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Abstract: The development of a capnometry wristband is of great interest for monitoring patients at
home. We consider a new architecture in which a non-dispersive infrared (NDIR) optical measurement
is located close to the skin surface and is combined with an open chamber principle with a continuous
circulation of air flow in the collection cell. We propose a model for the temporal dynamics of the
carbon dioxide exchange between the blood and the gas channel inside the device. The transport
of carbon dioxide is modeled by convection–diffusion equations. We consider four compartments:
blood, skin, the measurement cell and the collection cell. We introduce the state-space equations
and the associated transition matrix associated with a Markovian model. We define an augmented
system by combining a first-order autoregressive model describing the supply of carbon dioxide
concentration in the blood compartment and its inertial resistance to change. We propose to use a
Kalman filter to estimate the carbon dioxide concentration in the blood vessels recursively over time
and thus monitor arterial carbon dioxide blood pressure in real time. Four performance factors with
respect to the dynamic quantification of the CO2 blood concentration are considered, and a simulation
is carried out based on data from a previous clinical study. These demonstrate the feasibility of such
a technological concept.

Keywords: capnometry; wearable health device; continuous monitoring; blood carbon dioxide
concentration; carbon dioxide transcutaneous pressure; convection diffusion equation; compartmental
model; state-space Markovian model; augmented dynamical system; Kalman filter

1. Introduction

Respiration is a basic metabolic function of living organisms. On the one hand, it
includes oxygen intake, which is used to produce energy at the cellular level. On the
other hand, the CO2 that is freed during the energy production is evacuated back into the
environment. Most gas transportation within the organism is achieved via the circulatory
system, whereas the gas exchange between the organism and the environment occurs at the
level of the alveolocapillary barrier, although a secondary part of respiration takes place
through the skin barrier [1].

The CO2 in the blood is dissolved partly in its molecular species (aqueous carbon
dioxide CO2 (aq) and carbonic acid H2CO3) and partly—due to the alkaline property of
blood—in its deprotonated, ionic species (as carbonate CO2−

3 or bicarbonate, which is also
called hydrogen carbonate, HCO−3 ). The proportion of CO2 dissolved in plasma determines
the pH of the blood [2]. The carbon dioxide pressure

(
PCO2

)
is linked to the concentration

of the molecular species
(

CCO2

not
= [CO2]

)
not
= for “notation”. Thus, an increase in the

concentration of dissolved carbon dioxide induces a decrease in the blood pH. Metabolism
is optimal for a pH of the blood in the range of 7.35 and 7.45, i.e., slightly alkaline [3]. It
is the renal system, and the carbonic anhydrase enzyme in particular, that controls the
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blood’s pH in the human body. An excess in pH might induce alkalosis and a deficit an
acidosis. Both have a severe impact on human metabolism and the proper functioning
of human organs [4]. Consequently, the monitoring of PCO2 by capnometry is of major
clinical interest.

Indeed, an increase in the carbon dioxide concentration might be a consequence of, for
instance, the respiration track that is injured or obstructed, no longer evacuating CO2. This
may not only happen in the case of chronic obstructive pulmonary disease (COPD) but
also when an infectious disease, such as COVID-19, affects the lung. Capnometry is also
useful to detect alveolar hypoventilation or hypercapnia. For clinical use, monitoring the
carbon dioxide level is important for the follow-up of anesthesia or mechanically assisted
respiration. It is used, among other things, for the monitoring of newborns in incubators.
The main method to monitor respiration is to control the composition of the inhaled and
exhaled air. An alternative method is to study gas exchange through the skin. When
considering the development of a wearable device, this alternative solution is attractive.
Controlling the air at the mouth or nose implies wearing a mask or a cannula, which is
uncomfortable for longitudinal studies. Monitoring skin respiration—for instance, at the
forearm—is more comfortable for the user. Developing a capnometry wristband would be
of high benefit for homecare patient monitoring. However, it is a technological challenge to
measure and monitor the low gas concentrations in a robust and reliable way. To this end,
accurate instrumentation is necessary, in addition to relevant modeling and data processing.
The model contributes to optimizing the design of the sensing device, by constructing the
direct path on which the data processing will rely, and generating synthetic data to test the
signal processing.

Several review papers on capnometry have been published [5–10]. The standard
technology to measure carbon dioxide transcutaneous pressure is based on Severinghaus’s
electrochemical principle [11]. To obtain a shorter response time, we opt here for the optical
non-dispersive infrared (NDIR) principle. This technology has been first introduced in the
pioneering works of Thiele and Eletr et al. [12,13]. Some recent papers are proposing to
use optical sensors based on fluorescent or luminescent dyes [10,14,15]. Currently, most of
the capnometry devices rely on a model for a steady-state, static equilibrium between the
carbon dioxide pressure within the blood and within the measurement device. In addition,
most of the devices are based on a closed chamber measurement principle. In this work,
we propose to consider an open chamber principle. Technology that combines, sequentially,
an accumulation of carbon dioxide in a closed loop and a circulation of a nitrogen flow
to flush the accumulated carbon dioxide has also been proposed [14,16–18]. In the article
of Iitani et al. [18], the accumulation phase lasted 60 s and the flushing lasted 30 s. The
measurement is carried out at the beginning of the accumulation phase. The concentration
is computed from the measurement of the accumulation flow rate. Each measurement
is separated by the duration of the entire measurement cycle, which is one minute and
thirty seconds.

In this work, we suggest using an open chamber principle including a continuous
air flow. The use of nitrogen as carrier gas is not convenient for an autonomous wearable
device. Hence, we propose to introduce air convection in the collection cell to speed up
the carbon dioxide diffusion through the skin into the ambient air. However, this also
comes with a dilution of the CO2 concentration in the measurement cell. Hence, we need to
study the compromise between the response time and the carbon dioxide gas concentration
within the measurement cell. In order to study such an open chamber principle, we propose
a model for the temporal dynamics of the carbon dioxide exchange between blood and the
gas channel within the measurement device.

Signal processing methods include a large variety of approaches. An introduction
is presented in the book chapter by Grangeat on signal processing from Nanoscience:
Nanobiotechnology and Nanobiology [19], with a section dedicated to data extraction, in-
cluding sub-sections on extracting physical quantities, systems approach, inverse problems,
and regularized solutions, and sections on sensor correction and data analysis. In a pa-
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per by Marco and Gutiérrez-Gálvez on signal and data processing for machine olfaction
and chemical sensing [20], they explain that relevant signal processing is mandatory to
improve the robustness of the instrumentation. They establish a clear distinction between
regression techniques to improve quantification, classification for the identification of
the species, and clustering for grouping species of similar properties. Our objective is to
develop a model-based signal processing approach for regression as described in a book
by Candy [21]. We propose a model based on physical equations, describing the main
physical and physiological parameters that must be taken into account for estimating the
carbon dioxide concentration in the blood. This estimated value can then be incorporated in
classification techniques associated with statistical models, combined with feature selection
techniques, for patient diagnosis purposes, as described, for instance, in the article by Al
Fahoum et al. [22] for the identification of coronary artery diseases using photoplethys-
mography signals. Here, we introduce a dynamic model for the dynamic monitoring of
carbon dioxide blood content. We also propose to use a Kalman filter [23–26] to estimate
the carbon dioxide concentration in the blood vessels recursively over time and thus to
monitor the carbon dioxide blood pressure in real time to create a signal processing method
that can be embedded in the wristband. Whereas static equilibrium is associated with Fick’s
first-order diffusion equation, any dynamic model must be based on Fick’s second-order
diffusion equation. Hence, carbon dioxide transportation can and will be modeled by
convection–diffusion transport equations.

The exchange of carbon dioxide, inert gas, and volatile organic compounds between
blood and air has been studied in detail to describe lung respiration [27–31]. Skin respiration
has been reported for amphibians [32] but is less explored in humans [33,34]. Due to the
effect of CO2 on the atmosphere and its impact on climate, CO2 emission has been studied
in many application fields related to environmental studies. For instance, the emission of
CO2 is associated with soil respiration, water respiration, vegetation respiration, and fruit
respiration. Models associated with this type of respiration have also been reported. The
exchange of carbon dioxide between a moving gas phase and a moving liquid phase through
a membrane has been studied extensively for a hollow-fiber membrane extractor [35–39].
The objective here is to capture carbon dioxide gas from the environment to fix it in
the liquid phase. The CO2 is transported in the opposite direction with respect to our
desorption case, i.e., when studying diffusion through the skin barrier from the liquid
(blood) phase to the gas (air) phase.

Although closed chambers are suitable for studying the emission flow rate of the
carbon dioxide pressure at a static equilibrium [40], in order to study the temporal evolution
of the CO2 blood concentration, we propose an open chamber sensor architecture. The CO2
will be evacuated using air flow through the collection cell. The air flow will be produced
by an external pump. To keep the time delay between carbon dioxide emission and carbon
dioxide measurement as short as possible, the NDIR optical measurement will be located
as close as possible to the surface of the skin. A schematic description of the measurement
principle is depicted in Figure 1. Our model is divided in four compartments: blood, in
which the unknown concentration is to be estimated; skin, which behaves like a membrane;
the measurement cell, in which the NDIR measurement is actually carried out; and the
collection cell, where air convection is forced.

From a technological point of view, this new device is based on a previous version of
the CAPNO device (a capnometry wristband device named CAPNO), as described in our
previous articles [41,42]. The main difference here is that the measurement cell is placed
directly at the contact of the skin; the flow through the measurement cell is transverse,
and it relies only on diffusion. Additionally, the flow convection that was induced only
by the gradient of temperature in the thermofluidic channel is now induced by an air flow
pump placed outside the collection cell, either at the input or at the output. However, the
skin is still heated by a thermocircuit placed over the grid in contact with the skin, and the
measurement is achieved by a near-infrared (IR) measurement combining an IR black body
source placed on one side of the measurement cell and two thermopiles on the opposite side.
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The IR radiation propagates along the measurement cell transversally with respect to the
propagation direction of the carbon dioxide, which is normal to the skin surface, including
multiple reflections on the lower grid in contact with the skin and the upper grid in contact
with the collection cell. Two filters in front of each thermopile select the light wavelength
to achieve the dual-wavelength measurement. We use a detection wavelength of 4.26 µm
corresponding to a peak of the absorption intensity of carbon dioxide and a reference
wavelength of 3.91 µm corresponding to a minimum of the absorption intensity for water.
To obtain an autonomous wearable device, the electronics are embedded. They drive both
the data acquisition, the pump, the heating, and the data exchange using Bluetooth Low
Energy (BLE) protocols. Microelectromechanical system sensors (MEMS) are placed in each
cell to measure continuously the temperature, pressure and relative humidity.

Figure 1. The operating mode of the capnometry wristband, CAPNO, relies on an NDIR optical
measurement cell close to the surface of the skin and an air convection flow through the collection
cell, which collects the CO2 diffused from the blood through the skin and the measurement cell.

The objective of this article is to describe a dynamic model of carbon dioxide transport
through the skin on a capnometry wristband (named CAPNO) in order to introduce the
theoretical framework for the development of this wearable device and to prove with
simulated data the feasibility of this open chamber technology concept for the continuous
monitoring of carbon dioxide blood concentration [43]. In Section 2, on Materials and
Methods, we present the dynamic model that describes the CO2 transport from blood-
irrigated tissues through the skin to the measurement and the collection cells, followed by
the methods for model evaluation. In Section 2.1, we present the continuous space and
time dynamical model, including, in Section 2.1.1, a description of the four compartments’
geometry (blood, skin, measurement and collection cells); in Section 2.1.2, a description
of the measurement of the CO2 concentration with dual-wavelength IR thermopiles; in
Section 2.1.3, the assumptions leading to the boundary conditions; and, in Section 2.1.4, the
physiological and physical parameters on which the model relies. Then, in Section 2.2, we
describe the discrete state-space representation of CO2 transport for the development of the
simulation and inference software. This defines the direct model with the spatial discretiza-
tion described in Section 2.2.1, the temporal discretization described in Section 2.2.2, the
exogenous inputs described in Section 2.2.3, and the state-space model and the associated
noise model described in Section 2.2.4. In Section 2.3, we present the model inversion to
estimate the carbon dioxide concentration Cin blood

CO2
and the associated pressure Pin blood

CO2
at

the input of the blood compartment from the carbon dioxide concentration Cmeas
CO2

computed
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from the NDIR optical measurement in the measurement cell. In Section 2.3.1, we derive a
Kalman filter for the recursive estimation of the blood carbon dioxide concentration. In
Section 2.3.2, we derive from the carbon dioxide blood concentration the carbon dioxide
blood pressure. Then, in Section 2.4, we introduce the four performance parameters that
we propose to characterize the quantification of the CO2 blood concentration and its dy-
namic behavior. In Section 3, we present the results on simulated data, the performance
parameters for the direct problem, the inverse problem and the complete model. We show
also the performance parameters on a simulation of a realistic clinical test. In Section 4,
we propose a discussion on these results and on the potential applications of this dynamic
model. In Section 5, we present a general conclusion on the feasibility of this innovative
capnometry wristband concept. We also discuss the contribution of the model to designing
accurate instrumentation, to computing simulated data and to developing model-based
signal processing.

2. Materials and Methods

The model is built upon the four compartments described in Figure 1. We consider
a simplified one-dimensional (1D) diffusion–convection model of the transport equation
along the z-axis perpendicular to the skin surface.

2.1. Continuous Space–Time Model of the CO2 Transport

To study the transport of CO2 species through the different media, we will start
by writing down the conservation laws. Given a number N of moles of the species in a
compartment of limited volume V, consider the net flux J (in mol·s−1) through its boundary
Ω (according to the surface normals pointing outward from the volume), as illustrated in
Figure 2.

Figure 2. CO2 desorption between blood and ambient air, and a system model based on the concate-
nation of our physiological and device models.

The transport equation is based on the conservation law of species in fluid mechan-
ics [44]. The number of moles of the species in the volume changes with time according to
the net flux J through the surface. Hence, writing down the number of moles within the
volume V as a function of time leads to the following equation:

N(t + δt) = N(t) +
∫ δt

t
−J(τ) dτ (1)
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where the minus sign stems from the fact that the surface normals are pointing outwards.
If we consider an infinitesimal time step, we find that

.
N(t) = lim

δt→0+

N(t + δt)− N(t)
δt

= lim
δt→0+

1
δt

∫ δt

t
−J(τ) dτ = −J(t) (2)

The net flux through the surface Ω that governs the dynamics of the quantity N is an
integration of local fluxes j (in mol·m−2·s−1) flowing through the boundary according to
the surface normal

→
n (r) for all r ∈ Ω. We may thus write

.
N(t) = −J(t) =

∫
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−j(r, t)·→n (r) dr (3)

The fluxes j(r, t) can be decomposed as a sum of three contributions:

• A diffusive flux jdiff(r, t), which is given by Fick’s first law of diffusion [45–48]:

jdi f f (r, t) = −D(r)∇C(r, t) = D(r)∇N(r, t)
dV(r)

= D(r)
∇N(r, t)

dV(r)
(4)

where the latter equality holds true only if the infinitesimal compartments are of constant
volume (which is the case in Euclidean coordinates but is not the case in spherical nor
in cylindrical coordinates). The diffusion constant D(r) depends on the medium and the
species of CO2.

• A convective flux jconv(r, t), which is the media’s convective flow, transporting the
species with a speed u(r) in m·s−1:

jconv(r, t) = u(r)C(r, t) (5)

Noting that a change in moles for a specific volume can now be expressed with the
aid of the divergence theorem as

.
NV(t) =

∂

∂t

∫
V

C(r, t) =
∫
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for any subvolume; hence, the integrands must be equal in all coordinates 𝑟 ∈ 𝑉: 𝜕𝜕𝑡 𝐶(𝑟, 𝑡) = ∇൫𝐷(𝑟)𝛻𝐶(𝑟, 𝑡) − 𝑢(𝑟)𝐶(𝑟, 𝑡)൯ (7) 

• Distributed source. If, in addition, we have a distributed source or sink within the 
volume that is, respectively, generating or absorbing moles at a constant rate, an ad-
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∇(D(r)∇C(r, t)− u(r)C(r, t))dr (6)

This is a convection–diffusion equation that is the equivalent of Fick’s second law [45,46,49]
of a species’ concentration within a transporting medium that allows for a continuous
concentration profile that is differentiable almost everywhere. In this case, we find the
dynamics’ equations by considering that the left- and right-hand side must be valid for any
subvolume; hence, the integrands must be equal in all coordinates r ∈ V:

∂

∂t
C(r, t) = ∇(D(r)∇C(r, t)− u(r)C(r, t)) (7)

• Distributed source. If, in addition, we have a distributed source or sink within the
volume that is, respectively, generating or absorbing moles at a constant rate, an
additional term can be added to the right-hand side of convection–diffusion differential
Equation (6) as a distributed source/sink term R(r, t) (in mol·m−3·s−1). If the system
interacts with the external world, modeled as exogeneous fluxes entering or leaving
the system through the surface as a flux jsurf(r, t) (in mol·m−2·s−1), this can be added
in the conservation equation as

.
NV(t) =

∂

∂t

∫
V

C(r, t) =
∫
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(8)

The concentration profile is not everywhere differentiable, this is especially so where
the diffusion profile D(r) or the convection speed u(r) is discontinuous, which is the case
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at the interface between two different media. In this case, the continuity of the pressure
and of the flux must be guaranteed at the interface, and the continuity equations yielding
the appropriate interface boundary conditions are given as

lim
ε→0+

j(r + ε, t)− j(r− ε, t) = 0 flux continuity

lim
ε→0+

C(r+ε)
H+

− C(r−ε)
H− = 0 pressure continuity

(9)

where H− and H+ are Henry’s constants of the medium before and after the interface,
respectively. The flux continuity implies that there is no build-up of specifies on the
interface, the pressure continuity transcribes the fact that the partial pressure of CO2
depends on its species in the specific media, and the pressure must be in equilibrium across
the interface.

In what follows, the concentration of the specific species will label with a superscript
referring to the medium or the compartment in which it is dissolved, considering the
following four compartments: blood (blood-irrigated tissues), skin (dermal tissue), meas
(measurement cell), and coll (collection cell). In addition, we will solely consider the
transport equations according to an axis orthogonal to the skin surface (which will be
labeled as the z-axis) considering that all net fluxes in the (x, y)-plane at any given z-
coordinate are null (constant concentration in the plane, at least in the proximity of the
considered axis), unless explicitly introduced.

2.1.1. Introducing the Four Compartments

When we refer to a compartment, we refer to a part of space in which the transporting
medium is constant, which implies that the diffusion constant D is constant in that compart-
ment. Four compartments will be distinguished: blood compartment, skin compartment,
measurement cell and collection cell.

In the blood compartment, convection is determined by the net blood velocity, trans-
porting the aqueous CO2.

The skin compartment defines a more rigid structure that does not allow for convec-
tion [45,46,50]. This is a purely diffusive medium.

The measurement cell has no forced convective air flow (the transporting medium) but
houses the measurement device, which is a dual-wavelength IR thermopile, the functioning
of which is detailed below.

The collection cell has a convective air flow in order to avoid any building up of CO2
concentration in the measurement cell. However, higher convection speeds, although
allowing for faster dynamics, will result in a reduction in the gas’ concentration and hence a
lower signal-to-noise ratio at the measurement device. In contrast, lower convection speeds
will allow for build-up effects of the CO2 concentration, resulting in an auto-regressive
system favoring lower frequencies and, hence, slower dynamics.

2.1.2. Measuring CO2 Concentration with Dual-Wavelength IR Thermopiles

The detectors of the measurement cell consist of two thermopiles sensitive to incident
photon energy. A measurement and reference thermopile are used with their optical filters
centered around the nominal wavelengths λ1 = 4.26 µm and λ2 = 3.91 µm, respectively.
In order to reduce the contribution of other gases such as ambient air and water vapor, the
NDIR differential measurement calculates the logarithm of the ratio of intensities at these
two wavelengths.

Uλ1 and Uλ2 are the values read out from the thermopiles in the measurement cell
in the presence of carbon dioxide, and U0,λ1 and U0,λ2 are the values read out from the
thermopiles in the measurement cell in the absence of carbon dioxide. Considering the
attenuation model of the Beer–Lambert’s law, this attenuation depends linearly on the
molar concentrations of the constituents. With the chosen wavelengths λ1 and λ2, the
attenuation measurement is a linear function of the molar concentration of carbon diox-
ide, independently of the concentration of water vapor. The attenuation profile kCO2 of
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CO2 at the two wavelengths is very discriminating, i.e., kCO2(λ1) � kCO2(λ2 ), but not
discriminative for water (H2O), i.e., kH2O(λ1) ≈ kH2O(λ2). We may thus write

Cmeas
CO2
≈ − 1

kCO2(λ1)
ln
(

Uλ1 /Uλ2

U0,λ1 /U0,λ2

)
(10)

In order to account for the non-linear effects associated with the wavelength spectrum
of IR light, the multiple lengths of light pathways due to light reflection and the non-linear
response of the thermopile IR sensors, in Grangeat et al. [51,52], a linear-quadratic model
using a non-integer power of gas concentration has been described in order to relate the
thermopiles’ read-out voltage to the CO2 concentration in the measurement cell. This
model has been first proposed by Madrolle et al. for the quantification of a mixture of two
diluted gases with a single metal oxide sensor (MOX) [53–56].

Knowing the logarithm of the voltage ratio, one can estimate the CO2 molar con-
centration (Cmeas

CO2
) in the measurement cell optical pathway using the following relation-

ship (11) [53–56], where m, n, u are the (non-negative and real) quadratic model parameters.
If ` = ln

[
U0,λ2 /U0,λ1

]
is not known, the intercept becomes another free parameter of

the model:
−ln

[
Uλ1 /Uλ2

]
≈ `+ m·

(
Cmeas

CO2

)u
+ n·

(
Cmeas

CO2

)2u
(11)

We place ourselves within the framework of a supervised calibration with the existence
of Ncal samples of known composition Cmeas

CO2,i. Using a Levenberg–Marquardt algorithm,
the model parameters—m,n,u—are estimated by minimizing the following function Ψ:

Ψ =
Ncal

∑
i=1

[
ln
[

Uλ1(i)
Uλ2(i)

]
+ `+ m·

(
Cmeas

CO2,i

)u
+ n·

(
Cmeas

CO2,i

)2u
]2

(12)

2.1.3. Boundary Conditions for the System

The choice of boundary conditions is a prerequisite to solve the transport equations.
In their article [57], Vaidya and Nitsche described the boundary conditions they have
chosen for the simulation of the convection–diffusion equation of solutes in media with
piecewise properties. In their article [36], Qazi et al. have described the boundary condi-
tions they used to describe the kinetics of the carbon dioxide gas—liquid absorption on a
membrane contactor.

At the interfaces, we will only conserve the diffusive flow, which means that the excess
or default flow will leave or enter the system just before the interface.

For the direct model, we will consider the concentration at the extremal point of the
known blood compartment (Dirichlet boundary condition). On the opposite side in the
collection cell, we will suppose that there is no diffusive flow (zero derivative or von
Neumann condition).

For the inverse model, we will consider the concentration obtained from the known
thermopile voltage measurement (Dirichlet boundary condition) and suppose there is no
diffusive flow at the extremal point of the blood compartment (von Neumann condition).

2.1.4. Physical Parameters for the Transcutaneous CO2 Transport

Figure 2 illustrates the characteristic parameters used in the 1D transport model. Note
that in order to allow a better visualization of the figure, the relative scales along the z-axis
do not correspond to the relative size of each compartments.

We have shown in this figure the inflow of blood. At the blood/skin interface, only
the diffusive flux is conserved. We assume there is an outflow at the skin level within the
blood to carry the convective flow, which does not cross the interface.

The air flow at the level of the collection cell allows mechanical convection to be
established. We represent an incoming flow by the inflow arrows on both sides and an
outgoing flow at the upper edge of the collection cell.
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The variables and parameters of the transport model of carbon dioxide from the blood
to the ambient air through the skin and the measuring device are defined in the following
tables. The parameters are taken from the literature.

Length and width parameters of Tables 1 and 2 are inherited from the device geometry.
It defines the surface geometry, too.

Parameters defined in Tables 1–3 have been used to generate the data.

Physical Parameters for Blood Medium

The table’s symbols are outlined in the following equations:

ublood
z =

Qblood

Ablood (13)

Ablood = ∆x·∆y (14)

where:

• Qblood is the blood flow (cm3·s−1);
• Ablood is the surface of the transverse section of the blood compartment (cm2);
• ublood

z is the average blood velocity along the z axis (cm·s−1);
• ∆x is the length of the blood compartment (cm);
• ∆y is the width of the blood compartment (cm).

Table 1. The characteristic physical parameters of the blood compartment at 42 ◦C.

Variable Symbol Measurement Unit Value Reference

Height ∆zblood cm 0.3

Length ∆x cm 5

Width ∆y cm 2

Diffusion coefficient
At 42 ◦C Dblood cm2·s−1 2.2·10−5 Ghasem [58], Al Marzouqi [38],

and Cao [59]

Average velocity ublood
z cm·s−1 1.83·10−4 Formaggia [60], Vlachopoulos

[61], and Guyton [62]

Henry coefficient Hblood adim

Ostwald’s solubility
coefficient of the carbon

dioxide at 42 ◦C
βblood mol·m−3·mmHg−1 0.0275

Temperature Tblood K 315.15

Blood flow Qblood cm3·s−1 1.8·10−3 Chatterjee [16]

Blood surface Ablood cm2 10

Using the following formula, Formula (15), we compute the Henry constant for the
blood based on the Ostwald’s solubility coefficient for the blood:

Hblood = βblood RTblood (15)

where:

• R is the ideal gas constant—R = 0.0623637 m3·mmHg·K−1mol−1;
• βblood is the Ostwald’s solubility coefficient of the carbon dioxide in the blood at 42 ◦C

(mol·m−3·mmHg−1);
• Tblood is the blood temperature (K).
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We need to achieve an extrapolation to obtain the βblood Ostwald’s solubility coefficient
of the carbon dioxide in the blood at 42 ◦C based on published values of the solubility
coefficient given at 37 ◦C and 40 ◦C [3,33,63–68]:

βblood = 3.08× 10−2 mol·m−3·mmHg−1 at 37 ◦C (16)

βblood = 2.88× 10−2 mol·m−3·mmHg−1 at 40 ◦C (17)

Thus,
βblood = 2.75× 10−2 mol·m−3·mmHg−1 at 42 ◦C

(18)

Finally, we obtain Hblood = 0.54.

Physical Parameters for the Skin

We consider hereafter that the skin compartment corresponds to the stratum corneum,
which has the main effect on the diffusion of the carbon dioxide from the blood compart-
ment to the measurement cell through the skin.

Table 2 lists parameters used to characterize the skin. These are mean values, which
are subject to intra- and inter-individual variations. For instance, skin elasticity might have
an influence on skin compression induced by the wristband, which might have an influence
on blood flow rate and average velocity.

Table 2. The characteristic physical parameters of the skin compartment at 42 ◦C.

Variable Symbol Measurement Unit Value Reference

Height ∆zskin cm 1.6·10−3

Length ∆x cm 5

Width ∆y cm 2

Diffusion coefficient Dskin cm2·s−1 10−7

Average velocity uskin
z cm·s−1 0

Henry coefficient Hskin adim 1.6 Scheuplein [33]

Transcutaneous carbon dioxide flow rate
per exchange surface area at 42 ◦C

Φout skin

A nl·cm−2·min−1 290

Bunsen carbon dioxide solubility at 42 ◦C αsc
CO2

mL(STPD)/mLsolvent
mmHg 19.2·10−4 [33,64–66]

Skin conductance (volume flow rate) at 42 ◦C Gvol
di f f pres

Ablood
mL·s−1cm−2·mmHg−1 121·10−9 Itoh [69]

Mass transfer coefficient ksc
p m·s−1 1.0·10−6

Krogh’s diffusion constant Kr
sc
CO2

cm2·s−1·mmHg−1 1.9·10−10

The diffusion coefficient Dskin is computed from Equation (19):

Dskin =
Kr

sc
CO2

αsc
CO2

(19)

where:

• αsc
CO2

is the Bunsen carbon dioxide solubility in the stratum corneum (mL(STPD)/mL
solvent/mmHg) (STPD stands for standard temperature, pressure, and dryness);

• Kr
sc
CO2

is the Krogh’s diffusion constant (cm2·s−1·mmHg−1).
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The Bunsen carbon dioxide solubility in the stratum corneum αsc
CO2

is given by the
following expression:

αsc
CO2

=
Hskin

Pair (20)

where:

• Hskin is the Henry coefficient of the skin;
• Pair is the total air pressure at skin or membrane temperature.

If we suppose that Hskin = 1.6 [33] and Pair is 831.21 mmHg at 42 ◦C, we obtain:

αsc
CO2

= 19.2·10−4 mL(STPD)/mLsolvent
mmHg

at 42 ◦C (21)

The Krogh’s diffusion constant is given by the following expression:

Kr
sc
CO2

=
ksc

p ·∆zskin

Pair (22)

where:

• ksc
p is the mass transfer coefficient of the stratum corneum (m·s−1);

• ∆zskin is the width of the stratum corneum (µm).

The mass transfer coefficient of the stratum corneum is computed from the con-
ductance of the skin with respect to pressure difference per surface area using the
following expression:

ksc
p =

Gvol
di f f pres

Ablood Pair10−2 (23)

where:

• Gvol
di f f pres is the conductance of the skin with respect to pressure difference for the

surface area of the device (mL·s−1·mmHg−1);

•
Gvol

di f f pres

Ablood is the volumic conductance of the skin with respect to pressure difference per
surface area (mL·s−1·cm−2·mmHg−1);

• Ablood is the exchange surface area (cm2).

The conductance of the skin is computed from the flow rate per exchange surface area
coming out of the skin in the open air:

Gvol
di f f pres

Ablood =
Φout skin

Ablood
(

Pblood
CO2

− Pambient air
CO2

)
·60·106

≈ Φout skin

AbloodPblood
CO2
·60·106

(24)

where:

• Φout skin is the flow rate coming out of the skin (nl·min−1);
• Pblood

CO2
is the carbon dioxide pressure in the blood (mmHg);

• Pambient air
CO2

is the carbon dioxide pressure in the ambient air (mmHg);
• Ablood is the exchange surface area (cm2).

Itoh et al. [69] gives the following values for the skin conductance (volume flow rate)

per surface area
Gvol

di f f pres

Ablood at the forearm level:
77·10−9 mL·s−1·cm−2·mmHg−1 at 37 ◦C;
130·10−9 mL·s−1·cm−2·mmHg−1 at 43 ◦C.
By linear interpolation, we compute the skin conductance (volume flow rate) per

surface area
Gvol

di f f pres

Ablood at 42 ◦C, which gives 121·10−9 mL·s−1·cm−2·mmHg−1.
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If we assume the carbon dioxide pressure in the blood is 40 mmHg, and we neglect
the carbon dioxide pressure in the ambient air, this corresponds to a flow rate per exchange

surface area coming out of the skin in the open air
Gvol

di f f pres

Ablood of 290 nl·cm−2min−1.
Below, we assume that the total air pressure Pair at 42 ◦C is 831.21 mmHg, the Bunsen

carbon dioxide solubility in the stratum corneum αsc
CO2

at 42 ◦C is 19.2 10−4 mL(STPD)/mL solvent
mmHg ,

and the height of the stratum corneum ∆zskin is 16 µm.
Using the above expressions, we obtain the following values for the skin parameters:

• ksc
p mass transfer coefficient of the stratum corneum: 1.0·10−6m·s−1;

• Kr
sc
CO2

Krogh’s diffusion constant: 1.9·10−10 cm2s−1mmHg−1;
• Dskin diffusion coefficient: 1.0·10−7m2·s−1.

Physical Parameters for the Gaseous Media in the Column of the Capnometry Device

Typical value for the air flow is 1 mL/min
(
i.e., 16.7·10−3 cm3·s−1). We varied this

flow from 0.1 to 10 mL/min.
Typical value of CO2 concentration in ambient air is 0.01613 µmol/cm3. We suppose

here that a filter is placed in front of the air inlet of the collection cell, and this value is taken
as null.

Table 3. The characteristic physical parameters of the gaseous medium in the measurement and the
collection cell of the capnometry device at 42 ◦C.

Variable Symbol Measurement Unit Value Reference

Length ∆x cm 5

Width ∆y cm 2

Height ∆zmes cm 0.25
∆zcol cm 0.25

Diffusion coefficient
at 42 ◦C Dair cm2·s−1 0.18 Qazi [36] and Eslami

Faiz [39]

Average velocity umes
z cm·s−1 0

ucol
z cm·s−1 1.67 · 10−3

Henry coefficient Hair adim 1

Air flow Qair cm3·s−1 Typically,
16.7·10−3

Carbon dioxide concentration in
the ambient air Cin col air

CO2
mol/m3 0.01613

Carbon dioxide pressure in the
ambient air at 42 ◦C Pambient air

CO2
mmHg 0.32

2.2. A Discrete Space–Time CO2 Transportation Model

For an introduction to computer-aided modeling of material behavior, including
physical and chemical parameters, and the mathematical tools for implementing those
models in order to perform simulations, we refer to the referenced book of Jansens et al. [70]
on computational materials engineering and, in particular, to chapter 5 by Kozeschnik
on modeling solid-state diffusion [71]. The resolution of partial differential equations
(PDE) using the finite difference method is described in the textbook by Langtangen and
Ling [72]. Chapter 3 is dedicated to diffusion equations [73]. The textbook by Scherer on
computational physics gives insight on numerical methods to compute physical models, in
particular, for the discretization of differential equations [74].

We use a discrete state-space model in order to compute the time sequence of concen-
tration profiles recursively along the transport path of the carbon dioxide, given a temporal
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sequence of carbon dioxide blood concentrations at the lower extremum of the blood
compartment. This defines the recursive algorithm used for measurement data simulation;
i.e., the previous time instant will provide the initial condition for the computation of the
concentration profile along the transport path at the next time instant.

The following conventions for our notations are used: continuous scalar fields and
constants will be denoted by light face characters. The space–time variables will appear as
arguments between parentheses. Discrete representations will be given using arguments
between square brackets; these quantities will appear in boldface lower-case characters
when regrouped into a vector or boldface upper-case characters when regrouped into a
matrix (a linear operator).

Table 4 lists the parameters and notations used.

Table 4. Model parameters.

Parameter Explanation Set Member

N
Total number of points considered

to discretize the continuous spatial space
(state vector dimension)

N

Ncomp Total number of interior points considered in
each compartment N

∆zcomp Thickness value of each compartment R

c State vector RN×1

A Transition matrix applied to state ck+1 RN×N

pinterface Slack variable for compartment boundaries

q Command vector RX×1

y Data observation vector RM×1

G Command matrix RN×X

h Observation vector of observation
response function RN

w Modelization noise vector RN×1

v Observation noise RM×1

Q Modelization noise covariance matrix RN×N

R Observation noise covariance matrix RM×M

K Kalman gain matrix RN×M

F Differential spatial operator RN×N

ϕ Signal regularity parameter R

2.2.1. Spatial Discretization

In order to facilitate the discretization, we will use a finite difference scheme with
regular, equidistant spatial sampling per compartment. At the boundaries we introduce a
slack variable pinterface as

pinterface def
= lim

ε→0+

C− (z− ε)

H−
= lim

ε→0+

C+(z + ε)

H+
, (25)

where the subscripts ·− and ·+ refer, respectively, to the compartment below and above
the interface (the z-axis pointing upwards). The slack variables can be eliminated from the
equations using the interface conditions.

As per Figure 3, we have Ncomp interior points for each compartment, together with
two boundaries for which we have either a boundary or an interface condition, allow-
ing to eliminate these from the set of unknowns. Given the thickness values of ∆zcomp
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for the four compartments, we have the (relative) interface positions and may divide
each compartment by placing Ncomp equidistant points, which are separated from their
neighbours by a distance of δzcomp = (Ncomp + 1)−1∆z. This results in a position vector,
z = (z[1], z[2], · · · , z[n])T , where the superscript ·T is the transposition operator. If we
note the concentration sampled in the ith point of the grid by c[i](t) = C(zi, t), we may
form a concentration vector:

c(t) =
(
c[1](t) c[2](t) · · · c[n](t)

)T (26)

Figure 3. Geometrical model scheme and sample points considered for discretizing the continuous
spatial space.

We define a stencil for the first-order and second-order spatial derivative operators
within a given compartment determining the ith equation using the following expression:

c[i+1](t)−c[i−1](t)
z[i+1]−z[i−1] = c[i+1](t)−c[i−1](t)

2 δz

4 c[i+1](t)−2 c[i](t)+c[i−1](t)
(z[i+1]−z[i−1])2 = c[i+1](t)−2 c[i](t)+c[i−1](t)

(δz)2

(27)

The above system of equations then gives the following expression:

∂
∂t c[i](t) =

(
D

(δz)2 +
u

2δz

)
c[i− 1](t)− 2D

(δz)2 c[i](t) +
(

D
(δz)2 − u

2δz

)
c[i + 1](t) (28)
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We may thus express the spatial discretization of the convection–diffusion equation
under matrix form:

∂

∂t
c(t) = F c(t) (29)

where F is a linear finite-difference operator that encodes the spatial derivatives as well as
the boundary and interface conditions defined below.

Firstly, Dirichlet boundary condition is applied on the lower boundary. Then, the
only equation that depends on the exogenous (boundary value) will be the one at index

i = 1. We will have a new term
(

D
(δz)2 +

u
2δz

)
cboundary(t) replacing the term that depends

on c[0](t).
Secondly, Neumann boundary condition is imposed on the upper boundary (equation

of index n). The condition states that there exists a point beyond the boundary such that

cexo(t)− c[n− 1](t)
2 δz

= 0 ⇔ c[n− 1](t) = cexo(t)

Hence, the nth equation reads

∂
∂t c[n](t) = 2D

(δz)2 c[n− 1](t)− 2D
(δz)2 c[n](t) (30)

And finally, Robin boundary condition is applied at each interface between model
compartments. This boundary condition is imposed on a virtual interface point situated in
between the ith and i + 1th sample points. We have the interface conditions that are built
on one-sided differences in order to consider a single medium. At the interface, we have
the limit concentrations in both media that are, respectively, given by cinterface

− and cinterface
+

before and after the interface:

D−
cinterface
− −c[i]

δz− − u− cinterface
− = D+

c[i+1]−cinterface
+

δz+ − u+ cinterface
+

cinterface
−

H− =
cinterface
+

H+
= pinterface

(31)

From this, we achieve:

cinterface
− =

D+
δz+ c[i + 1] + D−

δz− c[i]
D−
δz− − u− + H+

H−

(
D+
δz+ + u+

) (32)

This can be re-injected into the convection–diffusion equation, analogously:

cinterface
+ = H+

H− cinterface
− (33)

If the flow is purely diffusive through the interface, we have

cinterface
− =

D+
δz+

c[i+1]+ D−
δz−

c[i]
D−
δz−
− H+

H−
D+
δz+

(34)

2.2.2. Temporal Discretization

In order to integrate the above equation, we use an implicit Euler scheme [73] (chap-
ter 3.2), [75,76] in which temporal sampling at regular intervals of δt leads to

c(t + δt)− c(t) = δt F c(t + δt) ⇔ (Idn − δt F)c(t + δt) = c(t) (35)

where Idn is the identity operator on Rn.
The discretized scheme is thus given by

A ck+1 = ck (36)
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where the index k is the time sample index linked to the wall clock time, t0 + (k− 1)δt

and A def
= (Idn − δt F) is the implicit linear operator. Since all eigenvalues of F are strictly

negative, the matrix A has eigenvalues that are strictly bigger than one; hence, its inverse is
a contractive operator, resulting in the stability of the algorithm. Note that to differentiate t
(time) and k (time sample index), we use subscript for k and square brackets for [t].

2.2.3. Exogenous Inputs

To cope with exogeneous inputs in the system, such as the blood transport flow or the
forced air flow through the collection cell, the equation is augmented with a steering matrix
G and the exogenous inputs q that encode the boundary conditions as well as the flows:

∂

∂t
c = Fc + Gq (37)

In discrete form, this gives

ck+1 − ck = δt
(
F ck+1 + G qk+1

)
⇔ A ck+1 = ck + δt G qk+1 (38)

G and q carry the information about the Dirichlet boundary condition at the lower
bound, which gives

G[1, 1] =
D

(δz)2 +
u

2δz
(39)

and
q[1] = cboundary

k (40)

2.2.4. State-Space Model and Noise

We define yk as the observation vector describing the measurement in the measurement
cell at the time sample index k. As there is only one measurement, the vector yk is a scalar
yk. The observation equation is

yk = hTck + vk (41)

where:

• h is a canonical vector for which sole non-zero entry is associated with the position of
the NDIR optical measurement (the last grid point in the measurement cell before the
interface with the collection cell);

• vk ∼ N
(
0, σ2

v
)

is the observation noise with a variance–covariance matrix R that
describes the inaccuracies of sensor outputs as measurements are taken.

The difficulty in the inversion of the model is that no boundary condition can replace
the knowledge of the concentration at the blood level. To overcome this difficulty, we
suppose that the variations in concentration are slow and correspond to a first-order
auto-regressive process, i.e.,

∂

∂t
C(zblood,in, t) = ϕ C(zblood,in, t) + win blood(t) (42)

where:

• win blood[t] is the input noise model used to generate the input signal C(zblood,in, t); it
is a white Gaussian noise process of variance σ2

w.
• ϕ is a signal regularity parameter of a first-order autoregressive signal model.

To derive the state-space equation, we combine this input signal model with the
physical model describing the transport of the carbon dioxide. The associated state-space
equations in discrete form read

A ck+1 = ck + δt·G qk+1 + δt·wk+1 (43)
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where δt·wk+1 ∼ N (0, Q) is the noise process that integrates the modeling errors. N (0, Q)
is a normal vector distribution, with each component of zero average, and with a variance–
covariance matrix Q.

We assume that the modeling error noise w[t] and the observation noise v[t]
are independent.

2.3. Estimation of CO2 Blood Concentration Using Kalman Filter
2.3.1. Kalman Filter Algorithm

The resolution of mathematical equations associated with diffusion phenomena is
described in the reference book by Crank [77]. But in this book, the numerical methods
do not consider noisy observations or state evolutions. Our problem is to estimate the
state vector ck,k based on the previous state vector ck−1,k−1 and the (noisy) measurement yk.
We propose to use a Kalman filter, which is an optimal filter that recursively computes a
linear, least-mean square estimator [24–26]. The Kalman filter is adaptative in the sense
that it tracks the noise level of both the measurements and the state evolution equations by
updating the noise covariance matrices at each temporal step.

The Kalman algorithm works in a “prediction-correction” loop as described below
and in [51,78]. For this description, we use the notations defined in Table 5.

Table 5. Kalman filter algorithm iteration notations.

Parameter Explanation

ck,k−1 state vector at time step k predicted at previous time step k− 1

ck,k state vector at time step k computed at time step k

ck,k+1 prediction of the state vector at the next time step, k + 1

Pk,k−1
uncertainty covariance matrix at time step k predicted at previous

time step k− 1

Pk,k uncertainty covariance matrix computed at the current state k

Pk,k+1 predicted uncertainty covariance matrix at the next time step, k + 1

Kk Kalman gain computed at the current state k

yk measurement at time step k

1. Algorithm initialization:

During the initialization phase, at the time step k = 0, c0,0 is initialized to null vector,
and P0,0 is initialized to identity matrix.

2. Prediction step: Extrapolation (prediction) of the state and uncertainty covariance
matrix at time step k + 1 from the current state (at time step k). We present below the
equations for the implicit method used for time integration scheme. Equation (44) is
for state extrapolation, and Equation (45) is for covariance extrapolation:

(I− F·δt)
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A

ck+1,k = ck,k + Gqk+1·δt (44)

Pk+1,k = A−1Pk,kA−1T + Q (45)

3. Correction step: State vector and uncertainty covariance matrix update using the
estimates computed at time step k− 1, ck,k−1 and Pk,k−1, and the current measure-
ment yk.

The Kalman gain given in Equation (46) expresses the weights given to the new
noisy measurement yk or the estimated ck,k−1 state, which is also subject to different
external disturbances:
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Kk = Pk,k−1hT
(

hPk,k−1hT + R
)−1

(46)

The estimation of the current state (a posteriori state estimator) of the system is
performed by taking a linear combination between the estimate made at the previous
moment k − 1 (a priori state estimator) and the new recorded data, as shown in
Equation (47) below. Knowing the Kalman Kk gain expression, we can give the
expression to estimate the concentration ck,k at time k based on the difference between
the current measurement yk and the estimated measurement hck,k−1 from the previous
state estimate. This difference defines the prediction error (yk − hck,k−1), which
evaluates the amount of new information brought by the current measurement:

ck,k = ck,k−1 + Kk(yk − hck,k−1) (47)

The estimation of the covariance matrix of the estimate error at time k from the
estimated covariance matrix Pk,k−1 at time k− 1 is based on Equation (48):

Pk,k = (I−Kkh)Pk,k−1(I−Kkh)T + KkRKT
k (48)

4. End of iteration:

The steps are iterated until either the end is decided by the user or the measurements
are stopped.
The output of the algorithm is the estimated CO2 blood concentration corresponding
to the first element of vector ck,k, at each time step.

2.3.2. Estimation of CO2 Blood Pressure

Physicians are using CO2 blood pressure Pin blood
CO2

as a variable to characterize CO2

blood concentration Cin blood
CO2

. This pressure is defined by the Henry law as the pressure the
carbon dioxide would have in an air gas phase in equilibrium with the blood liquid phase:

Pin blood
CO2

=
Cin blood

CO2

βblood (49)

where βblood is the Ostwald solubility coefficient of the carbon dioxide in the blood.
In this article, we are considering the carbon dioxide blood concentration variable.

2.4. Methods of Evaluation

The evaluation is conducted in three steps.
Firstly, we evaluate the simulation of the direct transport problem. To model the

CO2 desorption for the four modelized compartments (blood, skin, measurement and
collection), we used a minimum number of discretization points, 3 per compartment, plus
the outer interface: N = 13. The following results are simulated using the parameters
presented in Tables 1–3. The Cin blood

CO2
input signal is simulated as a step transition between a

normocapnia level and a hypercapnia level. The normocapnia level is defined as an average
concentration (µ = 1.099 mol/m3) of CO2, which corresponds to a pressure of 40 mmHg.

Secondly, the results obtained for the transport inversion problem are illustrated on
the previous simulations with different levels of noise (Gaussian zero mean white noise)
added to the simulated observation vector to test the ability of the Kalman filter to adapt to
the noise level.

Finally, we simulate a more realistic clinical test case simulating a sequence of stages
with hypocapnia, normocapnia and hypercapnia levels. The Kalman inverse problem
results are simulated.

The optimization of the numerical processing for the inversion problem is related to
the quantification of the C̃in blood

CO2
CO2 concentration level estimated in the blood medium.
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In these simulations, we assume that the CO2 concentration in the incoming air is zero:
Cin col air

CO2
= 0. This is equivalent to assuming that a carbon dioxide filter has been placed

over the air flow at the inlet of the collection cell.
The results are evaluated according to several performance factors with respect to

the quantification of the CO2 blood concentration estimated and to the time necessary for
this quantification.

First performance parameter is calculated as the relative difference between the mean
on the hypercapnia level (direct problem µhypercapnia) for input concentration Cin blood

CO2
and

the mean of the hypercapnia level (inverse problem µ̂hypercapnia) of the estimated input
concentration C̃in blood

CO2
. The hypercapnia means are calculated beyond the time when the

level difference with the initial level (normocapnia) has reached 90% of the difference
between the level at equilibrium after the transition (hypercapnia) and the initial level of
normocapnia. In case of the “clinical” test, the evaluation is performed in the same way on
the different successive capnia levels simulated (hypo, hyper1, hyper2 and normo capnia).

The second parameter is the root of the mean square error (RMSE) between the Cin blood
CO2

concentration in the blood as input signal and the C̃in blood
CO2

estimated concentration in the
blood as output signal. Computation of the RMSE is illustrated in Figure 4a. First signals
are aligned, and then the root of the mean square error is calculated on the aligned signals.

Figure 4. (a) Delay calculation; (b) rise time calculation. Noiseless observation vector of the Kalman
inverse problem.

The rise time (tr) corresponds to the difference between the time necessary for the
initial level (normocapnia) to reach, respectively, 90% and 10% of the difference between the
level at equilibrium after the transition (hypercapnia) and the initial level of normocapnia,
and it is of interest for the temporal performance of the sensor. It is computed on the
estimated concentration C̃in blood

CO2
. The method of rise time calculation is illustrated in

Figure 4b. In the case of a “clinical” test, the rise time calculation is performed between the
successive different capnia levels; indeed, some of them are fall time (normo to hypo or
hyper to normo).

Other temporal performance parameters are the delays corresponding to direct, inverse
and global problems. They are computed by analyzing the global temporal profile of the
concentration along the transport of the carbon dioxide after placing a concentration step
variation as input, as illustrated in Figure 4a.

The time difference corresponding to the maximum of the cross-correlation between
the pulse at the input and the pulse at the level of the measurement cell defines the
direct delay time (td−dir). This delay time is comparable to a propagation time of the
carbon dioxide in the blood, the skin and the device up to the measurement cell. The time
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difference corresponding to the maximum of the cross-correlation between the pulse at the
level of the measurement cell and the pulse at the level of the blood cell after the inverse
problem defines the inverse delay time (td−inv). The time difference corresponding to the
maximum of the cross-correlation between the pulse at the input and the pulse at the level
of the blood cell after the inverse problem defines the global delay time (td−global).

These previous performance factors allow us to estimate two global performance
factors. The relative performance (per frel) is defined as the ratio of the difference between
the mean of the estimated and the input signal concentrations at the hypercapnia level.
The global signal-to-noise ratio

(
rsbglobal

)
is defined as the root mean square of the input

signal and the RMSE:

per frel = 100×
(

µhypercapnia − µ̂hypercapnia

)
/µhypercapnia (%) (50)

rsbglobal = 20× log10
(

rms
(

Cin blood
CO2

))
/rmse (dB) (51)

where rms
(

Cin blood
CO2

)
is the quadratic norm of the input signal.

2.4.1. Evaluation of the Direct Approach

For all simulations, the input signal for our direct approach is illustrated in Figure 5.
The input CO2 concentration value Cin blood

CO2
= 1.099 mol/m3 is the average value (µ) of

the concentration in the blood, which corresponds to a pressure of Pin blood
CO2

= 40 mmHg.

Hypercapnia level is defined as an increase of 10 mmHg, Phypercapnia
CO2

= 50 mmHg, which

corresponds to a concentration of Chypercapnia
CO2

= 1.3738 mol/m3.

Figure 5. System input signal. The variations in blood concentration are considered as input signal for
the direct approach. There are two levels of blood concentration: one corresponding to a normocapnia
level and one corresponding to a hypercapnia level.

2.4.2. Evaluation of the Complete Model for CO2 Quantification

We consider three different noise variances added to the direct simulation result in
order to see how they impact the time and to illustrate the adaptive property of the Kalman
filter with respect to the noise level. We will also quantify the mean of the estimated
hypercapnia blood level. We will examine the root mean square error between the real
value of CO2 blood concentration and the one estimated by the algorithm. The input signal
of the Kalman filter Cmeas

CO2
is the result of the direct problem applied to a Cin blood

CO2
step
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function with no noise, low noise and high noise added, presenting, respectively, a variance
of 0

(
mol/m3)2, 10−8 (mol/m3)2 and 10−6 (mol/m3)2, as illustrated in Figure 6.

Figure 6. Input signal for the evaluation of the inverse transport model for the three cases proposed:
when the input is a noiseless concentration signal (in dark blue); (a) when the input is characterized
by a noise variance of 1× 10−8 (mol/m3)2 (light blue); (b) when the input is characterized by a noise

variance of 1× 10−6 (mol/m3)2 (light blue).

2.4.3. Evaluation on a Realistic Simulated Clinical Case

In [41], Pierre Grangeat et al. described results of a clinical test conducted with a
previous version of the CAPNO capnometry wristband in which the convection in the
device channel was only induced by a difference in temperature between the ambient air
and the heated skin, and the collection cell was under the measurement cell. We simulate
such a test by considering a hypocapnia (decrease of 10 mmHg) phase, followed by a
normocapnia phase and two different levels of hypercapnia (two successive increases of
5 mmHg), and then returning to the normocapnia condition. The objective of this test is to
simulate a realistic experiment as it was conducted during a previous clinical evaluation.
The simulation model is slightly different from the model described above. It is written
using a compartmental model as described in [79].

The capnia levels and the duration of each phase are given in Table 6 and illustrated
in Figure 7. We add two phases to the clinical chronogram:

• An initialization phase to simulate the time that was used in the clinical test after
installation of the device on the patient and before the test recording. During this
initialization phase, we simulate a normocapnia level.

• An extension phase in order to observe on simulations the return to normocapnia
equilibrium. During this extension phase, we simulate a normocapnia level.

Table 6. Chronogram of capnia phases of a realistic clinical simulation.

Phase Name Phase Start Time (s) Duration
(s)

Capnia Level (mol/m3)
/mmHg

Initialization 1 1188 1.099/40
Normocapnia 1 1189 374 1.099/40

Hypocapnia 1563 240 0.824/30
Normocapnia 2 1803 531 1.099/40
Hypercapnia 1 2334 375 1.236/45
Hypercapnia 2 2709 368 1.374/50
Normocapnia 3 3077 587 1.099/40

Extension (end of measurement) 3664 990 1.099/40
End of simulation 4654
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Figure 7. Simulation scheme for a realistic clinical test with different phase durations and levels, as
given in Table 6.

Figure 7 shows the capnia phase sequencing in the input of the model after an ini-
tialization phase in which equilibrium is reached and with an extension phase to observe
the complete return to equilibrium. The hypocapnia phase lasts about 4 min, and the
hypercapnia phases last about 6 min each.

We simulated realistic clinical data and examined the performance parameters.

3. Results
3.1. Performance Parameters for the Direct Model

Figure 8 illustrates in the four compartments the propagation of CO2 through the
different media according to the convection–diffusion model described above.

Figure 8. Synthetic data generated for 13 spatial sample points: the propagation of input concen-
tration within the system through different media (a) with the initialization phase visible from 0 to
normocapnia and (b) with the initialization phase not shown.
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The time necessary for the system initialization is visible in Figure 8a. For all other
figures in the Results section, the initialization phase is omitted, as in Figure 8b. The
figures are presented after the time necessary for the system initialization (i.e., after the
time necessary to reach the normocapnia level as the system is initialized to 0).

The optimization of the device time response involves the adjustment of certain
parameters such as the ambient air flow entering the collection cell, which is responsible
for the mechanical convection. This is necessary to extract the transcutaneous CO2 flow,
preventing the accumulation of CO2 inside the device. An analysis related to the air flow
traversing the collection cell is necessary. In a first intention, we will vary the ambient air
flow between 10−1 mL/min and 10 mL/min in order to obtain a partial pressure variation
equal to the partial pressure associated with carbon dioxide in the ambient air.

The ambient air flow entering the collection cell contributes to the decrease in the
response time of the system as well as a reduction in propagation time through the transport
column but, in return, dilutes the concentration in the measurement and in the collection
cell and, therefore, the level of the signal. There is a compromise to be made between lower
time constants and the signal level at the output of the collection cell, as shown on Figure 9.

Figure 9. Device performance parameters: (a) the evolution of the time delay and rise time in the
collection cell according to the flow of the ambient air entering the cell; (b) the variation of the mean
of the hypercapnia measurement level according to the flow of the ambient air entering the cell.

3.2. Performance Parameters for the Inverse Model

We tested the Kalman inversion algorithm on the result of the direct problem. We
present the results successively for the three noise levels. In these results, the Kalman filter
has been initialized to zero. The model noise variance is set to 10−8 (mol/m3)2, while the

observation noise variance is set to 10−6 (mol/m3)2. The signal regularity parameter is
ϕ = 0.

3.2.1. Noiseless Observation of a Step Function as Input

Firstly, we add no noise variance to the measured simulated output signal of the
measurement cell. In Figure 10a, the Kalman filter estimation of the propagation of CO2
through the different media in the four compartments is illustrated.
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Figure 10. Noiseless observation of a step function as input. (a) Estimated concentrations using
the spatial grid for the direct transport problem, including the variable Cin blood

CO2
as a state variable.

(b) Estimated (red curve) and real (black curve) blood concentration.

The comparison of the Cin blood
CO2

signal at the simulation input (curve in black) versus

the estimated C̃in blood
CO2

signal (curve in red) is illustrated on Figure 10b.

3.2.2. Low Noise Observation of a Step Function as Input

In the second test, we add a low noise variance to the measured simulated output
signal of the measurement cell (cyan curve). Similarly, Figure 11a illustrates the propagation
of CO2 through the different media in the four compartments.

Figure 11. Low noise added to the observation of a step function as input. (a) Estimated concentra-
tions using the spatial grid for the direct transport problem, including the variable Cin blood

CO2
as a state

variable. (b) Estimated (red curve) and real (black curve) blood concentration.

The comparison of the Cin blood
CO2

signal at the simulation input (curve in black) versus

the estimated C̃in blood
CO2

signal (curve in red) is shown in Figure 11b.
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3.2.3. High Observation Noise of a Step Function as Input

Finally, in the third test, we add a high noise variance to the measured simulated
output signal of the measurement cell (cyan curve). Similarly, Figure 12a illustrates the
propagation of CO2 through the different media in the four compartments.

Figure 12. High noise added to the observation of a step function as input. (a) Estimated concentra-
tions using the spatial grid for the direct transport problem, including the variable Cin blood

CO2
as a state

variable. (b) Estimated (red curve) and real (black curve) blood concentration.

The comparison of the Cin blood
CO2

signal at the simulation input (curve in black) versus

the estimated C̃in blood
CO2

signal (curve in red) is shown in Figure 12b. The estimated C̃in blood
CO2

curve is slightly noisy, but the mean hypercapnia level is well estimated.

3.2.4. Performance Parameters

The results obtained analyzing the direct and inverse approach are presented in
Table 7.

Table 7. Performance parameters for direct and inverse approach considering model noise variance
of 10−8 (mol/m3)2 and observation noise variance of 10−6 (mol/m3)2, with regularity parameter
ϕ = 0, for three different levels of noise added to the observation. Kalman state vector is initialized
to 0.

Parameters Noiseless
Observation

Low Noise
Observation

High Noise
Observation

µhypercapnia
(
mol/m3) 1.3738 1.3738 1.3738

µ̂hypercapnia
(
mol/m3) 1.3736 1.3736 1.3733

rmse
(
mol/m3) aligned 0.0306 0.0306 0.0313

per frel (%) 0.011 0.014 0.036

rsbglobal (dB) 32.34 32.34 32.16

tr (s) 1693 1694 1685

td−dir (s) 618 618 618

td−inv (s) 0 0 0

td−global (s) 958 959 931
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The comparison of the Cin blood
CO2

signal at the simulation input (curve in black) versus

the estimated C̃in blood
CO2

signal (curve in red) is illustrated in Figure 10b for the noiseless
observation vector, in Figure 11b for low noise and in Figure 12b for high noise. We observe
the delay to reach the hypercapnia measurement on each of these curves. For all noise
levels tested, the hypercapnia level is reached.

These curves show the adaptability of the Kalman filter to react to the noise added
to the signal. In all cases, the hypercapnia level is recovered. The Kalman filter has the
advantage of acting as a real filter for the noise-to-signal ratio.

Delays and rise times are of the same order; they cannot be shorter than the physiology.
Furthermore, the rise time of the global model is of the same order as the direct one, which
makes our choice of a recursive Kalman filter as an inversion algorithm a realistic choice
for a real-time device.

3.3. Performance Parameters for the Complete Model on a Realistic Clinical Test

Previously, we showed the adaptability of the Kalman filter for observation noise. Our
purpose here is to show its adaptability to the model noise.

3.3.1. Compartment Model Simulation

The result of the simulation with the compartment model is illustrated in Figure 13.
The durations of the different capnia levels are short; nevertheless, we observe the different
levels on the observation curve (measurement cell).

Figure 13. Result of the compartmental model simulation in the four compartments.

The Kalman inversion of the realistic clinical data simulation produces the result
presented in Figure 14. This calculation is performed with (a) regularity parameter ϕ = 0
and (b) regularity parameter ϕ = −0.0036.

3.3.2. Compartment Model Simulation

Figure 15 presents detailed comparisons, firstly, in the blood cell, between blood
CO2 concentration in the input of the simulation model and the estimated CO2 concen-
tration using the Kalman filter (right scale), and, secondly (left scale), of the simulated
measured CO2 concentration in output of the simulation model with added noise (variance
of 10−6 (mol/m3)2

) and the estimated CO2 concentration in the measurement cell after
Kalman inversion.
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Figure 14. Result of the Kalman filter in the four compartments with two regularity parameters:
(a) ϕ = 0; (b) ϕ = −0.0036.

Figure 15. Comparison of simulated/estimated values in measurement and blood cell: (a) ϕ = 0;
(b) ϕ = −0.0036.

As we can see, the ϕ parameter allows us to compensate for concentration discrepancy
in the blood cell. Magenta and red curves are on the same level in Figure 15b. However, we
observe that the hypocapnia and hypercapnia levels are underestimated. The underestima-
tion of the hypocapnia level is mainly due to the fact that the duration of the hypocapnia
phase is too short.

3.3.3. Performance Parameters

The results are analyzed considering the six performance parameters defined above.
They are presented in Table 8 depending on the parameters and presented in Table 9 for
the global parameters, specifically.
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Table 8. Performance parameters per capnia phase, CO2 mean value, relative performance and
rise time for direct and inverse approach considering model noise variance of 10−8 (mol/m3)2 and

observation noise variance of 10−6 (mol/m3)2 for two different values of parameter.

Parameters Phase 1
Normocapnia

Phase 2
Hypocapnia

Phase 3
Normocapnia

Phase 4
Hypercapnia 1

Phase 5
Hypercapnia 2

Phase 6
Normocapnia

(ϕ) 0 −0.0036 0 −0.0036 0 −0.0036 0 −0.0036 0 −0.0036 0 −0.0036

µ
(
mol/m3) 1.099 1.099 0.825 0.825 1.099 1.099 1.236 1.236 1.374 1.374 1.099 1.099

µ̂
(
mol/m3) 3.668 1.094 3.416 1.019 3.583 1.069 4.003 1.19 4.42 1.317 3.841 1.145

per frel (%) −234 0.45 −313 −23.49 −226 2.74 −224 3.71 −222 4.16 −249 −4.17
tr (s) 214.36 215.70 251.90 264.16 264.37 254.01 225.39 225.61 519.61 529.53

Table 9. Global performance parameters: rmse of align signals, global RSB and delays for direct
and inverse approach. We consider model noise variance of 10−8 (mol/m3)2 and observation noise

variance of 10−6 (mol/m3)2 for two different values of parameter ϕ.

Parameters Values
(ϕ = 0)

Values
(ϕ = −0.0036)

rmsealign
(
mol/m3) 2.68 0.065

rsbglobal (dB) −7.48 24.82
td−dir (s) 330.03 330.03
td−inv (s) 32.09 41.2

td−global (s) 369.65 369.05

The main result of comparing the two columns of these tables according to the reg-
ularity parameter ϕ is that we see how the regularity parameter can act on the recovery
of capnia levels. The relative performance parameter decreases from around 250% to less
than 5%.

It shows also that, with this open chamber configuration (with forced convection), we
can observe capnia phases of approximately 6 min time length, which is less than 10 min.

In [10], Dervieux et al. used a closed chamber model. They stated that if the sensor
has a height of 1 mm, a 95% response will be achieved after 1 h 35 min and that, therefore,
for a sensor to have a reasonable response time—e.g., below 10 min—it must be relatively
thin, specifically in the range of 100 µm. We show in this work that, using an open chamber
principle, this conclusion on the thickness of the device can still be released. Our simulated
device has a thickness of 0.5 cm (measurement and collection cell thickness). This makes
an open chamber device an alternative to a thin-film patch proposition.

4. Discussion

In this work, we propose an open chamber principle with a continuous circulation of
air flow. But this requires the development of a dynamic model of carbon dioxide transport
through the skin to recover the carbon dioxide blood content from the measurement
sequence in the measurement cell. This allows the design of a model-based recursive signal
processing approach based on a Kalman filter for a real-time estimation of the carbon
dioxide blood pressure. A Kalman filter is relevant to estimate hidden variables in a
noisy environment. The processing can be implemented with limited computational and
memory resources.

This dynamic model described the transport of carbon dioxide from the blood to
the collection cell through the skin and the measurement cell. It is based on convection–
diffusion equations in those compartments.

This model states all the parameters that have an influence on the measurement. These
include parameters linked to the device architecture, to the IR source and sensors, to the
operating mode, or to the patients. In Section 3, we illustrated the influence of the ambient
air flow rate on the device time response and on the measurement level. Temperature also
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has an influence on both the physiological parameters of the model, such as blood velocity
and blood flow, and on physical parameters such as the Henry coefficients, the solubility
coefficients, the skin conductance and the associated mass transfer coefficient and Krogh’s
diffusion constant, the diffusion coefficients, and the carbon dioxide concentration and
pressure in the ambient air. In this article, we have worked with a constant temperature of
42 ◦C. We have used mean values for skin parameters.

The variability of these parameters might have an influence on the measurement
variability, including the intra-measurement variability linked to patient non-stationarity
or measurement noise, inter-measurement variability for the same patient but for dif-
ferent operating modes or different devices, and inter-measurement variability among
different patients.

The operating mode should also be well established. For instance, before starting the
measurement, the device should be set on the patient, and some time should pass before
starting the measurement in order to reach an initial equilibrium among the carbon dioxide
contents in the four compartments.

The study of the measurement sensitivity to all these variabilities needs specific trials
on experimental benches or on clinical trials. This should be performed to control the relia-
bility of the measurement. For the parameters that are the more sensitive, complementary
measurements should be achieved. This might be relevant, for instance, for patient-specific
parameters including blood flow; skin thickness; skin vascularization; skin gas emission,
such as water vapor induced by sweat or other volatile organic compounds (VOC); and
contact between the device and the patient to control the skin heating or the gas loss ac-
cording to the sealing of the carbon dioxide flow between the skin and the device. It might
also be relevant for operating modes such as the variability of the ambient air parameters,
including the carbon dioxide concentration, temperature pressure, humidity level, and
flow speed. The measurement robustness is of primary interest for the development of a
wearable device to be used in a homecare environment on moving people.

The Kalman filter framework associated with the state-space model allows us to take
into account the variability. In the simplest version, the variability is described by the two
noise variables included in the model: the model noise, which might describe the errors
linked by the use of an approximate state-space model, and the observation noise of the
measurement error, including the inaccuracy error. The Kalman filter allows a recursive
estimation of the variance of the noises and, thus, an improvement of the robustness with
respect to measurement variability.

Parameters linked to the device architecture might be controlled by relevant calibration.
The superiority of the IR measurement with respect to electro-chemical or electro-optical
measurements is that frequent sensor calibration should not be required.

We have described here a simplified 1D version with a transport of the carbon dioxide
gas along the axial direction perpendicular to the skin surface. The next step will be a
two-dimensional (2D) version to take into account, using the same model, the transverse
direction parallel to the skin surface and the axial direction. This 2D model will also allow
us to consider a device architecture based on a transverse air convection flow parallel to
the skin surface.

5. Conclusions

The development of a wearable device for the continuous monitoring of the blood
carbon dioxide content is of primary interest for a homecare environment. It belongs to
the large category of wearable health devices for vital sign monitoring described by Dias
and Silva Cunha [80]. It belongs also to the general trend towards developing skin-based
wearable devices as described by Jin et al. [81], wearable light sensors based on graphene
material as described by Akinwande and Kireev [82,83], and wearable and miniaturized
sensors for personalized and preventive medicine as described by Tricoli et al. [84]. The
development of new room-temperature gas sensors based on a metal–organic framework
nanocomposite as proposed by Zhang et al. [85] also gives a new perspective for using
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a gas sensor on a wristband. Tomasic et al. [86] have explained that the development
of a wearable capnometry device is a requirement for the continuous monitoring of a
COPD patient.

However, the development of such a capnometry device is a challenging topic since
the transcutaneous carbon dioxide flow is very low: in the range of 0 to 800 nL/cm2/min.

Therefore, we have proposed in this paper a dynamic model of carbon dioxide trans-
port through the skin using a capnometry wristband. Such a dynamic model is a require-
ment not only for designing accurate instrumentation but also for computing simulated
data and developing model-based signal processing.

Thanks to this model, we have studied a new architecture in which the measure-
ment cell is in contact with the skin and a continuous air flow is collecting the carbon
dioxide gas. In this paper, we have proved with simulated data the feasibility of such a
technological concept.

Such a model is a key contribution for the development of an autonomous wearable
device as discussed in Section 4. The signal processing should be embedded to lower the
data exchange rate between the wearable device and the smart phone or the computer that
should store the data. It should also be resilient to measurement variability factors.

To improve the autonomy of the device, we have worked, in this paper, on the model to
embed the data processing. But further studies will be required to lower the electrical power
consumption. The main electrical power requirements are linked to data communication,
skin heating and IR light emission.

We have described, in this paper, the transport of carbon dioxide from the blood to the
collection cell. But such a model can be extended to other volatile molecular species, such
as volatile organic compounds (VOC), including ethanol, acetone, isoprene or methane,
and other diluted blood gases such as oxygen or hydrogen.

In [87], Mochalski et al. showed the possibility to measure other gases transcutaneously
or to target other biomarkers. Other studies have been conducted, by Arakawa, to measure
ethanol [88] or, by Ohkuwa, to establish a link between hypoxia and NO concentration [89].
In studying exposure to pollutants, Sekine et al. [90] established a relation between toluene
emanating from the skin and inhalation exposure.

6. Patents

GRANGEAT P., ACCENSI M., GHARBI S. and GRATEAU H. (2019), “Dispositif
portable d’estimation de la pression partielle de gaz sanguin”, French patent demand
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pressure of blood gas”, international patent demand number PCT/EP2020/065523, filed on
4 June 2020, published on 17 December 2020, publication number WO 2020/249466 A1.

GRANGEAT P., STOCARD F. and JAILLET M.V. (2022), “Dispositif portable d’estimation
d’une concentration de gaz dégagé par un milieu”, French patent demand number FR2208591,
filed on 28 August 2022.
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