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Abstract

We are interested in numerically solving a transitional model derived from
the Bloch model. The Bloch equation describes the time evolution of the
density matrix of a quantum system forced by an electromagnetic wave. In
a high frequency and low amplitude regime, it asymptotically reduces to a
non-stiff rate equation. As a middle ground, the transitional model governs
the diagonal part of the density matrix. It fits in a general setting of linear
problems with a high-frequency quasi-periodic forcing and an exponentially
decaying forcing. The numerical resolution of such problems is challenging.
Adapting high-order averaging techniques to this setting, we separate the slow
(rate) dynamics from the fast (oscillatory and decay) dynamics to derive a new
micro-macro problem. We derive estimates for the size of the micro part of
the decomposition, and of its time derivatives, showing that this new problem
is non-stiff. As such, we may solve this micro-macro problem with uniform
accuracy using standard numerical schemes. To validate this approach, we
present numerical results first on a toy problem and then on the transitional
Bloch model.
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1 Introduction

The Bloch model describes the time-evolution of the density matrix of a quantum
system with a discrete number of energy levels, forced by an electromagnetic wave.
Different strategies have been proposed in the literature to solve the Bloch equation.
Let us mention for instance a splitting procedure that solves the different terms
separately in an exact way, or a relaxation scheme where the diagonal and the
off-diagonal parts of the density matrix are located on a staggered time grid (see
[BBR01] for details on these approaches). These schemes have been designed to
preserve physical properties of interest or to numerically decouple the equations.
However, they are not suitable in the case of stiff forcing coefficients.

In [BFCD04, BFCDG04], the authors study some high frequency and low ampli-
tude regime, and show that the model asymptotically behaves like a rate equation
with averaged transition rates. Numerically, the original model is very stiff, mean-
ing that using standard numerical methods requires costly computations. The rate
equation, however, is a non-stiff autonomous equation which can be solved with
standard methods at no additional cost.

In this paper, we are interested in a transitional model from which the rate equa-
tion is actually obtained. This transitional model, governing the diagonal part of the
density matrix, can be seen as a middle-ground between the full original equation
and the simpler rate equation. It still presents numerical challenges, due to the stiff
time-dependence of the transition rates. Classical numerical methods may fail to
tackle this problem at a reasonable computational cost. The present work addresses
this issue.

The main numerical challenge at hand is that of order reduction, a well-known
phenomenon documented e.g. in [HW96, Sec. IV.15] or [VS98] and references
therein. Here, this is due to the degeneracy of the second (and higher) derivative(s)
of the solution in the asymptotic limit. This causes an increase of the error constant
in standard estimates, to the point where the theoretical order may no longer be
observed.

Formally, if we denote ε the characteristic time of the problem and ∆t the time-
step of the numerical method, then the error Eε(∆t) of a standard scheme of order
s may be bounded

Eε(∆t) ≤ C min

(
∆ts

εr
,∆ts

′
)
,

for some positive constant C independent of ε, a uniform order s′ ≤ s and a degen-
eracy order r ≥ 0. When r > 0 and s′ < s, there is a so-called asymptotic regime
∆t� ε in which the behavior of the error does not match the order of the method.
This is how the order reduction phenomenon manifests itself in our context. In order
to ensure a given error bound, one must use an ε-dependent time-step ∆t = O(εr/s),
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which increases the computational cost. To facilitate the discussion surrounding this
interaction between the error bound, the characteristic time ε and the time-step ∆t,
we consider different notions of convergence beyond the standard ∆t� ε paradigm.

If the parameter ε is small w.r.t. the desired error, then one may consider a
non-stiff reduced asymptotic model instead of the full original model. In that case,
the numerical error is assumed to match the asymptotic error limε→0Eε(∆t), and
using standard schemes is possible. For the Bloch model, this could mean solving
the rate equation instead of the full problem. With this approach, the error will
plateau for ∆t sufficiently small.

Some numerical methods are valid in both the standard and asymptotic regimes,
at no additional computational cost and with the same order of convergence. These
are called asymptotic-preserving (AP) methods. The term was coined in [Jin99] in
the context of hyperbolic problems1, and the development of such schemes remains
active e.g. in the community of kinetic equations [CHL16, ADP20, ABC23, JMW23].
While the previous approach of asymptotic models becomes useless when ε is not
small, these methods prove the convergence of the scheme for both the standard
error in the regime ∆t� ε and the asymptotic error.

However, these asymptotic notions do not describe the behavior of the scheme
in the intermediate regime ∆t ∼ ε, for which the error may be degraded 2. To en-
compass every regime, we consider the uniform error supε∈(0,1] Eε(∆t), defining the
uniform order of the method. A numerical method is said to be uniformly accurate
(UA) if its computational cost is independent of ε and if its uniform order matches
its standard order. Such methods are valid independently of the size of ε and of the
regime (standard, asymptotic or intermediate).

Here, we consider a generic linear differential equation, with a time-dependent
forcing which can be split in a quasi-periodic part3 and an exponentially decaying
part, both with characteristic time ε. The aforementioned “transitional” model
derived from the Bloch equation falls under this category. Our strategy consists
in using asymptotic expansion techniques to perform a micro-macro decomposition,
which separates the asymptotic behavior and the error of asymptotic approximation
in the macro and micro part respectively. This new micro-macro problem is less stiff

1The notion of asymptotic preservation is problem-dependent. For example, the implicit Euler
method is exact for the asymptotic error when applied to the problem u̇ = −u/ε, but forgoes all
accuracy in the limit ε→ 0 for the problem u̇ = iu/ε with a non-zero initial condition.

2Consider again the implicit Euler scheme applied to u̇ = −u/ε, with initial condition u(0) = 1.
After a time ε, the solution is u(ε) = e−1, but using a time-step ∆t = ε yields the approximation
u1 = 1/2. Even though the scheme is asymptotic preserving, here the local error u(∆t) − u1 is
large independently of the time-step, i.e. the error is severely degraded in that regime.

3A quasi-periodic function is a function generated by multiple non-resonant base frequencies,
e.g. aτ = cos(τ) + cos(τ

√
2), with base (angular) frequencies 1 and

√
2.
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and can be solved using standard numerical methods, with no order reduction. This
uniform accuracy on the micro-macro problem translates directly to the solution of
the original problem.

Our approach uses techniques from high-order averaging, a method to perform
asymptotic expansions on highly-oscillatory problems (of characteristic time ε). This
method views the solution as the composition of an average dynamics with a near-
identity rapidly-oscillating change of variable. This composition is accurate up to
an error of size O(εn) with arbitrary order n. We refer to Lochak-Meunier [LM88]
and Sanders-Verhulst-Murdock [SVM07] for textbooks on this method. Readers
might find similarities with the methods of two-scale expansion [CCLM15], WKB
expansion [Wen26, Kra26, Bri26, Car21], non-linear geometric optics [CJL17], or
even normal forms [Bam03, Mur06].

Historically, a key tool in performing these expansions was power series in ε.
They were used in [Per69], the first known result with periodic forcing, and in
[Sim94] when extending the result to a quasi-periodic forcing. Even recently in
[CMSS10, CMSS12], formal series (specifically, B-series) were used to derive ana-
lytical expressions of the mappings constructed by averaging. Somewhat recently,
however, the authors in [CCMM15] introduced a concise differential algebraic equa-
tion for the mappings, called the homological equation. In the spirit of [Nei84], fixed
point iterations may be applied on this equation, and the error of approximation
can readily be recovered. In [CLMV20] and [CLT22], this method is used to derive
micro-macro problems in the contexts of problems with fast periodic oscillations and
with stiff relaxation respectively, allowing the use of standard numerical methods
with uniform accuracy.

We exploit the fixed-point approach based on the closed homological equation
of [CCMM15], which we extend to the case of linear problems with quasi-periodic
forcing and added exponential decay. Compared to their setting of non-linear prob-
lems with periodic forcing, here the quasi-resonances (often called small divisors)
introduced by the quasi-periodicity degrade the regularity with each fixed-point it-
eration. We define appropriate functional spaces to quantify this loss of regularity
and to take into account the added exponential decay. In this context, we show that
we may construct a micro-macro decomposition to any order n ∈ N.

In a second time, we study the derivatives of the thereby-obtained micro and
macro variables, and show that their derivatives are uniformly bounded up to
the (n + 1)-th derivative, as opposed to the original problem for which the sec-
ond derivative is degenerate. Because of this, the result of uniform accuracy from
[CLMV20, CLT22] still holds, i.e. we may solve the micro-macro problem (and
therefore the original transitional problem) with uniform accuracy using a standard
scheme.
The paper is structured as follows. In Section 2, we introduce the formalism sur-
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rounding the problem, as well as the assumptions we make. Crucially, we describe
how to construct the micro-macro decomposition and state our results, which are
proven in Section 3. In Section 4, we present some numerical experiments. After
briefly introducing the numerical schemes we consider, we showcase the importance
of each term in the decomposition and verify the uniform accuracy result thanks to a
toy model for which an analytical solution is available. Finally, we present the Bloch
model, and the derivation of the aforementioned “transitional” model on which we
apply the micro-macro decomposition. We show that a naive resolution of the prob-
lem has severely degraded accuracy, while the micro-macro method converges with
uniform accuracy.

2 Setting and theoretical results

We wish to derive an equivalent less-stiff problem for the ordinary differential equa-
tion

∂tu
ε(t) = at/εu

ε(t), uε(0) = u0 ∈ X, (2.1)

in some Banach space (X, | · |) for positive finite times t ∈ [0, T ] with T > 0 inde-
pendent of ε, and where aτ is a linear map from X to X for all τ ≥ 0. As detailed
below, we assume that a is the sum of a (quasi-)periodic part a] and an exponentially
decaying part a[. In the sequel, we say that a admits a “sharp-flat” decomposition.

This derivation is conducted using the ansatz

uε(t) = Φε
t/εe

tAε
(
Φε

0

)−1
u0 (2.2)

where Φε
τ is a near-identity map for all τ ≥ 0 and a non-stiff (uniformly bounded

w.r.t. ε) averaged field Aε is obtained from aτ . In general, such maps cannot be
computed exactly, therefore we seek to compute, for any given n ∈ N, approximate
maps Φ[n], A[n] such that the solution uε of (2.1) may be decomposed into

uε(t) = Φ
[n]
t/εe

tA[n](
Φ

[n]
0

)−1
u0 + w[n](t)

where w[n] = O(εn+1). We call this error of approximation w[n] the micro variable

and the slow part v[n](t) = etA
[n](

Φ
[n]
0

)−1
u0 the macro variable, which satisfy the

so-called micro-macro problem{
∂tv

[n](t) = A[n]v[n](t), v[n](0) =
(
Φ

[n]
0

)−1
u0,

∂tw
[n](t) = at/εw

[n](t)− δ[n]
t/εv

[n](t), w[n](0) = 0,

for some defect δ[n] computed from Φ[n] and A[n]. Our goal is to prove that this new
problem is non-stiff up to the (n+ 1)-th derivative and can therefore be computed
with uniform accuracy up to order n using standard numerical schemes.
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This section states the theoretical results of this paper. Subsection 2.1 intro-
duces the mathematical setting and the formalism necessary to state the problem.
Subsection 2.2 describes the assumptions we make on the problem, and define the
aforementioned “sharp-flat decomposition”. Subsection 2.3 finally details our con-
struction of the maps Φ[n], A[n] and δ[n] and states results on the properties of the
micro-macro decomposition.

2.1 Definitions and notations

Here we introduce some formalism associated to endormorphisms, multivariate pe-
riodic functions and exponentially decaying functions. We also introduce the time-
average operator and some norms associated to such functions. Throughout the
paper, the set of endomorphisms, denoted End(X), is endowed with the induced
norm, denoted | · |.

Definition 2.1 (Time average and KBM mappings). Given a mapping τ ∈ R+ 7→
ϕτ ∈ End(X), we define the time average

〈ϕ〉 := lim
τ→∞

1

τ

∫ τ

0

ϕσdσ. (2.3)

A continuous function τ 7→ ϕτ such that this limit converges is called a KBM map-
ping4. We denote E the vector space of KBM mappings from R+ to End(X).

Among KBM mappings, we are interested in two subspaces which we introduce
briefly: quasi-periodic mappings and exponentially decaying mappings.

2.1.1 Quasi-periodic mappings

By quasi-periodic, we mean mappings that are generated from a finite number of
angular frequencies ω1, . . . , ωr and a multivariate 2π-periodic map θ ∈ Tr 7→ ϕ]θ
with T = R/(2πZ). Denoting ω = (ω1, . . . , ωr), the quasi-periodic map is given by
τ 7→ ϕ]ωτ , i.e. it is given by evaluating ϕ] along the curve τ 7→ (ω1τ, . . . , ωrτ). If the
generating map ϕ] is continuous, then it coincides with its Fourier series,

∀θ ∈ Tr, ϕ]θ =
∑
α∈Zr

eiα·θϕ̂]α.

Here we use the multi-index notation α = (α1, . . . , αr) ∈ Zr to obtain the phase
α · θ = α1θ1 + . . . + αrθr and Fourier coefficient ϕ̂]α ∈ End(X). We furthermore
denote |α| = |α1| + . . . + |αr|. In the sequel the number of frequencies r and the
vector of frequencies ω are fixed.

4The acronym KBM stands for Krylov, Bogoliubov and Mitropolsky, see e.g. [SVM07].
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Definition 2.2. We define E ] the set of continuous quasi-periodic maps with fre-
quencies ω,

E ] :=
{
τ 7→ ϕ]ωτ , ϕ

] ∈ C0
(
Tr,End(X)

)}
.

Some particularly regular maps are such that the Fourier coefficients are exponen-
tially decreasing, which is quantified by the functional spaces, for κ ≥ 0,

Tκ :=

{
ϕ] ∈ C0

(
Tr,End(X)

)
,
∑
α∈Zr

eκ|α|
∣∣ϕ̂]α∣∣ <∞

}
.

The set of quasi-periodic mappings τ 7→ ϕ]ωτ this generates is denoted E ]κ.

For κ > 0, all mappings in Tκ are smooth, and for κ = 0, the mappings in T0 are
continuous. Additionally, if 0 ≤ κ− ≤ κ+, then Tκ+ ⊂ Tκ− . Therefore, we obtain
the following inclusions

E ]κ+ ⊂ E
]
κ− ⊂ E

]
0 ⊂ E ].

2.1.2 Exponentially decaying mappings

By exponentially decaying, we mean bounded mappings τ 7→ ϕ[τ which are also
O(e−τ ) for τ →∞.

Definition 2.3. The set of exponentially decaying functions we consider is denoted
L∞exp and is defined by

L∞exp :=

{
ϕ[ ∈ L∞

(
R+,End(X)

)
, sup

τ∈R+

eτ |ϕ[τ | <∞
}
.

A subset of this are KBM mappings, which we denote

E [ := L∞exp ∩ C0
(
R+,End(X)

)
.

Remark 2.4. The rate of decay (namely 1) is chosen without loss of generality,
since it could be obtained with a time rescaling.

2.1.3 Norms

We endow the above defined functional spaces with the following norms.

Definition 2.5 (Norms). Remember that we denote | · | the induced norm on X.
For mappings ϕ ∈ E, ϕ] ∈ Tκ and ϕ[ ∈ L∞exp, we denote

‖ϕ‖ := sup
τ≥0
|ϕτ |, ‖ϕ]‖κ :=

∑
α∈Zr

eκ|α||ϕ̂]α|, ‖ϕ[‖L∞exp := sup
τ≥0

eτ |ϕ[τ |.
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Note that for 0 ≤ κ− ≤ κ+ and all ϕ] ∈ E ]κ+ ,

‖ϕ]‖ ≤ ‖ϕ]‖0 ≤ ‖ϕ]‖κ− ≤ ‖ϕ]‖κ+ , (2.4)

and for all ϕ[ ∈ L∞exp,

∀τ ∈ R+, |ϕ[τ | ≤ e−τ‖ϕ[‖L∞exp . (2.5)

Remark 2.6. In the entire upcoming reflexion, Tκ could be replaced by the set of
functions on Tr analytic with radius everywhere greater than κ. The norm ‖ · ‖κ
would then be replaced by the infinite norm on the analytical extension of radius κ
to the complex domain, i.e. symbolically

∀ϕ] ∈ Tκ, ‖ϕ]‖κ ≤ sup
ζ∈Trκ
|ϕ]ζ |

with Trκ := {θ + ξ, (θ, ξ) ∈ Tr × Cr, |ξ| ≤ κ}. For θ ∈ Tr, |ξ| ≤ κ, the analytical

extension is defined as ϕ]θ+ξ =
∑
α∈Nr

∂|α|ϕ]θ
∂θα1

1 · · · ∂θαrr
ξα1

1 · · · ξαrr
α1! · · ·αr!

.

2.2 Assumptions on the problem

So far, we have described the two types of KBM mappings we consider, namely
the “sharp” and the “flat” parts of an aforementioned decomposition. The “sharp”
part is obtained in a one-way relationship from a function on Tr. We start by
introducing an assumption (namely a non-resonance condition on the frequencies
ω) which makes this a two-way relationship. Thanks to this, we may define the
“sharp-flat” decomposition rigorously, allowing us to finally state how our problem
fits into this setting.

2.2.1 Non-resonance

Assumption 2.7. The vector of angular frequencies ω = (ω1, . . . , ωr) is strongly
non-resonant in the sense that it satisfies the following Diophantine inequality

∃cD > 0, ∃ν ≥ r − 1, ∀α ∈ Zr \ {0}, |α · ω| ≥ cD
|α|ν

, (2.6)

where α · ω = α1ω1 + . . . + αrωr and 0 = (0, . . . , 0) ∈ Zr. In the mono-frequency
case r = 1, we choose ν = 0 and cD = |ω|.

Remark 2.8. While this may seem restrictive at first glance, it is classically known
(see for instance [Arn63], [Arn89, App. 8] or [HLW06, Chap. X]) that this con-
dition is satisfied for almost all frequency vectors in any bounded subset of Rr. In
practice, we mostly require ω to be “well-prepared” in the sense that no frequencies
are rationally dependent, which is usually enough for the Diophantine condition to
be met.
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This assumption implies that the set of cancelling combination is zero – which
is to say that the vector of frequencies ω = (ω1, . . . , ωr) is such that

ω⊥ := {α ∈ Zr s.t. α · ω = 0} = {0}.

As such, we may apply Arnold’s theorem, which states that for continuous quasi-
periodic maps, the time average coincides with the phase average. This may be
written

∀ϕ] ∈ C0
(
Tr,End(X)

)
, ∀θ0 ∈ Tr, lim

T→∞

1

T

∫ T

0

ϕ]θ0+ωτdτ =
1

(2π)r

∫
Tr
ϕ]θdθ.

In particular, this means that we can recover the Fourier coefficients of the function
θ 7→ ϕ]θ from the quasi-periodic function τ 7→ ϕ]ωτ . As such we may identify both
functions and extend the notion of Fourier series to the quasi-periodic mapping of
E ]κ.

2.2.2 “Sharp-flat” decomposition

Under Assumption 2.7, we introduce the set Eκ that describes what we name “sharp-
flat” maps as well as an associated norm Nκ that will be used all along this paper to
easily handle the (quasi)-periodic and exponentially decaying maps that we consider.

Definition 2.9. For all κ ≥ 0, we define

Eκ = E ]κ ⊕ E [.

Given a mapping ϕ ∈ Eκ, it splits uniquely as ϕτ = ϕ]ωτ + ϕ[τ and we endow the
space Eκ with the norm

Nκ(ϕ) := ‖ϕ]‖κ + ‖ϕ[‖L∞exp ,
where ‖ · ‖κ and ‖ · ‖L∞exp are given in Definition 2.5.

The proof that the sum is indeed direct, and that this defines a unique “sharp-
flat” decomposition for elements in Eκ is presented in Appendix A.1. To summarize,
the average of flat functions is always zero, therefore the Fourier coefficients of a
function in E ]κ ∩ E [ are all zero. Since functions in E ]κ coincide with their Fourier
series, this function can only be zero.

Proposition 2.10. The space Eκ is an algebra, and if ϕ, ϕ̃ ∈ Eκ then ψ = ϕϕ̃ ∈ Eκ
and

ψτ = ψ]ωτ + ψ[τ with ψ]θ = ϕ]θϕ̃
]
θ and ψ[τ = ϕ[τ ϕ̃

]
ωτ + ϕ]ωτ ϕ̃

[
τ + ϕ[τ ϕ̃

[
τ .

Furthermore, the norm is algebraic, i.e.

Nκ(ψ) ≤ Nκ(ϕ)Nκ(ϕ̃).
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Again, the proof is presented in Appendix A.1. To finish, we present some norm
inequalities that will be often used in the next parts. Let ϕ ∈ Eκ. The flat part of
its time average is zero, i.e. 〈ϕ〉[ = 0. Indeed, since 〈ϕ〉 is constant, it is therefore
periodic and belongs to Eκ for all κ ≥ 0 with norm Nκ(〈ϕ〉) = |〈ϕ〉|. Consequently,

Nκ(ϕ− 〈ϕ〉) = ‖ϕ] − 〈ϕ]〉‖κ + ‖ϕ[‖L∞exp .

Then, since 〈ϕ]〉 = ϕ̂]0,

‖ϕ] − 〈ϕ]〉‖κ =
∑

α∈Zr,α 6=0

eκ|α|
∣∣ϕ̂]α∣∣ ≤∑

α∈Zr
eκ|α|

∣∣ϕ̂]α∣∣ = ‖ϕ]‖κ.

It follows that
Nκ(ϕ− 〈ϕ〉) ≤ Nκ(ϕ).

Also, let 0 ≤ κ− ≤ κ+ and ϕ ∈ Eκ+ . From the definition of the time average (2.3)
and the inequalities (2.4) and (2.5), it clearly holds that

|〈ϕ〉| ≤ ‖ϕ‖ ≤ Nκ−(ϕ) ≤ Nκ+(ϕ). (2.7)

2.2.3 Assumptions on the linear map

This functional setting being laid out, let us describe how our problem fits into it.
Specifically, we introduce positive constants µ and M which quantify respectively
the regularity of a] and the size of τ 7→ aτ .

Assumption 2.11. The mapping τ 7→ aτ ∈ End(X) is in Eµ = E ]µ ⊕ E [ for some
µ > 0, i.e. it can be written

aτ = a]ωτ + a[τ

with a] ∈ Tµ and a[ ∈ L∞exp ∩ C0. Furthermore, we define a constant M > 0 such
that

‖a‖ ≤ Nµ(a) ≤M.

Remark 2.12. In the mono-frequency case r = 1, we may replace the analyticity
assumption on a] by a continuity assumption.

Since the goal of the present work is to apply numerical schemes, it is necessary
to quantify the regularity of τ 7→ aτ . Indeed, if a ∈ Cq, then a scheme of order s > q
will see its order reduced to q, even in the non-stiff regime.

Assumption 2.13. The mapping τ 7→ aτ is of class Cq for some q ∈ N. Addition-
ally, there exists C

(q)
a > 0 such that

sup
0≤p≤q

‖∂pτa‖ ≤ C(q)
a M.
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2.3 Results on the decomposition

We may now construct the micro-macro decomposition by performing asymptotic
expansions which separate the exponential dynamics in Eµ − 〈Eµ〉 (contained in a
change of variable Φε) from the average dynamics in 〈Eµ〉 (contained in a vector
field Aε). From these, we derive a micro-macro problem which can be solved with
uniform accuracy. This section describes this construction and states our results of
well-posedness and uniform accuracy. The proofs can be found in the next section.

2.3.1 Homological equation

Injecting the exact decomposition (2.2) into (2.1), we obtain the following “homo-
logical equation” on Φε and Aε,

∂τΦ
ε
τ = ε

(
aτΦ

ε
τ − Φε

τA
ε
)
, where Aε =

〈
Φε
〉−1〈aΦε〉, (2.8)

which may be rewritten by introducing a non-linear operator Λ,

∂τΦ
ε
τ = εΛ

{
Φε
}
τ

with Λ{ϕ}τ = aτϕτ − ϕτ 〈ϕ〉−1〈aϕ〉.

In particular if 〈ϕ〉 = id, then Λ{ϕ}τ = aτϕτ − ϕτ 〈aϕ〉.
Then, we define approximations of Φε and Aε by a fixed point iteration. Starting

from Φ[0] = id, we construct them with the relations

A[n] =
〈
Φ[n]
〉−1〈aΦ[n]〉, ∂τΦ

[n+1]
τ = εΛ

{
Φ[n]
}
τ
. (2.9)

2.3.2 Closure condition

In order to solve the homological equation as well as its approximations, one needs
to impose a closure condition on Φε (and consequently on Φ[n]). In this paper5, we
consider the so-called standard averaging by choosing 〈Φε〉 = id (and consequently
〈Φ[n]〉 = id). This yields the relations

A[n] = 〈aΦ[n]〉,

Φ[n+1]
τ = id +ε

∫ τ

0

Λ
{

Φ[n]
}
σ
dσ − ε

〈∫ •

0

Λ
{

Φ[n]
}
σ
dσ

〉
.

These iterations may be performed explicitly using symbolic calculus.

5Another common choice is Φε0 = id, which presents nice geometric properties but leads to
more complex calculations—see e.g. [CLMV20]. Since these properties are not needed here, we do
not consider this possibility, although all our estimates remain valid with this geometric closure
condition, up to some tweaking of the constants.
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2.3.3 Micro-macro variables

To motivate the interest of these approximations, let us immediately introduce the
micro-macro variables (v[n], w[n]) given by

uε(t) = Φ
[n]
t/εv

[n](t) + w[n](t)

with v[n](t) = etA
[n](

Φ
[n]
0

)−1
(u0). A straightforward computation yields the following

micro-macro problem, ∂tv
[n](t) = A[n]v[n](t), v[n](0) =

(
Φ

[n]
0

)−1
(u0),

∂tw
[n](t) = at/εw

[n](t)− δ[n]
t/εv

[n](t), w[n](0) = 0,

(2.11a)

(2.11b)

where we introduced the defect δ[n] defined as

δ[n]
τ =

1

ε
∂τΦ

[n]
τ −

(
aτΦ

[n]
τ − Φ[n]

τ A
[n]
)

= Λ{Φ[n−1]}τ − Λ{Φ[n]}τ (2.12)

with the convention Λ{Φ[−1]} = 0. This defect is of zero time average, i.e. 〈δ[n]〉 =
0, and quantifies the quality of approximation in the homological equation (2.8).
Combined with the drift v[n], it generates a source term in the equation on w[n].

The equation (2.11b) seems to be as stiff as the original equation (2.1) at first
glance, but we will see in the sequel that, due to the small size of w[n](0) and of δ[n],
w[n] remains of size O(εn+1) at all times. This initializes an induction to prove that
the derivatives of w[n] are bounded up to order n+ 1.

2.3.4 Well-posedness of the micro-macro decomposition

In the introduction of Section 2 we have claimed to construct a near-identity map
Φε
τ . In the construction of Φ[n], we introduce a parameter c ∈]0, 1[ and assume that
‖Φ[n] − id ‖ ≤ c. This will be valid for a small enough ε ≤ εn. The upper bound εn,
which depends on both n and c, will be constructed along the proof of the following
theorem that sums up the well-posedness of the micro-macro decomposition.

Theorem 2.14. Under Assumptions 2.7 and 2.11, for all n ∈ N, there exists εn > 0
such that the decomposition of order n exists, meaning that, for ε ≤ εn,

‖Φ[n] − id ‖ ≤ cε

εn
≤ c, (2.13)

|A[n]| ≤ (1 + c)M. (2.14)

Furthermore, integrating the defect t 7→ δ
[n]
t/ε yields an error of approximation of size

O(εn+1), which is translated through the relation

∀τ ≥ 0,

∣∣∣∣ε∫ τ

0

δ[n]
σ dσ

∣∣∣∣ ≤ ( ε

εn

)n+1

. (2.15)
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This theorem will be proven in Section 3.1. A direct consequence of (2.13) is

that the inverse (Φ
[n]
0 )−1 is well-defined and may be bounded

|(Φ[n]
0 )−1| ≤ 1/(1− c). (2.16)

This is crucial for the definition and the boundedness of v[n]. Moreover, a direct
by-product of the proof is the following bound on the defect

‖δ[n]‖ ≤M

(
ε

εn

)n
. (2.17)

The coefficient εn may be chosen of the form εn = ε0/(n+ 1)ν with ε0 depending
on c and the constants appearing in Assumptions 2.7 and 2.11. As such, increasing
the order of accuracy requires a reduction in the maximum size of ε. However, in
the mono-frequency case r = 1, ν = 0, this reduction does no longer appear and the
iterations converge for ε ≤ ε0

6.
As consequence of the well-posedness of the micro-macro decomposition, the

micro-macro variables v[n] and w[n] solutions to (2.11) are bounded in finite time as
stated by the following corollary (proven in Section 3.2).

Corollary 2.15. Under Assumptions 2.7 and 2.11, for any n ∈ N and any ε ≤ εn
(as defined in Theorem 2.14), the solutions to (2.11) are bounded at all times by

|v[n](t)| ≤ e(1+c)tM |u0|
1− c

, |w[n](t)| ≤
(
ε

εn

)n+1

et‖a‖
(
2e(1+c)tM−

) |u0|
1− c

.

Thus, for any T > 0, the micro-macro problem (2.11) is uniformly bounded on [0, T ]
with v[n] of size O(1) and w[n] of size O(εn+1).

Remark 2.16. Here we impose the order of the expansion and deduce the size of
the error term from it. However, the condition ε ≤ ε0/(n + 1)ν may be interpreted
the other way around, and one may wish to choose an “optimal” order n depending
on the size of ε. This yields the optimal exponential bound on w[n(ε)] for ν > r − 1
found in [Sim94].

2.3.5 Well-posedness of the derivatives and uniform accuracy

In order to analyze the order of numerical schemes based on the micro-macro prob-
lem, we also need estimates on time-derivatives of the defect.

6This is a known result of single-frequency linear averaging, available e.g. in [CCMM15] with
a straightforward proof. In their paper, these authors analyze the non-linear setting, and here we
analyze the multi-frequency setting with an added decay, further extending the method.
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Theorem 2.17. Under Assumptions 2.7, 2.11 and 2.13, the derivatives of the defect
up to order q remain of size O(εn). Specifically, there exists C

(q)
δ > 0, depending on

q, c and n, such that, for all ε ≤ εn,

sup
0≤p≤q

‖∂pτ δ[n]‖ ≤ C
(q)
δ M

(
ε

εn

)n
.

This theorem will be proven in Section 3.3. These estimates on the defect gives
estimates for the micro-macro variables v[n] and w[n] limited by the order of the
micro-macro decomposition n and the regularity q of the linear map a.

Corollary 2.18. The derivatives of the micro-macro problem (2.11) are uniformly
bounded up to order min(n, q)+1. Indeed, at fixed final time T and for all t ∈ [0, T ],
for all p ∈ {0, . . . ,min(n, q) + 1},

|∂pt v[n](t)| = O(1), |∂ptw[n](t)| = O(εn+1−p).

We now consider the discretization of the micro-macro problem (2.11) on the time
interval [0, T ]. To simplify the presentation, we discretize uniformly this time interval
introducing t` = `∆t for ` = 0, . . . , L where L + 1 is the number of discretization
points and ∆t = T/L the time step. We denote (v`, w`) the approximate values at
time t` of the solution of the micro-macro problem (2.11) for a given order n.

Corollary 2.19. Using a standard stable one-step scheme of non-stiff order s ≤
min(n, q), i.e. a method which exhibits order s of convergence when applied to (2.1)
with ε = 1 for all ∆t ∈ [0,∆t∗] (with ∆t∗ > 0 being the stability threshold, which
depends only on M), the micro-macro problem (2.11) can be solved with uniform
accuracy. More precisely, we have, for all ∆t ∈ [0,∆t∗], the bound

sup
ε∈(0,εn]

max
0≤`≤L

|Φ[n]

t`/ε
v` + w` − uε(t`)| ≤ C∆ts,

where the constant C is independent of ∆t.

Using a Runge-Kutta integral scheme, this order may be increased by one. For
instance, for the problem ∂ty(t) = bt/εy(t), the Runge-Kutta scheme of order 2 is

ỹ`+1/2 = y` + ∆t bt`/ε y
`, y`+1 = y` + ∆t b(t`+∆t/2)/ε ỹ

`+1/2,

and, by Runge-Kutta integral scheme of order 2, we mean the scheme

ỹ`+1/2 = y` +

(∫ t`+∆t/2

t`
bt/εdt

)
y`, y`+1 = y` +

(∫ t`+1

t`
bt/εdt

)
ỹ`+1/2.

The idea is to exploit the form of the right-hand side bt/εy(t) and to build a scheme

approximating
∫ t`+1

t`
bt/ε

(
y(t`)+

∫ t
t`
∂ty(σ)dσ

)
dt instead of directly

∫ t`+1

t`
∂ty(t)dt. For

a given quadrature rule, the first expression may generate a better approximation.

14



Remark 2.20. As noted in [CLT22], the initial data v[n](0) =
(
Φ

[n]
0

)−1
u0 may be

approximated explicitly to avoid the inversion of Φ
[n]
0 . It can be done such that the

initial condition of the micro part w[n](0) = u0−Φ
[n]
0 v[n](0) becomes of size O(εn+1)

which is enough to preserve the uniform accuracy result.

3 Proofs

We now present proofs of our theoretical results, in the same order as they are
presented. Namely, we start with the properties of the micro-macro decomposition,
i.e. of the maps Φ[n], A[n] and δ[n] as enounced in Theorem 2.14. We then focus
on the well-posedness of the micro-macro problem (v[n], w[n]) from Corollary 2.15.
After this, we show the boundedness of the derivatives of the defect δ[n], and in turn
of (v[n], w[n]). Finally, we use all this to prove our main result of uniform accuracy.

3.1 Well-posedness of the micro-macro decomposition

Since the fixed-point (2.10) is based on successive integrations, we shall use the
following lemma, which bounds an antiderivative from the integrated function.

Lemma 3.1. Let κ+ > 0 and ψ ∈ Eκ+. Then, for any κ− such that 0 ≤ κ− < κ+,
solutions ϕ to the equation

∂τϕ = ψ − 〈ψ〉

satisfy the inequality

Nκ−(ϕ− 〈ϕ〉) ≤ cI(κ+ − κ−)Nκ+(ψ − 〈ψ〉)

with

cI(κ) =

max
{

1, 1
cD

(
ν
κe

)ν}
if ν 6= 0,

max
{

1, 1
cD

}
if ν = 0.

(3.1)

For ϕ ∈ E0, 〈∂τϕ〉 = 0. This implies that if ϕ ∈ Eκ− and ∂τϕ ∈ Eκ+ , then

Nκ−(ϕ− 〈ϕ〉) ≤ cI(κ+ − κ−)Nκ+(∂τϕ).

We also present some estimates on the nonlinear operator Λ occurring in (2.9)
and (2.12).

Lemma 3.2 (Bounds on Λ). Let 0 ≤ κ ≤ µ and ϕ, ϕ̃ ∈ Eκ. Let c ∈]0, 1[. If

Nκ(ϕ− id) ≤ c and Nκ(ϕ̃− id) ≤ c,
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then there exists two constants Nc ≥ 2 and Lc ≤ Nc/c depending on c only, such
that

Nκ(Λ{ϕ}) ≤ NcM,

Nκ(Λ{ϕ} − Λ{ϕ̃}) ≤ LcMNκ(ϕ− ϕ̃).

The proofs of Lemmas 3.1 and 3.2 are postponed in Appendices A.2 and A.3.

We now proceed with the proof of Theorem 2.14. Fix n ∈ N and consider
0 ≤ k ≤ n. Owing to Lemmas 3.1 and 3.2, if Φ[k] is in some space Eκ+ such that
Nκ+(Φ[k] − id) ≤ c, then it possible to bound Φ[k+1] − id on the larger space Eκ− for
all 0 ≤ κ− < κ+. Here, we proceed by induction, by considering successive Φ[k] on
spaces Eµk with

µk =

(
1− k

n+ 1

)
µ, s.t. 0 = µn+1 < µn < . . . < µ1 < µ0 = µ.

We show the desired bound on Nµn(Φ[n] − id), which implies the well-posedness of
the n-th order change of variable. Additionally, we bound the approximate map A[n]

and we determine the size of the defect δ[n].

3.1.1 Estimates on the near-identity and average maps

We proceed by induction to show that, for all 0 ≤ k ≤ n+ 1, Nµk(Φ[k] − id) ≤ c. It
is clear that it holds for k = 0 since Φ[0] = id. Now, for 0 ≤ k ≤ n, we assume that
Φ[k] ∈ Eµk and Nµk(Φ[k] − id) ≤ c. Owing to the identity

∂τ
[
Φ[k+1] − id

]
= ∂τΦ

[k+1] = εΛ{Φ[k]},

as well as Lemma 3.1 using κ− = µk+1 and κ+ = µk and noticing that κ+−κ− = µn,
we have Φ[k+1] ∈ Eµk+1

and

Nµk+1
(Φ[k+1] − id) ≤ cI(µn)Nµk(εΛ{Φ[k]}).

By Lemma 3.2 and the induction hypothesis,

Nµk+1
(Φ[k+1] − id) ≤ cε

(
cI(µn)

Nc

c
M

)
.

Consequently, introducing

εn :=
c

cI(µn)NcM
, (3.2)

then for all ε ≤ εn,

Nµk+1
(Φ[k+1] − id) ≤ c

ε

εn
≤ c.
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In particular for k = n, we find

‖Φ[n] − id ‖ ≤ N0(Φ[n] − id) ≤ Nµn(Φ[n] − id) ≤ cε

εn
≤ c.

Moreover, proceeding as in Lemma 3.2, we obtain

|A[n]| = |〈aΦ[n]〉| ≤ Nµn(aΦ[n]) ≤ Nµn(a)Nµn(Φ[n]).

For one part Nµn(a) ≤M since µn ≤ µ, and for the other part,

Nµn(Φ[n]) ≤ Nµn(id) +Nµn(Φ[n] − id) ≤ 1 + c.

This finally yields
|A[n]| ≤ (1 + c)M.

3.1.2 Size of the defect

By definition, for all 0 ≤ k ≤ n,

δ[k] = Λ{Φ[k−1]} − Λ{Φ[k]} =
1

ε
∂τ
(
Φ[k] − Φ[k+1]

)
and δ[k] ∈ Eµk , with convention Λ{Φ[−1]} = 0. The Lipschitz property on Λ implies
that

Nµk(δ[k]) ≤ LcMNµk(Φ[k−1] − Φ[k]).

Since 〈Φ[k−1] − Φ[k]〉 = 0, and thanks to Lemma 3.1

Nµk(Φ[k−1] − Φ[k]) ≤ cI(µn)Nµk−1
(∂τ (Φ

[k−1] − Φ[k]))

= cI(µn)εNµk−1
(Λ{Φ[k−2]} − Λ{Φ[k−1]}).

We recognize the definition δ[k−1] = Λ{Φ[k−2]} − Λ{Φ[k−1]}, hence

Nµk(δ[k]) ≤ LcMcI(µn)εNµk−1
(δ[k−1]).

Using the expression of εn (3.2) and the bound cLc ≤ Nc, we finally obtain

Nµk(δ[k]) ≤ cLc
Nc

ε

εn
Nµk−1

(δ[k−1]) ≤ ε

εn
Nµk−1

(δ[k−1]).

An immediate induction, and the fact that µ0 = µ leads to

Nµn(δ[k]) ≤
(
ε

εn

)k
Nµ(δ[0]).
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Now δ[0] = −Λ{id} = −(a− 〈a〉), hence Nµ(δ[0]) ≤ Nµ(a) ≤M , and as such,

Nµn(δ[n]) ≤M

(
ε

εn

)n
.

Notice that a direct by-product of this proof is the bound between two consecutive
near-identity maps

Nµn+1(Φ
[n]−Φ[n+1]) ≤ cI(µn)εNµn(δ[n]) ≤ cI(µn)εM

(
ε

εn

)n
≤ c

Nc

(
ε

εn

)n+1

. (3.3)

A direct integration yields

ε

∫ τ

0

δ[n]
σ dσ = Φ[n]

τ − Φ
[n]
0 − Φ[n+1]

τ + Φ
[n+1]
0 ,

from which (3.3) may be plugged to find

sup
τ≥0

∣∣∣∣ε∫ τ

0

δ[n]
σ dσ

∣∣∣∣ ≤ 2‖Φ[n] − Φ[n+1]‖ ≤ 2Nµn+1(Φ
[n] − Φ[n+1]) ≤ 2c

Nc

(
ε

εn

)n+1

.

Thanks to the bounds Nc ≥ 2 and c ≤ 1, we finally obtain the desired result.

3.2 Well-posedness of the micro-macro problem

Proof of Corollary 2.15. By boundedness of A[n] due to the estimates (2.14), the
macro part v[n] is well-defined. Writing v[n](t) = v[n](0) +

∫ t
0
A[n]v[n](t′)dt′, a direct

application of Gronwall’s lemma and the estimate (2.16) on (Φ
[n]
0 )−1, we obtain

|v[n](t)| ≤ e(1+c)tM |u0|
1− c

. (3.4)

For the micro part, we use the integral formulation to obtain

|w[n](t)| ≤ ‖a‖
∫ t

0

|w[n](t′)|dt′ +
∣∣∣∣∫ t

0

δ
[n]
t′/εv

[n](t′)dt′
∣∣∣∣ .

A new application of Gronwall’s lemma and the fact that w[n](0) = 0 generates

|w[n](t)| ≤ et‖a‖ sup
t′∈[0,t]

∣∣∣∣∣
∫ t′

0

δ
[n]
t′′/εv

[n](t′′)dt′′

∣∣∣∣∣ .
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Using again the integral expression of v[n], we may integrate by parts to obtain∫ t

0

δ
[n]
t′/εv

[n](t′)dt′ =

(∫ t

0

δ
[n]
t′/εdt

′
)
v[n](0)−

∫ t

0

(∫ t′

0

δ
[n]
t′′/εdt

′′

)
A[n]v[n](t′)dt′

+

(∫ t

0

δ
[n]
t′/εdt

′
)(∫ t

0

A[n]v[n](t′)dt′
)
.

Applying a change of variable σ ← t′/ε or σ′ ← t′′/ε in the integrals of δ[n] followed
by a direct injection of the estimates from Theorem 2.14 and of the estimate (3.4),
we obtain∣∣∣ ∫ t

0

δ
[n]
t′/εv

[n](t′)dt′
∣∣∣ =

(
ε

εn

)n+1(
1 + 2(1 + c)M

∫ t

0

e(1+c)t′Mdt′
)
|u0|

1− c

≤ (2e(1+c)tM − 1)

(
ε

εn

)n+1 |u0|
1− c

.

Finally,

|w[n](t)| ≤
(
ε

εn

)n+1

et‖a‖
(
2e(1+c)tM − 1

) |u0|
1− c

.

Thus, for any T > 0, the micro-macro problem (2.11) is uniformly bounded on [0, T ]
with v[n] of size O(1) and w[n] of size O(εn+1).

3.3 Well-posedness of the derivatives

Similar to Lemma 3.2, we start by presenting some estimates on the derivatives of
the nonlinear operator Λ.

Lemma 3.3 (Bounds on derivatives of Λ). Under the assumptions of Lemma 3.2

and Assumption 2.13, there exists a constant N
(q)
c (depending on q, c and C

(q)
a ) such

that
sup

0≤p≤q
‖∂pτΛ{ϕ}‖ ≤ N (q)

c M sup
0≤p≤q

‖∂pτϕ‖.

Moreover, if there exists c(q) > 0 such that

sup
0≤p≤q

‖∂pτϕ‖ ≤ c(q) and sup
0≤p≤q

‖∂pτ ϕ̃‖ ≤ c(q),

then there exists a constant L
(q)
c such that

sup
0≤p≤q

‖∂pτ
(
Λ{ϕ} − Λ{ϕ̃}

)
‖ ≤ L(q)

c M sup
0≤p≤q

‖∂pτ
(
ϕ− ϕ̃

)
‖.
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The proof of this lemma is postponed in Appendix A.4.

We now want to establish that there exists C
(q)
δ > 0 such that

sup
0≤p≤q

‖∂pτ δ[n]‖ ≤ C
(q)
δ M

(
ε

εn

)n
.

We have already estimated ‖δ[n]‖ in (2.17). The proof for larger values of p follows
the same lines, using in addition Lemma 3.3.

We first need to bound ‖∂pτΦ[k]‖ for all 0 ≤ p ≤ q and for all 0 ≤ k ≤ n. The
bound for p = 0 is clear from (2.13). Under the assumption that a ∈ Cq, it is
easy to see from the definition of Λ and the definition of Φ[k] that Φ[k] ∈ Cq for all
0 ≤ k ≤ n. Owing to the identity (2.9) and Lemma 3.3, we have, for 0 < p′ ≤ q,

‖∂p′τ Φ[k]‖ = ε‖∂p′−1
τ Λ{Φ[k−1]}‖ ≤ ε sup

0≤p≤q
‖∂pτΛ{Φ[k−1]}‖ ≤ εN (q)

c M sup
0≤p≤q

‖∂pτΦ[k−1]‖.

Consequently, since Φ[0] = id, a straightforward induction gives that there exists c(q)

such that, for all 0 ≤ k ≤ n,

sup
0≤p≤q

‖∂pτΦ[k]‖ ≤ c(q).

Let us now turn to the estimation of the defect δ[k] = Λ{Φ[k−1]}−Λ{Φ[k]} for all
0 ≤ k ≤ n. By the previous bound on ‖∂pτΦ[k]‖ and Lemma 3.3,

sup
0≤p≤q

‖∂pτ δ[k]‖ ≤ L(q)
c M sup

0≤p≤q
‖∂pτ (Φ[k−1] − Φ[k])‖.

For 0 < p ≤ q, according to (2.9),

‖∂pτ (Φ[k−1] − Φ[k])‖ = ε‖∂p−1
τ (Λ{Φ[k−2]} − Λ{Φ[k−1]})‖ = ε‖∂p−1

τ δ[k−1]‖.

Thus, we obtain
sup

0≤p≤q
‖∂pτ δ[k]‖ ≤ L(q)

c Mε sup
0≤p≤q

‖∂pτ δ[k−1]‖

and an immediate induction leads to

sup
0≤p≤q

‖∂pτ δ[n]‖ ≤
(
L(q)
c Mε

)n
sup

0≤p≤q
‖∂pτ δ[0]‖.

Since δ[0] = −Λ{id} = −(a− 〈a〉), hence

sup
0≤p≤q

‖∂pτ δ[0]‖ ≤ sup
0≤p≤q

‖∂pτa‖ ≤ C(q)
a M,

we obtain the desired bound (3.3) denoting C
(q)
δ = C

(q)
a (εnL

(q)
c M)n. It concludes the

proof of Theorem 2.17.
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3.4 Uniform accuracy

Proof of Corollary 2.18. For the derivatives of v[n], we perform an induction which
is initialized using that v[n] is of size O(1) according to Corollary 2.15. Simply using

∂p+1
t v[n](t) = A[n]∂pt v

[n](t),

and the estimate (2.14) on A[n], we obtain, for all p = 0, . . . ,min(n, q) + 1,

∂pt v
[n](t) = O(1). (3.5)

For the derivatives of w[n], the induction is initialized by Corollary 2.15 from
which w[n](t) = O(εn+1). Then, we write

∂p+1
t w[n](t)

εn+1−(p+1)
= ε

p∑
p′=0

(
p

p′

)
∂p−p

′

τ at/ε
∂p
′

t w
[n](t)

εn+1−p′

−
p∑

p′=0

(
p

p′

)
εp−p

′ ∂
p′
τ δ

[n]
t/ε

εn
∂p−p

′

t v[n](t).

We bound the derivatives of aτ thanks to Assumption 2.13, the derivatives of δ[n]

by O(εn) thanks to Theorem 2.17 and the derivatives of v[n] using (3.5). Thus, by

induction hypothesis, ∂p
′

t w
[n](t) = O(εn+1−p′) for all p′ = 0, . . . , p, every term of the

sums of the right-hand side is uniformly bounded w.r.t. ε, and therefore the sum is
of size O(1), for all p = 0, . . . ,min(n, q) + 1. This concludes the induction.

Proof of Corollary 2.19. The micro-macro problem can be written as

∂ty(t) = f(t/ε, y(t)),

with y = (v[n], w[n]) and f(τ, y(t)) =

(
A[n] 0

−δ[n]
τ aτ

)
y(t). We use a one-step scheme of

non-stiff order s, written in the standard form

y`+1 = y` + ∆tF(t`/ε, y`,∆t)

such that the s-th order derivative of F with respect to the third variable is of the
same order as ∂s+1

t y (as it is for instance the case for standard and integral Runge-
Kutta schemes). It is well-known that the local consistency error e` = y(t`+1) −
y(t`)−∆tF(t`, y(t`),∆t) is bounded by

|e`| ≤

(
1

(s+ 1)!
sup

t∈[t`,t`+1]

|∂s+1
t y(t)|+ 1

s!
sup

h∈[0,∆t]

|∂shF(t`/ε, y(t`), h)|

)
∆ts+1.

Thus, by Corollary 2.18, the scheme retains its usual order s as soon as s ≤ min(n, q).
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4 Numerical experiments

In this section, we present some numerical experiments to illustrate the previous
results. After a brief introduction of the different schemes we use, we test our
strategy on a simple scalar problem for which we know the exact solution. This is
used to illustrate the different components of the method, e.g. the size of the micro
part w[n] and of its derivatives, and to validate our result of uniform accuracy. We
then apply the micro-macro method to an approximation of the Bloch equations.

4.1 Numerical schemes

We recall that we uniformly discretize the time interval [0, T ] defining t` = `∆t for
` = 0, . . . , L where L+1 is the number of discretization points and ∆t = T

L
the time

step. In the numerical experiments, we shall use the following numerical schemes
associated to (2.11):

– Explicit Euler (EE) scheme:{
v`+1 = v` + ∆tAv`,

w`+1 = w` + ∆t(a`w` − δ`v`),

– Integral Explicit Euler (EEint) scheme: v`+1 = v` + ∆tAv`,

w`+1 = w` +
( ∫ t`+1

t`
aσ/εdσ

)
w` −

( ∫ t`+1

t`
δ

[n]
σ/εdσ

)
v`,

– Runge-Kutta of order 2 (RK2) scheme:

ṽ`+1/2 = v` + ∆t
2
Av`,

w̃`+1/2 = w` + ∆t
2

(a`w` − δ`v`),

v`+1 = v` + ∆tAṽ`+1/2,

w`+1 = w` + ∆t
(
a`+1/2w̃`+1/2 − δ`+1/2ṽ`+1/2

)
,

– Integral Runge-Kutta (RK2int) scheme:

ṽ`+1/2 = v` + ∆t
2
Av`,

w̃`+1/2 = w` +
( ∫ t`+∆t/2

t`
aσ/εdσ

)
w` −

( ∫ t`+∆t/2

t`
δ

[n]
σ/εdσ

)
v`,

v`+1 = v` + ∆tAṽ`+1/2,

w`+1 = w` +
( ∫ t`+1

t`
aσ/εdσ

)
w̃`+1/2 −

( ∫ t`+1

t`
δ

[n]
σ/εdσ

)
ṽ`+1/2,
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where (v`, w`) and (v`+1, w`+1) are respectively approximations of
(
v[n](t`), w[n](t`)

)
and

(
v[n](t`+1), w[n](t`+1)

)
and A, a`, a`+1/2, a`+1, δ`, δ`+1/2, δ`+1 denote respectively

A[n], at`/ε, a(t`+∆t/2)/ε, at`+1/ε, δ
[n]

t`/ε
, δ

[n]

(t`+∆t/2)/ε
, δ

[n]

t`+1/ε
.

4.2 A scalar test problem

4.2.1 Presentation of the problem

In this part, we study from a numerical point of view the problem (2.1) with a
“sharp-flat” scalar map defined by aτ = a]ωτ + a[τ . We choose it such that the
equation roughly behaves as the applicative problem considered in the next section
with the advantage of knowing an exact solution. More precisely, we consider a
quasi-periodic part of the form

a]ωτ = −1 + b]ωτ , with b]ωτ =
1

r

r∑
p=1

cos(ωpτ),

and an exponentially decreasing part of the form

a[τ = γe−τ ,

where γ is a given constant. In this case, the exact solution of (2.1) is given by

uε(t) = u0e
−t+ε

(
B]
ωt/ε

+a[0−a[t/ε
)
, with B]

ωτ =

∫ τ

0

b]ωσdσ =
1

r

r∑
p=1

sin(ωpτ)

ωp
,

and it tends, as ε goes to 0, to

ulim(t) = u0e
−t.

In the sequel, we consider two choices of frequencies:

• Mono-frequency case (1F): r = 1 with ω1 = π,

• Multi-frequency case (3F): r = 3 with ω1 = 1, ω2 = π and ω3 =
√

5π.

We also take the following data : u0 = 1, T = 10.
The time evolution of the solution is presented in Fig. 1 for the problem with

no exponential decay (γ = 0), where the plot is restricted to short times (t ∈ [0, 2])
and where ε is fairly large, for visualization purposes. In both cases 1F (left) and
3F (right), the solution oscillates around the limit behavior ulim represented by
a solid black line. These oscillations are of small amplitude and seem essentially
proportional to ε, and while their quasi-periodic nature makes them seem chaotic
in the case 3F, the period 2πε/ω1 = 2ε appears clearly in the case 1F.
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Figure 1: Case 1F (left) and case 3F (right); time evolution of the exact solution uε

for various ε and of the exact limit solution ulim.

4.2.2 Micro-macro problems

Now, we write explicitly the different terms occurring in the micro-macro problem
(2.11) for n = 1 and n = 2, using the iterative relations (2.10) and the defect
expression (2.12).

Micro-Macro problem of order 1:
Since A[0] = −1 and Λ{Φ[0]}τ = b]ωτ + a[τ , straightforward computations yield

Φ[1]
τ = 1 + εC [1]

τ , A[1] = −1 and δ[1]
τ = −ε(b]ωτ + a[τ )C

[1]
τ

where we introduced
C [1]
τ = B]

ωτ − a[τ .

Consequently, at the first order, the solution is decomposed as Φ
[1]
t/εv

[1](t) + w[1](t)

where the micro-macro variables (v[1], w[1]) are solutions to the following problem
∂tv

[1](t) = −v[1](t), v[1](0) =
u0

1 + εC
[1]
0

,

∂tw
[1](t) = aτw

[1](t) + ε(b]ωτ + a[τ )C
[1]
τ v

[1](t), w[1](0) = 0.

Micro-Macro problem of order 2:
Going on with the iterative process, further computations give

Φ[2]
τ = Φ[1]

τ + ε2C [2]
τ , A[2] = −1, and δ[2]

τ = −ε2(b]ωτ + a[τ )C
[2]
τ
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where C
[2]
τ = C

[2]
ωτ

]
+ C

[2]
τ

[
is given by

C [2]
ωτ

]
=

1

r2

(
r∑
p=1

sin2(ωpτ)− 1/2

2ω2
p

+
r∑

p1=1

r∑
p2=1
p2 6=p1

ωp1 sin(ωp1τ) sin(ωp2τ) + ωp2 cos(ωp1τ) cos(ωp2τ)

wp2(w
2
p1
− w2

p2
)

)

and

C [2]
τ

[
= −a[τB]

ωτ +
1

2
(a[τ )

2.

Consequently, at the second order, the solution is decomposed as Φ
[2]
t/εv

[2](t) +w[2](t)

where the micro-macro variables (v[2], w[2]) are solutions to the following problem ∂tv
[2](t) = −v[2](t), v[2](0) =

u0

1 + εC
[1]
0 + ε2C

[2]
0

,

∂tw
[2](t) = aτw

[2](t) + ε2(b]ωτ + a[τ )C
[2]
τ v

[2](t), w[2](0) = 0.

(4.1)

In this specific case, A[2] is exactly equal to 〈a〉 but this is not the case in general.
It gives a macro variable v[2] that differs from the limit solution ulim only via the

perturbation in the initial data
(
Φ

[2]
0

)−1
(u0). Concerning the equation governing the

micro variable w[2], we clearly observe that the defect δ[2] is of size O(ε2).

In Figs. 2 and 3, we plot the micro-macro quantities of order 1 (n = 1) for ε = 0.5,
still for the pure quasi-periodic problem (γ = 0). They correspond respectively to
the cases 1F and 3F. These are computed with high precision, such that no issues
of numerical accuracy are considered at the moment.

On the left plots, the macro variable v[1] corresponds exactly to the limit solution
ulim since, for γ = 0, v[1](0) = u0. However, the addition of the near-identity
map Φ[1] allows to incorporate the fast oscillations and to get closer to the exact
solution uε (blue plus-marked curves in Fig. 1). On the right, we present the micro
variable w[1] that retains the information contained in the remainder. As expected
by Corollary 2.15, it is of size O(ε2). In addition, its second derivative ∂2

tw is of size
O(1) in accordance with Corollary 2.18. It confirms that the micro-macro problem
can be solved with a standard scheme. Again, the only difference between the cases
1F and 3F concerns the almost periodicity of oscillations, both for the near-identity
map and the macro variable. For this reason, we focus only on the more generic
multi-frequency case in the sequel.
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Figure 2: Case 1F, ε = 0.5; time evolution of v[1], Φ[1]v[1] and uε (left) and of w[1]

and an approximation of ∂2
tw

[1] (right).

Figure 3: Case 3F, ε = 0.5; time evolution of v[1], Φ[1]v[1] and uε (left) and of w[1]

and an approximation of ∂2
tw

[1] (right).

4.2.3 Errors on the pure quasi-periodic problem (γ = 0)

We now analyze the numerical resolution of the micro-macro problem. First, we
focus on the quasi-periodic case choosing γ = 0 (the addition of the exponentially
decaying term is studied in the next section).

To evaluate the numerical solutions, we consider the following error:

E(∆t, ε) = max
0≤`≤L

|uε(t`)− u`|,

where u` is the numerical solution either solving the stiff problem (2.1) or recon-
structed from the micro-macro problem (2.11).
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In Fig. 4 and Fig. 5, we present the errors obtained using the standard RK2
scheme. The numerical resolution of the stiff problem (2.1) does not yield suitable
results. Indeed, in Fig. 4 (left), in the standard regime ∆t� ε, the error for a given
∆t increases as ε decreases. Exiting this regime, for smaller ε, the error becomes
hard to predict. We observe pronounced peaks for some specific values of ε. It is
known that in the case 1F, the solution has a specific behavior when the time-step
resonates with the frequency of the problem, i.e. when ω1∆t/ε is a multiple of 2π.
For such a relation between ∆t and ε, a standard scheme completely fails. The
left-hand side of Fig. 4 demonstrates that this phenomenon still occurs in the quasi-
periodic case, even without perfect resonances. In the right-hand side, for large ε,
the error decreases with order 2 as expected, but when ε decreases, we observe an
order reduction with slopes closer to order 1. Even worse, for small ε, there are
some values of ∆t for which the error is of size O(1).

Figure 4: Case 3F, RK2 scheme solving the stiff problem (2.1); error with respect
to ε for various ∆t (left) and with respect to ∆t for various ε (right).

On the contrary, the numerical resolution of the micro-macro problem of order
2 (4.1) gives a uniform accuracy i.e. independent of ε as observed in the left-hand
side of Fig. 5. The errors associated to a given discretization step form a perfect
horizontal line. Having computed the micro-macro variables (v[2], w[2]), we may
decide to build u[2] without incorporating the information of the remainder, i.e.
using the relation u[2] = Φ[2]v[2] instead of u[2] = Φ[2]v[2] + w[2]. This is plotted in
the right-hand side of Fig. 5. As expected, we observe two regimes, with an error
of size O(ε3) for ε3 larger than ∆t2 and of size O(∆t2) for smaller values of ε. It
confirms that the macro variable enhanced by the near-identity map gives accuracy
for small values of ε and that relevant information for large values of ε is retained
by the micro variable.
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Figure 5: Case 3F, RK2 scheme solving the macro equation (2.11) for n = 2; error
with respect to ε for various ∆t defining u[2] = Φ[2]v[2] +w[2] (left) and u[2] = Φ[2]v[2]

(right).

The error with respect to ∆t is presented in Figs. 6–7 for various values of ε. In
Fig. 6, the same value is used for the non-stiff convergence order s of the scheme
and for the approximation order n of the micro-macro decomposition. The curves
corresponding to the various ε are indistinguishable straight lines, in accordance
with the flat lines of Fig. 5. This illustrates once more the uniform accuracy of the
method. Moreover, we actually get a slope of 1 in the left figure (case s = n = 1)
and of 2 in the right figure (case s = n = 2).

Figure 6: Case 3F, solving (2.11) for n = 1 and using EE (left) and for n = 2 and
using RK2 (right); error with respect to ∆t for various ε.

In Corollary 2.19, we state that the scheme should be of the same order as that
of the micro-macro expansion. We illustrate this in Fig. 7 (left) by using a standard
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scheme of order 2 but keeping the micro-macro approximation of order 1. At first
glance, the error is of size O(∆t2) but there exist some couples (∆t, ε) for which the
error deteriorates. On the contrary, perfect straight lines fully on top of each other
are observed in Fig. 7 (right) when using the RK2int scheme. It illustrates that the
convergence order may be increased by one using a Runge-Kutta integral scheme as
mentioned in Section 2.3.5.

Figure 7: Case 3F, solving (2.11) for n = 1 using RK2 (left) and RK2int (right);
error with respect to ∆t for various ε.

4.2.4 Errors adding the decreasing term

To finish the discussion on the scalar test problem, we finally add the exponentially
decreasing part a[τ choosing now γ = 1. In Fig. 8, we display the error with respect
to ε for various ∆t (left) and with respect to ∆t for various ε (right) solving the
micro-macro problem (2.11) of order n = 2 with the RK2 scheme. We obtain uniform
accurate results since all errors are of size O(∆t2) independently of ε. This last case
allows to check that the flat part in the sharp-flat decomposition does not bring
further numerical difficulties, in accordance with the feeling given by the proofs of
Section 3.
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Figure 8: Case 3F, γ = 1, solving (2.11) for n = 2 using RK2; error with respect to
ε for various ∆t (left) and with respect to ∆t for various ε (right).

4.3 Bloch model and a hierarchy of approximations

4.3.1 Presentation of the Bloch model

Let us briefly present a Bloch model that governs the time evolution of the density
matrix ρ ∈ Mn(C) associated to a quantum system described by n discrete energy
levels and forced by a given high frequency electromagnetic wave. More precisely,
it corresponds to the scaled matrix equation

iε2∂tρ(t) = [H0 − εV(t/ε2), ρ(t)] + iQ(ρ),

where [·, ·] denotes the commutator between two matrices, H0 = diag(E1, · · · , En)
is the free Hamiltonian expressed in terms of the (scaled) energies Ej associated
to each energy level, V is the time dependent electric potential matrix and Q is
a relaxation term that takes into account physical phenomena involving energy-
dissipating processes or collisions between particles. The density matrix ρ is made of
(non negative) diagonal quantities, denoted ρd,j, called populations and representing
the occupation number of the levels, and of off-diagonal quantities, denoted ρod,jk

(with j 6= k), called coherences and describing the probability of transitions from
one level to another.

A rigorous asymptotic analysis of this model (when the small parameter ε >
0 goes to 0) has been addressed in [BFCD04]. In that scaling, the evolution is
considered over long times, of size 1/ε2 and the influence of the electromagnetic
wave is weak, of size ε, and depends on the fast time scale t/ε2. Considering the
bipolar approximation, we assume that the entries of the interaction potential matrix
V are of the form

Vjk(τ) = V ](τ)pjk,
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where p is a given hermitian (dipolar moment) matrix and V ] is a given (quasi-)pe-
riodic function that takes into account the time dependence of the wave. Also, we
assume that the quantum system relaxes to a given equilibrium state, via relaxation
coefficients γjk which have an effect on the off-diagonal part of the density matrix
only. More precisely we consider thatQ(ρ)jk = −γjkρjk where relaxation coefficients,
uniform with respect to ε, are such that γjk = γkj > 0 for all j 6= k and γjj = 0 for
all j. The basic dynamics is thus given by a (damped) high-frequency oscillation,
with frequency 1/ε2. Indeed, denoting Ωjk = −i(Ej − Ek)− γjk, the coefficient ρjk
of the density matrix is solution to the equation

∂tρjk(t) =
1

ε2
Ωjkρjk(t) +

i

ε
V ](t/ε2)[p, ρ(t)]jk. (4.2)

Finally, at initial time t = 0, we assume a density matrix with vanishing coherences
and non negative populations ρinit

d .

Remark 4.1. Notice that, compared to the previous sections, the characteristic time
is now ε2 instead of ε. Consequently, τ now refers to t/ε2 and not to t/ε.

In this paper, we propose to use the micro-macro problem introduced and ana-
lyzed in the previous sections to obtain a uniformly accurate scheme. However, we
do not tackle the resolution of the entire Bloch model (4.2) with both coherences
and populations. It does not enter directly into the “sharp-flat” framework and
its numerical resolution is beyond the scope of this paper. Instead, we consider an
approximation (presented in the next section) that gives an equation governing the
populations only. Indeed, in [BFCD04], it has been proven that, in the limit ε→ 0,
the diagonal part of the density matrix solution to (4.2) tends to the solution of
a rate equation in which the transition rate is an appropriate time average of the
potential, while the off-diagonal part vanishes. Interestingly, the asymptotic anal-
ysis is based on successive approximations which, after some point, all fit into the
sharp-flat framework considered here.

4.3.2 Transformation to a “sharp-flat” problem

We first transform the model (4.2) into a closed equation governing the popula-
tions ρd only. As detailed in [BFCD04], this is done by writing the equation on
coherences as an integral equation and keeping only the first order expansion in ε
of the right-hand side. Since the coherences initially vanish, this depends only on
the populations, and inserting it into the population equation gives a time delayed
integro-differential equation. Finally, the delay being small, the populations tend to
be the solution of the delay-free equation

∂tρ
][
d,j =

∑
l 6=j

(Ψt/ε2)lj
(
ρ][d,l(t)− ρ

][
d,j(t)

)
, (4.3)
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where we introduced the time dependent transition rate

(Ψτ )lj = 2|plj|2 Re
[
V ](τ)

∫ τ

0

exp
(
Ωljσ

)
V ](τ − σ)dσ

]
. (4.4)

In [BFCD04], it is proven that, for all T > 0, there exists C > 0, independent of ε,
such that

‖ρd − ρ][d ‖L∞([0,T ],l1) ≤ Cε,

with the notation ‖ρd‖l1 =
∑n

j=1 |ρd,j|.
As it can be seen in Appendix B.1 where explicit expressions of (Ψτ )lj are com-

puted for a specific r-chromatic V ](τ), the transition rate defined in (4.4) is the
sum of a (quasi-)periodic part Ψ]

lj and an exponentially decaying part Ψ[
lj as in

Section 2. This is the reason why the problem (4.3)-(4.4) completed with the initial

condition ρ][d (0) = ρinit
d is described by the sharp-flat framework and can be solved

with uniform accuracy using the micro-macro problem (2.11) as we illustrate in the
sequel.

Remark 4.2. The equation (4.3) can be written

∂tρ
][
d (t) = at/ε2ρ

(1)
d (t)

introducing the population vector ρ][d = (ρ][d,1, · · · , ρ
][
d,n)T and defining the matrix map

τ 7→ aτ such that

(aτ )jk =

{
(Ψτ )kj if j 6= k,

−
∑

l 6=j(Ψτ )lj if j = k.

This form is used for the implementation. Nevertheless, for the simplicity of the
presentation, we consider in the sequel the matrix Ψτ instead of aτ and we have to
keep in mind that it is the matrix occurring in the rate equation.

4.3.3 Further approximations of the populations

Before presenting some numerical results, we shortly describe the next approxima-
tion in the hierarchy analyzed in [BFCD04] as well as the limit problem with the
averaged transition rate.

The transition rate Ψ defined in (4.4) can be approximated by a rate Ψ∞ defined
integrating up to +∞ instead of τ , i.e.

(Ψ∞τ )lj = 2|plj|2 Re
[
V ](τ)

∫ +∞

0

exp
(
Ωljσ

)
V ](τ − σ)dσ

]
. (4.5)
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As emphasized by the explicit computations presented in Appendix B.1, it cor-
responds to neglecting the exponentially decaying part Ψ[

lj. We obtain new ap-
proximate populations, denoted ρosc

d , that verify the following rate equation with a
quasi-periodic time dependent transition rate

∂tρ
osc
d,j(t) =

∑
l 6=j

(Ψ∞t/ε2)lj
(
ρosc

d,l (t)− ρosc
d,j(t)

)
. (4.6)

Finally, by averaging theory, Ψ∞ (as well as Ψ) can be approximated by a time
independent transition rate

〈Ψ〉lj = lim
T→+∞

1

T

∫ T

0

(Ψ∞σ )ljdσ = lim
T→+∞

1

T

∫ T

0

(Ψσ)ljdσ (4.7)

leading to the limit problem

∂tρ
lim
d,j (t) =

∑
l 6=j

〈Ψ〉lj
(
ρlim

d,l (t)− ρlim
d,j (t)

)
. (4.8)

Again, an explicit expression of 〈Ψ〉 is presented in Appendix B.1. In [BFCD04],

the convergence of ρ][d to ρlim
d (and thus of ρd to ρlim

d ) is proven to be in O(ε) for
quasi-periodic waves fulfilling the Diophantine inequality (2.6) and in o(1) for more
general KBM waves.

Obviously the averaged linear equation (4.8) is not stiff and does not present any
numerical difficulties. It is also the equation governing the zero order micro-variable
v[0] when a micro-macro decomposition is used to approximate either (4.3) or (4.6).

4.3.4 Numerical results

In this part, we present the numerical results obtained with the micro-macro schemes
described in Section 4.1. The micro-macro decomposition requires some offline sym-
bolic computations depending on the prescribed electromagnetic wave. Due to the
complexity of these computations, we limit our micro-macro decomposition to order
1, thereby obtaining second order uniform accuracy with the RK2int scheme. It
is also for this reason that we consider the equation (4.3) for the case 1F and the
equation (4.6) for the case 3F. An example of such computations is presented in
Appendix B.2 for the monochromatic forcing.

For the numerical tests, we use in the sequel n = 3 quantum levels with scaled
relative energies E1 = 0, E2 = 2 and E3 = 3, identical relaxation coefficients and
dipolar moment coefficients (γjk = 1−δjk and pjk = 1−δjk where δjk is the Kronecker
delta), T = 10 as final time and ρinit

d = [0, 0, 1] as initial population. The choice of
frequencies ωp in V ] is similar to the one of the previous section (case 1F and case
3F), with V ](τ) = 1

r

∑r
p=1 cos(ωpτ).
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Since the exact solution of the problem is not known, we define instead a reference
solution ρref

d to analyze the quality of the micro-macro solution ρapprox
d . We use

the EEint scheme directly applied to the equation (4.3) or (4.6) with a reference
discretization step ∆tref = 5.10−6, which yields an approximation accurate to at
least 10−5. The error we compute is

E(∆t, ε) = max
0≤`≤L

‖ρref,`
d − ρapprox,`

d ‖l1 ,

where L+1 is the number of discretization points used to compute the approximate
solution (L chosen as a divisor of Lref).

We first consider a monochromatic wave (case 1F). In Fig. 9, we present errors
obtained when we solve the stiff problem (4.3) with the standard EE scheme. As
expected, it does not yield suitable results with, for a given ∆t, increasing errors for
decreasing ε. In addition, there exists some values ε for which the error is of size
O(1) for any ∆t. On the contrary, when we apply the same standard EE scheme
to the micro-macro problem (2.11) associated to (4.3), we obtain uniform accurate
results as illustrated in Fig. 10. The reader may notice that for large values of ε, the
error is slightly degraded, in the sense that the error constant (which multiplies ∆ts

in the error) is slightly larger for ε > 0.1. However, this threshold is independent of
the time-step ∆t and remains uniformly bounded w.r.t. ε, which does not contradict
our result of uniform accuracy. This is furthermore verified when plotting the error
with respect with ∆t, which shows straight lines of slope 1. The lines are not on top
of each other only for values of ε larger than 0.1 (blue, orange, yellow and purple
results), but even for these values the slope remains unchanged.

Figure 9: Case 1F, solving (4.3) using EE; error with respect to ε for various ∆t
(left) and with respect to ∆t for various ε (right).
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Figure 10: Case 1F, solving (2.11) for n = 1 using EE; error with respect to ε for
various ∆t (left) and with respect to ∆t for various ε (right).

Then, we present in Fig. 11 results obtained when the micro-macro problem
(2.11) of order 1 is solved using the RK2int scheme. As already discussed for the
scalar test problem, it allows to increase the convergence error by one, giving uniform
errors of size O(∆t2). Notice that we are limited by the accuracy of the reference
solution. This is why we do not consider discretization steps smaller than 3× 10−3

in this context, since even for this fairly large time step, results are slightly affected.

Figure 11: Case 1F, solving (2.11) for n = 1 using RK2int; error with respect to ε
for various ∆t (left) and with respect to ∆t for various ε (right).

Finally, we consider a multi-chromatic wave (case 3F) for the decay-free prob-
lem (4.6). Thanks to the in-depth study of the scalar test case, we know that the
exponentially decreasing terms do not bring further numerical difficulties thus this
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test case remains representative of the problem (4.3). Results presented in Fig. 12
are qualitatively similar to the previous ones. It confirms that our approach is suit-
able to describe the long time evolution of populations for a quantum system forced
by a quasi-periodic electromagnetic wave.

Figure 12: Case 3F, solving (2.11) for n = 1 using EE; error with respect to ε for
various ∆t (left) and with respect to ∆t for various ε (right).

5 Conclusion

This paper was concerned with a generic linear differential equation, with a time-
dependent forcing which can be split in a quasi-periodic part and an exponentially
decaying part. Adapting averaging techniques, we performed a micro-macro decom-
position, which was proven to be well-posed. We then obtained suitable estimates
on time-derivatives of the micro and macro variables meaning that the micro-macro
problem can be solved with uniform accuracy using a standard scheme.

Using a toy problem for which the exact solution is known, we illustrated the
different components of this approach e.g. the size of the micro-part and of its
derivatives, thereby validating the uniform accuracy results. Then, we successfully
applied it to a transitional model derived from the Bloch model.

A continuation of this work is to propose an approach to solve numerically the
original Bloch model (4.2) governing both populations and coherences. We believe
the information learnt in this paper on the populations given by the transitional
model can be enriched using predicted coherences in the population equation and
then correcting them with an appropriated integral scheme.
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A Auxiliary proofs

In this appendix, we present proofs of some technical results used in Sections 2 and
3.

A.1 Sharp-flat decomposition

Proof of the direct sum defined in Definition 2.9. To prove that E ]κ and E [ are in
direct sum, we show that any function ϕ ∈ E ]κ ∩ E [ is necessarily zero. Since ϕ ∈ E ]κ
it can be represented as Fourier series and for all τ ≥ 0,

ϕτ = ϕ]ωτ =
∑
α∈Zr

ei(α·ω)τ ϕ̂α where ϕ̂α =
1

(2π)r

∫
Tr
e−iα·θϕ]θdθ.

Thanks to Arnold’s theorem,

ϕ̂α = lim
T→∞

1

T

∫ T

0

e−iα·(ωτ)ϕ]ωτdτ = lim
T→∞

1

T

∫ T

0

e−i(α·ω)τ)ϕτdτ.

Since we also suppose that ϕ ∈ E [, ‖ϕ‖ ≤ e−τ‖ϕ‖L∞exp and therefore∣∣∣∣ 1

T

∫ T

0

e−i(α·ω)τ)ϕτdτ

∣∣∣∣ ≤ 1

T

∫ T

0

e−τdτ‖ϕ‖L∞exp ≤
1

T
‖ϕ‖L∞exp ,

which tends to 0 as T tends to infinity. Hence, ϕ̂α = 0 for all α and ϕ = 0.

Proof of Proposition 2.10. Let ϕ and ϕ̃ in Eκ. They are uniquely decomposed as
ϕτ = ϕ]ωτ + ϕ[τ and ϕ̃τ = ϕ̃]ωτ + ϕ̃[τ . So, the product ψ = ϕϕ̃ verifies

ψτ = (ϕϕ̃)τ = ϕ]ωτ ϕ̃
]
ωτ + ϕ]ωτ ϕ̃

[
τ + ϕ[τ ϕ̃

]
ωτ + ϕ[τ ϕ̃

[
τ .

We introduce ψ] and ψ[ such that ψ]ωτ = ϕ]ωτ ϕ̃
]
ωτ and ψ[τ = ϕ]ωτ ϕ̃

[
τ + ϕ[τ ϕ̃

]
ωτ + ϕ[τ ϕ̃

[
τ .

We first estimate

|eτψ[τ | ≤ ‖ϕ]‖|eτ ϕ̃[τ |+ |eτϕ[τ |(‖ϕ̃]‖+ ‖ϕ̃[‖)
≤ ‖ϕ]‖‖ϕ̃[‖L∞exp + ‖ϕ[‖L∞exp(‖ϕ̃]‖+ ‖ϕ̃[‖) < +∞. (A.1)

Hence ψ[ ∈ E [. Now we compute the Fourier series∑
α∈Zr

eiα·θϕ̂ϕ̃α =
∑
α∈Zr

eiα·θ(ϕ̂ ? ̂̃ϕ)α =
∑
α∈Zr

eiα·θ
∑
β∈Zr

ϕ̂β ̂̃ϕβ−α
=
∑
β∈Zr

eiβ·θϕ̂β
∑
γ∈Zr

eiγ·θ ̂̃ϕγ = ϕ]θϕ̃
]
θ. (A.2)
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By the uniqueness of the decomposition, we therefore have ψ ∈ E and ψτ = ψ]ωτ +ψ[τ .
Since we have only used the fact that ϕ and ϕ̃ are in E , E is an algebra. Let us now
prove that Eκ is an algebra. To this aim we estimate Nκ(ψ). From equation (A.2)

‖ψ]‖κ = ‖ϕ]ϕ̃]‖κ ≤
∑
γ∈Zr

eκ|γ|
∑

α,β∈Zr,α+β=γ

∣∣∣ϕ̂α ̂̃ϕβ∣∣∣
≤
∑
α,β∈Zr

eκ|α|eκ|β| |ϕ̂α| |̂̃ϕβ| = ‖ϕ]‖κ‖ϕ̃]‖κ.
From (A.1), we also immediately have

‖ψ[‖L∞exp ≤ ‖ϕ
]‖κ‖ϕ̃[‖L∞exp + ‖ϕ[‖L∞exp(‖ϕ̃]‖κ + ‖ϕ̃[‖L∞exp).

Gathering the above estimates

Nκ(ψ) ≤ Nκ(ϕ)Nκ(ϕ̃).

This in particular implies that Eκ is an algebra.

A.2 Integration in sharp-flat spaces

Proof of Lemma 3.1. Thanks to the sharp-flat decomposition we can write

ψτ − 〈ψ〉 =
∑
α 6=0

ei(α·ω)ψ̂α + ψ[τ .

Integrating this

ϕτ = 〈ϕ〉+
∑
α 6=0

ei(α·ω)

i(α · ω)
ψ̂α +

∫ τ

+∞
ψ[σdσ,

where 〈ϕ〉 is the integration constant, considering that the sequel has zero mean.
This yields the sharp-flat decomposition for ϕ:

ϕ]ωτ = 〈ϕ〉+
∑
α6=0

ei(α·ω) ψ̂α
i(α · ω)

and ϕ[τ =

∫ τ

+∞
ψ[σdσ.

We first estimate

‖ϕ[‖L∞exp = sup
τ≥0

eτ
∣∣∣∣∫ τ

+∞
ψ[σdσ

∣∣∣∣ ≤ sup
τ≥0

∫ +∞

τ

e(τ−σ)‖ψ[‖L∞expdσ = ‖ψ[‖L∞exp .

Then

‖ϕ] − 〈ϕ〉‖κ− =
∑
α 6=0

eκ−|α|
|ψ̂α|
α · ω

=
∑
α 6=0

e−(κ+−κ−)|α|

α · ω
eκ+|α||ψ̂α|.
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Using the Diophantine condition

‖ϕ] − 〈ϕ〉‖κ− ≤ cν(κ−)
∑
α 6=0

eκ+|α||ψ̂α| = cν(κ−)‖ψ] − 〈ψ〉‖κ+ ,

where we have defined

cν(κ) =
1

cD
sup
x>0

xνe−κx =

{
1
cD

(
ν
κe

)ν
if ν 6= 0,

1
cD

if ν = 0.

Gathering the above estimates and using the definition of cI (3.1)

Nκ−(ϕ− 〈ϕ〉) = ‖ϕ− 〈ϕ〉‖κ− + ‖ϕ[‖L∞exp
≤ max(1, cν(κ+ − κ−))

(
‖ψ] − 〈ψ〉‖κ+ + ‖ψ[‖L∞exp

)
= cI(κ+ − κ−)Nκ+(ψ − 〈ψ〉).

A.3 Properties of the Λ operator

Proof of Lemma 3.2. By definition

Λ{ϕ}τ = aτϕτ − ϕτ 〈aϕ〉.

The algebraic properties of Proposition 2.10 and inequalities (2.7) ensure the direct
bound

Nκ(Λ{ϕ}) ≤ Nκ(a)Nκ(ϕ) +Nκ(ϕ)|〈aϕ〉| ≤ (1 +Nκ(ϕ))Nκ(a)Nκ(ϕ).

Since Nκ(ϕ− id) ≤ c,

Nκ(ϕ) ≤ Nκ(id) +Nκ(ϕ− id) ≤ 1 + c.

Gathering theses estimates, we obtain

Nκ(Λ{ϕ}) ≤ (1 + (1 + c))M(1 + c) = (2 + c)(1 + c)M.

Last
Λ{ϕ} − Λ{ϕ̃} = a (ϕ− ϕ̃)− ϕ

〈
a (ϕ− ϕ̃)

〉
− (ϕ− ϕ̃) 〈aϕ̃〉,

and this can be bounded as

Nκ(Λ{ϕ} − Λ{ϕ̃}) ≤ (1 + (1 + c) + (1 + c))MNκ(ϕ− ϕ̃) = (3 + 2c)MNκ(ϕ− ϕ̃).

Setting Nc = (2+c)(1+c) and Lc = 3+2c, we obtain the estimates of Lemma 3.2.

Remark. The same type of estimates are also valid with no closure assumption.
In this case, we find that 〈ϕ〉−1 can be bounded from above by 1/(1 − c), and the
constants should be Nc = 2(1 + c)/(1− c) and Lc = 4/(1− c)2.
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A.4 Properties of the derivatives of the Λ operator

Proof of Lemma 3.3. Using the Leibniz’s product rule

∂pτ (aτϕτ ) =

p∑
p′=0

(
p

p′

)
∂p
′

τ aτ∂
p−p′
τ ϕτ ,

we have

‖∂pτ (aϕ)‖ ≤
(

sup
0≤p≤q

‖∂pτa
)(

sup
0≤p≤q

‖∂pτϕ‖
) p∑
p′=0

(
p

p′

)
≤ 2qC(q)

a M sup
0≤p≤q

‖∂pτϕ‖.

Recalling also that |〈aϕ〉| ≤M(1 + c), we obtain

sup
0≤p≤q

‖∂pτ (Λ{ϕ})‖ = sup
0≤p≤q

‖∂pτ (aϕ− ϕ〈aϕ〉‖ ≤ (2qC(q)
a + 1 + c)M sup

0≤p≤q
‖∂pτϕ‖.

Moreover, assuming also that sup
0≤p≤q

‖∂pτϕ‖ ≤ c(q) and sup
0≤p≤q

‖∂pτ ϕ̃‖ ≤ c(q),

sup
0≤p≤q

‖∂pτ (Λ{ϕ} − Λ{ϕ̃})‖ = sup
0≤p≤q

∥∥∂pτ (a(ϕ− ϕ̃)− ϕ
〈
a(ϕ− ϕ̃)

〉
− (ϕ− ϕ̃)〈aϕ̃〉

)∥∥
≤ (2qC(q)

a + c(q) + 1 + c)M sup
0≤p≤q

‖∂pτ (ϕ− ϕ̃)‖.

Setting N
(q)
c = 2qC

(q)
a + 1 + c and L

(q)
c = N

(q)
c + c(q), we obtain the estimates of

Lemma 3.3.

B Bloch computations

In this appendix, we present some computations to clarify the description and the
implementation of the rate equations derived from the Bloch model, considering
that the quantum system is forced by a (quasi-)periodic wave.

B.1 Explicit expressions of the transition rates

We consider a r-chromatic wave of the form

V ](τ) =
E0

r

r∑
p=1

cos(ωpτ).

Using the computation∫ τ

0

eΩσ cos(ω(τ − σ))dσ =
ΩeΩτ

Ω2 + ω2
+

ω

Ω2 + ω2
sin(ωτ)− Ω

Ω2 + ω2
cos(ωτ)
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and introducing the coefficients

R(τ, ω,Ω) = Re

(
ωeΩτ

ω2 + Ω2

)
and S(τ, ω,Ω) = −Re

(
ΩeΩτ

ω2 + Ω2

)
, (B.1)

we obtain expressions for Ψ and Ψ∞ defined respectively in (4.4) and (4.5). They
read

Ψτ = Ψ]
ωτ + Ψ[

τ and Ψ∞τ = Ψ]
ωτ

with

(Ψ]
ωτ )lj =

2E2
0

r2
|plj|2

r∑
p1=1

r∑
p2=1

cos(ωp1τ)
(

sin(ωp2τ)R(0, ωp2 ,Ωlj)+cos(ωp2τ)S(0, ωp2 ,Ωlj)
)
,

and

(Ψ[
τ )lj = −2E2

0

r2
|plj|2

r∑
p1=1

r∑
p2=1

cos(ωp1τ)S(τ, ωp2 ,Ωlj).

We remark that the term eΩτ appears only in the expression of Ψ[
τ meaning that

the frequencies of the term Ψ]
ωτ are those of the electromagnetic wave, the eigenfre-

quencies of the quantum system acting only on the amplitude coefficients. Then,
the average transition rate defined in (4.7) may be cast as

〈Ψ〉lj =
E2

0

r2
|plj|2

r∑
p=1

S(0, ωp,Ωlj).

Notice that

S(0, ω,Ωlj) =
γlj
2

(
1

γ2
lj + (ω + El − Ej)2

+
1

γ2
lj + (ω − El + Ej)2

)
.

This explicit expression emphasizes that some resonances can occur between the
high-frequency oscillations of the electromagnetic wave (carried by ω) and that of
the quantum system (carried by the eigenfrequencies El − Ej).

B.2 Off-line computations for the Bloch micro-macro prob-
lem

For the simplicity of the presentation, we consider in this appendix a mono-chromatic
wave V ](τ) = E0 cos(ωτ) and compute coefficients needed for the implementation
of the micro-macro scheme of order 1 associated to equation (4.6). The treatment
of the r-chromatic wave and the addition of the exponentially decreasing terms
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associated to equation (4.3) only make more complex the expressions and do not
bring further difficulties.

For this restricted case, we simplify notations introduced in (B.1) denoting

Rlj = R(0, ω,Ωlj) and Slj = S(0, ω,Ωlj).

The transition rate reads

(Ψ∞τ )lj = (Ψ]
ωτ )lj = 2E2

0 |plj|2
(

cos(ωτ) sin(ωτ)Rlj + cos2(ωτ)Slj

)
.

and its average is given by
〈Ψ〉lj = E2

0 |plj|2Slj.

Then, in order to obtain the near-identity map at first order Φ[1], we need to compute
the integral

(Υ∞τ )lj :=

∫ τ

0

(
(Ψ∞σ )lj − 〈Ψ〉lj

)
dσ =

E2
0 |plj|2

ω

(
sin2(ωτ)Rlj + sin(ωτ) cos(ωτ)Slj

)
as well as its average

〈Υ∞〉lj =
E2

0 |plj|2

2ω
Rlj.

Finally, in order to compute A[1] as well as Λ
{

Φ[1]
}

, we consider the product

(Ψ∞τ )lj(Υ
∞
τ )ki =

2E4
0 |plj|2|pki|2

ω

(
cos(ωτ) sin3(ωτ)RljRki + cos3(ωτ) sin(ωτ)SljSki

+ cos2(ωτ) sin2(ωτ)
(
RljSki + SljRki

))
.

Since 〈cos(ωτ) sin3(ωτ)〉 = 〈cos3(ωτ) sin(ωτ)〉 = 0 and 〈cos2(ωτ) sin2(ωτ)〉 = 1
8
, the

average of this product is

〈Ψ∞lj Υ∞ki 〉 =
E4

0 |plj|2|pki|2

4ω

(
RljSki + SljRki

)
.

45


