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This paper presents a finite-time approach for tracking control of a quadrotor system subjected to external disturbances and model uncertainties. The proposed approach offers a preassigned performance guarantee. Firstly, integral terminal sliding manifolds and nonsingular terminal sliding manifolds are considered to produce the new hyperplane sliding variables for both position and attitude of a quadrotor. The designed hyperplane sliding variables guaranteed a finite-time convergence. The objective is to develop a finite-time control scheme for a disturbed quadrotor to follow a predefined trajectory based on a nonlinear sliding mode controller. The main contribution of this paper is to design a hyperplane-based nonlinear sliding mode control strategy for a quadrotor subjected to disturbances. A concept of robust controllers for a quadrotor is presented based on Lyapunov theory, which proves finite-time stability of the proposed control technique. Numerical simulations with two different scenarios verify the accuracy of the proposed hyperplane-based sliding mode control approach. The simulations study also included a comparison with another nonlinear controller. Results demonstrated overperformance of the proposed control strategy.

Introduction

controlling a quadrotor under disturbances and noisy measurements. The authors of [START_REF] Wu | Adaptive dynamic surface and sliding mode tracking control for uncertain QUAV with time-varying load and appointed-time prescribed performance[END_REF] investigated to present new finite-time control and fixed time prescribed performance for a quadrotor system. In order to reduce the chattering problem, the paper [START_REF] Yue | Prescribed chattering reduction control for quadrotors using aperiodic signal updating[END_REF] presented an aperiodic signal updating for a quadrotor under external disturbances and uncertainties. The authors of [START_REF] Mofid | Adaptive Finite-Time Backstepping Global Sliding Mode Tracker of Quad-Rotor UAVs Under Model Uncertainty, Wind Perturbation, and Input Saturation[END_REF] proposed an adaptive finite-time control for a quadrotor using backstepping and global sliding mode controllers. In [START_REF] Alattas | Barrier Function Adaptive Nonsingular Terminal Sliding Mode Control Approach for Quad-Rotor Unmanned Aerial Vehicles[END_REF], barrier function and nonsingular terminal SMC are proposed for a quadrotor. Event-triggered fractional-order SMC approach was proposed for UAV under disturbances. In [START_REF] Díaz-Méndez | Conditional integrator sliding mode control of an unmanned quadrotor helicopter[END_REF], a conditional integrator SMC was developed for a quadrotor. An observer based rotor failure compensation for a quadrotor was proposed in [START_REF] Dalwadi | Observer based rotor failure compensation for biplane quadrotor with slung load[END_REF]. In [START_REF] Dalwadi | Biplane Trajectory Tracking Using Hybrid Controller Based on Backstepping and Integral Terminal Sliding Mode Control[END_REF], a hybrid controller based on backstepping and integral SMC was proposed for a quadrotor. In [START_REF] Dalwadi | Disturbance observer-based backstepping control of tail-sitter uavs[END_REF], an observer-based backstepping control was proposed for a uas.

In this paper, a robust integral non-singular hyperplane SMC (INH-SMC) scheme is designed to control the disturbed quadrotor and ensures accurate tracking under the effect of disturbances. For the attitude and position subsystems, novel integral-type hyperplane-based sliding manifolds are designed. The proposed manifolds for quadrotor system are designed by combining integral-type TSMC and nonsingular TSMC to obtain robust, accurate tracking performance, and fast convergence of the state variables. The result input signals are integrated to achieve continuous controllers, which reduces the chattering phenomenon. The proposed control scheme addressed and rejected the disturbances. Contributions of this research paper can be highlighted as follows:

• Integral-type sliding and nonsingular terminal sliding manifolds are combined and applied to attitude and position of a quadrotor, which offers high tracking accuracy and faster convergence, reduces the steady-state error, and demonstrates stronger robustness against disturbances.

• Switching laws are proposed to deal with the upper bound of the disturbances that affects the dynamics.

• The proposed control scheme is applied to quadrotor dynamics in the presence of disturbances and confirmed its superiority compared to super twisting algorithms by simulation results.

The rest parts of the present paper are structured as follows. The formulation problem is given in Section II. The proposed control scheme and its stability are presented in Section III. The results are provided in Section IV. Finally, conclusions are presented in Section V.

Model of flight dynamics

In this section, a modeling system of a quadrotor is presented. As depicted in Fig. 1, two frames are defined: an inertial reference frame E = {O e , X e , Y e , Z e } and a body-fixed frame B = {O b , X b , Y b , Z b }.

Let's define the Euler angles related to an inertial frame and the angle velocities respectively by X ω (t) = [φ(t), θ(t), ψ(t)] T and Ẋω (t) = [ φ(t), θ(t), ψ(t)] T . The linear velocity can be defined V(t) = [p(t), q(t), r(t)] T . Let's introduce the position and linear velocity in the earth-frame respectively by X Υ (t) = [x(t), y(t), z(t)] T and V = [u(t), v(t), w(t)] T . In order to obtain the dynamic model of the quadrotor, following assumptions are considered as in [START_REF] Labbadi | Robust adaptive nonsingular fast terminal sliding-mode tracking control for an uncertain quadrotor UAV subjected to disturbances[END_REF]:

Fig 1. Quadrotor configuration. Assumption 2.
The yaw, roll/pitch angles are limited respectively by (-π 2 , π 2 ) and (-π, π).

Using the Newton-Euler laws, the quadrotor model can be presented in the following equation.

ẊΥ (t) = V(t) (1a) 
ω(t) = R q X ω (t) (1b) 
Iω(t) = -ω(t) × (Iω(t)) + L res , (1c) 
in which, I = diag(I x , I y , I z ) ∈ R 3x3 is a symmetric positive matrix that represents the inertia of the quadrotor axes. The notation R q is the rotation velocities matrix which is given as:

R q =   1 0 -sin(θ(t)) 0 sin(φ(t)) cos(θ(t)) sin(φ(t)) 0 -sin(φ(t)) cos(θ(t)) cos(φ(t))   ( 2 
)
L res is the contributed moment torque in the quadrotor center, which is written as:

L res = L -L G -L D ( 3 
)
where L is the torque provided by four rotors quadrotor.

L =   u 2 u 3 u 4   =   0 -ρ y d 0 -ρ y d -ρ y d 0 ρ y d 0 -ρ z ρ z -ρ z ρ z       ω 2 1 ω 2 2 ω 2 3 ω 2 4     (4) 
with u 2 , u 3 , u 4 denote the quadrotor torques. ρ y is a positive value representing the lift constant, d represents the distance between the quadrotor mass center and rotor, and ρ z is the drag factor. The gyroscopic effect can be expressed as L G = 4 i=1 J r (ω × e 3 )(-1) +1 + ω i , in which j r denotes the inertia of the rotor blade, ω is the rotor speed, and e 3 = [0, 0, 1] T . The L D is recognized as aerodynamic friction torques which is defined as

L D = diag(K 1 , K 2 , K 3 ), while K 1 , K 2 , K 3 are positive aerodynamic drag coefficients. March 8, 2023 4/24
The mathematical model of the QUAV in the presence of disturbances can be presented as follows:

φ(t) = M 1 θ(t) ψ(t) + M 2 θ(t) + M 3 φ2 (t) + N 1 u 4 + D φ (t) θ(t) = M 4 φ(t) ψ(t) + M 5 φ(t) + M 6 θ2 (t) + N 2 u 3 + D θ (t) ψ(t) = M 7 φ(t) θ(t) + M 8 ψ2 (t) + N 3 u 4 + D ψ (t) ẍ(t) = M 9 ẋ(t) + 1 m (cos φ(t) sin θ(t) cos ψ(t) + sin φ(t) sin ψ(t))u 1 + D x (t) ÿ(t) = M 10 ẏ(t) + 1 m (cos φ(t) sin θ(t) sin ψ(t) -sin φ(t) cos ψ(t))u 1 + D y (t) z(t) = M 11 ż(t) -g + 1 m (cos φ(t) cos θ(t))u 1 + D z (t) (5) 
with

: M1 = (Iy -Iz ) Ix , M2 = -ωr Jr Ix , M3 = -K 1 Ix , M4 = (Iz -Ix) Iy , M5 = ωr Jr Iy , M6 = -K 2 Iy , M7 = (Ix-Iy ) Iz , M8 = -K 3 Iz , M9 = -K 5 m , M10 = -K 4 m , M11 = -K 6 m , N1 = d Ix , N2 = d Iy , N3 = 1 Iz and ωr = ω1 -ω2 + ω3 -ω4. D i (t) = [D x (t), D y (t), D z (t), D θ (t), D θ (t), D ψ (t)] T is time-varying bounded disturbance.
The underactuated problem is solved by creating the following virtual control inputs.

v =   vx vy vz   =   (cos φ(t) sin θ(t) cos ψ(t) + sin φ(t) sin ψ(t)) u 1 m (cos φ(t) sin θ(t) sin ψ(t) -sin φ(t) cos ψ(t)) u 1 m (-g + 1 m (cos φ(t) cos θ(t) u 1 m )   (6) 
According Eq. ( 6), the total lift and tilting angles can be defined as follows:

φ des (t) = arctan cos θ des (t) sin ψ des (t)vx -cos ψ des (t)vy vz + g (7a) 
θ des (t) = arctan cos ψ des (t)vx + sin ψ des (t)vy vz + g (7b)

u1 = m v 2 x + v 2 y + (vz + g) 2 (7c)
Assumption 3. In this paper, the perturbation applied for each subsystem of the quadrotor, is bounded but unknown and satisfies |D i (t)| ≤ d i , where d i > 0.

Finite-time control design for a quadrotor using a new hyper-plane based on integral non-singular SMC In this section, a new control scheme is proposed for finite-time tracking control quadrotor system in the presence of external disturbances. Figure 2 shows the structure block of the proposed finite-time control for a quadrotor system. This finite-time control method is applied in the outer-loop control, which is realized by changing the attitude angles in the inner loop of a quadrotor. The outer-loop is used to generate the desired angles and the total thrust. The inner-loop is used to generate the rolling, pitching, and yawing torques. Two sliding mode variables are suggested for a quadrotor system, the first is an integral terminal sliding mode surface and the second is nonsingular TSMS. Based on these sliding manifolds, a new hyperplane-based sliding manifolds are developed for position/attitude subsystems. Then, the Lyapunov theory is used to prove the stability of the proposed controller.

New hyperplane-based sliding manifolds for a quadrotor position

A hyperplane-based sliding manifold is constructed using the integral terminal sliding mode (ITSM) [START_REF] Xu | Continuous integral terminal third-order sliding mode motion control for piezoelectric nanopositioning system[END_REF] and the nonsingular terminal sliding mode (NTSM) [START_REF] Feng | Non-singular terminal sliding mode control of rigid manipulators[END_REF] to achieve easy, precise, and robust tracking control for a quadrotor position. Define the tracking errors of position as:

e 7 (t) = x(t) -x des (t), e 9 (t) = y(t) -y des (t), e 11 (t) = z(t) -z des (t) (8) 
The integral terminal sliding mode variable for the position can be described in order to ensure robustness and minimize steady state-errors as: 

   σ 7 (t) = Ξ x1 e 7 (t
where Ξ i1 and Ξ i2 for i = x, y, z are positive parameters and 1 2 < µ i < 1. In order to achieve fast convergence and high tracking, hyperplane based sliding manifolds are designed using NTSM as follows: [START_REF] Vahdanipour | Adaptive Fractional Order Sliding Mode Control for a Quadrotor with a Varying Load[END_REF] in which, β x,y,z is positive coefficient, and 1 < γ x,y,z < 2. The designed hyperplane-based sliding manifold for position of a quadrotor is suggested to force s 7,9,11 (t) converge to zero for any conditions of σ 7,9,11 (t).

s7(t) = σ7(t

Finite-time control design for position loop

The controller introduced in this paper is composed of two control laws: one is a continuous control law, while the other is a discontinuous control law.

Continuous control law for position loop

This component can be obtained by setting ṡ7,9,11 (t) = 0 in without disturbances D 7,9,11 (t) = 0.

The time derivative of σ i can be given by: ṡ7,9,11 (t) = σ7,9,11 (t) + γ 7,9,11 β 7,9,11 σγ7,9,11-1 

Submitting ( 14) in ( 12), the double time derivative of s i is given by the following equation.

σ7,9,11 (t) = Ξ i1 ë7,9,11 (t) -

µ i Ξ 2 i2 Ξ i1 |e 7,9,11 | 2µi-1 (t)sign(e 7,9,11 (t)) (15) 
Submitting ( 15) in [START_REF] Wang | Self-triggered sliding mode control for distributed formation of multiple quadrotors[END_REF], it produces that ṡ7,9,11 (t) = γ i β i σγi-1 7,9,11 (t)(

β i γ i σ2-γi 7,9,11 (t) + Ξ i1 ë7,9,11 (t) - µ i Ξ 2 i2 Ξ i1 |e 7,9,11 (t)| 2µi-1 sign(e 7,9,11 (t))) (16) 
By setting ṡ7,9,11 (t) = 0 and tacking D 7,9,11 (t) = 0, the equivalent rule can be obtained. Then, using the double time derivative of the tracking errors, the continuous control laws for the position of a quadrotor are given by:

vxc = 1 Ξx1 µxΞ 2 x Ξ x1 |e7(t)| 2µx-1 sign(e7(t)) -βx γx ṡ2-γx x -Ξx1M9 ẋ(t) vyc = 1 Ξy1 µy Ξ 2 y Ξ y1 |e9(t)| 2µy -1 sign(e9(t)) - βy γy ṡ2-γy y -Ξy1M10 ẏ(t) vzc = 1 Ξz1 µz Ξ 2 z Ξ z1 |e11(t)| 2µz -1 sign(e11(t)) -βz γz ṡ2-γz z -Ξz1M11 ż(t) + g (17)

Reaching control law for position loop

A switching law is added to the equivalent law to increase efficiency against model uncertainty/external disruption of a quadrotor device. Then its expressions can be given as follows:

vxs = 1 Ξx1 -kx1s7(t) -kx2sign(s7(t)) vys = 1 Ξy1 -ky1s9(t) -ky2sign(s9(t)) vzs = 1 Ξz1 -kz1s11(t) -kz2sign(s11(t)) (18) 
where k i1 and k i2 for i = 7, 9, 11 are positive constants.
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Theorem 1. Consider the quadrotor position system (5) and the hyperplane-based sliding surfaces are designed in [START_REF] Vahdanipour | Adaptive Fractional Order Sliding Mode Control for a Quadrotor with a Varying Load[END_REF] and the control laws are designed in [START_REF] Goel | Adaptive nonsingular proportional-integral-derivative-type terminal sliding mode tracker based on rapid reaching law for nonlinear systems[END_REF], then the tracking errors (8) of the closed-loop system can asymptotically converge to zero.

vx = 1 Ξx1 µxΞ 2 x Ξ x1 |e7(t)| 2µx-1 sign(e7(t)) -βx γx ṡ2-γx x -Ξx1M9 ẋ(t) -kx1s7(t) -kx2sign(s7(t)) vy = 1 Ξy1 µy Ξ 2 y Ξ y1 |e9(t)| 2µy -1 sign(e9(t)) - βy γy ṡ2-γy y -Ξy1M10 ẏ(t) -ky1s9(t) -ky2sign(s9(t)) vz = 1 Ξz1 µz Ξ 2 z Ξ z1 |e11(t)| 2µz -1 sign(e11(t)) -βz γz ṡ2-γz z -Ξz1M11 ż(t) + g -kz1s11(t) -kz2sign(s11(t)) (19) 
Proof. Define a Lyapunov function for the position and attitude of a quadrotor in terms of s 7 (t), s 9 (t), and s 11 (t) as:

V 1 = 0.5[s 2 7 (t) + s 2 9 (t) + s 2 11 (t)] (20) 
Differentiating V Σ , it yields

V1 = s 7 (t) ṡ7 (t) + s 9 (t) ṡ9 (t) + s 11 (t) ṡ11 (t) (21) 
Now, by using ( 16) and ( 19),

V1 =s 7 (t) γ x β x ṡγx-1 7 (t)[Ξ x1 D x (t) -k x1 s 7 (t) -k x2 sign(s 7 (t))] + s 9 (t) γ y β y ṡγy-1 9 (t)[Ξ y1 D y (t) -k y1 s 9 (t) -k y2 sign(s 9 (t))] + s 11 (t) γ z β z ṡγz-1 11 (t)[Ξ z1 D z (t) -k z1 s 11 (t) -k z2 sign(s 11 (t))] (22) 
Using [START_REF] Wang | Self-triggered sliding mode control for distributed formation of multiple quadrotors[END_REF], the above equation leads to

V1 ≤ - γ x β x ṡγx-1 7 (t)k x1 s 2 7 (t) - γ y β y ṡγy-1 9 (t)k y1 s 2 9 (t) - γ z β z ṡγz-1 11 (t)k z1 s 2 11 (t) ≤ 0 ( 23 
)
For any initial state s 7,9,11 (t) = 0, define t ri the reaching time to converge to zero. After that, σ 7,9,11 (t) will converge to zero as a consequence. The total time t f i can be written as follows [START_REF] Feng | Non-singular terminal sliding mode control of rigid manipulators[END_REF][START_REF] Khawwaf | Adaptive Microtracking Control for an Underwater IPMC Actuator Using New Hyperplane-Based Sliding Mode[END_REF] 

t f i = t ri + γ i γ i -1 β -1 γ i i |σ(t ri )| γ i -1 γ i (24) 
As a result, the position tracking errors will asymptotically converge to zero.

The suggested controller is used for the position subsystem in this subsection, and the Lyapunov principle is used to prove the loop's stability. In the next section, we'll use the same steps we used for the position-loop to produce control torques, which stabilize the attitude-loop under disturbances.

Finite-time control design for attitude loop

By extracting the desired roll and pitch from the position control presented in the previous subsection, the torques of the quadrotor attitude can be designed in this section. Define the desired tracking errors of a quadrotor attitude as follows:

e 1 (t) = φ(t) -φ des (t), e 3 (t) = θ(t) -θ des (t), e 5 (t) = ψ(t) -ψ des (t) (25) 
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The ITSM for the attitude can be described in order to ensure robustness and minimize steady state-errors as:

   σ 1 (t) = Ξ φ1 e 1 (t) + Ξ φ2 |e 1 (t)| µ φ sign(e 1 (t))dt σ 3 (t) = Ξ θ1 e 3 (t) + Ξ θ2 |e 3 (t)| µ θ sign(e 3 (t))dt σ 5 (t) = Ξ ψ1 e 5 (t) + Ξ ψ2 |e 5 (t)| µ ψ sign(e 5 (t))dt (26) 
where Ξ i1 and Ξ i2 for i = φ, θ, ψ are positive parameters and 1 2 < µ i < 1. In order to achieve fast convergence and high tracking, hyperplane based sliding manifolds are designed using NTSM as follows:

s1(t) = σ1(t) + 1 β φ σγ φ 1 (t), s3(t) = σ3(t) + 1 β θ σγ θ 3 (t), s5(t) = σ5(t) + 1 β ψ σγ ψ 5 (t) (27) 
in which, β φ,θ,ψ is positive coefficient, and 1 < γ φ,θ,ψ < 2.

Theorem 2. Consider the quadrotor attitude system (5) and the hyperplane-based sliding surfaces are designed in [START_REF] Oliva-Palomo | Robust global observer position-yaw control based on ellipsoid method for quadrotors[END_REF] and the control laws are designed in [START_REF] Wu | Adaptive dynamic surface and sliding mode tracking control for uncertain QUAV with time-varying load and appointed-time prescribed performance[END_REF], then the tracking errors (25) of the closed-loop system can asymptotically converge to zero.

u2 = 1 N1Ξ φ1 µ φ Ξ 2 φ Ξ φ1 |e1(t)| 2µ φ -1 sign(e1(t)) - β φ γ φ σ2-γ φ 1 (t) -Ξ φ1 {M1 θ(t) ψ(t) +M2 θ(t) + M3 φ2 (t)] + φdes (t) -k φ1 s1(t) -k φ2 sign(s1(t)} u3 = 1 N2Ξ θ1 µ θ Ξ 2 θ Ξ θ1 |e3(t)| 2µ θ -1 sign(e3(t)) -β θ γ θ σ2-γ θ 3 (t) + Ξ θ1 {M4 φ(t) ψ(t) +M5 φ(t) + M6 θ2 (t) + θdes (t) -k θ1 s3(t) -k θ2 sign(s3(t))} u4 = 1 N3Ξ ψ1 µ ψ Ξ 2 ψ Ξ ψ1 |e5(t)| 2µ ψ -1 sign(e5(t)) - β ψ γ ψ σ2-γ ψ 5 (t) + Ξ ψ1 {M7 φ(t) θ(t) +M8 ψ2 (t) + ψdes (t) -k ψ1 s5(t) -k ψ2 sign(s5(t))} (28)
Proof. Define a Lyapunov function for the position and attitude of a quadrotor in terms of s 1 (t), s 3 (t), and s 5 (t) as:

V 2 = 0.5[s 2 1 (t) + s 2 3 (t) + s 2 5 (t)] (29) 
Differentiating V 2 , it yields V2 = s 1 (t) ṡ1 (t) + s 3 (t) ṡ3 (t) + s 5 (t) ṡ5 (t) [START_REF] Mofid | Adaptive Finite-Time Backstepping Global Sliding Mode Tracker of Quad-Rotor UAVs Under Model Uncertainty, Wind Perturbation, and Input Saturation[END_REF] Now, by using the time derivative of sliding mode variables and (28),

V1 =s 1 (t) γ φ β φ ṡγ φ -1 1 (t)[Ξ φ1 D φ (t) -k φ1 s 1 (t) -k φ2 sign(s 1 (t))] + s 3 (t) γ θ β θ ṡγ θ -1 3 (t)[Ξ θ1 D θ (t) -k θ1 s 3 (t) -k θ2 sign(s 3 (t))] + s 5 (t) γ ψ β ψ ṡγ ψ -1 5 (t)[Ξ ψ1 D ψ (t) -k ψ1 s 5 (t) -k ψ2 sign(s 5 (t))] (31) 
Using the time derivative of sliding mode variables of attitude loop, the above equation leads to

V1 ≤ - γ φ β φ ṡγ φ -1 1 (t)k φ1 s 2 1 (t) - γ θ β θ ṡγ θ -1 3 (t)k θ1 s 2 3 (t) - γ ψ β ψ ṡγ ψ -1 5 (t)k ψ1 s 2 5 (t) ≤ 0 ( 32 
)
For any initial state s 1,3,5 (t) = 0, define t rj the reaching time to converge to zero. After that, σ 1,3,5 (t) will converge to zero as a consequence. The total time t f j can be written as follows [START_REF] Feng | Non-singular terminal sliding mode control of rigid manipulators[END_REF][START_REF] Khawwaf | Adaptive Microtracking Control for an Underwater IPMC Actuator Using New Hyperplane-Based Sliding Mode[END_REF] 

t f j = t rj + γ j γ j -1 β -1 γ j j |σ(t rj )| γ j -1 γ j (33) 
As a result, the position tracking errors will asymptotically converge to zero.
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The following Theorem shows the results of the proposed controller and the stability of the closed-loop system is provided.

Theorem 3. Consider the quadrotor system (5) and the hyperplane-based sliding surfaces s are designed as [START_REF] Vahdanipour | Adaptive Fractional Order Sliding Mode Control for a Quadrotor with a Varying Load[END_REF], [START_REF] Oliva-Palomo | Robust global observer position-yaw control based on ellipsoid method for quadrotors[END_REF] and the control laws are designed as [START_REF] Goel | Adaptive nonsingular proportional-integral-derivative-type terminal sliding mode tracker based on rapid reaching law for nonlinear systems[END_REF] and (28), then the tracking errors (8) and (25) of the closed-loop system can asymptotically converge to zero.

Proof. Define a Lyapunov function for the position and attitude of a quadrotor in terms of s 7 (t), s 9 (t), s 11 (t), s 1 (t), s 3 (t), and s 5 (t) as: 

V 12 = 0.
γ x β x ṡγx-1 x [Ξ x1 D x (t) -k x1 s 7 (t) -k x2 sign(s 7 (t))] + s 9 (t) γ y β y ṡγy-1 y [Ξ y1 D y (t) -k y1 s 9 (t) -k y2 sign(s 9 (t))] + s 11 (t) γ z β z ṡγz-1 z [Ξ z1 D z (t) -k z1 s 11 (t) -k z2 sign(s 11 (t))] + s 1 (t) γ φ β φ ṡγ φ -1 φ [Ξ φ1 D φ -k φ1 s 1 (t) -k φ2 sign(s 1 (t))] + s 3 (t) γ θ β θ ṡγ θ -1 θ [Ξ θ1 D θ -k θ1 s 3 (t) -k θ2 sign(s 3 (t))] + s 5 (t) γ ψ β ψ ṡγ ψ -1 ψ [Ξ ψ1 D ψ -k ψ1 s 5 (t) -k ψ2 sign(s 5 (t))] (36) 
Using ( 23) and [START_REF] Díaz-Méndez | Conditional integrator sliding mode control of an unmanned quadrotor helicopter[END_REF], the above equation leads to

V12 ≤ γ x β x ṡγx-1 x [|s 7 (t)|(Ξ x1 |D x (t)| -k x2 ) -k x1 s 2 7 (t)] + γ y β y ṡγy-1 y [|s 9 (t)|(Ξ y1 |D y (t)| -k y2 ) -k y1 s 2 9 (t)] + γ z β z ṡγz-1 z [|s 11 (t)|(Ξ z1 |D z (t)| -k z2 ) -k z1 s 2 11 (t)] + γ φ β φ ṡγ φ -1 φ [|s 1 (t)|(Ξ φ1 |D φ | -k φ2 ) -k φ1 s 2 1 (t)] + γ θ β θ ṡγ θ -1 θ [|s 3 (t)|(Ξ θ1 |D θ | -k θ2 ) -k θ1 s 2 3 (t)] + γ ψ β ψ ṡγ ψ -1 ψ [|s 5 (t)|(Ξ ψ1 |D ψ | -k ψ2 ) -k ψ1 s 2 5 (t)] (37) 
We choose

k x2 > Ξ x1 |D x (t)|, k y2 > Ξ y1 |D y (t)|, k z2 > Ξ z1 |D z (t)|, k φ2 > Ξ φ1 |D φ |, k θ2 > Ξ θ1 |D θ |, and k ψ2 > Ξ ψ1 |D ψ |. Eq. ( 37 
) becomes: V12 ≤ - γ x β x ṡγx-1 x k x1 s 2 7 (t) - γ y β y ṡγy-1 x k y1 s 2 9 (t) - γ z β z ṡγz-1 z k z1 s 2 11 (t) - γ φ β φ ṡγ φ -1 φ k φ1 s 2 1 (t) - γ θ β θ ṡγ θ -1 θ k θ1 s 2 3 (t) - γ ψ β ψ ṡγ ψ -1 ψ k ψ1 s 2 5 (t) ≤ 0 (38) 
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Hence, the tracking errors of the position and attitude can asymptotically converge to zero. The proof is thus completed.

Simulation results

Numerical simulations are used to evaluate the tracking performance of the hyperplane-based sliding mode controller described in this paper. As a comparison, the super-twisting PID sliding mode controller provided in [START_REF] Labbadi | Novel robust super twisting integral sliding mode controller for a quadrotor under external disturbances[END_REF] is used.

Control parameters selection

During the simulation, the user has to select the value that achieves the best balance of tracking accuracy and control smoothness. The discussion of the controller parameter selection for the proposed control technique is summarized as follows:

• Selections of Ξ i1 , Ξ i2 , and µ i for i = x, y, z, φ, θ, ψ: The parameters Ξ i1 , Ξ i2 , and µ i are used in ITSM manifolds as given in ( 9) and [START_REF] Nekoukar | Robust path tracking of a quadrotor using adaptive fuzzy terminal sliding mode control[END_REF]. Faster convergence of the tracking errors can be obtained by choosing a smaller value of Ξ i1 Ξ i2 , and 1 2 < µ i < 1 For a quadrotor position and attitude loop, Ξ i1 = 1, Ξ i2 = 0.0046, and µ i = 1 are selected.

• Selections of β i and γ i for i = x, y, z, φ, θ, ψ: The gains β i and γ i are used in NTSM as shown in [START_REF] Vahdanipour | Adaptive Fractional Order Sliding Mode Control for a Quadrotor with a Varying Load[END_REF] for quadrotor position and ( 27) for altitude loop. Faster convergence of the tracking errors can be obtained by choosing a high positive value of β i , and a smaller value of 1 < γ i < 2, however, it increases the magnitude of the control effort. The best choice of NTSM gains is presented in Table 2 • Selections of k i1 and k i2 for i = x, y, z, φ, θ, ψ: The positive gains k i1 and k i2 are used in the switching law [START_REF] Singh | Perching of Nano-Quadrotor Using Self-Trigger Finite-Time Second-Order Continuous Control[END_REF] affect the robustness of the system by balancing the control signal smoothness. The selective values of k i1 and k i2 parameters are presented in Table 2.

Remark 1. The design parameters of the controllers need to be tuned to achieve the satisfactory performance in terms of quadrotor trajectory-tracking in the presence of disturbances. To pick the optimal values for such parameters, the optimization toolbox in MATLAB program has been used (see Ref. [START_REF] Freire | A Simple Optimization Method for Tuning the Gains of PID Controllers for the Autopilot of Cessna 182 Aircraft Using Model-in-the-Loop Platform[END_REF]).

Tables 1 and2 list the controller and quadrotor parameters, respectively. The 

following are the beginning conditions for quadrotor states:

x0 = 0.05m, y0 = 1m, z0 = 0.01m, φ0 = 0rad, θ0 = 0rad, ψ0 = 0rad (39)
Two scenarios in terms of disturbances path following are proposed in this section.

Simulation 1

In order to examine the tracking performance of the proposed control scheme, the complex change of the drag coefficients is considered in this scenario. This effect is shown in Fig. 3 and4, respectively for translational and rotational subsystems. The desired path used in this simulation is given by: 

x des (t) =        0.5 cos(0.5t) m 0.5 m 0.25t -4.5 m 3 m t ∈ [0, 4π) t ∈ [4π, 20) t ∈ [20, 30) t ∈ [30, 80] y des (t) =            0.5 sin(0.5t) m 0.25t -3.14 m 5 -π m -0.2358t + 8.94 m -0.5 m t ∈ [0, 4π) t ∈ [4π, 20) t ∈ [20,
x des (t) = sin(0.5t)m, y des (t) = cos(0.5t)m, z des (t) = 0.1t + 2m,

ψ des (t) = 0.3rad (42) 
External disturbances used in this simulation for quadrotor position and attitude are set as follows: The absolute position result is plotted in Fig. 5; as can be seen from these results, the proposed controller ensures that the quadrotor follows the desired trajectory with great precision, even when external disturbances are present. The suggested controller produced faster position responses than the SP-PIDSMC approach, as illustrated in Fig. 5. The roll, pitch, and yaw angles converge to their intended angles in a short finite time, as shown in Fig. 6. The vehicle is more stable under the proposed controller under the disturbed flight. Figures 7 and8 depict the time trajectories of the sliding surfaces of the quadrotor's position and attitude, which converge in finite time to their target trajectories. The total thrust and control torques (e.g. rolling, pitching, and yawing torques) are shown in Fig. 9, demonstrating the chattering free of replies. The signal inputs provided by the proposed controller are smooth and have appropriate amplitudes, March 8, 2023 13/24 

D x (t) = 1 + sin(0.2πt) m/s 2 D y (t) = 1 + cos(0.2πt) m/
D x (t) = 0.5 sin(t) m/s 2 D y (t) = 0.1 cos(t) m/s 2 D z (t) = 0.5 sin(t) cos(t) m/s 2 D φ (t) = 0.5 cos(0.5t) rad/s 2 D θ (t) = 0.5 sin(0.5t) rad/s 2 D ψ (t) = 0.5 sin(0.7t) cos(0.7t) rad/s 2 (44) 
The drag coefficients are supposed to change in the form of Band-Limited White Noise in a limited interval in this simulation. Obviously, the shifting curves of drag coefficients in a real fly in an environment are not more intricate than the ones presented in Figs. 18). On the other hand, as shown in Figs. 16 and17, the sliding variables converge to zero in short finite-time. As a result, the suggested control method proposed in this paper for a disturbed quadrotor system has a high level of robustness against time-varying disturbances compared to the results provided by the Ref. [START_REF] Labbadi | Novel robust super twisting integral sliding mode controller for a quadrotor under external disturbances[END_REF].

Remark 2. The dynamic model involves forces and torques applied to the quadcopter as the control actions, in order to achieve the desired reference while taking into account the inertial properties of the quadcopter. The propulsion control system, together with the servomotors that move various elements, such as the flaps of fixed-wing drones or the swashplate of helicopters, constitute the low-level control. The low-level dynamics, formulated using a first order transfer function of the system, then the dynamics of this part are very fast compared to the quadcopter dynamics. In this research, complex random parametric uncertainties and external disturbances are taken into account in two scenarios in order to make the simulation more realistic.

Quantitative analysis of the controllers

The integral of the error square (ISE) and integral absolute error (IAE) are used for quantitative comparison. The ISE and IAE are numerical representations of tracking-error performance.

The ISE and IAE performances of two controllers for the scenario 1 is shown in Tables 3 4. Also, Tables 5 and6 show the ISE and IAE performances for the scenario 2. In comparison to ST-PID-SMC, the finite-time control shows that the ISE and IAE indices are less important for both scenarios. Remark 3. The proposed control method has been compared to ST-PID-SMC technique, which deals with the tracking problem of the quadrotor system subject to external disturbances and parametric uncertainties. Also, in contrast to ST-PID-SMC, where the tracking errors can only asymptotically converge, the proposed control scheme, using a terminal sliding surface manifold, can guarantee the system's finite-time zero-error stability, resulting in better steady-state performance.

Remark 4. This note goes at describing the procedure for experimental validation of the finite-time control scheme. In this context, to build the quadrotor test bench experimental to validate the proposed scenarios, a list of the pieces of equipment has been compiled. The hardware configuration of the quadrotor experimental platform is depicted in Fig. 21. This platform uses a quadrotor of version X450 with one ground control station, DSP TMS320F28379D, Inertial Measurement Unit, the global positioning system module measures the velocity and position in the horizontal plane, and barometric sensor measure the altitude. Moreover, two Zigbee wireless modules ensure the communication between the quadrotor and the ground station. A fan generates the wind then applied as disturbances to the quadrotor. Remark 5. The present work presents a finite-time controller for a quadrotor under disturbances using a hyper-plan sliding mode manifold. Also, a switching finite-time is proposed for the system to ensure finite-time stability and cope with the upper bound of the disturbances. Moreover, in the next step, we design the proposed control method's observer or adaptive version.

Conclusions

This paper was devoted to the path following a quadrotor system subject to external disturbances. To begin, the new sliding manifolds for quadrotor attitude and position incorporate two variables of nonlinear sliding surfaces: nonsingular terminal sliding mode and integral terminal sliding mode. The developed sliding manifolds ensured a faster rate of quadrotor state convergence. Second, the switching control laws are built to deal with the most severe wind disturbances. The Lyapunov theory was used to verify the finite-time stability of the proposed control strategy, which improved the tracking performance of a quadrotor control system against wind disturbances. In comparison to supper-twisting PID sliding mode controller, the results obtained and the Table 1 show that the control approach suggested in this work has good tracking accuracy, convergence rate, and resilience against wind disturbances. For further work, the finite-time approach will be validated by experiment. Design a fractional-order finite-time control technique to improve the performances of the proposed control method. Also, the fault-tolerant control problem of the quadrotor actuators and sensors will be addressed using the adaptive version of the proposed finite-time controller. Innovative solutions and sensors have recently been created for civilian use, thanks to new technologies, allowing for more flexibility (fewer restrictions in terms of sensor installation), performance (longer duration, better aerodynamic profile, better navigation system), and planning tools. The development of low-cost flight controller systems and the widespread dissemination of structure from motion applications, which allow the production of a 3D model from a sequence of photos collected from various points of view, are the most recent advancements in quadrotor aircrafts.
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Table 1 .

 1 Quadrotor parameters.

	Parameter	Value	Parameter	Value
	g(s-2 .m)	9.8	K 5 (N ms 2 )	0.01
	m(kg)	0.486	K 6 (N ms 2 )	0.01
	I x (m-2 .kg)	3.8278e-3 K 1 (N rads 2 )	0.012
	I y (m-2 .kg)	3.8278e-3 K 2 (N rads 2 )	0.012
	I z (m-2 .kg)	7.6566e-3 K 3 (N rads 2 )	0.012
	J r (m-2 .kg) 2.8385e-5	ρ(N.s 2 )	2.9842e-3
	K 4 (N ms 2 )	0.01	ρ c (N.m.s 2 )	3.2320e-2

Table 2 .

 2 Control system parameters.

	Parameter	Value	Parameter	Value
	µ φ,θ,ψ	1	β φ,θ,ψ	102.15
	γ φ,θ,ψ	1.9	Ξ i2	0.0046
	Ξ i1	1	k φ2,θ2,ψ2	2.6997
	k φ1,θ1,ψ1	817.6194	k x1,y1,z1	6
	µ x,y,z	1	β x,y,z	2.1487
	γ x,y,z	1.1	k x2,y2,z2	

Table 3 .

 3 ISE Performance Indexes of the scenario 1 Compared to the results of the other approaches, the ISE and IAE values for the tracking errors are lower. All of these findings show that the proposed control method

	Variable Proposed method ST-PID-SMC
	x(t)	0.0614	0.1249
	y(t)	0.3665	0.781
	z(t)	0.2703	0.5739
	ψ(t)	0.0028	0.0225
	The superior tracking control performance of the proposed finite-time method is
	confirmed. It provides more accurate tracking, a faster convergence rate, and excellent
	robustness than ST-PID-SMC technique.	
	March 8, 2023		19/24

Table 4 .

 4 IAE Performance Indexes of the scenario 1

	Variable Proposed method ST-PID-SMC
	x(t)	0.3979	0.6126
	y(t)	0.6902	1.87
	z(t)	0.5382	1.017
	ψ(t)	0.0295	0.1349

Table 5 .

 5 ISE Performance Indexes of the scenario 2

	Variable Proposed method ST-PID-SMC
	x(t)	0.0012	0.13
	y(t)	0.358	0.72
	z(t)	1.46	2.53
	ψ(t)	0.0002	0.323
	achieves better tracking performance, including high precision tracking, quick response,
	smooth control commands, and high robustness.	

Table 6 .

 6 IAE Performance Indexes of the scenario 2

	Variable Proposed method ST-PID-SMC
	x(t)	0.164	1.164
	y(t)	0.63	1.35
	z(t)	1.22	2.34
	ψ(t)	0.0581	2.66