemma 5.1, let

Hk (s, x) = − (a (x))
`s+η+d

d

∑
i≤µ

cµ,i (log a (x))i
hk (s, x)

(`s+ η + d− k)µ+1−i ,

and define

H (s, x) =



∑
k≥0

Hk (s, x) if ` 6= 0

∑
k>k0

Hk (s, x) if ` = 0

.

By the results in Section 3.2, H ∈ D (X) and has no poles outside P ′, and by Lemma 5.1,

∀ (s, x) ∈ Int (T ; (C \ P ′)×X) ,

∫ +∞

a(x)

T (s, x, y) dy = H (s, x) .

If ` = 0 then H has no new singularities, whereas if ` 6= 0 then the new singularities are
located in (C \ S0)×X and are in general not removable.

Remark 5.7. If D = CK,M then the sets Si (i ≥ 1) in (5.6) are vertical strips in the complex
plane of fixed width 1

`
. The points σ ∈ P ′ \ P lie on the boundaries of such strips and their

imaginary part is equal to
= (η)

`
. If D = CP(K),M, where K 6⊆ R, then ` ∈ K and the sets Si

are parallel (not necessarily vertical) strips of fixed width. The points σ ∈ P ′ \P again lie on
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the boundaries of such strips and satisfy the equation < (`)= (σ) + = (`)< (σ) + = (η) = 0.
In both cases, the set P ′ \ P is contained in a finitely generated Z-lattice and hence P ′ is
closed and discrete.

Hence, we have proven the following result.

Proposition 5.8. Let B be as in (3.2) with b = +∞, K ⊆ C be a subfield and let D be
either CK,M or CP(K),M. Let T ∈ D (B) be a finite sum of prepared generators sharing the
same Puiseux data, as in (5.5), with no poles outside P (for some discrete closed set P ⊆ K).
Then Int (T ; (C \ P )×X) is described as in (5.7) (if ` 6= 0) or in (5.8) (if ` = 0) and, for
P ′ as in (5.9), there exists a function H ∈ D (X) without poles outside P ′ such that

∀ (s, x) ∈ Int (T ; (C \ P )×X) , H (s, x) =

∫ +∞

a(x)

T (s, x, y) dy.

6. Stability under integration of (parametric) power-constructible
functions

This section is devoted to the proof of the results of stability under parametric integration
in Section 2.

For the rest of this section we let D be either CK,M or CP(K),M.
We will first prove stability under integration when we integrate with respect to a single

variable y. In this case, we can also give a description of the integration locus. The strategy
is the following: we prepare the function we want to integrate with respect to the variable
y. This produces a cell decomposition such that on each cell, in the new coordinates the
function is a sum of prepared generators. If the cell has bounded y-fibers, then the function
is integrable everywhere in restriction to such a cell, and we have already shown (see Remark
5.4) that the integral can be expressed as a function of D. If the cell has unbounded y-fibers
and the prepared generators all share the same Puiseux data, then we know how to conclude
by the results of the previous section. It remains to consider the case of a sum of generators
who have different Puiseux data. Such data induce a partition of C into areas (see (5.6))
which are involved in the description of the integrability locus. In order to deal with different
Puiseux data, we introduce the notion of non-accumulating grid.

Definition 6.1. Given N, d ∈ N× and {(`i, ηi) : 0 ≤ i ≤ N} ⊆ K2, define

Ξi,0,− = ∅,
Ξi,0,◦ = {s ∈ C : < (`is+ ηi) + d < 0} (i ≤ N) ,

Ξi,j,− = {s ∈ C : < (`is+ ηi) + d = j − 1}
(
i ≤ N, j ∈ N×

)
,

Ξi,j,◦ = {s ∈ C : j − 1 < < (`is+ ηi) + d < j}
(
i ≤ N, j ∈ N×

)
.

A collection of sets (partitioning C) of the form

G = {Ξi,j,? : i ≤ N, j ∈ N, ? ∈ {−, ◦}}

is called a non-accumulating grid of data {N, d, (`0, η0) , . . . , (`N , ηN)}. Note that if `i = 0
then ∀j ∈ N,∀? ∈ {−, ◦} , Ξi,j,? is either empty or the whole C.
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A G-cell is a nonempty subset Σ ⊆ C such that

∀Ξ ∈ G, Ξ ∩ Σ = ∅ or Σ ⊆ Ξ, and Σ =
⋂
{Ξ ∈ G : Σ ⊆ Ξ} .

We let R (G) be the collection of all G-cells. The G-cells are convex and form a partition
of C. Each G-cell either has empty interior (an isolated point, a segment or a line) or is
an open subset of C containing an open ball of radius ε, for some ε = ε (G) > 0 depending
only on G (hence the word “non-accumulating”). Given a G-cell Σ, there are functions jΣ :
{0, . . . , N} −→ N and ?Σ : {0, . . . , N} −→ {−, ◦} such that Σ =

⋂
i≤N Ξi,jΣ(i),?Σ(i).

If all the `i are in R×, the we say that G is a vertical non-accumulating grid. In this case,
the cells with empty interior are points or vertical lines, and the open cells are vertical strips
of width ≥ ε, for some ε = ε (G) > 0.

Example 6.2. Let N, d ∈ N×. For i ≤ N , let Ti be a sum of prepared generators on an
unbounded cell, sharing the same Puiseux data (`i, ηi, d, µi) (as in (5.5), see Remark 5.6),
without poles outside some closed discrete set P ⊆ K. Consider the non-accumulating grid
of data {N, d, (`0, η0) , . . . , (`N , ηN)} and let Σ =

⋂
i≤N Ξi,jΣ(i),?Σ(i) ∈ R (G) be a G-cell. Then

Int (Ti; (Σ \ P )×X) =

(s, x) : s ∈ Σ \ P,
∧

k<jΣ(i)

gi,k (s, x) = 0

 ,

where gi,k ∈ D (X) are the coefficients in the series expansion (5.4) of Ti. It follows that, if
we rename {

gΣ
k : k ∈ JΣ

}
= {gi,k : i ≤ N, k < jΣ (i)} ,

then ⋂
i≤N

Int (Ti; (Σ \ P )×X) =

{
(s, x) : s ∈ Σ \ P,

∧
k∈JΣ

gΣ
k (s, x) = 0

}
.

Theorem 6.3. Let K ⊆ C be a subfield and let D be either CK,M or CP(K),M. Let P ⊆ K
be a closed discrete set and h ∈ D (X × R) be with no poles outside P . There exist a closed
discrete set P ′ ⊆ K, containing P and contained in a finitely generated Z-lattice, and a
function H ∈ D (X) without poles outside P ′ such that

∀ (s, x) ∈ Int (h; (C \ P ′)×X) ,

∫
R
h (s, x, y) dy = H (s, x) .

Moreover, there exists a non-accumulating grid G as in Definition 6.1 such that

(6.1) Int (h; (C \ P ′)×X) =
⋃

Σ∈P(G)

{
(s, x) : s ∈ Σ \ P ′,

∧
k∈JΣ

gΣ
k (s, x) = 0

}
,

for a suitable finite set JΣ and suitable gΣ
k ∈ D (X) without poles outside P .

Proof. Apply Proposition 4.7 to h to find a cell decomposition of Rm+1 such that on each cell
BA as in (3.5), h ◦ΠA is a finite sum of prepared generators (for some y-prepared 1-bounded
subanalytic map ψA). We may suppose that X itself is a cell and we concentrate on the
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collection X of all the cells of the decomposition which have X as a base, and which are open
over Rm. Since Int (h; (C \ P )×X) =

⋂
A∈X Int (h · χA; (C \ P )×X) and

∀ (s, x) ∈ Int (h; (C \ P )×X) ,

∫
R
h (s, x, y) dy =

∑
A∈X

∫
R
h (s, x, y) · χA (x, y) dy,

it is enough to prove the theorem for the functions h · χA.
For A ∈ X , we can write

h ◦ ΠA (s, x, y) =
∑
i≤MA

T̃Ai (s, x, y) ,

where each T̃Ai ∈ D (BA) is a prepared generator. Recall the notation in (3.4) and note that

∂ΠA

∂y
(x, y) = σAτAy

τA−1.

Define
TAi (s, x, y) := σAτAy

τA−1T̃Ai (s, x, y) .

Then,

Int
(
T̃Ai ◦ Π−1

A ; (C \ P )×X
)

= Int
(
TAi ; (C \ P )×X

)
and ∀ (s, x) ∈ Int (h · χA; (C \ P )×X) ,∫

R
h (s, x, y) · χA (x, y) dy =

∫ bA(x)

aA(x)

h ◦ ΠA (s, x, y) · ∂ΠA

∂y
(x, y) dy

=

∫ bA(x)

aA(x)

∑
i≤MA

TAi (s, x, y) dy.

If BA has bounded y-fibers, then by Proposition 5.3 and Remark 5.4,

Int
(
TAi ; (C \ P )×X

)
= (C \ P )×X

and there are a closed discrete set P ′A ⊆ K (containing P and contained in a finitely generated
Z-lattice) and functions HA

i ∈ D (X) without poles outside P ′A, such that

∀ (s, x) ∈ (C \ P ′A)×X,
∑
i≤MA

HA
i (s, x) =

∫
R
h (s, x, y) · χA (s, x) dy.

If BA has unbounded y-fibers, then consider the prepared generators T̃Ai (which are Puiseux
in y, of Puiseux data (`′i, η

′
i, d, µ

′
i)). Suppose that there are i 6= j ≤MA such that `′i = `′j, µ

′
i =

µ′j and η′i − η′j = ν ∈ N. Write

T̃Aj (s, x, y) =
∑
k

g̃j,k (s, x) y
`′js+η

′
j−k

d (log y)µ
′
j

=
∑
k

hj,k (s, x) y
`′is+η

′
i−k

d (log y)µ
′
i ,
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where

hj,k (s, x) =

{
0 if k < ν

g̃j,k−ν if k ≥ ν
.

Now T̃Ai and T̃Aj share the same Puiseux data (and so do TAi ans TAj ). Hence, by summing
together all generators which share the same Puiseux data, we may write∑

i≤MA

T̃Ai (s, x, y) =
∑
i≤NA

T̃i (s, x, y) ,

where NA ∈ N and, if Ti = σAτAy
τA−1T̃i,

(6.2) Ti (s, x, y) =
∑
k

gi,k (s, x) y
`is+ηi−k

d (log y)µi ∈ D (BA)

is a finite sum of prepared generators on the unbounded cell BA sharing the same Puiseux
data (`i, ηi, d, µi). Moreover, ∀i 6= j ≤ NA, (`i, ηi, µi) 6= (`j, ηj, µj) and if (`i, µi) = (`j, µj)
then ηi − ηj /∈ Z. Let

P ′A = P ∪ {s ∈ C : ∃i ≤ NA s.t. `i 6= 0 and `is+ ηi + d ∈ N} .

Apply Proposition 5.8 to each Ti and find Hi ∈ D (X) without poles outside P ′A such that

∀ (s, x) ∈ Int (Ti; (C \ P ′A)×X) , Hi (s, x) =

∫ +∞

aA(x)

Ti (s, x, y) dy.

Clearly,
⋂
i≤NA Int (Ti; (C \ P )×X) ⊆ Int (h · χA; (C \ P )×X) and

∀ (s, x) ∈
⋂
i

Int (Ti; (C \ P ′A)×X) ,

∫
R
h (s, x, y) · χA (x, y) dy = H0 + · · ·+HN .

Recall that the description of the above integrability locus is given in Example 6.2, with
respect to the non-accumulating grid GA of data {NA, d, (`0, η0) , . . . , (`NA , ηNA)}. We would
hence be done if we could show that the integrability locus of h · χA coincided with the
intersection of the integrability loci of the Ti. This is the case, outside a closed discrete set,
as we now show.

Let

P ′′A = {s ∈ C : ∃i 6= j ≤ NA s.t. µi = µj, `i 6= `j and (`i − `j) s+ (ηi − ηj) ∈ Z}(6.3)

and notice that P ′′A ⊆ K is contained in a finitely generated Z-lattice. Note that ∀s ∈ C \P ′′A,
the tuples (

`is+ ηi − k
d

, µi

)
1 ≤ i ≤ NA, k ∈ N

are pairwise distinct.
We now show that Int (h · χA; (C \ P ′′A)×X) =

⋂
i Int (Ti; (C \ P ′′A)×X).



MELLIN TRANSFORMS OF POWER-CONSTRUCTIBLE FUNCTIONS 31

Let Σ =
⋂
i≤N Ξi,jΣ(i),?Σ(i) be a GA-cell, in the notation of Example 6.2, and let (s0, x0) ∈

Int (h · χA; (Σ \ P ′′A)×X). For all (s, x, y) ∈ (Σ \ P ′′A)×BA, write
NA∑
i=1

Ti (s, x, y) =

 NA∑
i=1

jΣ(i)−1∑
k=0

gi,k (s, x) y
`is+ηi−k

d (log y)µi

+

 NA∑
i=1

∑
k≥jΣ(i)

gi,k (s, x) y
`is+ηi−k

d (log y)µi


= hΣ

A,1 (s, x, y) + hΣ
A,2 (s, x, y)

and notice that Int
(
hΣ
A,2; Σ×X

)
= Σ × X, so (s0, x0) ∈ Int

(
hΣ
A,1; (Σ \ P ′′A)×X

)
. Rename

the (finitely many) terms appearing in the double sum defining hΣ
A,1 as{

gΣ
j (s, x) yαjs+βj (log y)νj

}
j∈JΣ

and let
aj = < (αjs0 + βj) , bj = = (αjs0 + βj) .

Recall that (aj, bj) 6= (aj′ , bj′) whenever νj = νj′ , since s0 /∈ P ′′A. Let (a0, ν0) be the lexico-
graphic maximum of the set {(aj, νj) : j ∈ JΣ} and let J0 = {j ∈ JΣ : (aj, νj) = (a0, ν0)}.
Write

hΣ
A,1 (s0, x0, y) = ya0 (log y)ν0

∑
j∈J0

gΣ
j (s0, x0) yibj +

∑
j∈JΣ\J0

gΣ
j (s0, x0) yaj+ibj (log y)νj .

Since (s0, x0) ∈ Int
(
hΣ
A,1; (Σ \ P ′′A)×X

)
, it follows from Proposition 3.4 (in the case where

all the polynomials pj are identically zero) that
∧
j∈J0

gΣ
j (s0, x0) = 0. By repeating this

procedure with the index set JΣ \ J0, we end up obtaining that∧
j∈JΣ

gΣ
j (s0, x0) = 0,

i.e. (s0, x0) ∈
⋂
i≤NA Int (Ti; (Σ \ P ′′A)×X).

Summing up, if we define P ′′ =
⋃
{P ′′A : BA unbounded}, G :=

⋃
{GA : BA unbounded}

and P ′ :=
⋃
A∈X P

′
A ∪ P ′′, then the proof of the theorem is complete. �

Remark 6.4. In the previous proof, if σ ∈ P ′′A, then we rewrite the functions Ti (σ, x, y)
by regrouping the terms with the same exponents. We obtain thus new functions Ti,σ ∈
CC (X × R) (seen as functions in CM (X × R) which happen not to depend on s) to which
Proposition 5.8 applies and such that, if hσ (x, y) = h (σ, x, y) · χA (x, y), then

Int (hσ;X) =
⋂
i

Int (Ti,σ;X) .

Moreover, if σ ∈ P ′′A \ P ′A then σ is not a singularity of either of the Hi and, since the
computation of the integral is done integrating term-by-term, it is still the case that∫

R
h (σ, x, y) · χA (x, y) dy = H0 (σ, x) + · · ·+HN (σ, x) .

Remark 6.5. The non-accumulating grid G in Theorem 6.3 is vertical in all but the case
D = CP(K),M, with K 6⊆ R. This implies in particular that the system CP(C),M is strictly
larger that the system CM: for example, if h ∈ CP(C),M (X × R) is a finite sum of generators
which are Puiseux in y on some cell A with unbounded y-fibers (see Definition 5.5), where the
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real and imaginary parts of the exponents ` appearing in the Puiseux data are all nonzero,
then the integration locus of h in (6.1) is based on a non-accumulating grid which is not
vertical. Hence h cannot be an element of CM.

We now conclude the proof of Theorem 2.19, using Fubini’s Theorem.

Proof. We argue by induction on n ∈ N×. If n = 1 then it is Theorem 6.3. We prove the
case n + 1: let y be an n-tuple of variables and let z be a single variable, and consider
h ∈ D (X × Rn+1) without poles outside some closed discrete set P . By Fubini’s Theorem,
for all (s, x) ∈ Int (h; (C \ P )×X), the set

E(s,x) := {y ∈ Rn : (s, x, y) ∈ Int (h; (C \ P )×X × Rn)}
is such that Rn \ E(s,x) has measure zero and∫∫

Rn+1

h (s, x, y, z) dy ∧ dz =

∫
E(s,x)

[∫
R
h (s, x, y, z) dz

]
dy.

By Theorem 6.3, applied to h as an element of D ((X × Rn)× R), there exist a set P1 ⊆
K (containing P and contained in a finitely generated Z-lattice) and a function H1 ∈
D (X × Rn) without poles outside P1 such that

∀ (s, x, y) ∈ Int (h; (C \ P1)×X × Rn) , H1 (s, x, y) =

∫
R
h (s, x, y, z) dz.

We now apply the inductive hypothesis to H1 and find that there exist P ′ ⊆ K (containing
P1 and contained in a finitely generated Z-lattice) and a function H ∈ D (X) without poles
outside P ′ such that

∀ (s, x) ∈ Int (H1; (C \ P ′)×X) , H (s, x) =

∫
Rn
H1 (s, x, y) dy.

Let (s, x) ∈ Int (h; (C \ P ′)×X). Since H1 is defined on the whole (C \ P ′) × X × Rn and
Rn \ E(s,x) has measure zero,∫∫

Rn+1

h (s, x, y, z) dy ∧ dz =

∫
Rn
H1 (s, x, y) dy.

In particular, (s, x) ∈ Int (H1; (C \ P ′)×X) and∫∫
Rn+1

h (s, x, y, z) dy ∧ dz = H (s, x) .

�

Remark 6.6. The proof of Theorem 2.4 is obtained as a special case of that of Theorem 2.19,
where all the functions involved happen not to depend on the variable s.

We conclude this section with some further remarks about the classes CK, CK,M, CP(K),M

considered here. Again, we let D be either CK,M or CP(K),M.

Remarks 6.7.
(1) Let Σ ⊆ C be open and define DΣ (X) := {h � Σ×X : h ∈ D (X)}. Clearly, Theo-

rem 2.19 also holds for DΣ.
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(2) D is stable under right-composition with meromorphic functions, in the following
sense. Let ξ ∈ EK and Σ,Σ′ ⊆ C open such that ξ (Σ) = Σ′. If h ∈ DΣ′ (X) then
(s, x) 7−→ h (ξ (s) , x) ∈ DΣ (X).

(3) D and CK are stable under right-composition with subanalytic maps, in the following
sense. Let X ⊆ Rm, Y ⊆ Rn be subanalytic and ϕ : X −→ Y be a map with
components in S (X). If h ∈ D (Y ) and g ∈ CK (Y ) then (s, x) 7−→ h (s, ϕ (x)) ∈
D (X) and g ◦ ϕ ∈ CK (X).

Finally, for h ∈ D (X × R) without poles outside some closed discrete set P ⊆ K, we describe
(uniformly in the parameters (s, x)) the behaviour of h when y −→ +∞. For this, we
apply Proposition 4.7 to prepare h and we concentrate on the unique cell A (with base X)
which has vertical unbounded fibers. By Remark 3.10, ΠA is the identity and A = BA =
{(x, y) : x ∈ X, y > a (x)}.

Arguing as in the proof of Theorem 6.3 (the case of a cell with unbounded y-fibers) we can
write, ∀ (s, x, y) ∈ (C \ P )× A,

h (s, x, y) =
∑
i≤N

Ti (s, x, y) ,

where each Ti is Puiseux in y, as in (6.2). Moreover, by enlarging P to contain the “collision
set” defined in (6.3), we may suppose that ∀s ∈ C \ P , the tuples

(6.4)
(
`is+ ηi − k

d
, µi

)
i ≤ N, k ∈ N

are pairwise distinct. Recall that `i, ηi ∈ K and d, µi ∈ N.
Fix an enumeration N 3 j 7−→ (i (j) , k (j)) ∈ {0, . . . , N}×N, so that we may rewrite (6.4)

as

(λj (s) , νj) =

(
`i(j)s+ ηi(j) − k (j)

d
, µi(j)

)
.

Define

aj (s) = < (λj (s)) =
<
(
`i(j)s+ ηi(j)

)
− k (j)

d
, bj (s) = = (λj (s)) =

=
(
`i(j)s+ ηi(j)

)
d

.

Notice that bj (s) takes at most N+1 different values, for every fixed s. Hence, we may write
h as the sum of a uniformly summable family of functions as follows:

(6.5) h (s, x, y) =
∑
j

hj (s, x) yaj(s)+ibj(s) (log y)νj ,

where hj ∈ D (X).
In a forthcoming paper, we will use (6.5) to show that CK is stable under taking pointwise

limits and that neither of the classes CK, CK,M, CP(K),M contains the Fourier transforms of all
subanalytic functions.
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