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Thermodynamics connects our knowledge of the world to our capability to manipulate and thus to control
it. This crucial role of control is exempli ed by the third law of thermodynamics, Nernst's unattainability
principle, which states that in nite resources are required to cool a system to absolute zero temperature. But
what are these resources and how should they be utilised? And how does this relate to Landauer's principle that
famously connects information and thermodynamics? We answer these questions by providing a framework
for identifying the resources that enable the creation of pure quantum states. We show that perfect cooling is
possible with Landauer energy cost given in nite time or control complexity. However, such optimal protocols
require complex unitaries generated by an external work source. Restricting to unitaries that can be run solely via
a heat engine, we derive a novel Carnot-Landauer limit, along with protocols for its saturation. This generalises
Landauer's principle to a fully thermodynamic setting, leading to a uni cation with the third law and emphasises
the importance of control in quantum thermodynamics.

I. INTRODUCTION guantum system and we identify the previously hidden re-
source—eontrol complexity—that must diverge (in the spirit
What is the cost of creating a pure statePure states ©Of Nernst's principle) to do so. Intuitively, the control com-
appear as ubiquitous idealisations in quantum informatioPlexity of a protocol refers to the structure of machine en-
processing and preparing them with high delity is essen-€rgy gaps that the cooling unitary must couple the system to;
tial for quantum technologies such as reliable quantum comwe demonstrate that this energy-level spectrum must approx-
munication [1, 2], high-precision quantum parameter estimalmate a continuum in order to cool with minimal time and
tion [3-5], and fault-tolerant quantum computation [6, 7]. €nergy costs. In short, the ultimate limit on the energetic cost
Fundamentally, pure states are prerequisites for ideal me&f cooling is still provided by the Landauer limit, but in order

the above question, one could turn to Landauer’s principle, At the same time, heat uctuations and short coherence
stating that erasing a bit of information has emergycost  times in quantum technologies [18] demand that both energy
of at leastkg T log(2) [11]. Alternatively, one could con- and time are not only nite, but minimal. Therefore, in ad-
sult Nernst's Unattainabi“ty prinCiple (the third law of ther- dition to proving the necessity of diverging Control Compiex_
modynamics) [17], stating that cooling a physical system tqty for perfect cooling with minimal time and energy, we de-
its ground state requires diverging resources. At the outye|op explicit protocols that saturate the ultimate limits. We
set, it seems that these statements are at odds with one afesmonstrate that mitigating overall heat dissipation comes at
other. However, Landauer’s protocol requires in nite time, the practical cost of controlling ne-tuned interactions that re-
thus identifyingtime as a resource according to the third quire acoherentexternal work source, i.e., a quantum bat-
law [13-17]. Does this mean either in nite energy or time tery [19-23]. From a thermodynamic perspective, this may
are needed to prepare a pure state? seem somewhat unsatisfactory: nonequilibrium resources im-
The perhaps surprising answer we give hererie: We  pjy that the total system is not closed, and the optimal pro-

show that nite energy and time suf ce to perfectly cool any tocol (saturating the Landauer bound) is reminiscent of a

Maxwellian demon with perfect control.

philipguy.taranto@phys.s.u-tokyo.ac.jp; P. T. and F. B. contributed equally. Accordingly, we also consider aincoherentcontrol set-
Y P. T. and F. B. contributed equally. ting restricted to global energy-conserving unitaries with a
? A.B.andR. S. contributed equally. heat bath as thermodynamic energy source. This setting
* marcus.huber@tuwien.ac.at corresponds to minimal overall control, where interactions
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FIG. 1. Framework.We consider the task of cooling a quantum system in two extremal control scenarios, with each step of both paradign
comprising two primitives. The top panel depicts the coherent-control scenario: in the control step (left), an agent can use a wivk source
to implement any global unitary on the syst&rand machineM , which both begin thermal at inverse temperaturén cooling the target,
energy and entropy is transferred to the machine. The machine then rethermalises with its environment (right), thereby dissipating the ene
it gained in the control step. The bottom panel depicts the incoherent-control scenario: the machine is bipartitioned into a cold part at inve
temperature and a hot part at inverse temperatute < . In the control step, the agent switches on an interaction between the three
systems, represented by a global energy-conserving utitaryln the rethermalisation step, the interaction is turned off and both subsystems
of the machine rethermalise to their respective initial temperatures; the hot part draws energy from the heat bath while the cold part dissipz
heat to its environment. In both paradigms, we quantify the control complexity as the effective dimension accessed by the unitary operatior
a given control step (i.e., the dimension of the system-machine Hilbert space upon which the unitary acts nontrivially).

need only be switched on and off to generate transformatotic case, the gained insights also open the door to a better un-
tions, i.e., a heat engine alone drives the dynamics [24—28Herstanding of the intricate relationship between energy, time,
The incoherent-control setting is therefore fully thermody-and control complexity when all resources are nite, which
namically consistent inasmuch as both the machine state igill be crucial for practical applications; we additionally pro-
assumed to be thermal (and to rethermalize between contrelde a preliminary analysis to this end. Lastly, our protocols
steps)and the permitted control operations are those imple-saturating the Carnot-Landauer bound pave the way for ther-
mentable solely via a heat engine. In this paradigm, we shownodynamically driven (i.e., minimal-control) quantum tech-
that the Landauer bound is not attainable, subsequently derivlogies, which, by mitigating the cost of control at the very

a novel limit—which we dub th€arnot-Landauebound—  outset, could lead to tangible advantages.

and construct protocols that saturate it, thereby establishing
its signi cance. The Carnot-Landauer bound follows from an
equality phrased in terms of entropic and energetic quantities
that must hold for any state transformation in the incoherent
control paradigm; in this sense, the Carnot-Landauer equality ) )
adapts the equality version of Landauer’s principle developed L00sely speaking, there are two types of thermodynamic

in Ref. [29] to a fully (quantum) thermodynamic setting. ~ laws: those, like the second law, that bound (changes of)
characteristic quantities during thermodynamic processes, and

Our work thus both generalises Landauer's erasure princithose, like the third law, which state the impossibility of cer-
ple and, at the same time, uni es it with the laws of thermo-tain tasks. Landauer's principle is of the former kind (indeed,
dynamics. By accounting for control complexity, we empha-it can be rephrased as a version of the second law), associating
sise a crucial resource that is oftentimes overlooked but, ag minimal heat dissipation to any logically irreversible pro-
we show, must be taken into account for any operationallycess, thereby placing a fundamental limit on the energy cost
meaningful theory of thermodynamics. Here, we focus ornof computation. The paradigmatic logically irreversible pro-
the asymptotic setting that allows us to connect this resourceess is that of erasing information, i.e., resetting an arbitrary
with Nernst's unattainability principle. Beyond the asymp- state to a blank register. From a physics perspective, said task
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can be rephrased aerfectly coolinga system to the ground system must be coupled to throughout the cooling protocol
state, or more generally, taking an initially full-rank state toand demonstrate its thermodynamic consistency by showing
a rank-de cient one. Note that although there is, in gen- that it indeed must diverge to cool the system to the ground
eral, a distinction between physical cooling and informationstate at minimal energy cost, thereby reconciling the view-
erasure, in this paper we focus on erasing quantum informaoints of Landauer and Nernst.

tion encoded in fundamental degrees of freedom rather than Having established the trinity of relevant resources, we
in logical macrostate sectors, and accordingly use the termsresent three main results:

somewhat interchangeably. This is justi ed because in either

case, the ultimate limitation (be it cooling to absolute zero or 1. Perfect cooling is possible with coherent control pro-

perfectly erasing information) requires a rank-decreasing pro- ~ vided either energy, time, or control complexity di-
cess, which is what we formally analyse. verge. In particular, it is possible in nite time and at

Nernst's unattainability principle is of the latter kind of Landauer energy cost with diverging control complex-
thermodynamic law, stating that perfectly cooling a system ity.

requires diverging resources. The resources typically consid-
ered are energy and time, whose asymptotic trade-off relation
is relatively well established: on the one hand, perfect cooling
can be achieved in nite time at the expense of an energy cost
that diverges as the ground state is approached; on the other
hand, the energy cost can be minimised by implementing a
guasistatic process that saturates the Landauer limit but takes 3
in nitely long. ? '
These two types of thermodynamic laws are intimately re-
lated, but details of their interplay have remained elusive: un-
der which conditions can the Landauer bound be saturated and
what are the minimal resources required to do so? Which pro-
tocols asymptotically create pure states with given (diverging)

resources? What type of control do such protocols require and |n the following, we discuss each of these results in turn

how dif cult are they to implement in practice? We addressin more detail and provide a systematic study concerning

these questions by ConSidering the task of C00|ing a quantuﬁ_'he asymptotic interp|ay of energy, time, and control com-

system in two extremal control paradigms (see Fig. 1): Ongyjexity as thermodynamic resources in two extremal control

driven by acoherentwork source and the other by arcoher-  paradigms, as well as develop insight into the nite-resource

entheat engine. regime for some special cases. We begin by outlining the
After laying out the framework, we proceed to analyse theframework.

relationship between the aforementioned three resources for

cooling. A core idea of this paper originates from the observa-

tion that it is possible to perfectly cool a physical system with || FRAMEWORK: COOLING A PHYSICAL SYSTEM

both nite energy and time. Although said observation is sim-

ple in nature inasmuch as it can be obtained by a shift in per-

spective of Landauer's original protocol, its consequences rug

deep: indeed, the apparent tension between Landauer coolin miltonianH . An auxiliary machineM , initially uncor-

and Nernsts unattainability principle that arises when Onlyr.elated withS and in equilibrium with a reservoir at inverse

energy and time are considered as resources is resolved \ténperature := . is used to cool the target system. The
the inclusion of control complexity as a consideration. Subse- BT

. . - “Initial state ofM is thus of Gibbs form,
guently, we de ne a meaningful notion of control complexity
in terms of the energy-level structure of the machine that the

2. Perfect cooling is possible with incoherent contral, i.e.,
with a heat engine, provided either time or control com-
plexity diverge. On the other hand, it is impossible with
both nite time and control complexity, regardless of
the amount of energy drawn from the heat bath.

No process driven by a nite-temperature heat engine
can (perfectly) cool a quantum system at the Landauer
limit. Nonetheless, the Carnot-Landauer limit, which
we introduce here (as a consequence of a stronger
equality), can be saturated for any heat bath, given ei-
ther diverging time or control complexity.

Consider a target systeBiin an initial state%y described
a unit-trace, positive semide nite operator with associated

e Huw

@

L , , ~ whereH,, is the machine Hamiltonian angd, (;H ,, ) :=
Low-temperature thermal states correspond to t_hose with Iow_ |nf_0rmat|ortr e Hu ts partition function. Throughout this paper we
content, as they have low entropy or small effective support; viewing cool- . . . . . . .
ing more broadly (i.e., not restricting to thermal states and allowing forConSIder _Only Hamlltoman_s with discrete spectra, 1.e., with
arbitrary Hamiltonians), we see that cooling indeed encompasses informaN associated separable Hilbert space that has a countable en-
tion erasure: States with smaller effective support are “colder” than thosergy eigenbasis. Moreover, for the most part we consider
with greater support according to any meaningful notion of “cool” (see nite-dimensional systems (or sequences thereof) and deal

Ref. [30]). e . .
with in nite-dimensional system rately.
2 Note, however, that although the asymptotic trade-off relationship is e-dimensiona systems separately

known, the connection between energy and time in the nite-resource set- S shown in Fig. 1, a single step Pf a cpollng process com-
ting remains unresolved: For instance, if one uses twice the amount of erPliS€s two subprocedures: rst, a joint unitary is implemented
ergy, itis not clear how much faster a given protocol can be implementedduring thecontrol step; second, the machingthermalisego

we provide some preliminary insight to such questions in Sec. VI. the ambient temperature. A COO|iI]:g0tOCO| is determined



by the initial conditions and any concatenation of such prim- Energy Time Complexity
itives®. We consider two extremal control paradigms corre- o1 1 ldd 1)
sponding to two classes _of aIIoweq glob_al transf_ormatlons. S Landauer 11 ldd 1)
The coherent controparadigm permits arbitrary unitaries on o Landauer 1 (1

SM ; in general, these change the total energy but leave the :
global entropy invariant and thus require an external work ' 1 'l (Gaussian)

sourceW. At the other extreme is thacoherent control o Landauer I (Gaussian)
paradigm, where the energy source is a heat bath. Here, the T  Finite (> Landauer) !1 1 (Non-Gaussian)
machineM is bipartitioned: one partC, is connected to a Landauer 1 11 (Gaussian)

cold bath at inverse temperature which serves as a sink for
allhen(ta)rg?]/ an(_j entropy ows; the othel, |Shclorr]1nectgg to TABLE I. Coherent-control cooling protocols for nite-dimensional
a hot bath at Inversg temperaturg » Which provides (qudit) and harmonic oscillator systemsandauer energy cost refers
energy. The composite syste®CHis closed and thus global 5 saturation of Eq. (4) and complexity refers to the proxy measure

unitary transformations are restricted to be energy conservingifective dimension (see Def. 1); time is measured as the number of
The temperature gradient causes a natural heat ow away fromnitary operations with a xed complexity. In the qudit case, the

the hot bath, which carries maximal entropic change with it.system and machine dimensions are eqdal= d,, =: d.

Cooling protocols in this setting can be run with minimal ex-

ternal control, i.e., they require only the switching on and off

of interactions. S(%) S(%, ) (with marginals%, = tr,_, [%,]) is
the mutual information betweeA andB, andD (% ) :=
tr[%dog(W] tr[%og( )] is the relative entropy dfowith re-

ll. COHERENT CONTROL spectto ,with D (% ):= 1 if supd%* supg ]. We de-

rive Eg. (3) and its generalisation to the incoherent-control set-

We begin by considering cooling with coherently controlled ting in Appendix A. The mutual information is non-negative
resources (see Fig. 1, top panel). We rst analyse energyand vanishesiftg, = % % similarly, the relative entropy
time, and control complexity as resources that can be tradei§ non-negative and vanishes¥#= . Dropping these terms
off against one another in order to optimise cooling perfor-leads to the Landauer bound [11]
mance, before focusing more speci cally on the nature and

) e
role of control complexity. S

E o 4)
The Landauer limit holdgxdependentlyf the protocol im-
plemented, i.e., it assumes only tisameunitary was applied
to the target and thermal machine. For large machines, the dis-
sipated heat is typically much greater than the energy change
X X VoIV h | hi of the target; nonetheless, the contributions can be comparable
;anaEted V"'_" a unltgryi onSM involving a thermal machine at the microscopic scale. We assume that the target begins in
Hh = w(GHy) e, equilibrium with the reservoir at inverse temperature.e.,
0/§ =tr, U% 9% )UY : 2) in the initial thermal stat€g = ,(;H ), with no loss of
. generality since such a relaxation can be achieved for free (by
For such a transformation, there are two energy COSts CORyanping the target with a suitable part of the environment:
tributing to the total energy change, which must be drawn,,yever, see Ref. [31] for a discussion of initial state depen-
from a work sourceW. The rst is the energy change of yency of the bound). We track all energetic and entropic quan-
the target E; = tr H (" %) ; the second is that of ities and refer to the asymptotic saturation of Eq. (4) Wih

M

A. Energy, Time, and Control Complexity as Resources

In the coherent-control setting, a transformatignt %4 is

the machine E, = tr H, (% %), where%d =  pure aperfect cooling at the Landauer limit
trg U(% % )UY . The latter is associated with the heat Although Landauer's limit sets the minimum heat that must
dissipated into the environment and is given by [29] be dissipated—and thereby the minimum energy cost—for

cooling any physical system, the third law makes no spec-

- e . . . . R

Ey = €S+ 1(S:M )"/@M * D(% k%) ) i cation that energy must be the resource minimised (or that

whereS(% :=  tr[%dog(%] is the von Neumann entropy, tme mustdiverge). One mightinstead consider using a source

es, = S(%) S(O/Q)zl (A : B), = S(%) + of unbounded energy to perfectly cool a system as quickly as

A R ’ ’ he 2 possible. Additionally, control complexity plays an important

role as a resource, inasmuch as its divergence permits perfect
cooling at the Landauer limit in nite time (see below). As

3 One could refer to botM andthe transformations applied as timachine summarised in Table |. we now present coherently controlled

and call the systeriVl itself the workingmediuminasmuch as the latter t s that fect] | bit ite-di . |
passively facilitates the process, in line with conventional parlance; howProtocals that periectly cool an arbitrary nite-dimensiona

ever, we use the terminology established in the pertinent literature. target system using thermal machines when any one of the
4 Note the differing sign conventions (denoted by the tilde) that we use fothree considered resources—energy, time or control complex-
changes in energies, E, = E2  E,, and in entropies€S, = ity—diverges; moreover, the resources that are kept nite sat-

> . " ! , :
Sx Sy, suchthat energincreasesand entropylecreasesre positive.  yrate protocol-independent ultimate bounds. The following
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thus provides a comprehensive analysis of cooling with re- Sketch of proof.-¥e rst show that any system can be
spect to the trinity of resources that can be traded off amongstooled from% = (;H ) to ( ;H), with ,
each other. using only ! €S, units of energy. Our proof is construc-
tive in the sense that we provide a protocol that achieves the
) ) o ) Landauer energy cost as the number of operations diverges.
B. Perfect Cooling at the Ultimate Limits with In nite The individual interactions in this protocol are of nite con-
Resources trol complexity as they simply swap the target system with
one of a sequence of thermal machines with increasing energy
1. Diverging Energy.-We rst consider the situation in gaps. In this way, the nal state,( ;H,) can be made to
which time and control complexity are xed to be nite, while pe arbitrarily close tgoh0j for any initial temperature. [
the_energy cost is allowed to diverge. Here, we present the fol- The proof is presented in Appendix C, along with a more
lowing: detailed dimension-dependent energy cost function for the

Theorem 1. With diverging energy, any nite-dimensional SPecial case of equally spaced Hamiltonians.

quantum system can be perfectly cooled using a single inter- Through the protocol described above, we see that given a
action of nite complexity. diverging amount of time, the target system can be sequen-

) _ _ ) _ i tially coupled with a machine of nite complexity that rether-
The cooling protocol using diverging energy is the simplestajizes between control steps in such a way that the nal
Here, one exchanges all populations of the target system witfyrget system state is arbitrarily close to the ground state for
those of a thermal machine with suitably large energy gaps t8ny initial temperature. This trade-off between energy and
suf ciently concentrate the initial machine population in the tjme is well known, and we discuss it only brie y in order to
ground state subspace of the target system. This exchange ¥gsip puild intuition and highlight the versatility of our frame-
quires a single system-machine unitary and is of nite Com-york. Alternatively, one can compress all the operations ap-
plexity (in a sense discussed below). Nonetheless, the efjjied in the diverging-time protocol into one global unitary
ergy drawn from the work source in this protocol diverges.inat achieves the same nal states, thereby achieving perfect
Moreover, in addition to being suf cient for perfect cooling ¢qoling at the Landauer limit in a single unit of time but with
with both nite time and control complexity, any protocol that 4, in nitely complex interaction. That is, the diverging tem-
cools perfectly with both nite time and control complexity poral resource of repeated interactions with a single, nite-
requires diverging energy. See Appendix B for details. size machine is replaced by a single interaction with a larger

We now move to consider the situations in which the energyachine of diverging control complexity.

cost is minimised at the expense of either diverging time or 3 Diverging Control Complexity.By reconsidering the
control complexity. Equation (3) provides insight for under- diverging-time protocol above, a trade-off can be made

standing the conditions required for saturating the Landauggetween time and control complexity. As illustrated in
bound. Although for nite-dimensional machines only trivial Fig. 2 one can consider all of the operatiohdy =

processes of the fortd,,, = Us 1, saturatethe Landauer g Hiteg, ... required in said protocol.to make up
limit [29], we show how it can be asymptotically saturated one single joint interactiotdy = lim 1 1’:':1 U =

with nontrivial processes by considering diverging machmee iM utur acting on a larger machine, thus setting the time re-

:Sgh'mrigstfpng;?ggrtrﬁsio%iaﬂe :;ﬁi)?tr ﬁfc%?r:g?irc?r{.s S"?J'?:Euired to be unity (in terms of the number of control opera-
P ymp y ons before the machine rethermalises). In other words, for

: 0 1 i i - . : .

thatl (S : M )eg,, ! Ooand effectlvelyonotodlstulrb the ma- v "nite numberN of unitary transformationsl, there ex-

chine, i.e., yield§ ! 9% suchthaD(f k% ) ! 0. In- igq 4 total Hamiltoniatd ;) and a ni@ timet, that gener-

deed, any correlations created between initially thermal sys- h I f i) = <N U s :

tems would come at the expense of an additional energetff‘:t.eSt © overa tr_ans ormatidsiy o k=1 ko sincet, IS
LA hite, we can set it equal to one without loss of generality by

cost [32—-34] whose minimisation is a problem that has so far ling the Hamiltonian 48 = t. H™) H ¢

only been partially resolved [35]. However, it has been showrjescaling the Hamiltonian a3, ° = ty Ho; . Here, we refer

that for any (strictly) rank nondecreasing process, there exist® the_ limit N_ 'l _as diverging cqntrol comp!exny. Co_m-
a thermal machine and joint unitary such that for any O, pressing a diverging number of nite-complexity operations

. . thus yields a protocol of diverging control complexity. The
e
the heat dissipated satis es E,, S + [29), thereby fact that there exists such an operation that minimises both

;z;l;;egtlggct;‘"eyL;nh?Z‘::rblgrpr:t;[hﬁ'se;eﬁé’vse‘z;gztezég;ﬁgiﬂsp:ﬁ e time and energy requirements follows from our construc-
. ; . tive proof of Theorem 2. We therefore have the following:
ticular, effectively decrease the rank), and provide necessary
conditions on the underlying resources required to do so.  Corollary 1. With diverging control complexity, any nite-

2. Diverging Time.-We now present a protocol that dimensional quantum system can be perfectly cooled at the

uses a diverging number of operations of nite complex-Landauer limitin nite time.
ity to asymptotically attain perfect cooling at the Landauer However, this particular way of constructing complex con-

limit [20, 29, 36]. trol protocols is not necessarily unique. It is thus natural to
Theorem 2. With diverging time, any nite-dimensional wonder if diverging control complexity is a generic feature
guantum system can be perfectly cooled at the Landauer limitecessary to achieve perfect cooling at the Landauer limit
via interactions of nite complexity. in unit time and indeed, how to quantify control complexity

.....



that is operationally meaningful between the extreme cases of
being either very small or divergent, as we now turn to dis-
cuss. Indeed, the inclusion of an explicit quanti er of control
complexity regarding thermodynamic tasks—which, although
crucial for practical purposes, is oftentimes overlooked—is
one of the main novelties of our present work.

IV. CONTROL COMPLEXITY IN QUANTUM
THERMODYNAMICS

Although the protocol described above has diverging con-
trol complexity by construction, one need not construct com-
plex protocols in this way, and so the natural concern becomes

understanding th? g.erllerlc fegtures that enable p?rf_eCt COO“QQG. 2. Complexity.We consider structural (left) and control com-
at the Landauer limit in unit time. To address this issue, Wejexity (right). Structural complexity concerns properties of the ma-
rst provide protocol-independent structural conditions thatchine Hamiltonian. For perfect cooling it is necessary that the largest
must be ful lled by the machine to enab{&) perfect cooling  energy gap diverges [see Eq. (5)]. Moreover, an in nite-dimensional
and(2) cooling at Landauer costombined, these indepen- machine with particular energy-level structure is required for satura-
dent conditions provide a necessary requirement, namely th&on of the Landauer bound. Control complexity refers to properties
the machine must have an unbounded spectrum (from abovéj the unitary that represents a protocol. The yellow box in the fore-
and be in nite-dimensional (respectively) for thssibility ground represents a unltaryl_nvolvmg the entire machine, Whereas_
of (3) perfect cooling at the Landauer limiSuch properties the smaller yellow columns in the background represent a potential
of the machine Hamiltonian de ne thetructural complexity decomposition (e.g., of the diverging-time protocol) into unitades

which sets th tential for how | the target tem involving certain subspaces of the overall machine. Not only must
ch S€ts the potential Tor how cool the target system cay, target system interact with all levels of an in nite-dimensional

be made and at what energy cost. As the name suggests, thig,chine for Landauer-cost cooling, it must do soin a ne-tuned way.
is entailed by the structure of the machine, e.g., the number

of energy gaps and their arrangement, and as such provides a
static notion of complexity. However, given a machine with iih a thermal machine by [29]
particular structural complexity, one may not be able to utilise

said potential due to constraints on the dynamics that can be mn(B) e ' W in(%); %)
implemented. For instance, one may be restricted to only two-
body interactions, or operations involving only a few energy\yhere! max -= max;; j!; !ij denotes the largest energy

levels at a time. Assuming a suf cient structural complexity atgap of the machine Hamiltoniad,, with eigenvalues ;. It

hand, such constraints limit one from optimally manipulatingfoliows that perfect cooling is only possible under two condi-
the systems. Thus, the extent to which a machine's potential iggns: either the machine begins in a pure staté { ), or

utilised depends on properties of the dynamics of a given prog  is unbounded, i.el, ™11 . Requiring < 1 , a di-
tOCOI, i.e., thecontrol ComplexityWe pI’OVide a detailed Study Verging energy gap in the machine Ham”tonian iS thus a nec-
of structural and control complexity in Appendix D, and here essary structural condition for perfect cooling. Independently,
summarise the key methods. another condition required to saturate the Landauer limit can
be derived for any amount of cooling: in Ref. [29], it was
shown that for any nite-dimensional machine, there are cor-
rection terms to the Landauer bound which imply that it can-
not be saturated; these terms only vanish in the limit where
, : , L the machine dimension diverges.

We split the consideration of complexity into two parts:  \ye thys have two independent necessary conditions on the
rst, the protocol-independerstructuralconditions that must  cture of the machine that must be asymptotically ful lled
be ful lled by the machine and, second, the dynaman- 1, 5chieve relevant goals for cooling: the former is required
trol complexityproperties of the interaction that implements ¢, herfect cooling; the latter for cooling at the Landauer limit.
a given protocol (see Fig. 2). Together, these conditions imply the following:

A. Structural & Dynamical Notions of Complexity

Corollary 2. To perfectly cool a target system with en-
ergy cost at the Landauer limit using a thermal machine
w (3H ), the machine must be in nite dimensional and

. I & the maximal energy gap &f,, , must diverge.
Regarding the former, rst note that one can lower bound

the smallest eigenvaluey, of the nal stateO/Q (and hence The unbounded structural properties of the machine sup-
how cold the system can become) aiayunitary interaction  port thepossibilityfor perfect cooling at the Landauer limit;

1. Structural Complexity



we now move to focus on the control properties of the in-De nition 1. Theeffective dimensiois the minimum dimen-
teraction thatealise said potential (see Fig. 2). This leads sion of a subspacg of the joint Hilbert spacéd _, interms
to the distinct notion of control complexity, which differenti- of which the unitary can be decomposedlas = U, 1,-:
ates between protocols that access the machine in a more or off o
less complex manner. The structural complexity properties d® :==mindim( A): Uy, =U, 1,-: (6)
are protocol independent and related to the energy spectrum ,y jitively, given any (suf ciently large) machine dimen-
and _dlmenS|onaI|ty of th_e machlne,_whereas thg control COMgjon, the effective dimension captures how much of the ma-
plexity concerns dynamical properties of the unitary that réppine takes part in the controlled interaction. While any dy-
resents a particular protocol. namics that requires a high amount of control must accord-
ingly have large effective dimension, the converse does not
necessarily follow: there exist dynamics with corresponding
2. Control Complexity large (even in nite) effective dimensions (e.g., Gaussian op-
erations on two harmonic oscillators, such as those enacted
Although it is intuitive that a unitary coupling the system by a beam splitter) that are easily implementable and do not
to many degrees of freedom of the machine should be considequire high levels of control, as we discuss further below.
ered complex, it isa priori unclear how to quantify control Nevertheless, using the de nition above, we show that any
complexity in a manner that both protocol achieving perfect cooling at the Landauer limit nec-
essarily involves interactions between the target and in nitely
1. corresponds to our intuitive understanding of the wordmany energy levels of the machine. In other words, no inter-
“complex”, meaning “dif cult to implement”; and action restricted to a nite-dimensional subspace suf ces.
We begin by demonstrating that the effective dimension
2. is consistent with Nernst's third law in the sense that its(nontrivially) accessed by a unitary (see Def. 1) must di-
divergence is necessary to reach a pure state (when ajerge to achieve perfect cooling at the Landauer limit, thereby
other considered resources are restricted to be nite). providing a good proxy for control complexity in the sense
) ) ) that it aligns with Nernst's third law and provides a neces-
Many notions of complexity put forth throughout the litera- g5y condition. Intuitively, the effective dimension of a uni-
ture to capture the rst point above do not necessarily satisf;_fary operation is the dimension of the subspace of the global
the second, as we discuss later. Here, we take the oppos{@ihert space upon which the unitary acts nontrivially, in
approach and seekminimalnotion of complexity thatis st giher words the part of the joint space that is actually ac-
and foremost consistent with the third law of thermodynam-,ggseq by the control protocol. This quantity can be com-
ics, which we hope to develop further to incorporate the ideg,ted by considering a given cooling protocol and nite unit
of quantifying how dif cult a protocol is to implement. of time T (which we can set equal to unity without loss of
In the following sections, we begin by demonstrating thatgenerality) with respect to which the target and total ma-
any cooling protocol that achieves perfect cooling with min-chine transform unitarily by decomposing the Hamiltonian in
imal time and energy resources requires coupling the targey = e Hsu T in terms of local and interaction terms, i.e.,
system to an in nite-dimensional machine, thereby captur-HSM =H, 1,+1, H, +H,,. The effective dimension
ing a notion of control complexity that satis es the secondihen corresponds tank(H:,). With this de nition at hand,
point above. However, by subsequently analysing the suf \ye have the following:
cient conditions for such optimal cooling, we see that such a
condition is in general insuf cient to achieve said goal; fur- Theorem 3. The unitary representing a cooling protocol
thermore, coupling to an in nite-dimensional machine is notthat saturates the Landauer limit must act nontrivially on
necessarily dif cult to implement in practice in certain exper- an in nite-dimensional subspace efipp(H,, ). This implies
imental platforms. The insights gained here nally motivate defra
our more re ned notion of control complexity, namely that
the system must be coupled to a spectrum of machine ener
gaps that approximate a continuum. This condition is indee
dif cult to achieve in all experimental settings and therefore
provides a reasonable de nition of control complexity inas-
much as it satis es both desiderata outlined above.

Intuitively, we show that if a protocol accesses only a nite-
mensional subspace of the machine, then the machine is
ffectively nite-dimensional inasmuch as a suitable replace-

ment can be made while keeping all quantities relevant for

cooling invariant. Invoking the main result of Ref. [29] then
implies that there are nite-dimensional correction terms such
that the Landauer limit cannot be saturated.

S _ _ _ The effective dimension therefore provides a minimal quan-
B. Effective Dimension as a Notion of Control Complexity ti er for control complexity: it is the quantity that must di-

verge in order to (perfectly) cool at minimal energy cost—

As a rst step in this direction, a good proxy measure ofthus, it satis es the above point 2. Moreover, it requires no

control complexity is the effective dimension of a unitary assumption on the underlying structure of the machine, with
operation, i.e., the dimension of the subspace of the globahe results holding for either collections of nite-dimensional

Hilbert space upon which the unitary acts nontrivially. systems or harmonic oscillators without any restrictions on

the types of individual operations allowed. This highlights a
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certain level of generality regarding the de nition put forth, timated depends on the allowed gate set that is considered
inasmuch as it is not tied to any presupposed structure of thsimple” in general. At the extreme end, i.e., for harmonic-
systems at hand or the ability of the agent to control themoscillator systems and machines, this can be seen from the
Additionally, as we discuss below, in many situations of inter-fact that a single beam-splitter operation (which is a two-mode
est, such as a machine comprising a collection of qubits and/dBaussian operation, corresponding to a simple circuit com-
natural gate-set limitations, said de nition also corresponds tglexity in the usual sense considered for in nite-dimensional
protocols that are dif cult to implement in practice, therefore quantum circuit architectures) already has in nite effective di-
also satisfying the above point 1. However, such additionamension, but is far from suf cient to achieve perfect cooling
restrictions are by no means generic. Moreover, & giori at Landauer cost.
unclear if having a diverging effective dimension is enough As a representative for in nite-dimensional systems, we
to permit perfect cooling with minimal time and energy cost.treat harmonic oscillator target systems separately in Ap-
We now move on to discuss the connection to practical dif - pendix E. In the in nite-dimensional setting, the dif culty
culty in general before analysing suf cient conditions regard-of implementing an operation is often related to the polyno-
ing control complexity. mial degree of its generators. Here, we see some friction
with respect to Eq. (6): as mentioned above, a generic Gaus-
sian unitary operation (i.e., one generated by a Hamiltonian
1. Correspondence to Practical Dif culty at most quadratic in the mode operators) between a harmonic
oscillator target and machine already implies in nite effec-
et'gve dimensionality. In light of this, we rst construct a pro-
tocol that achieves perfect cooling at the Landauer limit with
plies diverging circuit complexity, where the latter is de ned El\éertgf:gge“[;;gaslll?/%g:shi/ dzfg(ljjfggisp?;;igﬁ;IZQSE)IS?;?;IIZTS
in terms of the minimum number of gates (from a predeter mentable (cf. Refs. [22, 37]), but nonetheless with in nite ef-

mined set of possibilities) required to implement the overall__ ~ . ; . . . . :
circuit representing a particular protocol. For instance, conf.eCt'Ve dimensionality according to Def. 1]. This result high-

sidering a qubit system and machines, and the ability to pe|J_|ghts that the polynomial degree of the generators of a partic-

form arbitrary two-qubit gates, the effective dimension is sim-ljlar.IOrOtOCOI Would—.somew_hat countenntwtlvely, since op-
ply the logarithm of the number of distinct machine qubitser"’ltlons corresponding to high polynomial degree are dif -

that the system interacts with throughout the protocol. For an%UIt to achieve in practice-rot provide a suitable measure of

cooling protocol that achieves Landauer energy cost, itis clea ontrol complexity masmuch as its divergence is not neces-
that every one of a diverging number of qubit machines mus ary for Landauer-cost cooling. In contrast, we th(_en pres.ent
take part in the overall transformation. Moreover, the particu—a. protqcol that Qemonstrates that perf(_act cooling is p.OSSIb|e
lar interactions applied can be taken to®&ARyates, which given d|v_erg|ng_ time an(_JI operations acting on_only a nite ef-

require the ability for the agent to be able to perfor@MOT fective dimensionality (i.e., using non-Gaussian operations),

gate, which in turn permits universal quantum computationWitha nite energy cost that is greater than the Landauer limit;

with two-qubit interactions. Thus, given a universal t\No—qubit\’.\’h.eme.r or.not a simi'lar pr°t°?°' that saturates Fhe Landauer
gate set, the circuit required to perform perfect cooling at min-IImIt exists in this sefting remains an open question.
imal energy cost has a complexity that scales with the num-
ber of machine qubits. For higher-dimensional architectures
or further restrictions on the gate set, any meaningful notion 2. Suf ciency for Optimal Cooling
of control complexity will increase accordingly. This means
that the task of cooling a nite-dimensional system with nite-  Thus, in general, accessing an in nite-dimensional ma-
dimensional machines at the Landauer limit is—even with achine subspace is not suf cient for reaching the Landauer
perfect quantum computer—an impossibly dif cult task. limit. Indeed, in all of the protocols that we present, the
However, although our proposed de nition of effective di- degrees of freedom of the machine must be individually ad-
mension as a notion of control complexity is exible inas- dressed in a ne-tuned manner to permute populations opti-
much as it applies to arbitrary system-machine structuresnally, which intuitively corresponds to complicated multipar-
the price of such generality comes with the drawback that itite gates and demonstrates that an operationally meaningful
tends to overestimate the dif culty of implementing a partic- notion of control complexity must take into account factors
ular protocol in practice. In other words, without imposing beyond the effective dimensionality accessed by an operation.
any additional assumptions regarding the situation at handn particular, the interactions couple the target system to a di-
the effective dimension does not necessarily satisfy the abowserging number of subspaces of the machine corresponding
point 1. For example, whilst the effective dimension and theto distinct energy gaps. Moreover, there are a diverging num-
circuit complexity coincide for qubits, in higher-dimensional ber of energy levels of the machine both above and below the
settings, the former overestimates the latter because not atkt excited level of the target. These observations highlight
system-machine subspaces are necessarily required to impkitat ne-tuned control plays an important role. Indeed, both
ment a particular protocol (i.e., although using all such subthe nal temperature of the target as well as the energy cost
spaces provides one way to achieve it, this is not uniquekXequired to achieve this depends upon how the global eigen-
Thus, the extent to which the circuit complexity is overes-values are permuted via the cooling process. First, how cool

Importantly, if one supposes that the system and machin
are nite dimensional, then diverging effective dimension im-



the target becomes depends on the sum of the eigenvalues tlsgistem (for perfect cooling to the ground state, note that one

are placed into the subspace spanned by the ground state. Sesguires! ! 1 ). Let us denote the number of distinct en-

ond, for any xed amount of cooling, the energy cost dependsergy gaps in a ( xed) interval as thenergy-gap varietyMore

on the constrained distribution of eigenvalues within the maformally, we have the following:

chine. Thus, in general, the optimal permutation of eigenval- - ) )

ues depends upon properties of both the target and maching® nition 2. Consider an intervl 5;!,)  R. We de ne

To highlight this, in Appendix D, we consider the task of cool- (€ €nergy-gap variety in terms of the set of machine energy

ing a maximally mixed target system with the additional con-9aps that lie in said interval, i.e., rst construct the set

straint that the operation implemented lowers the temperature Cf = Ll 12 (7

as much as possible. This allows us to derive a closed-form H!'ate) -7 15 -7 =0 ] jti ti2ltateg: ()

expression for the distrjbution olf machine eigenve_uues _alonerhe number of distinct elements in such a set isahergy-

that must be asymptotically satis ed as the machine dimen- :
. . . o . .~ gap variety

sion diverges. Drawing from these insights, in the coming

section we propose a stronger notion of control complexity On the one hand, it is clear that coupling a system to a large

(in the sense that it bounds the effective dimension from benumber of distinct and/or closely spaced energy gaps requires

low and that it corresponds to practical dif culty in virtual ne-tuned control that is dif cult in any experimental setting.

every setting imaginable) in terms of the energy-gap structuren the other, the energy-gap variety lower bounds the effec-

of the machine and demonstrate that this measure too mugiye dimension, and thus it is not clear that it needs to diverge

diverge to cool perfectly with minimal time and energy costs.in order to cool at Landauer energy cost. In Appendix D, we

This concept is even more important in the case where all redemonstrate that the energy-gap variety must indeed diverge

sources are nite, as particular structures of machines and thgnd, additionally, that the set of energy gaps must densely

types of interactions permitted play a crucial role in both howcover a relevant interval (whose endpoints set the amount of

much time or energy is spent cooling a system and how col@ooling possible) in order to perfectly cool at the Landauer
the system can ultimately become (see, e.g., Refs. [38—40]).limit by proving the following:

Theorem 4. In order to cool% 7! j OhQj with a thermal ma-
chine ,, (;H ) at Landauer energy cost with a single con-
trol operation, the global unitary) must couple the system to

, i ) , i a diverging number of distinct energy gaps that densely cover
. This analysis motlvat'es searching for a more detailed nog, intervall! o;1 ), where! o is the smallest energy gap of
tion of control complexity that takes the energy-level struc-y,o target system.

ture of the machine into account, which should hold across all
platforms and dimension scales. The discussion above illus- Taken in combination with its suf ciency to achieve said
trates some key challenges in de ning a measure of controlask, this result posits the energy-gap variety as a better quan-
complexity that satis es natural desiderata: such a measurg er of control complexity than the effective dimension, con-
should correspond to the dif culty of implementing opera- stituting the best thermodynamically meaningful notion of
tions in practice and simultaneously cover all possible physicontrol complexity that we have put forth so far.
cal platforms, including nite-dimensional systems such as, The above theorem establishes the relevance of the energy-
e.g., speci c optical transitions of electrons in the shell of gap variety regarding the ultimate limitations of perfect cool-
trapped ions, and in nite-dimensional systems such as théng. In reality, of course, experimental imperfections abound,
state-space-speci ¢ modes of the electromagnetic eld. Theand so naturally the question arisésw robust is the energy-
effective dimension that we introduce above as a proxy mangap variety and to what extent can it incorporate erroiRe-
ages to cover all such systems and provides a rigorous mathgarding the former: note that the above theorem posits the
matical criterion that every physical protocol will necessarilyimpossibility of cooling at Landauer energy cost unless one
have to ful | in order to cool at minimal energy cost. As we has control over an (in nitely) ne-grained energy-gap struc-
have seen, however, in nite effective dimension is insuf cient ture. Any perturbation away from said structure will result
for cooling at the Landauer limit and it may not be all that dif- in some additional energy requirement for cooling; however,
cult to achieve in continuous-variable setups. This begs thentuitively, small perturbations will correspond to small in-
question of how this minimal de nition of control complex- creases in energy costs. Properly accounting for such im-
ity can be extended in order to more faithfully represent whapacts, e.g., by bounding the additional energy cost in terms
permits saturation of the ultimate limitations and is dif cult to of a difference from the optimal energy-gap structure, is an
achieve in practice. important next step to understand the practical limitations of
Looking at all of our cooling protocols, a common prop- cooling. Regarding the latter point, in reality one never has
erty that seems to be important in minimising the energy cosperfect control over microscopic degrees of freedom. For in-
of cooling is that the system is coupled to a set of machinestance, an immediate experimental imperfection that should
energy gaps that are distributed in such a way that they (ase accounted for is the fact that two energy gaps which are
proximately) densely cover the interval;;! ], where! 1 is  very close together will be practically indistinguishable. Al-
the rst energy gap of the target system dndis the maximal though a full- edged error analysis here would constitute a
energy gap, which sets the nal achievable temperature of thenajor follow-up work, note that such cases can be formally

C. Energy-Gap Variety as a Notion of Control Complexity
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dealt with within our framework by suitably modifying the achieved in this setting as pertinent resources diverge. How-
de nition, i.e., by discretising energy bands to suitably cap-ever, the structure of the hot bath plays a crucial role re-
ture the indistinguishability of energy gaps and/or error mar-garding the resource requirements. In particular, we present
gins. a no-go theorem that states that perfect cooling with a heat
Aside from introducing and highlighting the important role engine using a single unitary of nite control complexity is
of control complexity, we now take a step back to consideimpossible, even given diverging energy drawn from the hot
the notion of overall control at a higher level. It is clear thatbath. This result is in stark contrast to its counterpart in
the protocols that saturate the Landauer limit for the energyhe coherent-control setting, where diverging energy is suf-
cost of cooling require highly controlled microstate interac- cient for perfect cooling and serves to highlight the fact
tions between the system and machine; in turn, such tranghat the incoherent-control setting is a fundamentally distinct
formations necessitate that the agent has access to a versafigradigm that must be considered independently. Here, we
work sourcei.e., either a quantum battery [19-23] or a clas-focus on nite-dimensional systems and leave the analysis of
sical work source with a precise clock [9, 10]. Such control isin nite-dimensional ones to future work.
reminiscent of Maxwell's demon, who can indeed address all
microscopic con gurations at hand. This level of control is,
however, in some sense at odds with the true spirit of thermo- A, Ultimate Limits in the Incoherent Control Paradigm
dynamics. Indeed, the very reason that the machine is taken
to begin as a thermal (Gibbs) state in thermodynamics is pre-

cisely beqause it _provides the microscopic_desc_ription _that i%equality-form) Landauer bound on the minimum heat dissi-
both consistent with macroscopic observations (in particular ated (or, as we phrase it here, the minimum amount of en-

average energy) and makes minimal assumptions regardirﬁqu drawn from the hot bath) can be derived, which we dub

the mformatlon that the agent has about the |n|.t|al state; therfheCarnot-Landauer limit
modynamics as a whole is largely concerned with what can be

In the incoherent-control setting, an adaptation of the

done with minimal information requirements. Beginning with Theorem 5. Let F (%) =t H, %] 1S5(%) be the
this, and then going on to permit dynamical interactions thafee energy of a stat¥ with respéct to a heat bath at inverse
address the full complex microstructure is somewhat Comrafemperature F() = F (°/§) F (%), and let =

1 s . y .

dictory, at least in essence; indeed, it has been argued that .= 2 (0;1) be the Carnot ef ciency with respect to
“Maxwell's demon cannot operate” [41] as an autonomoUShe hot and cold baths. In the incoherent-control setting, the
thermal being. Thus, a more thermodynamically sound Seﬁuantity

ting would also restrict the transformations themselves to be

ones that can be driven with minimal overall control. We now () 4 E ®)
move to analyse the task of cooling within such a context. S "

1 ) )
= S[ S+ S.+ S, +D(Rii%)+ D(Bji%)]

V. INCOHERENT CONTROL (HEAT ENGINE) satis es the inequality

The results presented so far pertain to cooling with the only FS( )+ E, O 9)
restriction being that the machines are initially thermal. In
particular, there are no restrictions on the allowed unitariesEquation (9) holds due to the non-negativity of the sum of
In general, the operations required for cooling are not energjocal entropy changes and the relative-entropy terms. The
conserving and require an external work source. With respederivation is provided in Appendix A, where we also show
to standard considerations of thermodynamics, this may seethat the usual Landauer bound is recovered in the limit of an
somewhat unsatisfactory, as the joint system is, in the cohein nite-temperature heat bath.
ent setting, open to the universe. When quantifying thermo- The incoherent-control setting is fundamentally distinct
dynamic resources, one typically restricts the permitted transrom the coherent-control setting in terms of what can (or
formations to be energy conserving, thereby closing the jointannot) be achieved with given resources. For instance, con-
system and yielding a self-contained theory. sider the case where one wishes to achieve perfect cooling in
We therefore analyse protocols using energy-conservingnit time and with nite control complexity with diverging
unitaries. With this restriction, it is in general not possible toenergy cost. In the coherent-control setting, this task is pos-
cool a target system with machines that are initially thermakible in principle (see Theorem 1). On the other hand, in the
at a single temperature, as was considered in the coherenicoherent-control setting, we have the following no-go theo-
control paradigm [42]. Instead, cooling can be achieved byem (see Appendix F for a proof):
partitioning the machine into one cold subsyst€rthat be-
gins in equilibrium at inverse temperatureand another hot Theorem 6. In the incoherent control scenario, it is not pos-
subsystenH coupled to a heat bath at inverse temperaturesible to perfectly cool any quantum system of nite dimension
L < [38, 42] (see Fig. 1, bottom panel). In other words, in unit time and with nite control complexity, even given di-
one uses a hot and a cold bath to construct a heat engine thatrging energy drawn from the hot bath, for any non-negative
cools the target. As we demonstrate, perfect cooling can biwverse temperature heatbath 2 [0; < 1).
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This result follows from the fact that in the incoherent-control VI. IMPERFECT COOLING WITH FINITE RESOURCES
setting, the target system can only interact with subspaces of
the joint hot-and-cold machine with respect to which it is en-

. The above results set the ultimate limitations for cooling
ergy degenerate. For any operation of xed control complexjnasmuych as the protocols saturate optimal bounds by using

ity, there is always a nite amount of population remaining g erging resources. In reality, however, any practical im-
outside of the accessible subspace, implying that perfect c0ofjementation is limited to having only nite resources at its

ing cannot be achieved, independent of the amount of energyisposal. According to the third law, a perfectly pure state

drawn from the hot bath. cannot be achieved in this scenario. Nonetheless, one can pre-
pare a state of nite temperature by investing said resources
appropriately. In this nite-resource setting, the interplay be-
tween energy, time, and control complexity is rather compli-
cated. First, the cooling performance is stringent upon the
chosen gure of merit for the notion of cool—the ground-state
The above result emphasises the difference between cohgrepulation, purity, average energy, or temperature of the near-
ent and incoherent controlling, which means that & fgriori est thermal state are all reasonable candidates, but they differ
unclear if the Carnot-Landauer bound is attainable and, if son general [42]. Second, the total amount of resources avail-
how to attain it. Indeed, the restriction to energy-conservingable bounds the reachable temperature in any given protocol.
unitaries generally makes it dif cult to tell if the ultimate Third, the details of the protocol itself in uence the energy
bounds can be saturated in the incoherent-control setting, arbst of achieving a desired temperature. In other words, de-
which resources would be required to do so. We present termining the optimal distribution of resources is an extremely
detailed study of cooling in the incoherent-control setting indif cult task in general and remains an open question.
Appendix F, where we prove the following results. We begin We therefore focus here on the paradigmatic special case
by demonstrating incoherent cooling protocols that saturatef cooling a qubit target system by increasing its ground-state
the Landauer bound in the regime where the heat-bath tenpopulation in order to highlight some salient points regarding
perature goes to in nity. We do so by ne tuning the machine cooling to nite temperatures. First, we compare the nite
structure such that the desired cooling transitions between thgerformance of two distinct coherent control protocols that
target system and the cold and hot parts of the machine atgoth asymptotically saturate the Landauer limit; nonetheless,
rendered energy conserving. In particular, we prove the folat any nite time, their performance varies. The rst protocol
lowing: simply swaps the target qubit with one of a sequence of ma-
chine qubits whose energy gaps are distributed linearly; the
Theorem 7. In the incoherent control scenario, for an Second involves interacting the target with a high-dimensional
in nite-temperature hot bath , = 0, any nite-dimensional Machine with a particular degeneracy structure. Although
system can be perfectly cooled at the Landauer limit with dithe latter cannot be decomposed easily into a qubit circuit
verging time via interactions of nite control complexity. Sim- (thereby making it more dif cult to implement in practice),
ilarly, the goal can be achieved in unit time with diverging ON€ can compare the two protocols fairly by xing the total
control complexity. (and effective) dimension to be equal, i.e., comparing the per-
formance of the linear sequential qubit machine protocol after
N +1 qubits have been accessed with that of the latter proto-

. ol with machine dimensio@" ** . In doing so, we see that
we study the more general case of nite-temperature he

. : . e simpler former protocol outperforms the more dif cult lat-
baths. In Appendix G, we detail cooling protocols that satu ter one in terms of the energy cost at nite times, emphasising

gﬁ]th&g:rggéli;ae?}?wsrp':?\;tef_or any nite-temperature heat[he fact that dif cqlty in practice does not necessarily corre-
' ' ' spond to complexity as a thermodynamic resource. Addition-
ally, we analyse the cooling rates at which energy and time can
Theorem 8. In the incoherent control scenario, for any nite- be traded off amongst each other in the linear qubit sequence
temperature hot batlp <, < , any nite-dimensional  protocol by deriving an analytic expression. Lastly, we com-
quantum system can be perfectly cooled at the Carnotpare the performance of a coherent and an incoherent control
Landauer limit given diverging time via nite control com- protocol that use a similar machine structure to achieve a de-
plexity interactions. Similarly, the goal can be achieved insjred nal temperature. We see that the price one must pay for
unit time with diverging control complexity. running the protocol via a heat engine is that either more steps
or more complex operations are required to match the perfor-
As in the coherent-control setting, these protocols use eithgnance of the coherent control setting. This example serves
diverging time or control complexity to asymptotically satu- to elucidate the connection between the two extremal control
rate the Carnot-Landauer bound. The results presented in thggenarios relevant for thermodynamics.
section therefore provide a comprehensive understanding of Although throughout most of the paper we focus on the
the resources required to perfectly cool at minimum energyasymptotic achievability of optimal cooling strategies, the
cost in a setting that aligns with the resource theories of themprotocols that we construct provide insight into how said
modynamics. asymptotic limits are approached. This facilitates a better un-

B. Saturating the Carnot-Landauer Limit

Following our analysis of in nite-temperature heat baths,
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derstanding of the more practically relevant questions that are
constrained when all resources are restricted to be nite: i)
how cold can the target system be madef ii) at what en-

ergy cost?In line with Nernst's third law, the answer to the
former question cannot be perfectly cold (i.e., zero tempera-
ture). The answer depends upon how said resources are con-
gured and utilized. For instance, given a single unitary in-
teraction of nite complexity in the coherent-control setting,
the ground-state population of the output state can be upper
bounded in terms of the largest energy gap of the machine,
I max [S€e Eq. (5)]. On the other hand, supposing that one
can reuse a single machine system multiple times, then as the
number of operation steps increases, the ground-state popu-
lation of the output state approach@s+ e ' m) ! from

pelow [42]. There IS clearly a trade-off relatlon. here betweer]:lG. 3. Imperfect CoolingWe compare the cooling performance of
tlmg and Complex'w' and a systematic analygls of the rate a degenerate qubit target system using eitiemachine qubits of
which these quantities can be traded off against one anoth@fearly increasing energy accessed sequentially or a single unitary
warrants further investigation. Similarly, the energy cost toon a2 -dimensional machine, the latter being a nite adaptation of
reach a desired nal temperature also depends upon the distriprotocol presented in Ref. [29]. We set= 1, choose units such
bution of resources, as we now examine. that~ = ks = 1,and x 1 to be the desired nal ground-

Given access to a machine of a certain size (as measurébate population of the target. We plot the .inver.se of the excess work
by its dimension), one could askvhat is the optimal con- fncikﬁggvgntgre Lar;ga#%r I(I:rc?r?vrmin ir?gt Shneusrn:s I?Jtst\?v?)rsknlaggisi;
guration of machine energy SpeCtru.m and global unitary to both cases sc?’;l)llei Wll“% ,l. Interes?ingly, we seepthat the protocol
cool a system as ef Clentl_y as pOSS|bIeH>er_e, We comparé i, \which the target is sequentially swapped with machine qubits out-
two contrasting constructions for the cooling unitary in the herforms that which uses a high-dimensional unitary (at equal overall
coherent-control setting for a qubit target system (with energy:ontrol complexity) in terms of energy cost required to reach a de-
gap! ;)—both of which asymptotically achieve Landauer costsired temperature.
cooling, but whose nite behaviour differs. The rst protocol
considers a machine &f qubits whose energy gaps increase
linearly from the rst excited state energy level of the sys-
tem!; = |  to some maximum energy level, = ! max
which dictates the nal achievable temperature. In this proto-
col, the target system is swapped sequentially with each of the

N qubits in order of increasing energy gaps; we hence refer tyjhereas the former a composition of qubit swaps; although
it as thelinear qubit machine sequenc&he second protocol poth protocols have the same effective dimension in this com-
we consider is presented in full in Appendix D4 and inspiredparison overall, this highlights that dif culty in the lab set-
by one presented in Ref. [29] (see Appendix D therein); Weing need not correspond to resourcefulness in a thermody-
hence refer to it as the Reeb & W¢RW) protocol. Here, the  namic sense. Indeed, developing optimal nite cooling strate-
global unitary acts on the system and a high-dimensional magjes for arbitrary systems and machines is dif cult in general
chine with an equally spaced Hamiltonian whose degeneracynd remains an important open question. Nonetheless, in Ap-
doubles with each increasing energy level, i.e., it has a sinpendix H, we derive the rate of resource divergence of the se-

gular ground state, a twofold degenerate rst excited state, @uential qubit protocol to further clarify the trade-off between
fourfold degenerate second excited state, and so on; the najme and energy for this protocol.

energy level has an extra state so that the total dimension is
2N+1 (whereN is the number of energy levels). In particular,
the unitary performs the permutation that places the maximal Finally, we contrast the two extremal thermodynamic
amount of population in the ground state of the target SySte’Tbaradigms considered by comparing the energy cost of a co-
Due to the structure of both protocols, one can make a faiherently controlled cooling protocol to an incoherently con-
comparison between them, contrasting the single unitary on ggjled one that achieves the same nal ground-state popula-
2\ -dimensional machine in the RW protocol versus the comyign Intuitively, the latter setting requires more resources to
position ofN two-qubitSWARunitaries in the linear machiné achjeve the same performance as the former due to the fact
sequence, i.e., such that both protocols access a machine @ only energy-resonant subspaces can be accessed by the
the same size overall. unitary, and hence only a subspace of the full machine is us-
As shown in Fig. 3, although both protocols asymptoticallyable. This implies that a greater number of operations (of xed
tend to the Landauer limit, their nite behaviour differs. In- control complexity) are required to achieve similar results as
deed, the work cost of the linear qubit machine sequence prahe coherent setting, as demonstrated in Appendix H explic-
tocol outperforms that of the RW protocol. This is somewhatitly. Indeed, determining the optimal cooling protocols for a
surprising, as the latter is a complex high-dimensional unitaryange of realistic assumptions remains a major open avenue.
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VIl. DISCUSSION rather than logical degrees of freedom. Our reasoning here
is twofold: rstly, the ultimate limitations that we aim to un-
Relation to Previous Works derstand are the same whether one wishes to cool a physi-

cal system or erase information; in other words, although it

A vast amount of the literature concerning quantum ther "y be possible to save some nite trade-off costs for im-

modynamics considers resource theories (see Refs. [43, 4§ﬁrfect erasure in the coarse-grained setting, the resources re-

; L ired to perform a rank-reducing process asymptotically di-
and references therein), whose central questionlst trans- . L .
formations are possible given particular resources, and how/€'9€ 1N both cases. Secondly, it is much more dif cult to

o il el o & eSO s 10 SOITeT uprpostons i e case e nrnaton
tive sheds light on what is possible in principle, it does not y * 9

per se concern itself with the potential implementation of saiaalLm'curgiiiﬁsctgn?eu'tgrzh;sn? t((l)ngﬁ(cagaéh:?\fgr;;nﬂijr?rir:efii?n
transformations. Yet, the unitary operations considered in ya P

: ; A amental degrees of freedom). For erasing quantum infor-
resource theory will themselves require certain resources t 9 ) 94

implement in practice. Focusing only on a resource—theoretiénatlon using bulk (classical) cooling (i.e., coupling to a suit-

perspective would thus overlook the questithaw does one ably engineered cold bath), the r.ellevant condition_ i.S nonde-
optimally use said resourcefQur results focus on this latter generacy of the ground state; additionally, many original Lan-

question and highlight the role of control complexity in opti- dauer thought experiments consider degenerate Hamiltonians
mising resource use for the computational states. In contrast, our protocols are
9 ' . . . . _based upon directly controlled cooling, which works indepen-
Concurrently, by considering arbitrary unitary operations

(akin to our coherent-control paradigm without limitations on dently of the target system Hamiltonian and as such bridges

machine size) Refs. [20, 36] and [29], studied the potentia}he gap between various perspectives. Moving forward, it

aturation of the second law of thermodvnamics and I_an\_/vill be interesting to explore how information can be erased
3a uer‘sllimit respectively. References [ZO]B;nd [36] develo cheaper if it is encoded in a coarse-grained fashion, in order

au , Tesp y. Reterel . P35 better square our fundamental results presented here with
similar protocol to our diverging time protocol in the context

of work extraction and demonstrate its optimality for saturat-E»(pe.”mental demonstrations. Doing so would require nite
ina the second law. However. these works do not discuss thversmns_of all of the systems and resources that we analyse
g ; . ’ X . ﬁere, which we leave for future exploration.
practical viewpoint that the goal can be achieved in a smaller
number of operations by allowing the latter to be more com-
plex, as we emphasise. On the other hand, Ref. [29] consid- _
ers the resources required for saturation of the Landauer limit Conclusions & Outlook
and show an important result regarding structural complex-
ity, namely that the machine must be in nite dimensional to The results of this work have wide-ranging implications.
cool at the Landauer limit. Our analysis regarding complexA\e have both generalised and uni ed Landauer's bound with
ity begins here and continues to elucidate the key complexityespect to the laws of thermodynamics. In particular, we have
properties that enhance the ef ciency of a cooling protocol.posed the ultimate limitations for cooling quantum systems or
In particular, we show that an in nite-dimensional machine is erasing quantum information in terms of resource costs and
not suf cient unless the controlled unitary indeed accesses thpresented protocols that asymptotically saturate these limits.
entire machine. This rst leads to the notion of “effective di- Indeed, while it is well known that heat and time require-
mension”, which provides a good proxy for control complex- ments must be minimised to combat the detrimental effects
ity that is consistent with Nernst's third law for all types of of uctuation-induced errors and short decoherence times on
guantum machines—from nite-dimensional systems to harquantum technologies [18], we have shown that this comes
monic oscillators. Moreover, we highlight that the optimal in- at a practical cost of greater control. In particular, we have
teractions must be netuned, i.e., they must couple the systerdemonstrated the necessity of implementing ne-tuned inter-
to particular energy gaps of the machine in a speci ¢ con g- actions involving a diverging number of energy levels to min-
uration, paving the way for a more nuanced de nition of con-imise energy and time costs, which serves to deliver a cau-
trol complexity that takes into account the complicated andionary message: control complexity must be accounted for to
precise level of control required, as we present in terms of théuild operationally meaningful resource theories of quantum
“energy-gap variety”. Lastly, we emphasise that the latter disthermodynamics. This result posits the energy-gap variety
cussion concerns the coherent-control scenario, which is onlgiccessed by a unitary protocol as a meaningful quanti er of
one of the extremal control paradigms that we consider. Irtontrol complexity that is both fully consistent with the third
addition, we consider the task of cooling in a more thermodaw of thermodynamics and chimes well with what is dif cult
dynamically consistent setting, namely the incoherent-controfo achieve in practice. Our analysis of the incoherent-control
paradigm. There we derive the Carnot-Landauer equality angetting further provides pragmatic ultimate limitations for the
consequent inequality, which are adaptations of the Landaueacenario where minimal control is required, in the sense that
equality [29] and inequality [11], respectively, where the pro-all transformations are driven by thermodynamic energy and
tocol can only be run via a heat engine. entropy ows between two heat baths, which could be viewed
On the more practical side, note that our work here conas a thermodynamically driven quantum computer [45]. Nev-
cerns erasing quantum information encoded in fundamentartheless, the intricate relationship between various resources
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Appendix A: Equality Forms of the (Carnot-)Landauer Limit

In this section, we present lower bounds on the energy change of the machine (or heat dissipated into its environment) in tel
of the entropy change of the target system, both in the coherent and incoherent-control settings outlined in the main text. In-
coherent setting, this amounts to the well-known Landauer principle [11], whereas the incoherent setting requires an extensiol
this derivation. These lower bounds are important, because they put limits on the optimal energetic performance of the machi
for cooling. Note, nally, that the initial state of the machine is diagonal in its energy eigenbasis and must remain so for an
process saturating the (Carnot-)Landauer limit; moreover, the target begins similarly and ends up in the go@ptabten
perfect cooling is achieved. As a result, all quantities relevant to perfect cooling at the (Carnot-)Landauer lingt can be comput
in terms of their “clas§_i,cal" counterparts, i.84, ! Pp = (Po;::i;pa) withp, = € En tr[H% ]! h Eip, == paEn,
S(%)! S(p):= ZPnlog(pn),Z(;H )= e Er, andsoon. Nonetheless, all of the results presented hold for
the more general “quantum” properties.

Al. Coherent-Control Paradigm: The Landauer Limit

The coherent setting was already studied in detail in Ref. [29], where the authors derived an equality version of Landaue
principle. We restate the results here for convenience, since we will also use them in the incoherent paradigm. Recall ti
the setting we consider consists of two parts, the target syStemd the machind . In the beginning, the joint state is
%, =% , (;H, ) for some arbitrary (but xed) Hamiltoniakl,, and 2 R. Note that any full-rank stat&can be
associated to some chosen temperatyrahich sets the energy scale, and a Hamiltorbre L log (%; as we consider
arbitrary Hamiltonians, we only write the state dependence on these parameters when necessary. If the state is not full re
the rank can be used to rede ne the dimension. We assume that both systems are nite dimensionalbelatglobal
unitary onSM . We write%§, = U[% , (;H, )]UY and denote byf and9f the respective reduced states. The
quantityl (S : M )og =~ = 3(%) + S(%B) S(%A, ) is the nal mutual information betwee8 andM andD (% jj% ) =

tr O/Q Iog("/g ) tr 0/@ log(% ) is the relative entropy of the nal machine state with respect to its initial state.

Lemma 1([29, Lemma 2]) Let the setting be as above. Then

[S(B) S(%®)I+[S(AB) S(%)=1(S:M)y, O (A1)
Proof. We note that
[S(B) S(R)I+[S(B) S(%)=SAB)+S(h) SA, ) (A2)
since the von Neumann entropy is additive for product states and invariant under unitary evolution. The assertion follows fro
the de nition of the mutual information and the fact that it is non-negative. O

Theorem 9(Equality form of Landauer's principle, [29, Theorem 3])et the setting be as above. Then
t[H, B %) [S(%) SEI=1(S:M)y, +DARj%) O (A3)
Proof. From Lemma 1, it follows that
[S(%) SO+ 1(S: M), =SOB) S ): (A4)

Using the factthatg = , (;H , ), weinferthatD(% jj% )= S(B)+ t[H, B 1+logltr(e " v )l andS(% )=
tr[H,, % ]+log[tr( e " w)]. Re-expressing the rst of these f@(%& ) and inserting both into Eq. (A4) yields the claimed
equality. The inequality results from non-negativity of relative entropy and mutual information. This completes the proof.
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A2. Incoherent-Control Paradigm: The Carnot-Landauer Limit

Landauer's principle provides a relationship between how much heat must necessarily be dissipated into the thermal ba
ground environment upon manipulating the entropy of a given quantum system. Until now, we have assumed that the syst
of interest can interact arbitrarily with its environment (i.e., the machine); in other words, we have considered general joil
unitary interactions between system and machine, without restriction. In doing so, we have tacitly assumed the ability to drz
energy from some external resource (i.e., a work source) in order to implement said unitaries, which are in general not ene
preserving. The particularities of such a resource are left as an abstraction. However, from a thermodynamicists' perspecti
this setting may seem somewhat unsatisfactory, as the joint target-machine system is not energetically closed. In order to pro
a more self-contained picture of the cooling procedure, one can explicitly include the energy resource, modelled as a quant
system itself, into the setting.

To this end, note rst that said resource must be out of thermal equilibrium with respect to the target and machine in order
perform any meaningful thermodynamic transformation. Furthermore, it is sensible to assume that the energy resource sys
is in thermal equilibrium with its own environment to begin with. The joint target-machine-resource system is then considere
to be energetically closed; as such, global unitaries in this setting are restricted to be energy conserving. In order to act ¢
resource for cooling the target in this picture, the energy source here must begin in equilibrium with a heat bath that is hott
than the initial temperature of the machine (assuming that the machine and resource both begin in thermal states), such tf
natural heat ow is induced that leads the environment of the machine to act as a nal heat sink. This setting is what we cz
the incoherent-control scenario. In this context, Landauer's principle translates to studying the relationship between the h
that is necessarily dissipated into the machine's environment upon manipulating the entropy of the target system. Finally, ne
that the relationship between the coherent and the incoherent-control paradigms is interesting in itself: while on the one he
the incoherent setting includes an additional system and therefore increases the dimensionality of the overall joint system,
the other hand by restricting the transformations on this larger space to be energy conserving, one limits the orbit of attaina
states.

Now let us consider the incoherent-control setting. Here, we have the target sysdaohthe machine comprises of one
part C coupled to the cold bath and anothércoupled to the hot bath. We assume that all systems are nite-dimensional.
Every subsystenf is associated to a Hamiltonigid, andC, H are initially in a thermal state; the cold bath has inverse
temperature and the hot bath has inverse temperatufe< . We assume, . Thus, the initial joint state i, =
% (;H.) . (.:H,). The global evolution o8 CHis implemented via a unitayy, leading too/QCH = U(%,, VY.

We further assume that the unitary evolution on the joint system is energy conservifjy; ie,,+ H. + H,] = 0. We write

S, = S(O/Q) S(%) for the entropy change on subsystémand E, :=tr[ H, (O/Q % )] for the average energy change.
Moreover, the free energy of a stéfe with respect to the inverse temperaturs F (%) =tr[ H, %1 1S(%).

In the incoherent setting, it makes sense to look at the energy decrease in the ot siatte the hot bath can be seen as the
energetic resource one must to expend in order to cool the sy&t@tternatively, as we present after the following theorem,
one can consider the energy dissipated into the cold®athich serves as the heat sink).

Theorem 10. In the above setting, it holds that
1 .. .
FOO+ E,= =[S+ S+ S, +D(ji%)+ DAi%)] O (AS)

where(0;1)3 =1 = isthe Carnotefciencyand F{ ) =F (%) F (%).
Proof. Let us consider
1(S:C:H)og, = S(A)+ S+ S(B) SA.,) O (AB)

Note that the quantity(S : C: H)o@CH , which quanti es the tripartite mutual information of the sté@H , IS non-negative
via subadditivityS(% ) + S(%) S(%, ) for any statédq, . Furthermore, since the von Neumann entropy is invariant under
unitary transformations and additive for tensor product states, we have

I(S:C:H)yg, = S+ Sc+ S,: (A7)
We also have that
Sc= E. D(%ii%) (A8)
and

S.= . E. DO4i%): (A9)
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Thus,
I(S:C:H)yg = S,+ E. D@Bi%)+ ., E. DRii%): (A10)
Since the unitary is energy conserving, we infer th&, + E_+ E, =0. Hence, we have

S, Ec+( ., ) E,=1(S:CiH)sg  +D(%Aii%)+ D(ARii%): (A11)

Using the free energy, we can rewrite this as
[F (A) F (%) ( ) E. =1(S:C:H)y  + D(%ij%)+ D(Aii%): (A12)

Dividing by , we obtain the assertion, since, in particuldl$ : C: H)o@ + D(°/§jj°/g) + D(°/§ ii%) 0by the non-
negativity of each term. O

In particular, we have shown that the energy extracted from the hot bath is lower-bounded by the increase in free ener
weighted by the inverse Carnot ef ciency:

WH, (% 4] IIF CB) F () (A13)

Note that if% = .(;H ), the r.h.s. is non-negative for any nontrivial thermodynamic process, i.e., any for which the target
system is heated or—of particular relevance for us—cooled. This follows by the Gibbs variational principle, which states th
the free energy d¥ds minimal iff %is the corresponding Gibbs state.
Finally, in order to make a more concrete connection to the spirit of Landauer's original derivation, note that one can consid
bounding the heat dissipated into the cold bath, rather than that drawn from the hot bath. Substijtirg ( E, + E.)
into Eq. (A10) leads to
es, E;+( ) E. O (A14)

H

which recovers the standard Landauer bound for the dissipated heat in the limit of an in nitely hot heat bath,!i.eQ.

Appendix B: Diverging Energy
B1. Sufciency: Diverging Energy Cooling Protocol

This cooling protocol is arguably the simplest of those presented. The thermal Qppulations of any target system can
exchanged with a machine system of the same dimension, in the thermal dtgte of! ,, ﬁzol njnhnj. As!,, '1 ,the
machine state,, ( ;H ,, ) approache§Oh0j,, independently of (aslong as 6 0). Such a population-exchange operation
is a single interaction (i.e., the protocol occurs in unit time), which is of nite complexity (in a sense that we discuss below)

However, the energy drawn from the resow¢aipon performing sai@WAPRperation is atleast = (p" p®)(1, ! Dy,
wherepgl) is the initial population of the rst excited level of systeand! gl) is the rst energy eigenvalue of the target system.
Denoting byl & the energy eigenvalue of thé& excited level of the target system, we have above assumedhat 0 (which

we do for all Hamiltonians without loss of generality) angl > ! éd D As such, perfect cooling will incur diverging energy
cost.

B2. Necessity of Diverging Energy for Protocols with Finite Time and Control Complexity

Consider the following HamiltonianE for the target system and machine with nite but otherwise arbitrary energy levels

H, 2 0 ! (”)Jnhnjs andH,, = ﬁ“io ! (”)jnthM , respectively. For any nite inverse temperaturgthe initial

thermal states,(;H () and , (; H . ) are of full rank. Suppose now that one can implement a single unitary transformation
(i.e., a unit tlme protocol) of nite control complexity on the joint target and machine, yielding the joint output°/§;tﬂatec

tr, U(.,(;HS) <(;H,))UY , and wishes to attain perfect cooling of the target in doing so. By invariance of the rank
under unitary transformations and the fact that the system and machine begin uncorrelated, we have

rank[ ¢ (;H ¢)lrank[ , (;H ,)I=rank[%8 1 rank[%8]rank[%} I; (B1)
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where the inequality follows from the subadditivity of th&myi-zero entropy [48], which is the logarithm of the rank. To
achieve perfect cooling of the target, one must (at least asymptotically) Eﬁtﬂ(’[?/@] < rank[ ((;H )], which implies that
rank[O/g 1> rank[ ,, (;H ,, )]. However, if this condition is achieved, thé)‘[o/g k , (;H,, )] diverges, implying a diverging
energy cost by Eq. (3). The above argument already appears in Ref. [29].

The other situation that one must consider is the case where one at@nsuah thatrank[O/Q] = rank[ ((;H )] but
nonetheles&’g is arbitrarily close to a pure state, as is the case, for instance, in the protocols that we present. Consider a seque
of machine4” and unitaries)(") such tha®4) ! 9% andU) ! U. Note that since we xed the dimensions $fandM ,
any sequence of machines has a converging subsequence by the Bolzano-Weierstrass theorem and the fact that the set of qu:
states is compact. Hergg andU achieve perfect cooling. If we %4, we obtain a corresponding sequeiieg Y1) such that
(°/§ Y °/§ . Crucially, here, since we restrict the unitary transformation to be of nite control complexity, the %jatesd
98 are effectively nite dimensional, in the sense that whatever their true dimension, they can be replaced by nite-dimension:
versions without changing any of the relevant quantities (see Appendix D). Since the relative étrgpy! D (% ) is lower
semicontinuous [49, 50] and sinB%8 ji% ) ! 1 by the arguments above, we infer tHaf(%8 )1 jjA)] 11 asi!1
This argument holds independently m‘nk[O/Q]; in particular, for the special casank[o/g] = rank[ ((;H )] that we are
considering here. Thus, to approach perfect cooling in nite time and with nite control complexity, one would need a diverging
energy cost. Thus, we see that within the resource trinity of energy, time, and control complexity, if the latter two are nite, the
energy must diverge to asymptotically achieve a pure state. Whether or not there exist other (unaccounted for) resources
allow one to achieve this with all three of the aforementioned resources being nite remains an open question.

Importantly, the above argument no longer holds if the time or control complexity is allowed to diverge. In such cases, bo
% andoﬁ can be in nite dimensional, and because of this the rank argument no longer applies and the relative entropy do
not necessarily diverge in the limit of perfect cooling. In contrast, as we show, it is even possible to saturate the Landauer bou

Appendix C: Diverging Time Cooling Protocol for Finite-Dimensional Systems
C1. Proof of Theorem 2

Proof. Consider a target systegof dimensiond with associated Hamiltonian

y(l
Ho= ! yjkhki,; (C1)
k=0

where we also settg = 0 without loss of generality. Consider also the machivieto be composed oN subsystems,

HM = (1+ n)H,; (C2)

where = ( max )=(N ). We rst cool the system initially at nonzero to some xed, nite mnax Which we eventually
take max! 1 in order to asymptotically achieve perfect cooling. We treat the casd as a limiting case of ! 0: here,
as ! O,weletN!1 suchthatN !'1 | e.g., we specify a suitable functidh( ) suchthatN( )!1 “faster” than

I 0.

We now show that, given the ability to perform a diverging number of operations on such a con guration, one can reach tf
target state ( max H). In particular, we show that the protocol presented uses the minimal amount of energy to do so, an
explicitly calculate this to be €S units of energy, wher€S := S[ ((;H )]  S[ <( maxHs)]. In other words, as the
number of operations in the protocol diverges, we approach perfect cooling at the Landauer limit, thereby saturating the ultim:
bound.

The diverging time cooling protocol is as follows. At each step, the target system interacts with a single machine labelled |
n via the SWAPRperator

% 1
Sy L= ji;jhjijsm,: (C3)
ij =0

As the target and machine subsystems considered here are of the same dimension, we drop the subscript on the states assc
to each subsystem, for ease of notation. Such a transformation is, in general, not energy conserving, but one can calculate
energy change for both the target system and the machine duerit iheeraction as
(n) " (n) ! n (n 1) I
n) — . n . n 1 .
EM=tr Hg (GHJY) tr Hy (GHT V) (C4)
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and so the total energy change of the system over the @htstep protocol is given by

X h i h i
E, = EM=tr H, GHM) tr Hg (GH @) (C5)
n=1
The energy change of the machine subsystem that is swapped with the target system at each step is given by
h i h i %1 h i
EM=tr HM GHE D) r B GHIY) = @+ pGHE D) pGHY) 5 (CO)
k=0

wherep(;H (W) = e @ Mte=zy (;H (M) is the populatiop in thektih energy level of the thermal state of th&
machine subsystem at inverse temperatymith Zy , (; H A(A”)) =treHu being the partition function.

By summing the contributions of the energy changes in each step, one can obtain the total energy change for the ove
machine throughout the entire process:

X XK1 h i
N) — — . 1 . .
EMN = E{M = @+n)le peCGH M D) pGH M) (C7)

n=1 n=1 k=0
In general, it is complicated to calculate the energy cost for the protocol up until a nite timé&lstejmce this depends on the
full energy structure of the target system and machine subsystems involved (we return to resolve this problem for the spec
case of equally spaced system and machine Hamiltonians in the coming section). Here, we focus on a special case in wi
N !'1 ,ie., thereis adiverging number of machine subsystems that the target system interacts with throughout the protoc
This limit physically corresponds to that of requiring a diverging amount of time (in terms of the number of steps). Furthermore
we take the limit ! Oforany xed ; max Considering the differentials

A= peH D) pCGH D) (c8)
and
Xn = Xn  Xn 1 with Xp =1+ n: (C9)

In order forx,, to become in nitesimal, and noting the explicit form of the machine subsystem Hamiltdﬁi&iﬁs: 1+ n)H,,
we can make the replacement
i, @R )
Xn @x
wherex := 1+ n has become a continuous parameter. This way we can express thd lindit of Eqg. (C7) as a Riemann
integral in the following form:

dx (C10)

Z max 1 .
lim EWMN) = e X X!y @p( ;xH ;)
M @x

N1 1 o
wherexXmax := max= . Both the summation and the integral converge, so one can swap the order of their evaluation. Integratir
by parts then gives

dx; (C11)

1

X max

Jm o BN = XU pe(GxH ) ™+ kPG o
k=0
9(1 meaxl @
— . Xmax .
= . XPepe(3XH §) ) . @x logZ (;xH ) dx
1 1
=E[ (GH I E[ X maH)l  —109Z (X maxHg) + —logZ (; H ¢); (C12)

P
where in the second line we again swap the order of the integral and the sum to V\/Egél kPk(ixH §) =
1%{IogZ( ;XH ()] and in the last line we invok&[ (;xH )] = tr[xH (;xH )]. Finally, writing the partition func-
tion in terms of the average energy and entropy, lioglZ ( ;xH )] = E[ (;xH )]+ S[ (;xH )], the total energy change
of the machine is given by

Jim o EM=ELGH Ol EL (X maH )+ EL GXomaHl S (X mab)] EL(H ]+ ST (H )]
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=L SIGHOL SL(magH) = €S (C13)

where we make use of the property( ; X maxHs) = <( max Hs) and the entropy decrease of the target system corresponds
to that associated with the transformatiop; H ;) ! ( max Hs). Thus, as the number of timesteps diverges, this cooling
process saturates the Landauer limit for the heat dissipated by the machine. In order to achieve perfect cooling at the Landz
limit, i.e., the nal target state to approa¢bh0j and thus prove Theorem 2, we can now take the limit ! 1 . O

The above proof holds for systems and machines of arbitrary (but equal) dimension, either nite or in nite, with arbitrary
Hamiltonians. We now present some more detailed analysis regarding the special case where the Hamiltonians of the ta
system and all machine subsystems are equally spaced; this provides an opportunity both to derive a more detailed formuls
the energy costs involved and to build intuition regarding some of the important differences between the nite- and in nite-
dimensional settings.

C2. Special Case: Equally Spaced Hamiltonians

Consider alyited—dimensional target system beginning at inverse temperatuwaeth an equally spaced Hamiltonian

Ho(ls) = ! 2:01 njnhnj,. In this case, we can derive a more precise dimension-dependant function for the energy cos
dissipated by the machines throughout the optimal cooling protocol presented above.

as the target, which all begin in a thermal state at inverse temperatuith respect to an eqd'é'\’lly spaced Hamiltonian whose
gaps between neighbouring energy levgls are ordered non-decreasingly. Each machine is used once and then discarded; th
particular interactiorbis the aforemention8WARetween the target system and tequdit machine, i.e., that represented by

the unitaryS‘S‘M = ,dJ :10 ii;j hj;ijs, :After applying such an operation, the state of the target system is given by
e Hs()
()= Sy (C14)
P d 1 .. . Hs( )
whereH (! ):=! n=o Ninhnjg andZ (;! ):=tr e st ),

We now calculate the energy cost explicitly for the diverging time cooling protocol, which saturates the Landauer bound i
the asymptotic limit. In order to minimise the energy cost of cooling, the target system must be cooled by the qudit system
the machines with the smallest gap between neighbouring energy levels (that permits cooling) as much as possible at each s
In order to optimally use the given machine structure at hand, we thus order the set of energy gapen-decreasing order.

In addition, the protocol to reach the Landauer erasure bound, i.e., minimal energy cost, dictates that one must in nitesima
increase!  of the machines in order to dissipate as little heat as possible throughout the interactions. Since we are he
considering a diverging time limit, we have access to a diverging number of qudit machine with distinct ene¥gyajaqur
disposal; the task is then to use these in an energy-optimal manner.

It is straightforward to see that to minimise the total energy cost, one must apply the sequence of lﬂjuarimch that

SSM , is rst applied to reach the optimally cool ( ;! o), thensgM o reach . (;! 1), and so on. The heat dissipated by the
reset machines in each stage of such a cooling protocol (i.e., for each valyeand thus be calculated as

E, ()= tH, (), (G )+tH, (), G 2
= UH )G ) G DT (C15)

In the second line, we have made use of the fact that the Hamiltonians of both the target system and each of makhine ar
dimensional and equally spaced. So far, we have obtained the energy dissipated by the reset machines. To investigate the
energy cost of cooling in such a process, we also must consider the contribution of energy transferred to the targgt systen
which is characterised via its local Hamiltonigin and calculated via

Ec(M )=tr[H(Ps) <58 )1 trH(Ys) (i 2] (C16)
in which we set g = ! 5. Using Egs. (C15, C16), the total energy cost for each stage of cooling is given by
Esw (! )= E(t )+ E,( )=tr H('s) H () G ) <GP o1 (C17)

which leads to the overall energy cost aftérstages, wher&l is the number of non-zero distinct energy gaps of the reset
machines, as

X X
EQ) = Ee (' )= tr H('s) H (') (' ) (' 1) (C18)
=1 =1
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Now, we can obtain the total energy cost for each stage of the protocol (i.e., each valueookidered) in terms of the
transformation of the target system alone. Note that in this protocol, each stage corresponding to easdhdistinet energy
gapsf! g in itself requires only one operation to perfectly reacly ;! ). The end result of this protocol is that the target
system is cooled from the initial thermal stat€ ;! <), where! ¢ is the energy gap between each pair of adjacent energy levels
in the system, to. ( ;! max) in the energy-optimal manner.

Starting from Eq. (C18), we have

X
EQ) = H(s) H( ) G ) G
=1
_X\II | e ! e ! 1 de ¢ de ¢ 1
_:l('s ) T e 1 e! 1 1 e @ 1 e @
X X
= lim (s ') e (Dt o (k! 1 g g (k)d o (kD
K11
=1 k=0
X X
= lim (s 1) e (k)1 o (ke(! 1 1) de dks)1t o d(ke(! 1 1)
K11 =1 k=0
(C19)
Here, since boti,, andH, are equally spaced Hamiltonians, the average energy can be written as
Pd 1 1 1 d!
. — . _ :on!xen'y_ e v de % v
ECxily)=trH (1 x) (5! = #dole”! —='x 7oy T e, (C20)
n=
by evaluating the geometric series
X ey
Z(;' )= e r=Lte o (C21)
n=0
and writing
g(l | n 0 | } ]
. — Moy oy . — Iy ! !
E(x;!y)= Ny = logz (! )] = W@@ logl1 e ¥y logl1 e'v (C22)

n=0

as we do in the second line of Eg. (C19) and then using the in nite series expr¢ssior) ' = lim k1, P E:o xK for any
iXj < 1las per the third line.

As we will see in Appendix E2a, the energy cost for cooling an in nite-dimensional system when both target and machine
have equally spaced Hamiltonians (i.e., harmonic oscillators) is similar to the form of Eq. (C19). Importantly, the second ter|
in square parenthesis vanishesldsl , simplifying the expression even further.

We now assume that the energy gaps of the machine are given by! s +  and so the total energy cost can be written as
follows:

X X X X
EN) = lim e Kls* )1 ek lim d e Kils* )1 gkd
K11 -1 k=0 K11 - k=0
= lim e Ks ek 1 e X lim e ks gkd g de . (C23)
K11 K 11
k=0 =1 k=0 =1

where we can swap the order of summation since both sums converge and the summands are non-positive. This can be

from the rst line above, using the factthat * (1 ¢€*) 2 [ 1;0]for all landx 0. We now calculate the sum over
X @ X @ 1 e (N +1)
¢ T @ _° @ 1 e

=0
(N +1) e (N +1) (N +1) e (N +2) e + e (N +2)
1 e )2
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=Ty ee 21 (N+De ™ +Ne (M

€ N

=—-Q=1 &¢€

i e 2 Ne N 1 e ): (C24)

Combining Egs. (C23) and (C24), we arrive at

X e Msk@ e Nk

(N) = i k(ls+N)
o’ = Kk @ exy N°©
k=0
X( e kd! s kd (1 e Nkd )
. kd (!s+N ) .
KI|!£n " 1 e @) Nd e : (C25)
k=0
In order to optimise the energy cost, we now assume that the energy gaps of the machines can be chosen to be smoothly incre:
insuchwaythat = =N :=(! hax !s)=N. Substituting this expression foiinto the above equation yields
" Kl Kk ! #
EMN) = im e “sk (1 e ) le k(s+ 1)
sm K k N1 e kK+)
" #
X g ki s kg 1(1 e kd !
lim ' ( : ) g re kst ) (C26)
K k N@L e X )

We now wish to take the limit oN K 'l . This assumption means that energy change of the system is approximately
equal to its free energy change; in other words, the process occurs quasi-adiabatically. The ability to switch the order of taki
the limits ofK andN going tol follows from the monotonic convergence of the sum dvem particular, note that the term
inside square parentheses in each summand converges and the rst term in each summation (which is the only part that dep
onN) is positive and bounded.

Under this assumption, we can use the approximaiion 1 o —— = L-sinced<e * < 1forany positivex, the sum
overk converges to a nite value. In general, this approximation introduces a correction term for the energy change, howev
under said assumption the error incurred becomes negligible. Then, the total energy clﬁagf;)l‘ge‘or the transformation

<1 ) (! max throughout the overall process is

%ek!s ek!max

EQ = Jim "  (ma to)e Ko
k=0
X e kd s g Kd! max
Jim " " d(! max !s)e K¢ mac - (C27)
’ k=0

As a side remark, note that here one can see that in the special case of equally spaced Hamiltonians, one indeed requil
diverging number of machine subsystems to attain perfect cooling at the Landauer limit, as this is the only way to ful | the
condition of Theorem 3. This follows from the fact that the approximatiegi— L only holds for smallx and in general
one would need to include higher-order terms that lead to an increase in energy cost.

We then have, using the expressionBdf ;! ) derived earlier:

1 1 | e ! max
EX = Zlog(l e '=®)+ =logl e '™ ( malx eS)! —
1 1 d(! ls)e @ ma
+Zlogl e %) ZlogL e ¢ mys Some =€
_1| 1 e ds 1I 1 e 9 mx | | e ! mx de o ma
ST e e e e b Tl e

LioglZo (i1 )] 2100 (! mad] UIHL(ma) (il mad]+ UIHL (o) o(! ma]

LOQ[ZS(;! ) Elog[Zs(;! max)]
rH(ma) s mad]+ r[H(Ms) (51 )] trH(Ms) (5! I+ tr[H(Ms) o(5! max]



25

-1 s+ E. (C28)

where we have explicitly written the von Neumann entr&f9 =  tr[%dog(%] of a thermal state at inverse temperaturas
S[(:! ) =log[Z,(;! )]+ E[(;! )] Sincethe energy change of the target system only concerns its local Hamiltonian,
we immediately see that the heat dissipated by the resetting of machines in such a cooling proceds, i.esaturates the
Landauer bound as itis equalto! S,. The process described is thus energy-optimal.

Appendix D: Conditions for Structural and Control Complexity

Here we begin by considering the protocol-independent structural conditions that must be ful lled by the machine Hamiltonia
to enable(1) perfect coolingand (2) cooling at Landauer costtombined, these independent conditions provide a necessary
requirement, namely that the machine must be in nite-dimensional with a spectrum that is unbounded (from above) for tf
possibility of (3) perfect cooling at the Landauer limitWe then turn to analyse the control complexity, which concerns the
properties of the interaction that implements a given protocol. The properties of the machine Hamiltonian detnectioeal
complexity which set the potential for how cool the target system can be made and at what energy cost; the extent to whi
a machine's potential is utilised in a particular protocol then depends on the properties of the joint unitary, tentrble
complexity Here, we show that it is necessary that any protocol achieving perfect cooling at the Landauer limit involve:
interactions between the target and in nitely-many levels of the machine to realise the full cooling potential. We then analys
some suf cient conditions that arise as observations from our diverging control complexity protocols. This then leads us t
demonstrate that individual degrees of freedom of the machine must be addressed in a ne-tuned manner to permute populati
highlighting that an operationally meaningful notion of control complexity must take into account factors beyond the effective
dimensionality.

D1. Necessary Complexity Conditions
Dla. Necessary Structural Conditions

1. Perfect Cooling.-£et us consider the task of perfect cooling, independently from protocol-speci ¢ constraints, in the
envisaged setting. One can lower bound the smallest eigenvglyef the nal state"/§ (and hence how cold the system can
become) afteanyunitary interaction with a thermal machine by [29]

min(vg) € min(o/g); (Dl)

where! 7 :=max;; j!; !jdenotes the largest energy gap of the machine Hamiltdrjarwith eigenvalues ;. Without

loss of generality, throughout this paper we set the ground-state energy of any system to be zego=i.@,, such that the
largest energy gap coincides with the largest energy eigenvalue. As we make no restrictions on the size or structure of the ta
or machine, the above inequality pertains to cooling protocols that could, for instance, be realised via sequences of unitaries
the target and parts of the machine. It follows that perfect cooling is only possible under two conditions: either the machir
beginsinapurestate(! 1 ), orH,, isunbounded,i.e!,!1 . Requiring < 1 ,adiverging energy gap in the machine
Hamiltonian is thus a necessary structural condition for perfect cooling. Indeed, the largest energy gap of the machine play
crucial role in limiting how cool the target system can be made (see also, e.g., Refs. [42, 51]). We now detail an independe
property that is required for cooling with minimal energetic cost.

2. Cooling at the Landauer Limit.Suppose now that one wishes to cool an initial target stgteH ) to any thermal state

3 ;Hg)with > (not necessarily close to a pure state), at an energy cost saturating the Landauer limit. In Ref. [29]
it was shown that for any nite-dimensional machine, there are correction terms to the Landauer bound, which imply that
cannot be saturated; these terms vanish only in the limit where the machine dimension diverges. Thus, a necessary conditior
achieving cooling with energy cost at the Landauer limit is provided by the following:

| max
M

Theorem 11. To cool a target system,( ;H ;) to (( ;Hg), with >, using a machine in the initial statg, (;H )
with energy cost at the Landauer limit, the machine must be in nite dimensional.

As we will discuss below, this minimal requirement for the notion of complexity is far from suf cient to achieve cooling at
Landauer cost.

3. Perfect Cooling at the Landauer LimitWe have two independent necessary conditions on the structure of the machine
that must be asymptotically achieved to enable relevant goals for cooling: the former is required to achieve perfect cooling; t
latter for cooling at the Landauer limit. Together, these conditions imply that in order to achieve perfect cooling at the Landau
limit, one must have an in nite-dimensional machine with a spectrum that is unbounded (from above), as stated in Corollary ~
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Henceforth, we assume that these conditions are satis ed by the machine. The question then bememess one engineer
an interaction between the target system and machine to achieve perfect cooling at Landauer cost?

D1b. Necessary Control Complexity Conditions

The unbounded structural properties of the machine suppopiobsbilityfor perfect cooling at the Landauer limit; however,
we now focus on the control properties of the interaction thatise said potential (see Fig. 2). This leads to the distinct
notion of control complexitywhich aims to differentiate between protocols that access the machine in a more or less comple
manner. The structural complexity properties are protocol independent and related to the energy spectrum and dimension:
of the machine, whereas the control complexity concerns properties of the unitary that represents a particular protocol. |
instance, the diverging-time protocol previously outlined comprises a sequence of interactions, each of which is individually n
very complex; at the same time, the unconstrained control complexity protocol accesses the total (overall in nite-dimensione
machine “at once”, and thus the number of (nontrivial) terms in the interaction Hamiltonian, or the effective dimensionality o
the machine accessed by the unitary, becomes unbounded. Nonetheless, the net energy cost of this protocol with unconstre
control complexity remains in accordance with the Landauer limit, as the initial and nal states of both the system and machir
are identical to those in the diverging-time protocol.

Effective Dimensionality.¥e begin by considering the effective dimensionality accessed (nontrivially) by a unitary, whose
divergence is necessary but insuf cient for achieving perfect cooling at the Landauer limit, as we show in the next section. Th
in turn motivates the desire for a more detailed notion of control complexity that takes into account the energy-level structure
the machine.

We de ne the effective dimension as the dimension of the subspace of the global Hilbert space upon which the unitary ac
nontrivially, which can be quanti ed via the minimum dimension of a subsgaae# the joint Hilbert spacéd ., in terms of
which the unitary can be decomposedlhg = U, 1,-,i.e,

d®™:=mindim(A): U, = U, 1,: (D2)
One can relate this quantity to properties of the Hamiltonian that generates the evolution in a nite unit af (wtach
we can set equal to unity without loss of generality) by considering the interaction picture. In general, any global unitar
U, = e Msu T isgenerated by a Hamiltonian of the foihy,, = H, 1, + 1, H, + H,, However, all protocols
conS|dered in this work have vanishing local terms, He.,= H,, = 0. More generally, one can argue that the local terms play
no role in how the machine is used to cool the target. As such one can consider unitaries generated by only the nontrivial te
Hin; to be those representing a particular protgsol of interest. That is, we can restrict our attettign to e HintT | where
H,. is @ Hermitian operator oH ,, of the form A' B' such that none of thA' ' are proportional to the identity
operator. In doing so, it follows that the effective dlmen5|on correspondsnia H,.). Lastly, note that the above de nition
in terms of a direct sum decomposition provides an upper bound on any similar quanti cation of effective dimensionality base
on other tensor factorisations of the joint Hilbert space considered and makes no assumption about the underlying structure.
the other hand, knowledge of said structure would permit a more meaningful notion of complexity to be de ned. For instanc
the effective dimensionality of a unitary acting on a many qubit system is better captured by considering its decomposition in
a tensor product factorisation rather than the direct sum. We leave the exploration of such considerations to future work.

The effective dimensionality provides a minimal quanti er for a notion of control complexity, insofar as its divergence is
necessary for saturating the Landauer bound, as we prove in the next section. In fact, we prove a slightly stronger statem
namely that the dimension of the machine Hilbert space to which the unitary (nontrivially) couples the target system to mu
diverge. However, as we discuss belaW ! 1 is generally insuf cient to achieve said goal, and ne-tuned control is
required. Nonetheless, the manifestation of such control seems to be system dependent, precluding our ability (so far) to pre:
a universal quanti er of control complexity. Thus, even though further conditions need to be met to achieve perfect coolin
at minimal energy cost in unit time (see Theorem 12), whenever we talk of an operation with nite control complexity, we
mean those represented by a unitary that acts (nontrivially) only on a nite-dimensional subspace of the target system a
machine. In contrast, by diverging control complexity, we mean a unitary that couples the target (nontrivially) to a full basis c
the machine's Hilbert space, whose dimension diverges. With this notion at hand, we have Theorem 3, which is proven belc
Intuitively, we show that if a protocol accesses only a nite-dimensional subspace of the machine, then the machine is effective
nite dimensional inasmuch as a suitable replacement can be made while keeping all quantities relevant for cooling invaria
Invoking then the main result of Ref. [29], there are nite-dimensional correction terms that then imply that the Landauer limi
cannot be saturated.

Note nally thatin Theorem 3 no particular structure of the systems is presupposed and the effective dimensionality relates
various notions of complexity put forth throughout the literature (see, e.g., Refs. [52, 53]). For instance, for a nite-dimension:
target system with equally spaced energy levelssuppose that the machine structure is decomposbid@shits with energy
gaps! v, 2f!s + n gh=1.=n , With arbitrarily small > 0OandN ! 1 . Then the overall unitary that approaches perfect

cooling at the Landauer limit has circuit complexity equal to the divergjing
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D2. Proof of Theorem 3, Corollary 2, and Theorem 11

Here we prove Theorem 3, which implies Theorem 11 and leads to Corollary 2.
Proof. LetH , be a separable Hilbert space associated with the syste@onsider

p3
H, = !ajnhnj and H, .= span ,fjnig; (D3)
n=0

for some nitem. In other wordsH ,, o is a nite-dimensional restriction dfl ,, . We show that any unitary that (nontrivially)
interacts the target system with only a subspace spanned by nitely many eigenstitesaafnnot attain Landauer's bound.
Consider a general unitaly. Suppose thdtl couples onlyH , with H ,, o; whenever we talk of an operation with nite effective
dimension in this paper, we mean speci cally suct agand by diverging effective dimension we mean a unitary that couples
the target to any subspacetéf, whose dimension diverges. Since

H H, =H, (H,o HZ?)' (H

M S

Hyo (Hg H/J o) (D4)

S

we can associate the subspate H,, o with the labelA andH H 7, with B and writeU = U,  1,. Then the initial
con guration can be expressed as

" #
(yg o/gl 0 0
0 . - .
% W (HY) o % %, (D5)
where
1 X : h d 0 1 X : h
% 0= ———— s i 0, 0= ————— Pong i D
gl ZM(;HM)nme Jn nJ an % ZM(;HM)n>me ]n nJ (6)
add up to a (normalised) thermal state. Now consider the state
" #
% o 0
= D7
% 0 %, (D7)

It is straightforward to check that is indeed a quantum state; moreover, it is the Gibbs state (at inverse temperssocated
with the Hamiltonian
!

X 1 X |
®, = I h,jnhnj =log e " jm+1lhm+1j: (D8)
n m n>m
To see this, note tha,, (;H ,, )= Z, (; 14, ) and that
" I#)
o X X
exp —log e " = e " " (D9)
n>m n>m
Thus® = , (; H, ). To ease notation in what follows, we writg,.; = 1log .., e ' . Inthe rest of the

proof, we show that the unitaty and the Hamiltoniaid,, can be replaced by nite-dimensional versions without changing the
guantities relevant for Landauer's principle.

Let8 = U, (1, j m+1hm +1j). We then have

" #
U (% 9% .U 0
o w)er= Ut RIUT 00 (D10)
0 Zy TH ) 8
and
h | bm+l
r, 8 )€ =t U (% %oU’ + % (D11)

Zy (GH )
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Compare this to the expression
U, (% % o)UY 0
Mo 0 % 9%
9 0o
tryo Uy (% %oy +1tr %, %

tr, U% %)UY =tr

e Em+1
=tr,o U (% %ol + o————%; D12
m 0 A(Q QO)A ZM(,HM)Q ( )
P
sincetr 9% , = m sm € ' ".Thus, the nal system state is the same as it would be if we replaced the full initial

machine state witlg ; in particular, the entropy decrease of the system for any unitary that cools it is also unchanged.
The last thing we need to check is that the energy change of the machine similarly remains invariant. To that end, we have t

h

i bm+1
&8 =tr, B(% )8 =tr, U, (% % o)UY + ————jm+1hm+1j
s 0 s Uh(® %
" A Zy (GHY)
e t':‘m+1 . i
@ =%+ mjm+1hm+1jz (D13)
Thus, we have
h i
tr €, (8 &) =tr H, tr, U, (% %IV %o ; (D14)

sinceU, onlyactsorH; H, .and®,, o= H 0. In the same way, we have

MiM

try, U %)UY =tr, U (% %oV + %,
% = %o+ %o (D15)
Thus, the energy difference is also
tr H, try U,(% %oV’ %o (D16)

Hence, we show that one can replace (a potentially in nite-dimensidvial)y some ( nite)m + 1 -dimensional machint!

if the joint unitaryU acts only onm levels ofH,, . By Theorem 6 of Ref. [29], there are nite-dimensional corrections to the
Landauer bound, which then imply that it cannot be reached for mitelhus, the effective machine dimension, i.e., that which

is actually (nontrivially) accessed throughout the interaction, must diverge in order for cooling to be possible at the Landau
limit. This proves Theorem 3, which implies Theorem 11. O

D3. Suf cient Complexity Conditions

Having shown the necessary requirements for cooling at Landauer cost, namely a control interaction that acts nontrivially
an in nite-dimensional (sub)space of the machine's Hilbert space, let us now return to emphasise the properties of the mach
and cooling protocol that are suf cient to achieve perfect cooling at Landauer cost. For simplicity, we consider the case «
a qubit, which exempli es the discussion of nite-dimensional systems. The case of in nite-dimensional systems is treate
independently in the next Appendix.

We rst consider the structural properties of the machine. The diverging-time protocol discussed in Appendix C makes us
of a diverging numbeN of machines. Thus, the machine begins in the thermal s{atél :AO‘) of a(2N)-dimensional system
(with N eventually diverging), with energy-level structure given by the sum of the Hamiltonians in Eq. (C2), i.e.,

HtO'[ - X H(n) — X 1 (n).

Mmoo wo = @+ n)HS (D17)
n=1 n

that acts on the full Hilbert space (we use the usual convention that it acts as identity on unlabelled subspdd%%, e.g.,

HO 1@ 1)), Let us analyse in detail the properties of this Hamiltonian. The ground si&ke 1, which is set at
zero energy. More generally, the energy eigenvalue corresponding to an eigggstate: : ;i i is given by! ;1 multiplied by
the number of indicek that are equal td, plus a sum of termk wherek is the label of each index equaltoThus, the energy



29

eigenvalue of the eigenstgte : ::; 1i diverges as the number of subsystems diverges. At the same time, letting the fgator
to zero renders all eigenstates with the same (constant) number of indices sughrtHatpproach the same energy. Thus, in
thelimit ! 0, one obtains subspaces of enequ) = k! ; with degeneracy given by = ’}‘( , Which also diverges for each
constank and divergingN . Therefore, in addition to satisfying the structural conditions that are necessary for perfect cooling,
as stated in Theorem 11, the machine used here features additional properties, which are crucially important for this partict
protocol, in particular because they are suf cient for perfect cooling at Landauer cost. As a remark, we also emphasise that
xed (large) N and (small) , the machine is nite dimensional and has a nondegenerate Hamiltonian without any energy levels
formally at in nity.

Concerning the control complexity properties of the unitary that achieves perfect cooling in unit time, note that it is a cycli
shift operator, which can be written as

0 1
><L I .
Uy, = 02SE, = 0@ dijusisinisivhingguiig e A
i;j n=0
Xt
= EisivhiGiias e e (D18)
i1y =0

As it is evident from its form, this unitary acts nontrivially on all of the (divergingly many) energy levels of the machine.
The only basis vectors of the system-plus-machine Hilbert space that are left invarigntdrej; =0;:::; iy =0i and
ji=1;j1=21;:0055, =1i.

D4. Fine-Tuned Control Conditions

Theorem 3 captures a notion of control complexity as a resource in a thermodynamically consistent manner, i.e., in line wi
Nernst's unattainability principle. However, following the discussion around Theorem 11 and that above, the protocols that w
present that achieve perfect cooling at Landauer cost make use of machines and interactions with a far more complicated struc
than suggested by the necessary condition of diverging effective dimensionality. In particular, we note that the interactions cou
the target system to a diverging number of subspaces of the machine corresponding to distinct energy gaps in a ne-tuned mar
Moreover, there are a diverging number of energy levels of the machine both above and below the rst excited level of the targ
In this section, we begin by outlining the general conditions that perfect cooling at the Landauer limit entails, before presentit
a more nuanced notion of control complexity in terms of the variety of distinct energy gaps in the machine in Appendix D5.

This suggests that an operationally meaningful quanti er of control complexity must take into account the energy-level strut
ture of the machine that is accessed throughout any given protocol; additionally that of the target system plays a role. Inde
both the nal temperature of the target as well as the energy cost required to achieve this depends upon how the global eig
values are permuted via the cooling process. First, how cool the target becomes depends on the sum of the eigenvalues the
placed into the subspace spanned by the ground state. Second, for any xed cooling amount, the energy cost depends or
constrained distribution of eigenvalues within the machine. Thus, in general, the optimal permutation of eigenvalues deper
upon properties of both the target and machine.

For instance, consider an arbitrary initially thermal target qubit, whose state is givkad{p; 1 p) and a thermal machine of
dimensiond,, with spectrunf | =0 :d . 1. Now consider the decomposition of the joint Hilbert space into two orthogonal

subspace®fy andBy, correspondlng to the ground and excited eigenspaces of the target. The initial joint stitegis | ‘ )
(1 p)diag( ' ) where we write ' _ to denote thé'™ machine eigenvalue in the subspde The total population |n the

subspace8g and B, arep and(1 p) respectively. To achieve perfect cooling one must permute the eigenvalues such tha
approximately a net tr%psfer of populati¢h p) is moved fromB; to By. To do this, one can take any subgetof f ! 5,9

suchthatasd, !'1 , .« 'B I (1 p)and asubsek ©(with jKj = jK9) fromf | ,gsuchthat ,of | ‘ gl o
and exchange them. Although the choice of eigenvalues permuted is nonunique, the requwement must be fuI led for some s
to perfectly cool the target. For any pair of eigenvalues exchanged between the subspaces, demanding that the exchange
minimal energy amounts to a ne-tuning condition of the forf;n I'p iBO +(1 p) isl that must be satis ed. In general, the
ne-tuned eigenvalue conditions that must be asymptotically attained depend upon target and machine eigenvalues, makin
dif cult to derive a closed-form expression. However, in the restricted scenario in which the target qubit begins maximally mixe
(i.e., atin nite temperature), the machine begins thermal at some0 and of dimensiom,, , and that the unitary implemented
is such that the target is cooled as much as possible, one can derive precise conditions in terms of the machine structure al
as we demonstrate below. The case for higher-dimensional target systems is similar.

This discussion highlights the importance of capturing properties beyond the effective dimensionality, e.g., those regarding 1
distribution of machine (and, more generally, target system) eigenvalues, in order to meaningfully quantify control complexit
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in thermodynamics. Our protocols display similar behaviour to that discussed above asymptotically. Moreover, the machin
exhibit an energy-level structure such that every possible energy gap is present, i.e., the set of machine enrgy gaps

'y !jgdensely covers the intervlls ;1 ), where! s is the energy of the rst excited level of the target. In Appendix D5, we
demonstrate that indeed this condition is necessary for minimal-energy cost cooling.

Before doing so, we here rst derive the ne-tuned control conditions that are asymptotically required for cooling at the
Landauer limit. We begin with some general considerations before focusing on a special case for which an analytic express
can be derived. Furthermore, we demand that the unitary implemented is such that the target is cooled as much as possible:
does not preclude the possibility for cooling the target system less (albeit still close to a pure state) at a cost closer to the Landze
bound without satisfying all of the ne-tuning conditions. Nonetheless, in general there are a number of such conditions to t
satis ed, and the special case serves as a pertinent example that demonstrates how the particular set of ne-tuning conditions
any considered scenario can be similarly derived.

Consider an arbitrary thermal target system and machine of nite dimensions, with respective speetra Oriirs gs g
and , = f 3 M ﬂM 1g. The states begin uncorrelated, so the global spectrum of the initial Jomt statg is:=
f O ;i dsdw 1g=f 0 0, 0 1o ds 1 dy 1g Consider now a global unitary transformation; such a transforma-

tion cannot change the values of the spectrum but merely permute them. In other words, the spectrum of the nal global st:
after any such unitary is invariant and we have equivalence of the (unorderedﬁ&eﬁmd o -

The transformation that cools the target system as much as pdsisilitee one that places the, largest of the global
eigenvalues into the subspace spanned by the ground state of the target, thelselemgdst into that spanned by the rst excited
state of the target, and so forth, with the small#st global eigenvalues placed in the subspace corresponding to the highest
energy eigenstate of the target system (we prove this statement shortly). More precisely, we derffoteebgionincreasing
ordering of the set . Since the target and machine begin thermal, the local spectead ,, are already ordered in this way
with respect to their energy eigenbases, which we consider to be labelled in nondecreasing order. Cooling the target syster
much as possible amounts to achieving the nal reduced state of the target

0 1
R S iy, 4] A i
R = @ Fdu *1A jihijs - (D19)

As a side remark, note that since each of the global eigenvalues are a product of the initial local eigenvalues (due to the ini
tensor product structure), which are in turn related to the energy-level structure of the target system and machine (as they begi
thermal states), one can already see here that in order to approach perfect cooling, the machine must have some diverging el
gaps, such that the ( nite) sum of the global eigenvalues contributing to the ground-state population of the target approaches
Of course, there is an equivalence class of unitaries that can achieve the same amount of cooling; in particular, any permuta
of the set of thel,, global eigenvaluewithin each energy eigenspace of the target system achieves the same amount of cooling
since it is the sum of these values that contribute to the total population in each subspace. Importantly, although such unita
cool the target system to the same extent, their effect on the machine differs, and therefore so too does the energy cost of
protocol. However, demanding that such cooling is achieved at minimal energy cost amounts to a unique constraint on the glo
post-transformation state, namely that it must render the machine energetically passive, leading to the form:

Cb( ldM ! H#id o Fi e
B, = Hdw +Tjij hij g, : (D20)
=0 j=0

We can derive the above form of the nal joint state as follows. Consider the following ordering for the energy eigenbasis o
SM chosen to match the above form

fioo0, ;jOL, ;:5j0;d,  1ig, ;j10i, ;:5jLd, g, ;unjds L0, ;unjds Ld, 1, O (D21)

This ordering is monotonically nondecreasing primarily with respect to the eneigyaosfd secondarily w.r.iM . We take the

nal state gM to be expressed in this basis. To maximise the cooling in a single unitary operation, we maximise the sum ¢

the rstk d, diagonal elements, for eagh?2 f 1;2;:::;d. g, as each sum corresponds to the total population ifthiewest

energy elgenstate &. The initial statedg,, is d|agonal in this basis, so the vector of initial diagonal elements, which we label
= diag( %, ), is also the vector of eigenvalues,, ,i.e., = , . Furthermore, since the unitary operation leaves the

set of eigenvalues invariant, we have via the Schur-Horn lemma [54] that the vector of nal diagonal elements, which we lab

5 We take majorisation among passive states to be the measure of cooling; lowest possible entropy and average energy via Schur convexity.
this implies the highest possible ground state population and purity, and
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0.= diag(O/QM ), is majorised by the vector of initial ones, i.e®° . It follows that the partial sums we wish to maximise
are upper bounded by the corresponding partial sums d tlte, largest diagonal elements of the initial state. We claim that
the unitary that cools this maximal cooling amount at minimum energy cost is the one that permutes the diagonal elements tc
ordered w.r.t. the basis ordering in Eq. (D21).

More precisely, via the Schur-Horn lemma, one can always wfite D , with D a doubly stochastic matrix. The partial
sums of thk d,, rstelements are linear functions of the elements off hus the maximum values are obtained at the extremal
points of the convex set of doubly stochastic matrices, which are the permutation matrices, via the Birkhoff-von Neumar
theorem [54]. One can see by inspection that the optimal permutation matrices are the ones that place the Idiggshal
elements in the rst block (i.e., the ground-state eigenspa&ahe next largedd,, elements in the second block (i.e., the rst
excited-state eigenspace®, and so on. Within each block, the ordering does not affect the cooling of the target, so there is ar
equivalence class of permutations that satisfy the maximal cooling criterion. However, adding the optimisation over the ener
cost eliminates this freedom. We may consider the reduced set of stochastic matrices that satisfy maximal cooling, generate
the permutations described above. Since the average energy of the nal state is again a linear function of the diagonal eleme
here too the minimum corresponds to a permutation matrix. Clearly the permutation that minimises the average energy is
one that orders the elements within each block to be decreasing w.r.t. the enefdiesTdfus, the uniguestochastic matrix
D that leads to maximal cooling at the least energy cost possible is the one that permutes the energy eigenvalues to be ord
decreasing primarily w.r.t. the system energies, and secondarily w.r.t. the machine energies. The action of the stochastic me
on diagonal elements of the state is related to the unitary operation on the entire quantum Rt by Dj; , so that the
unitary operation is also a permutation (up to an energy-dependent phase, which is irrelevant since the initial and nal states
diagonal).

We may understand this optimal operation through the notion of passivity, by noting that it cools at minimal energy cost b
rendering the machine into the most energetically passive reduced state in the joint unitary orbit with respect to the coolil
constraint on the target. Intuitively, one has cooled the target system maximally at the expense of heating the machine as i
as possible. The nal reduced state of the machine corresponding to this energetically optimal cooling transformation is

dM 10 1 1
9% = @  fiwrIAjinj, (D22)

In general, any unitary that achieves these desired conditions simultaneously depends upon the energy-level structure of |
the target system and machine, precluding a closed-form set of conditions that can be expressed only in terms of the mach
However, for the special case of a maximally mixed initial target state (i.e., cooling a thermal state at in nite temperature ¢
erasing quantum information from its most entropic state), one can deduce this ordering precisely and moreover relate it direc
to properties of the machine Hamiltonian, as we now demonstrate. In the following, we assud)e ihaten; the case for odd
d, can be derived similarly.

Theorem 12. Consider the target system to begin in the maximally mixed state and a thermal machine at temperature
0, whose eigenvalues are labelled in nonincreasing orﬁeﬁ' Gi=o;:d, 1. Inorderto cool the target perfectly, with the

restriction that the target must be cooled as much as possible, at an energy cost that saturates the Landauer limit, the mach
eigenvalues must satisfy

IR} dx 1

AT Ao (D23)
i=0 =9y
and

. d .
1 ﬁb'gc + #-4-+blc

2 M

- 11 (D24)

foralli 2f0;:::;d, 19, whereb cdenotes the oor function antl denotes that the condition is satis ed asymptotically,
i.e,asd, '1 .

6 Note that degeneracies in energy eigenvalues would lead to sets of equalerage energy change.
diagonal elements, and prevent one from choosing a unique permutationz Strictly speaking, in the limid,, ! 1
However, as the state in such degenerate subspaces is proportional to theonly be satis ed for almost all,
identity matrix, we may take any unitary that is block diagonal w.r.t. the
degeneracies without affecting the state, and hence the nal cooling or av-

the conditions in Eq. (D24) must
i.e., for all but a small subset that con-
tributes negligibly to the relative entropy, as we discuss below.



32

Proof. We consider a qubit for simplicity, but the generalisation to cooling an arbitrary-dimensional maximally mixed state is
straightforward. The initial joint spectrum of the system and machine is

— # . # — 0. #1..... d . 0. #1..... d .
o =L B R Ip A0 HLoo ddy L0 HL #Y, g (D25)
- . I P N . .
As each fj' = me ' for any thermal state with Hamiltoniad,, = = ;!;jihij, written with respect to nonde-
creasing energy eigenvalues, it follows that the globally ordered spectrum is
# -1 #0. #0. #1. #1..... #d 1. #d 1A
sM _ff M M M e s g (D26)

Expressing the global states with respect to the product of local energy eigenbases, we have that the initial joiﬂ&fstate is
w (iH ) =diag( ., )[see Eqg.(D25)] and the unitary that cools the target as much as possible at minimum energy cost i

the one achieving the globally passive nal joint stéle = diag( ’:M ). This leads to the following reduced states

0 , 1 0 1
—& 1 . dK 1 .
B=0 # & johoj, + @ QIR (D27)
i=0 i:d%
R = % %04 #3-iongj, +% A I LTI
1 4 #IM 4 : i #IM 4 :
+ > + 072 j2h2j,, + > m + 02 j3h3j,, +::: (D28)

Intuitively, the reduced target state has the larger half of the initial machine eigenvalues in the ground state and the sma
half in the excited state; the reduced machine state has the sum of the largest elements from each of these halves in its gre
state, the next largest element from each half (which, in this case, is equal to the rst) in its rst excited state, and so fortt

dm
Ol . ... 0y, 1y — 1lf #0 #5-. #o
M M g_2fM+ M ’M+

Let us denote the spectrum of the nal state of the machine §y:= f 090, 04,:.:; ©

LIV LIV
ﬁ ﬁ >y ﬁdm 1g. Importantly, by construction, the reduced state of the nal machine has its local eigenvalues

in nonincreasing order, i.e., it is energetically passive.

We therefore have the nal reduced states of the protocol that cools the initially maximally mixed target as much as possib
at minimal energy cost, in particular with minimal heat dissipation by the machine, given the structural resources at hand. V
can now analyse the properties that are required to saturate the Landauer limit by considering the terms on the r.h.s. of Eq.
for any xed initial inverse temperature of the machine 0.

First note that cooling the target system by any amount xes the change in entropy of the target system, so the rst ter
is irrelevant. The second term concerns the mutual information built up between the target system and machine. In gene
this is nonvanishing, although one can achieve any desired amount of cooling without generating such correlations (as per
constructions). Furthermore, in the case where one wants to consider attaining a perfectly cool nal state, as we do here, the |
reduced state of the target is approximately pure andSo: M )o,@M I' 0. In terms of the reduced states above, this means

d
thatP iﬁ ' ﬁi ! 1andP f’MdMl ﬁ‘ I 0, which can occur only if the largest half of energy eigenvalues of the machine, i.e.,

2
I foralli d% diverge (since the summation contains only non-negative summands).

The nal term that must be minimised to saturate the Landauer limit is the relative entropy of the nal with respect to the initial
machine stateD(O/g k% ). Here one can already see that an in nite-dimensional machine is required to saturate the Landaue
bound: from Ref. [29]D(°/§ k%) f( S,.:d,), wheref is adimension-dependant function of the entropy difference of
the machine that exhibits non-negative correction terms that vanish only in thellimitl . The relative entropy vanishes
iff % = 9B ; moreover, by Pinsker's inequality one hak% 9B k2  D(% k% ), so one can bound the trace distance
between the initial and nal state of the machine for any desired value of the relative entropy. AIt%gpughO/g implies a
trivial process that cannot cool the (initially thermal) target system, as our protocols that saturate the Landauer limit demonstre
there are processes that asymptotically display the beha@:ﬁowr % andcool the target system. For the asymptotic machine
states to converge, in particular, their eigenvalues must become approximately equal asymptotically. Demanding this on
spectrum in Eq. (D28) leads to a generic term that must be asymptotically satis ed of the form:

) d )
#blc #-M _+plc
¢ 2 + 2 2

1
2 M

p 1 8i2f0:::;d, 1o (D29)
M
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In order to achieve perfect cooling at the Landauer limit, one thus must simultaneously satisfy the conditions outlined |

d .
Theorem 12. In other words, to minimise the relative-entropy term with the additional constraiﬁs ! A1 1and
id_M dMl ﬁ‘ I 0. The rstthing to note is that since the eigenvalu%’s contribute to different sums depending on whethier
-T2
M 4 pi i
in the larger half 0;:::; d% 1g or smaller halff Gy ... ;d,, g, one cannot haveﬁ 2+ baC - ﬁbzc 81i (i.e., a completely

degenerate machine), since then both summations would be over identical values and there is no way for them to converg
distinct values. This precludes the trivial solution that satis es the constraints of Eq. (D24) alone, namely the maximally mixe
machine state, which cannot be used to perform any cooling [as, in particular, it does not satisfy the constraints of Eq. (D23
For thed conditions to be simultaneously satis ed, we intuitively require that, although they must be distinct, fobe’d{chﬁb%c

and ﬁ%J' ®2¢ hecome “close” to each other, but with a difference that decays rapidly ais1 , such that in the in nite-
dimensional limit the larger “half” of the eigenvalues sum to one and the smaller “half” sum to zero. A subtle point to note i
that because the relative entropy involves the ratio of nal to original eigenvalues it is not enough that the absolute differen
j 3‘" ﬁij goes to zero, as in the in nitd,, limit, it is possible for this to happen for all of the eigenvalues approaching zero
without the ratios of nal to initial eigenvalues approaching unity (and hence the relative entropy not vanishing). One manner
satisfying such a constraint, as evidenced by the construction we proceed with next, is for the ratios of nal to initial eigenvalue
go to unity for all but a small number energy levels, with the population in this exceptional subspace going to zero in the in nit
d, limit (along with the ratios not diverging within said subspace).

The natural question that arises here is whether or not it is possible to satisfy these constraints concurrently. (Note that non:
the cooling protocols provided throughout this paper use the max-cooling operation, so do not necessarily serve as examples.
this end, we now construct a family of machine Hamiltonibi)s of increasing dimension that in the lindf, ! 1  manages
to attain both perfect cooling of a maximally mixed qubit and the Landauer limit for the energy cost using the maximal coolin
operation discussed above. The form of the Hamiltonian is instructive regarding the complexity requirements for perfect coolit
at the Landauer limit. The construction is inspired by the in nite-dimensional Hamiltonian found in Ref. [29] (Appendix D),
therein used to perfectly cool a qubit with energy cost arbitrarily close to the Landauer limit. Their construction already begir
with in nitely many machine eigenvalues, as well as in nitely many of them corresponding to diverging energy levels. In the
following, we demonstrate that one can arbitrarily closely attain perfect cooling and the Landauer limit with nite-dimensiona
Hamiltonians, and by taking the limif, !'1 , recover the result of Ref. [29].

The Hamiltonian of the machine @&, :=2N*! dimensional,

R

H, = n jn;jhn;jj, + N jN;2Y+1hN;2V+1j, (D30)

n=0 j=1
Here, each energy eigenvalue labelledrbis 2"-fold degenerate. Thus the ground state is unique, the rst excited state is
twofold degenerate, the second excited state fourfold degenerate, and so on, with the degeneracy doubling every energy I
In order to make the Hamiltonian of even dimensionality for convenience, we add an extra degenerate state to the nal le\
[which makes this level2N + 1) -fold degenerate]. Also note that the Hamiltonian is equally spaced with energy .gapthe
following, we use the inder to denote any one of the degenerate states imthenergy level froom = 0 ton = N, and the
indexi to denote individual energy eigenstates from1 toi = 2N*! (note that in contrast to the previous section, we are here
beginning withi = 1 in order to simplify some future notation). With these indices, the eigenvalues are related by

fi=e foge 8i2f2:::;d, 1g; (D31)
— 1 @ Qnrno9Fq:---- .
n=e i 8n2f1:::;Ng: (D32)
We introduce a parametetto express the Gibbs ratio as
1
= . D
e > (D33)

where0 < < 1, and we eventually take the limit! 0 appropriately as the dimension diverges. Note that this constrains
the Gibbs ratio to be smaller th%n which in turn ensures that the total population over all of the degenerate eigenstates in the
n'" level is smaller than that in th@ 1) level (as it has twice the number of eigenstates, but less than half the population in
each). If this constraint failed to hold, then in the asymptotic limit, all of the population would lie in energy levels that diverge.
We now consider using this machine to cool a maximally mixed qubit target. The nal ground-state population of the qubi
under the maximal cooling operation is the sum over the larger half of the eigenvalues of the machine, corresponding to t
eigenvalues from = 1 toi = 2N (equivalently, froon =0 ton = N 1 plus a single eigenvalue from tme= N energy
level), and is thus given by

N - o+ : (D34)
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X ) 1 n 1 N
where Z, = 2" -+ - (D35)
n=0

is the partition function of the machine. The geometric series above evaluates to

1

@ )™
1 1 )N+ (@ )N2N

po= 1+ (D36)

As an ansatz, supposing thagcales inversely with as = - leads to the simpli catior(1 NI e asd, (andhence
N) diverges. The asymptotic behaviour of the ground-state population is thus

1 1
0 — .
0 N e 1 N2

(D37)

andsopf! lintheN !'1 limit.

We now move to calculate the energy cost. Rather than considering the optimal max-cooling operation described abo
we consider a slight modi cation in order to make the connection to the construction in Ref. [29] clear as well as to simplify
notation. Nonetheless, the energy cost of this modi ed protocol upper bounds that of the max-cooling operation (for the sar
achieved ground-state population), and so showing that the Landauer limit is attained for the modi ed protocol implies that
would be too for the max-cooling protocol. The modi cation is simply to relabel the smallest eigenvalue of the m%cNﬁfne
as 3 , and treat it as the ground-state eigenvalue in the max-cooling operation. For general machine states, such a swi
would lead to less cooling (if the same unitary were applied), but in this case it does not because the sum of the rst half of tf
machine eigenvalues, from= 0 toi = 2N 1, is the same as the original sum frars 1 toi = 2N, due to the relabelling

0o = on, Since they are both eigenvalues of states corresponding the maximum excited energy level of the machine spectr
The spectrum of the nal state of the machine is then given by

1 1 i .
04 = > #bze + ﬁbfc"d% 8i2f0;:::;d, 1g; (D38)
which leads to
00 — } #0 , #2N _  #0. om _ } #0 .  #2V _ #0.
M 2 M M M’ M 2 M M M’
3‘*:% zb'zc+ ﬁb%w% 8i%f2;:::;dM 19 )
1 2 4 aon 11 1 "t 1 N
= _= #4 == - + — ; D39
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where we observe that the indb§c+ d% corresponds to the largest energy level of the machine foy atid we use Eq. (D31)
for the spectrum of initial eigenvalues. Using the ingeixstead to denote a generic eigenvalue ofrtfleenergy level, we have
the simpler expression

om -1 a1, e . 8n2f12:::;Ng (D40)

M 2 M M
The energy cost can now be simply calculated from the difference in the average energy of the machine state,

dM 1 '
E = o # (D41)

where we denote thid' energy eigenvalue bly; . ﬁo is unchanged, and althouglﬁl does changé,; = 0 corresponds to the
ground state and thus this eigenvalue change does not affect the energy cost. We can thus express the energy cost in terms
indexn instead, starting from = 1 (corresponding to = 2 onward), as

X 1 2(1 )N 2
- 0 #n .
E, = A @ N e@ zWa v 9 1 ; (D42)
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As we did above, we parameterise . The asymptotic behaviour of the energy cost is then

:Iog(2)+Ni 1 2109@ o5 L ; (D43)

E
e 1 N 2

M

or in terms of the decrease in entropy of the system,

+ looN vo L. (D44)

E
M N e 1 N

=~

M

Combining (D37) and (D43), we have thatin the lilNit! 1, whichisalsad,, !'1 , the ground-state population approaches
1—corresponding to perfect cooling—and the energy cost approache®g(2), which is the Landauer limit for the perfect
erasure of a maximally mixed qubit.

To connect this construction to the constraints of Eq. (D24), note that in theNirhit  (recalling that = ),

h n 1 Ni
1 1
ot 2 7 t 5 1 1 e

o r\lllrln 17 n - r\lllq] 1 * 2N (1 )N =1 (D45)

=

for all n 1, leaving only the ground-state eigenvalue (corresponding to O andi = 1) not satisfying the condition.
However, this term is actually a negative contribution to the relative entropy as this eigenvalue decreases, and in any case ca
veri ed independently to approach zero.

To see this, note that a necessary condition that ensures the contribution of any set of eigenvalues that do not satisfy Eq. (C
to the relative entropy to be negligible is that the total population of the relevant subspace is vanishingly small. Writing th

relative entropy between two states in terms of their eigenvalues, welh@#%% = | 2log —g , which we split up into
two sets:Sp containing alin for which Eq. (D24) is satis ed an8 containing the alh for which Eg. (D24) is not satis ed. The

contribution of the rst term to the relative entropy is asymptotically zero, so we are lef#k% = ,5 2log —O .
For each term in the sum here, one can wrife= (1 + ) with the conditionj ,j > 0 for some , i.e., the ratio of
eigenvalues is bounded away from unity (on either side) by at le&gtis leads to the expression
X X
D (%% = plog(l+ n)= N pnlog(1+ n); (D46)
n2s n2s

where we renormadise the e|genvalues (which here correspond to a subnormalised probability distribution) by Svriting
N pn,withN =, 9 being the total population of the subsp&e andf p,g here forming a probability distribution.
Note that the ratio of e|genvalues q@mg to unltylm Stﬁsubspace implies that the total populations of initial and nal eigen-
values in this subspace are equal, i.e, 5 0 = 55, ¢, which in turn implies that the same is true for the subspace,
leadingto ,,5 Pn n =0.
We argue from the concavity of the logarithm function that
zlogl+ )+ zlog(l ) § pnlog(1+ n): (D47)
n2s

Visualising the graph of the function = log(1 + Xx), the latter expressiorpabove must evaluate to a point that lies within the
intersection of the convex hull ¢f ;log(1+ ,)) and the linear equality ,,5 pn n = 0, the latter of which is the line

x = 0. By the concavity of the logarithm, the aforementioned convex hull lies entirely below the line segment connectin
(2 ;log(1 ))to(1+ ;log(l+ )),andthusthe expression is upper bounded by the intersection of this line segment with
x = 0, which is precisely the I.h.s. of the inequality above. Thus we have the inequality

N N
D (%% N Zlogl+ )+ Jlog(l ) = - log(1 ?) - 2. (D48)
where we uséog(1  2?) 2forall 2 [ 1;1]. As > 0, the only way that this contribution to the relative entropy by the

eigenvalues that do not satisfy Eq. (D24) can be asymptotically negligible is if the total population of their associated subspa
N goesto zero.

Finally note that, as mentioned in the main text, the above result pertains to the restricted setting where the target syster
cooled as much as possible. However, this is not the only way to approach perfect cooling at the Landauer cost: instead of
largest half of global eigenvalues being placed into the ground-state subspace of the target system, any amount of them such
their sum is suf ciently close to one would suf ce. Although it is complicated to derive an exact set of conditions that would
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need to be satis ed in such cases (since it depends upon exactly which eigenvalues are permuted to which subspaces), the
that ne-tuned control over particular degrees of freedom is required remains. Lastly, note that even in the restricted setting
cooling the target as much as possible, the situation becomes even more complicated when considering target systems that |
ata nite temperature. Here, the choice of which global eigenvalues should be permuted to which subspaces to cool the syster
much as possible at minimal energy cost depends on the microscopic structure of both the system and machine. This means
one can no longer determine the nal eigenvalue distributions of the reduced states in terms of the initial machine eigenvalu
alone, as we were able to do for the maximally mixed state. In turn, one can no longer derive a condition on properties of t
machine itself, independently of the target system. Nonetheless, again, the key message that cooling at minimal energy «
requires ne-tuned control to access precisely distributed populations still holds true. We leave the further exploration of suc
scenarios, for instance constructing optimal machines for particular initial target systems, to future work.

D5. Energy-Gap Variety as a Notion of Control Complexity

The insights drawn above regarding suf cient conditions for cooling a system at the Landauer limit lead us to propose a mo
nuanced notion of control complexity than the preliminary effective dimension that satis es the natural desiderata outlined in tt
main text. In particular, here we demonstrate thatahergy-gap varietysee De nition 2) provides a good measure of control
complexity, both from a theoretical, thermodynamic standpoint as well as a practical one.

Firstly, it is quite clear that coupling a system to a diverging number of distinct machine energy gaps is a dif cult task tc
achieve in almost any conceivable physical platform, especially when the energy gaps are closely spaced; thus, this de nit
indeed corresponds to our intuitive understanding of “complex” as an operation that is inherently dif cult to perform in practice
Secondly, from all of the optimal cooling protocols that we outline in this paper, we see that, in contrast to the effective dimensio
having a diverging energy-gap variety that densely covers an appropriate interval is suf cient for saturating the Landauer lim
thereby making it a better quanti er of control complexity. The remaining point is to show that its divergence is necessary t
cool a system to the ground state using a single control operation with energy cost saturating the Landauer bound, so that
fully consistent also with Nernst's unattainability principle. We argue that this is indeed the case below by proving Theorem 4

Proof: First of all, note that how cold the nal system state can be made is bounded by the inequality:

max

min((yg) e b min(o/Q); (D49)

where nin denotes the minimal eigenvalue. For a pure nal system state, the I.h.s. of the above equation goes to O; thus, 1
any nontrivial initial system state [i.e., such thati,(%) > 0] and nite temperature < 1 , we must have 11 . This
determines the upper limit of the required interval of energy gaps. The lower limit of the required interval comes from the fac
that the only subspaces of the machine that are relevant for cooling the target system are those associated to energy gaps th
at least as large as the smallest energy gap of the targEig].

Next, recall the equality form of the Landauer limit, which holds truedny global unitary transformation with a thermal
machine:

E, = €S, +1(S:M)sy, + D(% k% ); (D50)

Cooling the target system to a pure state necessitates that the nal system and machine are uncorrelated and we therefore
1(S: M )o@M = 0 for the optimal process. We thus need to focus on minimising the relative-entropy term, which we do in the
following steps.

Consider for simplicity the target system to be a qubit initially in the maximally mixed state. A generic cooling machine
should be able to coany system state, include the maximally mixed one; therefore the following insights pertaining to this
special case apply generically. In this case, the initial joint spectrum of the system and machine is given by Eq. (D25). Cooli
the target system to the ground state necessitates taking a sub$e¢hese global eigenvalues such thaf,, :j' =1
for arbitrarily small and placing these into the ground-state subspace of the target, with the remaining (san@lynt of
population contributing only to any higher-energy eigenstates [this is essentially a generalisation of the conditions put forth
Egs. (D23), accounting for an arbitrarily small cooling error].

As discussed previously, there are many possible ways to achieve such a con guration, but tharglis@ne that minimises
the total energy cost of doing so: namely, that in which the reduced nal state of the machine is rendered passive. This is beca
if one compares two protocols achieving the same cooling for the target system, one in which the nal machine is passive and ¢
other in which it is not, then the former protocol has the smaller energy cost since a positive amount of energy can be (unitari
extracted from the latter machine in order to render it passive.

Thus, for any protocol saturating the Landauer limit, the nal machine state must be arbitrarily close to a passive state, whi
implies that it must be approximately diagonal in the local machine energy eigenbasis with the globally ordered spectrum as |
Eq. (D26). Moreover, in order to minimise the relative-entropy term and therefore saturate the Landauer limit, the nal machin
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state must be arbitrarily close to the initial (i.e., thermal) machine state; following the argumentation put forth in the previou
Appendix, this leads to the set of conditions outlined in Eq. (D29), which must be satis ed up to arbitrary precision.
Since we have the exact relationship between the initial and nal machine eigenvalues, the contribution to the energy cc

0
from the relative-entropy term can be calculated explicitly, De(9% = n %log -4 . Following the argumentation

from Eq. (D46) until Eq. (D48) in the previous appendix, we see that by assuming a nite deviatiomifrpof the conditions
of Eq. (D29), i.e.,, writing 0 = (1 + ) with] ,j > 0 for some , one can derive a lower bound on the relative
entropy:

DAY 5 % (D51)

whereN is the total population of the subspaces corresponding to the terms in the sum sueoh diféers from unity by at
least . In other words, these are the relevant additional contributions to the energy cost; wHeneseronzero, the Landauer
boundcannotbe approached arbitrarily closely.

The nal piece is to relate the machine eigenvalues to its energy-gap spectrum, which can be done straightforwardly due
the initial thermality of the machine, i.e.zi =e 'i=Z, (;H, ). We now argue that if there is ever a nite “jump” in the
energy-gap structure of the machine, then one cannot achieve both a ground-state population of the target that is arbitrarily c
to unity and haveN be arbitrarily close to zero concurrently. Suppose now that one has a machine with a dense energy-g:
structure from o up until some ( nite)! 5, followed by a nite jump until the energy leveél,+  (for some strictly nite > 0),
and then again a dense set of energy gaps throughout the irfteyval ;1 ). Then, one can utilise the energy-gap structure
in the “lower band'! o;! 3) in an optimal fashion in order to cool the target system to a minimum temperature (sg} by
Landauer energy cost [38, 42]. However, assuming that the jump in the energy-gap structure begins at sbmethsitethere
is always a nite amount of population in the machine that is supported on the energy levels corresponding to the “upper ban
['a+ ;1). To cool the target to arbitrarily close to the ground state, one must therefore access this population and transt
it to the ground-state subspace of the target; this precisely corresponds\o ttmat contributes to the excess energy cost in a

non-negligible manner for nite population exchanges. In particular, we have the Bdund min( 1fe! — = e1! —). Thus,

whenevell , takes a nite valueN s a strictly positive number. The only way that the relative-entropy term can vanish then
0

isif vanishes; however, this can occur only ift 0, because for any nite , the ratio—= for at least one value af differs

from 1 by a nite amount as argued above, which nally leads to a nonzero lower bound in Eq. (D51) and implies that the
Landauer limit cannot be saturated. In other words, the endpoints of the lower and upper energy gap intervals considered ak
must coincide (up to arbitrary precision) in order to saturate the Landauer bound. This implies that the energy-gap variety m
diverge and moreover, since the above logic holds for arbitrarywhich can be smoothly varied as a parameter, it follows that
the diverging number of energy gaps must additionally approximately densely cover the interval in question.

Appendix E: Diverging Time and Diverging Control Complexity Cooling Protocols for Harmonic Oscillators

We now analyse the case of cooling in nite-dimensional quantum systems in detail. More speci cally, we consider ensemble
of harmonic oscillators. For the sake of completeness, we rst brie y present some key concepts that will become releval
throughout this analysis. Following this, in Appendix E2a, we construct a protocol that achieves perfect cooling at the Landat
limit using a diverging number of Gaussian operations. Although such operations are typically considered to be relative
“simple” both when it comes to experimental implementation and theoretical description, according to the effective dimensic
notion of control complexity that we have shown must necessarily diverge to cool at the Landauer limit [see Eq. (6)], suc
Gaussian operations have in nite control complexity. Subsequently, in Appendix E2b, we consider the task of perfect coolir
with diverging time but restricting the individual operations to be of nite control complexity. In particular, note that such
operations are non-Gaussian in general. Here, we present a protocol that approaches perfect cooling of the target system &
number of operations diverges, with nite energy cost—albeit not at the Landauer limit. Whether or not a similar protocol exist
that also saturates the Landauer bound remains an open question. Finally, in Appendix E3, we reconsider the protocol fr
Appendix E2b in terms of a single transformation, i.e., unit time. By explicitly constructing the joint unitary transformation that
is applied throughout the entire protocol, we show this to be a multimode Gaussian operation acting on a diverging number
harmonic oscillators. The key message to be taken away from these protocols is that, while the distinction between Gauss
and non-Gaussian operations is a signi cant one in terms of experimental feasibility, and it certainly plays a role regarding tt
task of cooling—in particular, the energy cost incurred—these concepts alone cannot be used to characterise a notion of cor
complexity that must diverge to approach perfect cooling at the Landauer limit. On the other hand, the effective dimension
the machine used does precisely that; however, in a manner that is far from suf cient (for the case of harmonic oscillators),
even a single two-mode swap, which cannot cool perfectly at Landauer cost, would have in nite control complexity. Indeed,
more nuanced characterisation of control complexity in the in nite-dimensional setting, which takes more structure regardir
the operations and energy levels into account, remains an open problem to be addressed.
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E1l. Preliminaries

We consider ensembles Nf harmonic oscHIatorsN e., in nite-dimensional systems consistiniy dfiosonic modes), which

are associated to a tensor product Hilbert spage= J -, Hj and (respectively: lowering, raising) mode operafais, a} g
satisfying the bosonic commutation relations:

[ al = o [ak;ake] =0; 8kk°=1;2:::;N: (E1)
P
The free Hamiltonian of any such system can be writteld gs= E'zl I way ax, where!  represents the energy gap of tth

mode (in units where- = 1). Position- and momentum-like operators for each mode can be de ned as follows (for simplicity,
we use the rescaled version below where!there omitted from the prefactors)

1 1
O = %(ak +ay); Pk = iﬂ%é(ak ay): (E2)

As a consequence of the commutation relations in Eq. (E1), the generalised position and momentum operators satisfy
canonical commutation relations

[G;pl=iw: (E3)
To simplify notation, one may further introduce the vector of quadrature operdtors (ou; p1;:::; Ov; Py ); then, the
commutation relations can be expressed succinctly as
X Xq]= 1 w; (E4)
where the |, are the components of the symplectic form
" #
M . 0 1 .
j=1
The density operator associated\charmonic oscillators can be written in the so-caldwhse-space representatian
z
1
%= w N E6
= oyw  (OWC (E6)

whereW ( ) := € "X is the Weyl operator and( ) := tr[9WV ( )] is called the characteristic function.
Throughout our analysis, we see that a particular class of states and operations, namely those that areGaursgaazre
of particular importance. A Gaussian state is one for which the characteristic function is Gaussian

()=e & *X . (E7)

Here, X := hXi,is thedisplacement vectasr vector of rst momentsand is a real symmetric matrix that collects tsecond
statistical momentsf the quadratures, which is known as ttwvariance matrixIts entries are given by

n = XX+ XnXmie, 2MK g miy: (E8)

We see that any Gaussian state is thus uniquely determined by its rst and second moments. As an example of speci ¢ inter
here, we recall that any thermal statexf a harmonic oscillator with frequendy is a Gaussian state and has vanishing rst
momentsX = 0. Here and throughout this article, we are assuming that the in nite-dimensional thermal state is well de ned
(see, e.g., Ref. [55] for discussion). The covariance matrix of a thermal state is proportionato thiglentity, and given by

[ (;H)I=coth - 1,.

Gaussian operations are transformations that map the set of Gaussian states onto itself. Such operations, which include,
beam-splitting and phase-space displacement, are generally considered to be relatively easily implementable in the laborat
Although nonunitary Gaussian operations exist as well, all of the examples mentioned above are Gaussian unitaries. S
Gaussian unitaries are generated by Hamiltonians that are at most quadratic in the raising and lowering operators. Conver:
any Hamiltonian that can be expressed as a polynomial of at most second order in the mode operators generates a Gau
unitary. Any unitary Gaussian transformation can be represented by an af néMyap,

X7IMX + ; (E9)
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where 2 R?N is a displacement vector in the phase-space representatiovl asé symplecti@N 2N matrix that leaves
the symplectic form invariant, i.e.,

M MT= : (E10)
Under such a mapping, the rst and second moments transform according to
X7 MX + ; 7™M MT: (E11)

P
Lastly, note that the energy of a Gaussian stavith respect to its free Hamiltoniad = = | ! ca)ax can be calculated in
terms of the rst and second moments as follows [22]
X L i 1
E(k)= !k gt 0 2+ Ejjx‘k)jj2 : (E12)
k

wherek k denotes the Euclidean norm. HeréX) indicates th2 2) submatrix of the full covariance matrixcorresponding

to the reduced state ofifkéh mode. Similarlyf(k) denotes the two-component subvector of rst moments fokihenode of
the displacement vectot.

E2. Diverging-Time Cooling Protocol for Harmonic Oscillators
E2a. Diverging-Time Protocol using Gaussian Operations (with Diverging Control Complexity)

We now consider a simple protocol for lowering the temperature of a single-mode system within the coherent-control paradig
using a single harmonic oscillator machine. This protocol will form the basic step of a protocol for achieving perfect cooling a
the Landauer limit using diverging time, which we subsequently present.

In the situation we consider here, the target sys$eto be cooled is a harmonic oscillator with frequemhgyinteracting with
a harmonic oscillator machirid at frequency ,, I ¢ via a (non-energy-conserving) unitary acting on the joint sys$dvh
initialised as a tensor product of thermal statgé;H ) w (1H ) atinverse temperature with respect to their local
HamiltoniansH, andH,, , respectively. The joint covariance matrix of the system and machine modes is block diagonal since
the initial state is of product form, i.e.,

[ GHS) W GHWOI=T sGHOD W GHWL (E13)

!

and the2 2 blocks of the individual modes are also diagonal, with the explicit expressig( ;H , )] = coth —* 1.

In this settlng, it has been shown that the minimum reachable temperature of the target system is ﬁ,wﬁFFb{y— T (for
thecasé , !)[38]. The non-energy-conserving unitary transformation that achieves this is of the form

U=e 'z(@brar; (E14)

where the operatois(a¥) andb (') denote the annihilation (creation) operators of the target system and machine, respectively
This beam-splitter-like unitary acts asSAWAPwith a relative phase factor imparted on the resultant state; nonetheless, this
phase is irrelevant at the level of the covariance matrix, which fully characterises the (Gaussian) thermal states considered,
transforms it according to a standard swapping of the systems. After acting with S\#\Boperator, which is a Gaussian
operation, the rst moment remains vanishing and the covariance matrix transforms as [see Eq. (E11)]

2 3 2 3
coth - '
S: (E15)

. s 1, 0 g gpe o0 P L 0
0 coth -

- 2M 1, 0 coth !23 1,

ThIS means that both the output target system and machine are thermal states at different temW@ratq%ésT andTO =
74 T. Making use of Eg. (E12), we can calculate the energy change for the system and machine as

! ! ! !
E.=E _—M;HS E[S(;HS)]:?‘ coth 2“” coth 23 :
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! ! ! !
E, =E !MS H, E[, (:H )I= ; coth 25 coth 2” : (E16)
The total energy cost associated to tBi&ARoperation is thus
_ N ls) ! ! B e 's@ e Uwm !'s))
E., = E,+ E, = % coth —=  coth 2M = (' !S)(l e T e )

(E17)

Note that this form is similar to that for nite-dimensional systems with equally spaced Hamiltonian [cf., Eq. (C19)]; the
dimension-dependent term vanishesldd , simplifying the expression in the in nite-dimensional case.

With this simple protocol for lowering the temperature of a harmonic oscillator target using a single harmonic oscillato
machine at hand, we are now in a position to describe an energy-optimal (in the sense of saturating the Landauer bound) coc
protocol when a diverging number of operations, i.e., diverging time, is permitted. In other words, we now show how to achiev
perfect cooling with minimal energy at the expense of requiring diverging time, i.e., in nitely many steps of nite duration.
As mentioned above, in this speci ¢ protocol, the control complexity as per Eq. (6) is in nite in each of these in nitely many
steps. As we argue after having presented the protocol, this is an artefact of the simple structure of the Gaussian operat
used. Indeed, we later present a non-Gaussian diverging-time protocol for cooling a single harmonic oscillator to the grou
state using nite control complexity in each of the in nitely many steps, and at an overall nite (albeit not minimal, i.e., not at
the Landauer limit) energy cost. Before presenting this non-Gaussian protocol, let us now discuss the details of the Gauss
diverging-time protocol for cooling at the Landauer limit.

We consider a harmonic oscillator with the frequengy as the target system and the machine to compisearmonic

oscillators, where th@™ oscillator has frequencyy, = !s + n . In addition, we assume that all modes are initially
uncorrelated and in thermal states at the same inverse temperathlN respect to their free Hamiltonians, i.e., the target
systemis(;H ) and the multimode thermal machine js(;H ,, ) = Ezl wo GH ).

In this case, the cooling process is divided ilotime steps. During each step, there is an interaction between the target
system and one of the harmonic oscillators in the machine. Here, we assume that'atithe step, the target system interacts
only with then™ harmonic oscillator, which has frequency + n . To obtain the minimum temperature for the target system,
we perform the previously outlined cooling process at each step, which is given by swapping the corresponding two mod
Using Eq. (E15), the covariance matrix transformation of the two-mode process at the rst time step takes the form

3 2 3
! (!s+)
(1)( O) ()= 4coth —> 1 0 5 9P @) _ 4coth 5 1, 0 5.
° M 0 coth Us*) g, ot 0 coth Ls 1,
(E18)

By repeating this process on each of the harmonic oscillators in the machine, after th¥" step, the2 2 block corresponding
to the target syster8 in the covariance matrix is given oth w 1,. Therefore, one can show inductively that
the covariance matrix transformation associated tothenteraction is given by

2 (!s+(n 1)) 3
coth ts®n0 ) g, 0
2
M), ()=4 tern)
0 coth —=— 1,
2 Catn) 3
coth —=—2 1 0
W =4 2 a5 (E19)
0 coth ————~ 1,
Based on this process, afférsteps (i.e., after the system has interacted witN allarmonic oscillators), the minimal achievable
temperature of the target systemT‘%\'n) = S!fN T. Moreover, by using Eg. (E16), one can calculate the energy changes of
the target system and the machine at each time step as
! [ 1.+ 1
E(M = ?s coth —Ls*n) 32 ) om s (2n ) ;
_(s*tn) (s+(n 1)) (s+n)
Efﬂ”n) = ST coth > 5 coth S# (E20)
The total energy change for the target system during the overall process (i.e., throughbigtdpes) is thus given by
X Xy I+ .+ 1
E, = EM =" = coth srn) g s (Zn ))
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_ s (ls+N) e _, e UsN) e's
=5 coth — % coth 5 =le o ey T e s - (E21)

Here, we writecoth (x) =1+ (2 e )=(1 e ?¥). Similarly, one can obtain the total energy change of the overall machine

%

Xo+n le+(n 1 ls+n
E, = EM=" *_— coth (s +( ) con st N)
n=1 ! n=1 2 2 2
e (!s+(n 1)) e (!s+n)
- l('s"'”) 1 e U(UsHn 1)) 1 @ (s+n) (B22)
n=

It is straightforward to check that the total energy change, i.e., the sum of Egs. (E21) and (E22), is equal to the energy c
obtained in Eq. (C19) witd ! 1 . In particular, this can be seen by considering the second line of Eqg. (C19), where the secon
term in round parenthesis vanishesddsl for any value ofN . Thus, when the number of operations diverjes 1  and

=('max !s)=N"! 0, where! na:= —2! ¢ is the maximum frequency of the machines, the heat dissipated by the machines
throughout the process saturates the Landauer bound and is therefore energetically optimal. Moreover,byiaking one
approaches perfect cooling.

At this point, a comment on the notion of control complexity is in order. According to Eq. (6), the effective dimension of the
machine in the protocol we consider here diverges in addition to time. Indeed, the notion of control complexity thusly de ne
diverges forany Gaussian operation acting on the machine, in particular, it diverges for any single one of the in nitely many
steps of the protocol, as each operation is a two-mode Gaussian operation. At rst glance, this appears to be in contrast to
common conception that Gaussian operations are typically easily implementable (cf. Refs. [22, 37]). However, an alternati
way of interpreting this protocol is that, exactly because of the simple structure of Gaussian operations, reaching the ground s
at nite energy cost requires a diverging number of two-mode Gaussian unitaries, and thus divergingly many modes on whi
to act (see also Appendix E3). In fact, if non-Gaussian unitaries are employed, then the ground state can be approached at
energy cost using just a single harmonic oscillator machine, as we now show.

E2b. Diverging-Time Protocol using Non-Gaussian Operations (with Finite Control Complexity)

We now consider a protocol for cooling a single harmonic oscillator at frequendp the ground state using a diverging
amount of time, but requiring only a nite overall energy input as well as nite control complexity in each of the diverging
number of steps of the protocol. In this protocol, the maciihes also represented by a single harmonic oscillator whose
frequency matches that of the target oscillator that is to be cobleds ! s =: ! . The initial states of both the target syst&m
and machiné/ are assumed to be thermal at the same inverse temperatame are hence both described by thermal states of
the form

e " X .
e 71 - e " (1 e )jnhnj= Pn jnhNjsu ; (E23)
[ ] n=0 n=0

()=

P
where the Hamiltoniai is given byH = i:o n! jnhnjandthep, = e ' (1 e ') are the eigenvalues of The joint
initial state is a product state that we can then write as

* *
() W)= PmPn jmhmj, j nhnj, = Pm+n jM; nhm; nj; (E24)

m;n =0 m;n =0

wherewedenegg ;= e ' (1 e ' )2 We then note that the eigenvalugsof the joint initial state have degeneracy 1.

For instance, the largest valpg = popo, corresponding to both the system and machine being in the ground state, is the single
largest eigenvalue, but there are two eigenstilesi andjl; 0i, corresponding to the second largest eigenvplu¢hree states,

j0; 2i, j1;1i, andj2; Oi for the third largest eigenvaly®, and so forth. Obviously, not all of these eigenvalues correspond to
eigenstates for which the target system is in the ground state.

In order to increase the ground-state population of the target system oscillator, we can now apply a sequence of “two-le\
unitaries, i.e., unitaries that act only on a subspace spanned by two particular eigenstates and exchange their respective po
tions. The two-dimensional subspaces are chosen such that one of the two eigenstates corresponds to $hbeipgténthe
ground statej0; ki, while the other eigenstate correspond$Stbeing in an excited statg, 6 0;ji. In addition, these pairs of
levels are selected such that, at the time the unitary operation is to be performed, the popul&tiknisfsmaller than that of
ji 8 0;ji, such that the two-level exchange increases the ground-state populafiat efch step.
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More speci cally, at thek™ step of this sequence, the joint syst&i is in the statéf) and one determines the set of
index pairg(i 6 0;j) such thaey < hi;j j%) ji;j i, i.e., the set of eigenstates for whihs not in the ground state and which
have a larger associated population (at the beginning d¢'ttetep) tharj0; ki. One then determines an index péir ; ni ) for
which this population is maximal, i.exm; nkj%) jmg; nki = maxthi;j jo4) ji;j ij(i;j ) 2 kg, and performs the unitary

k) —
Ul = 1

s 1 O KNhOKj j mi;nchmi; g+ jO;Khmy; n + jmi; nchO;Kj (E25)

If there is no larger population that is not already in the subspace of the ground state of the target system, i.e,, vhen
which is only the case for the rst stefx (= 1), then no unitary is performed. After thé" step, the joint statég " v is still
diagonal in the energy eigenbasis, and the subspace of the joint Hilbert spaces foBugicithe ground state is populated with
thek + 1 largest eigenvalugs in nonincreasing order with respect to nondecreasing energy eigenvalues of the subspace's bas
vectorsj0;ii. Thatis, foralli 2 0;1;2;:::;kgand forallj 2 N withj > i , we have0;ijo, > jO;ii h 0;]j%, "V jO;ji.

Since the Hilbert spaces of both andM are in nite dimensional, we can continue with such a sequence of two-level
exchanges inde nitely, starting witk = 1 and continuing step by stepkd 1 . Here we note that the choice @hy; ny) is
generally not unique at theth step, butak ! 1 | the resulting nal state is independent of the particular choicgsmf, ny)
made along the way. In particular, in a fashion that is reminiscent of the famed Hilbert hotel paradox (see, e.g., Ref. [56, p. 17
this sequence placedl of the in nitely many eigenvaluegy of the joint state oS5M (which must hence sum to one) into the
subspace wher8 is in the ground state. In other words, in the limit of in nitely many steps, the population of the ground-state
subspace evaluates to

b3
(k+1)p =  (k+)e @ e ')2=1; (E26)
k=0 k=0
where we take into account tffle + 1) -fold degeneracy of thk'" eigenvalugs,. We thus havéim,; tr,, %) = jOh0j,,

the reduced state of the system is asymptotically the purejState

As per our requirement on the structural complexity (see Appendix D), the Hilbert space of the machine required to achie
this is in nite-dimensional, and since each step of the protocol is assumed to take a nite amount of time, the overall time fc
reaching the ground state diverges. At the same time, the control complexity for each individual step is nite, sindeaztsh
nontrivially only on a two-dimensional subspace. To see that also the energy cost for this protocol is nite, we rst note tha
the protocol results in a nal state of the machine that is diagonal in the energy eigejihigsjsvith probability weightsy
decreasing (but not strictly) with increasing energy. Due to the degeneracy of the eigepyakesh one appeafk + 1) times
on the diagonal (w.r.t. the energy eigenbasis) of the resulting machine state, populating adjacent energy levels.n{kg label
of the lowest energy level that is populated by a particular valuean be calculated as

1

r(k):=  (n+1) = ik(k+1); (E27)
n=0

while the largest energy populated pyis given byr(k + 1) 1. With this, we calculate the energy of the machine after the
protocol, which evaluates to

Enal )é ﬁ'(le) 1 ){.
v = e’ 1 e ') n= e 1 e !')ikk+1)(k+2) = Zcosech 4 : (E28)
k=1 n=-+(k) k=1

Since the energy of the initial thermal state is given by

e !
E['( 1 nem 1 e')=s > . (E29)
! 1 e’
n=0
we thus arrive at the energy cost
E. _ E;* E[() _e' @+e '),
Co T @ ety (E30)

We thus see that this energy cost is nite for all nite initial temperatures (although note that the energy cost diverges whe
I 0).
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However, as we show next, the energy cost for attaining the ground state is not minimal, i.e., the protocol achieves perfi
cooling (with nite energy and control complexity, but in nite time) but not at the Landauer limit. To see this, we rst observe

that the entropy of the nal pure state of the syst8naanishes, such th&S, = S[ ( )]. Evaluating this entropy, one obtains

% %
S[ ()= tr[ log( )= e " (1 e')oge " (1 e') = e (@ e') In +logl e ')
n=0 n=0
! ! | !

=% 41 +log -2 = : +log ——F

1 e 1 e (E31)

Using the results from Egs. (E30) and (E31), we can thus compare the expressionsHgr and €S_, and we nd that
E, €S, > Oforall nonzero initial temperatures. The origin of this difference is easily identi ed: although the protocol

results in an uncorrelated nal state because the system is leftin a pure state, It{@ti®) )og =0, the lastternD (% k , )
in Eq. (3) is nonvanishing for nonzero temperatures because the protocol does not result in a thermal state of the machine.

With this, we thus show that perfect cooling is indeed possible using a nite energy cost and a nite control complexity
in every one of in nitely many steps (thus using diverging time). As we have seen, the structural requirement of an in nite-
dimensional effective machine Hilbert space can be met by realidirgs a single harmonic oscillator. Although the presented
protocol does not minimise the energy cost to saturate the Landauer bound, we cannot at this point conclusively say that it is
possible to do so in this setting. However, we suspect that a more complicated energy-level structure of the machine is necess

Finally, let us comment again on the notion of control complexity in terms of effective machine dimension as opposed to tf
notion of complexity that is often (loosely) associated with the distinction between Gaussian and non-Gaussian operations.
we see from the protocols presented here, the concept of control complexity based on the nontrivially accessed Hilbert-sp
dimension of the machine indeed captures the resource that must diverge in order to reach the ground state, while the intui
of complexity associated with (non)-Gaussian operations, albeit valid as a characterisation of a certain practical dif culty i
realising such operations, seems to be irrelevant for determining if the ground state can be reached. In the protocol presente
this section, non-Gaussian operations with nite control complexity are used in each step to reach the ground state. In nite
many steps (i.e., diverging time) could then be traded for a single (also non-Gaussian) operation of in nite control complexit)
performed in unit time. In the previous protocol based on Gaussian operations (Appendix E2a), the control complexity diverg
in every single step of the cooling protocol, but only when there are in nitely many such steps (diverging time) or one operatio
in unit time on in nitely many modes (see below), can we reach the ground state. However, in the latter case, the operatic
although acting on a diverging number of harmonic oscillators, remains Gaussian, as we now show explicitly.

E3. Diverging Control Complexity Cooling Protocol for Harmonic Oscillators

Here we give a protocol for perfectly cooling a harmonic oscillator in unit time and with the minimum energy cost, but with
diverging control complexity. In accordance with Theorem 3, the machines used to cool the target system will likewise L
harmonic oscillators. Let the operata¢a’) andh, (b!), respectively, denote the annihilation (creation) operators of the target
system and a machine subsystem labdtle@/e then consider the the unitary transformation in Eqg. (E14), namely

Uy := @ z(@berab); (E32)

One can then apply the diverging-time cooling protocol from Appendix E2a to cool the system to the ground state at the Landal
limit via the total unitary transformation

W
Utot := Iim Unys with Uny = Uy: (E33)
NI1 k=1
We now seek the Hamiltonian that generdtieg. First note thaU(N)aU(yN) = ib; and
8
2 by fork<N
U(N)QU(YN) = ia; fork = N ; (E34)

© b fork >N

which can be proven by induction. In contrast with Appendix E2a, here we use the complex representation of the syr
plectic group to describe the transformation, i.e., the set of matSceatisfying SKSY = K, whereK = 1y
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( 1n). Gathering the raising and lowering operators of the target system and thB msachines into the vector :=

ab bp by @B B " we can write the transformation aboveL.?@)‘U(yN) = ST~[57], where

0 1
0O 0O O ::: O i
! i 0 O 0
0 0 1 0 0
— (N) ;
S= 0 o ) with (N) = 00 1 0 (E35)
00 O0::: 10

Now, de ning the matrix of Hamiltonian coef cient$ ) implicitly by Uy =: exp( i™Y hy 7), we have thaS =
exp( iKh (y)) [57],i.e.,h(n) = iK log(ST) = iK log(S)T, where we take the principal logarithm. To calculate this, we must
diagonalise the matrix () in Eqg. (E35). The eigenvalues ofy ) are

i2k1

K= e' ~NT; with k2f1;2:::;N +1g; (E36)

i.e., the negative of theN + 1) ™ roots of 1, and it is diagonalised by the unitary matkixconstructed from the eigenvectors
A

0 .
iC ) !
L (w2
Vi= M M M o W with WoE P (G I o (E37)
( &) (N
Specically, (ny = VDVY, whereD :=diag( 1; 2;:::; ~+1),andthus
! ! ! ! !
VvV DVY Y, log(D \A4 A
hly, = iK log 0 ik 0 log®) 0 ° 0 (E38)
0 VDV 0w 0 logD) 0 VY 0 A
for some matrixA. By direct calculation, one nds that
IX+1 )
o= itk i G K).
Ajc = 002 1(N R ~ 2p 2 N)e : (E39)
Now, considering the identity
) SE I i (N+1)
gp-f " 1 (E40)

- 1@

for 2 R, as well as its derivative with respect tpone can calculate the sum in Eq. (E39). We then have

(
. 0; forj = k
im Agx = .. . . : E41
ik i 110 kA for 6 k (E41)
Then, nally, we have thatl; = € e whereH o = limynn Y hiny v e,

l e X I . 2
Ho= —da+rHe + ; Rt (E42)

j=2 ik =1; j6k

Thus, the system is cooled to the ground state at an energy cost saturating the Landauer bound, and in unit time, but vi
procedure that implements a multimode Gaussian unitary on a diverging number of modes.



45
Appendix F: Cooling Protocols in the Incoherent-Control Paradigm

In this section, we investigate the required resources to cool the target system within the incoherent-control paradigm. F
simplicity, we consider only the nite-dimensional setting. Here, we have a qudit target systataracting resonantly (i.e.,
in an energy-conserving manner) with a qudit machvhe which is partitioned into one parg, in thermal contact with the
ambient environment at inverse temperatBEmd another partl, in contact with a hot bath at inverse temperature< . The
Hamiltonians for each subsystem &fe = gx:o Tht, jnhnj, ; the energy resonance condition enforcesthat ! . !s.
For the most part in this section, we focus on equally spaced Hamiltonians for simplicity; we comment speci cally wheneve
we consider otherwise.

In order to cool the target system, we aim to compress as much population as possible into the its lowest energy eigenst:
via interactions that are restricted to the energy-degenerate subspaces of tB€jdisystem. Thus we are restricted to global
energy-conserving unitariés . that satisfy

[Hs + Ho+ H, U] =0: (F1)

In Ref. [38], it was shown that for the case where all three subsystems are qubits, the optimal global unitary in this settir
(inasmuch as they render the target system in the coldest state possible given the restrictions) is

U.. = j0; 1,0nh1;0; 1j,., +j1;0;1h0;1;0j,, + 1, (F2)

wherel denotes the identity matrix on all subspaces that are not energy degenerate. Considering the generalisation to q
subsystems, it is straightforward to see that, for equally spaced Hamiltonians, the optimal global unitaries must be of the forn
" .2 #
U, = imn+1;lhm+1;n;l+1j,, +jm+1;n;l+1hm;n+1;lj,, + 1 (F3)
m;n;l =0

For the most general case where the Hamiltonians of each subsystem are arbitrary, it is not possible to write down a gen
form of the optimal unitary, since the energy-resonant transitions that lead to cooling the target now depend on the microsco
details of the energetic structure. Nonetheless, in Appendix G, we provide a protocol (i.e., not thepanitgput a sequence

of steps) in this setting that attains perfect cooling and saturates the Carnot-Landauer limit.

Intuitively, the above types of unitaries simply reshuf e populations that are accessible through resonant transitions. For tl
purpose of cooling, one wishes to do this in such a way that the largest population is placed in the lowest energy eigenstate
the target system, the second largest in the second lowest energy eigenstate, and so on (in line with the optimal unitaries in
coherent-control setting); indeed, on the energy-degenerate subspaces accessible, such unitaries act precisely in this way.
straightforward to show that interactions of this form satisfy Eq. (F1).

For the sake of simplicity, we now focus gn the case where all systems are qubits, although the results generalise to the q
setting. Consider the initial joint sta_, = ﬁml —o Pmni jm;n;Thm; n;lj,, . By applying a unitaryd,. of the form given
in Eq. (F3), the post-transformation joint state is

Row = UecYoow UL = %y + PIOLONO L0, PjLO;ThL;0; L, ; (F4)
where p:= pio1 Po1o indicates the amount of population that has been transferred from the excited state of the target syste
to the ground state throughout the interaction. Naturally, in order to cool the target syseem, i.e., the initial population
P1o1 Must be at least as large @so.

Due to the energy-conserving nature of the global interaction, the energy exchanged between the subsystems throughc
single such interaction, E, = tr H, (% %) , can be calculated via

E.= !5 p; E.=!e p, E,= !y p (F5)

Thus, for a xed energy-level structure of all subsystems (i.e., given the local Hamiltonians), one requires only knowledge of tf
pre- and post-transformation state of any one of the subsystems to calculate the energy change for all of them.

F1. Diverging Energy: Proof of Theorem 6

The rst thing to note is that in the incoherent-control paradigm, even when one allows for the energy cost, i.e., the he;
drawn from the hot bath, to be diverging, it is not possible to perfectly cool the target system, as presented in Theorem 6. T
intuition behind this result is that the target system can interact only with energy-degesivagmce®sf the hot and cold
machine subsystems. The optimal transformation that one can do here to achieve cooling is to transfer the highest populati
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of any such subspace to the lowest energy eigenstate of the target system; however, any such subspace has population s
less than one for an§ " < 1 independently of the energy structure. Moreover, the difference from one can be
bounded by a nite amount that does not vanish independent of the energy-level structure of any machine of nite dimensiol
This makes it impossible to attain a subspace population of one even as the energy cost diverges for any xed and nite contl
complexity. It follows that the ground-state population of the target system can never reach unity in a single operation of nit
control complexity and hence perfect cooling cannot be achieved.

Precisely, we show the following. L& be a nite-dimensional system of dimensidyg with associated Hamiltonian with
nite but otherwise arbitrary energy gapk, = id:SO o Ljihijs, and letd, andd,, be integers denoting the dimensions of the
cold and hot parts of the machine respectively. Then itis impossible to cool the sysiaime incoherent-control paradigm, i.e.,
using energy-conserving unitaries involvi@@andH at some initial inverse temperatures ,, respectively, arbitrarily close to
the ground state. Note that, in particular, this result holds irrespective of the energy-level struwaedifi and no matter
how much energy is drawn from the hot bath as a resource.

In order to set notation for the following, we assute !} fori j and!? = 0, where! ! denotes the'" energy

eigenvalue of systerd with X 2 fS ; C,Hg. We also assume the initial states®mndCto be thermal at inverse temperature
, andH is assumed to be initially in a thermal state at inverse temperafure . We denote b;p‘X thei" population of
systemX in a given state, i.ep) = hj%jii, wherejii denotes thé™ energy eigenstate 6f . We also writepji = p.p.pK.

The intuition behind the proof is as follows. The global ground-state level of the joint hot-and-cold machine has some nonze
initial population for any nite-dimensional machine; in particular it can always be lower boundggialgﬂor any Hamiltonians
and initial temperatures, which is strictly greater than zero as long as the dimensions remain nite. Fixing the control complexi
of any protocol considered here to be nite in value thus implies a lower bound on the initial ground-state population of the totz
machine that is larger than zero by a nite amount. Depending on the energy-level structure of the hot and cold parts of
machine, there may be other nonzero initial populations, but in order to cool the target §/gterfectly, at least all of the
previously mentioned populations must be transferred into spaces spanned by energy eigenstates of@jtei form This
intuition is formalised via Lemma 2, where we show that independent of the energy struc@iemdf , one must be able to
make such transfers of population in order to perfectly &dHowever, in order to make such transfers in an energy-conserving
manner, all energy eigenstates of the fgi@0i,.,, must be degenerate with some of the fg@jki.., . This degeneracy
condition, in turn, also implies that every energy eigenstate of thejfojim ., has an associated initial populatipg that is
nonvanishing for all machines of nite dimension (i.e., for all protocols with nite control complexity). Thus, upon transferring
some populatiomgo into the subspace spanned jiki.., , i.e., one of a relevant form for the population to contribute to
the nal ground-state population of the target, one inevitably transfers some nite amount of popalatyfrom the relevant
space and int@00Gi ..., , which does not contribute to the nal ground-state population of the target. We formalise this intuition
in the discussion following Lemma 2. In this way, no matter what one does, there is always a nite amount of population, whic!
is lower bounded by some strictly positive number due to the constraint on control complexity, that does not contribute to tt

nal ground-state population of the target, implying that perfect cooling is not possible.

The formal proof occurs in two steps. We rst show that some speci ¢ degeneracies in thg {@khsystem must be presentin
order to be able to even potentially céhrbitrarily close to the ground state. We then prove that, given the above degeneracies
one cannot cool the systetbeyond a xed ground-state population that is independent of the energy strucQindH ; in
particular, one can draw as much energy from the hot bath as they like and still do no better. We begin with the following lemm

Lemma 2. GivenS, dc, anddy as above, one can reach a nal ground-state population of the syStembitrarily close to
one in the incoherent-control setting only if egc@0iscy , wherei 2 f 1;:::;d, 19, energy eigenstate is degenerate with at

least ongQOjk isch energy eigenstate, wheje2 f 0;:::d. 1g;k2f0;:::d, 1g.

Proof. Suppose that there exists an2 f1;:::;d,  1g such thati 0G., is not degenerate with angjki where
j2f0;:::d, 1g;k2f0;:::d, 1g. We show that, then, one cannot c&oérbitrarily close to zero.

Let B; denote the degenerate subspace of the total Hamiltd#jar H_. + H,, whereH, denotes the Hamiltonian of
systemX 2 fS ; C Hg, that contains the eigenvec§od0i ., . Then, any energy-copserving unitdsy, used to cool the system
in the incoherent-control paradigm must act within sishsubspaces, i.el).. = ; Ug, (this is a direct consequence of
[U H, + H. .+ H,]=0, see, e.g., Lemma 5 of Ref. [30]). This means, in particular, that the initial populatjor0of .,
can only be distributed withiB; , and as no eigenvector of the fojk iscx is contained irB; by assumption, it can never

contribute to the nal ground-state population®fwhich we denotepg. So we have

SCH !

0

B. 1 pioo (F6)

Now, as forX 2 fC ; Hg, with anyf! ! g such that each!  Owith ! ¢ = 0 and any inverse temperature 0, we have for
the partition functiorz ¢ that

X+  +e !x dy : (F7)



47

and so we have the following bound on the initial populations associated to each eigeji@&ctar

e 't 'ty giafrid 1 F8
00 = > il :
ploo ZSZCZH ZSdCdH ! ’ ° g ( )
Combining the above, we have that
P12 < F
Ps Z.d.d, (F9)

i
''s

So as desired, we show that one cannot cool beylonds———, a bound strictly smaller than 1 for any nite-dimensional

machine (i.e., for any protocol using only nite control cosmﬁlgxity) and independent of the enerdiemnofH . O
We can now proceed to the second step of the proof of Theorem 6.

Proof. To this end, consider ariy 2 f 1;:::;d,  1g. If ji 00, is not degenerate with afjk iscx , Our assertion is proven

by Lemma 2. On the other hand, if therei$ a2 f0;:::;d, 1gandak 2 f0;:::;d, 1gfor whichji 00, and
contain other eigenvectors of the foifjk i, , i.e., some othej0j k%, withj°2f0;:::;d, 1g;k°2f0;:::;d, 19
Crucially, each such eigenvector8) must have an associated minimal amount of initial population as long as the machine

is nite dimensional. Indeed, for any sughj k iscs in B; , we have the conditioht + !k = !l and so! ¢ Ly
L 1L implying that ! L F'land !k I L. Thus we have the bound
e '& itk e 2! e 2!
ik = =g F10
pOI “ ZSZCZH ZSZCZH ZSdCdH q ( )
Now, take any particular 2 f1;:::;d;, 1gandlet ; be the dimension dB; , the number of energy eigenstates of the
formjOjki., thatB; containsand = the number of energy eigenstates of the fgijlnisc, , wherei 6 0, thatB;
contains. So
Bi = sparfj Ojki;jOjokoi;:::;jO) Kk i;ji O0;jig omai;:iz;ji = m ig: (F11)
Letv = fpojk ; Poj1,::::3Poj k sPi 00 Pirom.s-io: P~ m gbethe vector of initial populations associated to the eigenvectors

of B; , andv" be the vector whose components are those afranged in nondecreasing order. Using Schur's theorem [54],
we know that after applying any unitary transformatide, on the relevant energy-degenerate subspace, then the vector of
transformed population®, is majorised by . In particular, labelling the vector elementsby, we have

X X .
B oo+ B m Vo (F12)
=2 =1
P "
We now claim that _; v g from Eqg. (F10). Indeed, as has at most 1 elemgnts that do not belong to the set
A = Tpojk ; Pojokzs - 53 Poj k ;Pi 000, at least one element & must contribute to the sum _; v' . Letx be that element.
Asv" Oforall =1:;:::; = + ,wehave
X
% X: (F13)
=1
Now aspg; « g forall =2;:::; ,wehave
X min(g ;pio0)= G ; (F14)

wherep; o0 G can be seen from Eq. (F10), as claimed.
As the Lh.s. of Eq. (F12) represents the amount of population in the subBpadbat doesnot contribute to the nal
ground-state population of the target system, we have

X e 2's

0 — .
B, 1 B + B 1 g =1 :
00 S m Z.d.d,

(F15)

]
''s

So, for any nite-dimensional machine, one cannot cool the sySdmyondl Zes goa @ bound strictly smaller than 1 and

independent of the energy structure@ndH, as desired. O




48

As a concrete example, consider the case where all systems are qubits. The initial joint state is

o - (0h0j+e '=jlhl), (jOhOj+e ' cjihlj). (jOhOj+ e «'#jihl)),

F16
o 2.l 2.1 9Z, (i) (F16)
The only energy-conserving unitary interaction that is relevant for cooling is the one that exchanges the populations in the le
. . . . L . < e ' ¢ e '!'se H'H
els spanned by010 andj101, which have initial populat|onis( Tz (T Oz (T ) andzs( Tz OZn (o)

respectively, which are both strictly less than one. The necessary condition for any cooling to be possible implies th

1

e 'se w'H e ' ¢; now, performing the optimal cooling unitary leads to the nal ground-state population of the tar-
get system

h i , . .
, . l+e w'H(l+e s+e ©)

0/ — 0) _ .

pL(0) = HOjtre, U, U 0, = o gy < F (F17)

Indeed, using ' se w'v e !c,

0 1+e n'ne 's 1 _
O Tz iy T (F18)

0 or!, = 0. In the both cases, for equality in the rst inequality, we need
2 and the last inequality is strict. Ifs = !, no cooling is possible; hence

The second inequality is strict unlesg
' = e If =0,thenZ_(;! )
p2(0) = p,(0) < 1.

F2. Diverging Time and Diverging Control Complexity

We now move to analyse the case where diverging time is allowed, where we wish to minimise the energy cost and cont
complexity throughout the protocol over a diverging number of energy-conserving interactions between the target system and
hot and cold subsystems of the machine. We again consider all three systems to be qubits, but the results generalise to arbi
( nite) dimensions. Here, the machines and ancillas begin as thermal states with initial inverse temperatudes
respectively. Just as in the diverging time cooling protocol in the coherent-control setting presented in Appendix C, we consic
a diverging number of machines, with slightly increasing energy gaps, in a con guration such that the target system interac
with then™ machine at time step. Suppose that after steps of the protocol, the target qubit has been cooled to some inverse
temperature , > ; equivalently, this can be expressed as a thermal state with corresponding energygap-! s. We now
wish to interact the target system( ;! s) with a machineM 41 with slightly increased energy gaps with respect to the most
recent oneM ,, i.e., we increase the energy gaps of the cold subsyStgom! , to! 4, = !, + ,; the resonance condition
enforces the energy gap of the hot subsysteto be similarly increased to, + ,, ! 5. Thus, the next step of the protocol is
a unitary acting on the global state

%) = (nils) (il n* n) wCuilnt o o) (F19)

In order to cool the target system via said unitary, we must havepthat poio for the state in Eq. (F19), which implies that
n must satisfy the following condition:

et owlernts) g (arady (1 1) where = —" (F20)

H

This condition is crucial. It means that if the hot subsystérs coupled to a heat bath at any nite temperature, i.g.> 0,

n depends linearly on the inverse temperature of the target system at the previougs,sé@po can thus not be taken to be
arbitrarily small. As we now show, this condition prohibits the ability to perfectly cool the target system at the Landauer limit
for the energy cost whenever the heat bath is at nite temperature.

On the other hand, for in nite-temperature heat baths, perfect cooling at the Landauer limit is seemingly achievable; her

4 ! Oandso ! 0, leading tothe trivial constraint, Owhich allows it to be arbitrarily small, as is required. Nonetheless,
the explicit construction of any protocol doing so in the incoherent-control settagri®ri unclear, as the restriction of energy
conservation makes for a fundamentally different setting from the coherent-control paradigm. We now explicitly derive th
optimal diverging-time protocol to perfectly cool at the Landauer limit for an in nite-temperature heat bath, thereby proving
Theorem 7.
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F3. Saturating the Landauer Limit with an In nite-Temperature Heat Bath

Before calculating the energy cost, we brie y discuss the attainability of the optimally cool target state. We begin with al
subsystems as qubits, for the sake of simplicity, but the logic generalises to higher dimensions. In the incoherent paradigm,
target systen§® interacts with a virtual qubit of the total machiid = CH that consists of the energy eigenstg@sdlicn
andj1; Oicn, with populationspp.1, andps o, respectively. Suppose that at step- 1 the cold subsystem involved in the
interaction has energy gap, + .. In Ref. [38], itis shown that by repeating the incoherent cooling process (i.e., implementing
the unitary in Eq. (F3)) and taking the limit of in nite cycles, this scenario equivalently corresponds to the general (coheren
setting where arbitrary unitaries are permitted and the target system interacts with a virtual qubit machine with effective ener
gap! £f given by

e !ﬁﬁ::M:e (ot ")eH(!"+n ts) ) !ﬁﬁ:!n+ n i(!n'i' n !S): (le)
Po. 1,

It is clear that for nite-temperature heat baths, i.g,,> 0, the effective energy gape is always smaller than the energy gap

of the machine at any given step, i |, + | ; onthe other hand, equality holds iff the heat bath is at in nite temperature,
ie.,, , ! 0. Thus, in the in nite-temperature case, given a target system beginning at some step of the protocol in the sta
%( ;! n), itis possible to get close to the asymptotic st4té;! , + ;) if the temperature is nite, however, this state is

not attainable (even asymptotically). Following the arguments in Appendix C, i.e., considering a diverging number of machine
each of which having the part connected to the cold bath with energygap ! » + » and taking the limitof , ! 0, which

one caronly do if the hot-bath temperature is in nite, allows one to cool perfectly in diverging time in the incoherent paradigm
at the Landauer limit.

We now calculate the energy cost explicitly for the in nite-temperature heat bath case, precisely demonstrating attainabili
of the Landauer limit. We use a similar approach to that described in Appendix C: we have a diverging number of cold machin
for each energy gab, , with which the target system at the 1™ time step interacts; for an in nite-temperature heat bath, i.e.,

H is in the maximally mixed state independent of its energy structure, the state of the target system at &a¢h stgp1) is
achievable. From Eqg. (F5), the energy change between all subsystems for a given step of the protocol, i% ( taking,) !
%( ;! n), can be calculated as

EM=tr Ho('s)(% (! n)  %(;! n 1)
EM= tr H('n) (%! ) %G o 1)
EM =t Hy(tn )% n) %G 1) (F22)

In general, i.e., for nite-temperature heat baths, we would Haye= ! , 1 + , 1, with a lower bound on,, ; for cooling

to be possible [in accordance with Eq. (F20)]. However, for in nite-temperature heat baths, this lower bound trivialises sinc
the energy structure of the hot-machine subsystem plays no role in its state; thus we can choose the energy gap structure fo
machines aé! , = ! ¢ + n g\_; with arbitrarily small. Taking the limit ! 0, the diverging time limiN ! 1, and writing

I'w = ! max for the maximum energy gap of the cold-machine subsystems, the energy exchanged throughout the entire cooll
protocol here is given by

X
B = JI EM =t Ho(1)(R0! mad %3 s)
T on=1
. 1 1
Eo=Jm B =S SPRC: o] SPRG! ma)] = ©S
T on=1
Bo = 0 EM= B E (F23)
T n=1

Here, the expression for E. can be derived using the same arguments as presented in Appendix C1. In particular, the he:
dissipated by the cold part of the machine, which is naturally connected to the heat sink in the incoherent setting as an in nit
temperature heat bath can be considered a work source since any energy drawn comes with no entropy change, is in accorc
with the Landauer limit. It is straightforward to obtain the same result for qudit systems. Lastly, in a similar way to the othe
protocols we have presented, one could compress all of the diverging number of operations into a single one whose con
complexity diverges, thereby trading off between time and control complexity.
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F4. Analysis of Finite-Temperature Heat Baths

We now return to the more general consideration of nite-temperature heat bath§, «e., . In the case where
., = ,from Eq. (F21), it is straightforward to see that for any machine energy gathe effective gap £ is equal to the
gap of the target system, which means that no cooling can be achieved in the incoherent paradigm. Nonetheledd, for an
subsystem coupled to a heat bath of inverse temperature , cooling is possible. We rst provide more detail regarding
why cooling at the Landauer limit is not possible in this setting, before deriving the minimal energy cost in accordance with th
Carnot-Landauer limit presented in Theorem 5; in Appendix G, we provide explicit protocols that saturate this bound for ar
nite-temperature heat bath and arbitrary nite-dimensional systems and machines.
Suppose that at some stepne has the initial joint state of Eq. (F19), whepe= (!, !'s)+ and!, = !4+ n . Here,
is as in Eq. (F20). We now wish to cool the target systef${o;! n» + ). For cooling to be possible in the incoherent setting
here, we need the cold-machine subsystem to have an energy gap of at,least; moreover, with a nite-temperature heat
bath, this energy gap is insuf cient to achieve the desired transformation [see Eg. (F20)]. Based on Eg. (F5), we can seet
nonetheless, if we calculate thgpotheticalenergy change in this scenario if it were possible, we can derive a lower bound for
the actual energy cost incurred. Employing Eq. (F22), we have

EMY trfH (Ua+ n)[%G!at ) %G! )lg
= wfHJ( +Dta st %G a+ ) %G g

= UFH( +D)tn 1o+ 4 106Gt n+ ) %Gt g
= (DU IHCa+ %G+ ) %G g+ TH(s+ %G n+ ) %! g
=+ B+ B+ wfH OG0+ ) %G )G (F24)

where we make use of the fact that for equally spaced Hamiltonians, the structure of the Hamiltonians on each subsystem t
the same form [i.e., we can write, with slight abuse of notatiép(! + !s) = H (') + H.(!s)]. We use the starin E,
to denote the idealised energy cost [i.e., that corresponding to what would be achievable in the in nite-temperature setting; s
Eq. (F22)] and the energy costs without the star to represent those for when the temperature of the heat bath is nite. T
additional termtrfH (' )[%(:! n+ ) %(;! n)]lgvanishesfor ! O.

Summing up these contributions for a diverging number of steps gives the lower bound for the heat dissipated throughout
entire protocol for cooling an initial state ( ;! s) tosome nal (( max!s) is given by

i X (n+1)
E. = ,\l'.q] E.
n=1

(+nles+ E
(F25)

Note that for in nite-temperature heat baths! 0and the usual Landauer limit is recovered; nonetheless, for nite-temperature
heat baths,> 0 and there is an additional energy contribution, implying that the Landauer limit cannot be achieved. Moreovel
note that the expression inside the parenthesis in the second term above is always non-negative, as it is the free energy differ
of the system during the cooling process. Lastly, it is straightforward to show that this lower bound is equivalent to the Carnc
Landauer limit in Eqg. (A14), which was derived in a protocol-independent manner as the ultimate limit in the incoherent-contrc
setting. We now present explicit protocols that saturate this bound.

Appendix G: Perfect Cooling at the Carnot-Landauer Limit in the Incoherent-Control Paradigm

The precise statement that we wish to prove regarding saturation of the Carnot-Landauer limit is the following:

Lemma 3. For any > , and 1., > O, there exists a cooling protocol in the incoherent-control setting comprising a
number of unitaries of nite control complexity, which, when the number of operations diverges, cools to some nal temperatur
Othat is arbitrarily close to the ideal temperature value, i.e.,

0 i< 1 (GY)

i
with an energy cost, measured as heat drawn from the hot bath, that is arbitrarily close to the ideal Carnot-Landauer limit, i.e.

E, leF0) < (G2)
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where =1 .= and FS( )=F (°/§) F (%) is the free energy difference between the intak= . (;H ) and nal
O/Q = ( ;H,) system states (w.r.t. inverse temperatuye

We begin by presenting the diverging-time protocol that saturates the Carnot-Landauer limit when all three suBstdms
are qubits. The simplicity of this special case allows us to calculate precisely bounds on the number of operations required
reach any chosen error threshold. Building on this intuition, we then present the generalisation to the case where all syste
are qudits. The protocols with diverging control complexity follow directly via the same line of reasoning presented in the mai
text.

G1. Qubit Case

We begin with setting some notation and intuition for the proof, before expanding on mathematical details.
Sketch of Protocol.—The protocol consists of the following. There &festages, each labelled loy2 f 1;2;:::;; N g. Each
stage proceeds as follows:

« Aqubitwith energy gap s + n is taken from the cold part of the machine, and a qubit with energyngéaptaken from the
hot part (see below). The initial state of the machine at the beginning offtiséage is thus_(;! s+n ) ,( ,:n).

» The energy-preserving three qubit unitary cycle inftB&0 101g..,, subspace is performed [see Eq. (F3)], after which
the cold and hot qubits are rethermalised to their respective initial temperatures.

« The above steps are repeated times.

The energy incrementis de ned as

— S .
= - (G3)
while the number of repetitions within each stage is given by
& \
lo
my = _1og0) __ )(n) : (G4)
log(1 Ny’)

d eis the ceiling function, andlv(”) is the sum of the initial thermal populations in th@l; 10gcy subspace of the machine, i.e.,
NM =101 (;! s+n) ,(,;n)j0li+h0 (;!s+n) ,(,:n)jloi: (G5)

The parameter is chosen appropriately to complete the proof(1 =N? works).

The intuition for the proof is as follows. We rst consider how the populations of the target system change&eairsed
protocol wherem, ! 1, so that in each stage, the system reaches the virtual temperature determine blyqhleits. We
can use this ideal setting to nd expressions for the nal temperature and energy cost, which serves as a baseline that we wisl
attain to within arbitrary precision. We then consider the protocol as constructed above with a nite number of repatitions
in each stage, and show that its expressions for temperature and work cost are clode-fW.tad.the original expressions, and
by takingN to be suf ciently large but still nite (i.e., in the diverging time limit), we prove that the protocol can be arbitrarily
close in temperature and energy cost to the ideal values.

Proof. We label the population in thexcitedstate of the target system at the end of stagsp,, . Thuspy is the initial population
andp, is the nal population in the excited level of the target system qubit, i.e., that spannddhbly . We also label by,
what the corresponding populatipp would hypothetically be in the limitn, ! 1 . This value can be calculated by matching
the temperature of the target system qubit to the temperature 601h&0gcy virtual qubit within the machine (see Appendix
G in Ref. [38]). Thugy, is de ned via the Gibbs ratio

9 — (s+n )t n _ I s ( )n .
—— =€ e vl =g e BT G6
1 o (G6)

Note that
1. fpng; f g, g are both monotonically decreasing sequences, as each stage cools the target qubit further.

2. pn > qn for all n, as more repetitions within each stage keep cooling the target qubit further.
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To keep track of the energetic resource cost, which we take here to be the total heat drawn from the hot bath, we must sum
energetic contribution from each time the hot qubit is rethermalised tafter the application of the three-party cycle unitary.
Due to the fact that the only manner in which the population of the hot qubit changes is dud @1eh#01g,.,, exchange, it
follows that any population change in the hot qubit is identical to the population change in the target system qubit.

Focusing on a single stage, where the machine qubits are xed in energy gap, the total population change in the hot qubit t
must be restored by the hot bath is therefore equal to the population change in the target system throughout that stage. The
drawn from the hot bath throughout the entire stage is therefore

CEM =1y 1 p)=n (Pn 1 Po): (G7)

With these expressions derived, we can study the properties of the abstract protocol where the number of repetitions within e

stage goes to in nitym, ! 1 . First, the nal temperature asymptotically achieved here is given by nding the temper&ture
associated with the qubit with excited-state populatjpn

q\l — ¢ S (IS ( )N _ € S e — .
=e e e H =e = G8
Ty ) ) (G8)
where we make use of the de nition ofin Eq. (G3). We can thus identify§, = q , since it is the population associated with
the ideal nal temperature .
We also have the following expression for the total energetic cost of the ideal protocdllaftages

X
€E, = n(h 1 &) (G9)
n=1
which can alternatively be expressed as
X
€E, = [0 (@ 1+ )+ (@ @) (G10)
n=1

The sums appearing in the two alternative expressions are the left and right Riemann sums of the integral of thg wariable
integrated with respect to the varialggi.e.,
Z g
| = y dg;
o

ay) ! ( )
where =e ~ Se Hly. G11
T q) (G1D)

from Eq. (G6). Fory > 0, g(y) is monotonically decreasing and so the converse is also trug; issmonotonically decreasing
w.r.t. g(y). This implies that the integral is bounded by the left and right Riemann sums, so we have

X Zq
(n 1) (h 1 ) y dq N(h 1 Gh); (G12)

n=1 Jo n=1

from which we can deduce that the value of , is itself is bounded both ways from Egs. (G9) and (G10):

Zq Zq

ydg ©E, ydg+ (o 9g): (G13)
Jo o
The integral itself can by expressed in terms of the free energy of the qubit target system with respect to the environment inve
temperature . Expressing the free energy as a function of the excited-state populgdimh differentiating w.r.tq gives

F@=tEi@ D=qi,+ tglog@+@ glogl q): (G14)
%Z=!S+1|og ol e+ 20 e () = —ty (G15)

Using the above expression, the de nite integral in Eq. (G11) amounts to

1= YF@) F@l= 1F  Fo: (G16)



53

where we identify the Carnot ef ciency = 1 4 = and for ease of notation writtdh = F(q ) andFo := F(p). Thus
we can boundPE,, on both sides

YEOF) CE, T(F FO+ @ ) T(F Fo+ ;

H

(G17)

where the inequality in the second line follows from the fact fltpig forms a decreasing sequence.

We now proceed to consider the cooling protocol with a nite number of repetitimpnsvithin each stage. We rst bound
the difference betweep, andg,. Using the properties of the exchange unitary under repetitions [38, 58] (in particular, see
Appendix G in Ref. [38]), we have that in each stage

Ph O
Pn 1

Thus, the population difference to the asymptotically achievable population given by the virtual temperature shrinks as a pov
law w.r.t. the number of repetitions. SinBe< N v(”) < 1 (all strict inequalities), three points follow: rst, the populatign can

never be attained with a nite number of steps within the staggecond, that every repetition cools the system further by some
nite amount; third, that one can get arbitrarily closegpby takingm, suf ciently large. In fact, by our de nition ofm,,, we

have that

Mn
=1 N (G18)

P & (G19)
Ph 1 Oh
From this, we can prove that
X 1 _
P & " ant+( ) "ig: (G20)

j=1
The proof is by induction. Fan = 0, pg = ¢ (initial state), and fon = 1, using Eq. (G19)
P @ (Po @)
= (b @): (G21)
Suppose that the above statement holds trupfoihen from Eq. (G19)

Pk+1  Ck+1 Pk Ok+1)
= (Pk G+ Gk Cke1)

(k5d) 1 .
® O ) + k) I g (G22)
i=1

k+1

With this result, we can now bound the difference between the energy cost of this nite-repetition protocol and that of th
idealised one. We now proceed to prove that

0 1
X X X 1 N X 1 N
®E, ©E,= n(pm 1 Pn) n(h: &) O ' A (G23)
n=1 n=1 j:l j:l
We again use proof by induction. First note that we can rewrite
|
X X '
n({fni1 fn)= fn1  Nf; (G24)
n=1 n=1
forf, 2 f pn; chg. Therefore, we can rewrite the difference
|
X X '
®E, °CE, = (P2 G 1) N(py @) (Pn 1 h 1) (G25)

n=1 n=1
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since the last subtracted term is always strictly positive. Consider now the partial sum

X
E= (G (©29)
n=1
Fork =1,E =0, sincepg = ¢p. Fork =2, we have
0 1
Xt . Xt ,
E=(pm @) (o )= @ ' TgA; (G27)
j=1 j=1

which matches the hypothesis of Eq. (G23). Assuming that the same holds tiye floen fork .1 , we have
B = Bt (P 4

" " 1 0 " 1
1 1 1
@q k< KigA+@Kkgp+(1 ) KItg aiA
j=1 j=1 j=1
X k+1 j X k+1 j
= g j ig: (G28)

j=1 i=1
Then, by dropping the second sum, which is a strictly positive quantity, the difference in Eq. (G23) can be further simpli ed to
X 1 K 2
N

€E, ©€E, o = qo K<go (N 1)<qgoN<!g ? (G29)
j=1 k=0 "

where we use that< 1. Finally, to upper bound the number of operations required in the protocol, we bound the number of
repetitions within each stage by bounding the total population of the virtual qubit spanned by thé0dy&Byc as follows:
N =103 (5t s+ n) (50 )0l + O (5Hs+n) ,(,;n)jLo
e u" +g (stn)
(1+e w")1+e Cs*tn))

e (!s+n)
S &
h i 4
| (!s+n)
) log1 N <log 1 %
e (!s+n) .
< — ifx2(0;1) ) log(l x)< Xx.
) _n e tse) (G30)

log 1 N
Thus we can bound the number of repetitions in each stage from Eq. (G4). Notingghat< 0, we have

My < 4log(1=)e" ('s*n)+1: (G31)

For a crude bound, we can replatdy its maximum valuéN , and sum over all the stages to nd an upper bound on the total
number of three-qubit exchange unitaries implemented throughout the entire protocol, which gives

X h i h i
M= m,<N 4log(l=)e" !s*N)+1 =N 4log(l=)e'sl w7 +1 : (G32)
n=1

Also, note thatim | o p, = g, = q . More precisely, using Eg. (G20), we have
0 1
X1t
o g< @Nilg+a ) "I lg qA
j=1
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< @1+ N 1)< N: (G33)
In summary, we have the following bounds on the protocol in which each stage consists of a nite number of steps

pp 9 <N
eEH<}(F Fo)+ !s Ni+ ; (G34)

H

where we combine Egs. (G17) and (G29) for the second expression. For simplicity, we choasd?, so that

1
Py q < ﬁ
€E, < }(F Fo)+ !s NE : (G35)

H

Thus, given any nal temperature (encoded by the populajignand allowed errors; and , for the nal population and energy
cost respectively, one can always chodsdarge enough so that both quantities are within the error threshold. Speci cally,
choosingN as
& .
N= max %2 b (G36)

H

we automatically havethat, g < ;and E, < (F Fg)= + 2. The total number of unitary operations (each of which
is followed by rethermalisation of the machine) is then bounded by Eq. (G32)

M<N 8logNJe'st  w)= +1 (G37)

We can see from Theorem 10 that the protocol is asymptotically optimal with respect to the energy extracted from the h
bath. O

G2. Qudit Case

The extension of the proof above to the case of qudits is nontrivial. This is because, while for qubits there is only on
energy-resonant subspace that leads to cooling and hence a unique protocol [see Eg. (F3)] that asymptotically attains pel
cooling at the Carnot-Landauer bound, this is no longer the case for higher-dimensional systems; here, there can be a nun
of energy-resonant subspaces that cool the target and the question of optimality hinges crucially on the complex energy-Ile
structure of all systems involved. Hence, it is not possible to provide a unique unitary that generates the optimal protoc
independently of the subsystem Hamiltonians. Nonetheless, we slightly modify the protocol for the qubit case above to |
implemented on a number of particular three-qubit subspaces of the three-qudit global state such that, at the end of each st
the state of the target system is arbitrarily close to the (known) state, which would be achieved in an abstract protocol in t
diverging-time limit. This asymptotically attainable state is precisely that which would be achieved in the coherent-contrc
paradigm with a machine the same dimension as the joint hot-cold qudits. Thus, we rst begin by presenting the necess:
steps for the proof in the coherent-control setting, which we then adapt as appropriate for the incoherent setting control. Fina
summing the overall energy cost of said protocol over all stages saturates the Carnot-Landauer bound, as required.

Proof. An idealised sequence of temperatures and system state®Ve construct the incoherent protocol in the following
manner. We seek to take the system through a sequence of thermal states starting at inverse tempachémnding at inverse
temperature with N equally spaced intermediary steps, i.e.,

n= +n ( u)i (G38)
1
= = : G39
S - (G39)
sothat | = by construction. This corresponds to taking the system through the following sequence of thermal states
e nHs

n) — .
on" = ZH (G40)
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Note that, in contrast to the coherent protocol where such a sequence can be traversed by simply swapping the target sy:s
with a sequence of appropriate machines, in the incoherent setting such a protocol is generally not possible as such swap:
not energy conserving. Nonetheless, we develop a modi ed protocol that is energy conserving and mimics this idealised one

Corresponding to each step in the sequence, we de ne the following quantity, which we eventually show to be related to t
heat drawn from the hot bath:

h i
MW= n EM™M= nt H, B %V (G41)

P
We proceed to show that the total, G(™) that we labethe idealised heat co$t E,, is close to the free energy difference over
the entire sequence. We have

X
€E = G
n=1
h [

= ntr H, "D oV (G42)
" ) -
ho i i

= (n 1) tr H on" v o +tr H R AR (G43)
n=1

The sums on the second and third lines above, Eqgs. (G42) and (G43) respectively,ragbttardleft Riemann sums corre-
sponding to the following integral:
z O z qi
I = q( dx) = qax;
qi Ot
where n ! q;

x =tr[Hs%(a)];

e [ +a( w)Hg
%(q) =

tr e [ +a( nlHs (G44)

We observe thak is the average energy of the thermal state of temperatureq( 4 ), and thusx andq are strictly
monotonically decreasing w.r.t. each other (which explains why the left and right sums are switched). It follows that th
Riemann sums bound the integral

[ ZQi X [
(n 1) tr H on" v o) gdx n tr H A A (G45)
n=1 f n=1

We can thus bound the idealised heat cost in both directions via .
i
| ©E, 1+ tr H n oY) (G46)

The integral in Eq. (G44) can be shown to be equal to the change in free energy of the target system (w.r.t. inverse temperai
)
1
F [% (@] =tr[ H % (a)] + —tr[%(d) log % (a)] ;

d 1, +log %(q) d%(q)
- 0, = S
qu [%(q)] =tr H, + aq

Note that%(q) and d4(qg) are both always diagonal iRl and full rank for allg 2 R, so we have no problems
with log% (g), and all of the operators in the expression are well de ned and commute. Proceeding, we repeatedly us
tr[d%(q)] = dtr[%(g)] = 0 and label the partition functiod (g) :=tr e [ *9C  w)IHs  to obtain

log% () d%(a)
dq

Dy

(G47)

d
0, =
g e@l=t H ¢

logZ(g) d%(g)
S dq

+

=tr H 1

S S
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dx

q d7Q; (G48)

= a1t LM%l
where we identify the Carnot ef ciency for an engine operating betweerand . The integral thus simpli es to
= PFle@)] Fle@)] =t FO: (G49)
The idealised heat cost is thus bounded by

h |
PR OeE P RD s o HS o) oY (G50)

S H

The left inequality is Landauer's bound applied to cooling a target system with Hamiltbhigsee Theorem 5), and the error
term on the right can be bounded quite easily; for instance,*or0, we have

h i h i
tr Ho % %) =t H, EM™1, o) oY)
h i
tr Hy EM™1, o) sinceH, EM"1, is a positive operator,
min 1s ! gnax
tr Hg E™1 4 - (G51)

S S

where! I'® = E E;”‘“ is the largest energy gap in the target system Hamiltoniardarsithe system dimension. We use

the fact that sinceg’) is a thermal state of positive temperature, its average energy is less than that of the in nite temperatur
thermal statel,=d,. Since / 1=N, it follows that one can always nd aN large enough such that the error is smaller than

a given value, thereby saturating the Landauer bound.

A sequence of machine Hamiltonians to mimic the idealised sequendgext we construct a protocol that mimics the above
sequence and obeys the global energy conservation condition imposed in the incoherent-control setting. The protocol is s
intoN stages (like above). In each stage, the Hamiltonian of the machine is xed. The machine here comprises to two parts: t
“cold” part and the “hot” part. The cold part is chosen to begin in a thermal state at temperatitfee Hamiltonian

H.=(1+ n)H, (G52)

At this point we note that this sequence of cold-machine states is exactly the same as in the coherent protocol, which wo
proceed by simply swapping the full state of target system and machine in each stage. However, that is not possible here si
this is not an energy-preserving operation. To allow for energy-preserving operations, the hot part of the machine consists
d,(d, 1)=2 qubits, each corresponding to a pair of legl$ ) of the target system (henceforth we takej to avoid double
counting), whose energy gap is equal to the difference in energies of the target and cold qubit subspaces (hence rendering
desired exchange energy resonant)

HO =i+ @+ n )ty (4 +@+ n ) ljthg() =n (15 1)jthy(); (G53)

where we label the energy eigenvaluedHaf by f! jg. Each of these hot qubits begins at inverse temperatureAfter every
unitary operation, the cold and hot parts of the machine are rethermalised to their respective initial temperatures.
To understand the choice of machine Hamiltonians, consider the following two energy eigenstates of the Ijrhbcchiliég” )

andjji, j 0i{l). The energy difference is
M =1;@+n) Li@+n) n(; ="' I (G54)

matching the energy difference between the corresponding pair of energy eigenstates of the target system. Furthermore, c:
lating the ratio of populations of the two levels we nd

e !iGrn)

(ij ) = - Yy B0 +n( ) -
g S e T@ne wn () !I)—e i H) - (G55)
This corresponds to the Gibbs ratio of a qubit at the temperataren ( 4 ), which is the temperature that de nes stage
n [see Eg. (G38)]. In summary, we construct a machine featwtitid,  1)=2 qubit subspaces (or virtual qubits), each of the
same energy gap as one pair of energy eigenstates of the system, and all of which have a Gibbs ratio (or virtual temperat
corresponding tha™ temperature of our desired sequence.
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A single step of the protocol: The max exchangeWithin each stage of the protocol, a single step consists of a unitary
operation orSCH, followed by the rethermalisation of the machine parts to their respective initial temperatures. We construc
the unitary operation as follows: for every pdirj ) of system energy levels, one can calculate the absolute value of the
difference in populations of the following two degenerate eigensftgi.joi (! ) andjjijii j1i{!). This value corresponds
to the amount of population that would move under an exchiingigij0i () $j jijii j1i(1). We then choose the pair with
the largest absolute value of this difference and perform that exchange, with an identity operation applied to all other subspac
We call this unitary operation th@ax exchangeéWe proceed to prove two statements about the max-exchange operation. First,
that the heat extracted from the hot bath is proportional to the change in average energy of the system; and second, that sy
state under repetition of said operation converges to the thermal state of the temperature that de nesrhe stage

Consider the change in average energy of the target system under the exchange unitary. The only two populations that che
are those of th@i, andjji,. We label the increase in the populatiorjiof as p. Then, we have

Ec=tr Ho B % = »p( !i): (G56)

On the other hand, the populations of the corresponding hot qubit (i.e., tracing out the target system and cold machine) cha
by the same amount, i.e., there is a movepofrom j1i (H“ ) tojOi SJ ). In order to rethermalise the hot qubit, the heat drawn from
the hot bath is thus

€E, = pn (!5 'i)= n Eqg: (G57)

This is an expression conveniently independent of the @gin that applies after an arbitrary number of repetitions of the
max-exchange operation (which will use different pairs in general).

Convergence of the max-exchange protocol to the virtual temperatureTo show that the max-exchange protocol indeed
converges to the desired system state in each stage of the protocol, we rst prove a rather general statement: gi¥%n a ste
diagonal in the energy eigenbasis, if we exchange any qubit subspace within this system with a virtual qubit of a particul
virtual temperature, then the relative entropy of the target system w.r.t. the thermal state of that (virtual) temperature decreas

To this end, consider the relative entropy of a stdtkat is diagonal in the energy eigenbasis to a thermal statabelling
the populations o¥%asp; and those of asq, this can be expressed as

. X Pk
D% )= p«log a : (G58)
k

We now focus on a single-qubit subspace labelledlibyg, which leads to

) ) X
D(% )= pilog il + p log L p« log Pe
G 9 kaf iij g %
" I l#
Pi pi Eip' Pi + B Pj pvﬁjp' pi + B X Pk
=(p+p) log —5— + log —4— + pclog —
7 p+p Gig 4*ta  ptp gig 4+ 9 -
' ) X
=N plog?+plog® +iog -+ © plog X (G59)

In the last line we renormalise the populations within the qubit subspace and labelled the total populations of the system &
thermal state qubit subspaces of interesihNowndN,, , respectively. Labelling the normalised states within these subspaces as
% and , respectively, we have

X
DOfi )= N D(4ji,)+log g +  pcog b - (G60)

v kaf ijj g

Suppose now that this qubit subspace of the target system is exchanged with a qubit subspace of any machine that has the
temperature as the thermal state above. The only object that changes in the the above exppgssimcesthe nornN remains
the same. In additiory always gets closer tq, under such an exchange [38, 58], implying that the relative entropy always
strictly decreases under such an operation.

Returning to the max-exchange protocol, note that by construction, every virtual qubit in the machine that is exchanged wi
the qubit subspads;j g of the target system in a given stag&as the same virtual temperaturg,= +n ( ). Thusthe
relative entropy of the system to the thermal state at this temperature always decreases under this operation, unless the oper
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does not shift any population, which happens only at the unique xed point where every qubit subspace of the system is alrez
at the virtual temperature, . By monotone convergence, the relative entropy must converge, and moreover converge to the valt
that it has at the xed point of the operation, which is the thermal state at inverse temperatiNete that rather than choosing

the qubit subspace with maximum population difference to exchange we could also have picked at random from among the p:
fi;j g and convergence would still hold; the max-exchange protocol simply ensures the fastest rate of convergence among tr
choices.

Choosing a large enough number of repetitions in each stage so that the overall heat cost is close to the idealised heat
cost. Given that the max-exchange protocol in stageonverges to the thermal state that we Iak@é], given any error ., we
choose a number of repetitions, that is large enough so that the difference between the average energy of the actual nal stat
of this stage, which we lab&"), and that of the ideal stat¢") is less than, . In this case, the total heat cost over all stages is
close to the idealised heat cost

Xon h io X n h io
eE, €E, = ntr Hy & & ntr Hg, %" %" Y
n=1 n=1
1 h i
= tr HS %n) 0kn) N %N) 0/§N)
n=0
2N E =2 E- (G61)

The number of repetitions in each stagg required depends only upon the initial choice ofandN .

Completing the proof. Finally, suppose that one is given any target temperaturand two arbitrarily small errors, for
the cooling and_ for the heat cost, and asked to cool incoherently in such a way that achieves

o (G62)

eg v r() C (G63)

H

We proceed by rst choosing a number of stagésso that the idealised heat cd3E , is within - to the Carnot-Landauer
bound above. The idealised sequence of temperatures satis &s by construction. Oncdl is xed, for each stage from
n=1toN 1we choose a number of repetitions for each stagesuch that the actual heat cost is withén of the idealised
heat cost, as discussed above. This ensures that the total heat cost is withthe bound. Finally, we check that the number
of repetitions of the last stagme,, is large enough for us to be within of . If not, we increase the number of repetitions (this
can only decrease the error in the heat cost anyway) until we are close enough, as required.

O

Appendix H: Comparison of Cooling Paradigms and Resources for Imperfect Cooling

Although we have looked at a number of cooling protocols throughout to demonstrate the ability for perfect cooling in th
asymptotic limit, here we focus on imperfect cooling behaviour, i.e., when all resources are restricted to be nite and thus
perfectly pure state cannot be attained. We have three main goals in doing so.

1. To illustrate the nite trade-offs between the trinity of resources (energy, time, control complexity).

2. To compare the behaviour of different constructions of the cooling unitary for machines of the same size (i.e., analysir
the energy-time trade-off for for xed control complexity).

3. To demonstrate the increase in resources required for cooling in the thermodynamically self-contained paradigm of ener
preserving unitaries (i.e., incoherent control), as compared to coherently driven unitaries.

H1. Rates of Resource Divergence for Linear Qubit Machine Sequence

Consider cooling a qubit target system with energy gajy swapping it sequentially with a sequencé\ofmachine qubits
of linearly increasing energy gaps. In Appendix G1, we derived the deviation from the idealised heat dissipation in the incohere
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control setting for a sequence Wf machines [see Eg. (G17)], which we repeat below:

1 1 !
=(F Fo ©E, =(F Fo+

H . (HD)

H

We can immediately adapt this result to the paradigm of coherent control by takimg 0 and replacing the heat by work,
which yields

|
Fs W Fs+ﬁ — 1 : (H2)

Since the above inequalities are derived from the left and right Riemann sums of an intelyrdleasmes large, one can expect
thatW lies roughly halfway between both extremes; we can thus cast the scaling in the approximate form

W F 1
I 5 1: (H3)

Thus, we see that the relevant quanti er of the energy resource here is the extra work cost above the Landauer limit relative
the system energy. Additionally, the quanti er of how much said resource is required (per machine qubit) is 1, which,
for cold enough nal temperatures, is approximately the ratie .

Returning to the incoherent control paradigm, analysing the scaling behaviour between energy and time is more complicat
On the one hand, the expression above is only slightly modi ed, with the work being replaced by the heat dissipated multiplie
by the Carnot factor:

N = — 1 ; (H4)

which is consistent with the work-to-heat ef ciency of a Carnot engine. However, in the case of incoherent control, since th
population swap only takes place within a subspace of the two-qubit machine, the total population is not completely exchang
in a single operation (in contrast to that in the coherent control setting). Thus the number of operations here required to trans
a desired amount of population to the ground state of the target is greater than the number of machimé. qlibiteake a

fair comparison, one could either compare the same number of machine qubits but swap repeatedly (with rethermalisation of
machine in between operations)—thereby xing the control complexity at the expense of longer time—or one could increase tl
number of machine qubits and count time by the number of two-level swaps—thereby xing time to be equal at the expense
increased control complexity overall. We investigate both methods in the coming section.

H2. Comparison of Coherent and Incoherent Control

Intuitively, the incoherent control paradigm requires the utilisation of a greater amount of resources (albeit less overall contt
in general) than the coherent control counterpart because of two distinct disadvantages. First, the temperature of the baths [
a substantial role in cooling performance. Consider the exampl&@iARyjate applied between a system and machine qubit: in
the coherent control case, this operation transforms the target system to the state of the thermal machine qubit, characterise
the Gibbs ratio of ground-state to excited-state population. In the incoherent control case, one requires the addition of a ther
qubit from the hot bath to render said operation energy preserving; as a result, the Gibbs ratio of the virtual qubit that the tar
system swaps with is, in general, worse than that of the coherent control setting, and only becomes equal in the limit of an in ni
temperature hot bath. This is the rst disadvantage. The second disadvantage is that in the incoherent control setting, the ta
system swaps with only a subspace of the machine rather than the entire one, i.e., it is swapped with a virtual qubit. Thus,
exchange of population is only partial as compared to the coherent control case: in the limiting case of an in nite temperatu
hot bath, said factor goes @ofor all relevant two-level subspaces. This implies that a greater number of operations, and thu
time, is required in the incoherent control paradigm in order to achieve a similar result as its coherent control counterpart.

We illustrate this behaviour via the following example. The system is a degenerate qubit (beginning in the maximally mixe
state), and we x the nal target ground-state populatign=0:99, correspondingto =1 p = 0:01). Even in this simple
case, the optimal nite-resource protocols with coherent and incoherent control are not known; we therefore compare protoc
from each setting that make use of machines of a similar structure, namely swapping with machine qubits (virtual ones, in t
incoherent control setting) of linearly increasing energy gaps.

More speci cally, the coherent control cooling protocol employed is that of a sequence of swaps with machine qubits c
linearly increasing energy gaps, and for the xed target population, we can calculate the surplus work cost over the Landat
limit as a function of the numbeX of operations (which corresponds in this case to the number of machine qubits). In the
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incoherent control case, we take the hot bath to be at in nite temperature, allowing for the potential saturation of the Landau
limit as in the coherent case. In this way we isolate the disadvantage that arises due to working in degenerate subspace
our analysis. Here too we take a linear sequence of energy gaps for the cold (and hot) baths, with a single operation s
corresponding to a three-level energy-conserving exchange involving the qubit taken from each of the hot and cold parts
the machine, i.ejl1i j0i.jOi, $j Oigjli_jli, . As mentioned previously, for an incoherent control protocol of xed overall
machine size, there are essentially two extremal methods of implementation. The rstis to identify-level subspaces of the

total machine with distinct energy gaps and perform the sequence of virtual swaps between them and the target; in the langu
of Appendix G, we therefore haw different stages with a single step within each stage (no repetitions) before moving on to the
next stage. The second is to takem two-level subspaces and swap the target with each virtual qukiitnes before moving

on to the next; in other words, we here haem different stages witim steps (repetitions) within each stage. For the same
xed ground-state population, we plot the surplus work cost (energy drawn from the hot bath in the case of incoherent contrc
against the total machine size and number of two-level unitary swaps, as charactefisgibblgoth of these incoherent control
adaptations, comparing them to the coherent control paradigm in Fig. 4.

In both control paradigms, we see that the deviation of the energy cost above the Landauer limit scales inversely with t
number of operations [as expected from Egs. (H3) and (H4)], but the proportionality constant is worse in the case of incohere
control. Moreover, the incoherent control paradigm with no repetitions within stages outperforms that with multiple repetitions
as intuitively expected since the former protocol corresponds to one for which the spacing between distinct energy gaps that
utilised is smaller, allowing us to stay closer to the reversible limit in each step. In our example, the no repetition incoherel
control protocol is around 3 times worse than the coherent control protocol and the incoherent control protocol=nvgh
repetitions is around 5.3 times worse, implying that one would require that many times the number of operations (i.e., that mu
more time) to achieve the same performance with incoherent control paradigm as with coherent control.

FIG. 4. Imperfect Cooling with Coherent and Incoherent Contke compare the performance of coherent and incoherent control protocols
for cooling a degenerate qubit target by swapping it with machine qubits with linearly increasing energy. The nal ground-state populatio
is xed to be 0:99. The inverse of the surplus work coat €S, (with = 1)is plotted (in units of the smallest machine energy gap,

I ") against the total number of unitary operations, with the temperature of the hot bath in the incoherent control protocojs setlto

in order to make meaningful comparison to the coherent control case. We see that the coherent control protocol (blue) outperforms the |
incoherent ones (purple, red) at any given time. As discussed in the text, there are two choices for how to implement an incoherent con
protocol of this type with xed control complexity: The red line corresponds to a protocol in which a machine (subspace) with the same energ
gap is reused 5 times before moving on to the next; on the other hand, the purple line depicts the case where there are no repetitions w
each stage de ned by a distinct energy gap in the machine. By inspection, the single-use incoherent protocol (purple) requires approximai
3 times more unitaries to achieve the same ef ciency as the coherent one (blue), whereas the ve-repetition incoherent protocol (red) requi
approximately 5.3 times as many unitaries as the coherent one.
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