
HAL Id: hal-04087851
https://hal.univ-grenoble-alpes.fr/hal-04087851v3

Submitted on 27 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Subsumptions of Algebraic Rewrite Rules
Thierry Boy de la Tour

To cite this version:
Thierry Boy de la Tour. Subsumptions of Algebraic Rewrite Rules. Electronic Proceedings in Theo-
retical Computer Science, 2023, 397, pp.20-38. �10.4204/EPTCS.397.2�. �hal-04087851v3�

https://hal.univ-grenoble-alpes.fr/hal-04087851v3
https://hal.archives-ouvertes.fr

Subsumptions of Algebraic Rewrite Rules

Thierry Boy de la Tour
Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, 38000 Grenoble, France

thierry dot boy-de-la-tour at imag.fr

Abstract

What does it mean for an algebraic rewrite rule to subsume another rule (that may then be called
a subrule)? We view subsumptions as rule morphisms such that the simultaneous application of a
rule and a subrule (i.e. the application of a subsumption morphism) yields the same result as a single
application of the subsuming rule. Simultaneous applications of categories of rules are obtained by
Global Coherent Transformations and illustrated on graphs in the DPO approach. Other approaches
are possible since these transformations are formulated in an abstract Rewriting Environment, and
such environments exist for various approaches to Algebraic Rewriting, including DPO, SqPO and
PBPO.

1 Introduction

In Global Transformations [16] rules may be seen as pairs (L,R) of graphs (or objects in a category C)
that are applied simultaneously to an input graph (as in L-systems [10] and cellular automata [9]). Such
rules are related by pairs of C-morphisms. These morphisms come from representing possible overlaps
of rules as subrules whose applications are induced by the overlapping applications of rules, therefore
establishing a link between these. By computing a colimit of a diagram involving the morphisms between
occurrences of right-hand sides, Global Transformations offer the possibility to merge items (vertices or
edges) in these occurrences of right-hand sides.

This form of rules has the advantage of simplicity, first because rule morphisms are those of the
product category C × C, and second because the input object is completely removed. Indeed, when all
occurrences of L have been found in the input graph G, the output graph H is produced solely from the
corresponding occurrences of R, thus effectively removing G. In particular, if no L has any match in G
then H is the empty graph. If G is, say, a relational database, this may be inconvenient.

More standard approaches to algebraic rewriting use rules for replacing matched parts of the input
object by new parts. These substitutions are performed by first removing the matched part and then
adding the new part, this last operation being performed by a pushout. But since there is no general
algebraic way of removing parts of a C-object, several approaches have been devised, from DPO [7] to
PBPO [4] rules, for defining the context (a C-object) in which R can be “pushed”. These rules always have
an interface K with a pair of C-morphisms from K to L and R (a span), but can be more complicated.
Hence the necessity of a general notion of morphism between rules that does not depend on a specific
shape of rules.

In Section 3 an intuitive analysis of rule subsumptions on a simple example with DPO-rules leads to
a natural definition of subsumption morphisms between DPO-rules, and of corresponding subsumption
morphisms between direct DPO-transformations. This leads in Section 4 to a general notion of Rewriting
Environment that provides the relevant categories of rules and of direct transformations, and functors
between them and to a category of partial transformations.

Section 5 is devoted to the Global Coherent Transformation. It derives from the Parallel Coherent
Transformations defined in [2] (only for a variant of DPO-rules), where sets or rules can be applied

1

simultaneously on an input object. The first step defines the global context as a limit of a diagram that
involves the subsumption morphisms.

One important problem is that overlapping applications of rules (i.e., overlapping direct transforma-
tions) may conflict as one transformation deletes an item of G that another transformation preserves.
Note that conflicts cannot happen with Global Transformations since they preserve nothing. Only non
conflicting, so called coherent transformations can be applied simultaneously, hence the notion of Par-
allel Coherence from [2] must be adapted in order to embrace subsumption morphisms. The adapted
definition ensures that the right-hand sides of the rules can be pushed in the global context by means of
a colimit.

Section 6 is devoted to the analysis of Rewriting Environments, and yields natural definitions of
environments for the SqPO and PBPO approaches. Future work and open questions are found in
Section 7.

2 Notations

Embeddings are injective functors, all other notions are compatible with [15]. We also use meets and
sums of functors, see [12].

For any category C, we write G ∈ C to indicate that G is a C-object, and |C| is the discrete category
on C-objects. Then G also denotes the functor from the terminal category 1 to |C| that maps the object
of 1 to G. ∅ denotes the initial object of C, if any. The slice category C \G has as objects C-morphisms
of codomain G, and as morphisms h : f → g C-morphisms such that g ◦h = f . The coslice category G\C
has as objects C-morphisms of domain G, and as morphisms h : f → g C-morphisms such that h ◦ f = g.

We will use the standard notion of graphs with multiple directed edges. In the running example we
will use graphs with 2 to 3 vertices and 0 to 4 edges denoted directly by their drawings, as in • •
and • •• . In order to avoid naming vertices, they will always be depicted from left to right, and
we will use at most two monomorphisms from one graph to another: one (depicted as a plain arrow) that
maps the leftmost (resp. rightmost) vertex of the domain graph to the leftmost (resp. rightmost) vertex
of the codomain graph, and one (dotted arrow) that swaps these vertices. For example we consider only
two possible morphisms:

• • • ••

The two morphisms from • • to • • will be distinguished similarly:

• • • •

3 Subrules in DPO Graph Transformations

The notion of a rule ρ being a subrule of a rule ρ′, or more generally of a subsumption morphism
σ : ρ → ρ′, covers the idea that ρ represents a part (specified by σ) of what ρ′ achieves, and therefore
that any application of ρ′ entails and subsumes a particular application (obtained through σ) of ρ. We
first try to make this idea more precise with DPO-rules.

Definition 3.1 (DPO rules and direct transformations, gluing condition). A DPO-rule ρ in a category
C is a span diagram

L K R
l r

2

in C, where l is monic. Diagrams in C are functors from an index category to C, and it will sometime
be convenient to refer to the objects and morphisms of this index category; they will be denoted by the
corresponding roman letters (here ρL = L, ρl = l, etc.)

We say that an item (edge or vertex) of a graph G is marked for removal by a matching m : L→ G
for a rule ρ if it has a preimage by m that has none by l (see [3]). The gluing condition for m, ρ states
that {

all items marked for removal have only one preimage by m, (GC1)
if a vertex adjacent to an edge is marked for removal, then so is this edge. (GC2)

A direct DPO-transformation δ in C is a diagram

L K R

G D H

l r

f g

m k n

in C such that l is monic and the two squares are pushouts.

It is well known (see [8, 6]) that in the category of graphs, given ρ and m : L → G, there exists a
direct DPO-transformation δ with ρ and m iff the gluing condition holds. The pushout complement D
is then a subgraph of G (f is monic) and contains all the items of G that are not marked for removal.

Example 3.2. In the running example we transform every directed edge in a graph into a pair of
consecutive edges. This can be expressed as the following rule

• • • • • •• (ρ′)

We do not wish to transform loops in this way, hence we adopt the DPO approach restricted to monic
matchings. We also wish to create only one middle vertex for parallel edges, so that the input graph
G = • • in our running example shall be transformed into H = • •• . In order to merge
the two vertices created by the two simultaneous applications of ρ′ on G we need to link them through
the application of a common subrule on their overlap. Consider the rule

• • • • • •• (ρ)

The right hand side expresses the fact that the middle vertex is created depending on the overlap • •
and not on the edges of G. Thus we need to link the middle vertices from ρ and ρ′ right-hand sides
through a morphism σ+ : ρ→ ρ′, given as three C-morphisms:

• • • • • ••

• • • • • ••

σ+
1 σ+

2 σ+
3 (σ+)

The two square diagrams commute, and we easily understand that this is necessary for ρ to be a
subrule of ρ′. But commutation would also hold if the interface graph of ρ were ∅, and then ρ would
remove the overlap • • . This would conflict with ρ′ that preserves this part of G. We need the two
rules to behave similarly on the overlap, which means that the interface of the subrule ρ is determined by
the way the interface of ρ′ intersects the overlap. This can be expressed by stating that the left square
should be a pullback.

3

Definition 3.3 (categories RDPO, RDPOm). For any category C, let RDPO be the category whose
objects are the DPO-rules and morphisms (or subsumptions) σ : ρ → ρ′ are triples σ = (σ1, σ2, σ3) of
C-morphisms such that

L K R

L′ K ′ R′

l r

l′ r′

σ1 σ2 σ3

(where L′ = ρ′L etc.) commutes in C and the left square is a pullback. Composition is componentwise
and the obvious identities are 1ρ = (1L, 1K , 1R) (this is a subcategory of C·←·→·). Let RDPOm be the
subcategory of RDPO with all rules and all morphisms σ such that σ1 and σ2 are monics.

Example 3.4. We consider two morphisms of rules, σ+ above and σ− : ρ→ ρ′ that swaps the left and
right vertices:

• • • • • ••

• • • • • ••

σ−1 σ−2 σ−3 (σ−)

We now see that the gluing condition is inherited (backward) along the morphisms of RDPOm.

Proposition 3.5. If C is the category of graphs, σ : ρ → ρ′ is a morphism in RDPO such that σ1 is
monic and m′ : L′ → G satisfies the gluing condition for ρ′ then so does m′ ◦ σ1 : L→ G for ρ.

Example 3.6. There are two obvious matchings m′1 and m′2 of ρ′ in G, and they induce two matchings
of ρ in G, say m+ = m′1◦σ+

1 = m′2◦σ+
1 and m− = m′1◦σ−1 = m′2◦σ−1 . We see that m′1 and m′2 satisfy the

gluing condition, hence they have a pushout complement by l′ and so do m+ and m− by l. We therefore
get two DPO-transformations of G by ρ (below left), one with (m+, k+, n+, f, g) and the other with
(m−, k−, n−, f, g), and two DPO-transformations of G by ρ′ (below right), one with (m′1, k

′, n′, f ′1, g
′)

and the other with (m′2, k
′, n′, f ′2, g

′).

• •

• • • •

• •

• ••

• ••

k′ n′m′1 f ′1
m′2

f ′2

g′
• •

• • • •

• •

• ••

• ••
f g

m+ k+ n+
m− k− n−

The following result reveals the relationship induced by morphisms σ : ρ → ρ′ on the corresponding
direct DPO-transformations.

Proposition 3.7. If C is the category of graphs, σ : ρ → ρ′ is a morphism in RDPO, m′ : L′ → G and
m′ ◦ σ1 : L→ G have pushout complements as below, then there is a unique graph morphism d such that

4

G

G

L

L′

K

K ′

D

D′

=

σ1
σ2

d

l

m′

f

f ′

kl′

k′

commutes.

The existence of d means that all items marked for removal by m′ ◦ σ1, i.e., removed by the subrule
ρ, are also removed by ρ′. In Example 3.6 we have f = 1G, hence with m′ = m′i we get d = f ′i . We also
see that there are no morphisms between the results of the transformations of G by ρ and ρ′, in either
direction. This is due to the fact that subrules remove less, but also add less. Subsumptions of rules
cannot be deduced from the properties of the transformation functions (from |C| to |C|) they induce.

Definition 3.8 (categories DDPO, DDPOm, functors RDPO, RDPOm). Let DDPO be the category whose
objects are direct DPO-transformations in a category C and whose morphisms (or subsumptions) µ : δ →
δ′ are 4-tuples (µ1, µ2, µ3, µ4) of C-morphisms such that the following diagram

G

G′

L

L′

K

K ′

D

D′

R

R′

=

µ1
µ2

µ4

l

m

m′

f

f ′

k

l′

k′

r

µ3

r′

commutes and the top left square is a pullback, with componentwise composition (but due to the con-
travariance of µ4 we are not in a functor category anymore). Let RDPO be the obvious functor from
DDPO to RDPO, i.e. such that (RDPOδ)L = δL etc. and RDPOµ = (µ1, µ2, µ3). Let DDPOm be the
full subcategory of DDPO whose objects are the direct transformations δ such that δm is monic, and let
RDPOm : DDPOm → RDPOm be the corresponding restriction of RDPO.

4 Rewriting Environments

Given an input object G and a category of rules, we are left with the problem of finding all relevant
transformations of G by these rules. We cannot simply rely on the matchings of their left-hand sides in
G (as in [16]) since they may not have pushout complements, or they may have several non isomorphic
ones. We will therefore use the relevant direct transformations, albeit in an abbreviated version that do
not contain L, since we don’t use matchings, nor H since they are not relevant to subsumption.

Definition 4.1 (category Cpt, functors In, PDPOm). A partial transformation τ in C is a diagram

G D K R
f k r

For any category C, let Cpt be the category whose objects are partial transformations and morphisms
ν : τ → τ ′ are triples (ν1, ν2, ν3) such that

5

G D K R

G′ D′ K ′ R′

f k r

f ′ k′ r′

= ν1 ν2 ν3

commutes in C, with obvious composition and identities.
Let In : Cpt → |C| be the input functor defined as Inτ = G. Let PDPO : DDPO → Cpt and PDPOm :

DDPOm → Cpt be the obvious functors (such that (PDPOδ)G = δG etc. and PDPOµ = (µ4, µ2, µ3)).

Using inverse images along PDPOm and RDPOm we can easily focus on the direct transformations of
concern (and the morphisms between them), i.e., the transformations of a graph by a rule.

Definition 4.2 (Rewriting Environments, rule systems, notations Dδ, π1µ . . .). For any category C, a
Rewriting Environment for C consists of a category D of direct transformations, a category R of rules
and two functors

R D Cpt
R P

A rule system in a Rewriting Environment is a category S with an embedding I : S → R (alternately,
S is a subcategory of R and I is the inclusion functor).

Given a rule system and an input C-object G, we build the categories D|G, D|SG and functors IG, IS ,
R|SG as meets of previous functors:

S R

D |C|

1

Cpt

D|GD|SG

R

I

P In

GIG

IS

R|SG

For any δ ∈ D|SG we write Dδ for (PIGISδ)D and similarly fδ etc. For any µ : δ → δ′ in D|SG we write
π1µ for the first coordinate of PIGISµ and similarly π2µ, π3µ.

Example 4.3. For S we take the subcategory ρ ρ′
σ+

σ−

of RDPO. To the matchings m′1 and m′2

of ρ′ in G correspond two1 transformations in DDPOm that will be denoted δ′1 and δ′2 (depicted on the
right in Example 3.6). To the matchings m+ and m− of ρ in G correspond another two transformations
denoted δ+ and δ− (on the left in Example 3.6). To each i = 1, 2 correspond one morphism µ+

i : δ+ → δ′i
such that RDPOmµ

+
i = σ+ and one morphism µ−i : δ− → δ′i such that RDPOmµ

−
i = σ−. Thus DDPOm|SG

is the following subcategory of DDPOm.

δ′1

δ′2

δ+ δ−
µ+1 µ−1

µ+2 µ−2

1We consider transformations only up to isomorphisms, see Footnote 2.

6

5 Global Coherent Transformations

As stated above we will use the partial transformations that are accessible from D|SG through P ◦ IG ◦ IS
(a restriction of P). We first need to build a context between the input G and the expected output H.
In Parallel Coherent Transformation [2] the context is obtained as a limit of the morphisms fδ : Dδ → G
(that need not be monics) for all δ in a set ∆ of direct transformations, hence of a diagram that is a sink
to G and thus corresponds to a discrete diagram in C \G. In Global Coherent Transformations the global
context (denoted C∆ below) is obtained similarly, but now ∆ is a category and the diagram contains the
morphisms π1µ : fδ′ → fδ for all µ : δ → δ′ in ∆ (since fδ ◦ π1µ = fδ′).

Definition 5.1 (functor P←∆ , limit f∆ : C∆ → G, limit cone γ∆). For any subcategory ∆ of D|SG let
P←∆ : ∆op → C \ G be the contravariant functor that maps every δ ∈ ∆ to fδ : Dδ → G and every
morphism µ of ∆ to π1µ : fδ′ → fδ. Let f∆ : C∆ → G be the limit of P←∆ and γ∆ be the limit cone from
f∆ to P←∆ .

Note that if ∆ is empty then the limit f∆ of the empty diagram is the terminal object of C \G, that
is 1G, hence C∆ = G.

Example 5.2. Let ∆ = DDPOm|SG. The diagram on the left below corresponds to the functor P←∆
together with the morphisms fδ±i

: Dδ±i
→ G (objects in C \ G). The limit of this diagram yields

C∆ = • • and the limit cone is represented on the right.

• •

• •

• • • •G

Dδ′1

Dδ′2

Dδ+ Dδ−

π1µ
+
1 π1µ

−
1

π1µ
+
2 π1µ

−
2

• •

• •

• • • •C∆

Dδ′1

Dδ′2

Dδ+ Dδ−

We next need to check that the transformations in ∆ do not conflict with each other, i.e., that for
all δ ∈ ∆ the image of Kδ in G is not only preserved by δ (in Dδ) but also by all other transformations
δ′ ∈ ∆. This is ensured by finding (natural) cones from these Kδ to the Dδ′ , which we shall formulate
with P←∆ , hence in C \G.

Definition 5.3 (coherent system of cones, morphisms cδ, global coherence). A coherent system of cones
for ∆ is a set of cones γδ from fδ ◦ kδ to P←∆ such that γδδ = kδ for all δ ∈ ∆, and γδ = γδ′ ◦ π2µ for
all µ : δ → δ′ in ∆. ∆ is globally coherent if there exists a coherent system of cones for ∆. We then let
cδ : fδ ◦ kδ → f∆ be the unique morphism in C \G such that γδ = γ∆ ◦ cδ.

Note that if γδ′ is a cone from fδ′ ◦ kδ′ to P←∆ then γδ′ ◦π2µ is a cone from fδ ◦ kδ to P←∆ , hence global
coherence means that we should find cones for overlapping direct transformations (say δ′1 and δ′2), with
the constraint that they should be compatible on their common subtransformations δ′1 ← δ → δ′2. If S
and therefore ∆ are discrete, this amounts to parallel coherence (that generalizes parallel independence
in DPO, see [2]).

Example 5.4. On our example the four graphs Kδ±i
are equal to • • . It is easy to build the four

cones from the four morphisms from Kδ′i
to Dδ′i

depicted below, by composing them with the π1µ
±
i on

the left and the π2µ
±
i on the right. On the right are also depicted the morphisms cδ±i

.

7

• •

• •

• • • •G

Dδ′1

Dδ′2

Dδ+ Dδ−

Kδ′1

Kδ′2

Kδ+ Kδ−C∆

π1µ
+
1 π1µ

−
1

π1µ
+
2 π1µ

−
2

π2µ
+
1 π2µ

−
1

π2µ
+
2 π2µ

−
2

cδ+

cδ−

cδ′1

cδ′2

γδ′1

γδ′2

The reader may check that γδ′1 ◦ π2µ
+
1 = γδ′2 ◦ π2µ

+
2 (this is γδ+) and γδ′1 ◦ π2µ

−
1 = γδ′2 ◦ π2µ

−
2 (= γδ−).

The morphisms cδ specify where the right-hand sides Rδ should be pushed in the global context.

Definition 5.5 (morphisms hδ : C∆ → Hδ). If ∆ is globally coherent for all δ ∈ ∆ then cδ can be
viewed as a C-morphism cδ : Kδ → C∆, and we consider the following pushout in C.

Kδ

C∆ Hδ

Rδ

rδ

cδ nδ

hδ

Example 5.6. On our example we get:

Kδ′i

C∆ • ••

• ••
rδ′i

cδ′i
nδ′i

hδ′i

Kδ+

C∆ • ••

• ••
rδ+

cδ+ nδ+

hδ+

Kδ−

C∆ • ••

• ••
rδ−

cδ− nδ−

hδ−

Thanks to the coherent system of cones we can turn h into a functor.

Proposition 5.7. For every µ : δ → δ′ in ∆ there exists a unique hµ such that

C∆

Hδ

Hδ′

Rδ

Rδ′

hδ

hδ′

nδ

nδ′

π3µhµ

commutes.

Corollary 5.8. By unicity we get hµ′◦µ = hµ′ ◦ hµ.

Example 5.9. For instance the morphisms µ−i : δ− → δ′i yield the morphisms hµ−i
depicted below.

C∆

• ••

• ••

• ••

• ••

hδ−

hδ′i

nδ−

nδ′i

π3µ
−
i

h
µ−i

8

The final step of the Global Coherent Transformation, symmetric to the first step, consists in taking
the colimit in the coslice category C∆ \ C of the covariant diagram of index ∆ with objects hδ and
morphisms hµ : hδ → hδ′ for all µ : δ → δ′ in ∆.

Definition 5.10 (functor P→∆ , colimit h∆ : C∆ → H∆). If ∆ is globally coherent let P→∆ : ∆→ C∆ \ C
be the functor defined by P→∆ δ = hδ (interpreted as an object of C∆ \C) and P→∆ µ = hµ for all µ : δ → δ′

in ∆. Let h∆ : C∆ → H∆ be the colimit2 of P→∆ , then the C-span G
f∆←−− C∆

h∆−−→ H∆ is a Global Coherent
Transformation by ∆.

If ∆ is empty then the colimit h∆ of the empty diagram is the initial object of C∆ \ C, that is 1C∆
,

hence H∆ = C∆ = G. Generally, the functor P→∆ depends on the choice of cones γδ for δ ∈ ∆, hence h∆

is not determined by ∆.

Example 5.11. The functor P→∆ applied to ∆ yields the following diagram

• ••

• ••

• •• • ••C∆

Hδ′1

Hδ′2

Hδ+ Hδ−

h
µ+

1
h
µ−1

h
µ+

2
h
µ−2

The leftmost vertices of these five graphs are connected as images or preimages of each other, and similarly
for the five right vertices, and the four middle vertices. The four edges are not likewise connected, hence
the colimit of this diagram is the expected result H = • •• . We therefore see that the two
middle vertices created in δ′1 and δ′2 are merged by their common subtransformation δ+ (or δ−), but also
that the two middle vertices created in δ+ and δ− are merged by their common subsuming transformation
δ′1 (or δ′2).

If we apply S to the graph G′ = • • then rule ρ′ does not apply to G′ and hence the two
matchings of ρ in G′ apply independently, thus adding two vertices to G′. We can merge them by adding
to S the following rule morphism σ : ρ→ ρ that swaps the left and right vertices:

• • • • • ••

• • • • • ••

σ1 σ2 σ3

We have σ2 = 1ρ hence σ is an automorphism of ρ. Adding σ to S means that the symmetric
applications of ρ, i.e., direct transformations with matchings m and m ◦ σ, shall be merged (this seems
to generalize to the algebraic context the notion of Parallel Rewriting Modulo Automorphism devised in
an algorithmic approach in [1]). Since σ+ ◦ σ = σ− and σ− ◦ σ = σ+, the new rule system is

S ′ = ρ ρ′
σ+

σ−

σ

2 Global Coherent Transformations are obtained as limits and colimits of diagrams whose index category is ∆, hence
are not affected by isomorphisms in ∆, which can therefore be replaced by its skeleton.

9

If we apply S ′ to G, we add two new morphisms in DDPOm|SG, i.e,

∆′ = DDPOm|S
′

G =

δ′1

δ′2

δ+ δ−
µ+1 µ−1

µ+2 µ−2

It is easy to see that the Global Coherent Transformation by ∆′ is the same as above with ∆. This is
due to the fact that δ+ and δ− are already related in ∆ through δ′1 (or δ′2).

We finally prove that, apart from this mechanism of sharing common subtransformations, isolated
transformations always subsume their subtransformations, so that morphisms inR are rule subsumptions
as intended.

Proposition 5.12. If ∆′ is restricted to δ′ and ∆ to µ : δ → δ′ (or more generally if δ′ is terminal in
∆) then ∆ and ∆′ are globally coherent and H∆ ' H∆′ .

6 Some Rewriting Environments and Their Properties

An obvious property of Rewriting Environments is that they can be combined: if R1
R1←− D1

P1−→ Cpt and

R2
R2←− D2

P2−→ Cpt are Rewriting Environments for C then so is R1 +R2
R1+R2←−−−− D1 +D2

[P1,P2]−−−−→ Cpt. It
is therefore possible to mix rules of different approaches to transform a graph, though of course rules of
distinct approaches cannot subsume each other.

A property that one might reasonably expect is that when a rule applies and yields a direct trans-
formation then its subrules also apply and yield subtransformations. We express this by means of the
following notion.

Definition 6.1 (right-full). A functor F : A → B is right-full3 if for all a′ ∈ A, all b ∈ B and all
g : b→ Fa′, there exist a ∈ A and f : a→ a′ such that Ff = g.

It is obvious that right-fullness is closed by composition.

Lemma 6.2. IG is a full and right-full embedding.

Proposition 6.3. If R is right-full (resp. faithful) then so is R|SG for every rule system S and G ∈ C.

Hence when R is right-full and faithful every morphism σ : ρ → ρ′ in S is reflected by a morphism
in D|SG whenever ρ′ is reflected by a direct transformation δ′ (i.e., whenever ρ′ applies to G), and this
morphism is uniquely determined by σ and δ′.

6.1 Double-Pushouts

Definitions 3.3, 3.8 and 4.1 provide two Rewriting Environments that we may call DPO and DPOm. By
Proposition 3.7 it is obvious that RDPO and RDPOm are faithful when C is the category of graphs. This
is easily seen to generalize to all adhesive categories [11]. Proposition 3.7 generalizes as follows:

Proposition 6.4. If C is adhesive, δ, δ′ ∈ DDPO and σ : RDPOδ → RDPOδ
′ such that m = m′ ◦ σ1 then

there exists a unique µ : δ → δ′ such that RDPOµ = σ.

3This is named after the symmetric definition of left-full functors in [17, p. 63].

10

According to Proposition 3.5 it is obvious that RDPOm is right-full (when C is the category of graphs).
It is easy to see that RDPO is not right-full (with σ1 not monic, see Proposition 3.5).

One drawback with span rules is that every item matched by m that is not removed must be preserved
in the result, hence cannot be removed by an overlapping rule, by the requirement of global coherence.
In [2] we have defined weak DPO-rules by inserting a second interface I between K and L. A weak DPO
transformation is a diagram

L I K R

G D D H

l i r

m k

f

k ◦ i

g

n

=

so that the images of items in I are not removed by this transformation, but only images of items in
K may not be removed by any simultaneous transformation. In cellular automata we need items in I
that match the states of the neighbour cells, but there should be none in K since these states may be
modified by overlapping rules (see [2, Example 3], note that K and I are swapped).

It is easy to define subsumption morphisms between weak DPO-rules (as 4-tuples of C-morphisms
with commuting properties and a pullback as in Definition 3.3), and corresponding morphisms between
direct transformations of weak DPO-rules (as 5-tuples of C-morphisms with commuting properties and
a pullback as in Definition 3.8). This yields a Rewriting Environment for weak double-pushouts.

6.2 Sesqui-Pushouts

We now consider the case of Sesqui-Pushouts [5]. It is based on the notion of final pullback complement
that allows not only to remove parts of the input G but also to make copies of parts of G.

Definition 6.5 (category RSqPO, direct SqPO-transformations). A SqPO-rule ρ in C is a span diagram

L
l←− K

r−→ R. Let RSqPO be the category whose objects are the SqPO-rules and morphisms σ : ρ → ρ′

are triples σ = (σ1, σ2, σ3) such that

L K R

L′ K ′ R′

l r

l′ r′

σ1 σ2 σ3

commutes in C and the left square is a pullback, with obvious composition and identities. Let RSqPOm

be the subcategory with morphisms σ such that σ1 and σ2 are monics.
A final pullback complement of (m, l) is a pair (f, k) such that (k, l) is a pullback of (f,m) and for

every pullback (k′, l ◦ c) of any (f ′,m) there exists a unique d such that

G

G

L

L

K

K ′

D

D′

=

=
c

d

l

m

m

f

f ′

kl ◦ c

k′

11

commutes.
A direct SqPO-transformation in C is a diagram

L K R

G D H

l r

f g

m k n

such that (f, k) is a final pullback complement of (m, l) and the right square is a pushout.

Proposition 6.6. For every direct SqPO-transformations δ, δ′ with corresponding SqPO-rules ρ, ρ′,
every σ : ρ→ ρ′ in RSqPO such that m = m′ ◦ σ1, there exists a unique C-morphism d such that

G

G′

L

L′

K

K ′

D

D′

=

σ1
σ2

d

l

m

m′

f

f ′

kl′

k′

commutes.

Here the existence of d means not only that ρ′ removes at least as much as its subrule ρ, but also
that it makes at least as many copies of the items of G. Note that when, among two simultaneous
transformations, one makes p copies of an item and the other makes q copies of the same item, the global
context must contain pq copies of this item, unless there is a subsumption morphism between them. In
such a case all the copies made by the subsumed transformation are simply merged with those made by
the subsuming one (as witnessed by Proposition 5.12). Hence the necessary symmetry between the first
and last steps of the Global Coherent Transformation.

It is then easy to define the category DSqPO of direct SqPO-transformations, the category DSqPOm

of direct SqPO-transformations with monic matches and faithful functors RSqPO : DSqPO → RSqPO and
RSqPOm : DSqPOm → RSqPOm, as in Definition 3.8. We leave this to the reader.

Proposition 6.7. In the category of graphs RSqPOm is right-full.

Another notion of subrule in the Sesqui-Pushout approach can be found in [14, Definition 8], where a
rule ρ′ is defined as a (σ1, σ3)-extension of ρ if two conditions are met. The first is that σ3 ◦ ρ = ρ′ ◦ σ1,

where σ1 stands for the span L
1L←−− L σ1−→ L′ (and similarly for σ3) and ◦ is the standard composition of

spans (using pullbacks, see [14, Definition 3]). The products σ3 ◦ ρ, ρ′ ◦ σ1 yield

L K R′

K R

R

l

1K

σ3

r

r 1R

L K R′

L K ′

L′

1L r′

σ2

σ1 l′

12

hence the equality between these two bottom spans is equivalent to the existence of (σ1, σ2, σ3) : ρ→ ρ′,
i.e. that the left square in Definition 6.5 is a pullback and the right square commutes. This means that
any extension of a rule according to [14, Definition 8] subsumes this rule according to Definition 6.5.
The converse is false since the extension requires a second condition, namely that (σ1, l) has a final
pullback complement. This ensures that the extension can be decomposed as a product of two spans [14,
Proposition 9], but this is relevant to sequential rewriting and not to the present notion of subsumption.

6.3 Pullback-Pushouts

We next consider the case of PBPO-rules [4], that also enables copies of parts of G but with better
control of the way they are linked together and to the rest of G. The drawback is that matchings of the
left-hand side of a rule into G should be completed with a co-match from G to a given “type” of the
left-hand side.

Definition 6.8 (category DPBPO, direct PBPO-transformations). A PBPO-rule ρ in C is a commuting
diagram

L K R

TL TK TR

l r

u v

tL tK tR

A morphism σ : ρ→ ρ′ is a 5-tuple (σ1, σ2, σ3, σ4, σ5) of C-morphisms such that

L K R

TL TK

l r

u

tL tK

L′ K ′ R′

TL′ TK′

l′ r′

u′

tL′
tK′

σ1 σ2 σ3

σ4 σ5

commutes. Let DPBPO be the category of PBPO-rules on C and their morphisms, with obvious compo-
sition and identities.

A direct PBPO-transformation in C is a commuting diagram

L K R

G D H

TL TK TR

m k n

f g

tG tD tH

l r

u v

tL tK tR

with lower left pullback and upper right pushout.

To every direct PBPO-transformation obviously corresponds a PBPO-rule and a partial transforma-
tion.

13

Proposition 6.9. For every direct PBPO-transformations δ, δ′ with corresponding PBPO-rules ρ, ρ′,
every σ : ρ→ ρ′ in DPBPO such that m = m′ ◦ σ1 and tG = σ4 ◦ tG′ , there exists a unique C-morphism d
such that

L K

G D

TL TK

l

u

f

m
k

tG tD

L′ K ′

G′ D′

TL′ TK′

f ′

l′

u′

m′

tG′

k′

tD′

σ1 σ2

σ4 σ5

= d

commutes.

We leave it to the reader to define a Rewriting Environment for PBPO-rules and transformations,
with a right-full faithful functor RPBPO : DPBPO → RPBPO (provided C has pushouts and pullbacks).

7 Conclusion and Future Work

Global Coherent Transformations are built from partial transformations in a way pertaining both to
Parallel Coherent Transformations [2], by the use of limits on local contexts, and to Global Transfor-
mations [16] by applying categories of rules. The partial transformations involved in a Global Coherent
Transformation are extracted from a Rewriting Environment that provide a category of rules and a
corresponding category of direct transformations. Their morphisms can be understood as subsumptions
due to Property 5.12, i.e., that any subsumed transformation as defined by a morphism removes or adds
nothing more than the subsuming transformation. This is valid even when rules are able to make multiple
copies of parts of the input.

We have provided Rewriting Environments for the most common approaches to algebraic rewriting,
except the Single Pushout [13], which will be done in a future paper (where we will see that the interface
and right-hand side provided in a partial transformation are not necessarily those of the applied rule). We
also intend to show that Global Transformations can be obtained as Global Coherent Transformations in
a suitable environment (except when ∆ is empty). Expressiveness of Global Coherent Transformations
should be investigated further, and possibly enhanced.

The notion of Rewriting Environment is as simple as required to define Global Coherent Transfor-
mations, but does not guarantee some properties that the user might reasonably expect. In particular it
does not prevent the categories R and D from being discrete. Of course this is correct if no subsumption
is possible, but is there a way to characterize such properties? It may also seem strange that, through
Cpt, rules are not assumed to have left-hand sides and direct transformations are not assumed to use
matchings. Thus we may need to enhance Rewriting Environments with a notion of matching in order
to better understand their structure. We also need to further analyze the properties of the Rewriting
Environments in Section 6: when C is an adhesive category it is an open question whether RDPOm is
right-full.
Acknowledgements We thank Rachid Echahed for helpful discussions and an anonymous reviewer in
particular for suggesting the generalization of Proposition 5.12.

14

References

[1] T. Boy de la Tour & R. Echahed (2020): Parallel Rewriting of Attributed Graphs. Theoretical Computer
Science 848, pp. 106–132, doi:10.1016/j.tcs.2020.09.025.

[2] T. Boy de la Tour & R. Echahed (2021): Parallel Coherent Graph Transformations. In: Recent Trends in
Algebraic Development Techniques, 25th International Workshop, WADT 2020, Revised Selected Papers,
LNCS 12669, Springer, pp. 75–97, doi:10.1007/978-3-030-73785-6 5.

[3] Thierry Boy de la Tour (2023): Algebraic Monograph Transformations, doi:10.48550/ARXIV.2303.01137.

[4] Andrea Corradini, Dominique Duval, Rachid Echahed, Frédéric Prost & Leila Ribeiro (2019):
The PBPO graph transformation approach. J. Log. Algebr. Meth. Program. 103, pp. 213–231,
doi:10.1016/j.jlamp.2018.12.003.

[5] Andrea Corradini, Tobias Heindel, Frank Hermann & Barbara König (2006): Sesqui-Pushout Rewriting. In:
ICGT 2006, LNCS 4178, Springer, pp. 30–45, doi:10.1007/11841883 4.

[6] Andrea Corradini, Ugo Montanari, Francesca Rossi, Hartmut Ehrig, Reiko Heckel & Michael Löwe (1997):
Algebraic Approaches to Graph Transformation - Part I: Basic Concepts and Double Pushout Approach. In
Grzegorz Rozenberg, editor: Handbook of Graph Grammars and Computing by Graph Transformations,
Volume 1: Foundations, World Scientific, pp. 163–246, doi:10.1142/9789812384720 0003.

[7] Hartmut Ehrig (1979): Introduction to the algebraic theory of graph grammars (a survey). In Volker Claus,
Hartmut Ehrig & Grzegorz Rozenberg, editors: Graph-Grammars and Their Application to Computer Sci-
ence and Biology, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 1–69, doi:10.1007/BFb0025714.

[8] Hartmut Ehrig, Karsten Ehrig, Ulrike Prange & Gabriele Taentzer (2006): Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. An EATCS Series, Springer, doi:10.1007/3-
540-31188-2.

[9] Alexandre Fernandez, Luidnel Maignan & Antoine Spicher (2021): Cellular Automata and Kan Extensions.
In Alonso Castillo-Ramirez, Pierre Guillon & Kévin Perrot, editors: 27th IFIP WG 1.5 International Work-
shop on Cellular Automata and Discrete Complex Systems, AUTOMATA 2021, OASIcs 90, Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, pp. 7:1–7:12, doi:10.4230/OASIcs.AUTOMATA.2021.7.

[10] Alexandre Fernandez, Luidnel Maignan & Antoine Spicher (2022): Non-Determinism in Lindenmayer Sys-
tems and Global Transformations. In Stefan Szeider, Robert Ganian & Alexandra Silva, editors: 47th
International Symposium on Mathematical Foundations of Computer Science, MFCS 2022, LIPIcs 241,
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 49:1–49:13, doi:10.4230/LIPIcs.MFCS.2022.49.

[11] Stephen Lack & Pawel Sobocinski (2005): Adhesive and quasiadhesive categories. Informatique Théorique
et Applications 39(3), pp. 511–545, doi:10.1051/ita:2005028.

[12] F. W. Lawvere (1963): Functorial Semantics of Algebraic Theories. Ph.D. thesis, Columbia University,
doi:10.1073/pnas.50.5.869. Available at http://www.tac.mta.ca/tac/reprints/articles/5/tr5abs.html.

[13] Michael Löwe (1993): Algebraic Approach to Single-Pushout Graph Transformation. Theoretical Computer
Science 109, pp. 181–224, doi:10.1016/0304-3975(93)90068-5.

[14] Michael Löwe (2015): Polymorphic Sesqui-Pushout Graph Rewriting. In Francesco Parisi-Presicce & Bern-
hard Westfechtel, editors: Graph Transformation - 8th International Conference, ICGT 2015, Lecture Notes
in Computer Science 9151, Springer, pp. 3–18, doi:10.1007/978-3-319-21145-9 1.

[15] Saunders Mac Lane (1997): Categories for the Working Mathematician, 2nd edition. Graduate Texts in
Mathematics 5, Springer-Verlag, New York, doi:10.1007/978-1-4757-4721-8. (1st ed., 1971).

[16] Luidnel Maignan & Antoine Spicher (2015): Global Graph Transformations. In Detlef Plump, editor: Pro-
ceedings of the 6th International Workshop on Graph Computation Models, CEUR Workshop Proceedings
1403, CEUR-WS.org, pp. 34–49. Available at http://ceur-ws.org/Vol-1403/paper4.pdf.

[17] Peter Selinger (1997): Functionality, Polymorphism, and Concurrency: a Mathematical Investigation of
Programming Paradigms. Ph.D. thesis, University of Pennsylvania. Technical Report No. IRCS-97-17.

15

https://doi.org/10.1016/j.tcs.2020.09.025
https://doi.org/10.1007/978-3-030-73785-6_5
https://doi.org/10.48550/ARXIV.2303.01137
https://doi.org/10.1016/j.jlamp.2018.12.003
https://doi.org/10.1007/11841883_4
https://doi.org/10.1142/9789812384720_0003
https://doi.org/10.1007/BFb0025714
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.4230/OASIcs.AUTOMATA.2021.7
https://doi.org/10.4230/LIPIcs.MFCS.2022.49
https://doi.org/10.1051/ita:2005028
https://doi.org/10.1073/pnas.50.5.869
http://www.tac.mta.ca/tac/reprints/articles/5/tr5abs.html
https://doi.org/10.1016/0304-3975(93)90068-5
https://doi.org/10.1007/978-3-319-21145-9_1
https://doi.org/10.1007/978-1-4757-4721-8
http://ceur-ws.org/Vol-1403/paper4.pdf

Appendix: Proofs

Proof of Proposition 3.5. If σ : ρ → ρ′ in RDPO such that σ1 is monic and m′ : L′ → G satisfies the
gluing condition for ρ′ then so does m′ ◦ σ1 : L→ G for ρ.

We use the fact that the pullback K of l′, σ1 is isomorphic to en equalizer in L×K ′.

(GC1) Let x be an item in L such that m′ ◦ σ1(x) is marked for removal for ρ, hence such that x has no
preimage by l, and let x′ in L such that m′ ◦ σ1(x) = m′ ◦ σ1(x′). If σ1(x) had a preimage y by
l′ then x and y would have a common preimage in the pullback K, a contradiction. Hence σ1(x)
has no preimage by l′ so that m′(σ1(x)) is marked for removal by m′, hence σ1(x) = σ1(x′) by the
(GC1) for m′, ρ′, hence x = x′.

(GC2) Let v be a vertex of L that has no preimage by l and is adjacent to an edge e in L, then as above
σ1(v) has no preimage by l′. If e had a preimage e′ by l then l′ ◦ σ2(e′) = σ1 ◦ l(e′) = σ1(e), i.e.,
σ1(e) would have a preimage by l′ in contradiction with (GC2) for m′, ρ′. Hence m′ ◦ σ1(e) is
marked for removal by m′ ◦ σ1 for ρ′.

Proof of Proposition 3.7. If σ : ρ → ρ′ in RDPO, m′ : L′ → G and m′ ◦ σ1 : L → G have pushout
complements as below, then there is a unique d such that

G

G

L

L′

K

K ′

D

D′

=

σ1
σ2

d

l

m′

f

f ′

kl′

k′

commutes.
The front and back faces are pushouts. For all item x in D′, f ′(x) is not marked for removal by m′

and we show that is also the case by m′ ◦ σ1. Suppose otherwise, then f ′(x) has a preimage y by m′ ◦ σ1

that has no preimage by l. However, σ1(y) has a preimage y′ by l′, and since the top face is a pullback
there should be a common preimage of y and y′ in K, a contradiction. Thus we let d(x) be the unique
preimage of f ′(x) by f , so that d is unique such that f ◦ d = f ′. We easily see that f ◦ k = f ◦ d ◦ k′ ◦ σ2

hence the right face of the cube commutes.

Proof of Proposition 5.7. For every µ : δ → δ′ in ∆ there exists a unique hµ such that

C∆

Hδ

Hδ′

Rδ

Rδ′

hδ

hδ′

nδ

nδ′

π3µhµ

commutes.
Since γ∆ ◦ cδ = γδ = γδ′ ◦ π2µ = γ∆ ◦ cδ′ ◦ π2µ then by the unicity of cδ the left face of the following

cube commutes.

16

C∆

C∆

Kδ

Kδ′

Rδ

Rδ′

Hδ

Hδ′

=

π2µ
π3µ

hµ

rδ

cδ

cδ′

hδ

hδ′

nδrδ′

nδ′

Since the top and front faces also commute then nδ′ ◦ π3µ ◦ rδ = hδ′ ◦ cδ, and since the back face is a
pushout we get the result.

Proof of Proposition 5.12. If ∆′ is restricted to δ′ and δ′ is terminal in ∆ then ∆ and ∆′ are globally
coherent and H∆ ' H∆′ .

For any δ ∈ ∆ let δ! be the unique morphism δ! : δ → δ′. Since (π1δ!, π2δ!, π3δ!) : PIGISδ → PIGISδ
′

is a morphism in Cpt, then fδ ◦ π1δ! = fδ′ and hence π1δ! : fδ′ → fδ is a morphism in C \G.
Since δ′ is initial in ∆op there is a unique cone γ∆ from P←∆ δ

′ = fδ′ to P←∆ (defined by γ∆δ = π1δ! for
all δ ∈ ∆) and any cone γ from any f ∈ C \ G to P←∆ can be written γ = γ∆ ◦ γδ′, hence γ∆ is a limit
cone of P←∆ (see [15, Exercise III.4.3]), so that f∆ ' fδ′ and C∆ ' Dδ′ .

Let γδ = γ∆ ◦ kδ′ ◦ π2δ! (where π2δ! : fδ ◦ kδ → fδ′ ◦ kδ′ and kδ′ : fδ′ ◦ kδ′ → fδ′ are morphisms in C \G
as above), this is a cone from fδ ◦ kδ to P←∆ such that γδδ = π1δ! ◦ kδ′ ◦ π2δ! = kδ. Besides, for every
µ : δ1 → δ2 we have γδ1 = γδ2 ◦ π2µ since δ2! ◦ µ = δ1!. Hence (γδ)δ∈∆ is a coherent system of cones for
∆, which is therefore globally coherent.

Since δ′ is terminal in ∆ there is as above a colimit cone from P→∆ to P→∆ δ
′ = hδ′ : C∆ → Hδ′ , hence

H∆ ' Hδ′ (the pushout of rδ′ and cδ′ = kδ′ ◦ π2δ
′! = kδ′). We finally note that δ′ is terminal in ∆′.

Proof of Lemma 6.2. IG is a full and right-full embedding.
The functor G : 1→ |C| is a full embedding hence so is IG. For all δ′ ∈ D|G, δ ∈ D and µ : δ → IGδ

′

we have InPδ = IGInPδ
′ = G hence InPµ = 1G. Since G and 1G also have preimages by functor G there

must be preimages δ′1 ∈ D|G and µ1 : δ′1 → δ′ in D|G such that IGµ1 = µ, hence IG is right-full.

Proof of Proposition 6.3. If R is right-full (resp. faithful) then so is R|SG.
For all δ′ ∈ D|SG, ρ ∈ S and σ : ρ → ρ′, where ρ′ = R|SGδ′, we have Iρ′ = RIGISδ

′ and Iσ : Iρ → Iρ′ in
R, and since by Lemma 6.2 R ◦ IG is right-full then there exists δ′1 ∈ D|G and µ1 : δ′1 → ISδ

′ such that
RIGµ1 = Iσ. Thus Iρ and Iσ have preimages by I and R ◦ IG, hence they must have preimages δ ∈ D|SG
and µ : δ → δ′ such that IGµ = µ1 and R|SGµ = σ.

If R is faithful, since IG is faithful then so is R ◦ IG, and hence so is R|SG.

Proof of Proposition 6.4. If C is adhesive, δ, δ′ ∈ DDPO and σ : RDPOδ → RDPOδ
′ such that m = m′ ◦ σ1

then there exists a unique µ : δ → δ′ such that RDPOµ = σ.
Let G = InPδ = InPδ′, we consider the following diagram

17

G

G

L

L′

K

K ′

D

D′ P

=

σ1
σ2

l

m

m′

f

f ′

kl′

k′

x

y

z

where the bottom face is a pullback. By [11, Lemma 4.2] monics are stable under pushouts hence f and
f ′ are monics and therefore also x and y. By the commuting properties we have f ◦ k = f ′ ◦ k′ ◦ σ2,
hence there exists a unique z such that y ◦ z = k and x ◦ z = k′ ◦ σ2.

The front face is a pushout along the monic l, hence it is a pullback [11, Lemma 4.3], as is the top
face, hence by composition the square formed by l, m, f ′, k′ ◦ σ2 is also a pullback.

The back face is a pushout along the monic l, hence it is a VK-square and bottom face of the
commuting cube below

K

L

K

K

P

D′

D

G

l

1
x

f

z

1

l

k

m

yk′ ◦ σ2

f ′

Its front and right faces are pullbacks. Since l is monic then its left face is a pullback, and since y is monic
its back face is also a pullback. Hence its top face is a pushout, and since isomorphisms are preserved
by pushouts, x is an isomorphism.

Let d = y ◦ x−1, we see that f ◦ d = f ′ and d ◦ k′ ◦ σ2 = y ◦ z = k, so that µ = (σ1, σ2, σ3, d) is a
morphism from δ to δ′ in DDPO such that RDPOµ = σ. Its unicity is obvious.

Proof of Proposition 6.6. For every direct SqPO-transformations δ, δ′ with corresponding SqPO-rules ρ,
ρ′, every σ : ρ→ ρ′ in RSqPO such that m = m′ ◦ σ1, there exists a unique d such that

G

G′

L

L′

K

K ′

D

D′

=

σ1
σ2

d

l

m

m′

f

f ′

kl′

k′

commutes.
By composition of pullbacks (k′ ◦ σ2, l) is a pullback of (f ′,m), and since (f, k) is a final pullback

complement of (m, l) then there is a unique d : D′ → D such that f ′ = f ◦ d and k = d ◦ k′ ◦ σ2.

18

Proof of Proposition 6.7. In the category of graphs RSqPOm is right-full.
For all δ′ ∈ DSqPOm and σ : ρ→ RSqPOmδ

′ in RSqPOm, the matching m′ ◦ σ1 : L→ G is monic hence
by [5, Construction 6] (m′ ◦ σ1, l) has a final pullback complement, hence there is a δ ∈ DSqPOm with
m = m′ ◦ σ1 and RSqPOmδ = ρ, and by Proposition 6.6 there is a (unique) µ : δ → δ′ in DSqPOm such
that RSqPOmµ = σ.

Proof of Proposition 6.9. For every direct PBPO-transformations δ, δ′ with corresponding PBPO-rules
ρ, ρ′, every σ : ρ→ ρ′ in DPBPO such that m = m′ ◦ σ1 and tG = σ4 ◦ tG′ , there exists a unique d such
that

L K

G D

TL TK

l

u

f

m
k

tG tD

L′ K ′

G′ D′

TL′ TK′

f ′

l′

u′

m′

tG′

k′

tD′

σ1 σ2

σ4 σ5

= d

commutes.
By hypothesis the two front, back, left faces commute, as well as the top and bottom faces. Thus

u ◦ σ5 ◦ tD′ = σ4 ◦ u′ ◦ tD′ = σ4 ◦ tG′ ◦ f ′ = tG ◦ f ′,

and since D is a pullback then there exists a unique d such that the right and top face of the bottom
cube commute. This also means that (D, f, tD) is a mono-source, and since{

f ◦ d ◦ k′ ◦ σ2 = f ′ ◦ k′ ◦ σ2 = m′ ◦ l′ ◦ σ2 = m′ ◦ σ1 ◦ l = m ◦ l = f ◦ k
tD ◦ d ◦ k′ ◦ σ2 = σ5 ◦ tD′ ◦ k′ ◦ σ2 = σ5 ◦ tK′ ◦ σ2 = tK = tD ◦ k

then d ◦ k′ ◦ σ2 = k.

19

	Introduction
	Notations
	Subrules in DPO Graph Transformations
	Rewriting Environments
	Global Coherent Transformations
	Some Rewriting Environments and Their Properties
	Double-Pushouts
	Sesqui-Pushouts
	Pullback-Pushouts

	Conclusion and Future Work

