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Abstract. Smart electrical grids play a major role in energy transition
but raise important software problems. Some of them can be efficiently
solved by AI techniques. In particular, the increasing use of distributed
generation based on renewable energies (wind, photovoltaic, among oth-
ers) leads to the issue of its integration into the distribution network.
The distribution network was not originally designed to accommodate
generation units but to carry electricity from the distribution network
to medium and low voltage consumers. Some methods have been used
to automatically build target architectures to be reached within a given
time horizon (of several decades) capable of accommodating a massive in-
sertion of distributed generation while guaranteeing some technical con-
straints. However, these target networks may be quite different from the
existing ones and therefore a direct mutation of the network would be
too costly. It is therefore necessary to define the succession of works year
after year to reach the target. We addressed it by translating it to an
Automated Planning problem. We defined a transformation of the dis-
tribution network knowledge into a PDDL representation. The modelled
domain representation was fed to a planner to obtain the set of lines
to be built and deconstructed until the target is reached. Experimen-
tal analysis, on several networks at different scales, demonstrated the
applicability of the approach and the reduction in reliance on expert
knowledge. The objective of further work is to mutate an initial network
towards a target network while minimizing the total cost and respecting
technical constraints.

Keywords: Automated Planning · Smart Grids · Distribution Network
· Distributed Generation.

1 Introduction

Distribution power grids have historically been developed to deliver electricity
from the transmission grid to the final customers. For instance, in France, the
total length of the distribution grid is 1,377,269 km against 105,942 km for the
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transmission grid i.e. the slightest investment must be justified by a technical and
economic calculation. In a context of unidirectional power flows with customers
having a relatively well-known electrical behaviour, rules for the construction
and development of the grid have been defined based on realistic assumptions of
load growth.

Many changes have started to appear in recent years at varying speeds de-
pending on the country. First of all, distributed generations (DGs) based on
renewable energies have increased considerably due to various regulations aim-
ing at increasing their penetration rate. Because of their small size, these pro-
ductions are connected to the distribution grid which was not initially sized to
accommodate a high amount of DGs. In addition, the decarbonization of trans-
port is leading to the development of electric vehicles, which will form a new
significant load on the distribution grid that could increase peak consumption
significantly without a smart operation. These changes could cause over-voltage
or over-current constraints in the distribution grids, requiring significant invest-
ments in order to strengthen the grid to make it more robust.

In order to anticipate these major changes, distribution grid operators (DSOs)
aim to define the optimal long-term grid architecture (in a horizon of a few
decades) called target grid, optimising a set of technical and economic perfor-
mance indicators while respecting a set of constraints they have predefined.
These modifications can be minor, by adding and/or removing lines and trans-
formers, intermediate by creating new parts connected to the existing grid (ex-
pansion planning) or major, by changing the complete architecture (green-field
planning) [8, 13]. Once the target grid has been determined, the set of interme-
diate grids allowing the transition from the initial grid to the target grid has to
be defined.

Even if decision-making support tools for DSOs exist, such as calculation
modules allowing the evaluation of different performance indicators, there is no
tool allowing to automate the creation of target grids as well as the succession
of intermediate grids.We believe that AI Planning can be applied to determine
these intermediate grids. Indeed, AI planning is beneficial to address problems
subject to continuous change, a large number of high-performance planners (im-
plementing different approaches) are already available and planning algorithms
are constantly evolving.

In this paper, we investigate how AI planning techniques can be leveraged to
address the evolution of smart grids. More specifically, we address the dynamics
of line connections of a distributed network. This task was previously tackled
by hand and therefore with this work we enable new levels of automation. More
precisely, in Section 2 we present the context of distribution systems while in
Section 3 we introduce the AI planning notions used in this work. In Section
4, we show our initial investigation on how AI Planning can be used for Smart
Grids. Finally, we conclude in Section 5 by discussing our results and giving
some perspectives.
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2 Distribution System Planning Rules

In France, the most common traditional architecture is the secured feeder shown
in Figure 1. Each primary substation (square) is connected to another primary
substation via a set of electric lines, called main feeders (lines), supplying sec-
ondary substations (small and big circles). Two connection modes are possible
depending on whether the grid is in a rural or urban environment. In rural areas,
the load density being low, the main feeder passes close to the secondary substa-
tions which are connected to them via secondary feeders also called antennas . In
urban areas, the load density being high, the main feeder is directly connected
to secondary substations. Each secondary substation is connected to the main or
secondary feeder via two remote-controlled or manual switches. For the grid to
be radial, all of these switches are normally closed (small circle) except one (in
the big circle). The advantage of having a loopable grid is to be able to recon-
figure it in case of fault. Normally open switches are always remotely controlled,
but for normally closed switches this is only the case for a few (techno-economic
compromise). Switches are manually or remotely operated in order to isolate the
faulty portion of the feeder so that customers can be re-energised while field crew
carry out repairs. In this work, we consider grids in urban environments. We also

Fig. 1: Secured feeder architecture.

assume that the provided target grid, optimising a set of technical and economic
performance indicators while respecting a set of constraints, is reachable from
the provided initial grid. In other words, both grids have the same primary and
secondary substations and differ only by their connections and their normally
open switches. Additionally, we are focused in the transition from the initial grid
to the target grid, i.e. the intermediate grids. Finally, in this initial investigation,
we only address the dynamics of line connections.
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3 Automated Planning

Automated planning (AI planning), a sub-field of Artificial Intelligence, is a
model-based approach to action selection [6]. It aims to study and design domain-
independent general approaches to planning3 [7]. The dynamics of the domain
of interest, their possible actions and the conditions to attain some goal are
expressed on a high-level description of the world, namely the planning model.
By using AI planning, the development of a domain-specific solver, which would
cost time and money, is not necessary – it comes down to write the planning
model. Thus, AI planning represents a cost-effective method for quickly setting
up a solver since planning models can be more human readable and easier to
modify. In the following, we present the formal definition of the planning key
concepts used in this work.

3.1 Key concepts

Because the interest of planning lies in choosing actions to transform the sys-
tem state, the transitions between states are represented with a state-transition
system model. A state s is a set of predicates, i.e. a set of logical propositions.
We address sequential planning in the STRIPS framework [5].

A planning task consists of a planning domain Σ and a planning problem P.
A classical planning domain is a restricted state-transition system Σ = (S,A, γ)
such that:

– S is included in the set of all states that can be described with the represen-
tation language L.

– A is the set of all actions a.
– γ(s, a) is the state-transition function that defines the transition from a state
s to an state s′ using an action a.

A classical planning problem P is defined over a domain Σ as P = (Σ, s0, g)
being s0 an initial state where s0 ∈ S and g a goal, namely a set of instantiated
predicates. A goal is satisfied if the system attains a state sg such that all
predicates in g are in sg.

A planning operator is a triple o = (name o, precond o, effects o) where
name o is in the form name o(x1, ..., xn) such that x1, ..., xn are the object
variable symbols that appear in o, precond o is the set of predicates that must
hold before exploiting the action and effects o is the set of predicates to be
applied to a state.

An action a is an instantiation of a planning operator. Thus, a is a triple
a = (pre a, add a, del a). If an action can be applied, a new state is generated.
First it deletes all instantiated predicates given in the delete list del a, also
known as the negative effects. Then, it adds all instantiated predicates given in
the add-list add a, also known as the positive effects.

3 Here we refer to planning as the problem of finding a sequence of actions to achieve
a goal.
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A state s′ is reached from s by applying an action a according to the transition
function in (1).

s′ = γ(s, a) = (s− del(a)) ∪ add(a). (1)

The application of a sequence of actions π = 〈a1, . . . , an〉 to a state s is recur-
sively defined in (2).

γ(s, 〈a1, . . . , an〉) = γ(γ(s, a1), 〈a2, . . . , an〉). (2)

A satisfying plan is an ordered sequence of actions π = 〈a1, . . . , an〉 such that
sg = γ(si, π) satisfies the goal g and the latter is reachable if such a plan exists.
The plan is optimal if it is the shortest possible path.

3.2 PDDL representation language

The planning model is written using a representation language. One of the lan-
guages used in AI Planning (and selected for this work) is called PDDL. It
stands for Planning Domain Definition Language [11, 12]. It was introduced in
1998 for the International Planning Competition with the aim of standardising
the planning representation language.

The planning model is then written as a compact representation of a planning
task in PDDL-Code. The domain is composed of predicates which characterise
the properties of the objects and a set of non-instantiated actions which establish
the ways to move from one state to another. The problem is composed of objects
which define the task relevant things in the world; an initial state si which
represents the starting configuration of the world; and a goal state g which
describes the desired predicates that we want to be true.

In Figure 2, we show a general representation of a planning task in PDDL.
The domain definition (Figure 2a) is then a general model while the problem
definition (Figure 2b) is a specific problem instance.

(a) Domain definition in PDDL (b) Problem definition in PDDL

Fig. 2: Planning task in PDDL.
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3.3 Planning systems

The main purpose of writing a planning model in PDDL is to use planning
systems (also known as planners) to solve challenging problems. A planner takes
as input a model of the domain and a problem instance. As a result, it generates
a plan as an answer to the specified input problem.

In the last 20 years, the automated planning community has developed a
variety of state-of-the-art planners able to scale up to large problems thanks
to the use of effective domain-independent heuristics which allow to guide the
search. The algorithms embedded in planning systems search for paths in the
search space through different search strategies. They also have properties such
as time and memory complexity, completeness and optimality.

From the performance results in past planning competitions [15], we can
highlight the planners SymBA*-2 [14], YAHSP3 [16], BFS(f) [9] and IBaCoP2
[4]. Since it is not the aim of this work to make a complete review of neither all
planning systems nor all the different approaches, we leave it to the interested
reader to consult the extensive literature available [3, 6, 7].

4 AI Planning for Smart Grids: Initial Investigation

Smart electrical grids play a major role in energy transition but raise important
software problems. Some of them can be efficiently solved by AI techniques [2].
In particular, the increasing use of distributed generation based on renewable
energies (wind, photovoltaic, among others) leads to the issue of its integration
into the distribution network.

Some methods have been used to automatically build target architectures to
be reached within a given time horizon (of several decades) capable of accom-
modating a massive insertion of distributed generation while guaranteeing some
technical constraints [1]. However, these target networks may be quite different
from the existing ones and therefore a direct mutation of the network would be
too costly. It is therefore necessary to define the succession of works year after
year to reach the target, i.e. the intermediate grids.

As previously said, the task of determining the intermediate grids that allow
to reach the target grid is done by hand. Our assumption is that AI planning
could fit this task very well. First, AI planning is beneficial to address problems
subject to continuous change (e.g. integration of renewable energies, management
of the load caused by electric vehicles, etc). Indeed, writing and modifying a
planning model is less costly and time consuming than implementing a solver
and adapting it with each new change. Second, planning tools are indicated when
the problem is to find a solution path in a large transition system. In our case,
the intermediate grids are defined as the path allowing the transition from the
initial grid to the target grid. Finally, AI planning provide a wide open space of
promising algorithmic possibilities.

Running Example In Figure 3, we present a distribution network of six nodes
that will allow to illustrate our approach. It consists of a primary substation
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(square) connected to another primary substation via main feeders (lines) sup-
plying secondary substations (small and big circles). The nodes have been num-
bered from 0 to 7 for ease of reading when we refer to them.

We recall that secondary substations with one normally closed switch (NCS)
and one Normally Open Switch (big circle) provide a radial grid and allow the
grid to be reconfigured in case of a fault. In the initial grid (see Figure 3a)
NOS are located in nodes 1 and 4, while in the target grid (see Figure 3b) they
are located in nodes 3 and 4. Additionally, we consider the following open lines
(dashed line):

– Initial Grid:
• NOS in node 1 is open towards node 2.
• NOS in node 4 is open towards node 5.

– Target Grid:
• NOS in node 3 is open towards node 2.
• NOS in node 3 is open towards node 5.

(a) Initial Grid (b) Target Grid

Fig. 3: Running Example of a Distribution Network.

4.1 Modelling of the Distribution Network Knowledge

Modelling Guidelines In this initial investigation, we only address the dynam-
ics of line connections. We consider grids in urban environments. We assume that
we are provided with an initial grid and a target grid. The target grid should be
reachable from the provided initial grid, i.e. both grids have the same primary
and secondary substations and differ only by their connections and their nor-
mally open switches. Modelling guidelines are focused in finding the transition
from the initial grid to the target grid, i.e. the intermediate grids. Each one of
the them must be valid in itself. This means that an intermediate grid must
follow the rules below:

– A primary substation cannot be isolated, i.e. there must always be at least
one secondary substation connected to it.

– A secondary substation cannot be isolated, i.e. there must always be a path
that connects it to a primary substation.
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– There must be at least (but not more than) one NOS on each set of lines (i.e.
main feeder) that connect two primary substations together. For example,
in Figure 3a the main feeder that connects primary substations 0, 7 with
secondary substations 1, 2 has only one NOS on node 1.

– A primary substation can be directly connected to one or more secondary
substations. For example, the primary substation at node 0 could have an-
other secondary substation connected to it.

– A secondary substation can be directly connected to at most two other,
primary or secondary, substations. For example, the secondary substation
at node 6 (see Figure 3a) already has two connections (with nodes 5 and 7)
and therefore cannot have more. This constraint has been arbitrarily chosen
and can be modified by slightly changing the model.

Finally, following the intermediate grids, one by one, from the initial grid
must result in the target grid.

Formalisation into PDDL We address the task of determining the interme-
diate grids by translating it to an Automated Planning task. The real challenge
is to write the domain model. We therefore need to define the main elements
of a PDDL planning task (see Section 3.2) in the distribution network domain.
These elements are:

– Predicates:
• Is there an open line between x substation and y substation? (PDDL-

Code 1.1 line 5)
• Is x substation connected to y substation? (line 6)
• Is x substation feed by p primary substation? (line 7)
• Is s secondary substation free to receive another connection? (line 8)
• Is x substation mutable? (line 9)

– Actions/Operators:
• A line between two secondary substations can be removed if there exists

a normally open switch between them. For example, we can close the
NOS at 4 and remove the line between nodes 4 and 5. (PDDL-Code 1.1
line 11)
• A line between a secondary substation and a primary substation can be

removed if there exists a normally open switch between them. (line 23)
• A secondary substation can change the direction of its normally open

switch. For example, the NOS of the secondary substation at node 4 is
open towards node 5 but it can be closed here and be open for the line
between 3 and 4. (line 34)
• Two secondary substations can be connected and a NOS can be placed

in one of them towards the other substation, if each of them can still
receive an additional connection. (line 47)
• A secondary substation can be connected to a primary substation and a

NOS can be placed in the secondary substation the primary substation,
if the secondary substation can still receive an additional connection.
(line 60)
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Notice that each action has a set of precondition which determines if they
can be applied in a given state. If the action can be applied, it alters the set of
true facts according to the action’s effects. We provide in PDDL-Code 1.1, the
complete definition of predicates and actions.� �

1 (define (domain DISNET)

2 (: requirements :typing)

3 (:types primary secondary - substation)

4 (: predicates

5 (open_line ?x - substation ?y - substation)

6 (connected ?x - substation ?y - substation)

7 (feed ?x - substation ?p - primary)

8 (free_for_connection ?s - secondary)

9 (mutable ?x - substation)

10 )

11 (: action remove_openLine_secTosec

12 :parameters (?s1 - secondary ?s2 - secondary)

13 :precondition (and

14 (open_line ?s1 ?s2) (connected ?s1 ?s2)

15 (mutable ?s1) (mutable ?s2))

16 :effect (and (not(connected ?s1 ?s2))

17 (not(connected ?s2 ?s1))

18 (not(open_line ?s1 ?s2))

19 (not(open_line ?s2 ?s1))

20 (free_for_connection ?s1)

21 (free_for_connection ?s2)

22 ))

23 (: action remove_openLine_secTopri

24 :parameters (?s1 - secondary ?p1 - primary)

25 :precondition (and

26 (open_line ?s1 ?p1) (connected ?s1 ?p1)

27 (mutable ?s1))

28 :effect (and (not(connected ?s1 ?p1))

29 (not(connected ?p1 ?s1))

30 (not(open_line ?s1 ?p1))

31 (not(open_line ?p1 ?s1))

32 (free_for_connection ?s1)

33 ))

34 (: action change_switch_connection

35 :parameters (?s1 - secondary ?s2 - substation

36 ?s3 - substation ?p1 - primary ?p2 - primary)

37 :precondition (and

38 (open_line ?s1 ?s2) (connected ?s1 ?s2)

39 (connected ?s3 ?s1) (feed ?s3 ?p1)

40 (feed ?s1 ?p1) (feed ?s2 ?p2))

41 :effect (and (not(open_line ?s1 ?s2))

42 (not(open_line ?s2 ?s1))

43 (not(feed ?s1 ?p1))

44 (open_line ?s1 ?s3)

45 (open_line ?s3 ?s1)
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46 (feed ?s1 ?p2)))

47 (: action open_line -connect_secTosec

48 :parameters (?s1 - secondary ?s2 - secondary)

49 :precondition (and

50 (free_for_connection ?s2) (mutable ?s2)

51 (free_for_connection ?s1) (mutable ?s1))

52 :effect (and

53 (not(free_for_connection ?s2))

54 (not(free_for_connection ?s1))

55 (open_line ?s1 ?s2)

56 (open_line ?s2 ?s1)

57 (connected ?s2 ?s1)

58 (connected ?s1 ?s2)

59 ))

60 (: action open_line -connect_secTopri

61 :parameters (?s1 - secondary ?p1 - primary)

62 :precondition (and

63 (free_for_connection ?s1) (mutable ?s1))

64 :effect (and

65 (not(free_for_connection ?s1))

66 (open_line ?s1 ?p1)

67 (open_line ?p1 ?s1)

68 (connected ?p1 ?s1)

69 (connected ?s1 ?p1)

70 )))� �
PDDL-Code 1.1: Definition of the distribution network domain.

As previously said, writing the domain model is challenging. Additionally,
it is also necessary to verify that the domain is expressive enough to specify a
problem. We therefore need to write the problem specification. To illustrate this,
we have the following elements for the running example:

– Objects:
• Two primary substations. P1 refers to node 0 and P2 refers to node 7.
• Six secondary substations. Si refers to node i where i ∈ 1, 2, 3, 4, 5, 6.

– Initial state:
• A connected(x,y) predicate and its mirror, for each two connected sub-

stations x and y in the initial grid.
• A open line(x,y) predicate and its mirror, for each open line between two

substations x and y in the initial grid.
• A feed(x,p) predicate, for each substation x feed by a primary substation
p in the initial grid.

• A mutable(x) predicate, for each substation x in the initial grid that
changes in comparison to the target grid. For example, the secondary
substation at node 1 is mutable since in the initial grid it is connected
to node 2 but in the target grid it is not. On the contrary, the secondary
substation at node 6 is not mutable since in the initial and in the target
grid it is connected to the same nodes (i.e nodes 5 and 7).
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– Goal specification:
• A connected(x,y) predicate and its mirror, for each two connected sub-

stations x and y in the target grid.
• A open line(x,y) predicate, for each open line between two substations
x and y in the target grid.
• A feed(x,p) predicate, for each substation x feed by a primary substation
p in the target grid.

We provide in PDDL-Code 1.2, the complete definition of the initial state
and the goal specification for the running example in Figure 3.� �

1 (define (problem disnet001) (: domain disnet)

2 (: objects

3 P1 P2 - Primary

4 S1 S2 S3 S4 S5 S6 - Secondary)

5 (:init (mutable S1) (mutable S2) (mutable S3) (mutable S4)

6 (mutable S5) (connected P1 S1) (connected S1 P1)

7 (connected S1 S2) (connected S2 S1) (connected P2 S2)

8 (connected S2 P2) (connected P1 S3) (connected S3 P1)

9 (connected S3 S4) (connected S4 S3) (connected S4 S5)

10 (connected S5 S4) (connected S5 S6) (connected S6 S5)

11 (connected P2 S6) (connected S6 P2) (feed P1 P1)

12 (feed S1 P1) (feed S3 P1) (feed S4 P1) (feed P2 P2)

13 (feed S2 P2) (feed S6 P2) (feed S5 P2) (open_line S1 S2)

14 (open_line S2 S1) (open_line S4 S5) (open_line S5 S4))

15 (:goal (and (connected P1 S1) (connected S1 P1)

16 (connected S1 S4) (connected S4 S1) (connected S4 S2)

17 (connected S2 S4) (connected S3 P1) (connected P1 S3)

18 (connected S3 S5) (connected S5 S3) (connected S6 S5)

19 (connected S5 S6) (connected P2 S2) (connected S2 P2)

20 (connected P2 S6) (connected S6 P2) (open_line S4 S2)

21 (open_line S2 S4) (open_line S3 S5) (open_line S5 S3)

22 (feed P1 P1) (feed S1 P1) (feed S4 P1) (feed S3 P1)

23 (feed P2 P2) (feed S2 P2) (feed S6 P2) (feed S5 P2))))� �
PDDL-Code 1.2: Definition of a distribution network problem.

4.2 Experimental Results

The modelled domain and each problem instance were fed to the DFS+ [10]
planner. The planner was run with a timeout of 10 seconds and 2GB of RAM.

The planner has always successfully found a plan for each of our problem
instances. In Table 1, we present for each tested problem instance the parameters
of the initial and the final grid (number of primary and secondary substations,
the number of main feeders), the number of steps in the obtained solution and
the time, in seconds, taken by the AI planner to obtain it.

Obtained plans describe the set of lines to be built and deconstructed from
the initial grid until the target grid is reached. In PDDL-code 1.3, we show the
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Table 1: Description of the problem instances and obtained results.

Problem
instance

Primary
Substations

Secondary
Substations

NOS
Initial Grid

NOS
Target Grid

Plan
Length

Search
Time (s)

disnet001 2 6 2 2 7 0.002
disnet002 2 6 2 1 13 0.003
disnet003* 2 10 2 2 35 0.07
disnet004 2 10 2 3 23 0.021
disnet005 2 20 4 4 41 1.75

seven step solution found by the planner for the problem instance disnet001 (i.e.
our running example). In Figure 4, we provide a graphical representation of this
plan, i.e. the intermediary grids and actions from the initial grid until reach the
target grid.� �

1 (remove_openLine_sectosec s5 s4)

2 (remove_openLine_sectosec s2 s1)

3 (open_line -connect_sectosec s1 s4)

4 (change_switch_connection s4 s1 s3 p1 p1)

5 (remove_openLine_sectosec s4 s3)

6 (open_line -connect_sectosec s3 s5)

7 (open_line -connect_sectosec s2 s4)� �
PDDL-Code 1.3: Plan for the problem instance of the running example
(disnet001).

Fig. 4: Graphical representation of the plan in PDDL-Code 1.3.
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5 Discussion and Conclusion

Our results clearly show that AI planning is a very promising way to solve
smart grid engineering problems. The AI planner, provided with our planning
model, was able to solve all problem instances very quickly (less than two sec-
onds). In this regard, we asked a smart grid expert to solve the problem instance
disnet003 without the help of AI planning. This problem instance consist of
two primary substations, ten secondary substations and two feeders (see Table
1). The solution given by the expert is 21 actions long and was found in about
one hour (3600 seconds). In contrast, the solution given by the AI planner is 35
actions long and was found after 0.07 seconds.

Given the time taken by the expert to solve an easy instance, we can intu-
itively think that increasing the number of substations could become problem-
atic. Indeed, if we only consider from the space of all possible grids, those where
all secondary substations are part of a single main feeder then we can give a
lower bound on the number of possible grid configurations. If s is the number of
secondary substations then we have a lower bound in O(s!) which grows over-
exponentially. To illustrate this, in Figure 5, we show a representation of the
explored state space for the instance disnet001 with six secondary substations
in comparison with the instance disnet003 with ten secondary substations. We
go from 568 visited states (Figure 5a) to 2795 (Figure 5b), and from a height
of the search tree of 11 to 35. Because of this fast growing complexity, this task
can quickly become intractable for human experts.

(a) 6 secondary substations (disnet001).
(b) 10 secondary substations

(disnet003*).

Fig. 5: Representation of the explored state space for two different problem in-
stances.
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Regarding the plan length, our solution (35 actions) is longer than the one
given by the expert (21 actions). This could be a disadvantage for AI planning.
However, some of the actions given by the AI planner can be easily simplified to
a single action and, therefore, our plan can be shortened. In particular, this is
the case for the action change switch connection since the planner acts locally
to ensure that each intermediate grid is valid. For example, let us imagine that
we have the grid 0-1=:2-3-4-5 where ’-’ denotes a connection, ’=’ denotes an
open line and ’:’ denotes a NOS. If the solution is 0-1-2-3-4:=5, the AI planner
has to go through each intermediate change, i.e. 0-1=:2-3-4-5, 0-1-2:=3-4-5, 0-
1-2-3:=4-5 and 0-1-2-3-4:=5. This can be solved in a plan post-processing step
with a simple script. By applying such a post-processing step, we obtained a
shortened plan of 25 actions. In addition, the plan could be further optimised to
avoid unnecessary actions.

Finally, AI planning has already demonstrated its applicability to build a sys-
tem for defining substation voltage targets for the Grendon substation, near Lon-
don, England [2]. Authors proposed a numeric, non-temporal planning model.
Our results and that work only encourage us to continue exploring AI planning
for smart grids.

The objective of further work is therefore to mutate an initial network to-
wards a target network while minimising the total cost and respecting technical
constraints.
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