
HAL Id: hal-04056253
https://hal.univ-grenoble-alpes.fr/hal-04056253v2

Preprint submitted on 11 Oct 2023 (v2), last revised 2 Apr 2024 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SOStab: a Matlab Toolbox for Transient Stability
Analysis

Stéphane Drobot, Matteo Tacchi, Carmen Cardozo, Colin N. Jones

To cite this version:
Stéphane Drobot, Matteo Tacchi, Carmen Cardozo, Colin N. Jones. SOStab: a Matlab Toolbox for
Transient Stability Analysis. 2023. �hal-04056253v2�

https://hal.univ-grenoble-alpes.fr/hal-04056253v2
https://hal.archives-ouvertes.fr

SOStab: a Matlab Toolbox for Transient Stability Analysis

Stéphane Drobot1, Matteo Tacchi2∗, Carmen Cardozo1 and Colin N. Jones3

October 11, 2023

Abstract

This paper presents a new Matlab toolbox, aimed at facilitating the use of polynomial
optimization for stability analysis of nonlinear systems. Indeed, in the past decade several
decisive contributions made it possible to recast this type of problems as convex optimization
ones that are tractable in modest dimensions. However, available software requires their user to
be fluent in Sum-of-Squares programming, preventing them from being more widely exploited
by practitioners. To address this issue, SOStab entirely automates the writing and solving of
optimization problems, and directly outputs relevant data for the user, while requiring minimal
input. In particular, no specific knowledge of optimization is needed for implementation. The
toolbox allows a user to obtain outer and inner approximates of the region of attraction of the
operating point of different grid connected devices such as synchronous machines and power
converters.

Keywords

AC power systems, software, transient stability analysis, region of attraction, sum-of-squares programming,

toolbox, Matlab.

Acknowledgement

This work was supported by the Swiss National Science Foundation under the NCCR Automation project,

grant agreement 51NF40 180545, and the French company RTE, under the RTE-EPFL partnership n◦2022-

0225.

1R&D division, Réseau de Transport d’Électricité, La Défense, France
2Univ. Grenoble Alpes, CNRS, Grenoble INP (Institute of Engineering Univ. Grenoble Alpes), GIPSA-lab,

Grenoble, France.
3Autoamtic Control Laboratory, EPFL, Lausanne, Switzerland.
∗Corresponding author. # matteo.tacchi@gipsa-lab.fr. � +33 4768 26235. + 11 rue des Mathématiques,

Grenoble Campus BP46, 38402 Saint-Martin-d’Hères Cedex, France.

1

1 Introduction

In the past decade, the potential application of Sum-of-Squares Programming (SoSP) to power
systems stability assessment has been investigated [1, 2, 3, 4, 5]. In this line of research, the
problem of transient stability analysis is reformulated as the search for a region R of the system
state space, such that if the system state is initialized in R, then the trajectories will exhibit
stability properties (e.g. converging to a target –R is then called a Region of Attraction or RoA–
or staying forever –i.e. as long as the system equations are valid– within a secure zone of the state
space). Such a framework allows its user to take nonlinear behaviours into account, hence making
it specifically suited for transient stability analysis. Indeed, transient stability is defined as the
ability of the considered power system to come back to normal operation, after being subjected
to a large perturbation that took it far from its equilibrium point [6], hence making linearization
meaningless.

RoA on time horizons both infinite [7, 8, 9] and finite [10, 11] can then be computed by solving a
SoSP problem. In many instances, a byproduct of this reformulation is the convexity of the resulting
optimization problem: one is faced with Linear Matrix Inequalities (LMI), which corresponds to
the framework known as Lasserre’s Moment-SoS (for Sums-of-Squares) hierarchy and comes with
convergence guarantees [12, 13, 14]. Nevertheless, approximation of finite horizon RoAs still suffers
from various drawbacks: first of all, the computational complexity is polynomial in the dimension
of the considered system (see [15] for details on that issue as well as [16, 17, 18] for existing
solutions); second, many open questions remain about optimal conditioning of LMIs depending on
various choices in the formulation of the problem; eventually, the issue that this article proposes to
leverage, is the lack of a user-friendly interface for a practical implementation and application of
the Moment-SoS hierarchy.

More precisely, the existing frameworks [19, 20, 21] require the user to write, code and solve SoS
programming problems whose solutions describe the RoA approximation; in contrast, the SOStab
toolbox entirely automates the SoS programming part of the framework and no knowledge on the
Moment-SoS hierarchy is needed to run it. Instead, the SOStab toolbox requires minimal input
(namely: dynamics, state constraints, equilibrium point, time horizon, target set and a complexity
parameter d) and outputs the stability certificate that describes the RoA approximation, as well as
plots of the RoA in chosen state coordinates.

The software is specifically designed to automate finite time horizon RoA approximation, with
following interpretation in terms of transient stability: the finite time horizon is the time allowed
for the system to return to normal operating conditions once the disturbance is cleared. The
contribution of this work is twofold: a Matlab tollbox has been developed and made publicly
available which allows users to compute RoA of non-linear dynamical systems. This paper, first
demonstrates its capabilities with two illustrative test cases and then explains in deeper details the
implemented procedure.

The article is organized as follows: first Section 2 recalls the mathematical definition and
practical interpretation of finite time horizon RoA, and gives an overview of the SOStab toolbox.
Basics about the SoSP framework are included in Appendix .1. Then, Section 3 introduces the
models of the two case studies used in this work to illustrate the toolbox performance in Section 4.
Section 5 provides more details on the developed tool and highlights the main contributions of this
work before presenting the main conclusions of this work in Section 6.

2

2 Computing Regions of Attraction with SOStab

Consider an abstract differential system

ẋ(t) = f(x(t)) (1a)

with polynomial vector field f ∈ R[x] and equilibrium x⋆ ∈ Rn. Define a security threshold
∆x ∈ (0,∞)n and state constraint

x(t) ∈ [x⋆ ±∆x], (1b)

[x⋆ ±∆x] := [x⋆
1 −∆x1, x

⋆
1 +∆x1]× . . .× [x⋆

n −∆xn, x
⋆
n +∆xn].

Definition 1. Given a time horizon T > 0 and a closed target setM ⊂ X, the Region of Attraction
RM

T of M in time T is defined as

RM
T :=

{
x(0) ∈ Rn :

∀t ∈ [0, T], (1) holds
x(T) ∈M

}
. (2)

SOStab is specifically designed to compute such an RM
T for ellipsoids M described by

M := {x ∈ Rn : ∥A(x− x⋆)∥ ≤ ε} (3)

where A ∈ Rn×n is a reshaping matrix such that det(A) = 1, and ε > 0 is an error tolerance.
From a computational viewpoint, considering finite time horizon RoA improves the properties

of the resulting SoS programs: they are convex, while their infinite time horizon counterparts are
bilinear (and thus nonconvex), which has important consequences on the convergence properties
of the corresponding algorithms (see e.g. [3]). In practice, this is a reasonable assumption as
operational points of physical system, such as power systems, are constantly moving, making the
results of the analysis relevant for a limited time window. In exchange for the finite time horizon, it
is necessary to consider target sets that are not reduced to a point, defined by parameters A and ε;
in SOStab, the default value for A is the identity matrix, but sometimes (e.g. when variables evolve
on different time scales), it is useful to make a different choice. Eventually, we embed the whole
problem into a secure region [xeq ±∆x], to take into account the physical limits of the system: this
is the upper and lower bounds of state variables.

SOStab takes as input the problem data (f ,∆x, T,A, ε), as well as a modelling parameter
d ∈ 2N, and outputs the following objects for outer and inner RoA estimation:

yout
d =

(
λout
d voutd wout

d

)
(4a)

yin
d =

(
λin
d vind win

d

)
, (4b)

with λ
in/out
d ≥ 0, v

in/out
d ∈ Rd[t,x] degree d polynomials in (t,x) and w

in/out
d ∈ Rd[x] degree d

polynomials in x, such that the following inclusion guarantees hold:

RM
T ⊂ {x ∈ Rn : voutd (0,x) ≥ 0} =: Rout

d (5a)

RM
T ⊃ {x ∈ Rn : vind (0,x) < 0} =: Rin

d . (5b)

In words, voutd (resp. vind) defines an outer (resp. inner) approximation Rout
d (resp. Rin

d) of RX
T .

Moreover, the following relations hold between outputs:

λ
in/out
d =

∫
w

in/out
d (x) dx (6a)

w
in/out
d (x) ≥ max

(
0, v

in/out
d (0,x) + 1

)
. (6b)

3

As a result, λ
in/out
d give relevant information on the size of the computed RoA estimates: the

smaller they are, the more accurate the approximation. w
in/out
d is often used to check the behavior

of the numerical solver: if the coefficients of w
in/out
d − 1 are too small, then w

in/out
d ≃ 0, and the

solver failed to detect the RoA. Eventually, the framework comes with precision guarantees:

λout
d ↘

d→∞
vol

(
RM

T

)
(7a)

λin
d ↘

d→∞
vol

(
[x⋆ ±∆x] \ RM

T

)
(7b)

vol
(
Rin/out

d

)
−→
d→∞

vol
(
RM

T

)
(7c)

where vol denotes the n-dimensional volume of a set. In words, when the modelling parameter
d goes to infinity, the volume of the error made by the inner and outer approximation schemes
converges to 0 (see Appendix .1 or [10, 11] for further details).

3 Models for case study

In this section we present the model of two different test cases, proposed in the literature, to illustrate
the tool capabilities, flexibility and performance. The first one is the well known synchronisation
loop of classic grid-following converters: the phase locked loop (PLL [22, 23, 24]). The second in a
multi-machine system considering reduced order models (ROM) of synchronous generators.

3.1 Phase Locked Loop 2nd order model

Figure 1 shows a generic PLL block diagram [22]. Here an angular state variable θ is required to
match a reference θref ; to that end, the system computes the sine of the phase difference ϕ, multiplies
it by some gain K and takes it through a low-pass filter with transfer function F (s) = 1+τ2s

τ1s
,

resulting in the following differential system:(
ϕ̇
ω̇

)
=

(
ω

−K τ2
τ1

cos(ϕ)ω − K
τ1

sin(ϕ)

)
. (8)

−+ sin
θref

K
ϕ

F (s)

∫
ω θ

Figure 1: Block scheme of a PLL system.

Following [22], in the PLL setting the time constants τ1 and τ2 are functions of the gain K, a
natural frequency ωn and a damping ratio ζ:

τ1 =
K

ω2
n

τ2 =
2ζ

ωn
(9)

4

3.2 Interconnected synchronous machines 2nd order model

The second test case considered for SOStab consists of three synchronous machines, each represented
by a voltage with constant magnitude Vi and time varying phase angle ϕi. The corresponding
frequencies are ruled by the swing equation:

ϕ̈i = ω̇i = −λiωi +
1

Mi
(Pm

i − P e
i (ϕ)) (10)

where P e
i is the electrical power output of machine i (and Pm

i its mechanical power input), Mi is
the inertia constant of machine i and λi is related to its damping coefficient. The machines are
linked to one another through pure reactances Xij according to Figure 2, resulting in the following
lossless power flow equation [1, 4]:

M1 M2

M3

jX12

jX
13

jX
23

v1 v2

v3

Figure 2: Three synchronous machines connected in a cycle.

P e
i (ϕ) =

∑
j ̸=i

ViVj

Xij
sin (ϕi − ϕj) . (11)

4 Case study

4.1 Installation of the toolbox

SOStab is a freeware subject to the General Public Licence (GPL) policy available for Matlab. It
can be downloaded at:

https://github.com/droste89/SOStab

5

https://github.com/droste89/SOStab

SOStab requires YALMIP [19], as well as a semidefinite solver. Mosek [25] is used by default,
but it can be replaced by any other solver, provided they are installed and interfaced through
YALMIP.

4.2 RoA of the Phase Locked Loop system

This section presents the implementation of SOStab to compute the RoA of the PLL system (8),
where sine and cosine have been replaced by their degree 10 Taylor expansions (denoted si and
co respectively), so that the vector field f is polynomial. First, parameters are assigned numerical
values:

K = 1; phib = pi;

omegan = 10.813; omegab = 20*pi;

zeta = 1.3303; Deltax = [phib; omegab]

Obviously, considering (8), one can compute the following equilibrium:

phieq = 0; omegaeq = 0;

xeq = [phieq ; omegaeq];

Then, an instance of the SOStab problem is created with the line of code:

PLL = SOStab(xeq, Deltax);

and the dynamics of the system are introduced:

tau1 = K/(omegan^2); tau2 = 2*zeta/omegan;

PLL.dynamics = [PLL.x(2); ...

-K/tau1*(si(PLL.x(1)) + tau2*co(PLL.x(2))];

where PLL.x denotes the variable x of the system (automatically defined by SOStab when it is first
called).

Now that the problem is defined, an outer approximation of the time T = 1 RoA of M ={
(ϕ, ω) ∈ R2 : 20ϕ2 + 0.05ω2 ≤ 1.72

}
is computed using the following command:

T=1; epsilon = 1.7; d=16;

A = [[20^(1/2) 0] ; [0 20^(-1/2)]];

[vol, vc, wc] = PLL.SoS_out(d,T,epsilon,A);

It returns the approximate surface vol= λout
d of the computed RoA estimate in the phase space, as

well as two vectors vc and wc consisting of the coefficients of polynomials voutd and wout
d respectively.

We run SOStab for the PLL system for various values of d and compile the results in Table 1. As
λout
d is a proxy for the size of the outer RoA estimate, the smaller it is, the more accurate the

approximation. Here one can observe that as expected the accuracy increases wirh d at the price
of higher computational time.

Once the optimisation problem is solved, graphical representation in two dimension are also
available using:

6

d λout
d CPU time (s)

4 4.0000 2.8169
8 3.5892 4.6729
12 3.1284 14.5575
16 2.9346 45.2185

Table 1: Outputs of SOStab depending on precision parameter d

PLL.plot_roa(1,2,’outer’);

where the first two arguments indicate the indices of the represented variables (respectively in
abscissa and ordinate), in case there are more than two. The string ’outer’ indicates that the
toolbox plots an outer estimate of the RoA.

For inner RoA approximation [11], the commands are

[vol, vc, wc] = PLL.SoS_in(d, T, epsilon);

VdP.plot_roa(1, 2, ’inner’,1);

Here the last argument with value 1 is an optional argument that asks SOStab to also represent
the target set in the figure. This yields the plot represented in Figure 3, which can be compared
to [22, Fig. 10, Right].

-3 -2 -1 0 1 2 3

phi

-60

-40

-20

0

20

40

60

om
eg

a

ROA(phi, omega)

Outer RoA approximation: T=1, d=16
Target set
Inner RoA approximation: T=1, d=16

Figure 3: Inner and outer RoA approximations for the PLL system.

7

It can also be interesting to display 3d-plots of polynomials voutd and wout
d , which can be per-

formed by the commands (see Figure 4: one retrieves the shape of the inner RoA estimate):

PLL.plot_v(1, 2, ’outer’);

PLL.plot_w(1, 2, ’outer’);

Figure 4: Plot of win
d for the PLL system

Of course, one can also represent the certificates vind and win
d obtained in inner approximation,

simply by setting the last argument at ’inner’.

4.3 RoA of the multi-machines system

Instead of performing Taylor expansions as in the previous section, it is also possible to directly
tackle trigonometric functions, through an algebraic change of variables [4]. This approach is
also supported by SOStab, which we demonstrate on the 2nd order model of three interconnected
synchronous machines (10)–(11). By choosing a phase reference aligned with θ3, one sets θ3 = 0
rad and ω3 = 0 rad/s. Moreover, the parameters are fixed according to Table 2:

Parameter λ1 λ2 Mi Pm
1 Pm

2

Value 0.4 s−1 0.5 s−1 20 pu 0 pu 1 pu
Parameter Vi X12 X23 X13

Value 1 pu 0.1 pu 0.1 pu 0.05 pu

Table 2: Parameters for interconnected synchronous machines.

8

This way, one finds back the equations studied in [1, 4]:

θ̇1 = ω1, θ̇2 = ω2 (12a)

ω̇1 = − sin θ1 − 0.5 sin(θ1 − θ2)− 0.4ω1 (12b)

ω̇2 = −0.5 sin θ2 − 0.5 sin(θ2 − θ1)− 0.5ω2 + 0.05 (12c)

with state variable σ = (θ1, θ2, ω1, ω2) ∈ R4, stable equilibrium given by σ⋆ = (0.02, 0.06, 0, 0) and
non-polynomial dynamics. Here, a preprocessing x := φ(σ) is required from the user to recast the
dynamics under a polynomial form; each phase variable θi is represented by its sine and cosine,
through the change of variables:

x = (sin θ1, cos θ1, sin θ2, cos θ2, ω1, ω2) ∈ R6 (13)

Then, one can prove (similarly to e.g. [1, 4]) that the new variable x has polynomial dynamics:
ẋ = f(x), with f ∈ R[x]6, and equilibrium x⋆ = φ(σ⋆). Then, the RoA approximation problem is
defined with

Sync = SOStab([sin(0.02);cos(0.02);

sin(0.06); cos(0.06);0;0], [1;1;1;1;pi;pi],

[1,2;3,4]);

Here the first two arguments are identical as in the polynomial setting: they indicate the equilibrium
point and admissible deviation for the variable with polynomial dynamics. The third argument is
specific to systems with trigonometric dynamics, and identifies sines and cosines of phase variables
θi in the recasted x: the line [1,2] (resp. [3,4]) means that

(
x1 x2

)
=

(
sin θ1 cos θ1

)
(resp.(

x3 x4

)
=

(
sin θ2 cos θ2

)
). Then, Sync.dynamics, Sync.SoS outer and Sync.SoS inner are

the same as in the polynomial setting (but one should be careful to input the dynamics of x and
not of σ). However, to plot the result in the original phase variables, the code is slightly modified
in its first argument, as the user needs to explicitly identify which of the original variables in σ
should be represented:

Sync.plot_roa([1,2],[3,4],’outer’, 1);

Here, [1,2] (resp. [3,4]) means that the plot abscissa (resp. ordinate) represents the variable θ1
(resp. θ2) such that

(
sin θ1 cos θ1

)
=

(
x1 x2

)
(resp.

(
sin θ2 cos θ2

)
=

(
x3 x4

)
). This yields,

in the case of our power system, the plot of Figure 5, which reproduces (at a lower degree) the
result of [4, Figure 2].

Here we only display the outer approximation: at degree d = 6, the precision is not enough to
obtain a relevant inner RoA approximation, and the computed Rin

d is empty. With four variables
(among which two angular phases, leading to six recast variables), going higher in the degree would
require a computing power not available on a standard laptop.

Remark 1. One could also represent the RoA in a phase space (e.g. in the (θ1, ω1) plane) with the
following command, which mixes a pair of indices (for θ1) and a single index (for ω1):

Sync.plot_roa([1,2],5,’outer’, 1);

9

-3 -2 -1 0 1 2 3

1

-3

-2

-1

0

1

2

3

2

ROA(1 , 2)

Target set
Outer RoA approximation: T=8, d=6

Figure 5: Outer RoA approximation for the power system.

5 Workings of the toolbox

5.1 Overview of the toolbox

The problem formulated by the user and given to the toolbox must have a specific form. First of
all, it must be already in polynomial form, which means that only products of variables are allowed.
The toolbox requires the following minimal input:

ẋ = f(x), f ∈ R[x]n, T > 0

x⋆ ∈ {x ∈ Rn : f(x) = 0}
∆x ∈ (0,∞)n, d ∈ 2N, ε > 0.

Then, it identifies the problem to be solved as: “compute approximations Rd of RM
T with dynamics

f , admissible set [x⋆ ±∆x] and target set M = {x ∈ Rn : ∥x− x⋆∥ ≤ ϵ} ”.
SOStab also admits two optional input arguments:

• a shape matrix A ∈ Rn×n such that det(A) = 1 reshapes the target set as M = {x ∈ Rn :
∥A(x− x⋆)∥ ≤ ϵ};

• in case the system at hand involves trigonometric functions of phase variables θ1, . . . , θN , it
is also possible to specify a phase index matrix Z ∈ RN×2 whose first (resp. second) column
consists of the indices of the sines (resp. cosines) of the θi in the recasted variable x = φ(σ).

The use of the toolbox consists of four steps (see Figure 6):

1. The initialization is performed from input (x⋆,∆x) (and optional input Z); it defines the
admissible set [x⋆ ±∆x] and identifies the dimension and variables of the system.

10

2. The user the inputs the dynamics f of the system and adjusts optional settings of the toolbox.

3. The RoA approximation itself is performed from input (d, T, ε) (with optional input A); it

outputs the SDP solutions y
in/out
d = (λ

in/out
d , v

in/out
d , w

in/out
d).

4. Graphic representations of the solutions can eventually be plotted; the choice of the plots
abscissa and ordinate and plotting options is up to the user.

5.2 Initialization

SOStab is initialized through the following command:

RoA_pb = SOStab(x_eq, delta_x); % or

RoA_pb = SOStab(x_eq, delta_x, angle_ind);

where x eq= x⋆, delta x= ∆x and angle ind= Z.

Remark 2. Note that the Moment-SoS hierarchy framework can be used with admissible sets dif-
ferent from [x⋆ ±∆x] (e.g. ellipsoids, possibly independent from the equilibrium). SOStab focuses
on boxes to match the intuition of physical limits on a system. However, in some cases, such de-
scription induces bad conditioning in the considered LMIs. Future versions of SOStab will include
a broader range of admissible sets.

The initial call creates an instance of the class, and defines a number of internal properties,
among which one can find the following useful ones:

• internal copies of the inputs x eq and delta x (and optionally angle ind, empty by default)

• dimension: problem dimension (number of variables)

• x: a YALMIP sdpvar polynomial object, of the dimension of the problem. It represents the
variable x and is called by the user to define the dynamics of the system

• t: sdpvar polynomial of size 1, representing the time variable t, which can be needed to define
the dynamics of the system (if non-autonomous)

• solver, the choice of the solver used in the optimization, defined as Mosek by default, it can also
be SeDuMi

• verbose, the value of the verbose parameters of the YALMIP optimization calls, defined at 2 by
default (all numerical SDP solver info displayed), it can also be 1 (selection of info displayed) or
0 (no info about the numerical resolution of the underlying SDP)

• dynamics, a YALMIP polynomial defining the polynomial dynamics f of the system.

The dynamics of the system are added into the class by the user by allocating a value to
RoA pb.dynamics. The dynamics must be a vector of size dimension, each row corresponding to
the dynamics of one variable. To define dynamics, one will use the sdpvar object x created inside
the class. For instance, defining (ẋ1, ẋ2) = (−x1,−x3

2) would be:

RoA_pb.dynamics = [-RoA_pb.x(1);

-RoA_pb.x(2)^3];

11

Remark 3. If the system at hand involves trigonometric functions of phase variables, SOStab de-
fines the additional property angle eq, which stands for the vector θ⋆ – the equilibrium angles –
recalculated from the values of their sine and cosine (empty if no phase variables are involved)

5.3 RoA estimation

The inner and outer RoA estimation of the system defined by the call of SOStab are then computed
by the methods SoS in and SoS out, respectively. Additionnal properties are related to a specific
solution of the optimization problem. They are calculated at each call of the optimization and
stored until the next call, i.e. each of them correponds to the previous optimization call:

• internal copies of the inputs d, T, epsilon (and optional A, set to identity by default); recall that

d is the degree of the polynomials v
out/in
d and w

out/in
d

• vcoef outer, the coefficients of the solution voutd for the last calculated outer approximation of
the ROA

• wcoef outer, the coefficients of the solution wout
d for the last calculated outer approximation of

the ROA

• vcoef inner, the coefficients of the solution vind for the last calculated inner approximation of
the ROA

• wcoef inner, the coefficients of the solution win
d for the last calculated inner approximation of

the ROA

• solution, a volume approximation of the last calculated ROA, ie the solution λ
out/in
d of the

optimization problem

Storing the input variables (d, T, ε,A) allows the toolbox to reuse them at the plotting step,
which is performed as follows:

plot roa takes as inputs the two indices i, j of the variables on which to project the RoA, a
string to choose between ’inner’ and ’outer’ approximation, and four optional arguments: an
int (1 or 0) – 0 by default – to choose to plot the target or not, two strings indicating the axes
names – xi and xj by default – and the size of the plotting mesh – (40, 40) by default. It plots
the expected slice of the ROA, with all other variables at equilibrium. If both inner and outer
approximations are called sequentially for the same variables, the two plots will appear on the same
Figure.

plot v and plot w take the same inputs as plot roa. They respectively plot the graph of vd
and wd in 3D (with non-selected variables at equilibrium).

These four steps of SOStab (initialization, dynamics setting, numerical RoA estimation and
graphic representations) are summarized in Figure 6.

5.4 Added value of SOStab

As detailed in Appendix .1 and [10, 11], the Moment-SoS hierarchy consists in solving SoS pro-
gramming problems of increasing size, which requires to follow a number of steps, related to real
algebraic geometry and optimization:

12

Initialization
input: x eq,
delta x,

angle ind (opt.)

Data created by
the toolbox:

dimension, x, t

Additionnal
input: dynamics,
solver (opt.),
verbose (opt.)

Input for one
calculation: d, T,
epsilon, A (opt.)

Output of one
calculation: solution,

vcoef outer, wcoef outer
(resp. inner)

Input for plotting: i,
j (coordinates of
plotted variables),
’inner’ or ’outer’

Output of the plot: 2D
plot of RoA or 3D plot

of wd

Figure 6: Flowchart of the toolbox workings

1. Defining the geometric characteristics of the problem (polynomial dynamics f , time horizon
T , admissible and target sets X and M)

2. Defining an algebraic description of these geometric characteristics: polynomials g ∈ R[x]m
s.t. X = {x : g(x) ≥ 0} and h ∈ R[x]ℓ s.t. M = {x : h(x) ≥ 0}

3. Coding a method to integrate polynomials over X (i.e. computing the moments of the
Lebesgue measure on X)

4. Writing the SoS programming problems with explicit positivity constraints; this requires
introducing internal SoS certificates as decision variables

5. Recasting SoS constraints as LMIs, solving the resulting SDP problem and converting the
solution back to the polynomial framework

6. Extracting the corresponding certificates v
in/out
d , w

in/out
d and using them to characterize and

plot relevant representations of the computed RoA approximation.

Existing frameworks [19, 20, 21] have been designed to automate step 5 which appears in all
instances of SoS programming. As a result, they are very flexible in their use, but they also require
their user to perform steps 1–4 and 6 by hand, which requires solid knowledge in SoS programming
and may be time consuming and prone to human errors (especially in step 4) ; hence their use is
usually not smooth, even for experts. In contrast, with SOStab, only step 1 is left to the user, and
all the other operations are automatically performed.

More precisely, intrinsic properties of the dynamical system are defined as presented in sec-
tion 5.2, and then settings for finite horizon RoA are the input of methods SoS in and SoS out;
with this, steps 2–5 are performed through a call to YALMIP, for inner and outer RoA approx-
imation respectively, and output an optimal value solution and the coefficients of the optimal

polynomials v
in/out
d and w

in/out
d . Currently, the inner approximation has limitations on some of

the instances tested, due to technical specificities of the corresponding SoS programming problem,
which can cause ill conditioning of the corresponding SDP.

13

Remark 4. In the current version of the toolbox, when using an optional argument, one should also
specify all optional arguments that appear before in the method call.

6 Conclusion and future works

This work presented a new Matlab Toolbox called SOStab, which aims at helping a non-expert
in polynomial optimization to use the frameworks developed in [10, 11, 4] through a plug-and-
play interface. Taking only ODE-related inputs (such as dynamics, admissible and target sets,
time horizon) as well as an even complexity parameter d ∈ 2N, the toolbox fully automates writing,
recasting and solving the corresponding SoS programming problem, and outputs stability certificates
vd and wd which can be evaluated at a given initial condition to assess its stability. This is in sharp
contrast with existing frameworks [19, 20, 21] which require the users to take upon themselves the
burden of properly designing and coding the SoS programming problems that correspond to their
RoA approximation problem. The benefits of this contribution are the following:

(a) Knowledge on SoS programming becomes optional to use the Lasserre hierarchy for RoA ap-
proximation.

(b) The user input is significantly reduced, limiting implementation efforts.

(c) The toolbox comes with a plug-and-play design that allows one to repeat multiple experiments,
reproduce existing results from the literature and solve new problems.

However, some limitations remain to be leveraged. For instance, while convex, SDP problems can be
ill-conditioned, which sometimes results in poor numerical behavior with w⋆

d ≃ 1 and meaningless
plots. It is possible to rescale SoS constraints to mitigate that phenomenon, although finding
the appropriate rescalings is non-trivial. Also, inner RoA approximation requires an algebraic
representation of the boundary ∂X of the admissible set X [11], and while choosing a box is the
most physically relevant (and the easiest to integrate polynomials on), it induces some numerical
difficulties that would not arise if X were described by a single polynomial. This can be solved
either by improving the inner approximation scheme on a box, or by changing the admissible set
X.

Another issue related to the numerical convergence of Lasserre’s hierarchy, is that the canonical
basis of monomials is far from being the best choice (see the last concluding statement in [10]) and
a way to work with other bases of polynomials (especially orthonormal bases) would help improving
all existing results.

Last but not least, at a given number n of variables (such that x ∈ Rn and given precision degree
d, SOStab (and the Lasserre hierarchy in general) requires to solve size

(
n+d+1

d

)
SDP problems,

which quickly becomes intractable on any computer. To tackle this issue, structure exploiting
methods have been developed in [15, 17], which consist in splitting the underlying SDP problems into
problems of smaller size, while keeping as much computing precision as possible; these techniques
bear the potential for scaling the hierarchy up to more realistic power systems such as fully modelled
power converters or low order models of distributions network (which exhibit a radial structure one
can exploit in computations) Future works on the SOStab class will include:

(a) Running the toolbox on more sophisticated case studies such as power converters

(b) Improving the inner approximation scheme to increase the accuracy of each relaxation

14

(c) Supporting richer admissible X and target M sets, such as ellipsoids, ℓp-balls, annuli...

(d) Extending the toolbox to other frameworks e.g. [8, 9]

(e) Supporting bases of polynomials other than monomials (Chebyshev, Legendre, trigonometric
polynomials)

(f) Exporting the toolbox to other softwares compatible with existing SDP solvers, such as Julia
or Python

(g) Adding structure exploiting methods to scale the method to higher dimensional dynamical
systems

References

[1] M. Anghel, F. Milano and A. Papachristodoulou, “Algorithmic construction of Lyapunov
functions for power system stability analysis”, IEEE Transactions on Circuits and Systems
I 60(9):2533-2546, 2013.

[2] M. Tacchi, B. Marinescu, M. Anghel, S. Kundu, S. Benahmed and C. Cardozo, “Power system
transient stability analysis using sum of squares programming”, in Power Systems Computation
Conference, 2018.

[3] S. Izumi, H. Somekawa, X. Xin and T. Yamasaki, “Estimating regions of attraction of power
systems by using sum of squares programming”, Electrical Engineering 100:2205–2216, 2018.

[4] C. Josz et al.“Transient stability analysis of power systems via occupation measures”, in 2019
IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), 2019.

[5] A. Oustry et al. “Maximal positively invariant set determination for transient stability as-
sessment in power systems”, IEEE 58th Conference on Decision and Control (CDC), Nice
(France), pp. 6572–6577, 2019.

[6] N. Hatziargyriou et al. “Definition and classification of power system stability – revisited &
extended”, IEEE Transactions on Power Systems 36(4):3271–3281, 2021.

[7] Z.W. Jarvis-Wloszek, Lyapunov based analysis and controller synthesis for polynomial systems
using sum-of-square optimization. PhD thesis, University of California, 2003.

[8] M. Korda, D. Henrion and C.N. Jones, “Convex computation of the maximal positively
invariant set for polynomial control systems”, SIAM Journal on Control and Optimization
52(5):2944–2969, 2014.

[9] A. Oustry, M. Tacchi and D. Henrion, “Inner approximations of the maximal positively invarian
set for polynomial dynamical systems”, IEEE Control Systems Letters 3(3):733–738, 2019.

[10] D. Henrion and M. Korda, “Convex computation of the region of attraction of polynomial
control systems”, IEEE Transactions on Automatic Control 59(2):297–312, 2013.

15

[11] M. Korda, D. Henrion and C.N. Jones, “Inner approximations of the region of attraction
for polynomial dynamical systems”, IEEE Transactions on Automatic Control 59(2):297–312,
2013.

[12] J.B. Lasserre, Moments, Positive Polynomials and Their Applications. Imperial College Press,
2010.

[13] D. Henrion, M. Korda and J.B. Lasserre, The Moment-SOS Hierarchy. World Scientific, 2021.

[14] M. Tacchi, “Convergence of Lasserre’s hierarchy: the general case”, Optimization Letters
16(3):1015–1033, 2022.

[15] M. Tacchi, Moment-SOS hierarchy for large scale set approximation. Application to power
systems transient stability analysis. PhD thesis, INSA Toulouse, 2021.

[16] M. Tacchi, C. Cardozo, D. Henrion, J.B. Lasserre, “Approximating regions of attraction of a
sparse polynomial differential system”, IFAC-PapersOnLine, 53(2):3266–3271, 2020.

[17] I. Subotić et al. “A Lyapunov framework for nested dynamical systems on multiple time scales
with application to converter-based power systems”, IEEE Transactions on Automatic Control,
66(12):5909–5924, 2021.

[18] J. Wang et al. Exploiting term sparsity in moment-SoS hierarchy for dynamical systems. ArXiv
preprint 2111.08347, 2021.

[19] J. Löfberg, “Pre- and post-processing sum-of-squares programs in practice”, IEEE Transac-
tions on Automatic Control 54(5):1007–1011, 2009.

[20] D. Henrion, J.B. Lasserre and J. Löfberg, “GloptiPoly 3: moments, optimization and
semidefinit programming”, Optimization Methods and Software 24(4-5):761–779, 2009.

[21] A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Prajna, P. Seiler, P.A. Parrilo, M.M.
Peet and D. Jagt, SOSTOOLS – Sum of Squares Optimization Toolbox for MATLAB.

[22] T.-C. Wang, S. Lall and T.-Y. Chiou, “Polynomial method for PLL controller optimization”,
Sensors 11:6575–6592, 2011.

[23] C. Zhang, M. Molinas, J. Lyu, H. Zong and X. Cai, “Understanding the nonlinear behaviour
and synchronizing stability of a grid-tied VSC under grid voltage sags”, IEEE 8th Renewable
Power Generation Conference (RPG), Shanghai (China), 2019.

[24] C. Zhang, M. Molinas, Z. Li and X. Cai, “Synchronizing stability analysis and region of at-
traction estimation of greed-feeding VSCs using Sum-of-Squares programming”, Frontiers in
Energy Research 8, article 56, 2020.

[25] MOSEK ApS, The MOSEK optimization toolbox for MATLAB manual. Version 10.0, 2022.

16

.1 Lasserre hierarchy for Region of attraction

In this section, the generic problem of computing the finite time RoA of a given target set is
presented, along with the SoS framework to address it. Consider the system

ẋ = f(x) (14a)

with vector field f ∈ C∞(Rn)n and state constraint

x(t) ∈ X (14b)

for some subset X ⊂ Rn representing security constraints.

Definition 2. Given a time horizon T ∈ (0,∞] and a closed target set M ⊂ X, the Region of
Attraction (RoA) of M in time T is defined as

RM
T :=

{
x(0) ∈ Rn :

∀t ∈ [0, T), x(t) ∈ X
dist(x(t),M) −→

t→T
0

}
(15)

Remark 5. Definition 1 covers many frameworks, such as:

• Infinite time RoA (T = ∞, X = Rn, often M = {0})

• Maximal positively invariant set (T = ∞, M = X ⊊ Rn)

• Constrained finite time RoA (T < ∞, X compact)

We now introduce an infinite dimensional Linear Programming (LP) problem that is related to
the constrained finite horizon RoA (see [10] for details):

W ⋆ := inf

∫
X
w(x) dx

s.t. v ∈ C∞(Rn+1), w ∈ C∞(Rn)

w ≥ 0 on X (16a)

w ≥ v(0, ·) + 1 on X (16b)

Lfv := ∂tv + f⊤∂xv ≤ 0 on
L

(16c)

v(T, ·) ≥ 0 on M (16d)

where
L
:= [0, T]× X ⋐ Rn+1 denotes a time-state cylinder.

Proposition 1 ([10]). Let (v, w) be feasible for (16). Then,

RM
T ⊂ {x ∈ Rn : v(0,x) ≥ 0} (17a)

⊂ {x ∈ Rn : w(x) ≥ 1} =: L(w ≥ 1) (17b)

With Proposition 1, constraint (16a) enforces w ≥ 1RM
T
, where 1A denotes the boolean indicator

function of A ⊂ Rn (with value 1 in A and 0 elsewhere). Moreover, it is proven in [10] that for any
minimizing sequence (vd, wd)d∈N for (16), one has wd −→

d→∞
1RM

T
in the sense of L1(X), so that the

volume of the approximation error L(wd ≥ 1) \ RM
T converges to 0.

The Moment-SoS hierarchy allows its user to compute such a minimizing sequence, under the
following assumptions.

17

Assumption 1. All considered inputs are polynomial:

1.1. f ∈ R[x]n, so that v ∈ R[t,x] =⇒ Lfv ∈ R[t,x]

1.2. X = ∩m
i=1L(gi ≥ 0) =: L(g ∈ Rm

+) with g ∈ R[x]m

1.3. M = ∩ℓ
j=1L(hj ≥ 0) = L(h ∈ Rℓ

+) with h ∈ R[x]ℓ

where x (resp. t) denotes the dimension n (resp. 1) indeterminate (i.e. identity function, which
can be evaluated in any state x ∈ Rn, resp. time t ∈ R).

Then, it is possible to work with polynomial Sums-of-Squares (SoS), with the following defini-
tions.

Definition 3. Let p ∈ R[x]. Then, considering g0 := 1,

• p is SoS iff p = q21 + . . .+ q2N , q1, . . . , qN ∈ R[x]

• p ∈ Q(g) iff p = s0 g0 + . . .+ sm gm, s0, . . . , sm SoS

• p ∈ Qd(g) iff p ∈ Q(g) with max(deg si gi) ≤ d

Since SoS polynomials are nonnegative by design, it is clear from Definition 3 that any p ∈ Qd(g)
(resp. Qd(h)) is nonnegative on X (resp. M), which gives access to a strenghtening of problem
(16):

W ⋆
d := inf

∫
X
w(x) dx

s.t. v ∈ R[t,x], w ∈ R[x]
w ∈ Qd(g) (18a)

w − v(0,x)− 1 ∈ Qd(g) (18b)

− Lfv ∈ Qd(g, (T − t) t) (18c)

v(T,x) ∈ Qd(h) (18d)

where
L
= L((T − t) t ≥ 0)× X = L((g, (T − t) t) ∈ Rm+1

+).
Problem (18) consists in looking for feasible (v, w) for (16) under the form of polynomials, restricting
inequality constraint (16x) into SoS constraint (18x), x=a–d. The advantage of this new problem is
that the decision variables are now finite dimensional vectors of coefficients, and the SoS constraints
can be recast as LMIs [12]. Thus, assuming knowledge of the moments of the Lebesgue measure on
X (i.e. being able to integrate polynomials on X, e.g. if X is a ball or a box), one is able to solve
(18) on a standard computer, provided that n and d are small enough to make the LMIs tractable.

As the new feasible space is strictly included in the former, there is a relaxation gap: ∀d ∈
2N, W ⋆ < W ⋆

d . However, it is proved in [10] that, if X and M are bounded, W ⋆
d −→

d→∞
W ⋆. Thus,

solving instances of (18) gives access to converging outer approximations of the RoA.
This framework comes with several extensions (not detailed here) among which:

• Approximation of a free final time RoA [10]

RM
[0,T] :=

{
x(0) ∈ Rn :

∀t ∈ [0, T], x(t) ∈ X
∃ t ∈ [0, T], x(t) ∈M

}

18

• Inner RoA approximation [11]

• RoA approximation for non-polynomial (trigonometric) dynamics [4]

• Maximal positively invariant set approximation [8, 9]

.2 A standard polynomial system

To further illustrate how SOStab is able to reproduce existing results in SoS programming for
stability analysis, one can consider a reversed-time Van der Pol oscillator, as in [11]:(

ẋ1

ẋ2

)
=

(
−2x2

0.8x1 + 10(x2
1 − 0.21)x2

)
(19)

The dynamics are polynomial and the stable equilibrium x⋆ of the system is at the origin, so
that it takes very few lines of code to get interesting results:

VdP = SOStab([0;0], [1.1;1.1]);

VdP.dynamics= [-2*VdP.x(2); 0.8*VdP.x(1)

+ 10*(VdP.x(1)^2 - 0.21)*VdP.x(2)];

d = 12; T = 1; epsilon = 0.5;

[vol, vc, wc] = VdP.SoS_out(d, T, epsilon);

VdP.plot_roa(1, 2, ’outer’);

[vol, vc, wc] = VdP.SoS_in(d, T, epsilon);

VdP.plot_roa(1, 2, ’inner’,1);

This gives the plot represented in Figure 7, which reproduces results presented in [10, Figure 2]
and [11, Figure 3].

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x 2

ROA(x1 , x2)

Target set
Outer RoA approximation: T=1, d=12
Inner RoA approximation: T=1, d=12

Figure 7: Inner and outer RoA approximations for the Vanderpol system.

19

	Introduction
	Computing Regions of Attraction with SOStab
	Models for case study
	Phase Locked Loop 2nd order model
	Interconnected synchronous machines 2nd order model

	Case study
	Installation of the toolbox
	RoA of the Phase Locked Loop system
	RoA of the multi-machines system

	Workings of the toolbox
	Overview of the toolbox
	Initialization
	RoA estimation
	Added value of SOStab

	Conclusion and future works
	Lasserre hierarchy for Region of attraction
	A standard polynomial system

