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We propose a way to account for inspection errors in a particular framework. We consider
a situation where the lifetime of a system depends essentially of a particular part. A
deterioration of this part is regarded as an unacceptable state for the safety of the system
and a major renewal is deemed necessary. Thus the statistical analysis of the deterioration
time distribution of this part is of primary interest for the preventive maintenance of
the system. In this context, we faced the following problem. In the early life of the
system, unwarranted renewals of the part are decided upon, caused by overly cautious
behaviour. Such unnecessary renewals make the statistical analysis of deterioration time
data difficult and can induce an underestimation of the mean life of the part. To overcome
this difficulty, we propose to regard the problem as an incomplete data model. We present
its estimation under the maximum likelihood methodology. Numerical experiments show
that this approach eliminates the pessimistic bias in the estimation of the mean life of the
part. We also present a Bayesian analysis of the problem which can be useful in a small
sample setting.

Keywords: preventive maintenance; left and right censored data; inspection errors;
incomplete data; maximum likelihood estimation; Bayesian inference; shock model.

1. Introduction

This paper is concerned with modelling the deterioration of a component. Here, we address
a particular point regarding this subject. We propose a way to account for inspection
errors. This will result in a new procedure for identifying and taking into account a
change in maintenance behaviour. This study originated from a problem occurring with
Reactor Coolant in EDF Nuclear plants. Maintenance engineers can make unnecessary
replacements in the first years of production because of a lack of knowledge in component
lifetimes. However, this overly cautious behaviour is discontinued in the following years.
Statistical analysis of the reliability of 900 MW and 1300 MW reactor coolant pumps
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(RCPs) concerning pump bearings was carried out. Reports were collected on this
component of 900 and 1300 MW RCPs during maintenance inspections. These reports
give information about the condition of the component, and its probable replacement.
The maintenance policy is essentially based on the reliability of this component. In
a more general setting, such a situation occurs as soon as a nonrepairable system is
being studied, where a part is degradable, compared with the other parts of the system,
very expensive, and fundamental for the reliability of the system. Moreover, for every
maintenance inspection, due to the high costs incurred when the system is unavailable,
if the degradable part is replaced, maintenance engineers prefer to proceed to a major
renewal of the system. Thus, the ‘ideal maintenance policy’ would involve stopping the
system when the deterioration of the part appears. This study deals with one degradable
part of a system.

One characteristic of collected data is that they are either left- or right-censored (see
for instance example 1.7 in Meeker & Escobar (1998)), i.e. all data are related to either
damage that occurred before dismantling and discovered during dismantling (left-censored
data), or the component discovered in good condition at the time of dismantling (survival
or right-censored data). In this model, the left and right censorings are both type I censored
data. In addition to this, we consider a hidden variable Zi in order to model the errors
in inspection. The occurrence of unnecessary replacements can be numerous. Thus, a
statistical analysis of component lifetimes is jeopardized since the deterioration data are
littered with this censored information. Unless correctly analysed, the mean life of the part
before deterioration can be greatly underestimated for such corrupt data. The procedure we
propose in the present paper aims to reduce this pessimistic bias dramatically.

The general framework of our study is as follows. During a periodic maintenance visit,
the damaged component is replaced and thus the system is considered as good as new
after an inspection. (Assuming minimal repair would be more realistic. However, the ‘as
good as new’ assumption is convenient from a mathematical viewpoint and appeared to
be reasonable in our application.) We assume that the part deterioration time distribution is
exponential with hazard λ and the mean life without degradation of the part is η = 1/λ. The
data are doubly (left and right) censored and we never know the true date of deterioration.
Moreover, the technology of the part is relatively new, and, before a calendar date d0, the
maintenance engineers can decide to replace it in error because of a lack of knowledge
about the component. In this model, we assume that, after this date d0, the maintenance
engineers will never take such an erroneous decision again. This change of maintenance
behaviour induces an important bias in the maximum likelihood (ML) estimate of λ if not
taken into account. This bias corresponds to a pessimistic point of view. Figure 1 gives an
example of such a change in maintenance behaviour (here the calendar date d0 is 1992).

Our approach to deal with this difficulty consists of regarding the problem as an
incomplete data problem. The missing data that we consider are the indicator values that
a replacement has been achieved by caution. A classical way to derive the ML estimation
of an incomplete data model is the EM algorithm (McLachlan & Krishnam, 1997). But
we will see that in this particular context there is no advantage in using the EM algorithm
for maximizing the observed likelihood. The paper is organized as follows. In Section 2
the incomplete data model is detailed, the ML estimation of the hazard rate λ is derived
and a possible use of Bayesian inference through Gibbs sampling is presented. Section 3
is devoted to the presentation of numerical experiments on both real and simulated data.



ACCOUNTING FOR INSPECTION ERRORS 53

<1 �x2 �x3 �x4 �x5 �x6 �x7 �x8 �x9 �x10 �x11 �x12 �x13

FIG. 1. Distribution of notified replacements after inspection on a 900 MW RCP component.

Simulated data are obtained with a shock model that we describe in this same section. A
short discussion section ends the paper.

2. The incomplete data model

We first specify the mathematical framework of our study. Let X denote the lifetime
without deterioration of the part. The distribution of the random variable X is an
exponential distribution E(η) with mean value η and with cumulative distribution
function F given by

F(t) = 1 − exp

(
− t

η

)
, ∀t ∈ R+, (1)

and reliability function R

R(t) = Pr(X � t) = 1 − F(t) = exp

(
− t

η

)
· (2)

We assume that several independent systems, located in different places, are inspected at
different times. After each inspection leading to diagnosis that a part is deteriorated, major
renewal of the system is achieved and the system is considered as good as new. Let n
be the total number of inspections. For inspection i , i = 1, . . . , n, let ti denote the time
since the previous inspection for the same system or since the system installation if it is
its first inspection, and let δi be the indicator of the inspection decision (δi = 1 if the part
is replaced, δi = 0 otherwise). (Note that since the systems are considered as good as
new and independent, there is no need to indicate the inspected system in the inspection
index i .) Moreover, it happens that there exists a known calendar date d0 from which the
maintenance behaviour has changed. This date marks the end of a preventive behaviour
in the sense that before d0, the maintenance engineers can decide upon an unwarranted
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preventive renewal of a part caused by an overly cautious behaviour. After d0, we assume
that this overly cautious attitude does not exist any more. As a consequence, if an inspection
i has occurred after d0, we have P(δi = 1) = F(ti ), while if an inspection i has proceeded
before d0, we have P(δi = 1) � F(ti ).

In order to take account of this human factor during a maintenance operation and
to propose a sensible estimation of the hazard rate λ, not littered by this early cautious
maintenance behaviour, we regard the problem as an incomplete structure data problem.
We define, for i = 1, . . . , n, zi as the indicator of an unwarranted replacement at inspection
i : zi = 1 if the replacement is unwarranted and zi = 0 otherwise. Before date d0, the
realizations of those latent random variables Zi are not observed if δi = 1, otherwise,
when the inspection occurs after d0 or if δi = 0, we have zi = 0. Note that in this case the
zi are not to be considered as data or parameters since they do not bring any information.
But we introduce them to obtain simpler formulae.

Thus, the incomplete data structure is as follows:

• The observed data are the calendar date d0, the inspection times ti and the indicators of
replacements δi for i = 1, . . . , n, n being the number of inspections.

• The missing or hidden data are the indicators zi of unwarranted replacements for i =
1, . . . , n0, n0 (1 < n0 < n) being the number of inspections before d0.

Note that n0 is entirely defined by d0 and should not be considered as a datum. Actually,
the sample is sorted as follows: the first n0 times correspond to inspections before date d0
and the last n − n0 + 1 ones correspond to the period after d0.

2.1 Maximum likelihood estimation

We describe now how to obtain the ML estimator of η. First we derive the observed
likelihood of η from the complete likelihood of η associated with the complete data.
Owing to the lack of memory property of the exponential distribution, we have R(t +
t ′) = R(t)R(t ′) for all t, t ′. Thus, the log-likelihood of η knowing the complete data
c = (d0, (ti , δi , zi ), i = 1, . . . , n)) is

L(η; c) =
n∑

i=n0+1

log[F(ti | η)δi R(ti | η)1−δi ]

+
n0∑

i=1

log[{R(ti | η)zi F(ti | η)1−zi }δi R(ti | η)1−δi ]· (3)

Then, the observed likelihood of η knowing the observed data o = (d0, (ti , δi ), i =
1, . . . , n)) is deduced from the complete loglikelihood by summation over the possible
values of the missing data zi (see McLachlan & Krishnam (1997)), we get

L(η; o) =
n0∑

i=1

log R(ti | η) + δi log(F(ti | η))

+
n∑

i=n0+1

δi log(F(ti | η)) + (1 − δi ) log R(ti | η)· (4)
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A popular and powerful tool to derive ML estimates for the incomplete data model is the
EM algorithm (McLachlan & Krishnam, 1997). It consists of two steps. The E step is
computing the conditional expectation of the ‘missing’ data knowing the observed data
and a current value of the parameter to be estimated, and the M step is maximizing the
likelihood with respect to the parameter the condition expectation of the ‘missing’ data.

Here it is noteworthy that, because of the presence of left censored data, the M
step of EM is not closed form and does not exhibit simplification compared to a direct
maximisation of the observed likelihood (4). Thus, we are in a rare situation, where there
is no advantage to using EM rather than a standard method such as scoring or Newton–
Raphson to maximise (4). But the analysis of the problem as an incomplete data structure
model allowed us to derive the observed loglikelihood in a simple way. Moreover, this
presentation appears to be useful to derive a Bayesian estimate of η, as seen in the next
section.

2.2 Bayesian estimation via Gibbs sampling

In a small-sample setting with a few notified replacements, it can happen that the ML
estimator gives unreliable results (typically as soon as n < 20). In such cases a Bayesian
approach can be desirable to provide a regularized estimate of η. In this section, we
consider Bayesian inference for our problem and we work on the parameter λ = 1/η rather
than η to present the equations in a simpler way. From the choice of a prior distribution
π(λ) for λ which is considered as a random vector, Bayesian inference consists of deriving
parameter estimates from features of the posterior distribution π(λ|o) which, using Bayes’
theorem, is defined as

π(λ|o) = π(λ)P(o|λ)∫
π(λ)P(o|λ) dλ

,

where P(o|λ) denotes the likelihood of the parameter λ for the data o = (d0, (ti , δi ), i =
1, . . . , n)). Then, the Bayesian estimate of λ for the quadratic loss function is the posterior
expectation of λ (see Robert (1994))

E(λ|o) =
∫

λπ(λ)P(o|λ) dλ∫
π(λ)P(o|λ) dλ

·

In our setting, calculating this posterior expectation is a difficult task. Markov chain Monte
Carlo methods aim to evaluate posterior expectations by Monte Carlo integration using
simulated Markov chains (Casella & George, 1992; Gilks et al., 1996). More precisely, we
make use of Gibbs sampling to approximate the posterior distribution of λ. Gibbs sampling
consists of sampling from the full conditional distributions involved in the model to get a
Markov chain whose stationary distribution is precisely the desired unconditional posterior
distribution.

Here, we make use of a conjugate prior distribution for λ and we consider that λ is a
random variable following a Gamma distribution G(a, b) with parameters a and b defined
such that the mean of this distribution is a/b and its variance is a/b2 (Robert, 1994).
The posterior distribution of λ is approximated through Gibbs sampling which consists of
repeating the following steps from an initial value η0:
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� Repeat G times

• For each i in [1, n]
draw zi in the following way:

◦ If i � n0

∗ If δi = 1,

{
zi = 1 with probability R(ti | η),

zi = 0 with probability F(ti | η)·
∗ If δi = 0, zi = 0.

◦ If i > n0, zi = 0.

The degradation times are drawn in the following way:

∗ If δi = 1 and zi = 0, then draw t̃i from E
(

η = 1

λ

)
until t̃i < ti .

∗ If δi = 0 or if (δi = 1 and zi = 1), draw t̃i from E
(

η = 1

λ

)
until t̃i > ti .

Draw
(
λ | (t̃i )1�i�n

) ∼ G(a + n,
∑

i t̃i + b).

End repeat

At the end of the procedure, the sequence {λg, g = g0, . . . , G} can be regarded as a
sample from the posterior distribution of λ. The integer g0 defines the length of the burn-in.
It must be chosen large enough to ensure that the chain has ‘forgotten’ its starting position.
The integer G has to be chosen large enough to ensure that the posterior distribution of λ

is well approximated. The theoretical specification of g0 and G is a difficult open problem
(see Gilks et al., 1996). In the experiments reported hereafter we chose g0 and G on an
empirical ground. It appears that g0 = 1000 and G = 10 000 provide good estimates of
the posterior mean of η by the formula

η̂ = 1

G − g0

G∑
g=g0+1

ηg .

3. Numerical experiments

In this section, we present the failure time ML estimates derived from our model. The ML
estimate of the parameter η of the exponential distribution E(η) is derived by maximizing
(4) by a scoring method. We first present an illustration on a real data set. Then we assess
the ability of our procedure to reduce the pessimistic bias caused by the unwarranted
replacements through Monte Carlo experiments. In this section we also illustrate the
possible interest of the Bayesian approach in some circumstances.

3.1 A real data set

The results on the data of Fig. 1 are presented in Table 1. For this example, concerning a
component of 900 MWRCPs, we have n = 68 and before d0 = 1992, each inspection leads
to a replacement. In this table, ηm represents the pessimistic ML estimate of η where all
the replacements are considered warranted, ηM represents the optimistic ML estimate of η
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TABLE 1 Estimation of η for data corresponding to Fig. 1

d0 % repl. % repl. ηm ηM ηml
before d0 after d0

1992 100 20 168 000 351 700 178 200

where all the replacements before d0 are considered unwarranted, and ηml represents the
ML estimate of η derived from our model. In this case, the pessimistic bias does not seem
to be important. The reason for that is that there are only n0 = 8 inspections before 1992,
and even if all those inspections lead to a replacement, there are not enough to influence
greatly the η estimate. But, since we do not know its true value, it is difficult to assess the
ability of our procedure to eliminate the pessimistic bias from such a real example. For this
reason, we now turn to Monte Carlo experiments.

3.2 Simulation

The shock model defined and simulated according to our ‘change maintenance behaviour’
model is as follows. Assume that a system receives shocks at random. A comprehensive
reference on shock models is Gaudoin & Soler (1997). The distribution of the time between
two shocks is a Gamma distribution G(1/s, η) and shocks are independent events. We
suppose that after s shocks there is the need for a replacement of the system. Hence,
the distribution of time between two replacements is an exponential distribution E(η).
We suppose the existence of over-cautious behaviour for the first n0 inspections among
n: maintenance engineers decide to replace the system after s′ < s shocks. But for the
remaining n − n0 inspections, a replacement is decided after s shocks. The statistical
problem is to estimate η. Finally, this shock model depends of the following quantities:

• n is the total number of inspections,

• n0 is the number of inspections for which a unwarranted replacement is possible (as
already noted, it is equivalent to give n0 or the date d0 of change of maintenance
behaviour),

• s the number of shocks producing a warranted replacement,

• s′ the number of shocks producing an unwarranted replacement,

• η the parameter to be estimated of the exponential distribution.

We simulated this shock model for different parameter values given in Table 2 and with η =
20 000 and s = 10. Each simulated situation was replicated 100 times. This table provides
the mean values and in parentheses the standard error of the pessimistic ML estimate ηm ,
the optimistic ML estimate ηM and the ML estimate ηml derived from the model presented
in Section 2. The results are satisfactory. Our procedure provides reasonable estimates of
η and the pessimistic bias is essentially eliminated. As expected, results are more variable
for the small sample size n = 20, and the ML estimate ηml seems to be less reliable when
n = 20 and s′ = 7 and appears to be somewhat optimistic.

Thus for this particular case (n = 20, n0 = 10, s = 10, s′ = 7), we run the Gibbs
sampler defined in Section 2.2 with the prior distribution G(1/10, 200 000). It corresponds
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TABLE 2 Estimation of η for simulated data from the shock model

n n0 s′ ηm ηM ηml
100 50 5 13 120 (1801) 46 828 (11 053) 19 637 (2006)
100 30 5 15 505 (2229) 32 055 (5 770) 19 935 (2399)
100 70 5 11 209 (1450) 87 423 (26 100) 19 598 (1557)
20 10 5 14 297 (4683) > 1000 000 20 913 (49 34)
20 10 3 11 125 (3133) > 1000 000 18 275 (3614)
20 10 7 18 147 (9630) > 1000 000 24 190 (10 051)

100 50 7 15 833 (2493) 48 511 (11 475) 21 911 (2651)

TABLE 3 ML and Bayesian estimates of η for three
samples with a few replacements

no. of repl. ηm ηM ηml ηba
7 23 214 44 814 28 999 18 801
9 16 727 34 761 22 407 18 169
9 16 727 44 814 23 536 18 423

to a good prior information since its mean value is 20 000 but it is a weak prior distribution
since its variance is 4 × 109. We aim to see if Bayesian inference can regularize the ML
estimate in a small-sample setting. Since running 10 000 iterations of the Gibbs sampler
is rather slow, we do not perform Monte Carlo experiments, but we run it for ten different
samples. From those experiments, it appears that when the number of replacements is over
20 possible replacements, the ML and the Bayesian estimates are not really different and
are both satisfactory. But when the number of replacements is less than 10, it appears that
the Bayesian estimate can be better than the ML estimate as illustrated in Table 3 for the
three following samples for which we get a number of replacements smaller than 10. In
this table, the Bayesian estimate is denoted ηba .

4. Discussion

We have proposed a model to tackle an estimation problem related to a human factor,
namely a tendency to replace a system too early in the first years of its life. Regarding this
problem as an incomplete structure model, we propose ML estimation of the parameter
of the failure time distribution, eliminating the pessimistic bias induced by this cautious
behaviour. Numerical experiments show that our procedure applied to an exponential
distribution works well. We also describe a Bayesian analysis of our incomplete structure
model. This Bayesian approach makes use of Gibbs sampling and is much more time
consuming than the ML approach. Also, the need to specify a prior distribution for the
failure time parameter is not an easy task. For an exponential distribution, it does not seem
that the Bayesian analysis of our model is very useful except in a small-sample setting
with a few replacements available and good prior knowledge. But here again, the Bayesian
approach can be more reliable than the ML estimation method in a more complex setting
involving the Weibull distribution with small sample size (see Bacha et al., 1998).
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