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MULTI-FREQUENCY AVERAGING AND UNIFORM ACCURACY
TOWARDS NUMERICAL APPROXIMATIONS FOR A BLOCH MODEL∗

BRIGITTE BIDEGARAY-FESQUET† , CLÉMENT JOURDANA‡ , AND LÉOPOLD TRÉMANT§

Abstract. We are interested in numerically solving a transitional model derived from the Bloch
model. The Bloch equation describes the time evolution of the density matrix of a quantum system
forced by an electromagnetic wave. The transitional model we consider governs the diagonal part of
the density matrix. It fits in a general setting of linear problems with a high-frequency quasi-periodic
forcing and an exponentially decaying forcing, for which accurate numerical resolution is challenging.
Adapting high-order averaging techniques to this setting, we capture the asymptotic behaviour and the
rest in a “macro” and “micro” variable respectively. It results in a micro-macro problem that can be
solved with uniform accuracy. To validate this approach, we present numerical results first on a toy
problem and then on the transitional Bloch model.

Keywords. highly-oscillatory problems; multi-frequency averaging; micro-macro decomposition;
uniform accuracy; Bloch model; rate equations

AMS subject classifications. 34E13; 65L04; 65L05; 81V80

1. Introduction

The Bloch model describes the time-evolution of the density matrix of a quantum
system with a discrete number of energy levels, forced by an electromagnetic wave.
Different strategies have been proposed in the literature to solve the Bloch equation. Let
us mention for instance a splitting procedure that solves the different terms separately
in an exact way, or a relaxation scheme where the diagonal and the off-diagonal parts
of the density matrix are located on a staggered time grid (see [BBR01] for details on
these approaches). These schemes have been designed to preserve physical properties
of interest or to numerically decouple the equations. However, they are not suitable in
the case of stiff forcing coefficients.

In [BFCD04,BFCDG04], the authors study some high frequency and low amplitude
regime, and show that the model asymptotically behaves like a rate equation with
averaged transition rates. Numerically, the original model is very stiff, meaning that
using standard numerical methods requires costly computations. The rate equation,
however, is a non-stiff autonomous equation which can be solved with standard methods
at no additional cost.

In this paper, we are interested in a transitional model from which the rate
equation is actually obtained. This transitional model, governing the diagonal part of
the density matrix, can be seen as a middle-ground between the full original equation
and the simpler rate equation. It still presents numerical challenges, due to the stiff
time-dependence of the transition rates. Classical numerical methods may fail to tackle
this problem at a reasonable computational cost. The present work addresses this
issue.
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2 UNIFORM ACCURACY FOR A BLOCH APPROXIMATION

The main numerical challenge at hand is that of order reduction, a well-known
phenomenon documented e.g. in [HW96, Sec. IV.15] or [VS98] and references therein.
Here, this is due to the degeneracy of the second (and higher) derivative(s) of the
solution in the asymptotic limit. This causes an increase of the error constant in classical
estimates, to the point where the theoretical order may no longer be observed.

Formally, if we denote ε the characteristic time of the problem and ∆t the time-step
of the numerical method, then the error Eε(∆t) of a standard scheme of classical order
s may be bounded

Eε(∆t)≤Cmin

(
∆ts

εr
,∆ts

′
)
,

for some positive constant C independent of ε, a uniform order s′≤s and a degeneracy
order r≥0. When r>0 and s′<s, there is a so-called asymptotic regime ∆t≫ε in
which the behavior of the error does not match the order of the method. This is how
the order reduction phenomenon manifests itself in our context. In order to ensure a
given error bound, one must use an ε-dependent time-step ∆t=O(εr/s), which increases
the computational cost. To facilitate the discussion surrounding this interaction between
the error bound, the characteristic time ε and the time-step ∆t, we consider different
notions of convergence beyond the classical ∆t≪ε paradigm.

If the parameter ε is small w.r.t. the desired error, then one may consider a non-
stiff reduced asymptotic model instead of the full original model. In that case, the
numerical error is assumed to match the asymptotic error limε→0Eε(∆t), and using
standard schemes is possible. For the Bloch model, this could mean solving the rate
equation instead of the full problem. With this approach, the error will plateau for ∆t
sufficiently small.

Some numerical methods, called asymptotic-preserving (AP), may be applied to the
original model yet remain consistent at the limit ε→0 to the asymptotic model, with a
cost that does not change as ε gets smaller. The term AP was coined in [Jin99] in the
context of hyperbolic problems,1 and the development of such schemes remains active
e.g. in the community of kinetic equations [CHL16,ADP20,ABC23,JMW23]. While the
approach of asymptotic models becomes useless when ε is not small, most AP methods
prove the convergence of the scheme for both the classical and asymptotic regimes.

However, these asymptotic notions do not describe the behavior of the scheme in
the intermediate regime ∆t∼ε, for which the error may be degraded.2 To encompass
every regime, we consider the uniform error supε∈(0,1]Eε(∆t), defining the uniform
order of the method. A numerical method is said to be uniformly accurate (UA) if
its computational cost is independent of ε and if its uniform order is non-zero. Such
methods are valid independently of the size of ε and of the regime (classical, asymptotic
or intermediate). In particular, a numerical method which does not suffer from order
reduction is UA.

1The notion of asymptotic preservation is problem-dependent. For example, the implicit Euler
method is exact for the asymptotic error when applied to the problem u̇=−u/ε, but forgoes all accuracy
in the limit ε→0 for the problem u̇= iu/ε with a non-zero initial condition.

2Consider again the implicit Euler scheme applied to u̇=−u/ε, with initial condition u(0)=1. After
a time ε, the solution is u(ε)=e−1, but using a time-step ∆t= ε yields the approximation u1=1/2.
Even though the scheme is asymptotic preserving, here the local error u(∆t)−u1 is large independently
of the time-step, i.e. the error is severely degraded in that regime.
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Here, we consider a generic linear differential equation, with a time-dependent forc-
ing which can be split in a quasi-periodic part3 and an exponentially decaying part,
both with characteristic time ε. The aforementioned “transitional” model derived from
the Bloch equation falls under this category. Our strategy consists in using asymp-
totic expansion techniques to perform a micro-macro decomposition, which separates
the asymptotic behavior and the error of asymptotic approximation in the macro and
micro part respectively. This new micro-macro problem is less stiff and can be solved
using standard numerical methods, with no order reduction. This uniform accuracy on
the micro-macro problem translates directly to the solution of the original problem.

Our approach uses techniques from high-order averaging, a method to perform
asymptotic expansions on highly-oscillatory problems (of characteristic time ε). This
method views the solution as the composition of an average dynamics with a near-
identity rapidly-oscillating change of variable. This composition is accurate up to
an error of size O(εn) with arbitrary order n. We refer to Lochak-Meunier [LM88]
and Sanders-Verhulst-Murdock [SVM07] for textbooks on this method. Readers might
find similarities with the methods of two-scale expansion [CCLM15], WKB expan-
sion [Wen26,Kra26,Bri26,Car21], non-linear geometric optics [CJL17], or even normal
forms [Bam03,Mur06].

Historically, a key tool in performing these expansions was power series in ε. They
were used in [Per69], the first known result with periodic forcing, and in [Sim94] when
extending the result to a quasi-periodic forcing. Even recently in [CMSS10,CMSS12],
formal series (specifically, B-series) were used to derive analytical expressions of the map-
pings constructed by averaging. Somewhat recently, however, the authors in [CCMM15]
introduced a concise differential algebraic equation for the mappings, called the homo-
logical equation. In the spirit of [Nei84], fixed point iterations may be applied on this
equation, either symbolically or automatically [CLMZ21]. For uniform accuracy, the
key is to keep track of the error of approximation, as in the multiscale decomposition
of [BCZ14]. In [CLMV20] and [CLT22], this method is used to derive micro-macro prob-
lems in the contexts of problems with fast periodic oscillations and with stiff relaxation
respectively, enabling the use of standard numerical methods with uniform accuracy.

We exploit the fixed-point approach based on the closed homological equation of
[CCMM15], which we extend to the case of linear problems with quasi-periodic forcing
and added exponential decay. Compared to their setting of non-linear problems with
periodic forcing, here the quasi-resonances (often called small divisors) introduced by
the quasi-periodicity degrade the regularity with each fixed-point iteration. We define
appropriate functional spaces to quantify this loss of regularity and to take into account
the added exponential decay. In this context, we show that we may construct a micro-
macro decomposition to any order n∈N.

In a second time, we study the derivatives of the thereby-obtained micro and macro
variables, and show that their derivatives are uniformly bounded up to the (n+1)-
th derivative, as opposed to the original problem for which the second derivative is
degenerate. Because of this, the result of uniform accuracy from [CLMV20,CLT22] still
holds, i.e. we may solve the micro-macro problem (and therefore the original transitional
problem) with uniform accuracy using a standard scheme.

The paper is structured as follows. In Section 2, we introduce the formalism sur-
rounding the problem, as well as the assumptions we make. Crucially, we describe how

3A quasi-periodic function is a function generated by multiple non-resonant base frequencies,
e.g. aτ =cos(τ)+cos(τ

√
2), with base (angular) frequencies 1 and

√
2.
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to construct the micro-macro decomposition and state our results, which are proven in
Section 3. In Section 4, we present some numerical experiments. After briefly introduc-
ing the numerical schemes we consider, we showcase the importance of each term in the
decomposition and verify the uniform accuracy result thanks to a toy model for which
an analytical solution is available. Finally, we present the Bloch model, and the deriva-
tion of the aforementioned “transitional” model on which we apply the micro-macro
decomposition. We show that a naive resolution of the problem has severely degraded
accuracy, while the micro-macro method converges with uniform accuracy.

2. Setting and theoretical results
We wish to derive an equivalent less-stiff problem for the ordinary differential equa-

tion

∂tu
ε(t)=at/εu

ε(t), uε(0)=u0∈X, (2.1)

in some Banach space (X,| · |) for positive finite times t∈ [0,T ] with T >0 independent
of ε, and where aτ is a linear map from X to X for all τ ≥0. As detailed below, we
assume that a is the sum of a (quasi-)periodic part a♯ and an exponentially decaying
part a♭. In the sequel, we say that a admits a “sharp-flat” decomposition.

This derivation is conducted using the ansatz

uε(t)=Φε
t/εe

tAε(
Φε

0

)−1
u0 (2.2)

where Φε
τ is a near-identity map for all τ ≥0 and a non-stiff (uniformly bounded w.r.t.

ε) averaged field Aε is obtained from aτ . In general, such maps cannot be computed
exactly, therefore we seek to compute, for any given n∈N, approximate maps Φ[n], A[n]

such that the solution uε of (2.1) may be decomposed into

uε(t)=Φ
[n]
t/εe

tA[n](
Φ

[n]
0

)−1
u0+w

[n](t)

where w[n]=O(εn+1). We call this error of approximation w[n] the micro variable and

the slow part v[n](t)=etA
[n](

Φ
[n]
0

)−1
u0 the macro variable, which satisfy the so-called

micro-macro problem{
∂tv

[n](t)=A[n]v[n](t), v[n](0)=
(
Φ

[n]
0

)−1
u0,

∂tw
[n](t)=at/εw

[n](t)−δ[n]t/εv
[n](t), w[n](0)=0,

for some defect δ[n] computed from Φ[n] and A[n]. Our goal is to prove that this new
problem is non-stiff up to the (n+1)-th derivative and can therefore be computed with
uniform accuracy up to order n using standard numerical schemes.

This section states the theoretical results of this paper. Subsection 2.1 introduces
the mathematical setting and the formalism necessary to state the problem. Subsec-
tion 2.2 describes the assumptions we make on the problem, and define the aforemen-
tioned “sharp-flat decomposition”. Subsection 2.3 finally details our construction of
the maps Φ[n], A[n] and δ[n] and states results on the properties of the micro-macro
decomposition.

2.1. Definitions and notations.
Here we introduce some formalism associated to endormorphisms, multivariate peri-

odic functions and exponentially decaying functions. We also introduce the time-average
operator and some norms associated to such functions. Throughout the paper, the set
of endomorphisms, denoted End(X), is endowed with the induced norm, denoted | · |.
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Definition 2.1 (Time average and KBM mappings). Given a mapping τ ∈R+ 7→φτ ∈
End(X), we define the time average

⟨φ⟩ := lim
τ→∞

1

τ

∫ τ

0

φσdσ. (2.3)

A continuous function τ 7→φτ such that this limit converges is called a KBM mapping4.
We denote E the vector space of KBM mappings from R+ to End(X).

Among KBM mappings, we are interested in two subspaces which we introduce
briefly: quasi-periodic mappings and exponentially decaying mappings.

2.1.1. Quasi-periodic mappings.
By quasi-periodic, we mean mappings that are generated from a finite number

of angular frequencies ω1,. ..,ωr and a multivariate 2π-periodic map θ∈Tr 7→φ♯
θ with

T=R/(2πZ). Denoting ω=(ω1,. ..,ωr), the quasi-periodic map is given by τ 7→φ♯
ωτ ,

i.e. it is given by evaluating φ♯ along the curve τ 7→ (ω1τ,...,ωrτ). If the generating map
φ♯ is continuous, then it coincides with its Fourier series,

∀θ∈Tr, φ♯
θ=

∑
α∈Zr

eiα·θφ̂♯
α.

Here we use the multi-index notation α=(α1,. ..,αr)∈Zr to obtain the phase α ·θ=
α1θ1+ .. .+αrθr and Fourier coefficient φ̂♯

α∈End(X). We furthermore denote |α|=
|α1|+ .. .+ |αr|. In the sequel the number of frequencies r and the vector of frequencies
ω are fixed.
Definition 2.2. We define E♯ the set of continuous quasi-periodic maps with frequen-
cies ω,

E♯ :=
{
τ 7→φ♯

ωτ , φ
♯∈C0

(
Tr,End(X)

)}
.

Some particularly regular maps are such that the Fourier coefficients are exponentially
decreasing, which is quantified by the functional spaces, for κ≥0,

Tκ :=

{
φ♯∈C0

(
Tr,End(X)

)
,
∑
α∈Zr

eκ|α|
∣∣φ̂♯

α

∣∣<∞}.
The set of quasi-periodic mappings τ 7→φ♯

ωτ this generates is denoted E♯κ.
For κ>0, all mappings in Tκ are smooth, and for κ=0, the mappings in T0 are

continuous. Additionally, if 0≤κ−≤κ+, then Tκ+ ⊂Tκ− . Therefore, we obtain the
following inclusions

E♯κ+ ⊂E♯κ− ⊂E♯0⊂E♯.

2.1.2. Exponentially decaying mappings.
By exponentially decaying, we mean bounded mappings τ 7→φ♭

τ which are also
O(e−τ ) for τ→∞.
Definition 2.3. The set of exponentially decaying functions we consider is denoted
L∞
exp and is defined by

L∞
exp :=

{
φ♭∈L∞(R+,End(X)

)
, sup

τ∈R+

eτ |φ♭
τ |<∞

}
.

4The acronym KBM stands for Krylov, Bogoliubov and Mitropolsky, see e.g. [SVM07].
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A subset of this are KBM mappings, which we denote

E♭ :=L∞
exp∩C0

(
R+,End(X)

)
.

Remark 2.1. The rate of decay (namely 1) is chosen without loss of generality, since
it could be obtained with a time rescaling.

2.1.3. Norms.
We endow the above defined functional spaces with the following norms.

Definition 2.4 (Norms). Remember that we denote | · | the induced norm on X. For
mappings φ∈E, φ♯∈Tκ and φ♭∈L∞

exp, we denote

∥φ∥ := sup
τ≥0
|φτ |, ∥φ♯∥κ :=

∑
α∈Zr

eκ|α||φ̂♯
α|, ∥φ♭∥L∞

exp
:= sup

τ≥0
eτ |φ♭

τ |.

Note that for 0≤κ−≤κ+ and all φ♯∈E♯κ+ ,

∥φ♯∥≤∥φ♯∥0≤∥φ♯∥κ− ≤∥φ♯∥κ+ , (2.4)

and for all φ♭∈L∞
exp,

∀τ ∈R+, |φ♭
τ |≤e−τ∥φ♭∥L∞

exp
. (2.5)

Remark 2.2. In the entire upcoming reflexion, Tκ could be replaced by the set of
functions on Tr analytic with radius everywhere greater than κ. The norm ∥·∥κ would
then be replaced by the infinite norm on the analytical extension of radius κ to the
complex domain, i.e. symbolically

∀φ♯∈Tκ, ∥φ♯∥κ≤ sup
ζ∈Tr

κ

|φ♯
ζ |

with Tr
κ :={θ+ξ, (θ,ξ)∈Tr×Cr,|ξ|≤κ}. For θ∈Tr,|ξ|≤κ, the analytical extension is

defined as φ♯
θ+ξ =

∑
α∈Nr

∂|α|φ♯
θ

∂θα1
1 ·· ·∂θ

αr
r

ξα1
1 ·· ·ξαr

r

α1!·· ·αr!
.

2.2. Assumptions on the problem.
So far, we have described the two types of KBM mappings we consider, namely the

“sharp” and the “flat” parts of an aforementioned decomposition. The “sharp” part is
obtained in a one-way relationship from a function on Tr. We start by introducing an
assumption (namely a non-resonance condition on the frequencies ω) which makes this
a two-way relationship. Thanks to this, we may define the “sharp-flat” decomposition
rigorously, allowing us to finally state how our problem fits into this setting.

2.2.1. Non-resonance.
Assumption 2.1. The vector of angular frequencies ω=(ω1,. ..,ωr) is strongly non-
resonant in the sense that it satisfies the following Diophantine inequality

∃cD>0, ∃ν≥ r−1, ∀α∈Zr \{0}, |α ·ω|≥ cD
|α|ν

, (2.6)

where α ·ω=α1ω1+ .. .+αrωr and 0=(0,. ..,0)∈Zr. In the mono-frequency case r=1,
we choose ν=0 and cD= |ω|.
Remark 2.3. While this may seem restrictive at first glance, it is classically known
(see for instance [Arn63], [Arn89, App. 8] or [HLW06, Chap. X]) that this condition
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is satisfied for almost all frequency vectors in any bounded subset of Rr. In practice,
we mostly require ω to be “well-prepared” in the sense that no frequencies are rationally
dependent, which is usually enough for the Diophantine condition to be met.

This assumption implies that the set of cancelling combination is zero – which is to
say that the vector of frequencies ω=(ω1,. ..,ωr) is such that

ω⊥ :={α∈Zr s.t. α ·ω=0}={0}.

As such, we may apply Arnold’s theorem, which states that for continuous quasi-periodic
maps, the time average coincides with the phase average. This may be written

∀φ♯∈C0
(
Tr,End(X)

)
, ∀θ0∈Tr, lim

T→∞

1

T

∫ T

0

φ♯
θ0+ωτdτ =

1

(2π)r

∫
Tr

φ♯
θdθ.

In particular, this means that we can recover the Fourier coefficients of the function θ 7→
φ♯
θ from the quasi-periodic function τ 7→φ♯

ωτ . As such we may identify both functions
and extend the notion of Fourier series to the quasi-periodic mapping of E♯κ.

2.2.2. “Sharp-flat” decomposition.

Under Assumption 2.1, we introduce the set Eκ that describes what we name “sharp-
flat” maps as well as an associated norm Nκ that will be used all along this paper to
easily handle the (quasi)-periodic and exponentially decaying maps that we consider.

Definition 2.5. For all κ≥0, we define

Eκ=E♯κ⊕E♭.

Given a mapping φ∈Eκ, it splits uniquely as φτ =φ
♯
ωτ +φ

♭
τ and we endow the space Eκ

with the norm

Nκ(φ) :=∥φ♯∥κ+∥φ♭∥L∞
exp
,

where ∥·∥κ and ∥·∥L∞
exp

are given in Definition 2.4.

The proof that the sum is indeed direct, and that this defines a unique “sharp-flat”
decomposition for elements in Eκ is presented in Appendix A.1. To summarize, the
average of flat functions is always zero, therefore the Fourier coefficients of a function in
E♯κ∩E♭ are all zero. Since functions in E♯κ coincide with their Fourier series, this function
can only be zero.

Proposition 2.1. The space Eκ is an algebra, and if φ, φ̃∈Eκ then ψ=φφ̃∈Eκ and

ψτ =ψ
♯
ωτ +ψ

♭
τ with ψ♯

θ=φ
♯
θφ̃

♯
θ and ψ♭

τ =φ
♭
τ φ̃

♯
ωτ +φ

♯
ωτ φ̃

♭
τ +φ

♭
τ φ̃

♭
τ .

Furthermore, the norm is algebraic, i.e.

Nκ(ψ)≤Nκ(φ)Nκ(φ̃).

Again, the proof is presented in Appendix A.1. To finish, we present some norm
inequalities that will be often used in the next parts. Let φ∈Eκ. The flat part of its
time average is zero, i.e. ⟨φ⟩♭=0. Indeed, since ⟨φ⟩ is constant, it is therefore periodic
and belongs to Eκ for all κ≥0 with norm Nκ(⟨φ⟩)= |⟨φ⟩|. Consequently,

Nκ(φ−⟨φ⟩)=∥φ♯−⟨φ♯⟩∥κ+∥φ♭∥L∞
exp
.



8 UNIFORM ACCURACY FOR A BLOCH APPROXIMATION

Then, since ⟨φ♯⟩= φ̂♯
0,

∥φ♯−⟨φ♯⟩∥κ=
∑

α∈Zr,α̸=0

eκ|α|
∣∣φ̂♯

α

∣∣≤∑
α∈Zr

eκ|α|
∣∣φ̂♯

α

∣∣=∥φ♯∥κ.

It follows that

Nκ(φ−⟨φ⟩)≤Nκ(φ).

Also, let 0≤κ−≤κ+ and φ∈Eκ+
. From the definition of the time average (2.3) and the

inequalities (2.4) and (2.5), it clearly holds that

|⟨φ⟩|≤∥φ∥≤Nκ−(φ)≤Nκ+
(φ). (2.7)

2.2.3. Assumptions on the linear map.
This functional setting being laid out, let us describe how our problem fits into it.

Specifically, we introduce positive constants µ and M which quantify respectively the
regularity of a♯ and the size of τ 7→aτ .
Assumption 2.2. The mapping τ 7→aτ ∈End(X) is in Eµ=E♯µ⊕E♭ for some µ>0, i.e.
it can be written

aτ =a
♯
ωτ +a

♭
τ

with a♯∈Tµ and a♭∈L∞
exp∩C0. Furthermore, we define a constant M>0 such that

∥a∥≤Nµ(a)≤M.

Remark 2.4. In the mono-frequency case r=1, we may replace the analyticity assump-
tion on a♯ by a continuity assumption.

Since the goal of the present work is to apply numerical schemes, it is necessary to
quantify the regularity of τ 7→aτ . Indeed, if a∈Cq, then a scheme of order s>q will see
its order reduced to q, even in the non-stiff regime.
Assumption 2.3. The mapping τ 7→aτ is of class Cq for some q∈N. Additionally,

there exists C
(q)
a >0 such that

sup
0≤p≤q

∥∂pτa∥≤C(q)
a M.

2.3. Results on the decomposition.
We may now construct the micro-macro decomposition by performing asymptotic

expansions which separate the exponential dynamics in Eµ−⟨Eµ⟩ (contained in a change
of variable Φε) from the average dynamics in ⟨Eµ⟩ (contained in a vector field Aε). From
these, we derive a micro-macro problem which can be solved with uniform accuracy. This
section describes this construction and states our results of well-posedness and uniform
accuracy. The proofs can be found in the next section.

2.3.1. Homological equation.
Injecting the exact decomposition (2.2) into (2.1), we obtain the following “homo-

logical equation” on Φε and Aε,

∂τΦ
ε
τ =ε

(
aτΦ

ε
τ −Φε

τA
ε
)
, where Aε=

〈
Φε
〉−1⟨aΦε⟩, (2.8)

which may be rewritten by introducing a non-linear operator Λ,

∂τΦ
ε
τ =εΛ

{
Φε
}
τ
with Λ{φ}τ =aτφτ −φτ ⟨φ⟩−1⟨aφ⟩.
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In particular if ⟨φ⟩=id, then Λ{φ}τ =aτφτ −φτ ⟨aφ⟩.
Then, we define approximations of Φε and Aε by a fixed point iteration. Starting

from Φ[0]=id, we construct them with the relations

A[n]=
〈
Φ[n]

〉−1⟨aΦ[n]⟩, ∂τΦ
[n+1]
τ =εΛ

{
Φ[n]

}
τ
. (2.9)

2.3.2. Closure condition.
In order to solve the homological equation as well as its approximations, one needs to

impose a closure condition on Φε (and consequently on Φ[n]). In this paper5, we consider
the so-called standard averaging by choosing ⟨Φε⟩=id (and consequently ⟨Φ[n]⟩=id).
This yields the relations

A[n]= ⟨aΦ[n]⟩,

Φ[n+1]
τ =id+ε

∫ τ

0

Λ
{
Φ[n]

}
σ
dσ−ε

〈∫ •

0

Λ
{
Φ[n]

}
σ
dσ

〉
.

These iterations may be performed explicitly using symbolic calculus.

2.3.3. Micro-macro variables.
To motivate the interest of these approximations, let us immediately introduce the

micro-macro variables (v[n],w[n]) given by

uε(t)=Φ
[n]
t/εv

[n](t)+w[n](t)

with v[n](t)=etA
[n](

Φ
[n]
0

)−1
(u0). A straightforward computation yields the following

micro-macro problem, ∂tv
[n](t)=A[n]v[n](t), v[n](0)=

(
Φ

[n]
0

)−1
(u0),

∂tw
[n](t)=at/εw

[n](t)−δ[n]t/εv
[n](t), w[n](0)=0,

(2.11a)

(2.11b)

where we introduced the defect δ[n] defined as

δ[n]τ =
1

ε
∂τΦ

[n]
τ −

(
aτΦ

[n]
τ −Φ[n]

τ A[n]
)
=Λ{Φ[n−1]}τ −Λ{Φ[n]}τ (2.12)

with the convention Λ{Φ[−1]}=0. This defect is of zero time average, i.e. ⟨δ[n]⟩=0, and
quantifies the quality of approximation in the homological equation (2.8). Combined
with the drift v[n], it generates a source term in the equation on w[n].

The equation (2.11b) seems to be as stiff as the original equation (2.1) at first
glance, but we will see in the sequel that, due to the small size of w[n](0) and of δ[n],
w[n] remains of size O(εn+1) at all times. This initializes an induction to prove that the
derivatives of w[n] are bounded up to order n+1.

2.3.4. Well-posedness of the micro-macro decomposition.
In the introduction of Section 2 we have claimed to construct a near-identity map

Φε
τ . In the construction of Φ[n], we introduce a parameter c∈]0,1[ and assume that
∥Φ[n]− id∥≤ c. This will be valid for a small enough ε≤εn. The upper bound εn, which

5Another common choice is Φε
0=id, which presents nice geometric properties but leads to more

complex calculations—see e.g. [CLMV20]. Since these properties are not needed here, we do not
consider this possibility, although all our estimates remain valid with this geometric closure condition,
up to some tweaking of the constants.
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depends on both n and c, will be constructed along the proof of the following theorem
that sums up the well-posedness of the micro-macro decomposition.
Theorem 2.1. Under Assumptions 2.1 and 2.2, for all n∈N, there exists εn>0 such
that the decomposition of order n exists, meaning that, for ε≤εn,

∥Φ[n]− id∥≤ cε

εn
≤ c, (2.13)

|A[n]|≤ (1+c)M. (2.14)

Furthermore, integrating the defect t 7→ δ
[n]
t/ε yields an error of approximation of size

O(εn+1), which is translated through the relation

∀τ ≥0,

∣∣∣∣ε∫ τ

0

δ[n]σ dσ

∣∣∣∣≤( ε

εn

)n+1

. (2.15)

This theorem will be proven in Section 3.1. A direct consequence of (2.13) is that

the inverse (Φ
[n]
0 )−1 is well-defined and may be bounded

|(Φ[n]
0 )−1|≤1/(1−c). (2.16)

This is crucial for the definition and the boundedness of v[n]. Moreover, a direct by-
product of the proof is the following bound on the defect

∥δ[n]∥≤M
(
ε

εn

)n

. (2.17)

The coefficient εn may be chosen of the form εn=ε0/(n+1)ν with ε0 depending
on c and the constants appearing in Assumptions 2.1 and 2.2. As such, increasing
the order of accuracy requires a reduction in the maximum size of ε. However, in the
mono-frequency case r=1, ν=0, this reduction does no longer appear and the iterations
converge for ε≤ε06.

As consequence of the well-posedness of the micro-macro decomposition, the micro-
macro variables v[n] and w[n] solutions to (2.11) are bounded in finite time as stated by
the following corollary (proven in Section 3.2).
Corollary 2.1. Under Assumptions 2.1 and 2.2, for any n∈N and any ε≤εn (as
defined in Theorem 2.1), the solutions to (2.11) are bounded at all times by

|v[n](t)|≤e(1+c)tM |u0|
1−c

, |w[n](t)|≤
(
ε

εn

)n+1

et∥a∥
(
2e(1+c)tM −1

) |u0|
1−c

.

Thus, for any T >0, the micro-macro problem (2.11) is uniformly bounded on [0,T ] with
v[n] of size O(1) and w[n] of size O(εn+1).
Remark 2.5. Here we impose the order of the expansion and deduce the size of the
error term from it. However, the condition ε≤ε0/(n+1)ν may be interpreted the other
way around, and one may wish to choose an “optimal” order n depending on the size of
ε. This yields the optimal exponential bound on w[n(ε)] for ν >r−1 found in [Sim94].

6This is a known result of single-frequency linear averaging, available e.g. in [CCMM15] with a
straightforward proof. In their paper, these authors analyze the non-linear setting, and here we analyze
the multi-frequency setting with an added decay, further extending the method.
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2.3.5. Well-posedness of the derivatives and uniform accuracy.
In order to analyze the order of numerical schemes based on the micro-macro prob-

lem, we also need estimates on time-derivatives of the defect.
Theorem 2.2. Under Assumptions 2.1, 2.2 and 2.3, the derivatives of the defect up to

order q remain of size O(εn). Specifically, there exists C
(q)
δ >0, depending on q, c and

n, such that, for all ε≤εn,

sup
0≤p≤q

∥∂pτ δ[n]∥≤C
(q)
δ M

(
ε

εn

)n

.

This theorem will be proven in Section 3.3. These estimates on the defect gives
estimates for the micro-macro variables v[n] and w[n] limited by the order of the micro-
macro decomposition n and the regularity q of the linear map a.
Corollary 2.2. The derivatives of the micro-macro problem (2.11) are uniformly
bounded up to order min(n,q)+1. Indeed, at fixed final time T and for all t∈ [0,T ], for
all p∈{0,. ..,min(n,q)+1},

|∂pt v[n](t)|=O(1), |∂pt w[n](t)|=O(εn+1−p).

We now consider the discretization of the micro-macro problem (2.11) on the time
interval [0,T ]. To simplify the presentation, we discretize uniformly this time interval
introducing tℓ= ℓ∆t for ℓ=0,. ..,L where L+1 is the number of discretization points
and ∆t=T/L the time step. We denote (vℓ,wℓ) the approximate values at time tℓ of
the solution of the micro-macro problem (2.11) for a given order n.
Corollary 2.3. Using a standard stable one-step scheme of non-stiff order s≤
min(n,q), i.e. a method which exhibits order s of convergence when applied to (2.1)
with ε=1 for all ∆t∈ [0,∆t∗] (with ∆t∗>0 being the stability threshold, which depends
only on M), the micro-macro problem (2.11) can be solved with uniform accuracy. More
precisely, we have, for all ∆t∈ [0,∆t∗], the bound

sup
ε∈(0,εn]

max
0≤ℓ≤L

∣∣∣Φ[n]

tℓ/ε
vℓ+wℓ−uε(tℓ)

∣∣∣≤C∆ts,
where the constant C is independent of ∆t.

Using a Runge-Kutta integral scheme, this order may be increased by one. For
instance, for the problem ∂ty(t)= bt/εy(t), the Runge-Kutta scheme of order 2 is

ỹℓ+1/2=yℓ+∆t btℓ/ε y
ℓ, yℓ+1=yℓ+∆t b(tℓ+∆t/2)/ε ỹ

ℓ+1/2,

and, by Runge-Kutta integral scheme of order 2, we mean the scheme

ỹℓ+1/2=yℓ+

(∫ tℓ+∆t/2

tℓ
bt/εdt

)
yℓ, yℓ+1=yℓ+

(∫ tℓ+1

tℓ
bt/εdt

)
ỹℓ+1/2.

The idea is to exploit the form of the right-hand side bt/εy(t) and to build a scheme

approximating
∫ tℓ+1

tℓ
bt/ε

(
y(tℓ)+

∫ t

tℓ
∂ty(σ)dσ

)
dt instead of directly

∫ tℓ+1

tℓ
∂ty(t)dt. For

a given quadrature rule, the first expression may generate a better approximation.

Remark 2.6. As noted in [CLT22], the initial data v[n](0)=
(
Φ

[n]
0

)−1
u0 may be ap-

proximated explicitly to avoid the inversion of Φ
[n]
0 . It can be done such that the initial

condition of the micro part w[n](0)=u0−Φ
[n]
0 v[n](0) becomes of size O(εn+1) which is

enough to preserve the uniform accuracy result.
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3. Proofs
We now present proofs of our theoretical results, in the same order as they are

presented. Namely, we start with the properties of the micro-macro decomposition, i.e.
of the maps Φ[n], A[n] and δ[n] as enounced in Theorem 2.1. We then focus on the
well-posedness of the micro-macro problem (v[n],w[n]) from Corollary 2.1. After this,
we show the boundedness of the derivatives of the defect δ[n], and in turn of (v[n],w[n]).
Finally, we use all this to prove our main result of uniform accuracy.

3.1. Well-posedness of the micro-macro decomposition.
Since the fixed-point (2.10) is based on successive integrations, we shall use the

following lemma, which bounds an antiderivative from the integrated function.
Lemma 3.1. Let κ+>0 and ψ∈Eκ+

. Then, for any κ− such that 0≤κ−<κ+, solutions
φ to the equation

∂τφ=ψ−⟨ψ⟩

satisfy the inequality

Nκ−(φ−⟨φ⟩)≤ cI(κ+−κ−)Nκ+
(ψ−⟨ψ⟩)

with

cI(κ)=

max
{
1, 1

cD

(
ν
κe

)ν}
if ν ̸=0,

max
{
1, 1

cD

}
if ν=0.

(3.1)

For φ∈E0, ⟨∂τφ⟩=0. This implies that if φ∈Eκ− and ∂τφ∈Eκ+ , then

Nκ−(φ−⟨φ⟩)≤ cI(κ+−κ−)Nκ+
(∂τφ).

We also present some estimates on the nonlinear operator Λ occurring in (2.9) and
(2.12).
Lemma 3.2 (Bounds on Λ). Let 0≤κ≤µ and φ, φ̃∈Eκ. Let c∈]0,1[. If

Nκ(φ− id)≤ c and Nκ(φ̃− id)≤ c,

then there exists two constants Nc≥2 and Lc≤Nc/c depending on c only, such that

Nκ(Λ{φ})≤NcM,

Nκ(Λ{φ}−Λ{φ̃})≤LcMNκ(φ− φ̃).

The proofs of Lemmas 3.1 and 3.2 are postponed in Appendices A.2 and A.3.

We now proceed with the proof of Theorem 2.1. Fix n∈N and consider 0≤k≤n.
Owing to Lemmas 3.1 and 3.2, if Φ[k] is in some space Eκ+

such that Nκ+
(Φ[k]− id)≤ c,

then it possible to bound Φ[k+1]− id on the larger space Eκ− for all 0≤κ−<κ+. Here,

we proceed by induction, by considering successive Φ[k] on spaces Eµk
with

µk=

(
1− k

n+1

)
µ, s.t. 0=µn+1<µn<...<µ1<µ0=µ.

We show the desired bound on Nµn(Φ
[n]− id), which implies the well-posedness of the

n-th order change of variable. Additionally, we bound the approximate map A[n] and
we determine the size of the defect δ[n].
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3.1.1. Estimates on the near-identity and average maps.
We proceed by induction to show that, for all 0≤k≤n+1, Nµk

(Φ[k]− id)≤ c. It is
clear that it holds for k=0 since Φ[0]=id. Now, for 0≤k≤n, we assume that Φ[k]∈Eµk

and Nµk
(Φ[k]− id)≤ c. Owing to the identity

∂τ

[
Φ[k+1]− id

]
=∂τΦ

[k+1]=εΛ{Φ[k]},

as well as Lemma 3.1 using κ−=µk+1 and κ+=µk and noticing that κ+−κ−=µn, we
have Φ[k+1]∈Eµk+1

and

Nµk+1
(Φ[k+1]− id)≤ cI(µn)Nµk

(εΛ{Φ[k]}).

By Lemma 3.2 and the induction hypothesis,

Nµk+1
(Φ[k+1]− id)≤ cε

(
cI(µn)

Nc

c
M

)
.

Consequently, introducing

εn :=
c

cI(µn)NcM
, (3.2)

then for all ε≤εn,

Nµk+1
(Φ[k+1]− id)≤ c ε

εn
≤ c.

In particular for k=n, we find

∥Φ[n]− id∥≤N0(Φ
[n]− id)≤Nµn(Φ

[n]− id)≤ cε

εn
≤ c.

Moreover, proceeding as in Lemma 3.2, we obtain

|A[n]|= |⟨aΦ[n]⟩|≤Nµn
(aΦ[n])≤Nµn

(a)Nµn
(Φ[n]).

For one part Nµn
(a)≤M since µn≤µ, and for the other part,

Nµn(Φ
[n])≤Nµn(id)+Nµn(Φ

[n]− id)≤1+c.

This finally yields

|A[n]|≤ (1+c)M.

3.1.2. Size of the defect.
By definition, for all 0≤k≤n,

δ[k]=Λ{Φ[k−1]}−Λ{Φ[k]}= 1

ε
∂τ
(
Φ[k]−Φ[k+1]

)
and δ[k]∈Eµk

, with convention Λ{Φ[−1]}=0. The Lipschitz property on Λ implies that

Nµk
(δ[k])≤LcMNµk

(Φ[k−1]−Φ[k]).

Since ⟨Φ[k−1]−Φ[k]⟩=0, and thanks to Lemma 3.1

Nµk
(Φ[k−1]−Φ[k])≤ cI(µn)Nµk−1

(∂τ (Φ
[k−1]−Φ[k]))
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= cI(µn)εNµk−1
(Λ{Φ[k−2]}−Λ{Φ[k−1]}).

We recognize the definition δ[k−1]=Λ{Φ[k−2]}−Λ{Φ[k−1]}, hence

Nµk
(δ[k])≤LcMcI(µn)εNµk−1

(δ[k−1]).

Using the expression of εn (3.2) and the bound cLc≤Nc, we finally obtain

Nµk
(δ[k])≤ cLc

Nc

ε

εn
Nµk−1

(δ[k−1])≤ ε

εn
Nµk−1

(δ[k−1]).

An immediate induction, and the fact that µ0=µ leads to

Nµn
(δ[k])≤

(
ε

εn

)k

Nµ(δ
[0]).

Now δ[0]=−Λ{id}=−(a−⟨a⟩), hence Nµ(δ
[0])≤Nµ(a)≤M , and as such,

Nµn
(δ[n])≤M

(
ε

εn

)n

.

Notice that a direct by-product of this proof is the bound between two consecutive
near-identity maps

Nµn+1(Φ
[n]−Φ[n+1])≤ cI(µn)εNµn(δ

[n])≤ cI(µn)εM

(
ε

εn

)n

≤ c

Nc

(
ε

εn

)n+1

. (3.3)

A direct integration yields

ε

∫ τ

0

δ[n]σ dσ=Φ[n]
τ −Φ

[n]
0 −Φ[n+1]

τ +Φ
[n+1]
0 ,

from which (3.3) may be plugged to find

sup
τ≥0

∣∣∣∣ε∫ τ

0

δ[n]σ dσ

∣∣∣∣≤2∥Φ[n]−Φ[n+1]∥≤2Nµn+1
(Φ[n]−Φ[n+1])≤ 2c

Nc

(
ε

εn

)n+1

.

Thanks to the bounds Nc≥2 and c≤1, we finally obtain the desired result.

3.2. Well-posedness of the micro-macro problem.
Proof. (Proof of Corollary 2.1) By boundedness of A[n] due to the estimates

(2.14), the macro part v[n] is well-defined. Writing v[n](t)=v[n](0)+
∫ t

0
A[n]v[n](t′)dt′, a

direct application of Gronwall’s lemma and the estimate (2.16) on (Φ
[n]
0 )−1, we obtain

|v[n](t)|≤e(1+c)tM |u0|
1−c

. (3.4)

For the micro part, we use the integral formulation to obtain

|w[n](t)|≤∥a∥
∫ t

0

|w[n](t′)|dt′+
∣∣∣∣∫ t

0

δ
[n]
t′/εv

[n](t′)dt′
∣∣∣∣ .

A new application of Gronwall’s lemma and the fact that w[n](0)=0 generates

|w[n](t)|≤et∥a∥ sup
t′∈[0,t]

∣∣∣∣∣
∫ t′

0

δ
[n]
t′′/εv

[n](t′′)dt′′

∣∣∣∣∣ .
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Using again the integral expression of v[n], we may integrate by parts to obtain∫ t

0

δ
[n]
t′/εv

[n](t′)dt′=

(∫ t

0

δ
[n]
t′/εdt

′
)
v[n](0)−

∫ t

0

(∫ t′

0

δ
[n]
t′′/εdt

′′

)
A[n]v[n](t′)dt′

+

(∫ t

0

δ
[n]
t′/εdt

′
)(∫ t

0

A[n]v[n](t′)dt′
)
.

Applying a change of variable σ← t′/ε or σ′← t′′/ε in the integrals of δ[n] followed by a
direct injection of the estimates from Theorem 2.1 and of the estimate (3.4), we obtain

∣∣∣∫ t

0

δ
[n]
t′/εv

[n](t′)dt′
∣∣∣=( ε

εn

)n+1(
1+2(1+c)M

∫ t

0

e(1+c)t′Mdt′
)
|u0|
1−c

≤ (2e(1+c)tM −1)

(
ε

εn

)n+1 |u0|
1−c

.

Finally,

|w[n](t)|≤
(
ε

εn

)n+1

et∥a∥
(
2e(1+c)tM −1

) |u0|
1−c

.

Thus, for any T >0, the micro-macro problem (2.11) is uniformly bounded on [0,T ]
with v[n] of size O(1) and w[n] of size O(εn+1).

3.3. Well-posedness of the derivatives.
Similar to Lemma 3.2, we start by presenting some estimates on the derivatives of

the nonlinear operator Λ.
Lemma 3.3 (Bounds on derivatives of Λ). Under the assumptions of Lemma 3.2 and

Assumption 2.3, there exists a constant N
(q)
c (depending on q, c and C

(q)
a ) such that

sup
0≤p≤q

∥∂pτΛ{φ}∥≤N (q)
c M sup

0≤p≤q
∥∂pτφ∥.

Moreover, if there exists c(q)>0 such that

sup
0≤p≤q

∥∂pτφ∥≤ c(q) and sup
0≤p≤q

∥∂pτ φ̃∥≤ c(q),

then there exists a constant L
(q)
c such that

sup
0≤p≤q

∥∂pτ
(
Λ{φ}−Λ{φ̃}

)
∥≤L(q)

c M sup
0≤p≤q

∥∂pτ
(
φ− φ̃

)
∥.

The proof of this lemma is postponed in Appendix A.4.

We now want to establish that there exists C
(q)
δ >0 such that

sup
0≤p≤q

∥∂pτ δ[n]∥≤C
(q)
δ M

(
ε

εn

)n

.

We have already estimated ∥δ[n]∥ in (2.17). The proof for larger values of p follows the
same lines, using in addition Lemma 3.3.
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We first need to bound ∥∂pτΦ[k]∥ for all 0≤p≤ q and for all 0≤k≤n. The bound
for p=0 is clear from (2.13). Under the assumption that a∈Cq, it is easy to see from
the definition of Λ and the definition of Φ[k] that Φ[k]∈Cq for all 0≤k≤n. Owing to
the identity (2.9) and Lemma 3.3, we have, for 0<p′≤ q,

∥∂p
′

τ Φ[k]∥=ε∥∂p
′−1

τ Λ{Φ[k−1]}∥≤ε sup
0≤p≤q

∥∂pτΛ{Φ[k−1]}∥≤εN (q)
c M sup

0≤p≤q
∥∂pτΦ[k−1]∥.

Consequently, since Φ[0]=id, a straightforward induction gives that there exists c(q)

such that, for all 0≤k≤n,

sup
0≤p≤q

∥∂pτΦ[k]∥≤ c(q).

Let us now turn to the estimation of the defect δ[k]=Λ{Φ[k−1]}−Λ{Φ[k]} for all
0≤k≤n. By the previous bound on ∥∂pτΦ[k]∥ and Lemma 3.3,

sup
0≤p≤q

∥∂pτ δ[k]∥≤L(q)
c M sup

0≤p≤q
∥∂pτ (Φ[k−1]−Φ[k])∥.

For 0<p≤ q, according to (2.9),

∥∂pτ (Φ[k−1]−Φ[k])∥=ε∥∂p−1
τ (Λ{Φ[k−2]}−Λ{Φ[k−1]})∥=ε∥∂p−1

τ δ[k−1]∥.

Thus, we obtain

sup
0≤p≤q

∥∂pτ δ[k]∥≤L(q)
c Mε sup

0≤p≤q
∥∂pτ δ[k−1]∥

and an immediate induction leads to

sup
0≤p≤q

∥∂pτ δ[n]∥≤
(
L(q)
c Mε

)n
sup

0≤p≤q
∥∂pτ δ[0]∥.

Since δ[0]=−Λ{id}=−(a−⟨a⟩), hence

sup
0≤p≤q

∥∂pτ δ[0]∥≤ sup
0≤p≤q

∥∂pτa∥≤C(q)
a M,

we obtain the desired bound (3.3) denoting C
(q)
δ =C

(q)
a (εnL

(q)
c M)n. It concludes the

proof of Theorem 2.2.

3.4. Uniform accuracy.
Proof. (Proof of Corollary 2.2) For the derivatives of v[n], we perform an induc-

tion which is initialized using that v[n] is of size O(1) according to Corollary 2.1. Simply
using

∂p+1
t v[n](t)=A[n]∂pt v

[n](t),

and the estimate (2.14) on A[n], we obtain, for all p=0,. ..,min(n,q)+1,

∂pt v
[n](t)=O(1). (3.5)

For the derivatives of w[n], the induction is initialized by Corollary 2.1 from which
w[n](t)=O(εn+1). Then, we write

∂p+1
t w[n](t)

εn+1−(p+1)
=ε

p∑
p′=0

(
p

p′

)
∂p−p′

τ at/ε
∂p

′

t w
[n](t)

εn+1−p′
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−
p∑

p′=0

(
p

p′

)
εp−p′ ∂

p′

τ δ
[n]
t/ε

εn
∂p−p′

t v[n](t).

We bound the derivatives of aτ thanks to Assumption 2.3, the derivatives of δ[n] by
O(εn) thanks to Theorem 2.2 and the derivatives of v[n] using (3.5). Thus, by induction

hypothesis, ∂p
′

t w
[n](t)=O(εn+1−p′

) for all p′=0,. ..,p, every term of the sums of the
right-hand side is uniformly bounded w.r.t. ε, and therefore the sum is of size O(1), for
all p=0,. ..,min(n,q)+1. This concludes the induction.

Proof. (Proof of Corollary 2.3) The micro-macro problem can be written as

∂ty(t)=f(t/ε,y(t)),

with y=(v[n],w[n]) and f(τ,y(t))=

(
A[n] 0

−δ[n]τ aτ

)
y(t). We use a one-step scheme of non-

stiff order s, written in the standard form

yℓ+1=yℓ+∆tF(tℓ/ε,yℓ,∆t)

such that the s-th order derivative of F with respect to the third variable is of the
same order as ∂s+1

t y (as it is for instance the case for standard and integral Runge-
Kutta schemes). It is well-known that the local consistency error eℓ=y(t

ℓ+1)−y(tℓ)−
∆tF(tℓ,y(tℓ),∆t) is bounded by

|eℓ|≤

(
1

(s+1)!
sup

t∈[tℓ,tℓ+1]

|∂s+1
t y(t)|+ 1

s!
sup

h∈[0,∆t]

|∂shF(tℓ/ε,y(tℓ),h)|

)
∆ts+1.

Thus, by Corollary 2.2, the scheme retains its usual order s as soon as s≤min(n,q).

4. Numerical experiments
In this section, we present some numerical experiments to illustrate the previous

results. After a brief introduction of the different schemes we use, we test our strategy
on a simple scalar problem for which we know the exact solution. This is used to
illustrate the different components of the method, e.g. the size of the micro part w[n]

and of its derivatives, and to validate our result of uniform accuracy. We then apply
the micro-macro method to an approximation of the Bloch equations.

4.1. Numerical schemes.
We recall that we uniformly discretize the time interval [0,T ] defining tℓ= ℓ∆t for

ℓ=0,. ..,L where L+1 is the number of discretization points and ∆t= T
L the time step.

In the numerical experiments, we shall use the following numerical schemes associated
to (2.11):

– Explicit Euler (EE) scheme:{
vℓ+1=vℓ+∆tAvℓ,

wℓ+1=wℓ+∆t(aℓwℓ−δℓvℓ),

– Integral Explicit Euler (EEint) scheme: vℓ+1=vℓ+∆tAvℓ,

wℓ+1=wℓ+
(∫ tℓ+1

tℓ
aσ/εdσ

)
wℓ−

(∫ tℓ+1

tℓ
δ
[n]
σ/εdσ

)
vℓ,
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– Runge-Kutta of order 2 (RK2) scheme:



ṽℓ+1/2=vℓ+ ∆t
2 Av

ℓ,

w̃ℓ+1/2=wℓ+ ∆t
2 (aℓwℓ−δℓvℓ),

vℓ+1=vℓ+∆tAṽℓ+1/2,

wℓ+1=wℓ+∆t
(
aℓ+1/2w̃ℓ+1/2−δℓ+1/2ṽℓ+1/2

)
,

– Integral Runge-Kutta (RK2int) scheme:



ṽℓ+1/2=vℓ+ ∆t
2 Av

ℓ,

w̃ℓ+1/2=wℓ+
(∫ tℓ+∆t/2

tℓ
aσ/εdσ

)
wℓ−

(∫ tℓ+∆t/2

tℓ
δ
[n]
σ/εdσ

)
vℓ,

vℓ+1=vℓ+∆tAṽℓ+1/2,

wℓ+1=wℓ+
(∫ tℓ+1

tℓ
aσ/εdσ

)
w̃ℓ+1/2−

(∫ tℓ+1

tℓ
δ
[n]
σ/εdσ

)
ṽℓ+1/2,

where (vℓ,wℓ) and (vℓ+1,wℓ+1) are respectively approximations of
(
v[n](tℓ),w[n](tℓ)

)
and(

v[n](tℓ+1),w[n](tℓ+1)
)
and A, aℓ, aℓ+1/2, aℓ+1, δℓ, δℓ+1/2, δℓ+1 denote respectively A[n],

atℓ/ε, a(tℓ+∆t/2)/ε, atℓ+1/ε, δ
[n]

tℓ/ε
, δ

[n]

(tℓ+∆t/2)/ε
, δ

[n]

tℓ+1/ε
. Similarly to the iterations of the

homological equation and the derivation of the micro-macro problem, we compute the
integrals in the schemes EEint and RK2int using offline symbolic calculations.

4.2. A scalar test problem.

4.2.1. Presentation of the problem.
In this part, we study from a numerical point of view the problem (2.1) with a

“sharp-flat” scalar map defined by aτ =a
♯
ωτ +a

♭
τ . We choose it such that the equation

roughly behaves as the applicative problem considered in the next section with the
advantage of knowing an exact solution. More precisely, we consider a quasi-periodic
part of the form

a♯ωτ =−1+b♯ωτ , with b
♯
ωτ =

1

r

r∑
p=1

cos(ωpτ),

and an exponentially decreasing part of the form

a♭τ =γe
−τ ,

where γ is a given constant. In this case, the exact solution of (2.1) is given by

uε(t)=u0e
−t+ε

(
B♯

ωt/ε
+a♭

0−a♭
t/ε

)
, with B♯

ωτ =

∫ τ

0

b♯ωσdσ=
1

r

r∑
p=1

sin(ωpτ)

ωp
,

and it tends, as ε goes to 0, to

ulim(t)=u0e
−t.

In the sequel, we consider two choices of frequencies:
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• Mono-frequency case (1F): r=1 with ω1=π,
• Multi-frequency case (3F): r=3 with ω1=1, ω2=π and ω3=

√
5π.

We also take the following data : u0=1, T =10.

The time evolution of the solution is presented in Fig. 4.1 for the problem with
no exponential decay (γ=0), where the plot is restricted to short times (t∈ [0,2]) and
where ε is fairly large, for visualization purposes. In both cases 1F (left) and 3F (right),
the solution oscillates around the limit behavior ulim represented by a solid black line.
These oscillations are of small amplitude and seem essentially proportional to ε, and
while their quasi-periodic nature makes them seem chaotic in the case 3F, the period
2πε/ω1=2ε appears clearly in the case 1F.

Fig. 4.1. Case 1F (left) and case 3F (right); time evolution of the exact solution uε for various
ε and of the exact limit solution ulim.

4.2.2. Micro-macro problems.

Now, we write explicitly the different terms occurring in the micro-macro problem
(2.11) for n=1 and n=2, using the iterative relations (2.10) and the defect expression
(2.12).

Micro-Macro problem of order 1:
Since A[0]=−1 and Λ{Φ[0]}τ = b♯ωτ +a

♭
τ , straightforward computations yield

Φ[1]
τ =1+εC [1]

τ , A[1]=−1 and δ[1]τ =−ε(b♯ωτ +a
♭
τ )C

[1]
τ

where we introduced

C [1]
τ =B♯

ωτ −a♭τ .

Consequently, at the first order, the solution is decomposed as Φ
[1]
t/εv

[1](t)+w[1](t) where

the micro-macro variables (v[1],w[1]) are solutions to the following problem
∂tv

[1](t)=−v[1](t), v[1](0)=
u0

1+εC
[1]
0

,

∂tw
[1](t)=aτw

[1](t)+ε(b♯ωτ +a
♭
τ )C

[1]
τ v[1](t), w[1](0)=0.
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Micro-Macro problem of order 2:
Going on with the iterative process, further computations give

Φ[2]
τ =Φ[1]

τ +ε2C [2]
τ , A[2]=−1, and δ[2]τ =−ε2(b♯ωτ +a

♭
τ )C

[2]
τ

where C
[2]
τ =C

[2]
ωτ

♯
+C

[2]
τ

♭
is given by

C [2]
ωτ

♯
=

1

r2

(
r∑

p=1

sin2(ωpτ)−1/2

2ω2
p

+

r∑
p1=1

r∑
p2=1
p2 ̸=p1

ωp1
sin(ωp1

τ)sin(ωp2
τ)+ωp2

cos(ωp1
τ)cos(ωp2

τ)

wp2(w
2
p1
−w2

p2
)

)

and

C [2]
τ

♭
=−a♭τB♯

ωτ +
1

2
(a♭τ )

2.

Consequently, at the second order, the solution is decomposed as Φ
[2]
t/εv

[2](t)+w[2](t)

where the micro-macro variables (v[2],w[2]) are solutions to the following problem
∂tv

[2](t)=−v[2](t), v[2](0)=
u0

1+εC
[1]
0 +ε2C

[2]
0

,

∂tw
[2](t)=aτw

[2](t)+ε2(b♯ωτ +a
♭
τ )C

[2]
τ v[2](t), w[2](0)=0.

(4.1)

In this specific case, A[2] is exactly equal to ⟨a⟩ but this is not the case in general.
It gives a macro variable v[2] that differs from the limit solution ulim only via the

perturbation in the initial data
(
Φ

[2]
0

)−1
(u0). Concerning the equation governing the

micro variable w[2], we clearly observe that the defect δ[2] is of size O(ε2).

In Figs. 4.2 and 4.3, we plot the micro-macro quantities of order 1 (n=1) for
ε=0.5, still for the pure quasi-periodic problem (γ=0). They correspond respectively
to the cases 1F and 3F. These are computed with high precision, such that no issues of
numerical accuracy are considered at the moment.

On the left plots, the macro variable v[1] corresponds exactly to the limit solution
ulim since, for γ=0, v[1](0)=u0. However, the addition of the near-identity map Φ[1]

allows to incorporate the fast oscillations and to get closer to the exact solution uε (blue
plus-marked curves in Fig. 4.1). On the right, we present the micro variable w[1] that
retains the information contained in the remainder. As expected by Corollary 2.1, it is
of size O(ε2). In addition, its second derivative ∂2tw is of size O(1) in accordance with
Corollary 2.2. It confirms that the micro-macro problem can be solved with a standard
scheme. Again, the only difference between the cases 1F and 3F concerns the almost
periodicity of oscillations, both for the near-identity map and the macro variable. For
this reason, we focus only on the more generic multi-frequency case in the sequel.

4.2.3. Errors on the pure quasi-periodic problem (γ=0).
We now analyze the numerical resolution of the micro-macro problem. First, we fo-

cus on the quasi-periodic case choosing γ=0 (the addition of the exponentially decaying
term is studied in the next section).
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Fig. 4.2. Case 1F, ε=0.5; time evolution of v[1], Φ[1]v[1] and uε (left) and of w[1] and an
approximation of ∂2

t w
[1] (right).

Fig. 4.3. Case 3F, ε=0.5; time evolution of v[1], Φ[1]v[1] and uε (left) and of w[1] and an
approximation of ∂2

t w
[1] (right).

To evaluate the numerical solutions, we consider the following error:

E(∆t,ε)= max
0≤ℓ≤L

|uε(tℓ)−uℓ|,

where uℓ is the numerical solution either solving the stiff problem (2.1) or reconstructed
from the micro-macro problem (2.11).

In Fig. 4.4 and Fig. 4.5, we present the errors obtained using the standard RK2
scheme. The numerical resolution of the stiff problem (2.1) does not yield suitable
results. Indeed, in Fig. 4.4 (left), in the standard regime ∆t≪ε, the error for a given
∆t increases as ε decreases. Exiting this regime, for smaller ε, the error becomes hard
to predict. We observe pronounced peaks for some specific values of ε. It is known that
in the case 1F, the solution has a specific behavior when the time-step resonates with
the frequency of the problem, i.e. when ω1∆t/ε is a multiple of 2π. For such a relation
between ∆t and ε, a standard scheme completely fails. The left-hand side of Fig. 4.4
demonstrates that this phenomenon still occurs in the quasi-periodic case, even without
perfect resonances. In the right-hand side, for large ε, the error decreases with order 2
as expected, but when ε decreases, we observe an order reduction with slopes closer to
order 1. Even worse, for small ε, there are some values of ∆t for which the error is of
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size O(1).

Fig. 4.4. Case 3F, RK2 scheme solving the stiff problem (2.1); error with respect to ε for various
∆t (left) and with respect to ∆t for various ε (right).

On the contrary, the numerical resolution of the micro-macro problem of order
2 (4.1) gives a uniform accuracy i.e. independent of ε as observed in the left-hand side
of Fig. 4.5. The errors associated to a given discretization step form a perfect horizontal
line. Having computed the micro-macro variables (v[2],w[2]), we may decide to build
u[2] without incorporating the information of the remainder, i.e. using the relation
u[2]=Φ[2]v[2] instead of u[2]=Φ[2]v[2]+w[2]. This is plotted in the right-hand side of
Fig. 4.5. As expected, we observe two regimes, with an error of size O(ε3) for ε3 larger
than ∆t2 and of size O(∆t2) for smaller values of ε. It confirms that the macro variable
enhanced by the near-identity map gives accuracy for small values of ε and that relevant
information for large values of ε is retained by the micro variable.

Fig. 4.5. Case 3F, RK2 scheme solving the macro equation (2.11) for n=2; error with respect to
ε for various ∆t defining u[2]=Φ[2]v[2]+w[2] (left) and u[2]=Φ[2]v[2] (right).

The error with respect to ∆t is presented in Figs. 4.6–4.7 for various values of
ε. In Fig. 4.6, the same value is used for the non-stiff convergence order s of the
scheme and for the approximation order n of the micro-macro decomposition. The
curves corresponding to the various ε are indistinguishable straight lines, in accordance
with the flat lines of Fig. 4.5. This illustrates once more the uniform accuracy of the
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method. Moreover, we actually get a slope of 1 in the left figure (case s=n=1) and of
2 in the right figure (case s=n=2).

Fig. 4.6. Case 3F, solving (2.11) for n=1 and using EE (left) and for n=2 and using RK2
(right); error with respect to ∆t for various ε.

In Corollary 2.3, we state that the scheme should be of the same order as that of
the micro-macro expansion. We illustrate this in Fig. 4.7 (left) by using a standard
scheme of order 2 but keeping the micro-macro approximation of order 1. At first
glance, the error is of size O(∆t2) but there exist some couples (∆t,ε) for which the
error deteriorates. On the contrary, perfect straight lines fully on top of each other
are observed in Fig. 4.7 (right) when using the RK2int scheme. It illustrates that the
convergence order may be increased by one using a Runge-Kutta integral scheme as
mentioned in Section 2.3.5.

Fig. 4.7. Case 3F, solving (2.11) for n=1 using RK2 (left) and RK2int (right); error with respect
to ∆t for various ε.

4.2.4. Errors adding the decreasing term.
To finish the discussion on the scalar test problem, we finally add the exponentially

decreasing part a♭τ choosing now γ=1. In Fig. 4.8, we display the error with respect
to ε for various ∆t (left) and with respect to ∆t for various ε (right) solving the micro-
macro problem (2.11) of order n=2 with the RK2 scheme. We obtain uniform accurate
results since all errors are of size O(∆t2) independently of ε. This last case allows to
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check that the flat part in the sharp-flat decomposition does not bring further numerical
difficulties, in accordance with the feeling given by the proofs of Section 3.

Fig. 4.8. Case 3F, γ=1, solving (2.11) for n=2 using RK2; error with respect to ε for various
∆t (left) and with respect to ∆t for various ε (right).

4.3. Bloch model and a hierarchy of approximations.

4.3.1. Presentation of the Bloch model.
Let us briefly present a Bloch model that governs the time evolution of the den-

sity matrix ρ∈Mn(C) associated to a quantum system described by n discrete energy
levels and forced by a given high frequency electromagnetic wave. More precisely, it
corresponds to the scaled matrix equation

iε2∂tρ(t)= [H0−εV(t/ε2),ρ(t)]+ iQ(ρ),

where [·,·] denotes the commutator between two matrices, H0=diag(E1,·· · ,En) is the
free Hamiltonian expressed in terms of the (scaled) energies Ej associated to each energy
level, V is the time dependent electric potential matrix and Q is a relaxation term
that takes into account physical phenomena involving energy-dissipating processes or
collisions between particles. The density matrix ρ is made of (non negative) diagonal
quantities, denoted ρd,j , called populations and representing the occupation number of
the levels, and of off-diagonal quantities, denoted ρod,jk (with j ̸=k), called coherences
and describing the probability of transitions from one level to another.

A rigorous asymptotic analysis of this model (when the small parameter ε>0 goes
to 0) has been addressed in [BFCD04]. In that scaling, the evolution is considered over
long times, of size 1/ε2 and the influence of the electromagnetic wave is weak, of size
ε, and depends on the fast time scale t/ε2. Considering the bipolar approximation, we
assume that the entries of the interaction potential matrix V are of the form

Vjk(τ)=V ♯(τ)pjk,

where p is a given hermitian (dipolar moment) matrix and V ♯ is a given (quasi-)periodic
function that takes into account the time dependence of the wave. Also, we assume that
the quantum system relaxes to a given equilibrium state, via relaxation coefficients γjk
which have an effect on the off-diagonal part of the density matrix only. More precisely
we consider that Q(ρ)jk=−γjkρjk where relaxation coefficients, uniform with respect
to ε, are such that γjk=γkj>0 for all j ̸=k and γjj =0 for all j. The basic dynamics
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is thus given by a (damped) high-frequency oscillation, with frequency 1/ε2. Indeed,
denoting Ωjk=−i(Ej−Ek)−γjk, the coefficient ρjk of the density matrix is solution to
the equation

∂tρjk(t)=
1

ε2
Ωjkρjk(t)+

i

ε
V ♯(t/ε2)[p,ρ(t)]jk. (4.2)

Finally, at initial time t=0, we assume a density matrix with vanishing coherences and
non negative populations ρinitd .
Remark 4.1. Notice that, compared to the previous sections, the characteristic time is
now ε2 instead of ε. Consequently, τ now refers to t/ε2 and not to t/ε.

In this paper, we propose to use the micro-macro problem introduced and analyzed
in the previous sections to obtain a uniformly accurate scheme. However, we do not
tackle the resolution of the entire Bloch model (4.2) with both coherences and popu-
lations. It does not enter directly into the “sharp-flat” framework and its numerical
resolution is beyond the scope of this paper. Instead, we consider an approximation
(presented in the next section) that gives an equation governing the populations only.
Indeed, in [BFCD04], it has been proven that, in the limit ε→0, the diagonal part of
the density matrix solution to (4.2) tends to the solution of a rate equation in which the
transition rate is an appropriate time average of the potential, while the off-diagonal part
vanishes. Interestingly, the asymptotic analysis is based on successive approximations
which, after some point, all fit into the sharp-flat framework considered here.

4.3.2. Transformation to a “sharp-flat” problem.
We first transform the model (4.2) into a closed equation governing the populations

ρd only. As detailed in [BFCD04], this is done by writing the equation on coherences
as an integral equation and keeping only the first order expansion in ε of the right-
hand side. Since the coherences initially vanish, this depends only on the populations,
and inserting it into the population equation gives a time delayed integro-differential
equation. Finally, the delay being small, the populations tend to be the solution of the
delay-free equation

∂tρ
♯♭
d,j =

∑
l ̸=j

(Ψt/ε2)lj
(
ρ♯♭d,l(t)−ρ

♯♭
d,j(t)

)
, (4.3)

where we introduced the time dependent transition rate

(Ψτ )lj =2|plj |2Re
[
V ♯(τ)

∫ τ

0

exp
(
Ωljσ

)
V ♯(τ−σ)dσ

]
. (4.4)

In [BFCD04], it is proven that, for all T >0, there exists C>0, independent of ε, such
that

∥ρd−ρ♯♭d ∥L∞([0,T ],l1)≤Cε,

with the notation ∥ρd∥l1 =
∑n

j=1 |ρd,j |.
As it can be seen in Appendix B.1 where explicit expressions of (Ψτ )lj are computed

for a specific r-chromatic V ♯(τ), the transition rate defined in (4.4) is the sum of a (quasi-

)periodic part Ψ♯
lj and an exponentially decaying part Ψ♭

lj as in Section 2. This is the

reason why the problem (4.3)-(4.4) completed with the initial condition ρ♯♭d (0)=ρ
init
d is

described by the sharp-flat framework and can be solved with uniform accuracy using
the micro-macro problem (2.11) as we illustrate in the sequel.
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Remark 4.2. The equation (4.3) can be written

∂tρ
♯♭
d (t)=at/ε2ρ

♯♭
d (t)

introducing the population vector ρ♯♭d =(ρ♯♭d,1,·· · ,ρ
♯♭
d,n)

T and defining the matrix map τ 7→
aτ such that

(aτ )jk=

{
(Ψτ )kj if j ̸=k,
−
∑

l ̸=j(Ψτ )lj if j=k.

This form is used for the implementation. Nevertheless, for the simplicity of the pre-
sentation, we consider in the sequel the matrix Ψτ instead of aτ and we have to keep in
mind that it is the matrix occurring in the rate equation.

4.3.3. Further approximations of the populations.

Before presenting some numerical results, we shortly describe the next approxi-
mation in the hierarchy analyzed in [BFCD04] as well as the limit problem with the
averaged transition rate.

The transition rate Ψ defined in (4.4) can be approximated by a rate Ψ∞ defined
integrating up to +∞ instead of τ , i.e.

(Ψ∞
τ )lj =2|plj |2Re

[
V ♯(τ)

∫ +∞

0

exp
(
Ωljσ

)
V ♯(τ−σ)dσ

]
. (4.5)

As emphasized by the explicit computations presented in Appendix B.1, it corresponds
to neglecting the exponentially decaying part Ψ♭

lj . We obtain new approximate popu-
lations, denoted ρoscd , that verify the following rate equation with a quasi-periodic time
dependent transition rate

∂tρ
osc
d,j(t)=

∑
l ̸=j

(Ψ∞
t/ε2)lj

(
ρoscd,l (t)−ρoscd,j(t)

)
. (4.6)

Finally, by averaging theory, Ψ∞ (as well as Ψ) can be approximated by a time inde-
pendent transition rate

⟨Ψ⟩lj = lim
T→+∞

1

T

∫ T

0

(Ψ∞
σ )ljdσ= lim

T→+∞

1

T

∫ T

0

(Ψσ)ljdσ (4.7)

leading to the limit problem

∂tρ
lim
d,j (t)=

∑
l ̸=j

⟨Ψ⟩lj
(
ρlimd,l (t)−ρlimd,j (t)

)
. (4.8)

Again, an explicit expression of ⟨Ψ⟩ is presented in Appendix B.1. In [BFCD04], the

convergence of ρ♯♭d to ρlimd (and thus of ρd to ρlimd ) is proven to be in O(ε) for quasi-
periodic waves fulfilling the Diophantine inequality (2.6) and in o(1) for more general
KBM waves.

Obviously the averaged linear equation (4.8) is not stiff and does not present any
numerical difficulties. It is also the equation governing the zero order micro-variable
v[0] when a micro-macro decomposition is used to approximate either (4.3) or (4.6).
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4.3.4. Numerical results.
In this part, we present the numerical results obtained with the micro-macro

schemes described in Section 4.1. The micro-macro decomposition requires some of-
fline symbolic computations depending on the prescribed electromagnetic wave. Due to
the complexity of these computations, we limit our micro-macro decomposition to order
1, thereby obtaining second order uniform accuracy with the RK2int scheme. It is also
for this reason that we consider the equation (4.3) for the case 1F and the equation
(4.6) for the case 3F. An example of such computations is presented in Appendix B.2
for the monochromatic forcing.

For the numerical tests, we use in the sequel n=3 quantum levels with scaled
relative energies E1=0, E2=2 and E3=3. A larger number of levels could be consid-
ered, but the choice n=3 illustrates our result properly while keeping the presentation
clear. With a larger n, the number of function evaluations (through the use the of-
fline symbolic computations) would increase but each component of the n×n matrices
could be computed in parallel. We also use identical relaxation coefficients and dipolar
moment coefficients (γjk=1−δjk and pjk=1−δjk where δjk is the Kronecker delta),
T =10 as final time and ρinitd =[0,0,1] as initial population. The choice of frequencies
ωp in V ♯ is similar to the one of the previous section (case 1F and case 3F), with
V ♯(τ)= 1

r

∑r
p=1cos(ωpτ).

Since the exact solution of the problem is not known, we define instead a reference
solution ρrefd to analyze the quality of the micro-macro solution ρapproxd . We use the EEint
scheme directly applied to the equation (4.3) or (4.6) with a reference discretization step
∆tref =5.10−6, which yields an approximation accurate to at least 10−5. The error we
compute is

E(∆t,ε)= max
0≤ℓ≤L

∥ρref,ℓd −ρapprox,ℓd ∥l1 ,

where L+1 is the number of discretization points used to compute the approximate
solution (L chosen as a divisor of Lref).

We first consider a monochromatic wave (case 1F). In Fig. 4.9, we present errors
obtained when we solve the stiff problem (4.3) with the standard EE scheme. As
expected, it does not yield suitable results with, for a given ∆t, increasing errors for
decreasing ε. In addition, there exists some values ε for which the error is of size O(1)
for any ∆t. On the contrary, when we apply the same standard EE scheme to the
micro-macro problem (2.11) associated to (4.3), we obtain uniform accurate results as
illustrated in Fig. 4.10. The reader may notice that for large values of ε, the error
is slightly degraded, in the sense that the error constant (which multiplies ∆ts in the
error) is slightly larger for ε>0.1. However, this threshold is independent of the time-
step ∆t and remains uniformly bounded w.r.t. ε, which does not contradict our result
of uniform accuracy. This is furthermore verified when plotting the error with respect
with ∆t, which shows straight lines of slope 1. The lines are not on top of each other
only for values of ε larger than 0.1 (blue, orange, yellow and purple results), but even
for these values the slope remains unchanged.

Then, we present in Fig. 4.11 results obtained when the micro-macro problem (2.11)
of order 1 is solved using the RK2int scheme. As already discussed for the scalar test
problem, it allows to increase the convergence error by one, giving uniform errors of size
O(∆t2). Notice that we are limited by the accuracy of the reference solution. This is
why we do not consider discretization steps smaller than 3×10−3 in this context, since
even for this fairly large time step, results are slightly affected.
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Fig. 4.9. Case 1F, solving (4.3) using EE; error with respect to ε for various ∆t (left) and with
respect to ∆t for various ε (right).

Fig. 4.10. Case 1F, solving (2.11) for n=1 using EE; error with respect to ε for various ∆t (left)
and with respect to ∆t for various ε (right).

Fig. 4.11. Case 1F, solving (2.11) for n=1 using RK2int; error with respect to ε for various ∆t
(left) and with respect to ∆t for various ε (right).

Finally, we consider a multi-chromatic wave (case 3F) for the decay-free prob-
lem (4.6). Thanks to the in-depth study of the scalar test case, we know that the
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exponentially decreasing terms do not bring further numerical difficulties thus this test
case remains representative of the problem (4.3). Results presented in Fig. 4.12 are
qualitatively similar to the previous ones. It confirms that our approach is suitable
to describe the long time evolution of populations for a quantum system forced by a
quasi-periodic electromagnetic wave.

Fig. 4.12. Case 3F, solving (2.11) for n=1 using EE; error with respect to ε for various ∆t (left)
and with respect to ∆t for various ε (right).

5. Conclusion

This paper was concerned with a generic linear differential equation, with a time-
dependent forcing which can be split in a quasi-periodic part and an exponentially
decaying part. Adapting averaging techniques, we performed a micro-macro decom-
position, which was proven to be well-posed. We then obtained suitable estimates on
time-derivatives of the micro and macro variables meaning that the micro-macro prob-
lem can be solved with uniform accuracy using a standard scheme.

Using a toy problem for which the exact solution is known, we illustrated the dif-
ferent components of this approach e.g. the size of the micro-part and of its derivatives,
thereby validating the uniform accuracy results. Then, we successfully applied it to a
transitional model derived from the Bloch model.

A continuation of this work is to propose an approach to solve numerically the
original Bloch model (4.2) governing both populations and coherences. We believe the
information learnt in this paper on the populations given by the transitional model can
be enriched using predicted coherences in the population equation and then correcting
them with an appropriated integral scheme.

Appendix A. Auxiliary proofs.

This appendix contains the proofs of some technical results used in Sections 2 and 3.

A.1. Sharp-flat decomposition.

Proof. (Proof of the direct sum defined in Definition 2.5) To prove that E♯κ
and E♭ are in direct sum, we show that any function φ∈E♯κ∩E♭ is necessarily zero. Since
φ∈E♯κ it can be represented as Fourier series and for all τ ≥0,

φτ =φ
♯
ωτ =

∑
α∈Zr

ei(α·ω)τ φ̂α where φ̂α=
1

(2π)r

∫
Tr

e−iα·θφ♯
θdθ.
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Thanks to Arnold’s theorem,

φ̂α= lim
T→∞

1

T

∫ T

0

e−iα·(ωτ)φ♯
ωτdτ = lim

T→∞

1

T

∫ T

0

e−i(α·ω)τ)φτdτ.

Since we also suppose that φ∈E♭, ∥φ∥≤e−τ∥φ∥L∞
exp

and therefore∣∣∣∣∣ 1T
∫ T

0

e−i(α·ω)τ)φτdτ

∣∣∣∣∣≤ 1

T

∫ T

0

e−τdτ∥φ∥L∞
exp
≤ 1

T
∥φ∥L∞

exp
,

which tends to 0 as T tends to infinity. Hence, φ̂α=0 for all α and φ=0.

Proof. (Proof of Proposition 2.1) Let φ and φ̃ in Eκ. They are uniquely decom-
posed as φτ =φ

♯
ωτ +φ

♭
τ and φ̃τ = φ̃

♯
ωτ + φ̃

♭
τ . So, the product ψ=φφ̃ verifies

ψτ =(φφ̃)τ =φ
♯
ωτ φ̃

♯
ωτ +φ

♯
ωτ φ̃

♭
τ +φ

♭
τ φ̃

♯
ωτ +φ

♭
τ φ̃

♭
τ .

We introduce ψ♯ and ψ♭ such that ψ♯
ωτ =φ

♯
ωτ φ̃

♯
ωτ and ψ♭

τ =φ
♯
ωτ φ̃

♭
τ +φ

♭
τ φ̃

♯
ωτ +φ

♭
τ φ̃

♭
τ . We

first estimate

|eτψ♭
τ |≤∥φ♯∥|eτ φ̃♭

τ |+ |eτφ♭
τ |(∥φ̃♯∥+∥φ̃♭∥)

≤∥φ♯∥∥φ̃♭∥L∞
exp

+∥φ♭∥L∞
exp

(∥φ̃♯∥+∥φ̃♭∥)<+∞. (A.1)

Hence ψ♭∈E♭. Now we compute the Fourier series∑
α∈Zr

eiα·θφ̂φ̃α=
∑
α∈Zr

eiα·θ(φ̂⋆ ̂̃φ)α= ∑
α∈Zr

eiα·θ
∑
β∈Zr

φ̂β
̂̃φβ−α

=
∑
β∈Zr

eiβ·θφ̂β

∑
γ∈Zr

eiγ·θ ̂̃φγ =φ
♯
θφ̃

♯
θ. (A.2)

By the uniqueness of the decomposition, we therefore have ψ∈E and ψτ =ψ
♯
ωτ +ψ

♭
τ .

Since we have only used the fact that φ and φ̃ are in E , E is an algebra. Let us now
prove that Eκ is an algebra. To this aim we estimate Nκ(ψ). From equation (A.2)

∥ψ♯∥κ=∥φ♯φ̃♯∥κ≤
∑
γ∈Zr

eκ|γ|
∑

α,β∈Zr,α+β=γ

∣∣∣φ̂α
̂̃φβ

∣∣∣
≤
∑

α,β∈Zr

eκ|α|eκ|β| |φ̂α||̂̃φβ |=∥φ♯∥κ∥φ̃♯∥κ.

From (A.1), we also immediately have

∥ψ♭∥L∞
exp
≤∥φ♯∥κ∥φ̃♭∥L∞

exp
+∥φ♭∥L∞

exp
(∥φ̃♯∥κ+∥φ̃♭∥L∞

exp
).

Gathering the above estimates

Nκ(ψ)≤Nκ(φ)Nκ(φ̃).

This in particular implies that Eκ is an algebra.
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A.2. Integration in sharp-flat spaces.
Proof. (Proof of Lemma 3.1.) Thanks to the sharp-flat decomposition we can

write

ψτ −⟨ψ⟩=
∑
α̸=0

ei(α·ω)ψ̂α+ψ
♭
τ .

Integrating this

φτ = ⟨φ⟩+
∑
α ̸=0

ei(α·ω)

i(α ·ω)
ψ̂α+

∫ τ

+∞
ψ♭
σdσ,

where ⟨φ⟩ is the integration constant, considering that the sequel has zero mean. This
yields the sharp-flat decomposition for φ:

φ♯
ωτ = ⟨φ⟩+

∑
α̸=0

ei(α·ω) ψ̂α

i(α ·ω)
and φ♭

τ =

∫ τ

+∞
ψ♭
σdσ.

We first estimate

∥φ♭∥L∞
exp

=sup
τ≥0

eτ
∣∣∣∣∫ τ

+∞
ψ♭
σdσ

∣∣∣∣≤ sup
τ≥0

∫ +∞

τ

e(τ−σ)∥ψ♭∥L∞
exp

dσ=∥ψ♭∥L∞
exp
.

Then

∥φ♯−⟨φ⟩∥κ− =
∑
α̸=0

eκ−|α| |ψ̂α|
α ·ω

=
∑
α̸=0

e−(κ+−κ−)|α|

α ·ω
eκ+|α||ψ̂α|.

Using the Diophantine condition

∥φ♯−⟨φ⟩∥κ− ≤ cν(κ−)
∑
α ̸=0

eκ+|α||ψ̂α|= cν(κ−)∥ψ♯−⟨ψ⟩∥κ+
,

where we have defined

cν(κ)=
1

cD
sup
x>0

xνe−κx=

{
1
cD

(
ν
κe

)ν
if ν ̸=0,

1
cD

if ν=0.

Gathering the above estimates and using the definition of cI (3.1)

Nκ−(φ−⟨φ⟩)=∥φ−⟨φ⟩∥κ− +∥φ♭∥L∞
exp

≤max(1,cν(κ+−κ−))
(
∥ψ♯−⟨ψ⟩∥κ+

+∥ψ♭∥L∞
exp

)
= cI(κ+−κ−)Nκ+

(ψ−⟨ψ⟩).

A.3. Properties of the Λ operator.
Proof. (Proof of Lemma 3.2.) By definition

Λ{φ}τ =aτφτ −φτ ⟨aφ⟩.
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The algebraic properties of Proposition 2.1 and inequalities (2.7) ensure the direct bound

Nκ(Λ{φ})≤Nκ(a)Nκ(φ)+Nκ(φ)|⟨aφ⟩|≤ (1+Nκ(φ))Nκ(a)Nκ(φ).

Since Nκ(φ− id)≤ c,

Nκ(φ)≤Nκ(id)+Nκ(φ− id)≤1+c.

Gathering theses estimates, we obtain

Nκ(Λ{φ})≤ (1+(1+c))M(1+c)=(2+c)(1+c)M.

Last

Λ{φ}−Λ{φ̃}=a(φ− φ̃)−φ
〈
a(φ− φ̃)

〉
−(φ− φ̃)⟨aφ̃⟩,

and this can be bounded as

Nκ(Λ{φ}−Λ{φ̃})≤ (1+(1+c)+(1+c))MNκ(φ− φ̃)=(3+2c)MNκ(φ− φ̃).

Setting Nc=(2+c)(1+c) and Lc=3+2c, we obtain the estimates of Lemma 3.2.
Remark A.1. The same type of estimates are also valid with no closure assumption. In
this case, we find that ⟨φ⟩−1 can be bounded from above by 1/(1−c), and the constants
should be Nc=2(1+c)/(1−c) and Lc=4/(1−c)2.

A.4. Properties of the derivatives of the Λ operator.
Proof. (Proof of Lemma 3.3.) Using the Leibniz’s product rule

∂pτ (aτφτ )=

p∑
p′=0

(
p

p′

)
∂p

′

τ aτ∂
p−p′

τ φτ ,

we have

∥∂pτ (aφ)∥≤
(

sup
0≤p≤q

∥∂pτa
)(

sup
0≤p≤q

∥∂pτφ∥
) p∑
p′=0

(
p

p′

)
≤2qC(q)

a M sup
0≤p≤q

∥∂pτφ∥.

Recalling also that |⟨aφ⟩|≤M(1+c), we obtain

sup
0≤p≤q

∥∂pτ (Λ{φ})∥= sup
0≤p≤q

∥∂pτ (aφ−φ⟨aφ⟩∥≤ (2qC(q)
a +1+c)M sup

0≤p≤q
∥∂pτφ∥.

Moreover, assuming also that sup
0≤p≤q

∥∂pτφ∥≤ c(q) and sup
0≤p≤q

∥∂pτ φ̃∥≤ c(q),

sup
0≤p≤q

∥∂pτ (Λ{φ}−Λ{φ̃})∥= sup
0≤p≤q

∥∥∂pτ (a(φ− φ̃)−φ〈a(φ− φ̃)〉−(φ− φ̃)⟨aφ̃⟩
)∥∥

≤ (2qC(q)
a +c(q)+1+c)M sup

0≤p≤q
∥∂pτ (φ− φ̃)∥.

Setting N
(q)
c =2qC

(q)
a +1+c and L

(q)
c =N

(q)
c +c(q), we obtain the estimates of

Lemma 3.3.

Appendix B. Bloch computations.
In this appendix, we present some computations to clarify the description and the

implementation of the rate equations derived from the Bloch model, considering that
the quantum system is forced by a (quasi-)periodic wave.
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B.1. Explicit expressions of the transition rates.

We consider a r-chromatic wave of the form

V ♯(τ)=
E0

r

r∑
p=1

cos(ωpτ).

Using the computation∫ τ

0

eΩσ cos(ω(τ−σ))dσ= ΩeΩτ

Ω2+ω2
+

ω

Ω2+ω2
sin(ωτ)− Ω

Ω2+ω2
cos(ωτ)

and introducing the coefficients

R(τ,ω,Ω)=Re

(
ωeΩτ

ω2+Ω2

)
and S(τ,ω,Ω)=−Re

(
ΩeΩτ

ω2+Ω2

)
, (B.1)

we obtain expressions for Ψ and Ψ∞ defined respectively in (4.4) and (4.5). They read

Ψτ =Ψ♯
ωτ +Ψ♭

τ and Ψ∞
τ =Ψ♯

ωτ

with

(Ψ♯
ωτ )lj =

2E2
0

r2
|plj |2

r∑
p1=1

r∑
p2=1

cos(ωp1
τ)
(
sin(ωp2

τ)R(0,ωp2
,Ωlj)

+cos(ωp2
τ)S(0,ωp2

,Ωlj)
)
,

and

(Ψ♭
τ )lj =−

2E2
0

r2
|plj |2

r∑
p1=1

r∑
p2=1

cos(ωp1
τ)S(τ,ωp2

,Ωlj).

We remark that the term eΩτ appears only in the expression of Ψ♭
τ meaning that the

frequencies of the term Ψ♯
ωτ are those of the electromagnetic wave, the eigenfrequencies

of the quantum system acting only on the amplitude coefficients. Then, the average
transition rate defined in (4.7) may be cast as

⟨Ψ⟩lj =
E2

0

r2
|plj |2

r∑
p=1

S(0,ωp,Ωlj).

Notice that

S(0,ω,Ωlj)=
γlj
2

(
1

γ2lj+(ω+El−Ej)2
+

1

γ2lj+(ω−El+Ej)2

)
.

This explicit expression emphasizes that some resonances can occur between the high-
frequency oscillations of the electromagnetic wave (carried by ω) and that of the quan-
tum system (carried by the eigenfrequencies El−Ej).
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B.2. Off-line computations for the Bloch micro-macro problem.
For the simplicity of the presentation, we consider in this appendix a mono-

chromatic wave V ♯(τ)=E0 cos(ωτ) and compute coefficients needed for the implemen-
tation of the micro-macro scheme of order 1 associated to equation (4.6). The treatment
of the r-chromatic wave and the addition of the exponentially decreasing terms associ-
ated to equation (4.3) only make more complex the expressions and do not bring further
difficulties.

For this restricted case, we simplify notations introduced in (B.1) denoting

Rlj =R(0,ω,Ωlj) and Slj =S(0,ω,Ωlj).

The transition rate reads

(Ψ∞
τ )lj =(Ψ♯

ωτ )lj =2E2
0 |plj |2

(
cos(ωτ)sin(ωτ)Rlj+cos2(ωτ)Slj

)
.

and its average is given by

⟨Ψ⟩lj =E2
0 |plj |2Slj .

Then, in order to obtain the near-identity map at first order Φ[1], we need to compute
the integral

(Υ∞
τ )lj :=

∫ τ

0

(
(Ψ∞

σ )lj−⟨Ψ⟩lj
)
dσ=

E2
0 |plj |2

ω

(
sin2(ωτ)Rlj+sin(ωτ)cos(ωτ)Slj

)
as well as its average

⟨Υ∞⟩lj =
E2

0 |plj |2

2ω
Rlj .

Finally, in order to compute A[1] as well as Λ
{
Φ[1]

}
, we consider the product

(Ψ∞
τ )lj(Υ

∞
τ )ki=

2E4
0 |plj |2|pki|2

ω

(
cos(ωτ)sin3(ωτ)RljRki+cos3(ωτ)sin(ωτ)SljSki

+cos2(ωτ)sin2(ωτ)
(
RljSki+SljRki

))
.

Since ⟨cos(ωτ)sin3(ωτ)⟩= ⟨cos3(ωτ)sin(ωτ)⟩=0 and ⟨cos2(ωτ)sin2(ωτ)⟩= 1
8 , the aver-

age of this product is

⟨Ψ∞
lj Υ

∞
ki ⟩=

E4
0 |plj |2|pki|2

4ω

(
RljSki+SljRki

)
.
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[BBR01] Brigitte Bidégaray, Antoine Bourgeade, and Didier Reignier. Introducing physical relax-
ation terms in Bloch equations. Journal of Computational Physics, 170(2):603–613,
2001. 1

[BCZ14] Weizhu Bao, Yongyong Cai, and Xiaofei Zhao. A uniformly accurate multiscale time in-
tegrator pseudospectral method for the klein–gordon equation in the nonrelativistic
limit regime. SIAM Journal on Numerical Analysis, 52(5):2488–2511, 2014. 1
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