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This paper presents a new Matlab toolbox, aimed at facilitating the use of polynomial optimization for stability analysis of nonlinear systems. Indeed, in the past decade several decisive contributions made it possible to recast this type of problems as convex optimization ones that are tractable in modest dimensions. However, available software requires their user to be fluent in Sum-of-Squares programming, preventing them from being more widely exploited by practitioners. To address this issue, SOStab entirely automates the writing and solving of optimization problems, and directly outputs relevant data for the user, while requiring minimal input. In particular, no specific knowledge of optimization is needed for implementation. The toolbox allows a user to obtain outer and inner approximates of the region of attraction of the operating point of different grid connected devices such as synchronous machines and power converters.

Introduction

In the past decade, the potential application of Sum-of-Squares Programming (SoSP) to power systems stability assessment has been investigated [START_REF] Anghel | Algorithmic construction of Lyapunov functions for power system stability analysis[END_REF][START_REF] Tacchi | Power system transient stability analysis using sum of squares programming[END_REF][START_REF] Izumi | Estimating regions of attraction of power systems by using sum of squares programming[END_REF][START_REF] Josz | Transient stability analysis of power systems via occupation measures[END_REF][START_REF] Oustry | Maximal positively invariant set determination for transient stability assessment in power systems[END_REF]. In this line of research, the problem of transient stability analysis is reformulated as the search for a region R of the system state space, such that if the system state is initialized in R, then the trajectories will exhibit stability properties (e.g. converging to a target -R is then called a Region of Attraction or RoAor staying forever -i.e. as long as the system equations are valid-within a secure zone of the state space). Such a framework allows its user to take nonlinear behaviours into account, hence making it specifically suited for transient stability analysis. Indeed, transient stability is defined as the ability of the considered power system to come back to normal operation, after being subjected to a large perturbation that took it far from its equilibrium point [START_REF] Hatziargyriou | Definition and classification of power system stability -revisited & extended[END_REF], hence making linearization meaningless.

RoA on time horizons both infinite [START_REF] Jarvis-Wloszek | Lyapunov based analysis and controller synthesis for polynomial systems using sum-of-square optimization[END_REF][START_REF] Korda | Convex computation of the maximal positively invariant set for polynomial control systems[END_REF][START_REF] Oustry | Inner approximations of the maximal positively invarian set for polynomial dynamical systems[END_REF] and finite [START_REF] Henrion | Convex computation of the region of attraction of polynomial control systems[END_REF][START_REF] Korda | Inner approximations of the region of attraction for polynomial dynamical systems[END_REF] can then be computed by solving a SoSP problem. In many instances, a byproduct of this reformulation is the convexity of the resulting optimization problem: one is faced with Linear Matrix Inequalities (LMI), which corresponds to the framework known as Lasserre's Moment-SoS (for Sums-of-Squares) hierarchy and comes with convergence guarantees [START_REF] Lasserre | Moments, Positive Polynomials and Their Applications[END_REF][START_REF] Henrion | The Moment-SOS Hierarchy[END_REF][START_REF] Tacchi | Convergence of Lasserre's hierarchy: the general case[END_REF]. Nevertheless, approximation of finite horizon RoAs still suffers from various drawbacks: first of all, the computational complexity is polynomial in the dimension of the considered system (see [START_REF] Tacchi | Moment-SOS hierarchy for large scale set approximation[END_REF] for details on that issue as well as [START_REF] Tacchi | Approximating regions of attraction of a sparse polynomial differential system[END_REF][START_REF] Subotić | A Lyapunov framework for nested dynamical systems on multiple time scales with application to converter-based power systems[END_REF][START_REF] Wang | Exploiting term sparsity in moment-SoS hierarchy for dynamical systems[END_REF] for existing solutions); second, many open questions remain about optimal conditioning of LMIs depending on various choices in the formulation of the problem; eventually, the issue that this article proposes to leverage, is the lack of a user-friendly interface for a practical implementation and application of the Moment-SoS hierarchy.

More precisely, the existing frameworks [START_REF] Löfberg | Pre-and post-processing sum-of-squares programs in practice[END_REF][START_REF] Henrion | GloptiPoly 3: moments, optimization and semidefinit programming[END_REF][START_REF] Papachristodoulou | SOSTOOLS -Sum of Squares Optimization Toolbox for MATLAB[END_REF] require the user to write, code and solve SoS programming problems whose solutions describe the RoA approximation; in contrast, the SOStab toolbox entirely automates the SoS programming part of the framework and no knowledge on the Moment-SoS hierarchy is needed to run it. Instead, the SOStab toolbox requires minimal input (namely: dynamics, state constraints, equilibrium point, time horizon, target set and a complexity parameter d) and outputs the stability certificate that describes the RoA approximation, as well as plots of the RoA in chosen state coordinates.

The software is specifically designed to automate finite time horizon RoA approximation, with following interpretation in terms of transient stability: the finite time horizon is the time allowed for the system to return to normal operating conditions once the disturbance is cleared. The contribution of this work is twofold: a Matlab tollbox has been developed and made publicly available which allows users to compute RoA of non-linear dynamical systems. This paper, first demonstrates its capabilities with two illustrative test cases and then explains in deeper details the implemented procedure.

The article is organized as follows: first Section 2 recalls the mathematical definition and practical interpretation of finite time horizon RoA, and gives an overview of the SOStab toolbox. Basics about the SoSP framework are included in Appendix .1. Then, Section 3 introduces the models of the two case studies used in this work to illustrate the toolbox performance in Section 4. Section 5 provides more details on the developed tool and highlights the main contributions of this work before presenting the main conclusions of this work in Section 6.

Computing Regions of Attraction with SOStab

Consider an abstract differential system

ẋ(t) = f (x(t)) (1a)
with polynomial vector field f ∈ R[x] and equilibrium x ⋆ ∈ R n . Define a security threshold ∆x ∈ (0, ∞) n and state constraint

x(t) ∈ [x ⋆ ± ∆x], (1b) 
[x ⋆ ± ∆x] := [x ⋆ 1 -∆x1, x ⋆ 1 + ∆x1] × . . . × [x ⋆ n -∆xn, x ⋆ n + ∆xn].
Definition 1. Given a time horizon T > 0 and a closed target set M ⊂ X, the Region of Attraction R M T of M in time T is defined as

R M T := x(0) ∈ R n : ∀t ∈ [0, T ], (1) holds x(T ) ∈ M . ( 2 
)
SOStab is specifically designed to compute such an R M T for ellipsoids M described by

M := {x ∈ R n : ∥A(x -x ⋆ )∥ ≤ ε} (3) 
where A ∈ R n×n is a reshaping matrix such that det(A) = 1, and ε > 0 is an error tolerance. From a computational viewpoint, considering finite time horizon RoA improves the properties of the resulting SoS programs: they are convex, while their infinite time horizon counterparts are bilinear (and thus nonconvex), which has important consequences on the convergence properties of the corresponding algorithms (see e.g. [START_REF] Izumi | Estimating regions of attraction of power systems by using sum of squares programming[END_REF]). In practice, this is a reasonable assumption as operational points of physical system, such as power systems, are constantly moving, making the results of the analysis relevant for a limited time window. In exchange for the finite time horizon, it is necessary to consider target sets that are not reduced to a point, defined by parameters A and ε; in SOStab, the default value for A is the identity matrix, but sometimes (e.g. when variables evolve on different time scales), it is useful to make a different choice. Eventually, we embed the whole problem into a secure region [x eq ± ∆x], to take into account the physical limits of the system: this is the upper and lower bounds of state variables.

SOStab takes as input the problem data (f , ∆x, T, A, ε), as well as a modelling parameter d ∈ 2N, and outputs the following objects for outer and inner RoA estimation: 

y out d = λ out d v out d w out d (4a) y in d = λ in d v in d w in d , (4b) 
R M T ⊂ {x ∈ R n : v out d (0, x) ≥ 0} =: R out d (5a) R M T ⊃ {x ∈ R n : v in d (0, x) < 0} =: R in d . (5b) 
In words,

v out d (resp. v in d ) defines an outer (resp. inner) approximation R out d (resp. R in d ) of R X T .
Moreover, the following relations hold between outputs:

λ in/out d = w in/out d (x) dx (6a) w in/out d (x) ≥ max 0, v in/out d (0, x) + 1 . ( 6b 
)
As a result, λ in/out d give relevant information on the size of the computed RoA estimates: the smaller they are, the more accurate the approximation. w in/out d is often used to check the behavior of the numerical solver: if the coefficients of w in/out d -1 are too small, then w in/out d ≃ 0, and the solver failed to detect the RoA. Eventually, the framework comes with precision guarantees:

λ out d ↘ d→∞ vol R M T (7a) λ in d ↘ d→∞ vol [x ⋆ ± ∆x] \ R M T (7b) vol R in/out d -→ d→∞ vol R M T (7c)
where vol denotes the n-dimensional volume of a set. In words, when the modelling parameter d goes to infinity, the volume of the error made by the inner and outer approximation schemes converges to 0 (see Appendix .1 or [START_REF] Henrion | Convex computation of the region of attraction of polynomial control systems[END_REF][START_REF] Korda | Inner approximations of the region of attraction for polynomial dynamical systems[END_REF] for further details).

Models for case study

In this section we present the model of two different test cases, proposed in the literature, to illustrate the tool capabilities, flexibility and performance. The first one is the well known synchronisation loop of classic grid-following converters: the phase locked loop (PLL [START_REF] Wang | Polynomial method for PLL controller optimization[END_REF][START_REF] Zhang | Understanding the nonlinear behaviour and synchronizing stability of a grid-tied VSC under grid voltage sags[END_REF][START_REF] Zhang | Synchronizing stability analysis and region of attraction estimation of greed-feeding VSCs using Sum-of-Squares programming[END_REF]). The second in a multi-machine system considering reduced order models (ROM) of synchronous generators.

Phase Locked Loop 2 nd order model

Figure 1 shows a generic PLL block diagram [START_REF] Wang | Polynomial method for PLL controller optimization[END_REF]. Here an angular state variable θ is required to match a reference θ ref ; to that end, the system computes the sine of the phase difference ϕ, multiplies it by some gain K and takes it through a low-pass filter with transfer function F (s) = 1+τ2s τ1s , resulting in the following differential system:

φ ω = ω -K τ2 τ1 cos(ϕ)ω -K τ1 sin(ϕ) . ( 8 
) - + sin θ ref K ϕ F (s) ω θ
Figure 1: Block scheme of a PLL system.

Following [START_REF] Wang | Polynomial method for PLL controller optimization[END_REF], in the PLL setting the time constants τ 1 and τ 2 are functions of the gain K, a natural frequency ω n and a damping ratio ζ:

τ 1 = K ω 2 n τ 2 = 2ζ ω n (9)

Interconnected synchronous machines 2 nd order model

The second test case considered for SOStab consists of three synchronous machines, each represented by a voltage with constant magnitude V i and time varying phase angle ϕ i . The corresponding frequencies are ruled by the swing equation:

φi = ωi = -λ i ω i + 1 M i (P m i -P e i (ϕ)) (10) 
where P e i is the electrical power output of machine i (and P m i its mechanical power input), M i is the inertia constant of machine i and λ i is related to its damping coefficient. The machines are linked to one another through pure reactances X ij according to Figure 2, resulting in the following lossless power flow equation [START_REF] Anghel | Algorithmic construction of Lyapunov functions for power system stability analysis[END_REF][START_REF] Josz | Transient stability analysis of power systems via occupation measures[END_REF]: 

M 1 M 2 M 3 jX 12 j X 1 3 j X 2 3 v 1 v 2 v 3
P e i (ϕ) = j̸ =i V i V j X ij sin (ϕ i -ϕ j ) . (11) 
4 Case study

Installation of the toolbox

SOStab is a freeware subject to the General Public Licence (GPL) policy available for Matlab. It can be downloaded at:

https://github.com/droste89/SOStab SOStab requires YALMIP [START_REF] Löfberg | Pre-and post-processing sum-of-squares programs in practice[END_REF], as well as a semidefinite solver. Mosek [START_REF] Mosek Aps | The MOSEK optimization toolbox for MATLAB manual[END_REF] is used by default, but it can be replaced by any other solver, provided they are installed and interfaced through YALMIP.

RoA of the Phase Locked Loop system

This section presents the implementation of SOStab to compute the RoA of the PLL system [START_REF] Korda | Convex computation of the maximal positively invariant set for polynomial control systems[END_REF], where sine and cosine have been replaced by their degree 10 Taylor expansions (denoted si and co respectively), so that the vector field f is polynomial. First, parameters are assigned numerical values:

K = 1; phib = pi; omegan = 10.813; omegab = 20*pi; zeta = 1.3303; Deltax = [phib; omegab]
Obviously, considering [START_REF] Korda | Convex computation of the maximal positively invariant set for polynomial control systems[END_REF], one can compute the following equilibrium:

phieq = 0; omegaeq = 0; xeq = [phieq ; omegaeq];
Then, an instance of the SOStab problem is created with the line of code:

PLL = SOStab(xeq, Deltax);
and the dynamics of the system are introduced: where PLL.x denotes the variable x of the system (automatically defined by SOStab when it is first called). Now that the problem is defined, an outer approximation of the time T = 1 RoA of M = (ϕ, ω) ∈ R 2 : 20ϕ 2 + 0.05ω 2 ≤ 1.7 2 is computed using the following command: We run SOStab for the PLL system for various values of d and compile the results in Table 1. As λ out d is a proxy for the size of the outer RoA estimate, the smaller it is, the more accurate the approximation. Here one can observe that as expected the accuracy increases wirh d at the price of higher computational time.

T=1; epsilon = 1.7; d=16; A = [[20^(1/2) 0] ; [0 20^(-1/2)]]; [vol,
Once the optimisation problem is solved, graphical representation in two dimension are also available using: Here the last argument with value 1 is an optional argument that asks SOStab to also represent the target set in the figure. This yields the plot represented in Figure 3, which can be compared to [22, Fig. 10, Right]. 

RoA of the multi-machines system

Instead of performing Taylor expansions as in the previous section, it is also possible to directly tackle trigonometric functions, through an algebraic change of variables [START_REF] Josz | Transient stability analysis of power systems via occupation measures[END_REF]. This approach is also supported by SOStab, which we demonstrate on the 2 nd order model of three interconnected synchronous machines (10)- [START_REF] Korda | Inner approximations of the region of attraction for polynomial dynamical systems[END_REF]. By choosing a phase reference aligned with θ 3 , one sets θ 3 = 0 rad and ω 3 = 0 rad/s. Moreover, the parameters are fixed according to Table 2: This way, one finds back the equations studied in [START_REF] Anghel | Algorithmic construction of Lyapunov functions for power system stability analysis[END_REF][START_REF] Josz | Transient stability analysis of power systems via occupation measures[END_REF]:

Parameter λ 1 λ 2 M i P m 1 P m 2 Value 0.4 s -1 0.5 s -1 20 pu 0 pu 1 pu Parameter V i X 12 X 23 X 13 Value 1 pu 0.1 pu 0.1 pu 0.05 pu
θ1 = ω 1 , θ2 = ω 2 (12a) ω1 = -sin θ 1 -0.5 sin(θ 1 -θ 2 ) -0.4 ω 1 (12b) ω2 = -0.5 sin θ 2 -0.5 sin(θ 2 -θ 1 ) -0.5 ω 2 + 0.05 (12c)
with state variable σ = (θ 1 , θ 2 , ω 1 , ω 2 ) ∈ R 4 , stable equilibrium given by σ ⋆ = (0.02, 0.06, 0, 0) and non-polynomial dynamics. a preprocessing x := φ(σ) is required from the user to recast the dynamics under a polynomial form; each phase variable θ i is represented by its sine and cosine, through the change of variables:

x = (sin θ 1 , cos θ 1 , sin θ 2 , cos θ 2 , ω 1 , ω 2 ) ∈ R 6 (13) 
Then, one can prove (similarly to e.g. [START_REF] Anghel | Algorithmic construction of Lyapunov functions for power system stability analysis[END_REF][START_REF] Josz | Transient stability analysis of power systems via occupation measures[END_REF]) that the new variable x has polynomial dynamics: Here the first two arguments are identical as in the polynomial setting: they indicate the equilibrium point and admissible deviation for the variable with polynomial dynamics. The third argument is specific to systems with trigonometric dynamics, and identifies sines and cosines of phase variables θ i in the recasted x: the line [1,2] (resp. [START_REF] Izumi | Estimating regions of attraction of power systems by using sum of squares programming[END_REF][START_REF] Josz | Transient stability analysis of power systems via occupation measures[END_REF]) means that x 1 x 2 = sin θ 1 cos θ 1 (resp.

ẋ = f (x), with f ∈ R[x]
x 3 x 4 = sin θ 2 cos θ 2 ). Then, Sync.dynamics, Sync.SoS outer and Sync.SoS inner are the same as in the polynomial setting (but one should be careful to input the dynamics of x and not of σ). However, to plot the result in the original phase variables, the code is slightly modified in its first argument, as the user needs to explicitly identify which of the original variables in σ should be represented: [START_REF] Izumi | Estimating regions of attraction of power systems by using sum of squares programming[END_REF][START_REF] Josz | Transient stability analysis of power systems via occupation measures[END_REF],'outer', 1);

Sync.plot_roa([1,2],
Here, [START_REF] Anghel | Algorithmic construction of Lyapunov functions for power system stability analysis[END_REF][START_REF] Tacchi | Power system transient stability analysis using sum of squares programming[END_REF] (resp. [START_REF] Izumi | Estimating regions of attraction of power systems by using sum of squares programming[END_REF][START_REF] Josz | Transient stability analysis of power systems via occupation measures[END_REF]) means that the plot abscissa (resp. ordinate) represents the variable θ 1 (resp. θ 2 ) such that sin θ 1 cos θ 1 = x 1 x 2 (resp. sin θ 2 cos θ 2 = x 3 x 4 ). This yields, in the case of our power system, the plot of Figure 5, which reproduces (at a lower degree) the result of [4, Figure 2].

Here we only display the outer approximation: at degree d = 6, the precision is not enough to obtain a relevant inner RoA approximation, and the computed R in d is empty. With four variables (among which two angular phases, leading to six recast variables), going higher in the degree would require a computing power not available on a standard laptop.

Remark 1. One could also represent the RoA in a phase space (e.g. in the (θ 1 , ω 1 ) plane) with the following command, which mixes a pair of indices (for θ 1 ) and a single index (for ω 1 ):

Sync.plot_roa([1,2],5,'outer', 1); -3 -2 -1 0 1 2 3 1 -3 -2 -1 0 1 2 3 2

ROA( 1 , 2 )

Target set Outer RoA approximation: T=8, d=6

Figure 5: Outer RoA approximation for the power system.

5 Workings of the toolbox

Overview of the toolbox

The problem formulated the user and given to the toolbox must have a specific form. First of all, it must be already in polynomial form, which means that only products of variables are allowed. The toolbox requires the following minimal input:

ẋ = f (x), f ∈ R[x] n , T > 0 x ⋆ ∈ {x ∈ R n : f (x) = 0} ∆x ∈ (0, ∞) n , d ∈ 2N, ε > 0.
Then, it identifies the problem to be solved as: "compute approximations

R d of R M T with dynamics f , admissible set [x ⋆ ± ∆x] and target set M = {x ∈ R n : ∥x -x ⋆ ∥ ≤ ϵ} ".
SOStab also admits two optional input arguments:

• a shape matrix A ∈ R n×n such that det(A) = 1 reshapes the target set as M = {x ∈ R n : ∥A(x -x ⋆ )∥ ≤ ϵ};
• in case the system at hand involves trigonometric functions of phase variables θ 1 , . . . , θ N , it is also possible to specify a phase index matrix Z ∈ R N ×2 whose first (resp. second) column consists of the indices of the sines (resp. cosines) of the θ i in the recasted variable x = φ(σ).

The use of the toolbox consists of four steps (see Figure 6):

1. The initialization is performed from input (x ⋆ , ∆x) (and optional input Z); it defines the admissible set [x ⋆ ± ∆x] and identifies the dimension and variables of the system.

2. The user the inputs the dynamics f of the system and adjusts optional settings of the toolbox. ).

The

4. Graphic representations of the solutions can eventually be plotted; the choice of the plots abscissa and ordinate and plotting options is up to the user.

Initialization

SOStab is initialized through the following command:

RoA_pb = SOStab(x_eq, delta_x); % or RoA_pb = SOStab(x_eq, delta_x, angle_ind);

where x eq= x ⋆ , delta x= ∆x and angle ind= Z.

Remark 2. Note that the Moment-SoS hierarchy framework can be used with admissible sets different from [x ⋆ ± ∆x] (e.g. ellipsoids, possibly independent from the equilibrium). SOStab focuses on boxes to match the intuition of physical limits on a system. However, in some cases, such description induces bad conditioning in the considered LMIs. Future versions of SOStab will include a broader range of admissible sets.

The initial call creates an instance of the class, and defines a number of internal properties, among which one can find the following useful ones:

• internal copies of the inputs x eq and delta x (and optionally angle ind, empty by default)

• dimension: problem dimension (number of variables)

• x: a YALMIP sdpvar polynomial object, of the dimension of the problem. It represents the variable x and is called by the user to define the dynamics of the system

• t: sdpvar polynomial of size 1, representing the time variable t, which can be needed to define the dynamics of the system (if non-autonomous)

• solver, the choice of the solver used in the optimization, defined as Mosek by default, it can also be SeDuMi

• verbose, the value of the verbose parameters of the YALMIP optimization calls, defined at 2 by default (all numerical SDP solver info displayed), it can also be 1 (selection of info displayed) or 0 (no info about the numerical resolution of the underlying SDP)

• dynamics, a YALMIP polynomial defining the polynomial dynamics f of the system.

The dynamics of the system are added into the class by the user by allocating a value to RoA pb.dynamics. The dynamics must be a vector of size dimension, each row corresponding to the dynamics of one variable. To define dynamics, one will use the sdpvar object x created inside the class. For instance, defining ( ẋ1 , ẋ2 ) = (-x 1 , -x 3 2 ) would be:

Remark 3. If the system at hand involves trigonometric functions of phase variables, SOStab defines the additional property angle eq, which stands for the vector θ ⋆ -the equilibrium anglesrecalculated from the values of their sine and cosine (empty if no phase variables are involved)

RoA estimation

The inner and outer RoA estimation of the system defined the call of SOStab are then computed by the methods SoS in and SoS out, respectively. Additionnal properties are related to a specific solution of the optimization problem. They are calculated at each call of the optimization and stored until the next call, i.e. each of them correponds to the optimization call:

• internal copies of the inputs d, T, epsilon (and optional A, set to identity by default); recall that plot roa takes as inputs the two indices i, j of the variables on which to project the RoA, a string to choose between 'inner' and 'outer' approximation, and four optional arguments: an int (1 or 0) -0 by default -to choose to plot the target or not, two strings indicating the axes names -x i and x j by default -and the size of the plotting mesh -(40, 40) by default. It plots the expected slice of the ROA, with all other variables at equilibrium. If both inner and outer approximations are called sequentially for the same variables, the two plots will appear on the same Figure .  plot v and plot w take the same inputs as plot roa. They respectively plot the graph of v d and w d in 3D (with non-selected variables at equilibrium).

d
These four steps of SOStab (initialization, dynamics setting, numerical RoA estimation and graphic representations) are summarized in Figure 6.

Added value of SOStab

As detailed in Appendix .1 and [START_REF] Henrion | Convex computation of the region of attraction of polynomial control systems[END_REF][START_REF] Korda | Inner approximations of the region of attraction for polynomial dynamical systems[END_REF], the Moment-SoS hierarchy consists in solving SoS programming problems of increasing size, which requires to follow a number of steps, related to real algebraic geometry and optimization: 2. Defining an algebraic description of these geometric characteristics:

polynomials g ∈ R[x] m s.t. X = {x : g(x) ≥ 0} and h ∈ R[x] ℓ s.t. M = {x : h(x) ≥ 0}
3. Coding a method to integrate polynomials over X (i.e. computing the moments of the Lebesgue measure on X) Existing frameworks [START_REF] Löfberg | Pre-and post-processing sum-of-squares programs in practice[END_REF][START_REF] Henrion | GloptiPoly 3: moments, optimization and semidefinit programming[END_REF][START_REF] Papachristodoulou | SOSTOOLS -Sum of Squares Optimization Toolbox for MATLAB[END_REF] have been designed to automate step 5 which appears in all instances of SoS programming. As a result, they are very flexible in their use, but they also require their user to perform steps 1-4 and 6 by hand, which requires solid knowledge in SoS programming and may be time consuming and prone to human errors (especially in step 4) ; hence their use is usually not smooth, even for experts. In contrast, with SOStab, only step 1 is left to the user, and all the other operations are automatically performed.

More precisely, intrinsic properties of the dynamical system are defined as presented in section 5.2, and then settings for finite horizon RoA are the input of methods SoS in and SoS out; with this, steps 2-5 are performed through a call to YALMIP, for inner and outer RoA approximation respectively, and output an optimal value solution and the coefficients of the optimal polynomials v in/out d and w in/out d . Currently, the inner approximation has limitations on some of the instances tested, due to technical specificities of the corresponding SoS programming problem, which can cause ill conditioning of the corresponding SDP.

Remark 4. In the current version of the toolbox, when using an optional argument, one should also specify all optional arguments that appear before in the method call.

Conclusion and future works

This work presented a new Matlab Toolbox called SOStab, which aims at helping a non-expert in polynomial optimization to use the frameworks developed in [START_REF] Henrion | Convex computation of the region of attraction of polynomial control systems[END_REF][START_REF] Korda | Inner approximations of the region of attraction for polynomial dynamical systems[END_REF][START_REF] Josz | Transient stability analysis of power systems via occupation measures[END_REF] through a plug-andplay interface. Taking only ODE-related inputs (such as dynamics, admissible and target sets, time horizon) as well as an even complexity parameter d ∈ 2N, the toolbox fully automates writing, recasting and solving the corresponding SoS programming problem, and outputs stability certificates v d and w d which can be evaluated at a given initial condition to assess its stability. This is in sharp contrast with existing frameworks [START_REF] Löfberg | Pre-and post-processing sum-of-squares programs in practice[END_REF][START_REF] Henrion | GloptiPoly 3: moments, optimization and semidefinit programming[END_REF][START_REF] Papachristodoulou | SOSTOOLS -Sum of Squares Optimization Toolbox for MATLAB[END_REF] which require the users to take upon themselves the burden of properly designing and coding the SoS programming problems that correspond to their RoA approximation problem. The benefits of this contribution are the following:

(a) Knowledge on SoS programming becomes optional to use the Lasserre hierarchy for RoA approximation.

(b) The user input is significantly reduced, limiting implementation efforts.

(c) The toolbox comes with a plug-and-play design that allows one to repeat multiple experiments, reproduce existing results from the literature and solve new problems.

However, some limitations remain to be leveraged. For instance, while convex, SDP problems can be ill-conditioned, which sometimes results in poor numerical behavior with w ⋆ d ≃ 1 and meaningless plots. It is possible to rescale SoS constraints to mitigate that phenomenon, although finding the appropriate rescalings is non-trivial. Also, inner RoA approximation requires an algebraic representation of the boundary ∂X of the admissible set X [START_REF] Korda | Inner approximations of the region of attraction for polynomial dynamical systems[END_REF], and while choosing a box is the most physically relevant (and the easiest to integrate polynomials on), it induces some numerical difficulties that would not arise if X were described by a single polynomial. This can be solved either by improving the inner approximation scheme on a box, or by changing the admissible set X.

Another issue related to the numerical convergence of Lasserre's hierarchy, is that the canonical basis of monomials is far from being the best choice (see the last concluding statement in [START_REF] Henrion | Convex computation of the region of attraction of polynomial control systems[END_REF]) and a way to work with other bases of polynomials (especially orthonormal bases) would help improving all existing results.

Last but not least, at a given number n of variables (such that x ∈ R n and given precision degree d, SOStab (and the Lasserre hierarchy in general) requires to solve size n+d+1 d SDP problems, which quickly becomes intractable on any computer. To tackle this issue, structure exploiting methods have been developed in [START_REF] Tacchi | Moment-SOS hierarchy for large scale set approximation[END_REF][START_REF] Subotić | A Lyapunov framework for nested dynamical systems on multiple time scales with application to converter-based power systems[END_REF], which consist in splitting the underlying SDP problems into problems of smaller size, while keeping as much computing precision as possible; these techniques bear the potential for scaling the hierarchy up to more realistic power systems such as fully modelled power converters or low order models of distributions network (which exhibit a radial structure one can exploit in computations) Future works on the SOStab class will include:

(a) Running the toolbox on more sophisticated case studies such as power converters (b) Improving the inner approximation scheme to increase the accuracy of each relaxation (c) Supporting richer admissible X and target M sets, such as ellipsoids, ℓ p -balls, annuli... (d) Extending the toolbox to other frameworks e.g. [START_REF] Korda | Convex computation of the maximal positively invariant set for polynomial control systems[END_REF][START_REF] Oustry | Inner approximations of the maximal positively invarian set for polynomial dynamical systems[END_REF] (e) Supporting bases of polynomials other than monomials (Chebyshev, Legendre, trigonometric polynomials) (f) Exporting the toolbox to other softwares compatible with existing SDP solvers, such as Julia or Python (g) Adding structure exploiting methods to scale the method to higher dimensional dynamical systems

.

Lasserre hierarchy for Region of attraction

In this section, the generic problem of computing the finite time RoA of a given target set is presented, along with the SoS framework to address it. Consider the system ẋ = f (x) (14a)

with vector field f ∈ C ∞ (R n ) n and state constraint x(t) ∈ X (14b)
for some subset X ⊂ R n representing security constraints.

Definition 2. Given a time horizon T ∈ (0, ∞] and a closed target set M ⊂ X, the Region of Attraction (RoA) of M in time T is defined as

R M T := x(0) ∈ R n : ∀t ∈ [0, T ), x(t) ∈ X dist(x(t), M) -→ t→T 0 (15) 
Remark 5. Definition 1 covers many frameworks, such as:

• Infinite time RoA (T = ∞, X = R n , often M = {0}) • Maximal positively invariant set (T = ∞, M = X ⊊ R n ) • Constrained finite time RoA (T < ∞, X compact)
We now introduce an infinite dimensional Linear Programming (LP) problem that is related to the constrained finite horizon RoA (see [START_REF] Henrion | Convex computation of the region of attraction of polynomial control systems[END_REF] for details):

W ⋆ := inf X w(x) dx s.t. v ∈ C ∞ (R n+1 ), w ∈ C ∞ (R n ) w ≥ 0 on X (16a) w ≥ v(0, •) + 1 on X (16b) L f v := ∂ t v + f ⊤ ∂ x v ≤ 0 on L (16c) v(T, •) ≥ 0 on M (16d) 
where L := [0, T ] × X ⋐ R n+1 denotes a time-state cylinder.

Proposition 1 ([10]

). Let (v, w) be feasible for [START_REF] Tacchi | Approximating regions of attraction of a sparse polynomial differential system[END_REF]. Then,

R M T ⊂ {x ∈ R n : v(0, x) ≥ 0} (17a) ⊂ {x ∈ R n : w(x) ≥ 1} =: L(w ≥ 1) (17b) 
With Proposition 1, constraint (16a) enforces w ≥ 1 R M T , where 1 A denotes the boolean indicator function of A ⊂ R n (with value 1 in A and 0 elsewhere). Moreover, it is proven in [START_REF] Henrion | Convex computation of the region of attraction of polynomial control systems[END_REF] that for any minimizing sequence (v d , w d ) d∈N for ( 16), one has w d -→ d→∞ 1 R M T in the sense of L 1 (X), so that the volume of the approximation error L(w d ≥ 1) \ R M T converges to 0. The Moment-SoS hierarchy allows its user to compute such a minimizing sequence, under the following assumptions. Assumption 1. All considered inputs are polynomial:

1.1. f ∈ R[x] n , so that v ∈ R[t, x] =⇒ L f v ∈ R[t, x] 1.2. X = ∩ m i=1 L(g i ≥ 0) =: L(g ∈ R m + ) with g ∈ R[x] m 1.3. M = ∩ ℓ j=1 L(h j ≥ 0) = L(h ∈ R ℓ + ) with h ∈ R[x]
ℓ where x (resp. t) denotes the dimension n (resp. 1) indeterminate (i.e. identity function, which can be evaluated in any state x ∈ R n , resp. time t ∈ R).

Then, it is possible to work with polynomial Sums-of-Squares (SoS), with the following definitions.

Definition 3. Let p ∈ R[x]. Then, considering g 0 := 1, • p is SoS iff p = q 2 1 + . . . + q 2 N , q 1 , . . . , q N ∈ R[x] • p ∈ Q(g) iff p = s 0 g 0 + . . . + s m g m , s 0 , . . . , s m SoS • p ∈ Q d (g) iff p ∈ Q(g) with max(deg s i g i ) ≤ d
Since SoS polynomials are nonnegative by design, it is clear from Definition 3 that any p ∈ Q d (g) (resp. Q d (h)) is nonnegative on X (resp. M), which gives access to a strenghtening of problem [START_REF] Tacchi | Approximating regions of attraction of a sparse polynomial differential system[END_REF]:

W ⋆ d := inf X w(x) dx s.t. v ∈ R[t, x], w ∈ R[x] w ∈ Q d (g) (18a) w -v(0, x) -1 ∈ Q d (g) (18b) -L f v ∈ Q d (g, (T -t) t) (18c) v(T, x) ∈ Q d (h) (18d) 
where L = L((T -t) t ≥ 0) × X = L((g, (T -t) t) ∈ R m+1

+

). Problem [START_REF] Wang | Exploiting term sparsity in moment-SoS hierarchy for dynamical systems[END_REF] consists in looking for feasible (v, w) for ( 16) under the form of polynomials, restricting inequality constraint (16x) into SoS constraint (18x), x=a-d. The advantage of this new problem is that the decision variables are now finite dimensional vectors of coefficients, and the SoS constraints can be recast as LMIs [START_REF] Lasserre | Moments, Positive Polynomials and Their Applications[END_REF]. Thus, assuming knowledge of the moments of the Lebesgue measure on X (i.e. being able to integrate polynomials on X, e.g. if X is a ball or a box), one is able to solve (18) on a standard computer, provided that n and d are small enough to make the LMIs tractable.

As the new feasible space is strictly included in the former, there is a relaxation gap: ∀d ∈ 2N, W ⋆ < W ⋆ d . However, it is proved in [START_REF] Henrion | Convex computation of the region of attraction of polynomial control systems[END_REF] that, if X and M are bounded, W ⋆ d -→ d→∞ W ⋆ . Thus, solving instances of [START_REF] Wang | Exploiting term sparsity in moment-SoS hierarchy for dynamical systems[END_REF] gives access to converging outer approximations of the RoA. This framework comes with several extensions (not detailed here) among which:

• Approximation of a free final time RoA [START_REF] Henrion | Convex computation of the region of attraction of polynomial control systems[END_REF] R M [0,T ] := x(0) ∈ R n :

∀t ∈ [0, T ], x(t) ∈ X ∃ t ∈ [0, T ], x(t) ∈ M

• Inner RoA approximation [START_REF] Korda | Inner approximations of the region of attraction for polynomial dynamical systems[END_REF] • RoA approximation for non-polynomial (trigonometric) dynamics [START_REF] Josz | Transient stability analysis of power systems via occupation measures[END_REF] • Maximal positively invariant set approximation [START_REF] Korda | Convex computation of the maximal positively invariant set for polynomial control systems[END_REF][START_REF] Oustry | Inner approximations of the maximal positively invarian set for polynomial dynamical systems[END_REF] .

A standard polynomial system

To further illustrate how SOStab is able to reproduce existing results in SoS programming for stability analysis, one can consider a reversed-time Van der Pol oscillator, as in [START_REF] Korda | Inner approximations of the region of attraction for polynomial dynamical systems[END_REF]:

ẋ1 ẋ2 = -2x 2 0.8x 1 + 10(x 2 1 -0.21)x 2 (19) 
The dynamics are polynomial and the stable equilibrium x ⋆ of the system is at the origin, so that it takes very few lines of code to get interesting results: This gives the plot represented in Figure 7, which reproduces results presented in [10, Figure 2] and [11, Figure 3]. 

ROA( x 1 , x 2 )

Target set Outer RoA approximation: T=1, d=12 Inner RoA approximation: T=1, d=12 

Figure 2 :

 2 Figure 2: Three synchronous machines connected in a cycle.

  tau1 = K/(omegan^2); tau2 = 2*zeta/omegan; PLL.dynamics = [PLL.x(2); ... -K/tau1*(si(PLL.x(1)) + tau2*co(PLL.x(2))];

  vc, wc] = PLL.SoS_out(d,T,epsilon,A); It returns the approximate surface vol= λ out d of the computed RoA estimate in the phase space, as well as two vectors vc and wc consisting of the coefficients of polynomials v out d and w out d respectively.

  Outer RoA approximation: T=1, d=16 Target set Inner RoA approximation: T=1, d=16

Figure 3 :

 3 Figure 3: Inner and outer RoA approximations for the PLL system.

Figure 4 :

 4 Figure 4: Plot of w in d for the PLL system Of course, one can also represent the certificates v in d and w in d obtained in inner approximation, simply by setting the last argument at 'inner'.

•

  is the degree of the polynomials v vcoef outer, the coefficients of the solution v out d for the last calculated outer approximation of the ROA • wcoef outer, the coefficients of the solution w out d for the last calculated outer approximation of the ROA • vcoef inner, the coefficients of the solution v in d for the last calculated inner approximation of the ROA • wcoef inner, the coefficients of the solution w in d for the last calculated inner approximation of the ROA • solution, a volume approximation of the last calculated ROA, ie the solution λ out/in d of the optimization problem Storing the input variables (d, T, ε, A) allows the toolbox to reuse them at the plotting step, which is performed as follows:

Figure 6 :

 6 Figure 6: Flowchart of the toolbox workings

4 .

 4 Writing the SoS programming problems with explicit positivity constraints; this requires introducing internal SoS certificates as decision variables 5. Recasting SoS constraints as LMIs, solving the resulting SDP problem and converting the solution back to the polynomial framework 6. Extracting the corresponding certificates v in/out d , w in/out d and using them to characterize and plot relevant representations of the computed RoA approximation.

  VdP = SOStab([0;0], [1.1;1.1]); VdP.dynamics= [-2*VdP.x(2); 0.8*VdP.x(1) + 10*(VdP.x(1)^2 -0.21)*VdP.x(2)]; d = 12; T = 1; epsilon = 0.5; [vol, vc, wc] = VdP.SoS_out(d, T, epsilon); VdP.plot_roa(1, 2, 'outer'); [vol, vc, wc] = VdP.SoS_in(d, T, epsilon); VdP.plot_roa(1, 2, 'inner',1);

Figure 7 :

 7 Figure 7: Inner and outer RoA approximations for the Vanderpol system.

Table 1 :

 1 Outputs of SOStab depending on precision parameter d PLL.plot_roa(1,2,'outer');where the first two arguments indicate the indices of the represented variables (respectively in abscissa and ordinate), in case there are more than two. The string 'outer' indicates that the toolbox plots an outer estimate of the RoA.For inner RoA approximation[START_REF] Korda | Inner approximations of the region of attraction for polynomial dynamical systems[END_REF], the commands are

	d	λ out d	CPU time (s)
	4 4.0000	2.8169
	8 3.5892	4.6729
	12 3.1284	14.5575
	16 2.9346	45.2185

[vol, vc, wc] = PLL.SoS_in(d, T, epsilon); VdP.plot_roa(1, 2, 'inner',1);

Table 2 :

 2 Parameters for interconnected synchronous machines.

  6 , and equilibrium x ⋆ = φ(σ ⋆ ). Then, the RoA approximation problem is defined with

	Sync = SOStab([sin(0.02);cos(0.02);
	sin(0.06); cos(0.06);0;0], [1;1;1;1;pi;pi],
	[1,2;3,4]);

  RoA approximation itself is performed from input (d, T, ε) (with optional input A); it outputs the SDP solutions y

	in/out d	= (λ	in/out d	, v d in/out	in/out d w

RoA_pb.dynamics = [-RoA_pb.x(1); -RoA_pb.x(2)^3];
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