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SOStab: a Matlab Toolbox for Approximating Regions of

Attraction of Nonlinear Systems

Stéphane Drobot1, Matteo Tacchi1,2,∗ and Colin N. Jones1

April 3, 2023

Abstract

This paper presents a novel Matlab toolbox, aimed at facilitating the use of polynomial
optimization for stability analysis of nonlinear systems. Indeed, in the past decade several
decisive contributions made it possible to recast the difficult problem of computing stability
regions of nonlinear systems, under the form of convex optimization problems that are tractable
in modest dimensions. However, these techniques combine sophisticated frameworks such as
algebraic geometry, measure theory and mathematical programming, and existing software
still requires their user to be fluent in Sum-of-Squares and Moment programming, preventing
these techniques from being used more widely in the control community. To address this issue,
SOStab entirely automates the writing and solving of optimization problems, and directly
outputs relevant data for the user, while requiring minimal input. In particular, no specific
knowledge of optimization is needed to use it.
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1 Introduction

Stability analysis is a crucial part of the study of dynamical systems, especially when handling
safety-critical systems such as power grids, nuclear reactors, autonomous cars, railway infrastructure
or airplane maneuvering systems. In particular, when the system at hand is ruled by nonlinear
dynamics, a specific focus is put on computing the Region of Attraction (RoA) of secure operating
points, either for finite or infinite time horizons.

When the set of admissible states (later named admissible set) is bounded (this matches real-
istic, physically limited systems), the “simplest” way of computing a RoA is to uniformly sample
initial setpoints in the admissible set, and then each sample point is labelled as stable if, when
simulated from that initial condition, the system stays in the admissible set and hits the target
at the prescribed time horizon (possibly infinite, in which case one considers asymptotic proper-
ties), otherwise it is labelled as unstable. To cope with scaling issues, this computationally costly
approach has been combined with Monte Carlo methods [1, 3, 15].

A method that is dual to time-domain simulation exists, known as the direct method [4,16,19].
In the context of infinite time horizon, the RoA could be approximated by the largest sublevel set
of a Lyapunov Function (LF). Then, the main difficulty remaining is the computation of such a LF.
In some cases, physics-based heuristics can help, see e.g. [5,6,27] and the references therein, but in
the most generic setting, it is very difficult to algorithmically compute LFs, let alone optimize over
them as required when looking for a RoA.

A very promising solution to this difficult problem came from real algebraic geometry, under
the form of Positivstellensatze : these theorems allow one to recast global inequality constraints on
polynomials as matrix inequalities, see e.g. [8,17,23]. Then, looking for polynomial LFs boils down
to looking for appropriate positive semidefinite matrices, even in the case of nonlinear, polynomial
dynamical systems. This methodology made it possible to algorithmically compute RoAs on time
horizons both infinite [10, 11, 26] and finite [7, 12, 13]. In the finite horizon setting, a byproduct of
this reformulation is the convexity of the resulting optimization problem: one is faced with Linear
Matrix Inequalities (LMI), which corresponds to the framework known as Lasserre’s Moment-SoS
(for Sums-of-Squares) hierarchy and comes with convergence guarantees [25].

Nevertheless, approximation of finite horizon RoAs still suffers from various drawbacks: first of
all, the computational complexity is polynomial in the dimension of the considered system (see [24]
for details on that issue as well as possible solutions); second, many open questions remain about
optimal conditioning of LMIs depending on various choices in the formulation of the problem;
eventually, the issue that this article proposes to leverage, is the lack of a user-friendly interface for a
practical implementation and application of the Moment-SoS hierarchy. More precisely, the existing
frameworks [9, 18, 22] require the user to write, code and solve SoS programming problems whose
solutions describe the RoA approximation; in contrast, the SOStab toolbox entirely automates
the SoS programming part of the framework and no knowledge on the Moment-SoS hierarchy is
needed to run it. Instead, the SOStab toolbox requires minimal input (namely: dynamics, state
constraints, equilibrium point, time horizon, target set and a complexity parameter d) and outputs
the stability certificate that describes the RoA approximation, as well as plots of the RoA in chosen
state coordinates.

The article is organized as follows: Section 2 briefly recalls the framework of finite horizon RoA
approximation with the Moment-SoS hierarchy, then Section 3 details the toolbox installation,
Section 4 presents two examples of utilization of SOStab, and finally Section 5 details the toolbox
structure.
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2 Lasserre hierarchy for Region of attraction

In this section, the generic problem of computing the finite horizon RoA of a given target set is
presented, along with the SoS framework to address it. Consider the differential system

ẋ = f(x) (1a)

with vector field f ∈ C∞(Rn)n and state constraint

x(t) ∈ X (1b)

for some subset X ⊂ Rn representing security constraints of the system.

Definition 1. Given a time horizon T ∈ (0,∞] and a closed target set M ⊂ X, the Region of
Attraction (RoA) of M in time T is defined as

AX
T (M) :=

{
x(0) ∈ Rn :

∀t ∈ [0, T ), x(t) ∈ X
dist(x(t),M) −→

t→T
0

}
(2)

Remark 2. Definition 1 covers many frameworks, such as:

• Infinite horizon RoA (T =∞, X = Rn, often M = {0})

• Maximal positively invariant set (T =∞, M = X  Rn)

• Constrained finite horizon RoA (T <∞, X compact)

This contribution focuses on the latter case.

We now introduce an infinite dimensional Linear Programming (LP) problem that is related to
the constrained finite horizon RoA (see [7] for details):

W ? := inf

∫
X
w(x) dx

s.t. v ∈ C∞(Rn+1), w ∈ C∞(Rn)

w ≥ 0 on X (3a)

w ≥ v(0, ·) + 1 on X (3b)

Lfv := ∂tv + f>∂xv ≤ 0 on
L

(3c)

v(T, ·) ≥ 0 on M (3d)

where
L

:= [0, T ]× X b Rn+1 denotes a time-state cylinder.

Proposition 3. Let (v, w) be a feasible couple for (3). Then,

AX
T (M) ⊂ {x ∈ Rn : v(0,x) ≥ 0} (4a)

⊂ {x ∈ Rn : w(x) ≥ 1} =: L(w ≥ 1) (4b)

Proof. Constraint (3c) exactly means that v does not increase along trajectories: ∀x(0) ∈ X, t ≥ 0,
v(t,x(t)) ≤ v(0,x(0)). This, together with constraint (3d), proves (4a). (4b) directly follows from
constraint (3b).
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With Proposition 3, constraint 3a enforces w ≥ 1AX
T (M), where 1A denotes the boolean indicator

function of A ⊂ Rn (with value 1 in A and 0 elsewhere). Moreover, it is proven in [7] that for any
minimizing sequence (vk, wk)k∈N for (3), one has wk −→

k→∞
1AX

T (M) in the sense of L1(X), so that the

volume of the approximation error L(wk ≥ 1) \ AX
T (M) converges to 0.

The Moment-SoS hierarchy allows its user to compute such a minimizing sequence, under the
following assumptions.

Assumption 4. All considered inputs are polynomial:

4.1. f ∈ R[x]n, so that v ∈ R[t,x] =⇒ Lfv ∈ R[t,x]

4.2. X = ∩mi=1L(gi ≥ 0) =: L(g ∈ Rm+ ) with g ∈ R[x]m

4.3. M = ∩`j=1L(hj ≥ 0) = L(h ∈ R`+) with h ∈ R[x]`

where x (resp. t) denotes the dimension n (resp. 1) indeterminate (i.e. identity function, which
can be evaluated in any state x ∈ Rn, resp. time t ∈ R).

Then, it is possible to work with polynomial Sums-of-Squares (SoS), with the following defini-
tions.

Definition 5. Let p ∈ R[x]. Then, considering g0 := 1,

• p is SoS iff p = q21 + . . .+ q2N , q1, . . . , qN ∈ R[x]

• p ∈ Q(g) iff p = s0 g0 + . . .+ sm gm, s0, . . . , sm SoS

• p ∈ Qk(g) iff p ∈ Q(g) with max(deg si gi) ≤ 2k

Since SoS polynomials are nonnegative by design, it is clear from Definition 5 that any p ∈ Qk(g)
(resp. Qk(h)) is nonnegative on X (resp. M), which gives access to a strenghtening of problem (3):

W ?
k := inf

∫
X
w(x) dx

s.t. v ∈ R[t,x], w ∈ R[x]

w ∈ Qk(g) (5a)

w − v(0,x)− 1 ∈ Qk(g) (5b)

− Lfv ∈ Qk(g, (T − t) t) (5c)

v(T,x) ∈ Qk(h) (5d)

where
L

= L((T − t) t ≥ 0)× X = L((g, (T − t) t) ∈ Rm+1
+ ).

Problem (5) consists in looking for feasible (v, w) for (3) under the form of polynomials, restricting
inequality constraint (3x) into SoS constraint (5x), x=a–d. The advantage of this new problem is
that the decision variables are now finite dimensional vectors of coefficients, and the SoS constraints
can be recast as LMIs [17]. Thus, assuming knowledge of the moments of the Lebesgue measure on
X (i.e. being able to integrate polynomials on X, e.g. if X is a ball or a box), one is able to solve
(5) on a standard computer, provided that n and k are small enough to make the LMIs tractable.
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As the new feasible space is strictly included in the former, there is a relaxation gap: ∀k ∈
N, W ? < W ?

k . However, it is proved in [7] that, under mild assumptions (easily satisfied if X and
M are bounded), W ?

k −→
k→∞

W ?. More specifically, if (v?k, w
?
k) is an optimal solution of (5), then

the volume of the approximation error L(w?k ≥ 1) \ AX
T (M) converges to 0 when k goes to infinity.

Thus, solving instances of (5) gives access to converging outer approximations of the RoA.
This framework comes with several extensions (not detailed here) among which:

• Approximation of a free final time RoA [7]

AX
[0,T ](M) :=

{
x(0) ∈ Rn :

∀t ∈ [0, T ], x(t) ∈ X
∃ t ∈ [0, T ], x(t) ∈M

}
• Inner RoA approximation [13]

• RoA approximation for non-polynomial (trigonometric) dynamics [12]

• Maximal positively invariant set approximation [14,21]

3 Installation of the toolbox

SOStab is a freeware subject to the General Public Licence (GPL) policy. It is available for Matlab
and can be downloaded at

https://github.com/droste89/SOStab

SOStab requires YALMIP [18], as well as a semidefinite solver. Mosek [20] is used by default,
but it can be replaced by any other solver, provided they are installed and interfaced through
YALMIP.

4 Getting started with two examples

4.1 A standard polynomial system

Consider the reversed-time Van der Pol oscillator, as in [13]:(
ẋ1
ẋ2

)
=

(
−2x2

0.8x1 + 10(x21 − 0.21)x2

)
(6)

The stable equilibrium xeq of the system (such that f(xeq) = 0 and limt→∞ x(t) = xeq if x(0)
is close enough to xeq) is at the origin. SOStab is designed to approximate the finite horizon region
of attraction of a neighbourhood of xeq. The problem is first defined with:

VdP = SOStab([0;0], [1.1;1.1]);

Here the first argument is the equilibrium xeq = (0, 0), the second argument gives admissible
deviation ∆x = (1.1, 1.1) such that the admissible set is given by X = [xeq ± ∆x] (where for
a, b ∈ Rn, [a± b] := [a1 − b1, a1 + b1]× . . .× [an − bn, an + bn]).

The dynamics of the system are then defined:
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VdP.dynamics= [-2*VdP.x(2); 0.8*VdP.x(1) + 10*(VdP.x(1)^2 - 0.21)*VdP.x(2)];

where VdP.x denotes the variable x of the system (defined inside the class creation).
Now that the problem is defined, the outer approximation of the time T = 1 RoA of M = {x ∈

Rn : ‖x− xeq‖2 ≤ 0.52} is calculated using the following command:

d = 12; T = 1; epsilon = 0.5;

[vol, vc, wc] = VdP.SoS_out(d, T, epsilon);

T is the time horizon of the approximation and d = 2k is the maximum degree of the polynomial
variables.

It returns the volume of the calculated RoA appproximation and the coefficients of the polyno-
mial variables v?k and w?k.

Once the optimization is done, the results can be plotted in two dimensions using:

VdP.plot_roa(1, 2, ’outer’);

where the first two arguments indicate the indices of the plotted variables (respectively in abscissa
and ordinate). The string “outer” indicates that the outer approximation RoA is plotted. For inner
RoA approximation [13], the commands are

[vol, vc, wc] = VdP.SoS_in(d, T, epsilon);

VdP.plot_roa(1, 2, ’inner’,1);

Here the last argument with value 1 is an optional argument that asks SOStab to also represent
the target set in the figure. This gives the plot represented in Figure 1, which reproduces results
presented in [7, Figure 2] and [13, Figure 3].

The 3d-plots of polynomials v?k and w?k can be displayed with:

VdP.plot_v(1, 2, ’outer’);

VdP.plot_w(1, 2, ’outer’);

of course, one can also represent the certificates v?k and w?k obtained in inner approximation, simply
by setting the last argument at ’inner’.

4.2 A non-polynomial power system

Consider an electrical power network made of synchronous machines connected in a cycle, along
with its second reduced order model [2]:

θ̇1 = ω1, θ̇2 = ω2 (7a)

ω̇1 = − sin θ1 − 0.5 sin(θ1 − θ2)− 0.4ω1 (7b)

ω̇2 = −0.5 sin θ2 − 0.5 sin(θ2 − θ1)− 0.5ω2 + 0.05 (7c)

with state variable σ = (θ1, θ2, ω1, ω2) ∈ R4, stable equilibrium given by σeq = (0.02, 0.06, 0, 0) and
non-polynomial dynamics. Here, a preprocessing x := ϕ(σ) is required from the user to recast the
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Figure 1: Inner and outer RoA approximations for the Vanderpol system.

dynamics under a polynomial form; each phase variable θi is represented by its sine and cosine,
through the change of variables:

x = (sin θ1, cos θ1, sin θ2, cos θ2, ω1, ω2) ∈ R6 (8)

Then, one can prove (similarly to e.g. [2, 12]) that the new variable x has polynomial dynamics:
ẋ = f(x), with f ∈ R[x]6, and equilibrium xeq = ϕ(σeq). Then, the RoA approximation problem
is defined with

powsys = SOStab([sin(0.02); cos(0.02); sin(0.06); cos(0.06);0;0],

[1;1;1;1;pi;pi], [1,2;3,4]);

Here the first two arguments are identical as in the polynomial setting: they indicate the equilibrium
point and admissible deviation for the variable with polynomial dynamics. The third argument is
specific to systems with trigonometric dynamics, and identifies the indices of sines and cosines of
phase variables θi in the recasted x: here the line [1,2] (resp. [3,4]) means that x1 = sin θ1 and
x2 = cos θ1 (resp. x3 = sin θ2 and x4 = cos θ2). Then, powsys.dynamics, powsys.SoS outer and
powsys.SoS inner are the same as in the polynomial setting. However, the code for plotting is
slightly modified in its first argument:

powsys.plot_roa([1,2],[3,4],’outer’, 1);

Here, instead of giving indices as first two arguments, the user inputs pairs of indices related to sine
and cosine functions of phase variables; the toolbox then automatically plots the RoA depending
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on the physically relevant phase variable rather than its trigonometric representations. This yields,
in the case of our power system, the plot of Figure 2, which reproduces (at a lower degree) the
result of [12, Figure 2].
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0

1

2

3

2

ROA( 1 , 2 )

Target set
Outer RoA approximation: T=8, d=6

Figure 2: Outer RoA approximation for the power system.

Remark 6. One could also represent the RoA in a phase space (e.g. in the (θ1, ω1) plane) with the
following command, which mixes a pair of indices (for θ1) and a single index (for ω1):

powsys.plot_roa([1,2],5,’outer’, 1);

5 Properties and methods

5.1 Formulation of the problem input

The problem formulated by the user and given to the toolbox must have a specific form. First of
all, it must be already in polynomial form, which means that only products of variables are allowed.
The toolbox requires the following input:

ẋ = f(x), f ∈ R[x]n

X = [xeq ±∆x], ∆x ∈ (0,∞)n

xeq ∈ Rn, T > 0, ε > 0,

M = {x ∈ Rn : ‖A(x− xeq)‖2 ≤ ε2}
A ∈ Rn×n; A> = A, det A = 1
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Specifying A is optional, with default value A = In (identity matrix). An optional input, needed
when the dynamics of the system include trigonometric dynamics depending on N phase variables
θ1, . . . , θN , is the list of indices of sine and cosine recastings of these variables, given under the form
of a N × 2 matrix Z: the first (resp. second) column represents indices of the sines (resp. cosines)
of θ1, . . . , θN , each line corresponding to a given phase variable θi (see example in Section 4.2).

The toolbox will center and normalize the problem, essentially in order to avoid artifacts related
to the evaluation of high degree monomials xαi

i with |xi| > 1 and αi � 1.

5.2 Definition of a problem instance

A SOStab class is defined with three arguments: the equilibrium point of the problem xeq, the
range of the admissible set of the trajectories ∆x – defining an admissible set [xeq ±∆x] – as well
as the optional matrix Z defining phase variables (when needed). The two vectors xeq and ∆x
must have the same length, and when applicable Z should have 2 columns (and as many rows as
there are phase variables), with non-repeating natural integers.

RoA_pb = SOStab(x_eq, delta_x); % or

RoA_pb = SOStab(x_eq, delta_x, angle_ind);

Remark 7. Note that the Moment-SoS hierarchy framework can be used with other admissible sets
X (e.g. ellipsoids, possibly independent from the equilibrium). SOStab focuses on boxes to match
the intuition of physical limits on a system: most often, each state variable xi is required to stay
in a given range ∆xi. However, in some cases, such description induces bad conditioning in the
considered LMIs. Future versions of SOStab will include a broader range of admissible sets X.

The initial call creates an instance of the class, and defines the following properties:

• dimension: dimension of the problem (number of variables)

• x eq: first argument of the call, the equilibrium state of the system

• delta x: the range around the equilibrium defining the feasible set

• angle eq: the vector θeq – the equilibrium angles – recalculated from the values of their sine
and cosine (empty if no phases are involved)

• angle ind: the indices of sine and cosine functions in the recast variable x, given as last input
of SOStab call (empty if no phases are involved)

• x: a YALMIP sdpvar polynomial object, of the dimension of the problem. It represents the
variable x and is used by the user to define the dynamics of the system

• t: sdpvar polynomial of size 1, representing the time variable, which can be needed to define
the dynamics of the system (if non-autonomous)

• D, the matrix D of the variable change used in the toolbox to normalize the system

• invD, the inverse D−1 of the matrix D

• solver, the choice of the solver used in the optimization, defined as Mosek by default
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• verbose, the value of the verbose parameters of the YALMIP optimization calls, defined at
2 by default

• dynamics, a YALMIP polynomial defining the polynomial dynamics f of the system

The dynamics of the system are added into the class by the user by allocating a value to
RoA pb.dynamics. The dynamics must be a vector of size dimension, each row corresponding to
the dynamics of one variable. To define dynamics, one will use the sdpvar object x and created
inside the class. For instance, defining (ẋ1, ẋ2) = (−x1,−x32) would be:

RoA_pb.dynamics = [-RoA_pb.x(1); -RoA_pb.x(2)^3];

The solver used for the optimization can be modified after defining the class, as well as the
verbose parameter. Using sedumi with no verbose would be:

RoA_pb.solver = ’sedumi’; RoA_pb.verbose = 0;

5.3 Additional properties

Additionnal properties are related to a specific solution of the optimization problem. They are
calculated at each call of the optimization and stored until the next call, i.e. each of them correponds
to the previous optimization call:

• d= 2k, the degree of the polynomials in (5)

• A, the matrix defining the target set (identity by default)

• epsilon, the positive radius of the target set

• vcoef outer, the coefficients of the solution v?k for the last calculated outer approximation of
the ROA

• wcoef outer, the coefficients of the solution w?k for the last calculated outer approximation
of the ROA

• vcoef inner, the coefficients of the solution v?k for the last calculated inner approximation of
the ROA

• wcoef inner, the coefficients of the solution w?k for the last calculated inner approximation
of the ROA

• solution, a volume approximation of the last calculated ROA, ie the solution of the opti-
mization problem

Note that the first three properties are also arguments of the optimization call. These properties
are changed during the call of the function (and reused for the plotting for example).
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5.4 Workings of the toolbox

As stated before, the Moment-SoS hierarchy consists in solving instances of (5), which requires to
follow a number of steps, related to real algebraic geometry and optimization:

1. Defining the geometric characteristics of the problem (polynomial dynamics f , time horizon
T , admissible and target sets X and M)

2. Defining an algebraic description of these geometric characteristics: polynomials g ∈ R[x]m

s.t. X = L(g ∈ Rm+ ) and h ∈ R[x]` s.t. M = L(h ∈ R`+)

3. Coding a method to integrate polynomials over X (i.e. computing the moments of the
Lebesgue measure on X)

4. Writing problem (5) with explicit formulation of constraints (5a-5d); this requires introducing
SoS certificates si as in Definition 5 as decision variables

5. Recasting SoS constraints as LMIs, solving the resulting SDP problem and converting the
solution back to the polynomial framework

6. Extracting the corresponding certificates v?k, w
?
k and using them to characterize and plot rel-

evant representations of the computed RoA approximation.

Existing frameworks [9,18,22] have been designed to automate step 5 which appears in all instances
of SoS programming. As a result, they are very flexible in their use, but they also require their
user to perform steps 1–4 and 6 by hand, which requires solid knowledge in SoS programming and
can be an occasion for many human errors, typos and bugs (especially in step 4); hence their use is
usually not smooth, even for experts. In contrast, with SOStab, only step 1 is left to the user, and
all the other operations are automatically performed by the toolbox.

More precisely, intrinsic properties of the dynamical system are defined as presented in sec-
tion 5.2, and then settings for finite horizon RoA are the input of methods SoS in and SoS out:
an optional matrix A (by default A = In) and a real ε > 0 to define the target M, an even degree
d = 2k for v, w and the SoS certificates, and a time horizon T ∈ (0,∞); with this, steps 2–5 are per-
formed through a call to YALMIP, for inner and outer RoA approximation respectively, and output
an optimal value vol and the coefficients of the optimal polynomials v?k and w?k. Currently, the inner
approximation has limitations on some of the instances tested, due to the algebraic representation
of the boundary ∂X.

Regarding step 6: plot roa takes as inputs the two indices i, j of the variables on which to
project the RoA, a string to choose between ’inner’ and ’outer’ approximation, and four optional
arguments: an int (1 or 0) – 0 by default – to choose to plot the target or not, two strings indicating
the axes names – xi and xj by default – and the size of the plotting mesh – (40, 40) by default.
It plots the expected slice of the ROA, with all other variables at equilibrium. If both inner and
outer approximations are called sequentially for the same variables, the two plots will appear on
the same figure.

plot v and plot w take the same inputs as plot roa. They respectively plot the graph of v?k
and w?k in 3D (with non-selected variables at equilibrium).

Remark 8. In the current version of the toolbox, when using an optional argument, one should also
specify all optional arguments that appear before in the method call.
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6 Conclusion and future works

This contribution presented a new Matlab Toolbox called SOStab, which aims at helping a non-
expert in polynomial optimization to use the frameworks developed in [7, 12, 13] through a plug-
and-play interface. Taking only ODE-related inputs (such as dynamics, admissible and target sets,
time horizon) as well as an even complexity parameter d = 2k, the toolbox fully automates writing,
recasting and solving the corresponding SoS programming problem, and outputs stability certificates
v?k and w?k which can be evaluated at a given initial condition to assess its stability. This is in sharp
contrast with existing frameworks [9, 18, 22] which require the users to take upon themselves the
burden of properly designing and coding the SoS programming problems that correspond to their
RoA approximation problem. The benefits of this contribution are the following:

(a) Knowledge on SoS programming becomes optional to use the Lasserre hierarchy for RoA
approximation

(b) The probability of bug related to human errors is drastically limited, as the input from the
user is sharply reduced

(c) The toolbox comes with a plug-and-play design that allows one to repeat multiple experiments,
reproduce existing results from the literature and solve new problems

However, some limitations remain to be leveraged. For instance, while convex, SDP problems can be
ill-conditioned, which sometimes results in poor numerical behavior with w?k ' 1 and meaningless
plots. It is possible to rescale SoS constraints to mitigate that phenomenon, although finding
the appropriate rescalings is non-trivial. Also, inner RoA approximation requires an algebraic
representation of the boundary ∂X of the admissible set X [13], and while choosing a box is the
most physically relevant (and the easiest to integrate polynomials on), it induces some numerical
difficulties that would not arise if X were described by a single polynomial. This can be solved
either by improving the inner approximation scheme on a box, or by changing the admissible set
X. Another issue related to the numerical convergence of Lasserre’s hierarchy, is that the canonical
basis of monomials is far from being the best choice (see the last concluding statement in [7]) and a
way to work with other bases of polynomials (especially orthonormal bases) would help improving
all existing results. Future works on the SOStab class will include:

(a) Improving the inner approximation scheme to increase the accuracy of each relaxation

(b) Supporting richer admissible X and target M sets, such as ellipsoids, `p-balls, annuli...

(c) Extending the toolbox to other frameworks, e.g. [14, 21]

(d) Supporting bases of polynomials other than monomials (Chebyshev, Legendre, trigonometric
polynomials)

(e) Exporting the toolbox to other softwares compatible with existing SDP solvers, such as Julia
or Python.
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