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10Institut für Theoretische Physik und IQST, Universität Ulm, Albert-Einstein-Allee 11, D-89069 Ulm, Germany
(Dated: March 29, 2023)

Thermodynamics connects our knowledge of the world to our capability to manipulate and thus to control
it. This crucial role of control is exempli�ed by the third law of thermodynamics, Nernst's unattainability
principle, which states that in�nite resources are required to cool a system to absolute zero temperature. But
what are these resources and how should they be utilised? And how does this relate to Landauer's principle that
famously connects information and thermodynamics? We answer these questions by providing a framework
for identifying the resources that enable the creation of pure quantum states. We show that perfect cooling is
possible with Landauer energy cost given in�nite time or control complexity. However, such optimal protocols
require complex unitaries generated by an external work source. Restricting to unitaries that can be run solely via
a heat engine, we derive a novel Carnot-Landauer limit, along with protocols for its saturation. This generalises
Landauer's principle to a fully thermodynamic setting, leading to a uni�cation with the third law and emphasises
the importance of control in quantum thermodynamics.

I. INTRODUCTION

What is the cost of creating a pure state?Pure states
appear as ubiquitous idealisations in quantum information
processing and preparing them with high �delity is essen-
tial for quantum technologies such as reliable quantum com-
munication [1, 2], high-precision quantum parameter estima-
tion [3–5], and fault-tolerant quantum computation [6, 7].
Fundamentally, pure states are prerequisites for ideal mea-
surements [8] and precise timekeeping [9, 10]. To answer
the above question, one could turn to Landauer's principle,
stating that erasing a bit of information has anenergycost
of at leastkB T log(2) [11]. Alternatively, one could con-
sult Nernst's unattainability principle (the third law of ther-
modynamics) [12], stating that cooling a physical system to
its ground state requires diverging resources. At the out-
set, it seems that these statements are at odds with one an-
other. However, Landauer's protocol requires in�nite time,
thus identifying time as a resource according to the third
law [13–17]. Does this mean either in�nite energy or time
are needed to prepare a pure state?

The perhaps surprising answer we give here is:no. We
show that �nite energy and time suf�ce to perfectly cool any

� philipguy.taranto@phys.s.u-tokyo.ac.jp; P. T. and F. B. contributed equally.
y P. T. and F. B. contributed equally.
z A. B. and R. S. contributed equally.
x marcus.huber@tuwien.ac.at

quantum system and we identify the previously hidden re-
source—control complexity—that must diverge (in the spirit
of Nernst's principle) to do so. Intuitively, the control com-
plexity of a protocol refers to the structure of machine en-
ergy gaps that the cooling unitary must couple the system to;
we demonstrate that this energy-level spectrum must approx-
imate a continuum in order to cool with minimal time and
energy costs. In short, the ultimate limit on the energetic cost
of cooling is still provided by the Landauer limit, but in order
to achieve it, either time or control complexity must diverge.

At the same time, heat �uctuations and short coherence
times in quantum technologies [18] demand that both energy
and time are not only �nite, but minimal. Therefore, in ad-
dition to proving the necessity of diverging control complex-
ity for perfect cooling with minimal time and energy, we de-
velop explicit protocols that saturate the ultimate limits. We
demonstrate that mitigating overall heat dissipation comes at
the practical cost of controlling �ne-tuned interactions that re-
quire acoherentexternal work source, i.e., a quantum bat-
tery [19–23]. From a thermodynamic perspective, this may
seem somewhat unsatisfactory: nonequilibrium resources im-
ply that the total system is not closed, and the optimal pro-
tocol (saturating the Landauer bound) is reminiscent of a
Maxwellian demon with perfect control.

Accordingly, we also consider anincoherentcontrol set-
ting restricted to global energy-conserving unitaries with a
heat bath as thermodynamic energy source. This setting
corresponds to minimal overall control, where interactions
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FIG. 1. Framework.We consider the task of cooling a quantum system in two extremal control scenarios, with each step of both paradigms
comprising two primitives. The top panel depicts the coherent-control scenario: in the control step (left), an agent can use a work sourceW
to implement any global unitary on the systemS and machineM , which both begin thermal at inverse temperature� ; in cooling the target,
energy and entropy is transferred to the machine. The machine then rethermalises with its environment (right), thereby dissipating the energy
it gained in the control step. The bottom panel depicts the incoherent-control scenario: the machine is bipartitioned into a cold part at inverse
temperature� and a hot part at inverse temperature� H < � . In the control step, the agent switches on an interaction between the three
systems, represented by a global energy-conserving unitaryUEC. In the rethermalisation step, the interaction is turned off and both subsystems
of the machine rethermalise to their respective initial temperatures; the hot part draws energy from the heat bath while the cold part dissipates
heat to its environment. In both paradigms, we quantify the control complexity as the effective dimension accessed by the unitary operation in
a given control step (i.e., the dimension of the system-machine Hilbert space upon which the unitary acts nontrivially).

need only be switched on and off to generate transforma-
tions, i.e., a heat engine alone drives the dynamics [24–28].
The incoherent-control setting is therefore fully thermody-
namically consistent inasmuch as both the machine state is
assumed to be thermal (and to rethermalize between control
steps)and the permitted control operations are those imple-
mentable solely via a heat engine. In this paradigm, we show
that the Landauer bound is not attainable, subsequently derive
a novel limit—which we dub theCarnot-Landauerbound—
and construct protocols that saturate it, thereby establishing
its signi�cance. The Carnot-Landauer bound follows from an
equality phrased in terms of entropic and energetic quantities
that must hold for any state transformation in the incoherent
control paradigm; in this sense, the Carnot-Landauer equality
adapts the equality version of Landauer's principle developed
in Ref. [29] to a fully (quantum) thermodynamic setting.

Our work thus both generalises Landauer's erasure princi-
ple and, at the same time, uni�es it with the laws of thermo-
dynamics. By accounting for control complexity, we empha-
sise a crucial resource that is oftentimes overlooked but, as
we show, must be taken into account for any operationally
meaningful theory of thermodynamics. Here, we focus on
the asymptotic setting that allows us to connect this resource
with Nernst's unattainability principle. Beyond the asymp-

totic case, the gained insights also open the door to a better un-
derstanding of the intricate relationship between energy, time,
and control complexity when all resources are �nite, which
will be crucial for practical applications; we additionally pro-
vide a preliminary analysis to this end. Lastly, our protocols
saturating the Carnot-Landauer bound pave the way for ther-
modynamically driven (i.e., minimal-control) quantum tech-
nologies, which, by mitigating the cost of control at the very
outset, could lead to tangible advantages.

Overview & Summary of Results

Loosely speaking, there are two types of thermodynamic
laws: those, like the second law, that bound (changes of)
characteristic quantities during thermodynamic processes, and
those, like the third law, which state the impossibility of cer-
tain tasks. Landauer's principle is of the former kind (indeed,
it can be rephrased as a version of the second law), associating
a minimal heat dissipation to any logically irreversible pro-
cess, thereby placing a fundamental limit on the energy cost
of computation. The paradigmatic logically irreversible pro-
cess is that of erasing information, i.e., resetting an arbitrary
state to a blank register. From a physics perspective, said task
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can be rephrased asperfectly coolinga system to the ground
state, or more generally, taking an initially full-rank state to
a rank-de�cient one.1 Note that although there is, in gen-
eral, a distinction between physical cooling and information
erasure, in this paper we focus on erasing quantum informa-
tion encoded in fundamental degrees of freedom rather than
in logical macrostate sectors, and accordingly use the terms
somewhat interchangeably. This is justi�ed because in either
case, the ultimate limitation (be it cooling to absolute zero or
perfectly erasing information) requires a rank-decreasing pro-
cess, which is what we formally analyse.

Nernst's unattainability principle is of the latter kind of
thermodynamic law, stating that perfectly cooling a system
requires diverging resources. The resources typically consid-
ered are energy and time, whose asymptotic trade-off relation
is relatively well established: on the one hand, perfect cooling
can be achieved in �nite time at the expense of an energy cost
that diverges as the ground state is approached; on the other
hand, the energy cost can be minimised by implementing a
quasistatic process that saturates the Landauer limit but takes
in�nitely long.2

These two types of thermodynamic laws are intimately re-
lated, but details of their interplay have remained elusive: un-
der which conditions can the Landauer bound be saturated and
what are the minimal resources required to do so? Which pro-
tocols asymptotically create pure states with given (diverging)
resources? What type of control do such protocols require and
how dif�cult are they to implement in practice? We address
these questions by considering the task of cooling a quantum
system in two extremal control paradigms (see Fig. 1): One
driven by acoherentwork source and the other by anincoher-
entheat engine.

After laying out the framework, we proceed to analyse the
relationship between the aforementioned three resources for
cooling. A core idea of this paper originates from the observa-
tion that it is possible to perfectly cool a physical system with
both �nite energy and time. Although said observation is sim-
ple in nature inasmuch as it can be obtained by a shift in per-
spective of Landauer's original protocol, its consequences run
deep: indeed, the apparent tension between Landauer cooling
and Nernst's unattainability principle that arises when only
energy and time are considered as resources is resolved via
the inclusion of control complexity as a consideration. Subse-
quently, we de�ne a meaningful notion of control complexity
in terms of the energy-level structure of the machine that the

1 Low-temperature thermal states correspond to those with low information
content, as they have low entropy or small effective support; viewing cool-
ing more broadly (i.e., not restricting to thermal states and allowing for
arbitrary Hamiltonians), we see that cooling indeed encompasses informa-
tion erasure: States with smaller effective support are “colder” than those
with greater support according to any meaningful notion of “cool” (see
Ref. [30]).

2 Note, however, that although the asymptotic trade-off relationship is
known, the connection between energy and time in the �nite-resource set-
ting remains unresolved: For instance, if one uses twice the amount of en-
ergy, it is not clear how much faster a given protocol can be implemented;
we provide some preliminary insight to such questions in Sec. VI.

system must be coupled to throughout the cooling protocol
and demonstrate its thermodynamic consistency by showing
that it indeed must diverge to cool the system to the ground
state at minimal energy cost, thereby reconciling the view-
points of Landauer and Nernst.

Having established the trinity of relevant resources, we
present three main results:

1. Perfect cooling is possible with coherent control pro-
vided either energy, time, or control complexity di-
verge. In particular, it is possible in �nite time and at
Landauer energy cost with diverging control complex-
ity.

2. Perfect cooling is possible with incoherent control, i.e.,
with a heat engine, provided either time or control com-
plexity diverge. On the other hand, it is impossible with
both �nite time and control complexity, regardless of
the amount of energy drawn from the heat bath.

3. No process driven by a �nite-temperature heat engine
can (perfectly) cool a quantum system at the Landauer
limit. Nonetheless, the Carnot-Landauer limit, which
we introduce here (as a consequence of a stronger
equality), can be saturated for any heat bath, given ei-
ther diverging time or control complexity.

In the following, we discuss each of these results in turn
in more detail and provide a systematic study concerning
the asymptotic interplay of energy, time, and control com-
plexity as thermodynamic resources in two extremal control
paradigms, as well as develop insight into the �nite-resource
regime for some special cases. We begin by outlining the
framework.

II. FRAMEWORK: COOLING A PHYSICAL SYSTEM

Consider a target systemS in an initial state%S described
by a unit-trace, positive semide�nite operator with associated
HamiltonianH S . An auxiliary machineM , initially uncor-
related withS and in equilibrium with a reservoir at inverse
temperature� := 1

kB T , is used to cool the target system. The
initial state ofM is thus of Gibbs form,

%M = � M (�; H M ) :=
e� �H M

Z M (�; H M )
; (1)

whereH M is the machine Hamiltonian andZ M (�; H M ) :=
tr

�
e� �H M

�
its partition function. Throughout this paper we

consider only Hamiltonians with discrete spectra, i.e., with
an associated separable Hilbert space that has a countable en-
ergy eigenbasis. Moreover, for the most part we consider
�nite-dimensional systems (or sequences thereof) and deal
with in�nite-dimensional systems separately.

As shown in Fig. 1, a single step of a cooling process com-
prises two subprocedures: �rst, a joint unitary is implemented
during thecontrol step; second, the machinerethermalisesto
the ambient temperature. A coolingprotocol is determined
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by the initial conditions and any concatenation of such prim-
itives3. We consider two extremal control paradigms corre-
sponding to two classes of allowed global transformations.
Thecoherent controlparadigm permits arbitrary unitaries on
SM ; in general, these change the total energy but leave the
global entropy invariant and thus require an external work
sourceW. At the other extreme is theincoherent control
paradigm, where the energy source is a heat bath. Here, the
machineM is bipartitioned: one part,C, is connected to a
cold bath at inverse temperature� , which serves as a sink for
all energy and entropy �ows; the other,H , is connected to
a hot bath at inverse temperature� H � � , which provides
energy. The composite systemSCHis closed and thus global
unitary transformations are restricted to be energy conserving.
The temperature gradient causes a natural heat �ow away from
the hot bath, which carries maximal entropic change with it.
Cooling protocols in this setting can be run with minimal ex-
ternal control, i.e., they require only the switching on and off
of interactions.

III. COHERENT CONTROL

We begin by considering cooling with coherently controlled
resources (see Fig. 1, top panel). We �rst analyse energy,
time, and control complexity as resources that can be traded
off against one another in order to optimise cooling perfor-
mance, before focusing more speci�cally on the nature and
role of control complexity.

A. Energy, Time, and Control Complexity as Resources

In the coherent-control setting, a transformation%S ! %0
S

is
enacted via a unitaryU on SM involving a thermal machine
%M = � M (�; H M ), i.e.,

%0
S

:= trM

�
U(%S 
 %M )Uy�

: (2)

For such a transformation, there are two energy costs con-
tributing to the total energy change, which must be drawn
from a work sourceW. The �rst is the energy change of
the target� ES := tr

�
H S (%0

S
� %S )

�
; the second is that of

the machine� EM := tr
�
H M (%0

M
� %M )

�
, where%0

M
:=

trS

�
U(%S 
 %M )Uy

�
. The latter is associated with the heat

dissipated into the environment and is given by [29]

� � EM = e� SS + I (S : M )%0
SM

+ D(%0
M

k%M ); (3)

whereS(%) := � tr [%log(%)] is the von Neumann entropy,
e� SA := S(%A ) � S(%0

A
)4, I (A : B)%AB := S(%A ) +

3 One could refer to bothM andthe transformations applied as themachine
and call the systemM itself the workingmediuminasmuch as the latter
passively facilitates the process, in line with conventional parlance; how-
ever, we use the terminology established in the pertinent literature.

4 Note the differing sign conventions (denoted by the tilde) that we use for
changes in energies,� EX := E 0

X
� EX , and in entropies,e� SX :=

SX � S0
X

, such that energyincreasesand entropydecreasesare positive.

Energy Time Complexity

Q
ud

it ! 1 1 1
2 d(d � 1)

Landauer ! 1 1
2 d(d � 1)

Landauer 1 ! 1

H
.O

.

! 1 1 ! 1 (Gaussian)

Landauer ! 1 ! 1 (Gaussian)

Finite (> Landauer) ! 1 1 (Non-Gaussian)

Landauer 1 ! 1 (Gaussian)

TABLE I. Coherent-control cooling protocols for �nite-dimensional
(qudit) and harmonic oscillator systems.Landauer energy cost refers
to saturation of Eq. (4) and complexity refers to the proxy measure
effective dimension (see Def. 1); time is measured as the number of
unitary operations with a �xed complexity. In the qudit case, the
system and machine dimensions are equal:dS = dM =: d.

S(%B ) � S(%AB ) (with marginals%A /B := trB = A [%AB ]) is
the mutual information betweenA and B, andD(%k� ) :=
tr [%log(%)] � tr [%log(� )] is the relative entropy of%with re-
spect to� , with D(%k� ) := 1 if supp[%] * supp[� ]. We de-
rive Eq. (3) and its generalisation to the incoherent-control set-
ting in Appendix A. The mutual information is non-negative
and vanishes iff%AB = %A 
 %B ; similarly, the relative entropy
is non-negative and vanishes iff%= � . Dropping these terms
leads to the Landauer bound [11]

� � EM � e� SS : (4)

The Landauer limit holdsindependentlyof the protocol im-
plemented, i.e., it assumes only thatsomeunitary was applied
to the target and thermal machine. For large machines, the dis-
sipated heat is typically much greater than the energy change
of the target; nonetheless, the contributions can be comparable
at the microscopic scale. We assume that the target begins in
equilibrium with the reservoir at inverse temperature� , i.e.,
in the initial thermal state%S = � S (�; H S ), with no loss of
generality since such a relaxation can be achieved for free (by
swapping the target with a suitable part of the environment;
however, see Ref. [31] for a discussion of initial state depen-
dency of the bound). We track all energetic and entropic quan-
tities and refer to the asymptotic saturation of Eq. (4) with%0

S

pure asperfect cooling at the Landauer limit.
Although Landauer's limit sets the minimum heat that must

be dissipated—and thereby the minimum energy cost—for
cooling any physical system, the third law makes no spec-
i�cation that energy must be the resource minimised (or that
time must diverge). One might instead consider using a source
of unbounded energy to perfectly cool a system as quickly as
possible. Additionally, control complexity plays an important
role as a resource, inasmuch as its divergence permits perfect
cooling at the Landauer limit in �nite time (see below). As
summarised in Table I, we now present coherently controlled
protocols that perfectly cool an arbitrary �nite-dimensional
target system using thermal machines when any one of the
three considered resources—energy, time or control complex-
ity—diverges; moreover, the resources that are kept �nite sat-
urate protocol-independent ultimate bounds. The following
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thus provides a comprehensive analysis of cooling with re-
spect to the trinity of resources that can be traded off amongst
each other.

B. Perfect Cooling at the Ultimate Limits with In�nite
Resources

1. Diverging Energy.—We �rst consider the situation in
which time and control complexity are �xed to be �nite, while
the energy cost is allowed to diverge. Here, we present the fol-
lowing:

Theorem 1. With diverging energy, any �nite-dimensional
quantum system can be perfectly cooled using a single inter-
action of �nite complexity.

The cooling protocol using diverging energy is the simplest.
Here, one exchanges all populations of the target system with
those of a thermal machine with suitably large energy gaps to
suf�ciently concentrate the initial machine population in the
ground state subspace of the target system. This exchange re-
quires a single system-machine unitary and is of �nite com-
plexity (in a sense discussed below). Nonetheless, the en-
ergy drawn from the work source in this protocol diverges.
Moreover, in addition to being suf�cient for perfect cooling
with both �nite time and control complexity, any protocol that
cools perfectly with both �nite time and control complexity
requires diverging energy. See Appendix B for details.

We now move to consider the situations in which the energy
cost is minimised at the expense of either diverging time or
control complexity. Equation (3) provides insight for under-
standing the conditions required for saturating the Landauer
bound. Although for �nite-dimensional machines only trivial
processes of the formUSM = US 
 1M saturate the Landauer
limit [29], we show how it can be asymptotically saturated
with nontrivial processes by considering diverging machine
and interaction properties, as we elaborate on shortly. Any
such process must asymptotically exhibit no correlations such
that I (S : M )%0

SM
! 0 and effectively not disturb the ma-

chine, i.e., yield%0
M

! %M such thatD(%0
M

k%M ) ! 0. In-
deed, any correlations created between initially thermal sys-
tems would come at the expense of an additional energetic
cost [32–34] whose minimisation is a problem that has so far
only been partially resolved [35]. However, it has been shown
that for any (strictly) rank nondecreasing process, there exists
a thermal machine and joint unitary such that for any� > 0,
the heat dissipated satis�es� � EM � e� SS + � [29], thereby
saturating the Landauer limit. Here, we present protocols that
asymptotically achieve both this and perfect cooling (in par-
ticular, effectively decrease the rank), and provide necessary
conditions on the underlying resources required to do so.

2. Diverging Time.—We now present a protocol that
uses a diverging number of operations of �nite complex-
ity to asymptotically attain perfect cooling at the Landauer
limit [20, 29, 36].

Theorem 2. With diverging time, any �nite-dimensional
quantum system can be perfectly cooled at the Landauer limit
via interactions of �nite complexity.

Sketch of proof.—We �rst show that any system can be
cooled from%S = � S (�; H S ) to � S (� � ; H S ), with � � � � ,
using only� � 1 e� SS units of energy. Our proof is construc-
tive in the sense that we provide a protocol that achieves the
Landauer energy cost as the number of operations diverges.
The individual interactions in this protocol are of �nite con-
trol complexity as they simply swap the target system with
one of a sequence of thermal machines with increasing energy
gaps. In this way, the �nal state� S (� � ; H S ) can be made to
be arbitrarily close toj0ih0jS for any initial temperature.

The proof is presented in Appendix C, along with a more
detailed dimension-dependent energy cost function for the
special case of equally spaced Hamiltonians.

Through the protocol described above, we see that given a
diverging amount of time, the target system can be sequen-
tially coupled with a machine of �nite complexity that rether-
malizes between control steps in such a way that the �nal
target system state is arbitrarily close to the ground state for
any initial temperature. This trade-off between energy and
time is well known, and we discuss it only brie�y in order to
help build intuition and highlight the versatility of our frame-
work. Alternatively, one can compress all the operations ap-
plied in the diverging-time protocol into one global unitary
that achieves the same �nal states, thereby achieving perfect
cooling at the Landauer limit in a single unit of time but with
an in�nitely complex interaction. That is, the diverging tem-
poral resource of repeated interactions with a single, �nite-
size machine is replaced by a single interaction with a larger
machine of diverging control complexity.

3. Diverging Control Complexity.—By reconsidering the
diverging-time protocol above, a trade-off can be made
between time and control complexity. As illustrated in
Fig. 2, one can consider all of the operationsf Uk =
e� iH k t k gk=1 ;:::;N required in said protocol to make up
one single joint interactionUtot := lim N !1

Q N
k=1 Uk =

e� iH tott tot acting on a larger machine, thus setting the time re-
quired to be unity (in terms of the number of control opera-
tions before the machine rethermalises). In other words, for
any �nite numberN of unitary transformationsUk , there ex-
ists a total HamiltonianH ( N )

tot and a �nite timetN that gener-
ates the overall transformationU ( N )

tot :=
Q N

k=1 Uk ; sincetN is
�nite, we can set it equal to one without loss of generality by
rescaling the Hamiltonian aseH ( N )

tot = tN H ( N )
tot . Here, we refer

to the limit N ! 1 as diverging control complexity. Com-
pressing a diverging number of �nite-complexity operations
thus yields a protocol of diverging control complexity. The
fact that there exists such an operation that minimises both
the time and energy requirements follows from our construc-
tive proof of Theorem 2. We therefore have the following:

Corollary 1. With diverging control complexity, any �nite-
dimensional quantum system can be perfectly cooled at the
Landauer limit in �nite time.

However, this particular way of constructing complex con-
trol protocols is not necessarily unique. It is thus natural to
wonder if diverging control complexity is a generic feature
necessary to achieve perfect cooling at the Landauer limit
in unit time and indeed, how to quantify control complexity
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that is operationally meaningful between the extreme cases of
being either very small or divergent, as we now turn to dis-
cuss. Indeed, the inclusion of an explicit quanti�er of control
complexity regarding thermodynamic tasks—which, although
crucial for practical purposes, is oftentimes overlooked—is
one of the main novelties of our present work.

IV. CONTROL COMPLEXITY IN QUANTUM
THERMODYNAMICS

Although the protocol described above has diverging con-
trol complexity by construction, one need not construct com-
plex protocols in this way, and so the natural concern becomes
understanding the generic features that enable perfect cooling
at the Landauer limit in unit time. To address this issue, we
�rst provide protocol-independent structural conditions that
must be ful�lled by the machine to enable(1) perfect cooling
and(2) cooling at Landauer cost; combined, these indepen-
dent conditions provide a necessary requirement, namely that
the machine must have an unbounded spectrum (from above)
and be in�nite-dimensional (respectively) for thepossibility
of (3) perfect cooling at the Landauer limit. Such properties
of the machine Hamiltonian de�ne thestructural complexity,
which sets the potential for how cool the target system can
be made and at what energy cost. As the name suggests, this
is entailed by the structure of the machine, e.g., the number
of energy gaps and their arrangement, and as such provides a
static notion of complexity. However, given a machine with
particular structural complexity, one may not be able to utilise
said potential due to constraints on the dynamics that can be
implemented. For instance, one may be restricted to only two-
body interactions, or operations involving only a few energy
levels at a time. Assuming a suf�cient structural complexity at
hand, such constraints limit one from optimally manipulating
the systems. Thus, the extent to which a machine's potential is
utilised depends on properties of the dynamics of a given pro-
tocol, i.e., thecontrol complexity. We provide a detailed study
of structural and control complexity in Appendix D, and here
summarise the key methods.

A. Structural & Dynamical Notions of Complexity

We split the consideration of complexity into two parts:
�rst, the protocol-independentstructuralconditions that must
be ful�lled by the machine and, second, the dynamiccon-
trol complexityproperties of the interaction that implements
a given protocol (see Fig. 2).

1. Structural Complexity

Regarding the former, �rst note that one can lower bound
the smallest eigenvalue� min of the �nal state%0

S
(and hence

how cold the system can become) afteranyunitary interaction

FIG. 2. Complexity.We consider structural (left) and control com-
plexity (right). Structural complexity concerns properties of the ma-
chine Hamiltonian. For perfect cooling it is necessary that the largest
energy gap diverges [see Eq. (5)]. Moreover, an in�nite-dimensional
machine with particular energy-level structure is required for satura-
tion of the Landauer bound. Control complexity refers to properties
of the unitary that represents a protocol. The yellow box in the fore-
ground represents a unitaryU involving the entire machine, whereas
the smaller yellow columns in the background represent a potential
decomposition (e.g., of the diverging-time protocol) into unitariesUi

involving certain subspaces of the overall machine. Not only must
the target system interact with all levels of an in�nite-dimensional
machine for Landauer-cost cooling, it must do so in a �ne-tuned way.

with a thermal machine by [29]

� min(%0
S
) � e� � ! max

M � min(%S ); (5)

where! max
M := max i;j j! j � ! i j denotes the largest energy

gap of the machine HamiltonianH M with eigenvalues! i . It
follows that perfect cooling is only possible under two condi-
tions: either the machine begins in a pure state (� ! 1 ), or
H M is unbounded, i.e.,! max

M ! 1 . Requiring� < 1 , a di-
verging energy gap in the machine Hamiltonian is thus a nec-
essary structural condition for perfect cooling. Independently,
another condition required to saturate the Landauer limit can
be derived for any amount of cooling: in Ref. [29], it was
shown that for any �nite-dimensional machine, there are cor-
rection terms to the Landauer bound which imply that it can-
not be saturated; these terms only vanish in the limit where
the machine dimension diverges.

We thus have two independent necessary conditions on the
structure of the machine that must be asymptotically ful�lled
to achieve relevant goals for cooling: the former is required
for perfect cooling; the latter for cooling at the Landauer limit.
Together, these conditions imply the following:

Corollary 2. To perfectly cool a target system with en-
ergy cost at the Landauer limit using a thermal machine
� M (�; H M ), the machine must be in�nite dimensional and
! max

M , the maximal energy gap ofH M , must diverge.

The unbounded structural properties of the machine sup-
port thepossibilityfor perfect cooling at the Landauer limit;
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we now move to focus on the control properties of the in-
teraction thatrealise said potential (see Fig. 2). This leads
to the distinct notion of control complexity, which differenti-
ates between protocols that access the machine in a more or
less complex manner. The structural complexity properties
are protocol independent and related to the energy spectrum
and dimensionality of the machine, whereas the control com-
plexity concerns dynamical properties of the unitary that rep-
resents a particular protocol.

2. Control Complexity

Although it is intuitive that a unitary coupling the system
to many degrees of freedom of the machine should be consid-
ered complex, it isa priori unclear how to quantify control
complexity in a manner that both

1. corresponds to our intuitive understanding of the word
“complex”, meaning “dif�cult to implement”; and

2. is consistent with Nernst's third law in the sense that its
divergence is necessary to reach a pure state (when all
other considered resources are restricted to be �nite).

Many notions of complexity put forth throughout the litera-
ture to capture the �rst point above do not necessarily satisfy
the second, as we discuss later. Here, we take the opposite
approach and seek aminimalnotion of complexity that is �rst
and foremost consistent with the third law of thermodynam-
ics, which we hope to develop further to incorporate the idea
of quantifying how dif�cult a protocol is to implement.

In the following sections, we begin by demonstrating that
any cooling protocol that achieves perfect cooling with min-
imal time and energy resources requires coupling the target
system to an in�nite-dimensional machine, thereby captur-
ing a notion of control complexity that satis�es the second
point above. However, by subsequently analysing the suf�-
cient conditions for such optimal cooling, we see that such a
condition is in general insuf�cient to achieve said goal; fur-
thermore, coupling to an in�nite-dimensional machine is not
necessarily dif�cult to implement in practice in certain exper-
imental platforms. The insights gained here �nally motivate
our more re�ned notion of control complexity, namely that
the system must be coupled to a spectrum of machine energy
gaps that approximate a continuum. This condition is indeed
dif�cult to achieve in all experimental settings and therefore
provides a reasonable de�nition of control complexity inas-
much as it satis�es both desiderata outlined above.

B. Effective Dimension as a Notion of Control Complexity

As a �rst step in this direction, a good proxy measure of
control complexity is the effective dimension of a unitary
operation, i.e., the dimension of the subspace of the global
Hilbert space upon which the unitary acts nontrivially.

De�nition 1. Theeffective dimensionis the minimum dimen-
sion of a subspaceA of the joint Hilbert spaceH SM in terms
of which the unitary can be decomposed asUSM = UA � 1A ? :

deff := min dim( A) : USM = UA � 1A ? : (6)

Intuitively, given any (suf�ciently large) machine dimen-
sion, the effective dimension captures how much of the ma-
chine takes part in the controlled interaction. While any dy-
namics that requires a high amount of control must accord-
ingly have large effective dimension, the converse does not
necessarily follow: there exist dynamics with corresponding
large (even in�nite) effective dimensions (e.g., Gaussian op-
erations on two harmonic oscillators, such as those enacted
by a beam splitter) that are easily implementable and do not
require high levels of control, as we discuss further below.
Nevertheless, using the de�nition above, we show that any
protocol achieving perfect cooling at the Landauer limit nec-
essarily involves interactions between the target and in�nitely
many energy levels of the machine. In other words, no inter-
action restricted to a �nite-dimensional subspace suf�ces.

We begin by demonstrating that the effective dimension
(nontrivially) accessed by a unitary (see Def. 1) must di-
verge to achieve perfect cooling at the Landauer limit, thereby
providing a good proxy for control complexity in the sense
that it aligns with Nernst's third law and provides a neces-
sary condition. Intuitively, the effective dimension of a uni-
tary operation is the dimension of the subspace of the global
Hilbert space upon which the unitary acts nontrivially, in
other words the part of the joint space that is actually ac-
cessed by the control protocol. This quantity can be com-
puted by considering a given cooling protocol and �nite unit
of time T (which we can set equal to unity without loss of
generality) with respect to which the target and total ma-
chine transform unitarily by decomposing the Hamiltonian in
USM = e� iH SM T in terms of local and interaction terms, i.e.,
H SM = H S 
 1M + 1S 
 H M + H int. The effective dimension
then corresponds torank(H int). With this de�nition at hand,
we have the following:

Theorem 3. The unitary representing a cooling protocol
that saturates the Landauer limit must act nontrivially on
an in�nite-dimensional subspace ofsupp(H M ). This implies
deff ! 1 .

Intuitively, we show that if a protocol accesses only a �nite-
dimensional subspace of the machine, then the machine is
effectively �nite-dimensional inasmuch as a suitable replace-
ment can be made while keeping all quantities relevant for
cooling invariant. Invoking the main result of Ref. [29] then
implies that there are �nite-dimensional correction terms such
that the Landauer limit cannot be saturated.

The effective dimension therefore provides a minimal quan-
ti�er for control complexity: it is the quantity that must di-
verge in order to (perfectly) cool at minimal energy cost—
thus, it satis�es the above point 2. Moreover, it requires no
assumption on the underlying structure of the machine, with
the results holding for either collections of �nite-dimensional
systems or harmonic oscillators without any restrictions on
the types of individual operations allowed. This highlights a
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certain level of generality regarding the de�nition put forth,
inasmuch as it is not tied to any presupposed structure of the
systems at hand or the ability of the agent to control them.
Additionally, as we discuss below, in many situations of inter-
est, such as a machine comprising a collection of qubits and/or
natural gate-set limitations, said de�nition also corresponds to
protocols that are dif�cult to implement in practice, therefore
also satisfying the above point 1. However, such additional
restrictions are by no means generic. Moreover, it isa priori
unclear if having a diverging effective dimension is enough
to permit perfect cooling with minimal time and energy cost.
We now move on to discuss the connection to practical dif�-
culty in general before analysing suf�cient conditions regard-
ing control complexity.

1. Correspondence to Practical Dif�culty

Importantly, if one supposes that the system and machines
are �nite dimensional, then diverging effective dimension im-
plies diverging circuit complexity, where the latter is de�ned
in terms of the minimum number of gates (from a predeter-
mined set of possibilities) required to implement the overall
circuit representing a particular protocol. For instance, con-
sidering a qubit system and machines, and the ability to per-
form arbitrary two-qubit gates, the effective dimension is sim-
ply the logarithm of the number of distinct machine qubits
that the system interacts with throughout the protocol. For any
cooling protocol that achieves Landauer energy cost, it is clear
that every one of a diverging number of qubit machines must
take part in the overall transformation. Moreover, the particu-
lar interactions applied can be taken to beSWAPgates, which
require the ability for the agent to be able to perform aCNOT
gate, which in turn permits universal quantum computation
with two-qubit interactions. Thus, given a universal two-qubit
gate set, the circuit required to perform perfect cooling at min-
imal energy cost has a complexity that scales with the num-
ber of machine qubits. For higher-dimensional architectures
or further restrictions on the gate set, any meaningful notion
of control complexity will increase accordingly. This means
that the task of cooling a �nite-dimensional system with �nite-
dimensional machines at the Landauer limit is—even with a
perfect quantum computer—an impossibly dif�cult task.

However, although our proposed de�nition of effective di-
mension as a notion of control complexity is �exible inas-
much as it applies to arbitrary system-machine structures,
the price of such generality comes with the drawback that it
tends to overestimate the dif�culty of implementing a partic-
ular protocol in practice. In other words, without imposing
any additional assumptions regarding the situation at hand,
the effective dimension does not necessarily satisfy the above
point 1. For example, whilst the effective dimension and the
circuit complexity coincide for qubits, in higher-dimensional
settings, the former overestimates the latter because not all
system-machine subspaces are necessarily required to imple-
ment a particular protocol (i.e., although using all such sub-
spaces provides one way to achieve it, this is not unique).
Thus, the extent to which the circuit complexity is overes-

timated depends on the allowed gate set that is considered
“simple” in general. At the extreme end, i.e., for harmonic-
oscillator systems and machines, this can be seen from the
fact that a single beam-splitter operation (which is a two-mode
Gaussian operation, corresponding to a simple circuit com-
plexity in the usual sense considered for in�nite-dimensional
quantum circuit architectures) already has in�nite effective di-
mension, but is far from suf�cient to achieve perfect cooling
at Landauer cost.

As a representative for in�nite-dimensional systems, we
treat harmonic oscillator target systems separately in Ap-
pendix E. In the in�nite-dimensional setting, the dif�culty
of implementing an operation is often related to the polyno-
mial degree of its generators. Here, we see some friction
with respect to Eq. (6): as mentioned above, a generic Gaus-
sian unitary operation (i.e., one generated by a Hamiltonian
at most quadratic in the mode operators) between a harmonic
oscillator target and machine already implies in�nite effec-
tive dimensionality. In light of this, we �rst construct a pro-
tocol that achieves perfect cooling at the Landauer limit with
diverging time using only sequences of Gaussian operations
[i.e., those typically considered to be practically easily imple-
mentable (cf. Refs. [22, 37]), but nonetheless with in�nite ef-
fective dimensionality according to Def. 1]. This result high-
lights that the polynomial degree of the generators of a partic-
ular protocol would—somewhat counterintuitively, since op-
erations corresponding to high polynomial degree are dif�-
cult to achieve in practice—not provide a suitable measure of
control complexity inasmuch as its divergence is not neces-
sary for Landauer-cost cooling. In contrast, we then present
a protocol that demonstrates that perfect cooling is possible
given diverging time and operations acting on only a �nite ef-
fective dimensionality (i.e., using non-Gaussian operations),
with a �nite energy cost that is greater than the Landauer limit;
whether or not a similar protocol that saturates the Landauer
limit exists in this setting remains an open question.

2. Suf�ciency for Optimal Cooling

Thus, in general, accessing an in�nite-dimensional ma-
chine subspace is not suf�cient for reaching the Landauer
limit. Indeed, in all of the protocols that we present, the
degrees of freedom of the machine must be individually ad-
dressed in a �ne-tuned manner to permute populations opti-
mally, which intuitively corresponds to complicated multipar-
tite gates and demonstrates that an operationally meaningful
notion of control complexity must take into account factors
beyond the effective dimensionality accessed by an operation.
In particular, the interactions couple the target system to a di-
verging number of subspaces of the machine corresponding
to distinct energy gaps. Moreover, there are a diverging num-
ber of energy levels of the machine both above and below the
�rst excited level of the target. These observations highlight
that �ne-tuned control plays an important role. Indeed, both
the �nal temperature of the target as well as the energy cost
required to achieve this depends upon how the global eigen-
values are permuted via the cooling process. First, how cool
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the target becomes depends on the sum of the eigenvalues that
are placed into the subspace spanned by the ground state. Sec-
ond, for any �xed amount of cooling, the energy cost depends
on the constrained distribution of eigenvalues within the ma-
chine. Thus, in general, the optimal permutation of eigenval-
ues depends upon properties of both the target and machine.
To highlight this, in Appendix D, we consider the task of cool-
ing a maximally mixed target system with the additional con-
straint that the operation implemented lowers the temperature
as much as possible. This allows us to derive a closed-form
expression for the distribution of machine eigenvalues alone
that must be asymptotically satis�ed as the machine dimen-
sion diverges. Drawing from these insights, in the coming
section we propose a stronger notion of control complexity
(in the sense that it bounds the effective dimension from be-
low and that it corresponds to practical dif�culty in virtual
every setting imaginable) in terms of the energy-gap structure
of the machine and demonstrate that this measure too must
diverge to cool perfectly with minimal time and energy costs.
This concept is even more important in the case where all re-
sources are �nite, as particular structures of machines and the
types of interactions permitted play a crucial role in both how
much time or energy is spent cooling a system and how cold
the system can ultimately become (see, e.g., Refs. [38–40]).

C. Energy-Gap Variety as a Notion of Control Complexity

This analysis motivates searching for a more detailed no-
tion of control complexity that takes the energy-level struc-
ture of the machine into account, which should hold across all
platforms and dimension scales. The discussion above illus-
trates some key challenges in de�ning a measure of control
complexity that satis�es natural desiderata: such a measure
should correspond to the dif�culty of implementing opera-
tions in practice and simultaneously cover all possible physi-
cal platforms, including �nite-dimensional systems such as,
e.g., speci�c optical transitions of electrons in the shell of
trapped ions, and in�nite-dimensional systems such as the
state-space-speci�c modes of the electromagnetic �eld. The
effective dimension that we introduce above as a proxy man-
ages to cover all such systems and provides a rigorous mathe-
matical criterion that every physical protocol will necessarily
have to ful�l in order to cool at minimal energy cost. As we
have seen, however, in�nite effective dimension is insuf�cient
for cooling at the Landauer limit and it may not be all that dif-
�cult to achieve in continuous-variable setups. This begs the
question of how this minimal de�nition of control complex-
ity can be extended in order to more faithfully represent what
permits saturation of the ultimate limitations and is dif�cult to
achieve in practice.

Looking at all of our cooling protocols, a common prop-
erty that seems to be important in minimising the energy cost
of cooling is that the system is coupled to a set of machine
energy gaps that are distributed in such a way that they (ap-
proximately) densely cover the interval[! 1; ! � ], where! 1 is
the �rst energy gap of the target system and! � is the maximal
energy gap, which sets the �nal achievable temperature of the

system (for perfect cooling to the ground state, note that one
requires! � ! 1 ). Let us denote the number of distinct en-
ergy gaps in a (�xed) interval as theenergy-gap variety. More
formally, we have the following:

De�nition 2. Consider an interval[! a ; ! b) � R. We de�ne
the energy-gap variety in terms of the set of machine energy
gaps that lie in said interval, i.e., �rst construct the set

E[! a ;! b ) := f ! 
 := ! i � ! j j ! i � ! j 2 [! a ; ! b)g
 : (7)

The number of distinct elements in such a set is theenergy-
gap variety.

On the one hand, it is clear that coupling a system to a large
number of distinct and/or closely spaced energy gaps requires
�ne-tuned control that is dif�cult in any experimental setting.
On the other, the energy-gap variety lower bounds the effec-
tive dimension, and thus it is not clear that it needs to diverge
in order to cool at Landauer energy cost. In Appendix D, we
demonstrate that the energy-gap variety must indeed diverge
and, additionally, that the set of energy gaps must densely
cover a relevant interval (whose endpoints set the amount of
cooling possible) in order to perfectly cool at the Landauer
limit by proving the following:

Theorem 4. In order to cool%S 7! j 0ih0j with a thermal ma-
chine� M (�; H M ) at Landauer energy cost with a single con-
trol operation, the global unitaryU must couple the system to
a diverging number of distinct energy gaps that densely cover
the interval[! 0; 1 ), where! 0 is the smallest energy gap of
the target system.

Taken in combination with its suf�ciency to achieve said
task, this result posits the energy-gap variety as a better quan-
ti�er of control complexity than the effective dimension, con-
stituting the best thermodynamically meaningful notion of
control complexity that we have put forth so far.

The above theorem establishes the relevance of the energy-
gap variety regarding the ultimate limitations of perfect cool-
ing. In reality, of course, experimental imperfections abound,
and so naturally the question arises:how robust is the energy-
gap variety and to what extent can it incorporate errors?Re-
garding the former: note that the above theorem posits the
impossibility of cooling at Landauer energy cost unless one
has control over an (in�nitely) �ne-grained energy-gap struc-
ture. Any perturbation away from said structure will result
in some additional energy requirement for cooling; however,
intuitively, small perturbations will correspond to small in-
creases in energy costs. Properly accounting for such im-
pacts, e.g., by bounding the additional energy cost in terms
of a difference from the optimal energy-gap structure, is an
important next step to understand the practical limitations of
cooling. Regarding the latter point, in reality one never has
perfect control over microscopic degrees of freedom. For in-
stance, an immediate experimental imperfection that should
be accounted for is the fact that two energy gaps which are
very close together will be practically indistinguishable. Al-
though a full-�edged error analysis here would constitute a
major follow-up work, note that such cases can be formally
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dealt with within our framework by suitably modifying the
de�nition, i.e., by discretising energy bands to suitably cap-
ture the indistinguishability of energy gaps and/or error mar-
gins.

Aside from introducing and highlighting the important role
of control complexity, we now take a step back to consider
the notion of overall control at a higher level. It is clear that
the protocols that saturate the Landauer limit for the energy
cost of cooling require highly controlled microstate interac-
tions between the system and machine; in turn, such trans-
formations necessitate that the agent has access to a versatile
work source, i.e., either a quantum battery [19–23] or a clas-
sical work source with a precise clock [9, 10]. Such control is
reminiscent of Maxwell's demon, who can indeed address all
microscopic con�gurations at hand. This level of control is,
however, in some sense at odds with the true spirit of thermo-
dynamics. Indeed, the very reason that the machine is taken
to begin as a thermal (Gibbs) state in thermodynamics is pre-
cisely because it provides the microscopic description that is
bothconsistent with macroscopic observations (in particular,
average energy) and makes minimal assumptions regarding
the information that the agent has about the initial state; ther-
modynamics as a whole is largely concerned with what can be
done with minimal information requirements. Beginning with
this, and then going on to permit dynamical interactions that
address the full complex microstructure is somewhat contra-
dictory, at least in essence; indeed, it has been argued that
“Maxwell's demon cannot operate” [41] as an autonomous
thermal being. Thus, a more thermodynamically sound set-
ting would also restrict the transformations themselves to be
ones that can be driven with minimal overall control. We now
move to analyse the task of cooling within such a context.

V. INCOHERENT CONTROL (HEAT ENGINE)

The results presented so far pertain to cooling with the only
restriction being that the machines are initially thermal. In
particular, there are no restrictions on the allowed unitaries.
In general, the operations required for cooling are not energy
conserving and require an external work source. With respect
to standard considerations of thermodynamics, this may seem
somewhat unsatisfactory, as the joint system is, in the coher-
ent setting, open to the universe. When quantifying thermo-
dynamic resources, one typically restricts the permitted trans-
formations to be energy conserving, thereby closing the joint
system and yielding a self-contained theory.

We therefore analyse protocols using energy-conserving
unitaries. With this restriction, it is in general not possible to
cool a target system with machines that are initially thermal
at a single temperature, as was considered in the coherent-
control paradigm [42]. Instead, cooling can be achieved by
partitioning the machine into one cold subsystemC that be-
gins in equilibrium at inverse temperature� and another hot
subsystemH coupled to a heat bath at inverse temperature
� H < � [38, 42] (see Fig. 1, bottom panel). In other words,
one uses a hot and a cold bath to construct a heat engine that
cools the target. As we demonstrate, perfect cooling can be

achieved in this setting as pertinent resources diverge. How-
ever, the structure of the hot bath plays a crucial role re-
garding the resource requirements. In particular, we present
a no-go theorem that states that perfect cooling with a heat
engine using a single unitary of �nite control complexity is
impossible, even given diverging energy drawn from the hot
bath. This result is in stark contrast to its counterpart in
the coherent-control setting, where diverging energy is suf-
�cient for perfect cooling and serves to highlight the fact
that the incoherent-control setting is a fundamentally distinct
paradigm that must be considered independently. Here, we
focus on �nite-dimensional systems and leave the analysis of
in�nite-dimensional ones to future work.

A. Ultimate Limits in the Incoherent Control Paradigm

In the incoherent-control setting, an adaptation of the
(equality-form) Landauer bound on the minimum heat dissi-
pated (or, as we phrase it here, the minimum amount of en-
ergy drawn from the hot bath) can be derived, which we dub
theCarnot-Landauer limit:

Theorem 5. Let F� (%X ) := tr[ H X %X ] � � � 1S(%X ) be the
free energy of a state%X with respect to a heat bath at inverse
temperature� , � F ( � )

S
:= F� (%0

S
) � F� (%S ), and let � :=

1 � � H =� 2 (0; 1) be the Carnot ef�ciency with respect to
the hot and cold baths. In the incoherent-control setting, the
quantity

� F ( � )
S

+ � � EH (8)

= �
1
�

[� SS + � SC + � SH + D(%0
C
jj%C) + D(%0

H
jj%H )]

satis�es the inequality

� F ( � )
S

+ � � EH � 0: (9)

Equation (9) holds due to the non-negativity of the sum of
local entropy changes and the relative-entropy terms. The
derivation is provided in Appendix A, where we also show
that the usual Landauer bound is recovered in the limit of an
in�nite-temperature heat bath.

The incoherent-control setting is fundamentally distinct
from the coherent-control setting in terms of what can (or
cannot) be achieved with given resources. For instance, con-
sider the case where one wishes to achieve perfect cooling in
unit time and with �nite control complexity with diverging
energy cost. In the coherent-control setting, this task is pos-
sible in principle (see Theorem 1). On the other hand, in the
incoherent-control setting, we have the following no-go theo-
rem (see Appendix F for a proof):

Theorem 6. In the incoherent control scenario, it is not pos-
sible to perfectly cool any quantum system of �nite dimension
in unit time and with �nite control complexity, even given di-
verging energy drawn from the hot bath, for any non-negative
inverse temperature heat bath� H 2 [0; � < 1 ).
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This result follows from the fact that in the incoherent-control
setting, the target system can only interact with subspaces of
the joint hot-and-cold machine with respect to which it is en-
ergy degenerate. For any operation of �xed control complex-
ity, there is always a �nite amount of population remaining
outside of the accessible subspace, implying that perfect cool-
ing cannot be achieved, independent of the amount of energy
drawn from the hot bath.

B. Saturating the Carnot-Landauer Limit

The above result emphasises the difference between coher-
ent and incoherent controlling, which means that it isa priori
unclear if the Carnot-Landauer bound is attainable and, if so,
how to attain it. Indeed, the restriction to energy-conserving
unitaries generally makes it dif�cult to tell if the ultimate
bounds can be saturated in the incoherent-control setting, and
which resources would be required to do so. We present a
detailed study of cooling in the incoherent-control setting in
Appendix F, where we prove the following results. We begin
by demonstrating incoherent cooling protocols that saturate
the Landauer bound in the regime where the heat-bath tem-
perature goes to in�nity. We do so by �ne tuning the machine
structure such that the desired cooling transitions between the
target system and the cold and hot parts of the machine are
rendered energy conserving. In particular, we prove the fol-
lowing:

Theorem 7. In the incoherent control scenario, for an
in�nite-temperature hot bath� H = 0 , any �nite-dimensional
system can be perfectly cooled at the Landauer limit with di-
verging time via interactions of �nite control complexity. Sim-
ilarly, the goal can be achieved in unit time with diverging
control complexity.

Following our analysis of in�nite-temperature heat baths,
we study the more general case of �nite-temperature heat
baths. In Appendix G, we detail cooling protocols that satu-
rate the Carnot-Landauer limit for any �nite-temperature heat
bath. More precisely, we prove:

Theorem 8. In the incoherent control scenario, for any �nite-
temperature hot bath0 < � H < � , any �nite-dimensional
quantum system can be perfectly cooled at the Carnot-
Landauer limit given diverging time via �nite control com-
plexity interactions. Similarly, the goal can be achieved in
unit time with diverging control complexity.

As in the coherent-control setting, these protocols use either
diverging time or control complexity to asymptotically satu-
rate the Carnot-Landauer bound. The results presented in this
section therefore provide a comprehensive understanding of
the resources required to perfectly cool at minimum energy
cost in a setting that aligns with the resource theories of ther-
modynamics.

VI. IMPERFECT COOLING WITH FINITE RESOURCES

The above results set the ultimate limitations for cooling
inasmuch as the protocols saturate optimal bounds by using
diverging resources. In reality, however, any practical im-
plementation is limited to having only �nite resources at its
disposal. According to the third law, a perfectly pure state
cannot be achieved in this scenario. Nonetheless, one can pre-
pare a state of �nite temperature by investing said resources
appropriately. In this �nite-resource setting, the interplay be-
tween energy, time, and control complexity is rather compli-
cated. First, the cooling performance is stringent upon the
chosen �gure of merit for the notion of cool—the ground-state
population, purity, average energy, or temperature of the near-
est thermal state are all reasonable candidates, but they differ
in general [42]. Second, the total amount of resources avail-
able bounds the reachable temperature in any given protocol.
Third, the details of the protocol itself in�uence the energy
cost of achieving a desired temperature. In other words, de-
termining the optimal distribution of resources is an extremely
dif�cult task in general and remains an open question.

We therefore focus here on the paradigmatic special case
of cooling a qubit target system by increasing its ground-state
population in order to highlight some salient points regarding
cooling to �nite temperatures. First, we compare the �nite
performance of two distinct coherent control protocols that
both asymptotically saturate the Landauer limit; nonetheless,
at any �nite time, their performance varies. The �rst protocol
simply swaps the target qubit with one of a sequence of ma-
chine qubits whose energy gaps are distributed linearly; the
second involves interacting the target with a high-dimensional
machine with a particular degeneracy structure. Although
the latter cannot be decomposed easily into a qubit circuit
(thereby making it more dif�cult to implement in practice),
one can compare the two protocols fairly by �xing the total
(and effective) dimension to be equal, i.e., comparing the per-
formance of the linear sequential qubit machine protocol after
N + 1 qubits have been accessed with that of the latter proto-
col with machine dimension2N +1 . In doing so, we see that
the simpler former protocol outperforms the more dif�cult lat-
ter one in terms of the energy cost at �nite times, emphasising
the fact that dif�culty in practice does not necessarily corre-
spond to complexity as a thermodynamic resource. Addition-
ally, we analyse the cooling rates at which energy and time can
be traded off amongst each other in the linear qubit sequence
protocol by deriving an analytic expression. Lastly, we com-
pare the performance of a coherent and an incoherent control
protocol that use a similar machine structure to achieve a de-
sired �nal temperature. We see that the price one must pay for
running the protocol via a heat engine is that either more steps
or more complex operations are required to match the perfor-
mance of the coherent control setting. This example serves
to elucidate the connection between the two extremal control
scenarios relevant for thermodynamics.

Although throughout most of the paper we focus on the
asymptotic achievability of optimal cooling strategies, the
protocols that we construct provide insight into how said
asymptotic limits are approached. This facilitates a better un-
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derstanding of the more practically relevant questions that are
constrained when all resources are restricted to be �nite: i)
how cold can the target system be made?and ii) at what en-
ergy cost?In line with Nernst's third law, the answer to the
former question cannot be perfectly cold (i.e., zero tempera-
ture). The answer depends upon how said resources are con-
�gured and utilized. For instance, given a single unitary in-
teraction of �nite complexity in the coherent-control setting,
the ground-state population of the output state can be upper
bounded in terms of the largest energy gap of the machine,
! max [see Eq. (5)]. On the other hand, supposing that one
can reuse a single machine system multiple times, then as the
number of operation steps increases, the ground-state popu-
lation of the output state approaches(1 + e� �! max) � 1 from
below [42]. There is clearly a trade-off relation here between
time and complexity, and a systematic analysis of the rate at
which these quantities can be traded off against one another
warrants further investigation. Similarly, the energy cost to
reach a desired �nal temperature also depends upon the distri-
bution of resources, as we now examine.

Given access to a machine of a certain size (as measured
by its dimension), one could ask:what is the optimal con-
�guration of machine energy spectrum and global unitary to
cool a system as ef�ciently as possible?Here, we compare
two contrasting constructions for the cooling unitary in the
coherent-control setting for a qubit target system (with energy
gap! S )—both of which asymptotically achieve Landauer cost
cooling, but whose �nite behaviour differs. The �rst protocol
considers a machine ofN qubits whose energy gaps increase
linearly from the �rst excited state energy level of the sys-
tem ! 1 = ! S to some maximum energy level! N = ! max,
which dictates the �nal achievable temperature. In this proto-
col, the target system is swapped sequentially with each of the
N qubits in order of increasing energy gaps; we hence refer to
it as thelinear qubit machine sequence. The second protocol
we consider is presented in full in Appendix D4 and inspired
by one presented in Ref. [29] (see Appendix D therein); we
hence refer to it as the Reeb & Wolf(RW) protocol. Here, the
global unitary acts on the system and a high-dimensional ma-
chine with an equally spaced Hamiltonian whose degeneracy
doubles with each increasing energy level, i.e., it has a sin-
gular ground state, a twofold degenerate �rst excited state, a
fourfold degenerate second excited state, and so on; the �nal
energy level has an extra state so that the total dimension is
2N +1 (whereN is the number of energy levels). In particular,
the unitary performs the permutation that places the maximal
amount of population in the ground state of the target system.
Due to the structure of both protocols, one can make a fair
comparison between them, contrasting the single unitary on a
2N -dimensional machine in the RW protocol versus the com-
position ofN two-qubitSWAPunitaries in the linear machine
sequence, i.e., such that both protocols access a machine of
the same size overall.

As shown in Fig. 3, although both protocols asymptotically
tend to the Landauer limit, their �nite behaviour differs. In-
deed, the work cost of the linear qubit machine sequence pro-
tocol outperforms that of the RW protocol. This is somewhat
surprising, as the latter is a complex high-dimensional unitary

FIG. 3. Imperfect Cooling.We compare the cooling performance of
a degenerate qubit target system using eitherN machine qubits of
linearly increasing energy accessed sequentially or a single unitary
on a2N -dimensional machine, the latter being a �nite adaptation of
a protocol presented in Ref. [29]. We set� = 1 , choose units such
that ~ = kB = 1 , and �x 1 � � to be the desired �nal ground-
state population of the target. We plot the inverse of the excess work
cost above the Landauer limit,W � � e� SS (in units of the smallest
machine energy gap,! min

M ), con�rming that the surplus work cost in
both cases scales withN � 1 . Interestingly, we see that the protocol
in which the target is sequentially swapped with machine qubits out-
performs that which uses a high-dimensional unitary (at equal overall
control complexity) in terms of energy cost required to reach a de-
sired temperature.

whereas the former a composition of qubit swaps; although
both protocols have the same effective dimension in this com-
parison overall, this highlights that dif�culty in the lab set-
ting need not correspond to resourcefulness in a thermody-
namic sense. Indeed, developing optimal �nite cooling strate-
gies for arbitrary systems and machines is dif�cult in general
and remains an important open question. Nonetheless, in Ap-
pendix H, we derive the rate of resource divergence of the se-
quential qubit protocol to further clarify the trade-off between
time and energy for this protocol.

Finally, we contrast the two extremal thermodynamic
paradigms considered by comparing the energy cost of a co-
herently controlled cooling protocol to an incoherently con-
trolled one that achieves the same �nal ground-state popula-
tion. Intuitively, the latter setting requires more resources to
achieve the same performance as the former due to the fact
that only energy-resonant subspaces can be accessed by the
unitary, and hence only a subspace of the full machine is us-
able. This implies that a greater number of operations (of �xed
control complexity) are required to achieve similar results as
the coherent setting, as demonstrated in Appendix H explic-
itly. Indeed, determining the optimal cooling protocols for a
range of realistic assumptions remains a major open avenue.
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VII. DISCUSSION

Relation to Previous Works

A vast amount of the literature concerning quantum ther-
modynamics considers resource theories (see Refs. [43, 44]
and references therein), whose central question is:what trans-
formations are possible given particular resources, and how
can one quantify the value of a resource?While this perspec-
tive sheds light on what is possible in principle, it does not
per se concern itself with the potential implementation of said
transformations. Yet, the unitary operations considered in a
resource theory will themselves require certain resources to
implement in practice. Focusing only on a resource-theoretic
perspective would thus overlook the question:how does one
optimally use said resources?Our results focus on this latter
question and highlight the role of control complexity in opti-
mising resource use.

Concurrently, by considering arbitrary unitary operations
(akin to our coherent-control paradigm without limitations on
machine size) Refs. [20, 36] and [29], studied the potential
saturation of the second law of thermodynamics and Lan-
dauer's limit, respectively. References [20] and [36] develop a
similar protocol to our diverging time protocol in the context
of work extraction and demonstrate its optimality for saturat-
ing the second law. However, these works do not discuss the
practical viewpoint that the goal can be achieved in a smaller
number of operations by allowing the latter to be more com-
plex, as we emphasise. On the other hand, Ref. [29] consid-
ers the resources required for saturation of the Landauer limit
and show an important result regarding structural complex-
ity, namely that the machine must be in�nite dimensional to
cool at the Landauer limit. Our analysis regarding complex-
ity begins here and continues to elucidate the key complexity
properties that enhance the ef�ciency of a cooling protocol.
In particular, we show that an in�nite-dimensional machine is
not suf�cient unless the controlled unitary indeed accesses the
entire machine. This �rst leads to the notion of “effective di-
mension”, which provides a good proxy for control complex-
ity that is consistent with Nernst's third law for all types of
quantum machines—from �nite-dimensional systems to har-
monic oscillators. Moreover, we highlight that the optimal in-
teractions must be �ne tuned, i.e., they must couple the system
to particular energy gaps of the machine in a speci�c con�g-
uration, paving the way for a more nuanced de�nition of con-
trol complexity that takes into account the complicated and
precise level of control required, as we present in terms of the
“energy-gap variety”. Lastly, we emphasise that the latter dis-
cussion concerns the coherent-control scenario, which is only
one of the extremal control paradigms that we consider. In
addition, we consider the task of cooling in a more thermo-
dynamically consistent setting, namely the incoherent-control
paradigm. There we derive the Carnot-Landauer equality and
consequent inequality, which are adaptations of the Landauer
equality [29] and inequality [11], respectively, where the pro-
tocol can only be run via a heat engine.

On the more practical side, note that our work here con-
cerns erasing quantum information encoded in fundamental

rather than logical degrees of freedom. Our reasoning here
is twofold: �rstly, the ultimate limitations that we aim to un-
derstand are the same whether one wishes to cool a physi-
cal system or erase information; in other words, although it
may be possible to save some �nite trade-off costs for im-
perfect erasure in the coarse-grained setting, the resources re-
quired to perform a rank-reducing process asymptotically di-
verge in both cases. Secondly, it is much more dif�cult to
create coherent superpositions in the case where information
is redundantly encoded in macrostates, as this would require
all microstates to be in phase (indeed, this is a major reason
why quantum computers aim to encode information in fun-
damental degrees of freedom). For erasing quantum infor-
mation using bulk (classical) cooling (i.e., coupling to a suit-
ably engineered cold bath), the relevant condition is nonde-
generacy of the ground state; additionally, many original Lan-
dauer thought experiments consider degenerate Hamiltonians
for the computational states. In contrast, our protocols are
based upon directly controlled cooling, which works indepen-
dently of the target system Hamiltonian and as such bridges
the gap between various perspectives. Moving forward, it
will be interesting to explore how information can be erased
cheaper if it is encoded in a coarse-grained fashion, in order
to better square our fundamental results presented here with
experimental demonstrations. Doing so would require �nite
versions of all of the systems and resources that we analyse
here, which we leave for future exploration.

Conclusions & Outlook

The results of this work have wide-ranging implications.
We have both generalised and uni�ed Landauer's bound with
respect to the laws of thermodynamics. In particular, we have
posed the ultimate limitations for cooling quantum systems or
erasing quantum information in terms of resource costs and
presented protocols that asymptotically saturate these limits.
Indeed, while it is well known that heat and time require-
ments must be minimised to combat the detrimental effects
of �uctuation-induced errors and short decoherence times on
quantum technologies [18], we have shown that this comes
at a practical cost of greater control. In particular, we have
demonstrated the necessity of implementing �ne-tuned inter-
actions involving a diverging number of energy levels to min-
imise energy and time costs, which serves to deliver a cau-
tionary message: control complexity must be accounted for to
build operationally meaningful resource theories of quantum
thermodynamics. This result posits the energy-gap variety
accessed by a unitary protocol as a meaningful quanti�er of
control complexity that is both fully consistent with the third
law of thermodynamics and chimes well with what is dif�cult
to achieve in practice. Our analysis of the incoherent-control
setting further provides pragmatic ultimate limitations for the
scenario where minimal control is required, in the sense that
all transformations are driven by thermodynamic energy and
entropy �ows between two heat baths, which could be viewed
as a thermodynamically driven quantum computer [45]. Nev-
ertheless, the intricate relationship between various resources
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here will need to be further explored.
Looking forward, we believe it will be crucial to go be-

yond asymptotic limits. While Landauer erasure and the third
law of thermodynamics conventionally deal with the creation
of pure states, practical results would need to consider cool-
ing to a �nite temperature (i.e., creating approximately pure
states) with a �nite amount of invested resources [38–40].
In this context, the trade-off between time and control com-
plexity will gain more practical relevance, as realistic quan-
tum technologies have limited coherence times and interac-
tion Hamiltonians are limited to few-body terms. Here, oper-
ational measures of control complexity that �t the envisioned
experimental setup present an important challenge that must
be overcome to apply our results across various platforms.

Our results strengthen the view that, in contrast to classical
thermodynamics, the role of control is one of the most crucial
issues to address before a true understanding of the limita-
tions and potential of quantum machines is revealed. On the
one hand, in classical systems, control is only ever achieved
over few bulk degrees of freedom, whereas addressing and de-
signing particular microstate control is within reach of current
quantum technological platforms, offering additional routes
towards operations enhanced by �ne-tuned control. On the
other hand, the cost of such control itself can quickly exceed
the energy scale of the system, potentially rendering any per-
ceived advantages a mirage. This is exacerbated by the fact
that it is not possible to observe (measure) a quantum ma-
chine without incurring signi�cant additional thermodynamic
costs [8, 46] and non-negligible backaction on the operation
of the machine itself [47]. A fully developed theory of quan-
tum thermodynamics would need to take these into account
and we hope that our study sheds light on the role of control
complexity in this endeavour.
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[18] Antonio Ać�n, Immanuel Bloch, Harry Buhrman, Tommaso
Calarco, Christopher Eichler, Jens Eisert, Daniel Esteve, Nico-
las Gisin, Steffen J. Glaser, Fedor Jelezko, Stefan Kuhr, Ma-
ciej Lewenstein, Max F. Riedel, Piet O. Schmidt, Rob Thew,
Andreas Wallraff, Ian Walmsley, and Frank K. Wilhelm,The
quantum technologies roadmap: a European community view,
New J. Phys.20, 080201 (2018), arXiv:1712.03773.

[19] J. 	Aberg,Truly work-like work extraction via a single-shot anal-
ysis,Nat. Commun.4, 1925 (2013), arXiv:1110.6121.

[20] Paul Skrzypczyk, Anthony J. Short, and Sandu Popescu,Work
extraction and thermodynamics for individual quantum sys-
tems,Nat. Commun.5, 4185 (2014), arXiv:1307.1558.

[21] Matteo Lostaglio, David Jennings, and Terry Rudolph,De-
scription of quantum coherence in thermodynamic processes
requires constraints beyond free energy,Nat. Commun.6, 6383
(2015), arXiv:1405.2188.

[22] Nicolai Friis and Marcus Huber,Precision and Work Fluctu-
ations in Gaussian Battery Charging,Quantum2, 61 (2018),
arXiv:1708.00749.

[23] Francesco Campaioli, Felix A. Pollock, and Sai Vinjanam-
pathy, Quantum Batteries,in Thermodynamics in the Quan-
tum Regime, edited by Felix Binder, Luis A. Correa, Christian
Gogolin, Janet Anders, and Gerardo Adesso (Springer Interna-
tional Publishing, Cham, Switzerland, 2018) Chap. 8, pp. 207–
225, arXiv:1805.05507.

[24] Henry E. D. Scovil and Erich O. Schulz-DuBois,Three-Level
Masers as Heat Engines,Phys. Rev. Lett.2, 262 (1959).

[25] Ronnie Kosloff and Amikam Levy,Quantum Heat Engines and
Refrigerators: Continuous Devices,Annu. Rev. Phys. Chem.
65, 365 (2014), arXiv:1310.0683.

[26] Raam Uzdin, Amikam Levy, and Ronnie Kosloff,Equivalence
of Quantum Heat Machines, and Quantum-Thermodynamic
Signatures,Phys. Rev. X5, 031044 (2015), arXiv:1502.06592.

[27] Mark T. Mitchison,Quantum thermal absorption machines: re-
frigerators, engines and clocks,Contemp. Phys.60, 164 (2019),
arXiv:1902.02672.

[28] Mischa P. Woods, Nelly Huei Ying Ng, and Stephanie Wehner,
The maximum ef�ciency of nano heat engines depends on more
than temperature,Quantum3, 177 (2019), arXiv:1506.02322.

[29] David Reeb and Michael M. Wolf,An improved Landauer
principle with �nite-size corrections,New J. Phys.16, 103011
(2014), arXiv:1306.4352.

[30] Fabien Clivaz,Optimal Manipulation Of Correlations And Tem-
perature In Quantum Thermodynamics, Ph.D. thesis, University
of Geneva (2020), arXiv:2012.04321.

[31] Paul M. Riechers and Mile Gu,Impossibility of achieving Lan-
dauer's bound for almost every quantum state,Phys. Rev. A
104, 012214 (2021), arXiv:2103.02337.

[32] Marcus Huber, Mart�́ Perarnau-Llobet, Karen V. Hovhannisyan,
Paul Skrzypczyk, Claude Klöckl, Nicolas Brunner, and Anto-
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Appendix A: Equality Forms of the (Carnot-)Landauer Limit

In this section, we present lower bounds on the energy change of the machine (or heat dissipated into its environment) in terms
of the entropy change of the target system, both in the coherent and incoherent-control settings outlined in the main text. In the
coherent setting, this amounts to the well-known Landauer principle [11], whereas the incoherent setting requires an extension of
this derivation. These lower bounds are important, because they put limits on the optimal energetic performance of the machines
for cooling. Note, �nally, that the initial state of the machine is diagonal in its energy eigenbasis and must remain so for any
process saturating the (Carnot-)Landauer limit; moreover, the target begins similarly and ends up in the pure statej0ih0j when
perfect cooling is achieved. As a result, all quantities relevant to perfect cooling at the (Carnot-)Landauer limit can be computed
in terms of their “classical” counterparts, i.e.,%X ! pX := ( p0; : : : ; pd) with pn = e� �E n , tr [H%X ] ! h E i pX

:=
P

n pn En ,
S(%X ) ! S(pX ) := �

P
n pn log (pn ), Z (�; H X ) =

P
n e� �E n , and so on. Nonetheless, all of the results presented hold for

the more general “quantum” properties.

A1. Coherent-Control Paradigm: The Landauer Limit

The coherent setting was already studied in detail in Ref. [29], where the authors derived an equality version of Landauer's
principle. We restate the results here for convenience, since we will also use them in the incoherent paradigm. Recall that
the setting we consider consists of two parts, the target systemS and the machineM . In the beginning, the joint state is
%SM = %S 
 � M (�; H M ) for some arbitrary (but �xed) HamiltonianH M and� 2 R. Note that any full-rank state%can be
associated to some chosen temperature� , which sets the energy scale, and a HamiltonianH = � 1

� log (%); as we consider
arbitrary Hamiltonians, we only write the state dependence on these parameters when necessary. If the state is not full rank,
the rank can be used to rede�ne the dimension. We assume that both systems are �nite dimensional. LetU be a global
unitary onSM . We write %0

SM
:= U[%S 
 � M (�; H M )]Uy and denote by%0

S
and %0

M
the respective reduced states. The

quantityI (S : M )%0
SM

= S(%0
S
) + S(%0

M
) � S(%0

SM
) is the �nal mutual information betweenS andM andD(%0

M
jj%M ) =

tr
�
%0

M
log(%0

M
)
�

� tr
�
%0

M
log(%M )

�
is the relative entropy of the �nal machine state with respect to its initial state.

Lemma 1([29, Lemma 2]). Let the setting be as above. Then

[S(%0
S
) � S(%S )] + [ S(%0

M
) � S(%M )] = I (S : M )%0

SM
� 0: (A1)

Proof. We note that

[S(%0
S
) � S(%S )] + [ S(%0

M
) � S(%M )] = S(%0

S
) + S(%0

M
) � S(%0

SM
); (A2)

since the von Neumann entropy is additive for product states and invariant under unitary evolution. The assertion follows from
the de�nition of the mutual information and the fact that it is non-negative.

Theorem 9(Equality form of Landauer's principle, [29, Theorem 3]). Let the setting be as above. Then

� tr[ H M (%0
M

� %M )] � [S(%S ) � S(%0
S
)] = I (S : M )%0

SM
+ D(%0

M
jj%M ) � 0: (A3)

Proof. From Lemma 1, it follows that

[S(%S ) � S(%0
S
)] + I (S : M )%0

SM
= S(%0

M
) � S(%M ): (A4)

Using the fact that%M = � M (�; H M ), we infer thatD (%0
M

jj%M ) = � S(%0
M

) + � tr[ H M %0
M

] + log [tr( e� �H M )] andS(%M ) =
� tr[ H M %M ] + log [tr( e� �H M )]. Re-expressing the �rst of these forS(%0

M
) and inserting both into Eq. (A4) yields the claimed

equality. The inequality results from non-negativity of relative entropy and mutual information. This completes the proof.
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A2. Incoherent-Control Paradigm: The Carnot-Landauer Limit

Landauer's principle provides a relationship between how much heat must necessarily be dissipated into the thermal back-
ground environment upon manipulating the entropy of a given quantum system. Until now, we have assumed that the system
of interest can interact arbitrarily with its environment (i.e., the machine); in other words, we have considered general joint
unitary interactions between system and machine, without restriction. In doing so, we have tacitly assumed the ability to draw
energy from some external resource (i.e., a work source) in order to implement said unitaries, which are in general not energy
preserving. The particularities of such a resource are left as an abstraction. However, from a thermodynamicists' perspective,
this setting may seem somewhat unsatisfactory, as the joint target-machine system is not energetically closed. In order to provide
a more self-contained picture of the cooling procedure, one can explicitly include the energy resource, modelled as a quantum
system itself, into the setting.

To this end, note �rst that said resource must be out of thermal equilibrium with respect to the target and machine in order to
perform any meaningful thermodynamic transformation. Furthermore, it is sensible to assume that the energy resource system
is in thermal equilibrium with its own environment to begin with. The joint target-machine-resource system is then considered
to be energetically closed; as such, global unitaries in this setting are restricted to be energy conserving. In order to act as a
resource for cooling the target in this picture, the energy source here must begin in equilibrium with a heat bath that is hotter
than the initial temperature of the machine (assuming that the machine and resource both begin in thermal states), such that a
natural heat �ow is induced that leads the environment of the machine to act as a �nal heat sink. This setting is what we call
the incoherent-control scenario. In this context, Landauer's principle translates to studying the relationship between the heat
that is necessarily dissipated into the machine's environment upon manipulating the entropy of the target system. Finally, note
that the relationship between the coherent and the incoherent-control paradigms is interesting in itself: while on the one hand
the incoherent setting includes an additional system and therefore increases the dimensionality of the overall joint system, on
the other hand by restricting the transformations on this larger space to be energy conserving, one limits the orbit of attainable
states.

Now let us consider the incoherent-control setting. Here, we have the target systemS and the machine comprises of one
part C coupled to the cold bath and anotherH coupled to the hot bath. We assume that all systems are �nite-dimensional.
Every subsystemA is associated to a HamiltonianH A and C, H are initially in a thermal state; the cold bath has inverse
temperature� and the hot bath has inverse temperature� H < � . We assume� , � H . Thus, the initial joint state is%SCH =
%S 
 � C(�; H C) 
 � H (� H ; H H ). The global evolution onSCHis implemented via a unitaryU, leading to%0

SCH
= U(%SCH )Uy.

We further assume that the unitary evolution on the joint system is energy conserving, i.e.,[U; HS + H C + H H ] = 0 . We write
� SA := S(%0

A
) � S(%A ) for the entropy change on subsystemA and� EA := tr[ H A (%0

A
� %A )] for the average energy change.

Moreover, the free energy of a state%A with respect to the inverse temperature� is F� (%A ) = tr[ H A %A ] � � � 1S(%A ).
In the incoherent setting, it makes sense to look at the energy decrease in the hot bathH , since the hot bath can be seen as the

energetic resource one must to expend in order to cool the systemS (alternatively, as we present after the following theorem,
one can consider the energy dissipated into the cold bathC, which serves as the heat sink).

Theorem 10. In the above setting, it holds that

� F ( � )
S

+ � � EH = �
1
�

[� SS + � SC + � SH + D(%0
C
jj%C) + D(%0

H
jj%H )] � 0; (A5)

where(0; 1) 3 � := 1 � � H =� is the Carnot ef�ciency and� F ( � )
S

= F� (%0
S
) � F� (%S ).

Proof. Let us consider

I (S : C : H)%0
SCH

:= S(%0
S
) + S(%0

C
) + S(%0

H
) � S(%0

SCH
) � 0: (A6)

Note that the quantityI (S : C : H)%0
SCH

, which quanti�es the tripartite mutual information of the state%0
SCH

, is non-negative
via subadditivityS(%A ) + S(%B ) � S(%AB ) for any state%AB . Furthermore, since the von Neumann entropy is invariant under
unitary transformations and additive for tensor product states, we have

I (S : C : H)%0
SCH

= � SS + � SC + � SH : (A7)

We also have that

� SC = � � EC � D (%0
C
jj%C) (A8)

and

� SH = � H � EH � D (%0
H

jj%H ): (A9)



19

Thus,

I (S : C : H)%0
SCH

= � SS + � � EC � D (%0
C
jj%C) + � H � EH � D (%0

H
jj%H ): (A10)

Since the unitary is energy conserving, we infer that� ES + � EC + � EH = 0 . Hence, we have

� SS � � � ES + ( � H � � )� EH = I (S : C : H)%0
SCH

+ D(%0
C
jj%C) + D(%0

H
jj%H ): (A11)

Using the free energy, we can rewrite this as

� � [F� (%0
S
) � F� (%S )] � (� � � H )� EH = I (S : C : H)%0

SCH
+ D(%0

C
jj%C) + D(%0

H
jj%H ): (A12)

Dividing by � � , we obtain the assertion, since, in particular,I (S : C : H)%0
SCH

+ D(%0
C
jj%C) + D(%0

H
jj%H ) � 0 by the non-

negativity of each term.

In particular, we have shown that the energy extracted from the hot bath is lower-bounded by the increase in free energy,
weighted by the inverse Carnot ef�ciency:

tr[ H H (%H � %0
H

)] �
1
�

[F� (%0
S
) � F� (%S )]: (A13)

Note that if%S = � S (�; H S ), the r.h.s. is non-negative for any nontrivial thermodynamic process, i.e., any for which the target
system is heated or—of particular relevance for us—cooled. This follows by the Gibbs variational principle, which states that
the free energy of%is minimal iff %is the corresponding Gibbs state.

Finally, in order to make a more concrete connection to the spirit of Landauer's original derivation, note that one can consider
bounding the heat dissipated into the cold bath, rather than that drawn from the hot bath. Substituting� EH = � (� ES + � EC)
into Eq. (A10) leads to

� e� SS � � H � ES + ( � � � H )� EC � 0; (A14)

which recovers the standard Landauer bound for the dissipated heat in the limit of an in�nitely hot heat bath, i.e.,� H ! 0.

Appendix B: Diverging Energy

B1. Suf�ciency: Diverging Energy Cooling Protocol

This cooling protocol is arguably the simplest of those presented. The thermal populations of any target system can be
exchanged with a machine system of the same dimension, in the thermal state ofH M = ! M

P d� 1
n =0 njnihnj. As ! M ! 1 , the

machine state� M (�; H M ) approachesj0ih0jM independently of� (as long as� 6= 0 ). Such a population-exchange operation
is a single interaction (i.e., the protocol occurs in unit time), which is of �nite complexity (in a sense that we discuss below).
However, the energy drawn from the resourceW upon performing saidSWAPoperation is at leastE = ( p(1)

S
� p(1)

M
)( ! M � ! (1)

S ),

wherep(1)
X

is the initial population of the �rst excited level of systemX and! (1)
S is the �rst energy eigenvalue of the target system.

Denoting by! (k )
S the energy eigenvalue of thekth excited level of the target system, we have above assumed that! (0)

S = 0 (which
we do for all Hamiltonians without loss of generality) and! M > ! (d� 1)

S . As such, perfect cooling will incur diverging energy
cost.

B2. Necessity of Diverging Energy for Protocols with Finite Time and Control Complexity

Consider the following Hamiltonians for the target system and machine with �nite but otherwise arbitrary energy levels,
H S =

P dS � 1
n =0 ! (n )

S jnihnjS and H M =
P dM � 1

n =0 ! (n )
M jnihnjM , respectively. For any �nite inverse temperature� , the initial

thermal states� S (�; H S ) and� M (�; H M ) are of full rank. Suppose now that one can implement a single unitary transformation
(i.e., a unit time protocol) of �nite control complexity on the joint target and machine, yielding the joint output state%0

SM
=

trM

�
U(� S (�; H S ) 
 � S (�; H M ))Uy

�
, and wishes to attain perfect cooling of the target in doing so. By invariance of the rank

under unitary transformations and the fact that the system and machine begin uncorrelated, we have

rank[� S (�; H S )] rank[� M (�; H M )] = rank[ %0
SM

] � rank[%0
S
] rank[%0

M
]; (B1)
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where the inequality follows from the subadditivity of the Rényi-zero entropy [48], which is the logarithm of the rank. To
achieve perfect cooling of the target, one must (at least asymptotically) attainrank[%0

S
] < rank[� S (�; H S )], which implies that

rank[%0
M

] > rank[� M (�; H M )]. However, if this condition is achieved, thenD[%0
M

k� M (�; H M )] diverges, implying a diverging
energy cost by Eq. (3). The above argument already appears in Ref. [29].

The other situation that one must consider is the case where one attains a%0
S

such thatrank[%0
S
] = rank[ � S (�; H S )] but

nonetheless%0
S

is arbitrarily close to a pure state, as is the case, for instance, in the protocols that we present. Consider a sequence
of machines%( i )

M
and unitariesU( i ) such that%( i )

M
! %M andU( i ) ! U. Note that since we �xed the dimensions ofS andM ,

any sequence of machines has a converging subsequence by the Bolzano-Weierstrass theorem and the fact that the set of quantum
states is compact. Here,%M andU achieve perfect cooling. If we �x%S , we obtain a corresponding sequence(%0

M
)( i ) such that

(%0
M

)( i ) ! %0
M

. Crucially, here, since we restrict the unitary transformation to be of �nite control complexity, the states%M and
%0

M
are effectively �nite dimensional, in the sense that whatever their true dimension, they can be replaced by �nite-dimensional

versions without changing any of the relevant quantities (see Appendix D). Since the relative entropy(%; �) 7! D (%jj � ) is lower
semicontinuous [49, 50] and sinceD(%0

M
jj%M ) ! 1 by the arguments above, we infer thatD [(%0

M
)( i ) jj%( i )

M
] ! 1 asi ! 1 .

This argument holds independently ofrank[%0
S
]; in particular, for the special caserank[%0

S
] = rank[ � S (�; H S )] that we are

considering here. Thus, to approach perfect cooling in �nite time and with �nite control complexity, one would need a diverging
energy cost. Thus, we see that within the resource trinity of energy, time, and control complexity, if the latter two are �nite, then
energy must diverge to asymptotically achieve a pure state. Whether or not there exist other (unaccounted for) resources that
allow one to achieve this with all three of the aforementioned resources being �nite remains an open question.

Importantly, the above argument no longer holds if the time or control complexity is allowed to diverge. In such cases, both
%M and%0

M
can be in�nite dimensional, and because of this the rank argument no longer applies and the relative entropy does

not necessarily diverge in the limit of perfect cooling. In contrast, as we show, it is even possible to saturate the Landauer bound.

Appendix C: Diverging Time Cooling Protocol for Finite-Dimensional Systems

C1. Proof of Theorem 2

Proof. Consider a target systemS of dimensiond with associated Hamiltonian

H S =
d� 1X

k=0

! k jkihkjS ; (C1)

where we also set! 0 = 0 without loss of generality. Consider also the machineM to be composed ofN subsystems,
fM n gn =1 ;:::;N , each of the same dimensiond as the target, whose local Hamiltonians are

H (n )
M

= (1 + n� )H S ; (C2)

where� = ( � max � � )=(N� ). We �rst cool the system initially at nonzero� to some �xed, �nite � max, which we eventually
take� max ! 1 in order to asymptotically achieve perfect cooling. We treat the case� = 0 as a limiting case of� ! 0: here,
as� ! 0, we letN ! 1 such thatN� ! 1 , e.g., we specify a suitable functionN (� ) such thatN (� ) ! 1 “faster” than
� ! 0.

We now show that, given the ability to perform a diverging number of operations on such a con�guration, one can reach the
target state� S (� max; H S ). In particular, we show that the protocol presented uses the minimal amount of energy to do so, and
explicitly calculate this to be� � 1 e� S units of energy, wheree� S := S[� S (�; H S )] � S[� S (� max; H S )]. In other words, as the
number of operations in the protocol diverges, we approach perfect cooling at the Landauer limit, thereby saturating the ultimate
bound.

The diverging time cooling protocol is as follows. At each step, the target system interacts with a single machine labelled by
n via theSWAPoperator

Sd
SM n

:=
d� 1X

i;j =0

ji; j ihj; i jSM n : (C3)

As the target and machine subsystems considered here are of the same dimension, we drop the subscript on the states associated
to each subsystem, for ease of notation. Such a transformation is, in general, not energy conserving, but one can calculate the
energy change for both the target system and the machine due to thenth interaction as

� E (n )
S

= tr
h
H S � (�; H (n )

M
)
i

� tr
h
H S � (�; H (n � 1)

M
)
i

; (C4)
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and so the total energy change of the system over the entireN -step protocol is given by

� ES =
NX

n =1

� E (n )
S

= tr
h
H S � (�; H (N )

M
)
i

� tr
h
H S � (�; H (0)

M
)
i

: (C5)

The energy change of the machine subsystem that is swapped with the target system at each step is given by

� E (n )
M

= tr
h
H (n )

M
� (�; H (n � 1)

M
)
i

� tr
h
H (n )

M
� (�; H (n )

M
)
i

=
d� 1X

k=0

(1 + n� )! k

h
pk (�; H (n � 1)

M
) � pk (�; H (n )

M
)
i

; (C6)

wherepk (�; H (n )
M

) = e� � (1+ n� ) ! k =ZM n (�; H (n )
M

) is the population in thekth energy level of the thermal state of thenth

machine subsystem at inverse temperature� , with ZM n (�; H (n )
M

) = tr
h
e� �H ( n )

M

i
being the partition function.

By summing the contributions of the energy changes in each step, one can obtain the total energy change for the overall
machine throughout the entire process:

� E (N )
M

=
NX

n =1

� E (n )
M

=
NX

n =1

d� 1X

k=0

(1 + n� )! k

h
pk (�; H (n � 1)

M
) � pk (�; H (n )

M
)
i

; (C7)

In general, it is complicated to calculate the energy cost for the protocol up until a �nite time stepN , since this depends on the
full energy structure of the target system and machine subsystems involved (we return to resolve this problem for the special
case of equally spaced system and machine Hamiltonians in the coming section). Here, we focus on a special case in which
N ! 1 , i.e., there is a diverging number of machine subsystems that the target system interacts with throughout the protocol.
This limit physically corresponds to that of requiring a diverging amount of time (in terms of the number of steps). Furthermore,
we take the limit� ! 0 for any �xed �; � max. Considering the differentials

� p(n )
k := pk (�; H (n )

M
) � pk (�; H (n � 1)

M
); (C8)

and

� xn := xn � xn � 1 with xn := 1 + n�: (C9)

In order forxn to become in�nitesimal, and noting the explicit form of the machine subsystem HamiltoniansH (n )
M

= (1+ n� )H S ,
we can make the replacement

�
� p(n )

k

� xn
� xn ! �

@pk (�; xH S )
@x

dx (C10)

wherex := 1 + n� has become a continuous parameter. This way we can express the limitN ! 1 of Eq. (C7) as a Riemann
integral in the following form:

lim
N !1

� E (N )
M

= �
Z x max

1

d� 1X

k=0

x! k
@pk (�; xH S )

@x
dx; (C11)

wherexmax := � max=� . Both the summation and the integral converge, so one can swap the order of their evaluation. Integrating
by parts then gives

lim
N !1

� E (N )
M

=
d� 1X

k=0

�
� x! k pk (�; xH S )

�
�x max

1 +
Z x max

1
! k pk (�; xH S ) dx

�

=
d� 1X

k=0

�
� x! k pk (�; xH S )

�
�x max

1

�
�

Z x max

1

1
�

@
@x

�
logZ (�; xH S )

�
dx

= E[� (�; H S )] � E [� (�; x maxH S )] �
1
�

logZ (�; x maxH S ) +
1
�

logZ (�; H S ); (C12)

where in the second line we again swap the order of the integral and the sum to write
P d� 1

k=0 ! k pk (�; xH S ) =
� 1

�
@

@x[logZ (�; xH S )] and in the last line we invokeE[� (�; xH )] = tr [xH � (�; xH )]. Finally, writing the partition func-
tion in terms of the average energy and entropy, i.e.,log[Z (�; xH )] = � � E [� (�; xH )] + S[� (�; xH )], the total energy change
of the machine is given by

lim
N !1

� E (N )
M

= E[� (�; H S )] � E [� (�; x maxH S )] + E [� (�; x maxH S )] �
1
�

S[� (�; x maxH )] � E [� (�; H S )] +
1
�

S[� (�; H S )]
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=
1
�

�
S[� (�; H S )] � S[� (� max; H S )]

	
=

1
�

e� SS ; (C13)

where we make use of the property� S (�; x maxH S ) = � S (� max; H S ) and the entropy decrease of the target system corresponds
to that associated with the transformation� (�; H S ) ! � (� max; H S ). Thus, as the number of timesteps diverges, this cooling
process saturates the Landauer limit for the heat dissipated by the machine. In order to achieve perfect cooling at the Landauer
limit, i.e., the �nal target state to approachj0ih0j and thus prove Theorem 2, we can now take the limit� max ! 1 .

The above proof holds for systems and machines of arbitrary (but equal) dimension, either �nite or in�nite, with arbitrary
Hamiltonians. We now present some more detailed analysis regarding the special case where the Hamiltonians of the target
system and all machine subsystems are equally spaced; this provides an opportunity both to derive a more detailed formula for
the energy costs involved and to build intuition regarding some of the important differences between the �nite- and in�nite-
dimensional settings.

C2. Special Case: Equally Spaced Hamiltonians

Consider a �nite d-dimensional target system beginning at inverse temperature� with an equally spaced Hamiltonian
H S (! S ) = ! S

P d� 1
n =0 njnihnjS . In this case, we can derive a more precise dimension-dependant function for the energy cost

dissipated by the machines throughout the optimal cooling protocol presented above.
Consider an initial target system� S (�; H S ) and a diverging numberN of machinesfM � g� =0 ;:::;N of the same dimensiond

as the target, which all begin in a thermal state at inverse temperature� with respect to an equally spaced Hamiltonian whose
gaps between neighbouring energy levels! M � are ordered non-decreasingly. Each machine is used once and then discarded; the
particular interaction is the aforementionedSWAPbetween the target system and thenth qudit machine, i.e., that represented by
the unitarySd

SM �
:=

P d� 1
i;j =0 ji; j ihj; i jSM �

: After applying such an operation, the state of the target system is given by

� S (�; ! � ) :=
e� �H S ( ! � )

Z S (�; ! � )
; (C14)

whereH S (! � ) := ! �
P d� 1

n =0 njnihnjS andZ S (�; ! � ) := tr
�
e� �H S ( ! � )

�
.

We now calculate the energy cost explicitly for the diverging time cooling protocol, which saturates the Landauer bound in
the asymptotic limit. In order to minimise the energy cost of cooling, the target system must be cooled by the qudit system in
the machines with the smallest gap between neighbouring energy levels (that permits cooling) as much as possible at each stage.
In order to optimally use the given machine structure at hand, we thus order the set of energy gaps! � in non-decreasing order.
In addition, the protocol to reach the Landauer erasure bound, i.e., minimal energy cost, dictates that one must in�nitesimally
increase! � of the machines in order to dissipate as little heat as possible throughout the interactions. Since we are here
considering a diverging time limit, we have access to a diverging number of qudit machine with distinct energy gap! � at our
disposal; the task is then to use these in an energy-optimal manner.

It is straightforward to see that to minimise the total energy cost, one must apply the sequence of unitariesSd
SM �

such that
Sd

SM 0
is �rst applied to reach the optimally cool� S (�; ! 0), thenSd

SM 1
to reach� S (�; ! 1), and so on. The heat dissipated by the

reset machines in each stage of such a cooling protocol (i.e., for each value of� ) can thus be calculated as

� EM �
(! � ) = �

�
tr

�
H M �

(! � )� M �
(�; ! � )

�
+ tr

�
H M �

(! � ) � M �
(�; ! � � 1)

�	

= � tr [H S (! � ) [� S (�; ! � ) � � S (�; ! � � 1)]] : (C15)

In the second line, we have made use of the fact that the Hamiltonians of both the target system and each of machine ared-
dimensional and equally spaced. So far, we have obtained the energy dissipated by the reset machines. To investigate the total
energy cost of cooling in such a process, we also must consider the contribution of energy transferred to the target systemS,
which is characterised via its local HamiltonianH S and calculated via

� ES (! � ) = tr [H S (! S ) � S (�; ! � )] � tr [H S (! S ) � S (�; ! � � 1)] ; (C16)

in which we set! 0 = ! S . Using Eqs. (C15, C16), the total energy cost for each stage of cooling is given by

� ESM (! � ) = � ES (! � ) + � EM (! � ) = tr
��

H S (! S ) � H S (! � )
��

� S (�; ! � ) � � S (�; ! � � 1)
�	

; (C17)

which leads to the overall energy cost afterN stages, whereN is the number of non-zero distinct energy gaps of the reset
machines, as

� E (N )
SM

=
NX

� =1

� ESM (! � ) =
NX

� =1

tr
��

H S (! S ) � H S (! � )
��

� S (�; ! � ) � � S (�; ! � � 1)
�	

: (C18)
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Now, we can obtain the total energy cost for each stage of the protocol (i.e., each value of� considered) in terms of the
transformation of the target system alone. Note that in this protocol, each stage corresponding to each of theN distinct energy
gapsf ! � g in itself requires only one operation to perfectly reach� S (�; ! � ). The end result of this protocol is that the target
system is cooled from the initial thermal state� S (�; ! S ), where! S is the energy gap between each pair of adjacent energy levels
in the system, to� S (�; ! max) in the energy-optimal manner.

Starting from Eq. (C18), we have

� E (N )
SM

=
NX

� =1

tr
��

H S (! S ) � H S (! � )
��

� S (�; ! � ) � � S (�; ! � � 1)
�	

=
NX

� =1

(! S � ! � )
��

e� �! �

1 � e� �! �
�

e� �! � � 1

1 � e� �! � � 1

�
�

�
d e� �d! �

1 � e� �d! �
�

de� �d! � � 1

1 � e� �d! � � 1

��

= lim
K !1

NX

� =1

(! S � ! � )
KX

k=0

��
e� � (k+1) ! � � e� � (k+1) ! � � 1

�
� d

�
e� � (k+1) d! � � e� � (k+1) d! � � 1

��

= lim
K !1

NX

� =1

(! S � ! � )
KX

k=0

�
e� � (k+1) ! �

�
1 � e� � (k+1)( ! � � 1 � ! � ) � � d e� �d (k+1) ! �

�
1 � e� �d (k+1)( ! � � 1 � ! � ) �� :

(C19)

Here, since bothH M �
andH S are equally spaced Hamiltonians, the average energy can be written as

E(! x ; ! y ) = tr [H S (! x ) � S (�; ! y )] =
P d� 1

n =0 n! x e� n�! y

P d� 1
n =0 e� n�! y

= ! x

�
e� �! y

1 � e� �! y
�

d e� �d ! y

1 � e� �d ! y

�
(C20)

by evaluating the geometric series

Z (�; ! y ) =
d� 1X

n =0

e� �n! y = 1� e� �d! y

1� e� �! y (C21)

and writing

E(! x ; ! y ) =
d� 1X

n =0

n! x
e� �n! y

Z ( �;! y ) = ! x
! y

n
� @

@� log [Z (�; ! y )]
o

= � ! x
! y

@
@�

�
log

�
1 � e� �d! y

�
� log

�
1 � e� �! y

��
(C22)

as we do in the second line of Eq. (C19) and then using the in�nite series expression(1 � x) � 1 = lim K !1
P K

k=0 xk for any
jxj < 1 as per the third line.

As we will see in Appendix E2a, the energy cost for cooling an in�nite-dimensional system when both target and machines
have equally spaced Hamiltonians (i.e., harmonic oscillators) is similar to the form of Eq. (C19). Importantly, the second term
in square parenthesis vanishes asd ! 1 , simplifying the expression even further.

We now assume that the energy gaps of the machine are given by! � = ! S + �� and so the total energy cost can be written as
follows:

� E (N )
SM

= � lim
K !1

NX

� =1

��
KX

k=0

e� �k ( ! S + �� ) � 1 � e�k� �
+ lim

K !1

NX

� =1

�d�
KX

k=0

e� �kd ( ! S + �� ) � 1 � e�kd� �

= lim
K !1

KX

k=0

�
e� �k! S

�
e�k� � 1

�� NX

� =1

��e � �k�� ��
� lim

K !1

KX

k=0

e� �kd! S
��

e�kd� � 1
�� NX

� =1

d�� e � �kd�� ��
; (C23)

where we can swap the order of summation since both sums converge and the summands are non-positive. This can be seen
from the �rst line above, using the fact thate� �x (1 � ex ) 2 [� 1; 0] for all � � 1 andx � 0. We now calculate the sum over� .

NX

� =1

�� e � ��� = �
@

@�

NX

� =0

e� ��� = �
@

@�

�
1 � e� � (N +1) �

1 � e� ��

�

= �
�

(N + 1) �e � � (N +1) � � (N + 1) �e � � (N +2) � � �e � �� + �e � � (N +2) �

(1 � e� �� )2

�
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=
�e � ��

(1 � e� �� )2

�
1 � (N + 1) e� �N� + Ne� � (N +1) � �

=
�e � ��

(1 � e� �� )2

�
1 � e� �N� � Ne� �N� (1 � e� �� )

�
: (C24)

Combining Eqs. (C23) and (C24), we arrive at

� E (N )
SM

= lim
K !1

KX

k=0

�
e� �k! S

k
k� (1 � e� �Nk� )

(1 � e� �k� )
� N� e � �k ( ! S + N� )

�

� lim
K !1

KX

k=0

�
e� �kd! S

k
kd� (1 � e� �Nkd� )

(1 � e� �kd� )
� Nd� e � �kd ( ! S + N� )

�
: (C25)

In order to optimise the energy cost, we now assume that the energy gaps of the machines can be chosen to be smoothly increasing
in such way that� = � !=N := ( ! max � ! S )=N. Substituting this expression for� into the above equation yields

� E (N )
SM

= lim
K !1

KX

k=0

"
e� �k! S

k
k� ! (1 � e� �k � ! )

N (1 � e� �k � !
N )

� � ! e � �k ( ! S +� ! )

#

� lim
K !1

KX

k=0

"
e� �kd! S

k
kd� ! (1 � e� �kd � ! )

N (1 � e� �kd � !
N )

� d� ! e � �kd ( ! S +� ! )

#

: (C26)

We now wish to take the limit ofN � K ! 1 . This assumption means that energy change of the system is approximately
equal to its free energy change; in other words, the process occurs quasi-adiabatically. The ability to switch the order of taking
the limits ofK andN going to1 follows from the monotonic convergence of the sum overk. In particular, note that the term
inside square parentheses in each summand converges and the �rst term in each summation (which is the only part that depends
onN ) is positive and bounded.

Under this assumption, we can use the approximationlim �x ! 0
x

1� e� �x = 1
� ; since0 < e � �x < 1 for any positivex, the sum

overk converges to a �nite value. In general, this approximation introduces a correction term for the energy change, however
under said assumption the error incurred becomes negligible. Then, the total energy change� E tot

SM
for the transformation

� S (�; ! S ) ! � S (�; ! max) throughout the overall process is

� E tot
SM

= lim
K !1

KX

k=0

�
e� �k! S

�k
�

e� �k! max

�k
� (! max � ! S ) e� �k! max

�

� lim
K !1

KX

k=0

�
e� �kd! S

�k
�

e� �kd! max

�k
� d(! max � ! S ) e� �kd! max

�
: (C27)

As a side remark, note that here one can see that in the special case of equally spaced Hamiltonians, one indeed requires a
diverging number of machine subsystems to attain perfect cooling at the Landauer limit, as this is the only way to ful�l the
condition of Theorem 3. This follows from the fact that the approximationx1� e� �x � 1

� only holds for small�x and in general
one would need to include higher-order terms that lead to an increase in energy cost.

We then have, using the expression forE(! x ; ! y ) derived earlier:

� E tot
SM

= �
1
�

log(1 � e� �! S ) +
1
�

log(1 � e� �! max) �
(! max � ! S ) e� �! max

1 � e� �! max

+
1
�

log(1 � e� �d! S ) �
1
�

log(1 � e� �d! max) +
d(! max � ! S ) e� �d! max

1 � e� �d! max

=
1
�

log
�

1 � e� �d! S

1 � e� �! S

�
�

1
�

log
�

1 � e� �d! max

1 � e� �! max

�
� (! max � ! S )

�
e� �! max

1 � e� �! max
�

d e� �d! max

1 � e� �d! max

�

=
1
�

log[Z S (�; ! S )] �
1
�

log[Z S (�; ! max)] � tr [H S (! max) � S (�; ! max)] + tr [H S (! S ) � S (�; ! max)]

=
1
�

log[Z S (�; ! S )] �
1
�

log[Z S (�; ! max)]

� tr [H S (! max) � S (�; ! max)] + tr [H S (! S ) � S (�; ! S )] � tr [H S (! S ) � S (�; ! S )] + tr [H S (! S ) � S (�; ! max)]
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=
1
�

� SS + � ES ; (C28)

where we have explicitly written the von Neumann entropyS(%) = � tr [%log(%)] of a thermal state at inverse temperature� as
S[� S (�; ! )] = log[ Z S (�; ! )]+ � E [� S (�; ! )]. Since the energy change of the target system only concerns its local Hamiltonian,
we immediately see that the heat dissipated by the resetting of machines in such a cooling process, i.e.,� EM , saturates the
Landauer bound as it is equal to� � 1� SS . The process described is thus energy-optimal.

Appendix D: Conditions for Structural and Control Complexity

Here we begin by considering the protocol-independent structural conditions that must be ful�lled by the machine Hamiltonian
to enable(1) perfect coolingand(2) cooling at Landauer cost; combined, these independent conditions provide a necessary
requirement, namely that the machine must be in�nite-dimensional with a spectrum that is unbounded (from above) for the
possibilityof (3) perfect cooling at the Landauer limit. We then turn to analyse the control complexity, which concerns the
properties of the interaction that implements a given protocol. The properties of the machine Hamiltonian de�ne thestructural
complexity, which set the potential for how cool the target system can be made and at what energy cost; the extent to which
a machine's potential is utilised in a particular protocol then depends on the properties of the joint unitary, i.e., thecontrol
complexity. Here, we show that it is necessary that any protocol achieving perfect cooling at the Landauer limit involves
interactions between the target and in�nitely-many levels of the machine to realise the full cooling potential. We then analyse
some suf�cient conditions that arise as observations from our diverging control complexity protocols. This then leads us to
demonstrate that individual degrees of freedom of the machine must be addressed in a �ne-tuned manner to permute populations,
highlighting that an operationally meaningful notion of control complexity must take into account factors beyond the effective
dimensionality.

D1. Necessary Complexity Conditions

D1a. Necessary Structural Conditions

1. Perfect Cooling.—Let us consider the task of perfect cooling, independently from protocol-speci�c constraints, in the
envisaged setting. One can lower bound the smallest eigenvalue� min of the �nal state%0

S
(and hence how cold the system can

become) afteranyunitary interaction with a thermal machine by [29]

� min(%0
S
) � e� �! max

M � min(%S ); (D1)

where! max
M := max i;j j! j � ! i j denotes the largest energy gap of the machine HamiltonianH M with eigenvalues! i . Without

loss of generality, throughout this paper we set the ground-state energy of any system to be zero, i.e.,! 0 = 0 , such that the
largest energy gap coincides with the largest energy eigenvalue. As we make no restrictions on the size or structure of the target
or machine, the above inequality pertains to cooling protocols that could, for instance, be realised via sequences of unitaries on
the target and parts of the machine. It follows that perfect cooling is only possible under two conditions: either the machine
begins in a pure state (� ! 1 ), orH M is unbounded, i.e.,! max

M ! 1 . Requiring� < 1 , a diverging energy gap in the machine
Hamiltonian is thus a necessary structural condition for perfect cooling. Indeed, the largest energy gap of the machine plays a
crucial role in limiting how cool the target system can be made (see also, e.g., Refs. [42, 51]). We now detail an independent
property that is required for cooling with minimal energetic cost.

2. Cooling at the Landauer Limit.—Suppose now that one wishes to cool an initial target state� S (�; H S ) to any thermal state
� 0

S
(� � ; H S ) with � � > � (not necessarily close to a pure state), at an energy cost saturating the Landauer limit. In Ref. [29],

it was shown that for any �nite-dimensional machine, there are correction terms to the Landauer bound, which imply that it
cannot be saturated; these terms vanish only in the limit where the machine dimension diverges. Thus, a necessary condition for
achieving cooling with energy cost at the Landauer limit is provided by the following:

Theorem 11. To cool a target system� S (�; H S ) to � S (� � ; H S ), with � � > � , using a machine in the initial state� M (�; H M )
with energy cost at the Landauer limit, the machine must be in�nite dimensional.

As we will discuss below, this minimal requirement for the notion of complexity is far from suf�cient to achieve cooling at
Landauer cost.

3. Perfect Cooling at the Landauer Limit.—We have two independent necessary conditions on the structure of the machine
that must be asymptotically achieved to enable relevant goals for cooling: the former is required to achieve perfect cooling; the
latter for cooling at the Landauer limit. Together, these conditions imply that in order to achieve perfect cooling at the Landauer
limit, one must have an in�nite-dimensional machine with a spectrum that is unbounded (from above), as stated in Corollary 2.
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Henceforth, we assume that these conditions are satis�ed by the machine. The question then becomes:how does one engineer
an interaction between the target system and machine to achieve perfect cooling at Landauer cost?

D1b. Necessary Control Complexity Conditions

The unbounded structural properties of the machine support thepossibilityfor perfect cooling at the Landauer limit; however,
we now focus on the control properties of the interaction thatrealise said potential (see Fig. 2). This leads to the distinct
notion ofcontrol complexity, which aims to differentiate between protocols that access the machine in a more or less complex
manner. The structural complexity properties are protocol independent and related to the energy spectrum and dimensionality
of the machine, whereas the control complexity concerns properties of the unitary that represents a particular protocol. For
instance, the diverging-time protocol previously outlined comprises a sequence of interactions, each of which is individually not
very complex; at the same time, the unconstrained control complexity protocol accesses the total (overall in�nite-dimensional)
machine “at once”, and thus the number of (nontrivial) terms in the interaction Hamiltonian, or the effective dimensionality of
the machine accessed by the unitary, becomes unbounded. Nonetheless, the net energy cost of this protocol with unconstrained
control complexity remains in accordance with the Landauer limit, as the initial and �nal states of both the system and machine
are identical to those in the diverging-time protocol.

Effective Dimensionality.—We begin by considering the effective dimensionality accessed (nontrivially) by a unitary, whose
divergence is necessary but insuf�cient for achieving perfect cooling at the Landauer limit, as we show in the next section. This
in turn motivates the desire for a more detailed notion of control complexity that takes into account the energy-level structure of
the machine.

We de�ne the effective dimension as the dimension of the subspace of the global Hilbert space upon which the unitary acts
nontrivially, which can be quanti�ed via the minimum dimension of a subspaceA of the joint Hilbert spaceH SM in terms of
which the unitary can be decomposed asUSM = UA � 1A ? , i.e.,

deff := min dim( A) : USM = UA � 1A ? : (D2)

One can relate this quantity to properties of the Hamiltonian that generates the evolution in a �nite unit of timeT (which
we can set equal to unity without loss of generality) by considering the interaction picture. In general, any global unitary
USM = e� iH SM T is generated by a Hamiltonian of the formH SM = H S 
 1M + 1S 
 H M + H int. However, all protocols
considered in this work have vanishing local terms, i.e.,H S = H M = 0 . More generally, one can argue that the local terms play
no role in how the machine is used to cool the target. As such, one can consider unitaries generated by only the nontrivial term
H int to be those representing a particular protocol of interest. That is, we can restrict our attention toUSM = e� iH intT , where
H int is a Hermitian operator onH SM of the form

P
i A i

S

 B i

M
such that none of theA i

S
; B i

M
are proportional to the identity

operator. In doing so, it follows that the effective dimension corresponds torank(H int). Lastly, note that the above de�nition
in terms of a direct sum decomposition provides an upper bound on any similar quanti�cation of effective dimensionality based
on other tensor factorisations of the joint Hilbert space considered and makes no assumption about the underlying structure. On
the other hand, knowledge of said structure would permit a more meaningful notion of complexity to be de�ned. For instance,
the effective dimensionality of a unitary acting on a many qubit system is better captured by considering its decomposition into
a tensor product factorisation rather than the direct sum. We leave the exploration of such considerations to future work.

The effective dimensionality provides a minimal quanti�er for a notion of control complexity, insofar as its divergence is
necessary for saturating the Landauer bound, as we prove in the next section. In fact, we prove a slightly stronger statement,
namely that the dimension of the machine Hilbert space to which the unitary (nontrivially) couples the target system to must
diverge. However, as we discuss below,deff ! 1 is generally insuf�cient to achieve said goal, and �ne-tuned control is
required. Nonetheless, the manifestation of such control seems to be system dependent, precluding our ability (so far) to present
a universal quanti�er of control complexity. Thus, even though further conditions need to be met to achieve perfect cooling
at minimal energy cost in unit time (see Theorem 12), whenever we talk of an operation with �nite control complexity, we
mean those represented by a unitary that acts (nontrivially) only on a �nite-dimensional subspace of the target system and
machine. In contrast, by diverging control complexity, we mean a unitary that couples the target (nontrivially) to a full basis of
the machine's Hilbert space, whose dimension diverges. With this notion at hand, we have Theorem 3, which is proven below.
Intuitively, we show that if a protocol accesses only a �nite-dimensional subspace of the machine, then the machine is effectively
�nite dimensional inasmuch as a suitable replacement can be made while keeping all quantities relevant for cooling invariant.
Invoking then the main result of Ref. [29], there are �nite-dimensional correction terms that then imply that the Landauer limit
cannot be saturated.

Note �nally that in Theorem 3 no particular structure of the systems is presupposed and the effective dimensionality relates to
various notions of complexity put forth throughout the literature (see, e.g., Refs. [52, 53]). For instance, for a �nite-dimensional
target system with equally spaced energy levels! S , suppose that the machine structure is decomposed asN qubits with energy
gaps! M n 2 f ! S + n� gn =1 ;:::;N , with arbitrarily small� > 0 andN ! 1 . Then the overall unitary that approaches perfect
cooling at the Landauer limit has circuit complexity equal to the divergingN .
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D2. Proof of Theorem 3, Corollary 2, and Theorem 11

Here we prove Theorem 3, which implies Theorem 11 and leads to Corollary 2.

Proof. Let H X be a separable Hilbert space associated with the systemX . Consider

H M =
1X

n =0

! n jnihnj and H M 0 = spann � m fj nig ; (D3)

for some �nitem. In other words,H M 0 is a �nite-dimensional restriction ofH M . We show that any unitary that (nontrivially)
interacts the target system with only a subspace spanned by �nitely many eigenstates ofH M cannot attain Landauer's bound.
Consider a general unitaryU. Suppose thatU couples onlyH S with H M 0; whenever we talk of an operation with �nite effective
dimension in this paper, we mean speci�cally such aU, and by diverging effective dimension we mean a unitary that couples
the target to any subspace ofH M whose dimension diverges. Since

H S 
 H M = H S 
 (H M 0 � H ?
M 0) ' (H S 
 H M 0) � (H S 
 H ?

M 0); (D4)

we can associate the subspaceH S 
 H M 0 with the labelA andH S 
 H ?
M 0 with B and writeU = UA � 1B . Then the initial

con�guration can be expressed as

%S 
 � M (�; H M ) =

"
%S 
 %M 0 0

0 %S 
 %?
M 0

#

; (D5)

where

%M 0 :=
1

Z M (�; H M )

X

n � m

e� �! n jnihnj and %?
M 0 :=

1
Z M (�; H M )

X

n>m

e� �! n jnihnj (D6)

add up to a (normalised) thermal state. Now consider the state

e%M =

"
%M 0 0

0 tr
�
%?

M 0

�

#

: (D7)

It is straightforward to check that is indeed a quantum state; moreover, it is the Gibbs state (at inverse temperature� ) associated
with the Hamiltonian

eH M =
X

n � m

! n jnihnj �
1
�

log

 
X

n>m

e� �! n

!

jm + 1 ihm + 1 j: (D8)

To see this, note thatZ M (�; H M ) = Z M (�; eH M ) and that

exp

(

� �

"

�
1
�

log

 
X

n>m

e� �! n

!#)

=
X

n>m

e� �! n : (D9)

Thus e%M = � M (�; eH M ). To ease notation in what follows, we writee! m +1 := � 1
� log

� P
n>m e� �! n

�
. In the rest of the

proof, we show that the unitaryU and the HamiltonianH M can be replaced by �nite-dimensional versions without changing the
quantities relevant for Landauer's principle.

Let eU = UA � (1S 
 j m + 1 ihm + 1 j). We then have

eU (%S 
 e%M ) eUy =

"
UA (%S 
 %M 0)Uy

A
0

0 e� � e! m +1

Z M ( �;H M ) %S

#

(D10)

and

trM

h
eU (%S 
 e%M ) eUy

i
= trM 0

�
UA (%S 
 %M 0) Uy

A

�
+

e� � e! m +1

Z M (�; H M )
%S (D11)
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Compare this to the expression

trM

�
U(%S 
 %M )Uy�

= tr M 0

"
UA (%S 
 %M 0)Uy

A
0

0 %S 
 %?
M 0

#

= trM 0

�
UA (%S 
 %M 0)Uy

A

�
+ tr

�
%?

M 0

�
%S

= trM 0

�
UA (%S 
 %M 0)Uy

A

�
+

e� � e! m +1

Z M (�; H M )
%S ; (D12)

since tr
�
%?

M 0

�
= 1

Z M ( �;H M )

P
n>m e� �! n . Thus, the �nal system state is the same as it would be if we replaced the full initial

machine state withe%M ; in particular, the entropy decrease of the system for any unitary that cools it is also unchanged.
The last thing we need to check is that the energy change of the machine similarly remains invariant. To that end, we have that

e%0
M

= trS

h
eU(%S 
 e%M ) eUy

i
= trS

�
UA (%S 
 %M 0)Uy

A

�
+

e� � e! m +1

Z M (�; H M )
jm + 1 ihm + 1 j

e%M = %M 0 +
e� � e! m +1

Z M (�; H M )
jm + 1 ihm + 1 j: (D13)

Thus, we have

tr
h

eH M (e%0
M

� e%M )
i

= tr
�

H M

�
trS

�
UA (%S 
 %M 0)Uy

A

�
� %M 0

�	
; (D14)

sinceUA only acts onH S 
 H M 0 and eH MjM 0 = H MjM 0. In the same way, we have

trS

�
U(%S 
 %M )Uy�

= trS

�
UA (%S 
 %M 0)Uy

A

�
+ %?

M 0

%M = %M 0 + %?
M 0: (D15)

Thus, the energy difference is also

tr
�

H M

�
trS

�
UA (%S 
 %M 0)Uy

A

�
� %M 0

�	
: (D16)

Hence, we show that one can replace (a potentially in�nite-dimensional)M by some (�nite)m + 1 -dimensional machinefM
if the joint unitaryU acts only onm levels ofH M . By Theorem 6 of Ref. [29], there are �nite-dimensional corrections to the
Landauer bound, which then imply that it cannot be reached for �nitem. Thus, the effective machine dimension, i.e., that which
is actually (nontrivially) accessed throughout the interaction, must diverge in order for cooling to be possible at the Landauer
limit. This proves Theorem 3, which implies Theorem 11.

D3. Suf�cient Complexity Conditions

Having shown the necessary requirements for cooling at Landauer cost, namely a control interaction that acts nontrivially on
an in�nite-dimensional (sub)space of the machine's Hilbert space, let us now return to emphasise the properties of the machine
and cooling protocol that are suf�cient to achieve perfect cooling at Landauer cost. For simplicity, we consider the case of
a qubit, which exempli�es the discussion of �nite-dimensional systems. The case of in�nite-dimensional systems is treated
independently in the next Appendix.

We �rst consider the structural properties of the machine. The diverging-time protocol discussed in Appendix C makes use
of a diverging numberN of machines. Thus, the machine begins in the thermal state� (�; H tot

M
) of a (2N )-dimensional system

(with N eventually diverging), with energy-level structure given by the sum of the Hamiltonians in Eq. (C2), i.e.,

H tot
M

=
NX

n =1

H (n )
M n

=
X

n

(1 + n� )H (n )
S

; (D17)

that acts on the full Hilbert space (we use the usual convention that it acts as identity on unlabelled subspaces, e.g.,H (1)
M

�
H (1)

M

 11(2) 
 � � � 
 11(N ) ). Let us analyse in detail the properties of this Hamiltonian. The ground state isj0i 
 N , which is set at

zero energy. More generally, the energy eigenvalue corresponding to an eigenstateji 0; i 1; : : : ; i N i is given by! 1 multiplied by
the number of indicesi k that are equal to1, plus a sum of termsk� wherek is the label of each index equal to1. Thus, the energy
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eigenvalue of the eigenstatej1; : : : ; 1i diverges as the number of subsystems diverges. At the same time, letting the factor� go
to zero renders all eigenstates with the same (constant) number of indices such thati k = 1 approach the same energy. Thus, in
the limit � ! 0, one obtains subspaces of energyE (k )

M
= k! 1 with degeneracy given byD k =

� N
k

�
, which also diverges for each

constantk and divergingN . Therefore, in addition to satisfying the structural conditions that are necessary for perfect cooling,
as stated in Theorem 11, the machine used here features additional properties, which are crucially important for this particular
protocol, in particular because they are suf�cient for perfect cooling at Landauer cost. As a remark, we also emphasise that for
�xed (large) N and (small)� , the machine is �nite dimensional and has a nondegenerate Hamiltonian without any energy levels
formally at in�nity.

Concerning the control complexity properties of the unitary that achieves perfect cooling in unit time, note that it is a cyclic
shift operator, which can be written as

USM = � N
n =1 S2

SM n
= � n

0

@
1X

i;j n =0

ji; j 1; : : : ; j n ; : : : ; j N ihj n ; j 1; : : : ; i; : : : ; j N jSM

1

A

=
1X

i;j 1 :::j N =0

ji; j 1; : : : ; j N ihj N ; i; j 1; : : : ; j N � 1jSM : (D18)

As it is evident from its form, this unitary acts nontrivially on all of the (divergingly many) energy levels of the machine.
The only basis vectors of the system-plus-machine Hilbert space that are left invariant areji = 0 ; j 1 = 0 ; : : : ; j N = 0 i and
ji = 1 ; j 1 = 1 ; : : : ; j N = 1 i .

D4. Fine-Tuned Control Conditions

Theorem 3 captures a notion of control complexity as a resource in a thermodynamically consistent manner, i.e., in line with
Nernst's unattainability principle. However, following the discussion around Theorem 11 and that above, the protocols that we
present that achieve perfect cooling at Landauer cost make use of machines and interactions with a far more complicated structure
than suggested by the necessary condition of diverging effective dimensionality. In particular, we note that the interactions couple
the target system to a diverging number of subspaces of the machine corresponding to distinct energy gaps in a �ne-tuned manner.
Moreover, there are a diverging number of energy levels of the machine both above and below the �rst excited level of the target.
In this section, we begin by outlining the general conditions that perfect cooling at the Landauer limit entails, before presenting
a more nuanced notion of control complexity in terms of the variety of distinct energy gaps in the machine in Appendix D5.

This suggests that an operationally meaningful quanti�er of control complexity must take into account the energy-level struc-
ture of the machine that is accessed throughout any given protocol; additionally that of the target system plays a role. Indeed,
both the �nal temperature of the target as well as the energy cost required to achieve this depends upon how the global eigen-
values are permuted via the cooling process. First, how cool the target becomes depends on the sum of the eigenvalues that are
placed into the subspace spanned by the ground state. Second, for any �xed cooling amount, the energy cost depends on the
constrained distribution of eigenvalues within the machine. Thus, in general, the optimal permutation of eigenvalues depends
upon properties of both the target and machine.

For instance, consider an arbitrary initially thermal target qubit, whose state is given bydiag(p;1� p) and a thermal machine of
dimensiondM with spectrumf � i

M
gi =0 ;:::;d M � 1. Now consider the decomposition of the joint Hilbert space into two orthogonal

subspaces,B0 andB1, corresponding to the ground and excited eigenspaces of the target. The initial joint state ispdiag(� i
B 0

) �
(1 � p) diag(� i

B 1
), where we write� i

B j
to denote thei th machine eigenvalue in the subspaceBj . The total population in the

subspacesB0 andB1 arep and(1 � p) respectively. To achieve perfect cooling one must permute the eigenvalues such that
approximately a net transfer of population(1 � p) is moved fromB1 to B0. To do this, one can take any subsetK of f � i

B 1
g

such that asdM ! 1 ,
P

i 2 K � i
B 1

! (1 � p) and a subsetK 0 (with jK j = jK 0j) from f � i
B 0

g such that
P

i 2 K 0f � i
B 0

g ! 0
and exchange them. Although the choice of eigenvalues permuted is nonunique, the requirement must be ful�lled for some sets
to perfectly cool the target. For any pair of eigenvalues exchanged between the subspaces, demanding that the exchange costs
minimal energy amounts to a �ne-tuning condition of the form� i

M
! p� i

B 0
+ (1 � p)� i

B 1
that must be satis�ed. In general, the

�ne-tuned eigenvalue conditions that must be asymptotically attained depend upon target and machine eigenvalues, making it
dif�cult to derive a closed-form expression. However, in the restricted scenario in which the target qubit begins maximally mixed
(i.e., at in�nite temperature), the machine begins thermal at some� > 0 and of dimensiondM , and that the unitary implemented
is such that the target is cooled as much as possible, one can derive precise conditions in terms of the machine structure alone,
as we demonstrate below. The case for higher-dimensional target systems is similar.

This discussion highlights the importance of capturing properties beyond the effective dimensionality, e.g., those regarding the
distribution of machine (and, more generally, target system) eigenvalues, in order to meaningfully quantify control complexity
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in thermodynamics. Our protocols display similar behaviour to that discussed above asymptotically. Moreover, the machines
exhibit an energy-level structure such that every possible energy gap is present, i.e., the set of machine energy gapsf ! ij =
! i � ! j g densely covers the interval[! S ; 1 ), where! S is the energy of the �rst excited level of the target. In Appendix D5, we
demonstrate that indeed this condition is necessary for minimal-energy cost cooling.

Before doing so, we here �rst derive the �ne-tuned control conditions that are asymptotically required for cooling at the
Landauer limit. We begin with some general considerations before focusing on a special case for which an analytic expression
can be derived. Furthermore, we demand that the unitary implemented is such that the target is cooled as much as possible: this
does not preclude the possibility for cooling the target system less (albeit still close to a pure state) at a cost closer to the Landauer
bound without satisfying all of the �ne-tuning conditions. Nonetheless, in general there are a number of such conditions to be
satis�ed, and the special case serves as a pertinent example that demonstrates how the particular set of �ne-tuning conditions for
any considered scenario can be similarly derived.

Consider an arbitrary thermal target system and machine of �nite dimensions, with respective spectra� S := f � 0
S
; : : : ; � dS � 1

S
g

and � M := f � 0
M

; : : : ; � dM � 1
M

g. The states begin uncorrelated, so the global spectrum of the initial joint state is� SM :=
f � 0

SM
; : : : ; � dS dM � 1

SM
g = f � 0

S
� 0

M
; � 0

S
� 1

M
; : : : ; � dS � 1

S
� dM � 1

M
g. Consider now a global unitary transformation; such a transforma-

tion cannot change the values of the spectrum, but merely permute them. In other words, the spectrum of the �nal global state
after any such unitary is invariant and we have equivalence of the (unordered) sets� 0

SM
and� SM .

The transformation that cools the target system as much as possible5 is the one that places thedM largest of the global
eigenvalues into the subspace spanned by the ground state of the target, the seconddM largest into that spanned by the �rst excited
state of the target, and so forth, with the smallestdM global eigenvalues placed in the subspace corresponding to the highest
energy eigenstate of the target system (we prove this statement shortly). More precisely, we denote by� # the nonincreasing
ordering of the set� . Since the target and machine begin thermal, the local spectra� S and� M are already ordered in this way
with respect to their energy eigenbases, which we consider to be labelled in nondecreasing order. Cooling the target system as
much as possible amounts to achieving the �nal reduced state of the target

%0
S

=
dS � 1X

i =0

0

@
dM � 1X

j =0

� #id M + j
SM

1

A ji ihi jS : (D19)

As a side remark, note that since each of the global eigenvalues are a product of the initial local eigenvalues (due to the initial
tensor product structure), which are in turn related to the energy-level structure of the target system and machine (as they begin as
thermal states), one can already see here that in order to approach perfect cooling, the machine must have some diverging energy
gaps, such that the (�nite) sum of the global eigenvalues contributing to the ground-state population of the target approaches 1.

Of course, there is an equivalence class of unitaries that can achieve the same amount of cooling; in particular, any permutation
of the set of thedM global eigenvalueswithin each energy eigenspace of the target system achieves the same amount of cooling,
since it is the sum of these values that contribute to the total population in each subspace. Importantly, although such unitaries
cool the target system to the same extent, their effect on the machine differs, and therefore so too does the energy cost of the
protocol. However, demanding that such cooling is achieved at minimal energy cost amounts to a unique constraint on the global
post-transformation state, namely that it must render the machine energetically passive, leading to the form:

%0
SM

=
dS � 1X

i =0

dM � 1X

j =0

� #id M + j
SM

jij ihij jSM : (D20)

We can derive the above form of the �nal joint state as follows. Consider the following ordering for the energy eigenbasis of
SM chosen to match the above form

fj 00i SM ; j01i SM ; :::; j0; dM � 1i SM ; j10i SM ; :::; j1; dM � 1i SM ; :::; jdS � 1; 0i SM ; :::; jdS � 1; dM � 1i SM g: (D21)

This ordering is monotonically nondecreasing primarily with respect to the energy ofS, and secondarily w.r.t.M . We take the
�nal state � 0

SM
to be expressed in this basis. To maximise the cooling in a single unitary operation, we maximise the sum of

the �rst k � dM diagonal elements, for eachk 2 f 1; 2; :::; dS g, as each sum corresponds to the total population in thekth lowest
energy eigenstate ofS. The initial state%SM is diagonal in this basis, so the vector of initial diagonal elements, which we label
� := diag( %SM ), is also the vector of eigenvalues,� SM , i.e., � = � SM . Furthermore, since the unitary operation leaves the
set of eigenvalues invariant, we have via the Schur-Horn lemma [54] that the vector of �nal diagonal elements, which we label

5 We take majorisation among passive states to be the measure of cooling;
this implies the highest possible ground state population and purity, and

lowest possible entropy and average energy via Schur convexity.
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� 0 := diag( %0
SM

), is majorised by the vector of initial ones, i.e.,� 0 � � . It follows that the partial sums we wish to maximise
are upper bounded by the corresponding partial sums of thek � dM largest diagonal elements of the initial state. We claim that
the unitary that cools this maximal cooling amount at minimum energy cost is the one that permutes the diagonal elements to be
ordered w.r.t. the basis ordering in Eq. (D21).

More precisely, via the Schur-Horn lemma, one can always write� 0 = D� , with D a doubly stochastic matrix. The partial
sums of thek � dM �rst elements are linear functions of the elements of� . Thus the maximum values are obtained at the extremal
points of the convex set of doubly stochastic matrices, which are the permutation matrices, via the Birkhoff-von Neumann
theorem [54]. One can see by inspection that the optimal permutation matrices are the ones that place the largestdM diagonal
elements in the �rst block (i.e., the ground-state eigenspace ofS), the next largestdM elements in the second block (i.e., the �rst
excited-state eigenspace ofS), and so on. Within each block, the ordering does not affect the cooling of the target, so there is an
equivalence class of permutations that satisfy the maximal cooling criterion. However, adding the optimisation over the energy
cost eliminates this freedom. We may consider the reduced set of stochastic matrices that satisfy maximal cooling, generated by
the permutations described above. Since the average energy of the �nal state is again a linear function of the diagonal elements,
here too the minimum corresponds to a permutation matrix. Clearly the permutation that minimises the average energy is the
one that orders the elements within each block to be decreasing w.r.t. the energies ofM . Thus, the unique6 stochastic matrix
D that leads to maximal cooling at the least energy cost possible is the one that permutes the energy eigenvalues to be ordered
decreasing primarily w.r.t. the system energies, and secondarily w.r.t. the machine energies. The action of the stochastic matrix
on diagonal elements of the state is related to the unitary operation on the entire quantum state byjUij j2 = D ij , so that the
unitary operation is also a permutation (up to an energy-dependent phase, which is irrelevant since the initial and �nal states are
diagonal).

We may understand this optimal operation through the notion of passivity, by noting that it cools at minimal energy cost by
rendering the machine into the most energetically passive reduced state in the joint unitary orbit with respect to the cooling
constraint on the target. Intuitively, one has cooled the target system maximally at the expense of heating the machine as little
as possible. The �nal reduced state of the machine corresponding to this energetically optimal cooling transformation is

%0
M

=
dM � 1X

j =0

0

@
dS � 1X

i =0

� #id M + j
SM

1

A jj ihj jM : (D22)

In general, any unitary that achieves these desired conditions simultaneously depends upon the energy-level structure of both
the target system and machine, precluding a closed-form set of conditions that can be expressed only in terms of the machine.
However, for the special case of a maximally mixed initial target state (i.e., cooling a thermal state at in�nite temperature or
erasing quantum information from its most entropic state), one can deduce this ordering precisely and moreover relate it directly
to properties of the machine Hamiltonian, as we now demonstrate. In the following, we assume thatdM is even; the case for odd
dM can be derived similarly.

Theorem 12. Consider the target system to begin in the maximally mixed state and a thermal machine at temperature� >
0, whose eigenvalues are labelled in nonincreasing order,f � #i

M
gi =0 ;:::;d M � 1. In order to cool the target perfectly, with the

restriction that the target must be cooled as much as possible, at an energy cost that saturates the Landauer limit, the machine
eigenvalues must satisfy

d M
2 � 1X

i =0

� #i
M

! 1;
dM � 1X

i =
d M

2

� #i
M

! 0; (D23)

and

1
2

�
�

#b i
2 c

M + �
#

d M
2 + b i

2 c
M

�

� #i
M

! 1 (D24)

for all i 2 f 0; : : : ; dM � 1g, whereb�c denotes the �oor function and! denotes that the condition is satis�ed asymptotically,
i.e., asdM ! 1 7.

6 Note that degeneracies in energy eigenvalues would lead to sets of equal
diagonal elements, and prevent one from choosing a unique permutation.
However, as the state in such degenerate subspaces is proportional to the
identity matrix, we may take any unitary that is block diagonal w.r.t. the
degeneracies without affecting the state, and hence the �nal cooling or av-

erage energy change.
7 Strictly speaking, in the limitdM ! 1 the conditions in Eq. (D24) must

only be satis�ed for almost alli , i.e., for all but a small subset that con-
tributes negligibly to the relative entropy, as we discuss below.
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Proof. We consider a qubit for simplicity, but the generalisation to cooling an arbitrary-dimensional maximally mixed state is
straightforward. The initial joint spectrum of the system and machine is

� SM = 1
2 f � #

M
; � #

M
g = 1

2 f � #0
M

; � #1
M

; : : : ; � #dM � 1
M

; � #0
M

; � #1
M

; : : : ; � #dM � 1
M

g: (D25)

As each� #i
M

= 1
Z M ( �;H M ) e� �! i for any thermal state with HamiltonianH M =

P
i ! i ji ihi jM written with respect to nonde-

creasing energy eigenvalues, it follows that the globally ordered spectrum is

� #
SM

= 1
2 f � #0

M
; � #0

M
; � #1

M
; � #1

M
; : : : ; � #dM � 1

M
; � #dM � 1

M
g: (D26)

Expressing the global states with respect to the product of local energy eigenbases, we have that the initial joint state is1S
2 


� M (�; H M ) = diag( � SM ) [see Eq. (D25)] and the unitary that cools the target as much as possible at minimum energy cost is
the one achieving the globally passive �nal joint state%0

SM
= diag( � #

SM
). This leads to the following reduced states

%0
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Intuitively, the reduced target state has the larger half of the initial machine eigenvalues in the ground state and the smaller
half in the excited state; the reduced machine state has the sum of the largest elements from each of these halves in its ground
state, the next largest element from each half (which, in this case, is equal to the �rst) in its �rst excited state, and so forth.

Let us denote the spectrum of the �nal state of the machine by� 0#
M

:= f � 0#0
M

; � 0#1
M

; : : : ; � 0#dM � 1
M

g = 1
2 f � #0
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+ �

#
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2
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#
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2

M ; : : : ; �
#

d M
2 +1

M + � #dM � 1
M

g. Importantly, by construction, the reduced state of the �nal machine has its local eigenvalues
in nonincreasing order, i.e., it is energetically passive.

We therefore have the �nal reduced states of the protocol that cools the initially maximally mixed target as much as possible
at minimal energy cost, in particular with minimal heat dissipation by the machine, given the structural resources at hand. We
can now analyse the properties that are required to saturate the Landauer limit by considering the terms on the r.h.s. of Eq. (3)
for any �xed initial inverse temperature of the machine� � 0.

First note that cooling the target system by any amount �xes the change in entropy of the target system, so the �rst term
is irrelevant. The second term concerns the mutual information built up between the target system and machine. In general,
this is nonvanishing, although one can achieve any desired amount of cooling without generating such correlations (as per our
constructions). Furthermore, in the case where one wants to consider attaining a perfectly cool �nal state, as we do here, the �nal
reduced state of the target is approximately pure and soI (S : M )%0

SM
! 0. In terms of the reduced states above, this means

that
P d M

2 � 1
i =0 � #i

M
! 1 and

P dM � 1

i =
d M

2

� #i
M

! 0, which can occur only if the largest half of energy eigenvalues of the machine, i.e.,

! i for all i � dM
2 , diverge (since the summation contains only non-negative summands).

The �nal term that must be minimised to saturate the Landauer limit is the relative entropy of the �nal with respect to the initial
machine state,D (%0

M
k%M ). Here one can already see that an in�nite-dimensional machine is required to saturate the Landauer

bound: from Ref. [29],D (%0
M

k%M ) � f (� SM ; dM ), wheref is a dimension-dependant function of the entropy difference of
the machine that exhibits non-negative correction terms that vanish only in the limitdM ! 1 . The relative entropy vanishes
iff %M = %0

M
; moreover, by Pinsker's inequality one has1

2 k%M � %0
M

k2
1 � D (%M k%0

M
), so one can bound the trace distance

between the initial and �nal state of the machine for any desired value of the relative entropy. Although%M = %0
M

implies a
trivial process that cannot cool the (initially thermal) target system, as our protocols that saturate the Landauer limit demonstrate,
there are processes that asymptotically display the behaviour%0

M
! %M andcool the target system. For the asymptotic machine

states to converge, in particular, their eigenvalues must become approximately equal asymptotically. Demanding this on the
spectrum in Eq. (D28) leads to a generic term that must be asymptotically satis�ed of the form:
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M + �
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2 c
M
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� #i
M

! 1 8 i 2 f 0; : : : ; dM � 1g: (D29)
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In order to achieve perfect cooling at the Landauer limit, one thus must simultaneously satisfy the conditions outlined in

Theorem 12. In other words, to minimise the relative-entropy term with the additional constraints
P d M

2 � 1
i =0 � #i

M
! 1 and

P dM � 1

i =
d M

2

� #i
M

! 0. The �rst thing to note is that since the eigenvalues� #i
M

contribute to different sums depending on whetheri is

in the larger halff 0; : : : ; dM
2 � 1g or smaller halff dM

2 ; : : : ; dM g, one cannot have�
#

d M
2 + b i

2 c
M = �

#b i
2 c

M 8 i (i.e., a completely
degenerate machine), since then both summations would be over identical values and there is no way for them to converge to
distinct values. This precludes the trivial solution that satis�es the constraints of Eq. (D24) alone, namely the maximally mixed
machine state, which cannot be used to perform any cooling [as, in particular, it does not satisfy the constraints of Eq. (D23)].

For the conditions to be simultaneously satis�ed, we intuitively require that, although they must be distinct, for eachi both�
#b i

2 c
M

and�
#

d M
2 + b i

2 c
M become “close” to each other, but with a difference that decays rapidly asdM ! 1 , such that in the in�nite-

dimensional limit the larger “half” of the eigenvalues sum to one and the smaller “half” sum to zero. A subtle point to note is
that because the relative entropy involves the ratio of �nal to original eigenvalues it is not enough that the absolute difference
j� 0#i

M
� � #i

M
j goes to zero, as in the in�nitedM limit, it is possible for this to happen for all of the eigenvalues approaching zero

without the ratios of �nal to initial eigenvalues approaching unity (and hence the relative entropy not vanishing). One manner of
satisfying such a constraint, as evidenced by the construction we proceed with next, is for the ratios of �nal to initial eigenvalues
go to unity for all but a small number energy levels, with the population in this exceptional subspace going to zero in the in�nite
dM limit (along with the ratios not diverging within said subspace).

The natural question that arises here is whether or not it is possible to satisfy these constraints concurrently. (Note that none of
the cooling protocols provided throughout this paper use the max-cooling operation, so do not necessarily serve as examples.) To
this end, we now construct a family of machine HamiltoniansH M of increasing dimension that in the limitdM ! 1 manages
to attain both perfect cooling of a maximally mixed qubit and the Landauer limit for the energy cost using the maximal cooling
operation discussed above. The form of the Hamiltonian is instructive regarding the complexity requirements for perfect cooling
at the Landauer limit. The construction is inspired by the in�nite-dimensional Hamiltonian found in Ref. [29] (Appendix D),
therein used to perfectly cool a qubit with energy cost arbitrarily close to the Landauer limit. Their construction already begins
with in�nitely many machine eigenvalues, as well as in�nitely many of them corresponding to diverging energy levels. In the
following, we demonstrate that one can arbitrarily closely attain perfect cooling and the Landauer limit with �nite-dimensional
Hamiltonians, and by taking the limitdM ! 1 , recover the result of Ref. [29].

The Hamiltonian of the machine isdM := 2 N +1 dimensional,

H M =
NX

n =0

2n
X

j =1

�
n� jn; j ihn; j jM

�
+ N � jN ; 2N +1 ihN ; 2N +1 jM (D30)

Here, each energy eigenvalue labelled byn is 2n -fold degenerate. Thus the ground state is unique, the �rst excited state is
twofold degenerate, the second excited state fourfold degenerate, and so on, with the degeneracy doubling every energy level.
In order to make the Hamiltonian of even dimensionality for convenience, we add an extra degenerate state to the �nal level
[which makes this level(2N + 1) -fold degenerate]. Also note that the Hamiltonian is equally spaced with energy gap� . In the
following, we use the indexn to denote any one of the degenerate states in thenth energy level fromn = 0 to n = N , and the
indexi to denote individual energy eigenstates fromi = 1 to i = 2 N +1 (note that in contrast to the previous section, we are here
beginning withi = 1 in order to simplify some future notation). With these indices, the eigenvalues are related by

� #i
M

= e� � � � #b i
2 c

M
8 i 2 f 2; : : : ; dM � 1g; (D31)
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8 n 2 f 1; : : : ; N g: (D32)

We introduce a parameter� to express the Gibbs ratio as

e� � � =
1 � �

2
; (D33)

where0 < � < 1, and we eventually take the limit� ! 0 appropriately as the dimension diverges. Note that this constrains
the Gibbs ratio to be smaller than12 , which in turn ensures that the total population over all of the degenerate eigenstates in the
nth level is smaller than that in the(n � 1)th level (as it has twice the number of eigenstates, but less than half the population in
each). If this constraint failed to hold, then in the asymptotic limit, all of the population would lie in energy levels that diverge.

We now consider using this machine to cool a maximally mixed qubit target. The �nal ground-state population of the qubit
under the maximal cooling operation is the sum over the larger half of the eigenvalues of the machine, corresponding to the
eigenvalues fromi = 1 to i = 2 N (equivalently, fromn = 0 to n = N � 1 plus a single eigenvalue from then = N energy
level), and is thus given by
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where Z M =
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(D35)

is the partition function of the machine. The geometric series above evaluates to

p0
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: (D36)

As an ansatz, supposing that� scales inversely withN as� := �
N leads to the simpli�cation(1 � � )N ! e� � asdM (and hence

N ) diverges. The asymptotic behaviour of the ground-state population is thus

p0
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e� � 1
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N 2

�
; (D37)

and sop0
0 ! 1 in theN ! 1 limit.

We now move to calculate the energy cost. Rather than considering the optimal max-cooling operation described above,
we consider a slight modi�cation in order to make the connection to the construction in Ref. [29] clear as well as to simplify
notation. Nonetheless, the energy cost of this modi�ed protocol upper bounds that of the max-cooling operation (for the same
achieved ground-state population), and so showing that the Landauer limit is attained for the modi�ed protocol implies that it
would be too for the max-cooling protocol. The modi�cation is simply to relabel the smallest eigenvalue of the machine� 2N +1

M

as � 0
M

, and treat it as the ground-state eigenvalue in the max-cooling operation. For general machine states, such a switch
would lead to less cooling (if the same unitary were applied), but in this case it does not because the sum of the �rst half of the
machine eigenvalues, fromi = 0 to i = 2 N � 1, is the same as the original sum fromi = 1 to i = 2 N , due to the relabelling
� 0 = � 2N , since they are both eigenvalues of states corresponding the maximum excited energy level of the machine spectrum.
The spectrum of the �nal state of the machine is then given by
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which leads to
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where we observe that the indexb i
2 c+ dM

2 corresponds to the largest energy level of the machine for alli , and we use Eq. (D31)
for the spectrum of initial eigenvalues. Using the indexn instead to denote a generic eigenvalue of thenth energy level, we have
the simpler expression
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The energy cost can now be simply calculated from the difference in the average energy of the machine state,

� EM =
dM � 1X

i =0

�
� 0#i
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! i ; (D41)

where we denote thei th energy eigenvalue by! i . � #0
M

is unchanged, and although� #1
M

does change,! 1 = 0 corresponds to the
ground state and thus this eigenvalue change does not affect the energy cost. We can thus express the energy cost in terms of the
indexn instead, starting fromn = 1 (corresponding toi = 2 onward), as
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As we did above, we parameterise� = �
N . The asymptotic behaviour of the energy cost is then

� � EM = log(2) +
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or in terms of the decrease in entropy of the system,

� � EM = ~� SM +
logN
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�
: (D44)

Combining (D37) and (D43), we have that in the limitN ! 1 , which is alsodM ! 1 , the ground-state population approaches
1—corresponding to perfect cooling—and the energy cost approaches� � 1 log(2), which is the Landauer limit for the perfect
erasure of a maximally mixed qubit.

To connect this construction to the constraints of Eq. (D24), note that in the limitN ! 1 (recalling that� = �
N ),
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for all n � 1, leaving only the ground-state eigenvalue (corresponding ton = 0 and i = 1 ) not satisfying the condition.
However, this term is actually a negative contribution to the relative entropy as this eigenvalue decreases, and in any case can be
veri�ed independently to approach zero.

To see this, note that a necessary condition that ensures the contribution of any set of eigenvalues that do not satisfy Eq. (D24)
to the relative entropy to be negligible is that the total population of the relevant subspace is vanishingly small. Writing the

relative entropy between two states in terms of their eigenvalues, we haveD(%0k%) =
P

n � 0
n log

�
� 0

n
� n

�
, which we split up into

two sets:S0 containing alln for which Eq. (D24) is satis�ed andS� containing the alln for which Eq. (D24) is not satis�ed. The

contribution of the �rst term to the relative entropy is asymptotically zero, so we are left withD(%0k%) =
P

n 2 S�
� 0

n log
�

� 0
n

� n

�
.

For each term in the sum here, one can write� 0
n = � (1 + � n ) with the conditionj� n j � � > 0 for some� , i.e., the ratio of

eigenvalues is bounded away from unity (on either side) by at least� . This leads to the expression
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where we renormalise the eigenvalues (which here correspond to a subnormalised probability distribution) by writing� 0
n =

N � pn , with N � :=
P

n 2 S�
� 0

n being the total population of the subspaceS� andf pn g here forming a probability distribution.
Note that the ratio of eigenvalues going to unity in theS0 subspace implies that the total populations of initial and �nal eigen-
values in this subspace are equal, i.e.,

P
n 2 S0

� n =
P

n 2 S0
� 0

n , which in turn implies that the same is true for theS� subspace,
leading to

P
n 2 S�

pn � n = 0 .
We argue from the concavity of the logarithm function that

1
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Visualising the graph of the functiony = log(1 + x), the latter expression above must evaluate to a point that lies within the
intersection of the convex hull of(� n ; log(1 + � n )) and the linear equality

P
n 2 S�

pn � n = 0 , the latter of which is the line
x = 0 . By the concavity of the logarithm, the aforementioned convex hull lies entirely below the line segment connecting
(1 � �; log(1 � � )) to (1 + �; log(1 + � )) , and thus the expression is upper bounded by the intersection of this line segment with
x = 0 , which is precisely the l.h.s. of the inequality above. Thus we have the inequality
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2 log(1 + � ) + 1
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2
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2
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where we uselog(1 � � 2) � � � 2 for all � 2 [� 1; 1]. As � > 0, the only way that this contribution to the relative entropy by the
eigenvalues that do not satisfy Eq. (D24) can be asymptotically negligible is if the total population of their associated subspace
N � goes to zero.

Finally note that, as mentioned in the main text, the above result pertains to the restricted setting where the target system is
cooled as much as possible. However, this is not the only way to approach perfect cooling at the Landauer cost: instead of the
largest half of global eigenvalues being placed into the ground-state subspace of the target system, any amount of them such that
their sum is suf�ciently close to one would suf�ce. Although it is complicated to derive an exact set of conditions that would
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need to be satis�ed in such cases (since it depends upon exactly which eigenvalues are permuted to which subspaces), the fact
that �ne-tuned control over particular degrees of freedom is required remains. Lastly, note that even in the restricted setting of
cooling the target as much as possible, the situation becomes even more complicated when considering target systems that begin
at a �nite temperature. Here, the choice of which global eigenvalues should be permuted to which subspaces to cool the system as
much as possible at minimal energy cost depends on the microscopic structure of both the system and machine. This means that
one can no longer determine the �nal eigenvalue distributions of the reduced states in terms of the initial machine eigenvalues
alone, as we were able to do for the maximally mixed state. In turn, one can no longer derive a condition on properties of the
machine itself, independently of the target system. Nonetheless, again, the key message that cooling at minimal energy cost
requires �ne-tuned control to access precisely distributed populations still holds true. We leave the further exploration of such
scenarios, for instance constructing optimal machines for particular initial target systems, to future work.

D5. Energy-Gap Variety as a Notion of Control Complexity

The insights drawn above regarding suf�cient conditions for cooling a system at the Landauer limit lead us to propose a more
nuanced notion of control complexity than the preliminary effective dimension that satis�es the natural desiderata outlined in the
main text. In particular, here we demonstrate that theenergy-gap variety(see De�nition 2) provides a good measure of control
complexity, both from a theoretical, thermodynamic standpoint as well as a practical one.

Firstly, it is quite clear that coupling a system to a diverging number of distinct machine energy gaps is a dif�cult task to
achieve in almost any conceivable physical platform, especially when the energy gaps are closely spaced; thus, this de�nition
indeed corresponds to our intuitive understanding of “complex” as an operation that is inherently dif�cult to perform in practice.
Secondly, from all of the optimal cooling protocols that we outline in this paper, we see that, in contrast to the effective dimension,
having a diverging energy-gap variety that densely covers an appropriate interval is suf�cient for saturating the Landauer limit,
thereby making it a better quanti�er of control complexity. The remaining point is to show that its divergence is necessary to
cool a system to the ground state using a single control operation with energy cost saturating the Landauer bound, so that it is
fully consistent also with Nernst's unattainability principle. We argue that this is indeed the case below by proving Theorem 4.

Proof: First of all, note that how cold the �nal system state can be made is bounded by the inequality:

� min(%0
S
) � e� � ! max

M � min(%S ); (D49)

where� min denotes the minimal eigenvalue. For a pure �nal system state, the l.h.s. of the above equation goes to 0; thus, for
any nontrivial initial system state [i.e., such that� min(%S ) > 0] and �nite temperature� < 1 , we must have! max

M ! 1 . This
determines the upper limit of the required interval of energy gaps. The lower limit of the required interval comes from the fact
that the only subspaces of the machine that are relevant for cooling the target system are those associated to energy gaps that are
at least as large as the smallest energy gap of the target,! 0 [38].

Next, recall the equality form of the Landauer limit, which holds true forany global unitary transformation with a thermal
machine:

� � EM = e� SS + I (S : M )%0
SM

+ D(%0
M

k%M ); (D50)

Cooling the target system to a pure state necessitates that the �nal system and machine are uncorrelated and we therefore have
I (S : M )%0

SM
= 0 for the optimal process. We thus need to focus on minimising the relative-entropy term, which we do in the

following steps.
Consider for simplicity the target system to be a qubit initially in the maximally mixed state. A generic cooling machine

should be able to coolany system state, include the maximally mixed one; therefore the following insights pertaining to this
special case apply generically. In this case, the initial joint spectrum of the system and machine is given by Eq. (D25). Cooling
the target system to the ground state necessitates taking a subsetA of these global eigenvalues such that

P
i 2A � #i

M
= 1 � �

for arbitrarily small� and placing these into the ground-state subspace of the target, with the remaining (small)� amount of
population contributing only to any higher-energy eigenstates [this is essentially a generalisation of the conditions put forth in
Eqs. (D23), accounting for an arbitrarily small cooling error].

As discussed previously, there are many possible ways to achieve such a con�guration, but there is auniqueone that minimises
the total energy cost of doing so: namely, that in which the reduced �nal state of the machine is rendered passive. This is because
if one compares two protocols achieving the same cooling for the target system, one in which the �nal machine is passive and any
other in which it is not, then the former protocol has the smaller energy cost since a positive amount of energy can be (unitarily)
extracted from the latter machine in order to render it passive.

Thus, for any protocol saturating the Landauer limit, the �nal machine state must be arbitrarily close to a passive state, which
implies that it must be approximately diagonal in the local machine energy eigenbasis with the globally ordered spectrum as per
Eq. (D26). Moreover, in order to minimise the relative-entropy term and therefore saturate the Landauer limit, the �nal machine
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state must be arbitrarily close to the initial (i.e., thermal) machine state; following the argumentation put forth in the previous
Appendix, this leads to the set of conditions outlined in Eq. (D29), which must be satis�ed up to arbitrary precision.

Since we have the exact relationship between the initial and �nal machine eigenvalues, the contribution to the energy cost

from the relative-entropy term can be calculated explicitly, i.e.,D (%0k%) =
P

n � 0
n log

�
� 0

n
� n

�
. Following the argumentation

from Eq. (D46) until Eq. (D48) in the previous appendix, we see that by assuming a �nite deviation fromanyof the conditions
of Eq. (D29), i.e., writing� 0

n = � n (1 + � n ) with j� n j � � > 0 for some� , one can derive a lower bound on the relative
entropy:

D (%0k%) �
N �

2
� 2; (D51)

whereN � is the total population of the subspaces corresponding to the terms in the sum such that� 0
n

� n
differs from unity by at

least� . In other words, these are the relevant additional contributions to the energy cost; wheneverN � is nonzero, the Landauer
boundcannotbe approached arbitrarily closely.

The �nal piece is to relate the machine eigenvalues to its energy-gap spectrum, which can be done straightforwardly due to
the initial thermality of the machine, i.e.,� #i

M
= e� �! i =Z M (�; H M ). We now argue that if there is ever a �nite “jump” in the

energy-gap structure of the machine, then one cannot achieve both a ground-state population of the target that is arbitrarily close
to unity and haveN � be arbitrarily close to zero concurrently. Suppose now that one has a machine with a dense energy-gap
structure from! 0 up until some (�nite)! a , followed by a �nite jump until the energy level! a +
 (for some strictly �nite
 > 0),
and then again a dense set of energy gaps throughout the interval[! a + 
 ; 1 ). Then, one can utilise the energy-gap structure
in the “lower band”[! 0; ! a) in an optimal fashion in order to cool the target system to a minimum temperature (set by! a) at
Landauer energy cost [38, 42]. However, assuming that the jump in the energy-gap structure begins at some �nite! a , then there
is always a �nite amount of population in the machine that is supported on the energy levels corresponding to the “upper band”
[! a + 
 ; 1 ). To cool the target to arbitrarily close to the ground state, one must therefore access this population and transfer
it to the ground-state subspace of the target; this precisely corresponds to theN � that contributes to the excess energy cost in a
non-negligible manner for �nite population exchanges. In particular, we have the boundN � � min( e� �! a

1+ e� �! a ; 1
1+ e� �! a ). Thus,

whenever! a takes a �nite value,N � is a strictly positive number. The only way that the relative-entropy term can vanish then
is if � vanishes; however, this can occur only if
 ! 0, because for any �nite
 , the ratio � 0

n
� n

for at least one value ofn differs
from 1 by a �nite amount as argued above, which �nally leads to a nonzero lower bound in Eq. (D51) and implies that the
Landauer limit cannot be saturated. In other words, the endpoints of the lower and upper energy gap intervals considered above
must coincide (up to arbitrary precision) in order to saturate the Landauer bound. This implies that the energy-gap variety must
diverge and moreover, since the above logic holds for arbitrary! � , which can be smoothly varied as a parameter, it follows that
the diverging number of energy gaps must additionally approximately densely cover the interval in question.

Appendix E: Diverging Time and Diverging Control Complexity Cooling Protocols for Harmonic Oscillators

We now analyse the case of cooling in�nite-dimensional quantum systems in detail. More speci�cally, we consider ensembles
of harmonic oscillators. For the sake of completeness, we �rst brie�y present some key concepts that will become relevant
throughout this analysis. Following this, in Appendix E2a, we construct a protocol that achieves perfect cooling at the Landauer
limit using a diverging number of Gaussian operations. Although such operations are typically considered to be relatively
“simple” both when it comes to experimental implementation and theoretical description, according to the effective dimension
notion of control complexity that we have shown must necessarily diverge to cool at the Landauer limit [see Eq. (6)], such
Gaussian operations have in�nite control complexity. Subsequently, in Appendix E2b, we consider the task of perfect cooling
with diverging time but restricting the individual operations to be of �nite control complexity. In particular, note that such
operations are non-Gaussian in general. Here, we present a protocol that approaches perfect cooling of the target system as the
number of operations diverges, with �nite energy cost—albeit not at the Landauer limit. Whether or not a similar protocol exists
that also saturates the Landauer bound remains an open question. Finally, in Appendix E3, we reconsider the protocol from
Appendix E2b in terms of a single transformation, i.e., unit time. By explicitly constructing the joint unitary transformation that
is applied throughout the entire protocol, we show this to be a multimode Gaussian operation acting on a diverging number of
harmonic oscillators. The key message to be taken away from these protocols is that, while the distinction between Gaussian
and non-Gaussian operations is a signi�cant one in terms of experimental feasibility, and it certainly plays a role regarding the
task of cooling—in particular, the energy cost incurred—these concepts alone cannot be used to characterise a notion of control
complexity that must diverge to approach perfect cooling at the Landauer limit. On the other hand, the effective dimension of
the machine used does precisely that; however, in a manner that is far from suf�cient (for the case of harmonic oscillators), as
even a single two-mode swap, which cannot cool perfectly at Landauer cost, would have in�nite control complexity. Indeed, a
more nuanced characterisation of control complexity in the in�nite-dimensional setting, which takes more structure regarding
the operations and energy levels into account, remains an open problem to be addressed.
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E1. Preliminaries

We consider ensembles ofN harmonic oscillators (i.e., in�nite-dimensional systems consisting ofN bosonic modes), which
are associated to a tensor product Hilbert spaceH tot =

N N
j =1 H j and (respectively: lowering, raising) mode operatorsf ak , ay

k g
satisfying the bosonic commutation relations:

[ak ; ay
k 0] = � kk 0; [ak ; ak 0] = 0 ; 8 k; k0 = 1 ; 2; : : : ; N: (E1)

The free Hamiltonian of any such system can be written asH tot =
P N

k=1 ! k ay
k ak , where! k represents the energy gap of thek-th

mode (in units where~ = 1 ). Position- and momentum-like operators for each mode can be de�ned as follows (for simplicity,
we use the rescaled version below where the! k are omitted from the prefactors)

qk :=
1

p
2

(ak + ay
k ); pk :=

1

i
p

2
(ak � ay

k ): (E2)

As a consequence of the commutation relations in Eq. (E1), the generalised position and momentum operators satisfy the
canonical commutation relations

[qk ; pl ] = i� kl : (E3)

To simplify notation, one may further introduce the vector of quadrature operatorsX := ( q1; p1; : : : ; qN ; pN ); then, the
commutation relations can be expressed succinctly as

[X k ; X l ] = i 
 kl ; (E4)

where the
 kl are the components of the symplectic form


 =
NM

j =1


 j ; 
 j =

"
0 1

� 1 0

#

: (E5)

The density operator associated toN harmonic oscillators can be written in the so-calledphase-space representationas

%=
1

(2� )N

Z
� (
 � )W(� 
 � ) d2N �; (E6)

whereW(� ) := ei� T X is the Weyl operator and� (� ) := tr [%W(� )] is called the characteristic function.
Throughout our analysis, we see that a particular class of states and operations, namely those that are known asGaussian, are

of particular importance. A Gaussian state is one for which the characteristic function is Gaussian

� (� ) = e� 1
4 � T � � + i X T � : (E7)

Here,X := hX i % is thedisplacement vectoror vector of �rst moments, and� is a real symmetric matrix that collects thesecond
statistical momentsof the quadratures, which is known as thecovariance matrix. Its entries are given by

� mn := hX m X n + X n X m i %� 2hX n i %hX m i %: (E8)

We see that any Gaussian state is thus uniquely determined by its �rst and second moments. As an example of speci�c interest
here, we recall that any thermal state� of a harmonic oscillator with frequency! is a Gaussian state and has vanishing �rst
moments,X = 0 . Here and throughout this article, we are assuming that the in�nite-dimensional thermal state is well de�ned
(see, e.g., Ref. [55] for discussion). The covariance matrix of a thermal state is proportional to the2 � 2 identity, and given by

�[ � (�; H )] = coth
�

�!
2

�
112.

Gaussian operations are transformations that map the set of Gaussian states onto itself. Such operations, which include, e.g.,
beam-splitting and phase-space displacement, are generally considered to be relatively easily implementable in the laboratory.
Although nonunitary Gaussian operations exist as well, all of the examples mentioned above are Gaussian unitaries. Such
Gaussian unitaries are generated by Hamiltonians that are at most quadratic in the raising and lowering operators. Conversely,
any Hamiltonian that can be expressed as a polynomial of at most second order in the mode operators generates a Gaussian
unitary. Any unitary Gaussian transformation can be represented by an af�ne map(M; � ),

X 7! M X + �; (E9)
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where� 2 R2N is a displacement vector in the phase-space representation andM is a symplectic2N � 2N matrix that leaves
the symplectic form
 invariant, i.e.,

M 
 M T = 
 : (E10)

Under such a mapping, the �rst and second moments transform according to

X 7! M X + �; � 7! M � M T : (E11)

Lastly, note that the energy of a Gaussian state%G with respect to its free HamiltonianH =
P

k ! k ay
k ak can be calculated in

terms of the �rst and second moments as follows [22]

E(%G ) =
X

k

! k

�
1
4

tr
h
� (k ) � 2

i
+

1
2

jjX
(k )

jj2
�

; (E12)

wherek � k denotes the Euclidean norm. Here,� (k ) indicates the(2 � 2) submatrix of the full covariance matrix� corresponding

to the reduced state of thekth mode. SimilarlyX
(k )

denotes the two-component subvector of �rst moments for thekth mode of
the displacement vectorX .

E2. Diverging-Time Cooling Protocol for Harmonic Oscillators

E2a. Diverging-Time Protocol using Gaussian Operations (with Diverging Control Complexity)

We now consider a simple protocol for lowering the temperature of a single-mode system within the coherent-control paradigm
using a single harmonic oscillator machine. This protocol will form the basic step of a protocol for achieving perfect cooling at
the Landauer limit using diverging time, which we subsequently present.

In the situation we consider here, the target systemS to be cooled is a harmonic oscillator with frequency! S interacting with
a harmonic oscillator machineM at frequency! M � ! S via a (non-energy-conserving) unitary acting on the joint systemSM
initialised as a tensor product of thermal states� S (�; H S ) 
 � M (�; H M ) at inverse temperature� with respect to their local
HamiltoniansH S andH M , respectively. The joint covariance matrix of the system and machine modes is block diagonal since
the initial state is of product form, i.e.,

�[ � S (�; H S ) 
 � M (�; H M )] = �[ � S (�; H S )] � �[ � M (�; H M )]; (E13)

and the2 � 2 blocks of the individual modes are also diagonal, with the explicit expression�[ � X (�; H X )] = coth
�

�! X
2

�
112.

In this setting, it has been shown that the minimum reachable temperature of the target system is given byTmin = ! S
! M

T (for
the case! M � ! S ) [38]. The non-energy-conserving unitary transformation that achieves this is of the form

U = e� i �
2 (ay b+ aby ) ; (E14)

where the operatorsa (ay) andb(by) denote the annihilation (creation) operators of the target system and machine, respectively.
This beam-splitter-like unitary acts as aSWAPwith a relative phase factor imparted on the resultant state; nonetheless, this
phase is irrelevant at the level of the covariance matrix, which fully characterises the (Gaussian) thermal states considered, and
transforms it according to a standard swapping of the systems. After acting with such aSWAPoperator, which is a Gaussian
operation, the �rst moment remains vanishing and the covariance matrix transforms as [see Eq. (E11)]

2

4
coth

�
�! S

2

�
112 0

0 coth
�

�! M
2

�
112

3

5 SWAP7�!

2

4
coth

�
�! M

2

�
112 0

0 coth
�

�! S
2

�
112

3

5 : (E15)

This means that both the output target system and machine are thermal states at different temperaturesT0
S

= ! S
! M

T andT0
M

=
! M
! S

T. Making use of Eq. (E12), we can calculate the energy change for the system and machine as

� ES = E
�
� S

�
! M

! S

�; H S

��
� E [� S (�; H S )] =

! S

2

�
coth

�
�! M

2

�
� coth

�
�! S

2

��
;
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� EM = E
�
� M

�
! S

! M

�; H M

��
� E [� M (�; H M )] =

! M

2

�
coth

�
�! S

2

�
� coth

�
�! M

2

��
: (E16)

The total energy cost associated to thisSWAPoperation is thus

� ESM = � ES + � EM =
(! M � ! S )

2

�
coth

�
�! S

2

�
� coth

�
�! M

2

��
= ( ! M � ! S )

e� �! S (1 � e� � ( ! M � ! S ) )
(1 � e� �! S )(1 � e� �! M )

:

(E17)

Note that this form is similar to that for �nite-dimensional systems with equally spaced Hamiltonian [cf., Eq. (C19)]; the
dimension-dependent term vanishes asd ! 1 , simplifying the expression in the in�nite-dimensional case.

With this simple protocol for lowering the temperature of a harmonic oscillator target using a single harmonic oscillator
machine at hand, we are now in a position to describe an energy-optimal (in the sense of saturating the Landauer bound) cooling
protocol when a diverging number of operations, i.e., diverging time, is permitted. In other words, we now show how to achieve
perfect cooling with minimal energy at the expense of requiring diverging time, i.e., in�nitely many steps of �nite duration.
As mentioned above, in this speci�c protocol, the control complexity as per Eq. (6) is in�nite in each of these in�nitely many
steps. As we argue after having presented the protocol, this is an artefact of the simple structure of the Gaussian operations
used. Indeed, we later present a non-Gaussian diverging-time protocol for cooling a single harmonic oscillator to the ground
state using �nite control complexity in each of the in�nitely many steps, and at an overall �nite (albeit not minimal, i.e., not at
the Landauer limit) energy cost. Before presenting this non-Gaussian protocol, let us now discuss the details of the Gaussian
diverging-time protocol for cooling at the Landauer limit.

We consider a harmonic oscillator with the frequency! S as the target system and the machine to compriseN harmonic
oscillators, where thenth oscillator has frequency! M n = ! S + n � . In addition, we assume that all modes are initially
uncorrelated and in thermal states at the same inverse temperature� with respect to their free Hamiltonians, i.e., the target
system is� S (�; H S ) and the multimode thermal machine is� M (�; H M ) =

N N
n =1 � M n

(�; H M n
).

In this case, the cooling process is divided intoN time steps. During each step, there is an interaction between the target
system and one of the harmonic oscillators in the machine. Here, we assume that at thenth time step, the target system interacts
only with thenth harmonic oscillator, which has frequency! S + n � . To obtain the minimum temperature for the target system,
we perform the previously outlined cooling process at each step, which is given by swapping the corresponding two modes.
Using Eq. (E15), the covariance matrix transformation of the two-mode process at the �rst time step takes the form

� (1) (� S (� ) 
 � M 1
(� )) =

2

4
coth

�
�! S

2

�
112 0

0 coth
�

� ( ! S + � )
2

�
112

3

5 SWAP7�! � (1)
opt =

2

4
coth

�
� ( ! S + � )

2

�
112 0

0 coth
�

�! S
2

�
112

3

5 :

(E18)

By repeating this process on each of the harmonic oscillators in the machine, after the(n� 1)th step, the2� 2 block corresponding

to the target systemS in the covariance matrix is given bycoth
�

� ( ! S +( n � 1) � )
2

�
112. Therefore, one can show inductively that

the covariance matrix transformation associated to thenth interaction is given by

� (n ) (� S (� ) 
 � M n
(� )) =

2

4
coth

�
� ( ! S +( n � 1) � )

2

�
112 0

0 coth
�

� ( ! S + n� )
2

�
112

3

5

SWAP7�! � (n )
opt =

2

4
coth

�
� ( ! S + n� )

2

�
112 0

0 coth
�

� ( ! S +( n � 1) � )
2

�
112

3

5 : (E19)

Based on this process, afterN steps (i.e., after the system has interacted with allN harmonic oscillators), the minimal achievable
temperature of the target system isT (N )

min = ! S
! S + N� T. Moreover, by using Eq. (E16), one can calculate the energy changes of

the target system and the machine at each time step as

� E (n )
S

=
! S

2

�
coth

�
� (! S + n� )

2

�
� coth

�
� (! S + ( n � 1)� )

2

��
;

� E (n )
M n

=
(! S + n� )

2

�
coth

�
� (! S + ( n � 1)� )

2

�
� coth

�
� (! S + n� )

2

��
: (E20)

The total energy change for the target system during the overall process (i.e., throughout theN steps) is thus given by

� ES =
NX

n =1

� E (n )
S

=
NX

n =1

! S

2

�
coth

�
� (! S + n� )

2

�
� coth

�
� (! S + ( n � 1)� )

2

��
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=
! S

2

�
coth

�
� (! S + N� )

2

�
� coth

�
�! S

2

��
= ! S

�
e� � ( ! S + N� )

1 � e� � ( ! S + N� )
�

e� �! S

1 � e� �! S

�
: (E21)

Here, we writecoth (x) = 1 + (2 e� 2x )=(1 � e� 2x ). Similarly, one can obtain the total energy change of the overall machine

� EM =
NX

n =1

� E (n )
M n

=
NX

n =1

! S + n�
2

�
coth

�
� (! S + ( n � 1)� )

2

�
� coth

�
� (! S + n� )

2

��

=
NX

n =1

(! S + n� )
�

e� � ( ! S +( n � 1) � )

1 � e� � ( ! S +( n � 1) � )
�

e� � ( ! S + n� )

1 � e� � ( ! S + n� )

�
: (E22)

It is straightforward to check that the total energy change, i.e., the sum of Eqs. (E21) and (E22), is equal to the energy cost
obtained in Eq. (C19) withd ! 1 . In particular, this can be seen by considering the second line of Eq. (C19), where the second
term in round parenthesis vanishes asd ! 1 for any value ofN . Thus, when the number of operations divergesN ! 1 and
� = ( ! max� ! S )=N ! 0, where! max := � max

� ! S is the maximum frequency of the machines, the heat dissipated by the machines
throughout the process saturates the Landauer bound and is therefore energetically optimal. Moreover, by taking! max ! 1 one
approaches perfect cooling.

At this point, a comment on the notion of control complexity is in order. According to Eq. (6), the effective dimension of the
machine in the protocol we consider here diverges in addition to time. Indeed, the notion of control complexity thusly de�ned
diverges forany Gaussian operation acting on the machine, in particular, it diverges for any single one of the in�nitely many
steps of the protocol, as each operation is a two-mode Gaussian operation. At �rst glance, this appears to be in contrast to the
common conception that Gaussian operations are typically easily implementable (cf. Refs. [22, 37]). However, an alternative
way of interpreting this protocol is that, exactly because of the simple structure of Gaussian operations, reaching the ground state
at �nite energy cost requires a diverging number of two-mode Gaussian unitaries, and thus divergingly many modes on which
to act (see also Appendix E3). In fact, if non-Gaussian unitaries are employed, then the ground state can be approached at �nite
energy cost using just a single harmonic oscillator machine, as we now show.

E2b. Diverging-Time Protocol using Non-Gaussian Operations (with Finite Control Complexity)

We now consider a protocol for cooling a single harmonic oscillator at frequency! S to the ground state using a diverging
amount of time, but requiring only a �nite overall energy input as well as �nite control complexity in each of the diverging
number of steps of the protocol. In this protocol, the machineM is also represented by a single harmonic oscillator whose
frequency matches that of the target oscillator that is to be cooled,! M = ! S =: ! . The initial states of both the target systemS
and machineM are assumed to be thermal at the same inverse temperature� , and are hence both described by thermal states of
the form

� (� ) =
e� �H

tr [e� �H ]
=

1X

n =0

e� �!n (1 � e� �! ) jnihnj =
1X

n =0

pn jnihnjSM ; (E23)

where the HamiltonianH is given byH =
P 1

n =0 n! jnihnj and thepn = e� �!n (1 � e� �! ) are the eigenvalues of� . The joint
initial state is a product state that we can then write as

� S (� ) 
 � M (� ) =
1X

m;n =0

pm pn jmihmjS 
 j nihnjM =
1X

m;n =0

~pm + n jm; nihm; nj; (E24)

where we de�ne~pk := e� �!k (1 � e� �! )2. We then note that the eigenvalues~pk of the joint initial state have degeneracyk + 1 .
For instance, the largest value~p0 = p0p0, corresponding to both the system and machine being in the ground state, is the single
largest eigenvalue, but there are two eigenstates,j0; 1i andj1; 0i , corresponding to the second largest eigenvalue~p1, three states,
j0; 2i , j1; 1i , andj2; 0i for the third largest eigenvalue~p2, and so forth. Obviously, not all of these eigenvalues correspond to
eigenstates for which the target system is in the ground state.

In order to increase the ground-state population of the target system oscillator, we can now apply a sequence of `two-level'
unitaries, i.e., unitaries that act only on a subspace spanned by two particular eigenstates and exchange their respective popula-
tions. The two-dimensional subspaces are chosen such that one of the two eigenstates corresponds to the systemS being in the
ground state,j0; ki , while the other eigenstate corresponds toS being in an excited state,ji 6= 0 ; j i . In addition, these pairs of
levels are selected such that, at the time the unitary operation is to be performed, the population ofj0; ki is smaller than that of
ji 6= 0 ; j i , such that the two-level exchange increases the ground-state population ofS at each step.
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More speci�cally, at thekth step of this sequence, the joint systemSM is in the state%( k )
SM

and one determines the set
 k of
index pairs(i 6= 0 ; j ) such that~pk < hi; j j%( k )

SM
ji; j i , i.e., the set of eigenstates for whichS is not in the ground state and which

have a larger associated population (at the beginning of thekth step) thanj0; ki . One then determines an index pair(mk ; nk ) for
which this population is maximal, i.e.,hmk ; nk j%( k )

SM
jmk ; nk i = max fhi; j j%( k )

SM
ji; j ij (i; j ) 2 
 k g, and performs the unitary

U(k )
SM

= 11SM � j 0; kih0; kj � j mk ; nk ihmk ; nk j +
�

j0; kihmk ; nk j + jmk ; nk ih0; kj
�

: (E25)

If there is no larger population that is not already in the subspace of the ground state of the target system, i.e., when
 k = ; ,
which is only the case for the �rst step (k = 1 ), then no unitary is performed. After thekth step, the joint state%( k + 1)

SM
is still

diagonal in the energy eigenbasis, and the subspace of the joint Hilbert spaces for whichS is in the ground state is populated with
thek + 1 largest eigenvalues~pi in nonincreasing order with respect to nondecreasing energy eigenvalues of the subspace's basis
vectorsj0; i i . That is, for alli 2 f 0; 1; 2; : : : ; kg and for allj 2 N with j > i , we haveh0; i j%( k + 1)

SM
j0; i i � h 0; j j%( k + 1)

SM
j0; j i .

Since the Hilbert spaces of bothS and M are in�nite dimensional, we can continue with such a sequence of two-level
exchanges inde�nitely, starting withk = 1 and continuing step by step ask ! 1 . Here we note that the choice of(mk ; nk ) is
generally not unique at thek-th step, but ask ! 1 , the resulting �nal state is independent of the particular choices of(mk ; nk )
made along the way. In particular, in a fashion that is reminiscent of the famed Hilbert hotel paradox (see, e.g., Ref. [56, p. 17]),
this sequence placesall of the in�nitely many eigenvalues~pk of the joint state ofSM (which must hence sum to one) into the
subspace whereS is in the ground state. In other words, in the limit of in�nitely many steps, the population of the ground-state
subspace evaluates to

1X

k=0

(k + 1)~pk =
1X

k=0

(k + 1) e� �!k (1 � e� �! )2 = 1 ; (E26)

where we take into account the(k + 1) -fold degeneracy of thekth eigenvalue~pk . We thus havelim k !1 trM

�
%( k )

SM

�
= j0ih0jS ,

the reduced state of the system is asymptotically the pure statej0i S .
As per our requirement on the structural complexity (see Appendix D), the Hilbert space of the machine required to achieve

this is in�nite-dimensional, and since each step of the protocol is assumed to take a �nite amount of time, the overall time for
reaching the ground state diverges. At the same time, the control complexity for each individual step is �nite, since eachUk acts
nontrivially only on a two-dimensional subspace. To see that also the energy cost for this protocol is �nite, we �rst note that
the protocol results in a �nal state of the machine that is diagonal in the energy eigenbasisjni M , with probability weights~pk
decreasing (but not strictly) with increasing energy. Due to the degeneracy of the eigenvalues~pk , each one appears(k + 1) times
on the diagonal (w.r.t. the energy eigenbasis) of the resulting machine state, populating adjacent energy levels. The labeln(k)
of the lowest energy level that is populated by a particular value~pk can be calculated as

~n(k) :=
k � 1X

n =0

(n + 1) = 1
2 k(k + 1) ; (E27)

while the largest energy populated by~pk is given by~n(k + 1) � 1. With this, we calculate the energy of the machine after the
protocol, which evaluates to

E �nal
M

!
=

1X

k=1

e� �!k (1 � e� �! )2
~n (k+1) � 1X

n =~n (k )

n =
1X

k=1

e� �!k (1 � e� �! )2 1
2 k(k + 1)( k + 2) = 3

4 cosech2
� �!

2

�
: (E28)

Since the energy of the initial thermal state is given by

E [� (� )]
!

=
1X

n =0

n e� �!n (1 � e� �! ) =
e� �!

1 � e� �! ; (E29)

we thus arrive at the energy cost

� EM

!
=

E �nal
M

� E [� (� )]
!

=
e� �! (2 + e� �! )

(1 � e� �! )2 : (E30)

We thus see that this energy cost is �nite for all �nite initial temperatures (although note that the energy cost diverges when
� ! 0).
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However, as we show next, the energy cost for attaining the ground state is not minimal, i.e., the protocol achieves perfect
cooling (with �nite energy and control complexity, but in�nite time) but not at the Landauer limit. To see this, we �rst observe
that the entropy of the �nal pure state of the systemS vanishes, such thate� SS = S [� (� )]. Evaluating this entropy, one obtains

S [� (� )] = � tr [� log(� )] = �
1X

n =0

e� �!n (1 � e� �! ) log
�
e� �!n (1 � e� �! )

�
= �

1X

n =0

e� �!n (1 � e� �! )
�
� �!n + log(1 � e� �! )

�

=
�!e � �!

1 � e� �! + �! + log
� e� �!

1 � e� �!

�
=

�!
1 � e� �! + log

� e� �!

1 � e� �!

�
: (E31)

Using the results from Eqs. (E30) and (E31), we can thus compare the expressions for� � EM and e� SS , and we �nd that
� � EM � e� SS > 0 for all nonzero initial temperatures. The origin of this difference is easily identi�ed: although the protocol
results in an uncorrelated �nal state because the system is left in a pure state, that is,I (S : M )%0

SM
= 0 , the last termD(%0

M
k� M )

in Eq. (3) is nonvanishing for nonzero temperatures because the protocol does not result in a thermal state of the machine.
With this, we thus show that perfect cooling is indeed possible using a �nite energy cost and a �nite control complexity

in every one of in�nitely many steps (thus using diverging time). As we have seen, the structural requirement of an in�nite-
dimensional effective machine Hilbert space can be met by realisingM as a single harmonic oscillator. Although the presented
protocol does not minimise the energy cost to saturate the Landauer bound, we cannot at this point conclusively say that it is not
possible to do so in this setting. However, we suspect that a more complicated energy-level structure of the machine is necessary.

Finally, let us comment again on the notion of control complexity in terms of effective machine dimension as opposed to the
notion of complexity that is often (loosely) associated with the distinction between Gaussian and non-Gaussian operations. As
we see from the protocols presented here, the concept of control complexity based on the nontrivially accessed Hilbert-space
dimension of the machine indeed captures the resource that must diverge in order to reach the ground state, while the intuition
of complexity associated with (non)-Gaussian operations, albeit valid as a characterisation of a certain practical dif�culty in
realising such operations, seems to be irrelevant for determining if the ground state can be reached. In the protocol presented in
this section, non-Gaussian operations with �nite control complexity are used in each step to reach the ground state. In�nitely
many steps (i.e., diverging time) could then be traded for a single (also non-Gaussian) operation of in�nite control complexity,
performed in unit time. In the previous protocol based on Gaussian operations (Appendix E2a), the control complexity diverges
in every single step of the cooling protocol, but only when there are in�nitely many such steps (diverging time) or one operation
in unit time on in�nitely many modes (see below), can we reach the ground state. However, in the latter case, the operation,
although acting on a diverging number of harmonic oscillators, remains Gaussian, as we now show explicitly.

E3. Diverging Control Complexity Cooling Protocol for Harmonic Oscillators

Here we give a protocol for perfectly cooling a harmonic oscillator in unit time and with the minimum energy cost, but with
diverging control complexity. In accordance with Theorem 3, the machines used to cool the target system will likewise be
harmonic oscillators. Let the operatorsa (ay) andbk (by

k ), respectively, denote the annihilation (creation) operators of the target
system and a machine subsystem labelledk. We then consider the the unitary transformation in Eq. (E14), namely

Uk := ei �
2 (ay bk + aby

k ) : (E32)

One can then apply the diverging-time cooling protocol from Appendix E2a to cool the system to the ground state at the Landauer
limit via the total unitary transformation

Utot := lim
N !1

U(N ) ; with U(N ) :=
NY

k=1

Uk : (E33)

We now seek the Hamiltonian that generatesUtot. First note thatU(N ) aUy
(N ) = ib1 and

U(N ) bk Uy
(N ) =

8
><

>:

� bk+1 ; for k < N
ia; for k = N
bk ; for k > N

; (E34)

which can be proven by induction. In contrast with Appendix E2a, here we use the complex representation of the sym-
plectic group to describe the transformation, i.e., the set of matricesS satisfying SKS y = K , where K := 11N �
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(� 11N ). Gathering the raising and lowering operators of the target system and the �rstN machines into the vector~� :=
�
a b1 b2 : : : bN ay by

1 by
2 : : : by

N

� T
, we can write the transformation above asU(N )

~� U y
(N ) = ST ~� [57], where

S =

 
� (N ) 0

0 � (N )

!

; with � (N ) :=

0

B
B
B
B
B
B
B
B
B
@

0 0 0 : : : 0 i

i 0 0 : : : 0 0

0 � 1 0 : : : 0 0

0 0 � 1 : : : 0 0
:::

:::
:::

: : :
:::

:::

0 0 0 : : : � 1 0

1

C
C
C
C
C
C
C
C
C
A

: (E35)

Now, de�ning the matrix of Hamiltonian coef�cientsh(N ) implicitly by U(N ) =: exp( � i ~� y � h(N ) � ~� ), we have thatS =
exp(� iKh (N ) ) [57], i.e.,h(N ) = iK log(ST ) = iK log(S)T , where we take the principal logarithm. To calculate this, we must
diagonalise the matrix� (N ) in Eq. (E35). The eigenvalues of� (N ) are

� k := � e� i� 2k � 1
N +1 ; with k 2 f 1; 2; : : : ; N + 1g; (E36)

i.e., the negative of the(N + 1) th roots of� 1, and it is diagonalised by the unitary matrixV constructed from the eigenvectors
~vk :

V :=
�

~v1 ~v2 ~v3 : : : ~vN +1

�
with ~vk :=

� 1
p

N + 1

0

B
B
B
B
B
B
B
@

i(� � k ) � 1

(� � k ) � 2

(� � k ) � 3

:::

(� � k ) � (N +1)

1

C
C
C
C
C
C
C
A

: (E37)

Speci�cally, � (N ) = V DV y, whereD := diag( � 1; � 2; : : : ; � N +1 ), and thus

hT
(N ) = iK log

 
V DV y 0

0 V DV y

!

= iK

 
V 0

0 W

!  
log(D) 0

0 log(D)

!  
V y 0

0 V y

!

=:

 
A 0

0 � A

!

(E38)

for some matrixA. By direct calculation, one �nds that

A jk = i � j 1 i � k 1
�

(N + 1) 2

N +1X

p=1

(2p � 2 � N )e� i� 2p � 1
N +1 ( j � k ) : (E39)

Now, considering the identity

N +1X

p=1

ei�p =
ei� (N +1) � 1

1 � ei� (E40)

for � 2 R, as well as its derivative with respect to� , one can calculate the sum in Eq. (E39). We then have

lim
N !1

A jk =

(
0; for j = k
ii � j 1 i � k 1 1

j � k ; for j 6= k
: (E41)

Then, �nally, we have thatUtot = e� iH tot, whereH tot = lim N !1
�
~vy � h(N ) � ~v

�
, i.e.,

H tot = �
1X

j =2

�
1

j � 1
by

j a + H :c:
�

+
1X

j;k =1; j 6= k

i
j � k

by
j bk : (E42)

Thus, the system is cooled to the ground state at an energy cost saturating the Landauer bound, and in unit time, but via a
procedure that implements a multimode Gaussian unitary on a diverging number of modes.
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Appendix F: Cooling Protocols in the Incoherent-Control Paradigm

In this section, we investigate the required resources to cool the target system within the incoherent-control paradigm. For
simplicity, we consider only the �nite-dimensional setting. Here, we have a qudit target systemS interacting resonantly (i.e.,
in an energy-conserving manner) with a qudit machineM , which is partitioned into one part,C, in thermal contact with the
ambient environment at inverse temperature� and another part,H , in contact with a hot bath at inverse temperature� H < � . The
Hamiltonians for each subsystem areH X =

P dX � 1
n =0 n ! X jnihnjX ; the energy resonance condition enforces that! H = ! C � ! S .

For the most part in this section, we focus on equally spaced Hamiltonians for simplicity; we comment speci�cally whenever
we consider otherwise.

In order to cool the target system, we aim to compress as much population as possible into the its lowest energy eigenstates
via interactions that are restricted to the energy-degenerate subspaces of the jointSCHsystem. Thus we are restricted to global
energy-conserving unitariesUEC that satisfy

[H S + H C + H H ; UEC] = 0 : (F1)

In Ref. [38], it was shown that for the case where all three subsystems are qubits, the optimal global unitary in this setting
(inasmuch as they render the target system in the coldest state possible given the restrictions) is

UEC = j0; 1; 0ih1; 0; 1jSCH + j1; 0; 1ih0; 1; 0jSCH + �11; (F2)

where�11 denotes the identity matrix on all subspaces that are not energy degenerate. Considering the generalisation to qudit
subsystems, it is straightforward to see that, for equally spaced Hamiltonians, the optimal global unitaries must be of the form

UEC =

"
d� 2X

m;n;l =0

jm; n + 1 ; l ihm + 1 ; n; l + 1 jSCH + jm + 1 ; n; l + 1 ihm; n + 1 ; l jSCH

#

+ �11: (F3)

For the most general case where the Hamiltonians of each subsystem are arbitrary, it is not possible to write down a generic
form of the optimal unitary, since the energy-resonant transitions that lead to cooling the target now depend on the microscopic
details of the energetic structure. Nonetheless, in Appendix G, we provide a protocol (i.e., not the unitaryper se, but a sequence
of steps) in this setting that attains perfect cooling and saturates the Carnot-Landauer limit.

Intuitively, the above types of unitaries simply reshuf�e populations that are accessible through resonant transitions. For the
purpose of cooling, one wishes to do this in such a way that the largest population is placed in the lowest energy eigenstate of
the target system, the second largest in the second lowest energy eigenstate, and so on (in line with the optimal unitaries in the
coherent-control setting); indeed, on the energy-degenerate subspaces accessible, such unitaries act precisely in this way. It is
straightforward to show that interactions of this form satisfy Eq. (F1).

For the sake of simplicity, we now focus on the case where all systems are qubits, although the results generalise to the qudit
setting. Consider the initial joint state%SCH =

P 1
m;n;l =0 pmnl jm; n; l ihm; n; l jSCH . By applying a unitaryUEC of the form given

in Eq. (F3), the post-transformation joint state is

%0
SCH

= UEC%SCH Uy
EC

= %SCH + � p j0; 1; 0ih0; 1; 0jSCH � � p j1; 0; 1ih1; 0; 1jSCH ; (F4)

where� p := p101 � p010 indicates the amount of population that has been transferred from the excited state of the target system
to the ground state throughout the interaction. Naturally, in order to cool the target system,� p � 0, i.e., the initial population
p101 must be at least as large asp010.

Due to the energy-conserving nature of the global interaction, the energy exchanged between the subsystems throughout a
single such interaction,� EX = tr

�
H X (%0

X
� %X )

�
, can be calculated via

� ES = � ! S � p; � EC = ! C � p; � EH = � ! H � p: (F5)

Thus, for a �xed energy-level structure of all subsystems (i.e., given the local Hamiltonians), one requires only knowledge of the
pre- and post-transformation state of any one of the subsystems to calculate the energy change for all of them.

F1. Diverging Energy: Proof of Theorem 6

The �rst thing to note is that in the incoherent-control paradigm, even when one allows for the energy cost, i.e., the heat
drawn from the hot bath, to be diverging, it is not possible to perfectly cool the target system, as presented in Theorem 6. The
intuition behind this result is that the target system can interact only with energy-degeneratesubspacesof the hot and cold
machine subsystems. The optimal transformation that one can do here to achieve cooling is to transfer the highest populations
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of any such subspace to the lowest energy eigenstate of the target system; however, any such subspace has population strictly
less than one for any0 � � H � � < 1 independently of the energy structure. Moreover, the difference from one can be
bounded by a �nite amount that does not vanish independent of the energy-level structure of any machine of �nite dimension.
This makes it impossible to attain a subspace population of one even as the energy cost diverges for any �xed and �nite control
complexity. It follows that the ground-state population of the target system can never reach unity in a single operation of �nite
control complexity and hence perfect cooling cannot be achieved.

Precisely, we show the following. LetS be a �nite-dimensional system of dimensiondS with associated Hamiltonian with
�nite but otherwise arbitrary energy gapsH S =

P dS � 1
i =0 ! i

S ji ihi jS , and letdC anddH be integers denoting the dimensions of the
cold and hot parts of the machine respectively. Then it is impossible to cool the systemS in the incoherent-control paradigm, i.e.,
using energy-conserving unitaries involvingCandH at some initial inverse temperatures�; � H respectively, arbitrarily close to
the ground state. Note that, in particular, this result holds irrespective of the energy-level structure ofC andH and no matter
how much energy is drawn from the hot bath as a resource.

In order to set notation for the following, we assume! i
X � ! j

X for i � j and! 0
X = 0 , where! i

X denotes thei th energy
eigenvalue of systemX with X 2 fS ; C; Hg. We also assume the initial states onS andCto be thermal at inverse temperature
� , andH is assumed to be initially in a thermal state at inverse temperature� H � � . We denote bypi

X
the i th population of

systemX in a given state, i.e.,pi
X

= hi j%X ji i , whereji i denotes thei th energy eigenstate of%X . We also writepijk := pi
S
pj

C
pk

H
.

The intuition behind the proof is as follows. The global ground-state level of the joint hot-and-cold machine has some nonzero
initial population for any �nite-dimensional machine; in particular it can always be lower bounded by1

dC dH
for any Hamiltonians

and initial temperatures, which is strictly greater than zero as long as the dimensions remain �nite. Fixing the control complexity
of any protocol considered here to be �nite in value thus implies a lower bound on the initial ground-state population of the total
machine that is larger than zero by a �nite amount. Depending on the energy-level structure of the hot and cold parts of the
machine, there may be other nonzero initial populations, but in order to cool the target systemS perfectly, at least all of the
previously mentioned populations must be transferred into spaces spanned by energy eigenstates of the formj0jk i SCH . This
intuition is formalised via Lemma 2, where we show that independent of the energy structure ofC andH, one must be able to
make such transfers of population in order to perfectly coolS. However, in order to make such transfers in an energy-conserving
manner, all energy eigenstates of the formji00i SCH must be degenerate with some of the formj0jk i SCH . This degeneracy
condition, in turn, also implies that every energy eigenstate of the formj0jk i SCH has an associated initial populationp0jk that is
nonvanishing for all machines of �nite dimension (i.e., for all protocols with �nite control complexity). Thus, upon transferring
some populationpi 00 into the subspace spanned byj0jk i SCH , i.e., one of a relevant form for the population to contribute to
the �nal ground-state population of the target, one inevitably transfers some �nite amount of populationawayfrom the relevant
space and intoji00i SCH , which does not contribute to the �nal ground-state population of the target. We formalise this intuition
in the discussion following Lemma 2. In this way, no matter what one does, there is always a �nite amount of population, which
is lower bounded by some strictly positive number due to the constraint on control complexity, that does not contribute to the
�nal ground-state population of the target, implying that perfect cooling is not possible.

The formal proof occurs in two steps. We �rst show that some speci�c degeneracies in the jointSCHsystem must be present in
order to be able to even potentially coolS arbitrarily close to the ground state. We then prove that, given the above degeneracies,
one cannot cool the systemS beyond a �xed ground-state population that is independent of the energy structure ofCandH; in
particular, one can draw as much energy from the hot bath as they like and still do no better. We begin with the following lemma.

Lemma 2. GivenS, dC, anddH as above, one can reach a �nal ground-state population of the systemS arbitrarily close to
one in the incoherent-control setting only if eachji00i SCH , wherei 2 f 1; : : : ; dS � 1g, energy eigenstate is degenerate with at
least onej0jk i SCH energy eigenstate, wherej 2 f 0; : : : dC � 1g; k 2 f 0; : : : dH � 1g.

Proof. Suppose that there exists ani � 2 f 1; : : : ; dS � 1g such thatji � 00i SCH is not degenerate with anyj0jk i SCH , where
j 2 f 0; : : : dC � 1g; k 2 f 0; : : : dH � 1g. We show that, then, one cannot coolS arbitrarily close to zero.

Let B i denote the degenerate subspace of the total HamiltonianH S + H C + H H , whereH X denotes the Hamiltonian of
systemX 2 fS ; C; Hg, that contains the eigenvectorji00i SCH . Then, any energy-conserving unitaryUEC used to cool the system
in the incoherent-control paradigm must act within suchB i subspaces, i.e.,UEC =

L
i UB i (this is a direct consequence of

[UEC; H S + H C + H H ] = 0 , see, e.g., Lemma 5 of Ref. [30]). This means, in particular, that the initial population ofji � 00i SCH

can only be distributed withinB i � , and as no eigenvector of the formj0jk i SCH is contained inB i � by assumption, it can never
contribute to the �nal ground-state population ofS, which we denoteep0

S
. So we have

ep0
S

� 1 � pi � 00: (F6)

Now, as forX 2 fC ; Hg, with anyf ! i
X g such that each! i

X � 0 with ! 0
X = 0 and any inverse temperature� � 0, we have for

the partition functionZ S that

Z X = 1 + e� �! 1
X + � � � + e� �!

d X � 1
X � dX ; (F7)
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and so we have the following bound on the initial populations associated to each eigenvectorji00i SCH

pi 00 =
e� �! i

S

Z S Z CZ H

�
e� �! i

S

Z S dCdH

> 0 8 i 2 f 1; : : : ; dS � 1g: (F8)

Combining the above, we have that

ep0
S

� 1 �
e� �! i �

S

Z S dCdH

< 1: (F9)

So as desired, we show that one cannot cool beyond1 � e� �! i �
S

Z S dC dH
, a bound strictly smaller than 1 for any �nite-dimensional

machine (i.e., for any protocol using only �nite control complexity) and independent of the energies ofCandH.

We can now proceed to the second step of the proof of Theorem 6.

Proof. To this end, consider anyi � 2 f 1; : : : ; dS � 1g. If ji � 00i SCH is not degenerate with anyj0jk i SCH , our assertion is proven
by Lemma 2. On the other hand, if there is aj � 2 f 0; : : : ; dC � 1g and ak� 2 f 0; : : : ; dH � 1g for which ji � 00i SCH and
j0j � k� i SCH are degenerate, thenB i � , the degenerate subspace containingji � 00i SCH , also containsj0j � k� i . Now B i � may also
contain other eigenvectors of the formj0jk i SCH , i.e., some otherj0j 0k0i SCH with j 0 2 f 0; : : : ; dC � 1g; k0 2 f 0; : : : ; dH � 1g.
Crucially, each such eigenvector inB i � must have an associated minimal amount of initial population as long as the machine
is �nite dimensional. Indeed, for any suchj0j � k� i SCH in B i � , we have the condition! j �

C + ! k �

H = ! i �

S and so! j �

C � ! i �

S ,
! k �

H � ! i �

S , implying that�! j �

C � �! i �

S and� H ! k �

H � �! i �

S . Thus we have the bound

p0j � k � =
e� �! j �

C e� � H ! k �
H

Z S Z CZ H

�
e� 2�! i �

S

Z S Z CZ H

�
e� 2�! i �

S

Z S dCdH

=: qi � : (F10)

Now, take any particulari � 2 f 1; : : : ; dS � 1g and let� i � be the dimension ofB i � , � the number of energy eigenstates of the
form j0jk i SCH thatB i � contains and� = � � � the number of energy eigenstates of the formjijk i SCH , wherei 6= 0 , thatB i �

contains. So

B i � = spanfj 0jk i ; j0j 2k2i ; : : : ; j0j � k� i ; ji � 00i ; ji 2`2m2i ; : : : ; ji � ` � m� ig : (F11)

Let v = f p0jk ; p0j 2 l 2 ; : : : ; p0j � k � ; pi � 00; pi 2 ` 2 m 2 ; : : : ; pi � ` � m � g be the vector of initial populations associated to the eigenvectors
of B i � , andv " be the vector whose components are those ofv arranged in nondecreasing order. Using Schur's theorem [54],
we know that after applying any unitary transformationUB i � on the relevant energy-degenerate subspace, then the vector of
transformed populations,ev, is majorised byv. In particular, labelling the vector elements byv � , we have

epi � 00 +
�X

� =2

epi � ` � m � �
�X

� =1

v "
� : (F12)

We now claim that
P �

� =1 v "
� � qi � from Eq. (F10). Indeed, asv has at most� � 1 elements that do not belong to the set

A := f p0jk ; p0j 2 k2 ; : : : ; p0j � k � ; pi � 00g, at least one element ofA must contribute to the sum
P �

� =1 v "
� . Let x be that element.

As v "
� � 0 for all � = 1 ; : : : ; � = � + � , we have

�X

� =1

v "
� � x: (F13)

Now asp0j 
 k 
 � qi � for all 
 = 2 ; : : : ; � , we have

x � min(qi � ; pi � 00) = qi � ; (F14)

wherepi � 00 � qi � can be seen from Eq. (F10), as claimed.
As the l.h.s. of Eq. (F12) represents the amount of population in the subspaceB i � that doesnot contribute to the �nal

ground-state population of the target system, we have

ep0
S

� 1 �

 

epi � 00 +
�X

� =2

epi � ` � m �

!

� 1 � qi � = 1 �
e� 2�! i �

S

Z S dCdH

: (F15)

So, for any �nite-dimensional machine, one cannot cool the systemS beyond1 � e� �! i �
S

Z S dC dH
, a bound strictly smaller than 1 and

independent of the energy structure ofCandH, as desired.
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As a concrete example, consider the case where all systems are qubits. The initial joint state is

%(0)
SCH

=
(j0ih0j + e� �! S j1ih1j)S 
 (j0ih0j + e� �! C j1ih1j)C 
 (j0ih0j + e� � H ! H j1ih1j)H

Z S (�; ! S )Z C(�; ! C)Z H (� H ; ! H )
: (F16)

The only energy-conserving unitary interaction that is relevant for cooling is the one that exchanges the populations in the lev-
els spanned byj010i andj101i , which have initial populations e� �! C

Z S ( �;! S )Z C ( �;! C )Z H ( � H ;! H ) and e� �! S e� � H ! H

Z S ( �;! S )Z C ( �;! C )Z H ( � H ;! H )
respectively, which are both strictly less than one. The necessary condition for any cooling to be possible implies that
e� �! S e� � H ! H � e� �! C ; now, performing the optimal cooling unitary leads to the �nal ground-state population of the tar-
get system

p0
S
(0) = h0j trCH

h
U%(0)

SCH
Uy

i
j0i S =

1 + e� � H ! H (1 + e� �! S + e� �! C )
Z S (�; ! S )Z C(�; ! C)Z H (� H ; ! H )

< 1: (F17)

Indeed, usinge� �! S e� � H ! H � e� �! C ,

p0
S
(0) �

1 + e� � H ! H e� �! S

Z S (�; ! S )Z C(�; ! C)
�

1
Z C(�; ! C)

� 1: (F18)

The second inequality is strict unless� H = 0 or ! H = 0 . In the both cases, for equality in the �rst inequality, we need
�! S = �! C . If � = 0 , thenZ C(�; ! C) = 2 and the last inequality is strict. If! S = ! C , no cooling is possible; hence
p0

S
(0) = pS (0) < 1.

F2. Diverging Time and Diverging Control Complexity

We now move to analyse the case where diverging time is allowed, where we wish to minimise the energy cost and control
complexity throughout the protocol over a diverging number of energy-conserving interactions between the target system and the
hot and cold subsystems of the machine. We again consider all three systems to be qubits, but the results generalise to arbitrary
(�nite) dimensions. Here, the machines and ancillas begin as thermal states with initial inverse temperatures� and� H � �
respectively. Just as in the diverging time cooling protocol in the coherent-control setting presented in Appendix C, we consider
a diverging number of machines, with slightly increasing energy gaps, in a con�guration such that the target system interacts
with thenth machine at time stepn. Suppose that aftern steps of the protocol, the target qubit has been cooled to some inverse
temperature� n > � ; equivalently, this can be expressed as a thermal state with corresponding energy gap! n = � n

� ! S . We now
wish to interact the target system� S (� n ; ! S ) with a machineM n +1 with slightly increased energy gaps with respect to the most
recent oneM n , i.e., we increase the energy gaps of the cold subsystemCfrom ! n to ! n +1 = ! n + � n ; the resonance condition
enforces the energy gap of the hot subsystemH to be similarly increased to! n + � n � ! S . Thus, the next step of the protocol is
a unitary acting on the global state

%(n )
SCH

= � S (� n ; ! S ) 
 � C(�; ! n + � n ) 
 � H (� H ; ! n + � n � ! S ): (F19)

In order to cool the target system via said unitary, we must have thatp101 � p010 for the state in Eq. (F19), which implies that
� n must satisfy the following condition:

e� �! n � � H ( ! n + � n � ! S ) � e� � ( ! n + � n ) ) � n � 
 (! n � ! S ) where 
 :=
� H

� � � H

: (F20)

This condition is crucial. It means that if the hot subsystemH is coupled to a heat bath at any �nite temperature, i.e.,� H > 0,
� n depends linearly on the inverse temperature of the target system at the previous step� n , and can thus not be taken to be
arbitrarily small. As we now show, this condition prohibits the ability to perfectly cool the target system at the Landauer limit
for the energy cost whenever the heat bath is at �nite temperature.

On the other hand, for in�nite-temperature heat baths, perfect cooling at the Landauer limit is seemingly achievable; here,
� H ! 0 and so
 ! 0, leading to the trivial constraint� n � 0 which allows it to be arbitrarily small, as is required. Nonetheless,
the explicit construction of any protocol doing so in the incoherent-control setting isa priori unclear, as the restriction of energy
conservation makes for a fundamentally different setting from the coherent-control paradigm. We now explicitly derive the
optimal diverging-time protocol to perfectly cool at the Landauer limit for an in�nite-temperature heat bath, thereby proving
Theorem 7.



49

F3. Saturating the Landauer Limit with an In�nite-Temperature Heat Bath

Before calculating the energy cost, we brie�y discuss the attainability of the optimally cool target state. We begin with all
subsystems as qubits, for the sake of simplicity, but the logic generalises to higher dimensions. In the incoherent paradigm, the
target systemS interacts with a virtual qubit of the total machineM = CH that consists of the energy eigenstatesj0; 1i CH
andj1; 0i CH , with populationsp0C 1H

andp1C 0H
respectively. Suppose that at stepn + 1 the cold subsystem involved in the

interaction has energy gap! n + � n . In Ref. [38], it is shown that by repeating the incoherent cooling process (i.e., implementing
the unitary in Eq. (F3)) and taking the limit of in�nite cycles, this scenario equivalently corresponds to the general (coherent)
setting where arbitrary unitaries are permitted and the target system interacts with a virtual qubit machine with effective energy
gap! eff

n given by

e� �! eff
n :=

p1C 0H

p0C 1H

= e� � ( ! n + � n ) e� H ( ! n + � n � ! S ) ) ! eff
n = ! n + � n �

� H

�
(! n + � n � ! S ): (F21)

It is clear that for �nite-temperature heat baths, i.e.,� H > 0, the effective energy gap! eff
n is always smaller than the energy gap

of the machine at any given step, i.e.,! eff
n � ! n + � n ; on the other hand, equality holds iff the heat bath is at in�nite temperature,

i.e., � H ! 0. Thus, in the in�nite-temperature case, given a target system beginning at some step of the protocol in the state
%�

S
(�; ! n ), it is possible to get close to the asymptotic state%�

S
(�; ! n + � n ); if the temperature is �nite, however, this state is

not attainable (even asymptotically). Following the arguments in Appendix C, i.e., considering a diverging number of machines,
each of which having the part connected to the cold bath with energy gap! Cn = ! n + � n and taking the limit of� n ! 0, which
one canonly do if the hot-bath temperature is in�nite, allows one to cool perfectly in diverging time in the incoherent paradigm
at the Landauer limit.

We now calculate the energy cost explicitly for the in�nite-temperature heat bath case, precisely demonstrating attainability
of the Landauer limit. We use a similar approach to that described in Appendix C: we have a diverging number of cold machines
for each energy gap! n , with which the target system at then � 1th time step interacts; for an in�nite-temperature heat bath, i.e.,
H is in the maximally mixed state independent of its energy structure, the state of the target system at each step%�

S
(�; ! n � 1) is

achievable. From Eq. (F5), the energy change between all subsystems for a given step of the protocol, i.e., taking%�
S
(�; ! n � 1) !

%�
S
(�; ! n ), can be calculated as

� E (n )
S

= tr
�
H S (! S )(%�

S
(�; ! n ) � %�

S
(�; ! n � 1)

�

� E (n )
C

= � tr
�
H C(! n )(%�

S
(�; ! n ) � %�

S
(�; ! n � 1)

�

� E (n )
H

= tr
�
H H (! n � ! S )(%�

S
(�; ! n ) � %�

S
(�; ! n � 1)

�
(F22)

In general, i.e., for �nite-temperature heat baths, we would have! n = ! n � 1 + � n � 1, with a lower bound on� n � 1 for cooling
to be possible [in accordance with Eq. (F20)]. However, for in�nite-temperature heat baths, this lower bound trivialises since
the energy structure of the hot-machine subsystem plays no role in its state; thus we can choose the energy gap structure for the
machines asf ! n = ! S + n� gN

n =1 with � arbitrarily small. Taking the limit� ! 0, the diverging time limitN ! 1 , and writing
! N = ! max for the maximum energy gap of the cold-machine subsystems, the energy exchanged throughout the entire cooling
protocol here is given by

� ES = lim
N !1

NX

n =1

� E (n )
S

= tr
�
H S (! S )(%�

S
(�; ! max) � %�

S
(�; ! S )

�

� EC = lim
N !1

NX

n =1

� E (n )
C

=
1
�

�
S[%�

S
(�; ! S )] � S[%�

S
(�; ! max)]

	
=

1
�

e� SS

� EH = lim
N !1

NX

n =1

� E (n )
H

= � � ES � � EC : (F23)

Here, the expression for� EC can be derived using the same arguments as presented in Appendix C1. In particular, the heat
dissipated by the cold part of the machine, which is naturally connected to the heat sink in the incoherent setting as an in�nite-
temperature heat bath can be considered a work source since any energy drawn comes with no entropy change, is in accordance
with the Landauer limit. It is straightforward to obtain the same result for qudit systems. Lastly, in a similar way to the other
protocols we have presented, one could compress all of the diverging number of operations into a single one whose control
complexity diverges, thereby trading off between time and control complexity.
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F4. Analysis of Finite-Temperature Heat Baths

We now return to the more general consideration of �nite-temperature heat baths, i.e.,0 < � H � � . In the case where
� H = � , from Eq. (F21), it is straightforward to see that for any machine energy gap! n , the effective gap! eff

n is equal to the
gap of the target system, which means that no cooling can be achieved in the incoherent paradigm. Nonetheless, for anyH
subsystem coupled to a heat bath of inverse temperature� H < � , cooling is possible. We �rst provide more detail regarding
why cooling at the Landauer limit is not possible in this setting, before deriving the minimal energy cost in accordance with the
Carnot-Landauer limit presented in Theorem 5; in Appendix G, we provide explicit protocols that saturate this bound for any
�nite-temperature heat bath and arbitrary �nite-dimensional systems and machines.

Suppose that at some stepn one has the initial joint state of Eq. (F19), where� n = 
 (! n � ! S ) + � and! n = ! S + n� . Here,

 is as in Eq. (F20). We now wish to cool the target system to%�

S
(�; ! n + � ). For cooling to be possible in the incoherent setting

here, we need the cold-machine subsystem to have an energy gap of at least! n + � n ; moreover, with a �nite-temperature heat
bath, this energy gap is insuf�cient to achieve the desired transformation [see Eq. (F20)]. Based on Eq. (F5), we can see that
nonetheless, if we calculate thehypotheticalenergy change in this scenario if it were possible, we can derive a lower bound for
the actual energy cost incurred. Employing Eq. (F22), we have

� E (n +1)
C

� � tr f H C(! n + � n )[%�
S
(�; ! n + � ) � %�

S
(�; ! n )]g

= � tr f H C [(
 + 1) ! n � 
! S + � ][%�
S
(�; ! n + � ) � %�

S
(�; ! n )]g

= � tr f H C [(
 + 1) ! n � 
! S + � + 
� � 
� ][%�
S
(�; ! n + � ) � %�

S
(�; ! n )]g

= � (
 + 1)tr f H C(! n + � )[%�
S
(�; ! n + � ) � %�

S
(�; ! n )]g + 
 tr f H C(! S + � )[%�

S
(�; ! n + � ) � %�

S
(�; ! n )]g

= ( 
 + 1)� E � (n +1)
C

+ 
 � E � (n +1)
S

+ 
 tr f H C(� )[%�
S
(�; ! n + � ) � %�

S
(�; ! n )]g; (F24)

where we make use of the fact that for equally spaced Hamiltonians, the structure of the Hamiltonians on each subsystem take
the same form [i.e., we can write, with slight abuse of notation,H C(! + ! S ) = H C(! ) + H S (! S )]. We use the star in� E �

A

to denote the idealised energy cost [i.e., that corresponding to what would be achievable in the in�nite-temperature setting; see
Eq. (F22)] and the energy costs without the star to represent those for when the temperature of the heat bath is �nite. The
additional termtr f H (
� )[%�

S
(�; ! n + � ) � %�

S
(�; ! n )]g vanishes for� ! 0.

Summing up these contributions for a diverging number of steps gives the lower bound for the heat dissipated throughout the
entire protocol for cooling an initial state� S (�; ! S ) to some �nal� S (� max; ! S ) is given by

� EC = lim
N !1

NX

n =1

� E (n +1)
C

� (
 + 1)
1
�

e� SS + 
 � ES

=
1
�

e� SS + 

�

� ES +
1
�

e� SS

�
: (F25)

Note that for in�nite-temperature heat baths,
 ! 0 and the usual Landauer limit is recovered; nonetheless, for �nite-temperature
heat baths,
 > 0 and there is an additional energy contribution, implying that the Landauer limit cannot be achieved. Moreover,
note that the expression inside the parenthesis in the second term above is always non-negative, as it is the free energy difference
of the system during the cooling process. Lastly, it is straightforward to show that this lower bound is equivalent to the Carnot-
Landauer limit in Eq. (A14), which was derived in a protocol-independent manner as the ultimate limit in the incoherent-control
setting. We now present explicit protocols that saturate this bound.

Appendix G: Perfect Cooling at the Carnot-Landauer Limit in the Incoherent-Control Paradigm

The precise statement that we wish to prove regarding saturation of the Carnot-Landauer limit is the following:

Lemma 3. For any� � � � > � H and� 1;2 > 0, there exists a cooling protocol in the incoherent-control setting comprising a
number of unitaries of �nite control complexity, which, when the number of operations diverges, cools to some �nal temperature
� 0 that is arbitrarily close to the ideal temperature value� � , i.e.,

j� 0 � � � j < � 1; (G1)

with an energy cost, measured as heat drawn from the hot bath, that is arbitrarily close to the ideal Carnot-Landauer limit, i.e.,
�
�
� � EH � � � 1 e� F ( � )

S

�
�
� < � 2; (G2)
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where� = 1 � � H =� and� F ( � )
S

= F� (%0
S
) � F� (%S ) is the free energy difference between the initial%S = � S (�; H S ) and �nal

%0
S

= � S (� � ; H S ) system states (w.r.t. inverse temperature� ).

We begin by presenting the diverging-time protocol that saturates the Carnot-Landauer limit when all three subsystemsS; C; H
are qubits. The simplicity of this special case allows us to calculate precisely bounds on the number of operations required to
reach any chosen error threshold. Building on this intuition, we then present the generalisation to the case where all systems
are qudits. The protocols with diverging control complexity follow directly via the same line of reasoning presented in the main
text.

G1. Qubit Case

We begin with setting some notation and intuition for the proof, before expanding on mathematical details.
Sketch of Protocol.—The protocol consists of the following. There areN stages, each labelled byn 2 f 1; 2; :::; N g. Each

stage proceeds as follows:

• A qubit with energy gap! S + n� is taken from the cold part of the machine, and a qubit with energy gapn� is taken from the
hot part (see below). The initial state of the machine at the beginning of thenth stage is thus� C(�; ! S + n� ) 
 � H (� H ; n� ).

• The energy-preserving three qubit unitary cycle in thef 010; 101gSCH subspace is performed [see Eq. (F3)], after which
the cold and hot qubits are rethermalised to their respective initial temperatures.

• The above steps are repeatedmn times.

The energy increment� is de�ned as

� :=
! S

N

�
� � � �
� � � H

�
; (G3)

while the number of repetitions within each stage is given by

mn =

&
log(� )

log(1 � N (n )
V )

'

: (G4)

d�eis the ceiling function, andN (n )
V

is the sum of the initial thermal populations in thef 01; 10gCH subspace of the machine, i.e.,

N (n )
V

:= h01j� C(�; ! S + n� ) 
 � H (� H ; n� )j01i + h10j� C(�; ! S + n� ) 
 � H (� H ; n� )j10i : (G5)

The parameter� is chosen appropriately to complete the proof (� = 1=N2 works).
The intuition for the proof is as follows. We �rst consider how the populations of the target system changes in theidealised

protocol wheremn ! 1 , so that in each stage, the system reaches the virtual temperature determined by theCH qubits. We
can use this ideal setting to �nd expressions for the �nal temperature and energy cost, which serves as a baseline that we wish to
attain to within arbitrary precision. We then consider the protocol as constructed above with a �nite number of repetitionsmn
in each stage, and show that its expressions for temperature and work cost are close (w.r.t.1=N) to the original expressions, and
by takingN to be suf�ciently large but still �nite (i.e., in the diverging time limit), we prove that the protocol can be arbitrarily
close in temperature and energy cost to the ideal values.

Proof. We label the population in theexcitedstate of the target system at the end of stagen aspn . Thusp0 is the initial population
andpN is the �nal population in the excited level of the target system qubit, i.e., that spanned byj1ih1jS . We also label byqn
what the corresponding populationpn would hypothetically be in the limitmn ! 1 . This value can be calculated by matching
the temperature of the target system qubit to the temperature of thef 01; 10gCH virtual qubit within the machine (see Appendix
G in Ref. [38]). Thusqn is de�ned via the Gibbs ratio

qn

1 � qn
= e� � ( ! S + n� ) e+ � H n� = e� �! S e� ( � � � H )n� : (G6)

Note that

1. f pn g; f qn g are both monotonically decreasing sequences, as each stage cools the target qubit further.

2. pn > qn for all n, as more repetitions within each stage keep cooling the target qubit further.
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To keep track of the energetic resource cost, which we take here to be the total heat drawn from the hot bath, we must sum the
energetic contribution from each time the hot qubit is rethermalised to� H after the application of the three-party cycle unitary.
Due to the fact that the only manner in which the population of the hot qubit changes is due to thef 010; 101gSCH exchange, it
follows that any population change in the hot qubit is identical to the population change in the target system qubit.

Focusing on a single stage, where the machine qubits are �xed in energy gap, the total population change in the hot qubit that
must be restored by the hot bath is therefore equal to the population change in the target system throughout that stage. The heat
drawn from the hot bath throughout the entire stage is therefore

e� E (n )
H

= ! (n )
H (pn � 1 � pn ) = n� (pn � 1 � pn ): (G7)

With these expressions derived, we can study the properties of the abstract protocol where the number of repetitions within each
stage goes to in�nity:mn ! 1 . First, the �nal temperature asymptotically achieved here is given by �nding the temperaturee�
associated with the qubit with excited-state populationqN

qN

1 � qN

= e� e�! S ) e� �! S e� ( � � � H )N� = e� e�! S ) e� = � � ; (G8)

where we make use of the de�nition of� in Eq. (G3). We can thus identifyqN = q� , since it is the population associated with
the ideal �nal temperature� � .

We also have the following expression for the total energetic cost of the ideal protocol afterN stages

e� E �
H

=
NX

n =1

n� (qn � 1 � qn ); (G9)

which can alternatively be expressed as

e� E �
H

=
NX

n =1

[(n � 1)� (qn � 1 � qn )] + � (q0 � qN ) (G10)

The sums appearing in the two alternative expressions are the left and right Riemann sums of the integral of the variabley = n�
integrated with respect to the variableq, i.e.,

I := �
Z q�

q0

y dq;

where
q(y)

1 � q(y)
= e� �! S e� ( � � � H )y ; (G11)

from Eq. (G6). Fory > 0, q(y) is monotonically decreasing and so the converse is also true, i.e.,y is monotonically decreasing
w.r.t. q(y). This implies that the integral is bounded by the left and right Riemann sums, so we have

NX

n =1

(n � 1)� (qn � 1 � qn ) �
Z q�

q0

y dq �
NX

n =1

n� (qn � 1 � qn ); (G12)

from which we can deduce that the value of� E �
H

is itself is bounded both ways from Eqs. (G9) and (G10):

Z q�

q0

y dq � e� E �
H

�
Z q�

q0

y dq + � (q0 � q� ): (G13)

The integral itself can by expressed in terms of the free energy of the qubit target system with respect to the environment inverse
temperature� . Expressing the free energy as a function of the excited-state populationq and differentiating w.r.t.q gives

F (q) = hE i (q) �
S(q)

�
= q ! S +

1
�

[qlog(q) + (1 � q) log(1 � q)] : (G14)

@F
@q

= ! S +
1
�

log
�

q
1 � q

�
=

�
! S +

1
�

(� �! S � (� � � H )y)
�

= �
� � � H

�
y: (G15)

Using the above expression, the de�nite integral in Eq. (G11) amounts to

I =
1
�

[F (q� ) � F (q0)] =:
1
�

(F � � F0) ; (G16)
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where we identify the Carnot ef�ciency� = 1 � � H =� and for ease of notation writtenF � := F (q� ) andF0 := F (q0). Thus
we can bounde� E �

H
on both sides

1
�

(F � � F0) � e� E �
H

�
1
�

(F � � F0) + � (q0 � q� ) �
1
�

(F � � F0) +
! S

N

�
� � � �
� � � H

�
; (G17)

where the inequality in the second line follows from the fact thatf qn g forms a decreasing sequence.
We now proceed to consider the cooling protocol with a �nite number of repetitionsmn within each stage. We �rst bound

the difference betweenpn andqn . Using the properties of the exchange unitary under repetitions [38, 58] (in particular, see
Appendix G in Ref. [38]), we have that in each stage

pn � qn

pn � 1 � qn
=

�
1 � N (n )

V

� m n

: (G18)

Thus, the population difference to the asymptotically achievable population given by the virtual temperature shrinks as a power
law w.r.t. the number of repetitions. Since0 < N (n )

V
< 1 (all strict inequalities), three points follow: �rst, the populationqn can

never be attained with a �nite number of steps within the stagen; second, that every repetition cools the system further by some
�nite amount; third, that one can get arbitrarily close toqn by takingmn suf�ciently large. In fact, by our de�nition ofmn , we
have that

pn � qn

pn � 1 � qn
� �: (G19)

From this, we can prove that

pn � qn � � n q0 � �qn + (1 � � )�
n � 1X

j =1

� n � j � 1qj : (G20)

The proof is by induction. Forn = 0 , p0 = q0 (initial state), and forn = 1 , using Eq. (G19)

p1 � q1 � � (p0 � q1)

= � (q0 � q1): (G21)

Suppose that the above statement holds true forpk . Then from Eq. (G19)

pk+1 � qk+1 � � (pk � qk+1 )

= � (pk � qk + qk � qk+1 )

:::

� � k+1 q0 � �qk+1 (1 � � )� +
(k+1) � 1X

j =1

� (k+1) � j � 1qj : (G22)

With this result, we can now bound the difference between the energy cost of this �nite-repetition protocol and that of the
idealised one. We now proceed to prove that

e� EH � e� E �
H

=
NX

n =1

n� (pn � 1 � pn ) �
NX

n =1

n� (qn � 1 � qn ) � �

0

@q0

N � 1X

j =1

� N � j �
N � 1X

j =1

� N � j qj

1

A : (G23)

We again use proof by induction. First note that we can rewrite

NX

n =1

n� (f n � 1 � f n ) = �

 
NX

n =1

f n � 1

!

� N�f N ; (G24)

for f n 2 f pn ; qn g. Therefore, we can rewrite the difference

e� EH � e� E �
H

= �
NX

n =1

(pn � 1 � qn � 1) � N� (pN � qN ) � �

 
NX

n =1

(pn � 1 � qn � 1)

!

; (G25)
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since the last subtracted term is always strictly positive. Consider now the partial sum

Ek =
kX

n =1

(pn � 1 � qn � 1) : (G26)

Fork = 1 , E1 = 0 , sincep0 = q0. Fork = 2 , we have

E1 = ( p1 � q1) � � (q0 � q1) =

0

@q0

1X

j =1

� 2� j �
1X

j =1

� 2� j qj

1

A ; (G27)

which matches the hypothesis of Eq. (G23). Assuming that the same holds true forEk , then forEk+1 , we have

Ek+1 = Ek + ( pk � qk )

�

0

@q0

k � 1X

j =1

� k � j �
k � 1X

j =1

� k � j qj

1

A +

0

@� k q0 + (1 � � )�
k � 1X

j =1

� k � j � 1qj � �qk

1

A

:::

= q0

kX

j =1

� k+1 � j �
kX

j =1

� k+1 � j qj : (G28)

Then, by dropping the second sum, which is a strictly positive quantity, the difference in Eq. (G23) can be further simpli�ed to

e� EH � e� E �
H

� �q0

N � 1X

j =1

� N � j = �q0 �
N � 2X

k=0

� k < �q 0 � (N � 1) < �q 0 �N < ! S

�
� � � �
� � � H

�
�; (G29)

where we use that� < 1. Finally, to upper bound the number of operations required in the protocol, we bound the number of
repetitions within each stage by bounding the total population of the virtual qubit spanned by the levelsf 01; 10gCH as follows:

N (n )
V

= h01j� C(�; ! S + n� ) 
 � H (� H ; n� )j01i + h10j� C(�; ! S + n� ) 
 � H (� H ; n� )j10i

=
e� � H n� + e� � ( ! S + n� )

(1 + e� � H n� )(1 + e� � ( ! S + n� ) )

>
e� � ( ! S + n� )

4
:

) log
h
1 � N (n )

V

i
< log

�
1 �

e� � ( ! S + n� )

4

�

< �
e� � ( ! S + n� )

4
if x 2 (0; 1) ) log(1 � x) < � x.

) �
1

log
h
1 � N (n )

V

i < 4e+ � ( ! S + n� ) (G30)

Thus we can bound the number of repetitions in each stage from Eq. (G4). Noting thatlog(� ) < 0, we have

mn < 4 log (1=� ) e+ � ( ! S + n� ) + 1 : (G31)

For a crude bound, we can replacen by its maximum valueN , and sum over all the stages to �nd an upper bound on the total
number of three-qubit exchange unitaries implemented throughout the entire protocol, which gives

M =
NX

n =1

mn < N
h
4 log (1=� ) e+ � ( ! S + N� ) + 1

i
= N

h
4 log (1=� ) e! S ( � � � � H )=� + 1

i
: (G32)

Also, note thatlim � ! 0 pN = qN = q� . More precisely, using Eq. (G20), we have

pN � q� < �

0

@� N � 1q0 + (1 � � )
N � 1X

j =1

� n � j � 1qj � qN

1

A
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< � (1 + (1 � � )(N � 1)) < �N: (G33)

In summary, we have the following bounds on the protocol in which each stage consists of a �nite number of steps

pN � q� < �N

e� EH <
1
�

(F � � F0) + ! S

�
� � � �
� � � H

� �
1
N

+ �
�

; (G34)

where we combine Eqs. (G17) and (G29) for the second expression. For simplicity, we choose� = 1=N2, so that

pN � q� <
1
N

e� EH <
1
�

(F � � F0) + ! S

�
� � � �
� � � H

� �
2
N

�
: (G35)

Thus, given any �nal temperature (encoded by the populationq� ), and allowed errors� 1 and� 2 for the �nal population and energy
cost respectively, one can always chooseN large enough so that both quantities are within the error threshold. Speci�cally,
choosingN as

N =

&

max
�

� � 1
1 ; 2! S

�
� � � �
� � � H

�
� � 1

2

� '

; (G36)

we automatically have thatpN � q� < � 1 and� EH < (F � � F0)=� + � 2. The total number of unitary operations (each of which
is followed by rethermalisation of the machine) is then bounded by Eq. (G32)

M < N
�

8 log[N ]e! S ( � � � � H )=� + 1
�

: (G37)

We can see from Theorem 10 that the protocol is asymptotically optimal with respect to the energy extracted from the hot
bath.

G2. Qudit Case

The extension of the proof above to the case of qudits is nontrivial. This is because, while for qubits there is only one
energy-resonant subspace that leads to cooling and hence a unique protocol [see Eq. (F3)] that asymptotically attains perfect
cooling at the Carnot-Landauer bound, this is no longer the case for higher-dimensional systems; here, there can be a number
of energy-resonant subspaces that cool the target and the question of optimality hinges crucially on the complex energy-level
structure of all systems involved. Hence, it is not possible to provide a unique unitary that generates the optimal protocol
independently of the subsystem Hamiltonians. Nonetheless, we slightly modify the protocol for the qubit case above to be
implemented on a number of particular three-qubit subspaces of the three-qudit global state such that, at the end of each stage,
the state of the target system is arbitrarily close to the (known) state, which would be achieved in an abstract protocol in the
diverging-time limit. This asymptotically attainable state is precisely that which would be achieved in the coherent-control
paradigm with a machine the same dimension as the joint hot-cold qudits. Thus, we �rst begin by presenting the necessary
steps for the proof in the coherent-control setting, which we then adapt as appropriate for the incoherent setting control. Finally,
summing the overall energy cost of said protocol over all stages saturates the Carnot-Landauer bound, as required.

Proof. An idealised sequence of temperatures and system states.We construct the incoherent protocol in the following
manner. We seek to take the system through a sequence of thermal states starting at inverse temperature� and ending at inverse
temperature� � with N equally spaced intermediary steps, i.e.,

� n = � + n� (� � � H ) ; (G38)

� =
1
N

�
� � � �
� � � H

�
; (G39)

so that� N = � � by construction. This corresponds to taking the system through the following sequence of thermal states

%(n )
S

=
e� � n H S

Z S (H S ; � n )
: (G40)
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Note that, in contrast to the coherent protocol where such a sequence can be traversed by simply swapping the target system
with a sequence of appropriate machines, in the incoherent setting such a protocol is generally not possible as such swaps are
not energy conserving. Nonetheless, we develop a modi�ed protocol that is energy conserving and mimics this idealised one.

Corresponding to each step in the sequence, we de�ne the following quantity, which we eventually show to be related to the
heat drawn from the hot bath:

G(n ) = � n� � E (n )
S

= � n� tr
h
H S

�
%(n )

S
� %(n � 1)

S

�i
: (G41)

We proceed to show that the total
P

n G(n ) that we labelthe idealised heat coste� E �
H

is close to the free energy difference over
the entire sequence. We have

e� E �
H

=
NX

n =1

G(n )

=
NX

n =1

n� tr
h
H S

�
%(n � 1)

S
� %(n )

S

�i
(G42)

=

(
NX

n =1

(n � 1)� tr
h
H S

�
%(n � 1)

S
� %(n )

S

�i
)

+ � tr
h
H S

�
%(0)

S
� %(N )

S

�i
: (G43)

The sums on the second and third lines above, Eqs. (G42) and (G43) respectively, are theright andleft Riemann sums corre-
sponding to the following integral:

I =
Z qf

qi

q(� dx) =
Z qi

qf

qdx;

where n� ! q;

x = tr [ H S %S (q)] ;

%S (q) =
e� [� + q( � � � H )] H S

tr
�
e� [� + q( � � � H )] H S

� : (G44)

We observe thatx is the average energy of the thermal state of temperature� + q(� � � H ), and thusx and q are strictly
monotonically decreasing w.r.t. each other (which explains why the left and right sums are switched). It follows that the
Riemann sums bound the integral

NX

n =1

(n � 1)� tr
h
H S

�
%(n � 1)

S
� %(n )

S

�i
�

Z qi

qf

qdx �
NX

n =1

n� tr
h
H S

�
%(n � 1)

S
� %(n )

S

�i
: (G45)

We can thus bound the idealised heat cost in both directions via

I � e� E �
H

� I + � tr
h
H S

�
%(0)

S
� %(N )

S

�i
: (G46)

The integral in Eq. (G44) can be shown to be equal to the change in free energy of the target system (w.r.t. inverse temperature
� )

F� [%S (q)] = tr [ H S %S (q)] +
1
�

tr [ %S (q) log %S (q)] ;

d
dq

F� [%S (q)] = tr
��

H S +
1S + log %S (q)

�

�
d%S (q)

dq

�
: (G47)

Note that %S (q) and d%S (q) are both always diagonal inH S and full rank for all q 2 R, so we have no problems
with log%S (q), and all of the operators in the expression are well de�ned and commute. Proceeding, we repeatedly use
tr [ d%S (q)] = dtr [ %S (q)] = 0 and label the partition functionZ (q) := tr

�
e� [� + q( � � � H )] H S

�
to obtain

d
dq

F� [%S (q)] = tr
��

H S +
log%S (q)

�

�
d%S (q)

dq

�

= tr
��

H S �
� + q(� � � H )

�
H S � 1S

logZ (q)
�

�
d%S (q)

dq

�
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= � q
�

1 �
� H

�

�
d
dq

tr [ H S %S (q)] = � q�
dx
dq

; (G48)

where we identify the Carnot ef�ciency� for an engine operating between� and� H . The integral thus simpli�es to

I = � � 1 �
F� [%S (qf )] � F� [%S (qi )]

�
=: � � 1� F ( � )

S
: (G49)

The idealised heat cost is thus bounded by

� � 1� F ( � )
S

� e� E �
H

� � � 1� F ( � )
S

+ � tr
h
H S

�
%(0)

S
� %(N )

S

�i
: (G50)

The left inequality is Landauer's bound applied to cooling a target system with HamiltonianH S (see Theorem 5), and the error
term on the right can be bounded quite easily; for instance, for� > 0, we have

tr
h
H S

�
%(0)

S
� %(N )

S

�i
= tr

h�
H S � E min

S
1S

� �
%(0)

S
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H S � E min
S

1S

�
%(0)
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i
sinceH S � E min

S
1S is a positive operator,

� tr
�
�
H S � E min

S
1S

� 1S

dS

�
�

! max
S

dS

; (G51)

where! max
S

:= E max
S

� E min
S

is the largest energy gap in the target system Hamiltonian anddS is the system dimension. We use
the fact that since� (0)

S
is a thermal state of positive temperature, its average energy is less than that of the in�nite temperature

thermal state,1S =dS . Since� / 1=N, it follows that one can always �nd anN large enough such that the error is smaller than
a given value, thereby saturating the Landauer bound.

A sequence of machine Hamiltonians to mimic the idealised sequence.Next we construct a protocol that mimics the above
sequence and obeys the global energy conservation condition imposed in the incoherent-control setting. The protocol is split
into N stages (like above). In each stage, the Hamiltonian of the machine is �xed. The machine here comprises to two parts: the
“cold” part and the “hot” part. The cold part is chosen to begin in a thermal state at temperature� of the Hamiltonian

H C = (1 + n� ) H S (G52)

At this point we note that this sequence of cold-machine states is exactly the same as in the coherent protocol, which would
proceed by simply swapping the full state of target system and machine in each stage. However, that is not possible here since
this is not an energy-preserving operation. To allow for energy-preserving operations, the hot part of the machine consists of
dS (dS � 1)=2 qubits, each corresponding to a pair of levels(i; j ) of the target system (henceforth we takei < j to avoid double
counting), whose energy gap is equal to the difference in energies of the target and cold qubit subspaces (hence rendering the
desired exchange energy resonant)

H ( ij )
H

= [ ! i + (1 + n� )! j � (! j + (1 + n� )! i )] j1ih1j( ij )
H

= n� (! j � ! i ) j1ih1j( ij )
H

; (G53)

where we label the energy eigenvalues ofH S by f ! i g. Each of these hot qubits begins at inverse temperature� H . After every
unitary operation, the cold and hot parts of the machine are rethermalised to their respective initial temperatures.

To understand the choice of machine Hamiltonians, consider the following two energy eigenstates of the machine:ji i C 
j 1i ( ij )
H

andjj i C 
 j 0i ( ij )
H

. The energy difference is

� ( ij ) = ! j (1 + n� ) � ! i (1 + n� ) � n� (! j � ! i ) = ! j � ! i ; (G54)

matching the energy difference between the corresponding pair of energy eigenstates of the target system. Furthermore, calcu-
lating the ratio of populations of the two levels we �nd

g( ij ) =
e� �! j (1+ n� )

e� �! i (1+ n� ) e� � H n� ( ! j � ! i )
= e� ( ! j � ! i )( � + n� ( � � � H )) : (G55)

This corresponds to the Gibbs ratio of a qubit at the temperature� + n� (� � � H ), which is the temperature that de�nes stage
n [see Eq. (G38)]. In summary, we construct a machine featuringdS (dS � 1)=2 qubit subspaces (or virtual qubits), each of the
same energy gap as one pair of energy eigenstates of the system, and all of which have a Gibbs ratio (or virtual temperature)
corresponding thenth temperature of our desired sequence.
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A single step of the protocol: The max exchange.Within each stage of the protocol, a single step consists of a unitary
operation onSCH, followed by the rethermalisation of the machine parts to their respective initial temperatures. We construct
the unitary operation as follows: for every pair(i; j ) of system energy levels, one can calculate the absolute value of the
difference in populations of the following two degenerate eigenstatesji i S jj i C j0i ( ij )

H
andjj i S ji i C j1i ( ij )

H
. This value corresponds

to the amount of population that would move under an exchangeji i S jj i C j0i ( ij )
H

$ j j i S ji i C j1i ( ij )
H

. We then choose the pair with
the largest absolute value of this difference and perform that exchange, with an identity operation applied to all other subspaces.
We call this unitary operation themax exchange. We proceed to prove two statements about the max-exchange operation. First,
that the heat extracted from the hot bath is proportional to the change in average energy of the system; and second, that system
state under repetition of said operation converges to the thermal state of the temperature that de�nes the stagen.

Consider the change in average energy of the target system under the exchange unitary. The only two populations that change
are those of theji i S andjj i S . We label the increase in the population ofji i S as�p . Then, we have

� ES = tr
�
H S

�
%0

S
� %S

��
= � �p (! j � ! i ) : (G56)

On the other hand, the populations of the corresponding hot qubit (i.e., tracing out the target system and cold machine) change
by the same amount, i.e., there is a move of�p from j1i ( ij )

H
to j0i ( ij )

H
. In order to rethermalise the hot qubit, the heat drawn from

the hot bath is thus

e� EH = �p n� (! j � ! i ) = � n� � ES : (G57)

This is an expression conveniently independent of the pair(i; j ) that applies after an arbitrary number of repetitions of the
max-exchange operation (which will use different pairs in general).

Convergence of the max-exchange protocol to the virtual temperature.To show that the max-exchange protocol indeed
converges to the desired system state in each stage of the protocol, we �rst prove a rather general statement: given a state%
diagonal in the energy eigenbasis, if we exchange any qubit subspace within this system with a virtual qubit of a particular
virtual temperature, then the relative entropy of the target system w.r.t. the thermal state of that (virtual) temperature decreases.

To this end, consider the relative entropy of a state%that is diagonal in the energy eigenbasis to a thermal state� . Labelling
the populations of%aspi and those of� asqi , this can be expressed as

D(%jj � ) =
X

k

pk log
�

pk

qk

�
: (G58)

We now focus on a single-qubit subspace labelled byf i; j g, which leads to
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: (G59)

In the last line we renormalise the populations within the qubit subspace and labelled the total populations of the system and
thermal state qubit subspaces of interest byN andNV , respectively. Labelling the normalised states within these subspaces as
%V and� V respectively, we have

D(%jj � ) = N
�
D(%V jj � V ) + log

�
N
NV

��
+

X

k =2f i;j g

pk log
�

pk

qk

�
: (G60)

Suppose now that this qubit subspace of the target system is exchanged with a qubit subspace of any machine that has the same
temperature as the thermal state above. The only object that changes in the the above expression is%V , since the normN remains
the same. In addition,%V always gets closer to� V under such an exchange [38, 58], implying that the relative entropy always
strictly decreases under such an operation.

Returning to the max-exchange protocol, note that by construction, every virtual qubit in the machine that is exchanged with
the qubit subspacef i; j g of the target system in a given stagen has the same virtual temperature,� n = � + n� (� � � H ). Thus the
relative entropy of the system to the thermal state at this temperature always decreases under this operation, unless the operation
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does not shift any population, which happens only at the unique �xed point where every qubit subspace of the system is already
at the virtual temperature� n . By monotone convergence, the relative entropy must converge, and moreover converge to the value
that it has at the �xed point of the operation, which is the thermal state at inverse temperature� n . Note that rather than choosing
the qubit subspace with maximum population difference to exchange we could also have picked at random from among the pairs
f i; j g and convergence would still hold; the max-exchange protocol simply ensures the fastest rate of convergence among these
choices.

Choosing a large enough number of repetitions in each stage so that the overall heat cost is close to the idealised heat
cost. Given that the max-exchange protocol in stagen converges to the thermal state that we label%(n )

S
, given any error� E , we

choose a number of repetitionsmn that is large enough so that the difference between the average energy of the actual �nal state
of this stage, which we labele%(n )

S
, and that of the ideal state%(n )

S
is less than� E . In this case, the total heat cost over all stages is

close to the idealised heat cost
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The number of repetitions in each stagemn required depends only upon the initial choice of� � andN .

Completing the proof. Finally, suppose that one is given any target temperature� � and two arbitrarily small errors,� � for
the cooling and� E for the heat cost, and asked to cool incoherently in such a way that achieves

j� 0 � � � j � � � ; (G62)
�
�
� e� EH � � � 1� F ( � )

S

�
�
� � � E : (G63)

We proceed by �rst choosing a number of stagesN so that the idealised heat coste� E �
H

is within � E
2 to the Carnot-Landauer

bound above. The idealised sequence of temperatures satis�es� N = � � by construction. OnceN is �xed, for each stage from
n = 1 to N � 1 we choose a number of repetitions for each stagemn such that the actual heat cost is within� E

2 of the idealised
heat cost, as discussed above. This ensures that the total heat cost is within� E of the bound. Finally, we check that the number
of repetitions of the last stagemN is large enough for us to be within� � of � � . If not, we increase the number of repetitions (this
can only decrease the error in the heat cost anyway) until we are close enough, as required.

Appendix H: Comparison of Cooling Paradigms and Resources for Imperfect Cooling

Although we have looked at a number of cooling protocols throughout to demonstrate the ability for perfect cooling in the
asymptotic limit, here we focus on imperfect cooling behaviour, i.e., when all resources are restricted to be �nite and thus a
perfectly pure state cannot be attained. We have three main goals in doing so.

1. To illustrate the �nite trade-offs between the trinity of resources (energy, time, control complexity).

2. To compare the behaviour of different constructions of the cooling unitary for machines of the same size (i.e., analysing
the energy-time trade-off for for �xed control complexity).

3. To demonstrate the increase in resources required for cooling in the thermodynamically self-contained paradigm of energy-
preserving unitaries (i.e., incoherent control), as compared to coherently driven unitaries.

H1. Rates of Resource Divergence for Linear Qubit Machine Sequence

Consider cooling a qubit target system with energy gap! S by swapping it sequentially with a sequence ofN machine qubits
of linearly increasing energy gaps. In Appendix G1, we derived the deviation from the idealised heat dissipation in the incoherent
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control setting for a sequence ofN machines [see Eq. (G17)], which we repeat below:

1
�

(F � � F0) � e� E �
H

�
1
�

(F � � F0) +
! S

N

�
� � � �
� � � H

�
: (H1)

We can immediately adapt this result to the paradigm of coherent control by taking� H = 0 and replacing the heat by work,
which yields

� FS � W � � FS +
! S

N

�
� �

�
� 1

�
: (H2)

Since the above inequalities are derived from the left and right Riemann sums of an integral, asN becomes large, one can expect
thatW lies roughly halfway between both extremes; we can thus cast the scaling in the approximate form

�
W � � F

! S

�
N �

1
2

�
� �

�
� 1

�
: (H3)

Thus, we see that the relevant quanti�er of the energy resource here is the extra work cost above the Landauer limit relative to
the system energy. Additionally, the quanti�er of how much said resource is required (per machine qubit) is� � =� � 1, which,
for cold enough �nal temperatures, is approximately the ratio� � =� .

Returning to the incoherent control paradigm, analysing the scaling behaviour between energy and time is more complicated.
On the one hand, the expression above is only slightly modi�ed, with the work being replaced by the heat dissipated multiplied
by the Carnot factor:

�
� � EH � � F

! S

�
N �

1
2

�
� �

�
� 1

�
; (H4)

which is consistent with the work-to-heat ef�ciency of a Carnot engine. However, in the case of incoherent control, since the
population swap only takes place within a subspace of the two-qubit machine, the total population is not completely exchanged
in a single operation (in contrast to that in the coherent control setting). Thus the number of operations here required to transfer
a desired amount of population to the ground state of the target is greater than the number of machine qubitsN . To make a
fair comparison, one could either compare the same number of machine qubits but swap repeatedly (with rethermalisation of the
machine in between operations)—thereby �xing the control complexity at the expense of longer time—or one could increase the
number of machine qubits and count time by the number of two-level swaps—thereby �xing time to be equal at the expense of
increased control complexity overall. We investigate both methods in the coming section.

H2. Comparison of Coherent and Incoherent Control

Intuitively, the incoherent control paradigm requires the utilisation of a greater amount of resources (albeit less overall control
in general) than the coherent control counterpart because of two distinct disadvantages. First, the temperature of the baths plays
a substantial role in cooling performance. Consider the example of aSWAPgate applied between a system and machine qubit: in
the coherent control case, this operation transforms the target system to the state of the thermal machine qubit, characterised by
the Gibbs ratio of ground-state to excited-state population. In the incoherent control case, one requires the addition of a thermal
qubit from the hot bath to render said operation energy preserving; as a result, the Gibbs ratio of the virtual qubit that the target
system swaps with is, in general, worse than that of the coherent control setting, and only becomes equal in the limit of an in�nite
temperature hot bath. This is the �rst disadvantage. The second disadvantage is that in the incoherent control setting, the target
system swaps with only a subspace of the machine rather than the entire one, i.e., it is swapped with a virtual qubit. Thus, the
exchange of population is only partial as compared to the coherent control case: in the limiting case of an in�nite temperature
hot bath, said factor goes to12 for all relevant two-level subspaces. This implies that a greater number of operations, and thus
time, is required in the incoherent control paradigm in order to achieve a similar result as its coherent control counterpart.

We illustrate this behaviour via the following example. The system is a degenerate qubit (beginning in the maximally mixed
state), and we �x the �nal target ground-state population (p = 0 :99, corresponding to� = 1 � p = 0 :01). Even in this simple
case, the optimal �nite-resource protocols with coherent and incoherent control are not known; we therefore compare protocols
from each setting that make use of machines of a similar structure, namely swapping with machine qubits (virtual ones, in the
incoherent control setting) of linearly increasing energy gaps.

More speci�cally, the coherent control cooling protocol employed is that of a sequence of swaps with machine qubits of
linearly increasing energy gaps, and for the �xed target population, we can calculate the surplus work cost over the Landauer
limit as a function of the numberN of operations (which corresponds in this case to the number of machine qubits). In the
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incoherent control case, we take the hot bath to be at in�nite temperature, allowing for the potential saturation of the Landauer
limit as in the coherent case. In this way we isolate the disadvantage that arises due to working in degenerate subspaces in
our analysis. Here too we take a linear sequence of energy gaps for the cold (and hot) baths, with a single operation step
corresponding to a three-level energy-conserving exchange involving the qubit taken from each of the hot and cold parts of
the machine, i.e.,j1i S j0i C j0i H $ j 0i S j1i C j1i H . As mentioned previously, for an incoherent control protocol of �xed overall
machine size, there are essentially two extremal methods of implementation. The �rst is to identifyN two-level subspaces of the
total machine with distinct energy gaps and perform the sequence of virtual swaps between them and the target; in the language
of Appendix G, we therefore haveN different stages with a single step within each stage (no repetitions) before moving on to the
next stage. The second is to takeN=m two-level subspaces and swap the target with each virtual qubitm times before moving
on to the next; in other words, we here haveN=m different stages withm steps (repetitions) within each stage. For the same
�xed ground-state population, we plot the surplus work cost (energy drawn from the hot bath in the case of incoherent control)
against the total machine size and number of two-level unitary swaps, as characterised byN , for both of these incoherent control
adaptations, comparing them to the coherent control paradigm in Fig. 4.

In both control paradigms, we see that the deviation of the energy cost above the Landauer limit scales inversely with the
number of operations [as expected from Eqs. (H3) and (H4)], but the proportionality constant is worse in the case of incoherent
control. Moreover, the incoherent control paradigm with no repetitions within stages outperforms that with multiple repetitions,
as intuitively expected since the former protocol corresponds to one for which the spacing between distinct energy gaps that are
utilised is smaller, allowing us to stay closer to the reversible limit in each step. In our example, the no repetition incoherent
control protocol is around 3 times worse than the coherent control protocol and the incoherent control protocol withm = 5
repetitions is around 5.3 times worse, implying that one would require that many times the number of operations (i.e., that much
more time) to achieve the same performance with incoherent control paradigm as with coherent control.

FIG. 4. Imperfect Cooling with Coherent and Incoherent Control.We compare the performance of coherent and incoherent control protocols
for cooling a degenerate qubit target by swapping it with machine qubits with linearly increasing energy. The �nal ground-state population
is �xed to be 0:99. The inverse of the surplus work costW � � e� SS (with � = 1 ) is plotted (in units of the smallest machine energy gap,
! min

M ) against the total number of unitary operations, with the temperature of the hot bath in the incoherent control protocols set to� H = 1
in order to make meaningful comparison to the coherent control case. We see that the coherent control protocol (blue) outperforms the two
incoherent ones (purple, red) at any given time. As discussed in the text, there are two choices for how to implement an incoherent control
protocol of this type with �xed control complexity: The red line corresponds to a protocol in which a machine (subspace) with the same energy
gap is reused 5 times before moving on to the next; on the other hand, the purple line depicts the case where there are no repetitions within
each stage de�ned by a distinct energy gap in the machine. By inspection, the single-use incoherent protocol (purple) requires approximately
3 times more unitaries to achieve the same ef�ciency as the coherent one (blue), whereas the �ve-repetition incoherent protocol (red) requires
approximately 5.3 times as many unitaries as the coherent one.
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