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Robust data-driven Lyapunov analysis with fixed data
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Abstract

In this era of digitalization, data has widely been used in control engineering. While
stability analysis is a mainstay for control science, most stability analysis tools still require
explicit knowledge of the model or a high-fidelity simulator. In this work, a new data-driven
Lyapunov analysis framework is proposed. Without using the model or its simulator, the
proposed approach can learn a piece-wise affine Lyapunov function with a finite and fixed
off-line dataset. The learnt Lyapunov function is robust to any dynamics that are consistent
with the off-line dataset. Along the development of proposed scheme, the Lyapunov stability
criterion is generalized. This generalization enables an iterative algorithm to augment the
region of attraction.
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1 Introduction
Stability analysis is a major research topic in control science. Among various stability criteria,
Lyapunov analysis [1] plays a key role in this field. In this framework, stability analysis is
reformulated into the search for a Lyapunov function. This has been widely studied in the
model-based or sampling-based setup, where the user is assumed to have direct access to the
model or its high-fidelity simulator. Note that the system model or its simulator may not be
available all the time, it is usually possible and much easier to measure a finite number of system
responses offline. Therefore, stability analysis based on fixed measured data poses a new challenge
and becomes desirable. Motivated by this need, this work studies the Lyapunov analysis based
on a given finite set of measurements of system response. The proposed approach can learn
a piece-wise affine (PWA) Lyapunov function on a compact set without access to the system
model/simulator. The contributions of this work are summarized as follows:
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• We formulate and prove a Lyapunov inference theorem, which generalizes existing Lya-
punov stability analysis methods. This generalization is used to expand a prior inner
estimate of the region of attraction to a larger set.

• We specify our Lyapunov stability criterion for PWA Lyapunov function on a compact set,
to make it verifiable locally on this compact set rather than at all points.

• We make the Lyapunov criterion robust to all the models that are consistent with the
measured dataset. This criterion is defined on general bounded evaluation function spaces,
and has a convex form for Lipschitz functions.

• We develop an algorithm to learn a Lyapunov function robust to all models that are con-
sistent with the measured dataset. The proposed algorithm only needs to solve a convex
second-order cone program, regardless of the underlying unknown dynamics (non-)linearity.

• We discuss numerical results properties of the proposed algorithm, mostly focusing on the
improvement of its computational efficiency.

Previous Work
Nonlinear Lyapunov stability analysis has been widely studied, where model-based approaches
and sampling-based approaches form two main categories. In either approach, a Lyapunov
candidate is optimized or synthesized by verifying the Lyapunov stability conditions. In the
model-based approaches, the knowledge of the underlying model is explicitly used in the search
of the Lyapunov function. On the contrary, the Lyapunov function is trained by penalizing the
violation of the Lyapunov stability conditions on a dataset. Even though a standard Monte-
Carlo sampling scheme can also give a probabilistic guarantee [2], it is always preferable to give a
strict qualification in stability analysis. In this case, both model-based approaches and sample-
based approaches require the explicit knowledge of the model. In particular, verification of the
Lyapunov stability condition usually resort to nonlinear optimization or satisfiability modulo
theory (SMT) solvers, such as dReal [3]. Note that when smooth dynamics are considered, one
can write the Lyapunov stability condition with respect to any Lyapunov candidate into an
explicit algebraic form (see e.g [4, 5, 6]). The SMT solver is accordingly used to check whether
these algebraic inequalities are satisfied up to some user-defined tolerance [7].

To the best of the authors’ knowledge, the first numerical method that finds a Lyapunov
function solves the Zubov equation [8]. The Zubov equation models the Lyapunov function as
the solution to a linear partial differential equation (PDE). The approximation of this PDE is
solved by series expansion [8], collocation method [9], etc. One main advantage of the model-
based approach is that the a-priori knowledge about the model can be used to reformulate the
Lyapunov learning problem into a simpler problem. When polynomial dynamics are considered,
a sum of square (SOS) programming relaxation can be used to search for polynomial Lyapunov
functions [10]. Due to the nice algebraic properties of polynomials, the SOS framework has been
further used to find the region of attraction [11, 12] and its sparsity structure has been used to
improve its scalability [13, 14]. Parallel to the studies in polynomial dynamics, PWA dynamics
is another genre attracting broad research interest [15, 16]. Such tremendous interest is also
a result of the ubiquitous appearances of PWA functions in various controllers, such as ReLU-
neural-networks-based controller and linear MPC [17]. For the PWA setup, optimization based
approaches play the central role, which mostly applies linear matrix inequality [18, 12, 19] and
mixed integer programming [20].

Unlike the model-based approaches, sampling-based methods highly rely on an efficient
strategy of generating informative samples. The counter-example guided inductive synthesis
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(CEGIS) [21, 22] is one major concept applied behind many sample-based approaches (see
e.g. [23, 19, 24]). These approaches have direct access to the model or its simulator. During
the learning process, they iteratively augment the sample dataset by adding counter examples to
the Lyapunov candidate proposed in the current iteration. These algorithms train the Lyapunov
function by penalizing the violation of the Lyapunov stability condition on the samples, and they
converge when no further counter example can be generated [23, 5].

The search for a Lyapunov function is usually confined to a specific function class, such as
generalized quadratic form [25] or positive definite kernel regressor [26]. In this work, we will
focus on PWA Lyapunov functions defined on a compact set. Besides the advantages mentioned
in the model-based approach paragraph, PWA Lyapunov candidates have shown nice interplay
with Lipschitz dynamics. In particular, when the samples of system dynamics are assigned to
the vertices of a grid, a robust Lyapunov stability condition on each simplex can be verified by
only considering a tightened Lyapunov condition defined on its vertices. This family of methods
is called the continuous piece-wise affine (CPA) method [27, 28]. The CPA method has been
extended to more general problem setup: differential inclusion [29], switched system [30], etc. In
this work, we also consider Lipschitz dynamics, but we do not assume that the data are located
on the vertices. Therefore, we do not term our method a CPA method to avoid unnecessary
confusion. More detailed comparison with the CPA method are postponed to Section 4.3.

The rest of this paper is organized as follows: In Section 2, some necessary tools from convex
analysis are reviewed alongside the statement of the problem setup. In Section 3, we will first
generalize the Lyapunov theorem in Section 3.1, this generalization will later be used to develop
a local Lyapunov condition with PWA Lyapunov candidate in Section 3.2. In the sequel, Sec-
tion 4 applies this local condition to a set of uncertain function defined by data, whose robust
satisfaction is summarized as in Theorem 4. This theorem is later used to define a convex in-
equality condition for the class of Lipschitz function in Section 4.2, where the learning problem
will be summarized. A comparison between the proposed learning problem and other related
works are given in Section 4.3. The learnability of the proposed scheme is studied in Section 5.1,
after which the proposed learning problem is recast into an equivalent form to enable higher
computational efficiency in Section 5.2. The general learning algorithm are summarized in 5.3
with a numerical validation in Section 6. A conclusion wraps up this paper in Section 7.

Notation: {xi}i∈I is a set indexed by I, and when there is no confusion, we drop the index set
with {xi}. Na denotes the set of positive integer less than a. R+ denotes the set of non-negative
real numbers. 0 is a zero vector. B(x, r) denotes an open euclidean ball centred at x with radius
r. co(X ) denotes the convex hull of X ⊂ Rn. Lip(X ) is the set of Lipschitz functions defined on
X .

If A : Hx −→ Hy is a linear operator mapping between Hilbert spaces Hx and Hy, then A∗

denotes its adjoint as A∗ : Hy −→ Hx. X \Y := {x ∈ X | x /∈ Y } for all Y ⊂ X. ∥x∥ denotes the
norm of x ∈ Rn, whose dual norm is denoted by ∥x∥∗, if not specified, ∥·∥ denotes the euclidean
norm (in which case ∥·∥∗ = ∥·∥). |C| denotes the cardinality of a set C. If X is a topological
space, then int(X ), X and ∂X denote its interior, closure and boundary, respectively.

Finally, due to ambiguity in the literature, we indicate our definition of polyhedra and poly-
topes:

• A polyhedron P ⊂ Rn is an intersection of finitely many half spaces: ∃m ∈ N, A ∈
Rm×n, b ∈ Rm such that

P = {x ∈ Rn | Ax− b ∈ (R+)
m} .

When the polyhedron is bounded, with slightly abuse of notation, we denote the number
of vertices by |P |.
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• A polytope is a finite union of bounded polyhedra, which is not necessarily convex. Ac-
cordingly, a convex polytope is the convex hull of its vertices.

2 Preliminary
In this section, we will first review some results from convex analysis and then introduce the
considered stability analysis problem.

2.1 Convex Analysis
Let Rn

C denote the set of compact convex subsets in Rn, the support function of a compact set
C ∈ Rn

C is defined by

VC(g) := max
x∈C

g⊤x ,

for all g ∈ Rn, and any convex set can be uniquely characterized by its support function. Mean-
while, the indicator function of a convex set C ∈ Rn

C is defined by

ιC(x) :=

{
0 , x ∈ C

∞ , x /∈ C ,

and this function is convex. With this definition, we also have

ιC1∩C2
(x) = ιC1

(x) + ιC2
(x) , (1)

as ιC1∩C2
(x) = 0 if and only if ιC1

(x) = 0 (i.e. x ∈ C1) and ιC2
(x) = 0 (i.e. x ∈ C2), and thus

x ∈ C1 ∩ C2. A conjugate of a convex function h : Rn → R is defined, for g ∈ Rn, by

h∗(g) := max
x∈Rn

g⊤x− h(x) .

By this definition, the conjugate of a non-empty set indicator function is its support function [31,
11.4] as

VC(·) = ι∗C(·) .

Given two proper, convex functions h1 : Rn −→ R and h2 : Rn −→ R, the infimal convolution is
defined by

h1#h2(x) := inf
y∈Rn

h1(y) + h2(x− y) ,

Geometrically, the epigraph of h1#h2(·) is the Minkowski sum of the epigraph of h1(·) and h2(·):{
(x, s) ∈ Rn × R : h1#h2(x) < s

}
=
{
(y + z, p+ q) ∈ Rn × R : h1(y) < p ∧ h2(z) < q

}
.

In particular, h1(·) and h2(·) being proper and convex, so is h1#h2. For the sake of simplicity,
we denote

#ihi(x) := inf
∑
i

hi(yi) s.t.
∑
i

yi = x .

By Lagrangian multiplier, the following calculus of infimal convolution can be derived [32]

Proposition 1. Let h1, h2 be two proper, convex functions, then

(h1 + h2)
∗
(x) = h∗

1#h∗
2(x) ,
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2.2 Unknown dynamic system, fixed data
In our problem setup, we consider an unknown continuous time dynamic system on a dimension
nx compact set X ⊂ Rnx ,

dx

dt
= f(x) ,

which we know has a locally asymptotically stable (LAS) equilibrium point (EP). And we have a
size ND fixed dataset sampled from this system as D = {(xi, fi = f(xi))}ND

i=1 with xi ∈ X . The
goal is to analyse the stability of this unknown dynamical system based on the fixed dataset D.
Without loss of generality, we assume that

Assumption 1. 0 ∈ X is the LAS EP and we have access to a compact subset Xs of its region
of attraction.

Note that Xs models a conservative prior about the region of attraction (RoA) of the unknown
dynamic system, e.g. deduced from engineering practice. Meanwhile, if no such information is
available, one can also consider Xs = {0}. We denote the vector space of Lipschitz continuous
functions on nx dimensional domain X by Lip(X )nx . To facilitate the analysis, we further
assume that

Assumption 2. f ∈ F where F ⊂ Lip(X )nx is a vector space of Lipschitz continuous functions,
such that

∀ h ∈ F , x 7→ ∥h(x)∥ is bounded within X ,

with upper bound denoted ∥h∥∞ (clearly a norm on F).

Remark 1. Assumption 2 means that the underlying dynamic system is bounded within X (i.e.
there will not exist infinite velocity). Meanwhile, F does not need to be a Hilbert space, a typical
case being the whole Lip(X )nx . If a Hilbert space F is used, it is usually assumed to be infinite
dimensional to ensure a large modelling capability.

Remark 2. Assumption 2 implies that the evaluation operator defined by

Ex(h) := h(x) , ∀ x ∈ X , h ∈ F

is bounded (i.e. continuous in h) with respect to the norm ∥ · ∥∞, meaning that

∀ x ∈ X ,∃ Cx ≥ 0 ;∀ h ∈ F , ∥Ex(h)∥ ≤ Cx∥h∥∞.

Indeed, taking Cx = 1 for all x ∈ X is always possible. However, as soon as F contains the
space of polynomial vector fields, it cannot be complete with respect to this norm ∥ · ∥∞, as the
Stone-Weierstrass theorem ensures that its uniform completion is the whole space of continuous
functions (including non-Lipschitz ones). As a result, one might prefer the standard Lipschitz
norm

∥h∥Lip := ∥h(0)∥+ sup
x ̸=y∈X

∥h(x)− h(y)∥
∥x− y∥︸ ︷︷ ︸

Lipschitz constant
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for which Lip(X )nx is complete and the Ex are also bounded:

∥Ex(h)∥ = ∥h(x)∥
= ∥h(0) + h(x)− h(0)∥
≤ ∥h(0)∥+ ∥h(x)− h(0)∥

≤ ∥h(0)∥+ ∥x∥ sup
y ̸=z∈X

∥h(y)− h(z)∥
∥y − z∥

≤ (1 + ∥x∥)︸ ︷︷ ︸
Cx

∥h∥Lip

3 Piecewise affine functions for Lyapunov inference
In this section, we first try to augment the prior knowledge of stability in Xs to a bigger set X
in Section 3.1. This result is refined to a Lyapunov candidate from the class of piece-wise affine
(PWA) functions in in Section 3.2.

3.1 Lyapunov inference
Before proceeding to the stability condition, we introduce two additional concepts on functions
L : Rnx → R. The sub-level set of L with level α ∈ R is given by

L≤α := {x ∈ Rnx | L(x) ≤ α} .

The Clarke generalized gradient of L at a point x ∈ Rnx is the set given by

∂ClL(x) := co

y ∈ Rnx :

∀ ϵ > 0,∃ xϵ ∈ Rnx ;
∥x− xϵ∥ < ϵ,
L is differentiable in xϵ,
∥y −∇L(xϵ)∥ < ϵ

 .

In [33, Theorem 2.5.1] it is proved that if L is Lipschitz continuous on a neighbourhood of x, then
∂ClL(x) ̸= ∅. The Clarke gradient is a generalized gradient in the sense that if L is continuously
differentiable on a neighbourhood of x, then trivially ∂ClL(x) = {∇L(x)}.

Now we summarize the Lyapunov stability condition on a compact set X in the following
Lyapunov inference theorem.

Theorem 2. Let Assumption 1 and 2 hold, and suppose that there exists a Lipschitz continuous
function L : Rnx → R such that:

2.1) There exists α ∈ R such that X = L≤α.

2.2) f(x)⊤y < 0 for all x ∈ X \ Xs, y ∈ ∂ClL(x).

Then for all x0 ∈ int(X ),
x(t|x0) −→

t→∞
0

where t 7→ x(t|x0) denotes the (unique by Lipschitz continuity of f – see Assumption 2) contin-
uously differentiable solution to the Cauchy problem

d

dt
x(t|x0) = f(x(t|x0))

x(0|x0) = x0.
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Proof. The proof is similar to the proof of the Lasalle theorem [34]. Let x0 ∈ int(X ) and define
the entering time

τ(x0) := inf{t ≥ 0 : x(t|x0) ∈ Xs}.

If τ(x0) < ∞, then x(τ(x0)|x0) ∈ Xs and using the semigroup property and Assumption 1,
one obtains x(t+ τ(x0)|x0) = x(t|x(τ(x0)) −→

t→∞
0 so that x(t|x0) −→

t→∞
0.

We now proceed to the non-trivial case where τ(x0) = ∞, i.e. ∀ t ≥ 0, x(t|x0) /∈ Xs, and
consider the exit time T := inf{t ≥ 0 : x(t|x0) ∈ ∂X}. Notice that as x0 ∈ int(X ) and t 7→ x(t|x0)
is continuous, T > 0. Then, using Lipschitz continuity of L, condition 2.2) and [35, Lemma 2.15],
for almost all t ∈ [0, T ), d

dtL(x(t|x0)) < 0, so that L(x(t|x0)) is decreasing on [0, T ) by the mean
value inequality. This yields that ∀ t ∈ (0, T ), one has L(x(t|x0)) < L(x0) ≤ α, and by condition
2.1) and continuity of t 7→ L(x(t|x0)), T = ∞ and thus L(x(t|x0)) is decreasing on [0,∞) and
for all t ≥ 0, x(t|x0) ∈ X \ Xs regarding τ(x0) =∞.

We now consider the compact set Ω := X \ Xs from which the trajectory x(t|x0) never escapes.
Since L is continuous and Ω is compact, by the Weierstrass extreme value theorem, one has that

−∞ < ℓ := inf
Ω

L,

so that the function t 7→ L(x(t|x0)) is decreasing and lower bounded, hence it has a limit
c := lim

t→∞
L(x(t|x0)) ∈ R that it does not attain in finite time.

We also consider the limit set

Γ(x0) := {p ∈ Ω : ∀ ϵ, T > 0,∃ t ≥ T ; ∥x(t|x0)− p∥ < ϵ},

that has the following property (see [34]): as t 7→ x(t|x0) is bounded, Γ(x0) ⊂ Ω is nonempty,
compact and invariant (forward and backwards). Thus, ∃ p0 ∈ Γ(x0) and ∀ t ≥ 0, x(t|p0) ∈ Γ(x0).
Moreover, continuity of the function L and the definition of Γ(x0) ensure that for all p ∈ Γ(x0),
L(p) = c, so that ∀ t ≥ 0, L(x(t|p0)) = c. By Lipschitz continuity of L and x(·|p0), we deduce
that for almost all t ≥ 0, d

dtL(x(t|p0)) = 0. In addition to that, [35, Lemma 2.15] states that
for almost all t ≥ 0, ∃ y ∈ ∂ClL(x(t|p0)) such that 0 = d

dtL(x(t|p0)) = y⊤f(x(t|p0)). From these
two points and condition 2.2) we deduce that for almost all t ≥ 0, x(t|p0) ∈ Xs. Additionally, by
definition of Xs, x(t|p0) −→

t→∞
0, and by invariance and compactness of Γ(x0), we have 0 ∈ Γ(x0).

Finally, we recall the definition of Assumption 1’s local asymptotic stability condition:

∃ ϵ > 0 s.t. ∥x1∥ < ϵ =⇒ x(t|x1) −→
t→∞

0.

Moreover, by definition of Γ(x0) ∋ 0, for all T > 0 we are given a t0 ≥ T such that ∥x(t0|x0)∥ < ϵ.
Those two observations, taking x1 = x(t0|x0), ensure that

x(t|x0) −→
t→∞

0.

.

Intuitively speaking, the proof of Theorem 2 considers two cases. The first part with finite
entering time τ(x0) concerns the case where 0 ∈ int(Xs). Meanwhile, the second part of the proof
regarding τ(x0) =∞ deals with the case where 0 ∈ ∂Xs. While so far numerical considerations
lead us to limit to the former case, it is worth noticing that in theory Lyapunov inference can be
performed even when the equilibrium point lies on the boundary of the prior region of attraction
estimate (including the case Xs = {0}).
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Remark 3. The local asymptotic stability condition around 0 given in Assumption 1 is necessary.
To see this, we construct a two-dimensional counter example:

dx

dt
= ∥x∥ ∥x− (1, 0)∥2︸ ︷︷ ︸

normal speed

(−x2, x1) + vr(x)︸ ︷︷ ︸
radial speed

x (2)

vr(x) =


1

∥x∥ − 1, ∥x∥ ≥ 3
4

1− 1
2∥x∥ ,

1
4 ≤ ∥x∥ <

3
4

−1, ∥x∥ < 1
4

(3)

in the following, we would try to expand the ROA around xs = (1, 0). Note that to shift this
point to 0, one only has to do the change of variable x̃ = x− (1, 0).

Now we start to analyse the behaviour of these dynamics in three cases (in addition to the
trivial case of equilibrium point).

• If ∥x0∥ = 1, then vr(x0) = 0 so that ∥x(t)∥ is constant (equal to 1) and the normal speed
is positive unless / until x(t) = (1, 0).

• If ∥x0∥ = 1
2 , again the radial speed is zero and the solution will stay on the circle centred

at 0 with radius 1
2 , permanently rotating as the normal speed never vanishes. This is an

unstable limit cycle.

• If ∥x0∥ > 1
2 , then the radial speed will have same sign as 1− ∥x∥ and ∥x(t)∥ will converge

to 1. In particular, if ∥x0∥ ≥ 3
4 , then ∥x(t|x0)∥ = 1 + (∥x0∥ − 1)e−t.

• If ∥x0∥ < 1
2 , then the radial speed will stay negative and x(t) will converge to 0. In

particular, if ∥x0∥ < 1
4 , then ∥x(t|x0)∥ = ∥x0∥e−t.

The discussion above allows us to set Xs = ∂B(0, 1): it is true that ∀x0 ∈ Xs, x(t|x0) −→
t→∞

(1, 0).

Assuming that X = B(0, 5
4 ) \ B(0,

3
4 ), with a Lyapunov candidate L(x) = | ∥x∥ − 1 |, we have

L≤ 1
4
= X , which fulfills sublevel set condition 1.1) in Theorem 2. Additionally, on X \ Xs,

∇L(x) = sgn(∥x∥ − 1)x and thus f(x)⊤∇L(x) = −∥x∥|1− ∥x∥| < 0, satisfying condition 1.2) in
Theorem 2. However, ∀ x0 ∈ X \ Xs, x(t|x0) never converges to (1, 0). Instead, it has a limit
set Γ(x0) = ∂B(0, 1) ⊂ ∂Xs (see proof of Theorem 2), and the trajectory will circulate forever
around the ∂B(0, 1) without convergence to any point (Fig. 1)

Remark 4. Condition 2.1) is important. To see this, we can assume that X ⊊ L≤α, by continuity
of L(x), there exists xext /∈ X such that L(xext) ≤ α. For any x0 ∈ X \ Xs, we can only ensure
that the evaluation of L(x) is decreasing, but it is possible to leave X heading towards xext. Note
that our condition 2) in Theorem 2 only holds on X , no stability guarantee can be given in this
case.

Remark 5. Theorem 2 is a generalization of the classical Lyapunov-Massera local asymptotic
stability theorem, included in it as the case where L is continuously differentiable and Xs = {0}.
However we do not assume that L ≥ 0 with equality only satisfied in 0, as 0 is already assumed
LAS.
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Figure 1: Vector field and trajectories with different initial points of dynamic system (2) that
converges to (1, 0).

3.2 Piecewise Affine Lyapunov Function
PWA functions have strong modelling capability because they are dense in the space of continuous
functions with a compact domain [36, Chapter 7.4]. This part will refine Theorem 2 to the
Lipschitz continuous PWA Lyapunov function. For the sake of simplicity, we further assume

Assumption 3. X is a polytope.

When X is not a polytope, it can be inner-approximated by a polytope up to arbitrary accu-
racy, thus this assumption will not limit the application of the proposed analysis. Additionally,
it is worth noting that the definition of polytope used in this paper is not necessarily convex (see
Section 2.2).

We now introduce our Lyapunov candidate under the form of a Lipschitz continuous PWA
function. Let {Ck}NC

k=1 be an NC-piece tessellation of X (i.e. ∪kCk = X and int(Ck)∩int(Cℓ) = ∅
if k ̸= ℓ) where the Ck are convex polytopes (without loss of generality we take C1 ∋ 0). For
k ∈ NNC

, we denote the vertices of Ck by {vj,k}|Ck|
j=1 . Using this structure, a PWA Lyapunov

candidate LX is defined on X by

∀k ∈ NNC
, x ∈ Ck, LX (x) = g⊤k x+ bk . (4)

With appropriate conditions on gk ∈ Rnx , bk ∈ R, continuity of LX on X is enforced: for any
common vertex v ∈ Ck ∩ Cℓ (i.e. ∃ i ∈ N|Ck|, j ∈ N|Cℓ| such that v = vi,k = vj,ℓ), the condition

(gk − gℓ)
⊤v = bℓ − bk (5)

should hold. Then, LX is Lipschitz continuous on X with

∥LX ∥Lip = |b1|+ max
1≤k≤NC

∥gk∥ <∞.

Remark 6. Existence of a set {gk, bk}NC

k=1 such that (4) defines a continuous function is guar-
anteed for any tessellation of X , as a constant function on X always satisfies the continuity
condition (i.e. gk = 0, ∀ k ∈ NNC

and bi = bj , ∀ i, j ∈ NNC
). When the tessellation is defined

by a power-diagram, existence of convex PWA functions is further guaranteed [37].
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Then, our PWA Lyapunov candidate LX defined on X can be extended to the whole Rnx ,
such that Theorem 2 can be applied.:

L(x) :=

{
α+ η dist(x,X ), x ∈ Rnx \ X
LX (x), x ∈ X

(6)

where η := max1≤k≤NC
∥gk∥ is LX ’s Lipschitz constant, and α ∈ R is used to define the sublevel

set (see Theorem 2) and can be tuned during the Lyapunov analysis.
Regarding our PWA LF candidate, the stability conditions in Theorem 2 can be restated as

Theorem 3. Let Assumptions 1 to 3 hold, and consider the function LX and L defined by (4), (5)
and (6). If L moreover satisfies the following conditions

3.1) α is such that the evaluation of L on the vertices satisfies

∀j, k s.t. vj,k ∈ X \ ∂X , L(vj,k) < α (7a)
∀j, k s.t. vj,k ∈ ∂X , L(vj,k) = α (7b)

3.2) ∀ k ∈ NNC
, ∀ x ∈ Ck ∩ (X \ Xs),

f(x)⊤gk < 0 (8)

Then L is Lipschitz continuous and for all x0 ∈ int(X ),

x(t|x0) −→
t→∞

0.

Proof. We first prove Lipschitz continuity of L. L is Lipschitz continuous on X by its defini-
tion (5). By (6), as the distance function is 1-Lipschitz, L is Lipschitz continuous on Rn \X with
same Lipschitz constant as in X . Then, to prove global Lipschitz continuity of L we only need to
prove continuity at the boundary ∂X , which is straightforward using condition (7b). Indeed, by
construction of the Ck and Assumption 3, any x ∈ ∂X is a convex combination of some vertices
vj,k ∈ ∂X : ∃ k ∈ NNC

, {λj}|Ck|
j=1 ⊂ [0, 1] s.t.

vj,k ∈ int(X )⇒ λj = 0,

|Ck|∑
j=1

λj = 1,

|Ck|∑
j=1

λjvj,k = x

so that L(x) = g⊤k x+ bk =
∑

j λj(g
⊤
k vj,k + bk)︸ ︷︷ ︸

α

= α, and L = α on ∂X , which is consistent with

the limit dist(x,X )→ 0 in (6).
We are now going to use Theorem 2 to complete our proof. We first check condition 2.1) :

X = L≤α. As X ⊃ L≤α is trivially deduced from (6), we focus on the converse inclusion. Let
x ∈ X and let us prove that x ∈ L≤α i.e. L(x) ≤ α.

By construction, ∃ k ∈ NNC
s.t. x ∈ Ck, and thus ∃{λj}|Ck|

j=1 ⊂ [0, 1] s.t.
∑

j λj = 1 and∑
j λjvj,k = x. Again,

L(x) =

|Ck|∑
j=1

λj (g
⊤
k vj,k + bk)︸ ︷︷ ︸

≤α

≤ α

using condition 3.1), which is the announced result.
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We then move on to condition 2.2) in Theorem 2. Let x ∈ X \ Xs and define K(x) := {k ∈
NNC

| x ∈ Ck}.
If x ∈ int(X ) and K(x) has a single element k, then x ∈ int(Ck) and L is smooth on a

neighbourhood of x with ∂ClL(x) = {gk} and we conclude using condition 3.2).
Else, if x ∈ int(X ) but |K(x)| > 1, we deduce from the previous point and the definition of

the Clarke gradient that
∂ClL(x) = co{gk | k ∈ K(x)}

so that ∀ y ∈ ∂ L(x), ∃{λk}k∈K(x) ⊂ [0, 1] s.t.∑
k∈K(x)

λk = 1 and
∑

k∈K(x)

λk gk = y.

This yields that for such y

f(x)⊤y =
∑

k∈K(x)

λk f(x)⊤gk︸ ︷︷ ︸
<0

< 0

using condition 3.2).
Else, if K(x) has a single element k but x ∈ ∂X (i.e. x is in the interior of a facet of X ), we

notice that conditions (7a), (7b) enforce that L is constant equal to α on Ck ∩ ∂X and less than
α in int(Ck), which yields, using the definition (4), that gk is orthogonal to ∂X in x and points
outward of X . Thus, the unit normal vector to ∂X ∩Ck at x pointing outward of X is given by

ν(x) =
gk
∥gk∥

.

Let ϵ > 0 and xϵ ∈ Rnx \ X s.t. ∥x− xϵ∥ < ϵ. The definition (6) ensures that L is differentiable
in xϵ and that

∇L(xϵ) −→
ϵ→0

(
max

1≤ℓ≤NC

∥gℓ∥
)
ν(x) =

(
max

1≤ℓ≤NC

∥gℓ∥
)

gk
∥gk∥

.

denoting

g̃k :=

(
max

1≤ℓ≤NC

∥gℓ∥
)

gk
∥gk∥

=
η

∥gk∥
gk,

we then deduce that ∂ClL(x) = co{gk, g̃k} = [1, η/∥gk∥] gk and we conclude the proof using
condition 3.2).

Eventually, in the last case where |K(x)| > 2 and x ∈ ∂X (i.e. x is on the boundary of a facet
of X ), from the above we deduce that if y ∈ ∂ClL(x), then ∃{λk}k∈K(x), {µk}k∈K(x) ⊂ [0, 1] s.t.∑

k∈K(x) λk + µk = 1 and

y =
∑

k∈K(x)

(λk gk + µk g̃k) =
∑

k∈K(x)

(λk +
η

∥gk∥
µk) gk

and
f(x)⊤y =

∑
k∈K(x)

(λk +
η

∥gk∥
µk) f(x)

⊤gk︸ ︷︷ ︸
<0

< 0

using condition 3.2).

Finally, we would wrap up this part by sorting out the logic flow in this theorectical Section 3
again. The ultimate goal is to extend some prior knowledge of RoA (i.e. Xs) to a bigger set
int(X ) via PWA continuous function, which is not smooth. Theorem 2 gives this characterization
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with respect to a continuous Lyapunov candidate via its Clarke gradient evaluation within the
set X \ Xs. A specific characterization based on a continuous PWA Lyapunov candidate is then
summarized in Theorem 3. This theorem is useful as it allows us to define the Lyapunov candidate
only on the region of interest (i.e. X ), while the general Thereom 2 requires the definition of the
Lyapunov candidate on the whole state space. Moreover, Theorem 3 reformulates the stability
analysis into the analysis on function evaluation on the vertices and the negativity test on each
affine piece. Additionally, this negativity test is local with respect to each affine piece, which
implies that a local refinement of the Lyapunov candidate L(x) is possible, further discussion of
this aspect will be given at the end of the following section.

4 Learning Robust PWA Lyapunov Function
Recall the ultimate goal of this work; we would like to learn a PWA Lyapunov function for an
unknown Lipschitz dynamic system f(x) based on a given fixed dataset D = {xi, fi}ND

i=1. Re-
garding the underlying dynamic system, we further assume that an overestimate of the Lipschitz
constant is given:

Assumption 4. M is a known overestimate of the Lipschitz constant of f , i.e. for all x, y ∈ Rnx

∥f(x)− f(y)∥ ≤M∥x− y∥.

Remark 7. In the case where F is a Hilbert space with inner product ⟨·; ·⟩F , it is also possible to
work with another assumption that might be more convenient in some settings, but introduces
additional technicalities in the learning process, namely: M is a known overestimate of the
Hilbert norm of f , i.e.

∥f∥F =
√
⟨f ; f⟩F ≤M.

In order to formulate a tractable learning problem, we further assume:

Assumption 5. The tessellation of X \ Xs is fixed by a given set {Ck}NC

k=1.

The discussion about why we make this assumption is postponed to Remark 9. In this Section,
we will show how to learn the PWA Lyapunov function on the tessellation {Ck}NC

k=1 based on
Theorem 3. In the following subsections, we will gradually develop a Lyapunov function learning
scheme under the form of an optimization problem.

Subsection 4.1 studies the negative condition for a general hypothesis space, and Subsec-
tion 4.2 studies the condition in the most basic hypothesis space, i.e. the Lipschitz function
space.

4.1 Robust Lyapunov Condition
Although condition (8) is local to each affine piece, it still poses a numerically intractable infinite
dimensional constraint, especially when the dynamic system is unknown and uncertain as f ∈ F .
In this subsection, we will show how this condition can be relaxed to a more tractable form via
the calculus of the infimal convolution.

Based on dynamic evaluation fi := f(xi) on location xi in the dataset D, the hypothesis
space of the underlying dynamic system is tightened to

FD := {h ∈ F | Exi
h = fi,∀ i ∈ NND

} , (9)
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where ND is the number of the collected data points. Accordingly, we further define

FD,i := {h ∈ F | Exi
= fi} , (10)

such that

FD = ∩iFD,i . (11)

The following theorem is the cornerstone representing the infinite dimensional Lyapunov con-
straint with a finite number of constraints.

Theorem 4. The condition 0 > g⊤k f(x) holds for any x ∈ Ck if there exist a set {g̃i,k}ND
i=1 ⊂ Rnx

such that

ND∑
i=1

g̃i,k = gk, and
ND∑
i=1

max
x∈Ck

ι∗FD,i
(E∗

xg̃i,k) < 0. (12)

Proof. The key idea in this proof is to view the negativity condition (8) as an evaluation of a
conjugate function in direction gk:

0 > max
x∈Ck

max
f∈FD

gTk f(x)
(a)⇐⇒ 0 > max

x∈C
max
f∈F

gTk (Exf)− ιFD
(f)

(b)⇐⇒ 0 > max
x∈Ck

ι∗FD
(E∗

xgk)

(c)⇐⇒ 0 > max
x∈Ck

ι∗∩iFD,i
(E∗

xgk)

(d)⇐⇒ 0 > max
x∈Ck

(
ND∑
i=1

ιFD,i
(E∗

xgk)

)∗

(e)⇐⇒ 0 > max
x∈Ck

#iι
∗
FD,i

(Exgk)

(f)⇐⇒ 0 > max
x∈Ck

inf∑
g̃i,k=gk

ND∑
i

ι∗FD,i
(Exg̃i,k)

(g)⇐= 0 > inf∑
g̃i,k=gk

max
x∈Ck

ND∑
i

ι∗FD,i
(Exg̃i,k)

(h)⇐⇒ ∃
ND∑
i=1

g̃i,k = gk s.t. max
x∈Ck

ND∑
i

ι∗FD,i
(E∗

xg̃i,k) < 0.

(a) writes the feasible set FD into the objective function by indicator function, and (b) follows
the definition of the convex conjugate (see Section 2.1). (c) applies the decomposition given
in (11), and (d) applies the calculus of indicator functions given in (1). (e) applies calculus
of conjugate function in Proposition 1, whose explicit form is written in (f). (g) applies the
min-max inequality [38, Chapter 3.14]. Finally, as often performed in robust optimization (see
e.g. [39]), the infimum operator is replaced by an existence assertion in (h).

The key concept behind Theorem 4 is the decomposition of the hypothesis space in (11).
In particular, ι∗FD,i

(E∗
xg̃i,k) = maxf∈FD,i

g⊤i,kf(x) is related to the uncertainty quantified from
one data point, which usually has an easy-to-evaluate explicit closed solution. In comparison,
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the explicit solution is usually not available or difficult to evaluate when the whole dataset
D is considered. For example, when F is the space of Lipschitz functions, then the uncertainty
boundary quantified by one data point defines a shifted cone. However, the uncertainty upper and
lower bounds are PWA and non-trivial to evaluate [40] when the whole dataset D is used. Recall
Assumption 2, it is also reasonable to consider a reproducing kernel Hilbert space (RKHS)1, which
underpins various uncertainty quantification methods such as Gaussian process regression [42]
and deterministic error bound methods [43]. All these methods require computing the inverse of
the Gram matrix or solving a second order cone program, which has an easy-to-evaluate explicit
solution only when one data point is considered.

Remark 8. In this work, we consider a decomposition of the hypothesis space FD into the
intersection of single-data models, i.e. FD = ∩FD,i. It is also possible to generalize the result
to other decomposition, dubbed {Fj}. If F = ∩jFj , where the conclusion in Theorem 4 needs
slight modification accordingly:∑

j

g̃j,k = gk, 0 >
∑
j

max
x∈Ck

ι∗Fj
(E∗

xg̃j,k) .

Remark 9. Even though function evaluation on a fixed location defines a linear operator from
the hypothesis space F to Rnx , the mapping from the evaluation point to this operator is in
general nonlinear. Assumption 5 is posed to develop a tractable formulation by avoiding this
nonlinear mapping, and the next subsection will make use of this property. It is also noteworthy
that, with a fixed tessellation, the parameters of the Lyapunov candidate on each affine piece
(i.e. gk, bk on Ck) can be uniquely determined by the function evaluation on the vertices.

Another main benefit of a fixed tessellation is that it allows a direct control over the model
complexity of the Lyapunov candidate. In particular, consider two Lyapunov candidates L1(x)
and L2(x) with their corresponding partitions {C1,k} and {C2,k}. Then, we can state that L1(x)
is a refinement of L2(x) (i.e. L1(x) has a higher degree of modelling capability than L2(x)) if
∀ C2,k, ∃{C1,j}j∈Ik

such that ∪jC1,j = C2,k. As condition (8) is local to each affine piece, if one
affine piece Ck violates the assumptions of Theorem 4, then we can refine the model locally by
further partition this piece.

4.2 A Convex Tractable Case: Lipschitz Dynamics
Theorem 4 gives us a representation of condition (8), but such a representation remains abstract
and hard to check numerically; thus, we will now recast this representation under a tractable
form, in a specific case. Although we have discussed that it is possible to consider a more complex
function space property on top of the Lipschitz property in Section 4.1, this section will show
that a convex learning problem exists even when we consider the most basic hypothesis space:

F = Lip(X )nx (13)

In such case, the following corollary holds:

Corollary 5. The condition 0 > g⊤k f(x) holds for any x ∈ Ck if there exists a set {g̃i,k}ND
i=1 ⊂ Rnx

such that
∑
i

g̃i,k = gk and for all j ∈ N|Ck|

ND∑
i=1

g̃⊤i,kfi + ∥g̃i,k∥M∥vj,k − xi∥ < 0. (14)

1A reproducing kernel Hilbert space (RKHS) over a set X is a Hilbert space of functions from X to R such
that for each x ∈ X, the evaluation functional Exg := g(x) is bounded [41]
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Proof.

∀ j, 0 >

ND∑
i=1

g̃⊤i,kfi + ∥g̃i,k∥M∥vj,k − xi∥
(a)⇐⇒ 0 > max

x∈Ck

ND∑
i=1

g̃⊤i,kfi + ∥g̃i,k∥M∥x− xi∥ (15)

(b)⇐⇒ 0 > max
x∈Ck

ND∑
i=1

max
yi∈B(fi,M∥x−xi∥)

g̃⊤i,kyi

(c)
=⇒ 0 > max

x∈Ck

ND∑
i=1

max
f∈FD,i

g̃⊤i,kf(x)

(d)⇐⇒ 0 > max
x∈Ck

ND∑
i=1

ι∗FD,i
(E∗

xg̃i,k) .

To show (a), we notice that the right-hand side of (15) is a convex maximization problem over
a bounded convex polytope, its optimal solution is attained on its vertices, i.e. {vj,k}. (b) uses
the Cauchy-Schwarz inequality on the second term of the sum g̃⊤i,kyi = g̃⊤i,kfi + g̃⊤i,k(yi − fi). (c)
follows the assumption of Lipschitz constant overestimate (Assumption 4). Finally, (d) applies
the definition of the conjugate function.

Remark 10. If instead of Assumption 4, we suppose that ∥f∥F ≤ M , then one has a bound
function BM : Rnx → R+ (depending on M) such that for any x ∈ Rnx , h⋆ ∈ argminh∈FD

∥h∥F ,

∥f(x)− h⋆(x)∥ ≤ BM (x),

so that in the previous proof one has to replace M∥x− xi∥ with BM (x). However, the problem
here is that BM is not convex, so that relation (b) does not hold anymore, and we would need
other arguments (out of the scope of this article) to obtain a finite dimensional constraint.

Using Theorem 3 and Corollary 5, we get the following conditions for int(X ) to be a positively
invariant subset of the region of attraction of our unknown system:

∃ {g̃i,k | i ∈ NND
, k ∈ NNC

} ⊂ Rnx , ∃ {gk | k ∈ NNC
} ⊂ Rnx ,

∃ {bk | k ∈ NNC
} ⊂ R, ∃ α ∈ R

∀ k, ℓ ∈ NNC
, j ∈ N|Ck| s.t. vj,k ∈ Cℓ, (gk − gℓ)

⊤vj,k = bℓ − bk (5)

∀ k ∈ NNC
, j ∈ N|Ck|, s.t. vj,k ∈ X \ ∂X g⊤k vj,k + bk < α (7a)

∀ k ∈ NNC
, j ∈ N|Ck|, s.t. vj,k ∈ ∂X g⊤k vj,k + bk = α (7b)

∀ k ∈ NNC
,

ND∑
i=1

g̃i,k = gk (12)

∀ k ∈ NNC
, j ∈ N|Ck|,

ND∑
i=1

g̃⊤i,kfi + ∥g̃i,k∥M∥vj,k − xi∥ < 0. (14)

Hence, our Lyapunov inference now boils down to a finite number of equality and strict inequality
tests. Regarding condition (14) for a fixed k ∈ NNC

, we introduce slack variables to transform
this certification problem into an optimization problem, with optimality giving the best robust
certificates possible. This results in the following optimization problem:
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s⋆α,ϵ := min
{gk,bk},{g̃i,k}{sj,k}

∑
NC

k=1

∑ |Ck|
j=1 sj,k

∀ k, ℓ ∈ NNC
, j ∈ N|Ck|, sj,k ≥ −ϵ (16a)

vj,k ∈ Cℓ =⇒ (gk − gℓ)
⊤vj,k = bℓ − bk (16b)

vj,k ∈ X \ ∂X =⇒ g⊤k vj,k + bk ≤ α− ϵ (16c)

vj,k ∈ ∂X =⇒ g⊤k vj,k + bk = α (16d)∑
ND
i=1 g̃i,k = gk (16e)∑
ND
i=1 g̃⊤i,kfi + ∥g̃i,k∥M∥vj,k − xi∥ ≤ sj,k (16f)

where ϵ > 0 is a user-defined negativity tolerance and α ∈ R is the user-defined maximal value
of the Lyapunov function. Constraint (16b) is the continuity condition, and constraint (16c)
is the interior condition (7a) and constraint (16d) is the boundary condition (7b), both stated
in Theorem 3. When the slack variables satisfy sj,k < 0, constraints (16e) and (16f) correspond
to the negative condition (8) stated in Theorem 3. Optimization problem (16) comes with the
following result:

Theorem 6. ∀ h ∈ F whose function evaluations are consistent with the unknown underlying
dynamic system f (h(xi) = fi, ∀ xi, fi ∈ D), the solution to problem (16) defines a Lyapunov
function for dynamic system h on X when its optimal value verifies s⋆α,ϵ = −ϵ

∑NC

k=1 |Ck|.

Proof. We need to show that an optimal solution {goptk , boptk , g̃opti,k , soptj,k } satisfying∑
j,k

soptj,k = −ϵ
∑
k

|Ck|

will also satisfy the conditions given in Theorem 3.
First of all, by constraint (16b) the learnt PWA function is continuous (see Equation (4)). On

top of this, by constraints (16d) and (16c), a solution to problem (16) recovers the condition 3.1)
in Theorem 3. In the rest of this proof, we need to show that constraints (16e) and (16f) are
equivalent to the negative condition 3.2) in Theorem 3 (i.e. 0 > g⊤k f(x), ∀ x ∈ Ck).

Note that, by sj,k ≥ −ϵ (constraint (16a)), the optimal value
∑
j,k

soptj,k = −ϵ
∑NC

k=1 |Ck| implies

that sj,k = −ϵ, ∀ j ∈ N|Ck|, k ∈ NNC
. Therefore, we have

0 > −ϵ ≥
∑

i = 1ND g̃⊤i,kfi +M∥g̃i,k∥∥vj,k − xi∥

(a)
=⇒ 0 >

ND∑
i=1

g̃⊤i,kfi +M∥g̃i,k∥∥vj,k − xi∥

(b)
=⇒ 0 > g⊤k h(x) ∀ x ∈ Ck, h ∈ FD ,

where (a) holds by taking g̃i,k = 0, ∀ i such that (xi, fi) /∈ D and (b) is Corollary 5. Based on
this, we can derive:

In summary, constraints (16f) and (16e) guarantees the satisfaction of condition 3.2) in The-
orem 3 for any h ∈ FD. Hence, we conclude the proof.

The implication of this theorem is strong as it states that under the assumption of Lipschitz
dynamics, we can learn/validate a LF by convex programming (16) even when the unknown
underlying dynamic system f is nonlinear.
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Remark 11. It is possible to adapt the proposed scheme (16) to the case where the measurements
are contaminated by bounded measurement noise. More specifically, if the noisy measurement
{x̃i, f̃i} is disturbed by measurement noise bounded by η (i.e. the noise-free data lies at {xi, fi},
such that ∥xi − x̃i∥ ≤ η and ∥fi − f̃i∥ ≤ η). The constraint (16f) is accordingly modified to∑

ND
i=1 g̃⊤i,kfi + ∥g̃i,k∥ (M (∥vj,k − xi∥+ η) + η) ≤ sj,k .

For the sake of a clear presentation, we only consider the noise-free measurement in the rest of
this paper.

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
−1

−0.5

0

x

f
(x

)

set-membership bounds
gf(x) bound from data point at 0
gf(x) bound from data point at 0.3
gf(x) bound from data point at 1

Proposed bound
Tight gf(x) bound from set-membership

Figure 2: Comparison between set membership method and the proposed method. The proposed
scheme is evaluated by g̃1 = 0, g̃2 = 0.65, g̃3 = 0.35.
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4.3 Comparison with related works
We would like to wrap up this subsection by comparing the proposed learning scheme with

other existing methods. In comparison with other PWA Lyapunov function based methods (see
e.g. [29, 27]), the proposed scheme shows two major differences. First, the location of the samples
and the tessellation of the PWA Lyapunov candidate are decoupled in the proposed scheme.
While in existing methods, the data are sampled on the vertices of the tessellation, therefore,
the data locations are usually structural due to the choice of the tessellation. Secondly, the
robust Lyapunov stability conditions considered in the existing methods only consider the model
uncertainty quantified by one data point. On the contrary, the proposed scheme synthetically
makes use of the uncertainty quantified by each data point while maintaining a convex tractable
structure.

Another framework related to the proposed approach is the set-membership method [40].
In short, the set-membership method models the set of Lipschitz functions whose evaluation
on the points {xi} are consistent with data {xi, f(xi)}. The evaluation upper/lower bounds
given by this method are PWA. To the best of our knowledge, even though the set-membership
method could be extended to vector-valued functions, its typical applications are still limited to
real-valued functions [44, 45] (i.e. f(x) ∈ R). This is one major difference between the proposed
scheme and the set-membership method. Now, we will show their difference regarding real-valued
functions. To better demonstrate the difference, we consider a specific example in R (Figure 2),
whose Lipschitz overestimate is set to M = 1 and the data points are:

{(0, f(0) = −0.4) , (0.3, f(0.3) = −0.5) , (1, f(1) = −0.6)}

Now, consider a Lyapunov function candidate L(x) = gx with g = 0.9 within interval [0, 1]. If the
evaluation bounds of set-membership method are used, the Lyapunov decreasing condition needs
to be examinated in all the sub-intervals generated by the PWA bounds (plotted as two-headed
arrow in Figure 2). Determination of these sub-intervals is computationally heavy. Instead, if
we hope to simplify the analysis by only taking one data point into consideration, none of the
simple model generated by one data point can justify the Lyapunov decreasing condition (see
black lines of different markers in Figure 2). These two aspects together imply the use of the
whole dataset is necessary. The proposed scheme synthesizes the knowledge of simple models
via a convex optimization. One optimal solution to the proposed scheme is plotted as a blue
line in Figure 2, which only utilizes the last two points (i.e. g̃1 = 0). It is worth noting that, in
this example, if we only consider the left data and the right data point, the Lyapunov deceasing
condition will fail even when the set-membership method is used. Hence, we can observe that
the proposed method is able to search for the data points that are relevant to the Lyapunov
decreasing condition. Additionally, this process is done by polynomial time convex optimization
algorithms [46]. On the contrary, even though the set-membership method gives the tightest
bound, checking the Lyapunov decreasing condition with these bounds is NP-hard, as it requires
vertex elimination of the Voronoi cells.

Remark 12. Note that in the proof of Theorem 5, we use the Cauchy-Schwarz inequality
in (15), that holds only with Euclidean 2-norm. Actually, other norms can be considered, and
the resulting problem (16) will have different properties accordingly. In particular, if 1-norm or
∞-norm is used, the resulting problem is a linear program. For the sake of simplicity, this paper
uses the Euclidean norm only, and as a result, the learning problem (16) is a second order cone
programming (SOCP) (Details in Section. 5).
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5 Algorithm Development
After the introduction of the Lyapunov learning problem (16), we will discuss its learnability in
Section 5.1. The original learning problem (16) will be recast to an equivalent but numerically
more efficient form in Section 5.2. In the end, the main algorithms are summarized in Section 5.3.

5.1 Learnability
Above all, the set of Lyapunov functions is closed under positive scaling. More specifically,
if a Lyapunov function L(x) is learnt from problem (16), then its positive scaling λL(x) with
λ > 0 is also a Lyapunov function. Thus, the user-defined value α in (16c) will not introduce
conservativeness in the learning problem. Furthermore, due to the introduction of the slack
variables {sj,k}, the learning problem (16) is always feasible. It is natural to ask the following
core question in the limiting case:

If X is the RoA of the underlying dynamic system f and we are allowed to evaluate the
dynamic system f in any finite set of points x ∈ X , can we always learn a Lyapunov function

for any RoA subsets X \ Xs?

Unfortunately, the answer to this question is no, and a counterexample is summarized in the
following Corollary:

Corollary 7. Let Assumption 1 hold and let the hypothesis space F satisfy Equation (13), if
0 /∈ int(Xs), then the optimal value to problem (16) verifies:

∑
j,k

soptj,k > −ϵ
NC∑
k=1

|Ck|

Proof. Note that the user-defined tolerance is negative (i.e. −ϵ < 0) and arbitrary, we need to
show that there exist one soptj,k ≥ 0 in the optimal solution.

By Assumption 1, we have f(0) = 0. Using the Lipschitz condition and Assumption 4 yields

∥fi∥ = ∥fi − 0∥ ≤M∥xi − 0∥

As 0 is the LAS EP, we have 0 ∈ Xs, and by assumption 0 /∈ int(Xs), so 0 ∈ ∂Xs. Consider
the affine piece Ck that contains 0 (i.e. 0 ∈ Ck and it is a vertex of Ck). By inspecting the
constraint (14) and using Cauchy-Schwarz inequality, one has:

g̃⊤i,kfi +M∥g̃i,k∥∥0− xi∥
≥M∥g̃i∥∥0− xi∥ − ∥g̃i∥∥fi∥ ≥ 0 .

Thus, the constraint (16f) will become:

sj,k ≥
ND∑
i=1

g̃⊤i,kfi +M∥g̃i,k∥∥vj,k − xi∥ ≥ 0 > −ϵ,

which is sufficient to conclude the proof.

Even though our theory of expanding a-priori knowledge from Xs to a bigger set X holds for
any Xs (Section 3), Corollary 7 shows that, if the domain of a Lyapunov function contains 0,
then it is impossible to learn this function by only assuming Lipschitz continuity (Equation (13)).
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Similar observation of infeasibility was also made in the constructive proof of converse Lyapunov
theorem [47]. Meanwhile, many numerical methods also have similar limitation around the
invariant set [48, Chapter 2.11]; we refer the interested reader to [49, 50] for more details. In
summary, if we do not further assume other function space structure on the hypothesis space F ,
following assumption is required to ensure the learnability of problem (16):

Assumption 6. 0 ∈ int(Xs) .

We would stress again that the assumption above is only necessary for the learning scheme
based on problem (16), and a learning scheme without this assumption is left for future research.

After answering the aforementioned problem by Corollary 7, the follow-up core question is:

Given an RoA prior estimate Xs, what condition on dataset D should hold to enable learning
the PWA Lyapunov function on X \ Xs?

Obviously, it is impossible to answer this question with a sufficient condition, regarding the
arbitrariness of the unknown dynamic system f . However, if we only assume the function space to
be Lipschitz (Equation (13)), we can still give an initial check of the learnability of problem (16).
In order to discuss this necessary condition, we first define

ri :=
∥fi∥
M

.

We state the necessary condition as follows:

Lemma 8. Let Assumption 1 hold and let hypothesis space F = Lip(X )nx . If solutions to
problem (16) define a Lyapunov function as in Theorem 3, then X \ Xs ⊂ ∪ND

i=1B(xi, ri).

Proof. From the proof of Theorem 6, the solution to problem (16) is a Lyapunov function if for
∀ k ∈ NNC

, j ∈ N|Ck|, sj,k = −ϵ. Let x ∈ X \ Xs, and without loss of generality, we suppose
x ∈ Ck for some k ∈ NNC

. By Corollary 5,

0 > −ϵ = sj,k ≥
∑

i = 1ND g̃⊤i,kfi +M∥g̃i,k∥∥x− xi∥ ,

which implies that there exist at least one n ∈ NNd
such that

0 > g̃⊤n,kfn +M∥g̃n,k∥∥x− xn∥
=⇒|g̃⊤n,kfn| > M∥g̃n,k∥∥x− xn∥
(a)
=⇒∥fn∥∥g̃n,k∥ > M∥g̃n,k∥∥x− xn∥

⇐⇒x ∈ B
(
xn,
∥fn∥
M

)
⇐⇒x ∈ B(xn, rn)

=⇒x ∈ ∪ND
i=1B(xi, ri)

where (a) follows from the Cauchy-Schwarz inequality. Due to the inclusion condition is sastisfied
for any point x ∈ X \ Xs, we conclude the proof with X \ Xs ⊂ ∪ND

i B(xi, ri).

This lemma shows the connection between learning a PWA Lyapunov function and the set
covering problem, which was proved to be equivalent to a non-convex semi-infinite problem [51],
and thus one should not try to check the condition in Lemma 8 numerically. Recall a key idea
behind the problem (16): the global analysis on X \Xs is reduced to the analysis on the vertices.
This inspires us to relax the continuous set covering problem to the covering problem of the
vertices and we state this condition in the following Corrolary
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Corollary 9. Let Assumption 1 hold and let hypothesis space F = Lip(X )nx , if solutions to
problem (16) define a Lyapunov function as in Theorem 3, then

{vi,k}1≤k≤NC

1≤i≤|Ck|
⊂ ∪ND

i=1B(xi, ri) , (17)

This necessary condition (17) can be checked in polynomial time. If this test fails, it means
that there exist vi,k /∈ ∪ND

i=1B(xi, ri), and therefore, the data is not informative enough to learn a
PWA Lyapunov function by only assuming the Lipschitz condition (Equation (13)). Accordingly,
the learning process will be terminated. Intuitively, the points which vi,k /∈ ∪ND

i=1B(xi, ri) should
suggest the location where additional samples are required. We leave the investigation about
this aspect for future work.

5.2 Computationally efficient recasting
In this part, we will discuss how we recast the original problem (16) to an equivalent problem
that can be handled numerically more efficiently.
Data Refinement
One main computational bottleneck for the original problem (16) comes from the number of
decision variables. Without loss of generality, we consider an affine piece Ck. By inspecting the
tessellation validation test (17), if a data point (xi, f(xi)) does not contain any vertices of Ck in
B(xi, ri) (i.e. Ck ∋ vj,k /∈ B(xi, ri)), then ∀ g̃ ∈ Rnx , following inequality holds

0 ≤ g̃⊤fi +M∥g̃∥∥vj,k − xi∥ .

Hence, this data point xi cannot help enforce the strict negative Lyapunov decreasing condi-
tion (16f), and can therefore be neglected in the constraints defined on affine piece Ck. Accord-
ingly, the set of data points relevant to Ck are:

Dk := {(xi, fi) | i ∈ Ik} with Ik :=
{
i ∈ NND

∣∣ ∃ j ∈ N|Ck|, vj,k ∈ B(xi, ri)
}

The condition defining this set essentially states the point should at least be possible to enforce
strict negativity on constraint (16f) at one vertex. This technique can significantly reduce the
computational cost. To see this, we consider a homogeneous tessellation within a unit hypercube
centred at 0 within which data points scatter uniformly. We further assume that the affine pieces
of the tessellation are hypercubes with edge width rel. Based on the Lipschitz condition (13),
each data point will at most get involved in O

((
ri
rel

)nx
)
≪ NC . Notice that ri ≤ .5 (see Sec-

tion 5.1), the number of decision variables are reduced to roughly O
(

1
2nx

)
of the problem defined

by the whole data set. In the numerical example we consider in Section 6, we observe on average
an 81% reduction in the number of decision variables, which makes the problem tractable on a
Laptop without memory overflow.

Explicit SOCP formualtions
In the numerical implementation, it is critical to convert the inequality constraint (16f) into a
set of second-order cones, or Lorentz cone in particular [38]:

sj,k ≥
∑
i∈Ik

g̃⊤i,kfi + ti,j,k

ti,j,k ≥ ∥g̃i,k∥M∥vj,k − xi∥ ,

where |Ik| auxiliary decision scalar variables {ti,j,k} are introduced per vertex vj,k in order to
define the Lorentz cone. The resulting computational complexity per iteration in an interior
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point algorithm is O(NDNCn
2
x) [52]. In comparison, without this reformulation, this inequal-

ity constraint will be directly handled by a block diagonal positive semi-definite matrix, whose
computational complexity per iteration in an interior point algorithm is O

(
|Ck| (NDnx)

3
)

[53,
Chapter 1].

The Recast Problem
After introducing of the reformulation techniques, the learning problem we solved becomes:

s⋆α,ϵ := min
{gk,bk},{g̃i,k}
{sj,k},{ti,j,k}

∑
NC

k=1

∑ |Ck|
j=1 sj,k (18a)

∀ k, ℓ ∈ NNC
, j ∈ N|Ck|, sj,k ≥ −ϵ (18b)

vj,k ∈ Cℓ =⇒ (gk − gℓ)
⊤vj,k = bℓ − bk (18c)

vj,k ∈ X \ ∂X =⇒ g⊤k vj,k + bk ≤ α− ϵ (18d)

vj,k ∈ ∂X =⇒ g⊤k vj,k + bk = α (18e)∑
i∈Ik| g̃i,k = gk (18f)∑
i∈Ik| g̃

⊤
i,kfi + ti,j,k ≤ sj,k (18g)

∀i ∈ Ik, ∥g̃i,k∥M∥vj,k − xi∥ ≤ ti,j,k (18h)

Remark 13. Learning without knowing M : It is possible to consider M as a decision
variable, and determine the largest Lipschitz constant for which a Lyapunov function can be
found given a particular set of data. More specifically, constraint (18h) is recast to a positive
semi-definite constraint by [

MInx g̃i,k
g̃⊤i,k ti,j,k

]
∈ S+ , (19)

where S+ denotes the set of positive semi-definite matrices. However, once this formulation is
used, the resulting optimization problem becomes a semidefinite programming (SDP) and the
data refinement technique proposed at the beginning of this Section 5.2 cannot be applied. Even
though the particular sparsity structure in (19) can be exploited to improve the computational
efficiency, the computational cost of this optimization still drastically increase in comparison
with the SOCP problem (16).

5.3 Algorithms
The final learning algorithm is summarized in Algorithm 1. Even though we use the standard
tessellation algorithm in algorithm 1, generating a good tessellation is vital but non-trivial.
Existing works mostly focus on the link between a convex liftable tessellation and the power
diagram (see e.g. [54, 55]). However, as the Lyapunov function studied in this paper is not
necessarily convex, hence we leave the study of this topic in the future research. And we use the
standard Delaunay triangulation in this work [56].
Sequential Space Partition
Based on the aforementioned strategies, the scalbility of the learning problem (16) can still be
improved by partitioning the region of interest X into a sequence of subset, such that

Xs ⊂ X1 ⊂ X2 · · · ⊂ X .
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Algorithm 1
Input: RoA prior Xs, negativity tolerance −ϵ, Lipschitz overestimate M , set level α,
Output: Lyapunov function L(x)

Refine a tessellation {Ck}Nc

k=1 until it satisfies (17)
if tessellation is valid then

Solve optimization (18)
if Optimal value solution satisfies s⋆α,ϵ = −ϵ

∑NC

k=1 |Ck| then
Return

end if
else

Return cannot learn L(x).
end if

Note that the logic behind the proposed algorithm is an augmentation of the a-priori knowledge
in Xs to X , this allows us to further improve the computational efficiency. The key idea is to
gradually augment the volume of the RoA, and in each iteration, it is only necessary to learn
the LF on the set Xi \ Xi−1. This sequential learning algorithm is summarized in Algorithm 2.
It is noteworthy that, if one needs to recover the whole LF on X \ Xs, then it is necessary to
impose the continuity condition on be boundary of ∂Xi between the i-th iteration and the i+1-th
iteration. The corresponding algorithm is summarized in Algorithm 2.

Algorithm 2
Input: Subset sequence {Xi} and the initial basin X0 = Xs

Output: Lyapunov function L(x)

i = 1
while {Xs ̸= X} do

Run Algorithm. 1 with Xs

if Algorithm 1 failed then
Return cannot learn L(x).

end if
i← i+ 1
Xs ← Xi

end while

5.4 Learning X
Up to this point, we assume knowledge of X within which the stability analysis is conducted.
However, such prior knowledge/assumption is not necessarily available. Instead, the users may
only have access to a set of data and hope to find out a ROA based on this dataset. In this case,
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we will need to solve the Learning problem (16) without the boundary condition:

s⋆ϵ := min
{gk,bk},{g̃i,k}{sj,k}

∑
NC

k=1

∑ |Ck|
j=1 sj,k

∀ k, ℓ ∈ NNC
, j ∈ N|Ck|, sj,k ≥ −ϵ

vj,k ∈ Cℓ =⇒ (gk − gℓ)
⊤vj,k = bℓ − bk

vj,k ∈ X \ ∂X =⇒ g⊤k vj,k + bk ≤ α− ϵ∑
ND
i=1 g̃i,k = gk∑
ND
i=1 g̃⊤i,kfi + ∥g̃i,k∥M∥vj,k − xi∥ ≤ sj,k

(20)

Based on the solution to this problem, it is possible to determine a ROA by the following
Corollary:

Corollary 10. If the solution to problem (20) satisfies s⋆ϵ = −ϵ
∑NC

k=1 |Ck|, then any sublevel set
L≤α ⊂ X with α ∈ R is attracted to 0 under the unknown dynamics f .

Proof. If the solution to (20) satisfies s⋆ϵ = −ϵ
∑NC

k=1 |Ck|, by choosing α ∈ R such that L≤α ⊂ X ,
then the optimal solution to (20) is also an optimal solution to:

min
{gk,bk},{g̃i,k}{sj,k}

∑
NC

k=1

∑ |Ck|
j=1 sj,k

∀ k, ℓ ∈ NNC
, j ∈ N|Ck|, sj,k ≥ −ϵ

vj,k ∈ Cℓ ∩ L≤α =⇒ (gk − gℓ)
⊤vj,k = bℓ − bk

vj,k ∈ L≤α \ ∂L≤α =⇒ g⊤k vj,k + bk ≤ α− ϵ

vj,k ∈ ∂L≤α =⇒ g⊤k vj,k + bk = α∑
ND
i=1 g̃i,k = gk∑
ND
i=1 g̃⊤i,kfi + ∥g̃i,k∥M∥vj,k − xi∥ ≤ sj,k ,

whose tessellation is given by {Ck∩L≤α}NC

k . Hence, Theorem 6 holds in L≤α, which summarizes
the proof.

Based on this corollary, we are able to learn the ROA within X by applying the algorithm
summarized in Algorithm 3.

6 Numerical Results
In this part, we going to evaluate the proposed learning schemes in two different examples. In
particular, we will make use of Algorithm 1, 2 and 3 in the first example and use Algorithm 3 in
the second one. All the following results are implemented on a laptop with Intel i7-11800H and
32G memory, and the Mosek is used for solving the SOCP problem.
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Algorithm 3
Input: RoA prior Xs, negativity tolerance −ϵ, Lipschitz overestimate M ,
Output: Lyapunov function L(x), ROA L≤α

Refine a tessellation {Ck}Nc

k=1 until it satisfies (17)
if tessellation is valid then

Solve optimization (20)
if Optimal value solution satisfies s⋆ϵ = −ϵ

∑NC

k=1 |Ck| then
find α ∈ R such that L≤α ⊂ X
Return

end if
else

Return cannot learn L(x).
end if

6.1 Non Polynomial dynamic system
We consider a two-dimensional nonlinear dynamic system:

ẋ1(t) =− 0.9 sin(x1(t)) cos(x2(t)) + 0.2x1(t)x2(t) + 0.25x2(t)
2

ẋ2(t) =− 1 sin(x2(t))(|x1(t) + 0.2|) + 0.5
x1(t)x2(t)

cos(x2(t))− 0.3x1(t)
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(a) The data used for the learning scheme.
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(b) Underlying dynamics (not used for learning).

Figure 3: Representations of the considered nonpolynomial dynamic system.

We assume that we know a ROA Xs = [−0.1, 0.1]2. A dataset with only 200 samples within
[−1, 1]2 ⊂ R2 is used to learn the underlying Lyapunov function: the positions {xi} and speeds
{f(xi)} of these samples are plotted in Figure 3a, from which we can observe that this dataset is
relatively sparse in [−1, 1]2. Judging by the speed sample, the dynamic system seem stable within
the box [−0.4, 0.4]2, while stability within the region [−1, 1]2\[−0.4, 0.4]2 is unclear because of the
speed samples in the lower right corner in Figure 3a. Hence, we ran sequential space partition
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scheme (Algorithm 2). In particular, we first use Algorithm 1 in the region [−0.4, 0.4]2 with
Xs = [−0.1, 0.1]2. After we justify that [−0.4, 0.4]2 is a positively invariant subset of the ROA,
then we further apply Algorithm 3 to [−1, 1]2 with Xs = [−0.4, 0.4]2. In both sub-problems,
the negativity tolerances ϵ are set to 10−3 and the tessellation are both randomly generated by
Delaunay triangulation [56].

(a) Xs = [−0.1, 0.1]2 ⊂ X = [−0.4, 0.4]2. (b) Learning a ROA estimate within [−1, 1]2.

Figure 4: Visualization of the learnt Lyapunov functions.

Figure 5: Evaluation of f(x)⊤∂ClL(x) on the learnt ROA, the gray triangulation in the back-
ground is the tessellation used to solve Problem (20), while the coloured region in the front is
our ROA estimate.

The learnt Lyapunov function in [−0.4, 0.4]2 is shown in Figure 4a, while the ROA we finally
end up with is shown in Figure 5. Moreover, the Lyapunov function learnt from Algorithm 3
in Xs = [−1, 1]2 \ [−0.4, 0.4]2 is shown in Figure 4b. Figure 5 also shows the evaluation of
f(x)⊤∂ClL(x) with respect to the underlying dynamic system, whose maximal evaluation is
−1.525 × 10−2 < 0, as expected from a Lyapunov function. In accordance with our guess, the
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learnt ROA in Figure 5 cuts off the lower right corner, because this region does not seem to be
stable. To see that, we simulate the underlying dynamic system by setting the initial states to
points in our dataset. The simulated trajectories are plotted in Figure 3b; please note that these
trajectories are not used in the learning scheme at all.

6.2 Reverse Time Van Del Pol Oscillator
In this part, we consider the reverse time Van Del Pol oscillator:

ẋ1(t) = −2x2(t)

ẋ2(t) = −0.8x1(t)− 10(x1(t)
2 − 0.21)x2(t) .
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(a) The data used for the learning scheme.
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(b) Simulated trajectories (not used for learning).

Figure 6: The reverse time Van Del Pol oscillator.

We know an a-priori polytopic ROA Xs, which is plotted in the center of Figure 7b. A
dataset with only 400 samples within [−0.5, 0.5]2 ⊂ R2 is used to learn the underlying Lyapunov
function: the positions {xi} and speeds {f(xi)} of these samples are plotted in Figure 6a. Similar
to what we did in the last example, we simulate these data forward in Figure 6b, while these
trajectories are not used in the learning scheme. We can observe that both the lower right
corner and the upper left corner in Figure 6b correspond to regions of unstable states. Even
with only the access to the data in Figure 6a, we can not give a clear idea about which region
is safe, hence we apply Algorithm 3 to [−0.5, 0.5]2. In particular, the negativity tolerance ϵ
is set to 10−3 and the tessellation is randomly generated by Delaunay triangulation [56]. The
learnt Lyapunov function and its evaluation of f(x)⊤∂ClL(x) on the learnt ROA are respectively
plotted in Figure 7a and Figure 7b. In particular, the maximal evaluation of f(x)⊤∂ClL(x) on
the learnt ROA is −1.947× 10−2 < 0.

7 Conclusion

Our results
In this work, we went all the way from proving a variant of stability theorem with non-smooth
Lyapunov functions (LF), to actually implementing an algorithm for data-based region of attrac-
tion (RoA) estimation with unknown dynamic system. In the process, we went through proving a
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(a) Visualization of the Lyapunov function. (b) Evaluation of f(x)⊤∂ClL(x) on the learnt ROA.

Figure 7: The Lyapunov function learnt from a Van der Pol dataset.

On Figure 7b, the gray triangularization in the background is the tessellation used to solve
Problem (20), while the coloured region in the front is ROA. The polytopic hole in the middle
is Xs

theorem for piecewise affine (PWA) LF computation and deriving a convex optimization program
for computing such LF.

The originality of the method we propose is that it only requires a fixed dataset to compute
an estimate of the RoA, from which it allows the user to deduce global information from local
data and knowledge on the Lipschitz constant of the dynamic system. Hence, it can be used
to study systems whose dynamic system cannot be easily sampled at will, through a relatively
simple optimization problem that can be handled with interior point methods.

Future works
In this work, we proposed a learning scheme that can learn a robust Lyapunov function from a
fixed dataset. However, with such minimal knowledge of the underlying dynamic system comes
a big convex optimization even for a low-dimensional dynamic system. In future works, we plan
on investigating how side information, particularly the RKHS structure [57], or other a-priori
knowledge of the underlying dynamic system can be incorporated into the learning scheme, so
that it can handle a higher-dimensional dynamic system.
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