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Abstract

During reading acquisition, beginning readers transition from serial to more parallel processing. The acquisition of
word specific knowledge through orthographic learning is critical for this transition. However, the processes by which
orthographic representations are acquired and fine-tuned as learning progresses are not well understood. Our aim
was to explore the role of visual attention in this transition through computational modeling. We used the BRAID-
Learn model, a Bayesian model of visual word recognition, to simulate the orthographic learning of 700 4-to 10-letter
English known words and novel words, presented 5 times each to the model. The visual attention quantity available for
letter identification was manipulated in the simulations to assess its influence on the learning process. We measured
the overall processing time and number of attentional fixations simulated by the model across exposures and their
impact on two markers of serial processing, the lexicality and length effects, depending on visual attention quantity.
Results showed that the two lexicality and length effects were modulated by visual attention quantity. The quantity
of visual attention available for processing further modulated novel word orthographic learning and the evolution of
the length effect on processing time and number of attentional fixations across repeated exposures to novel words.
The simulated patterns are consistent with behavioral data and the developmental trajectories reported during reading
acquisition. Overall, the model predicts that the efficacy of orthographic learning depends on visual attention quantity
and that visual attention may be critical to explain the transition from serial to more parallel processing.
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1. Introduction1

1.1. Theoretical background2

During learning to read, children move from slow se-3

rial processing to faster, more parallel word recogni-4

tion (Castles et al., 2018). This developmental trajec-5

tory was initially conceptualized as reflecting succes-6

sive stages in reading acquisition (Frith, 1985). How-7

ever, the self-teaching theory (Share, 1995, 1999; Share8

and Shalev, 2004) proposed to replace this stage-based9

model by an item-based model according to which the10

transition from serial letter-by-letter to more parallel11

processing would apply at the level of each individ-12

ual item word. According to this theory, the first time13

the child encounters a new printed word, this word14

would be serially processed through phonological re-15

coding (i.e., translation of each orthographic unit into16

its spoken form). When phonological recoding is suc-17

cessful, then the input orthographic information can18

be memorized, leading to enriching the reader’s word-19

specific orthographic knowledge. Although some or-20

thographic learning was demonstrated following a sin-21

gle encounter with the novel word, additional encoun-22

ters contribute to shape well-specified word-specific or-23

thographic representations (Bowey and Muller, 2005;24

Nation et al., 2007; Pellicer-Sanchez, 2016; Share and25

Shalev, 2004). The acquisition of new orthographic26

representations during reading (referred to as “ortho-27

graphic learning” hereafter) allows fast recognition of28

previously encountered words, which is the hallmark of29

expert reading.30

The self-teaching hypothesis is not age-specific.31

Most of the printed words beginning readers are ex-32

posed to are new words for them, which increases the33

probability of orthographic learning as soon as they34

have enough knowledge about print-to-sound mapping.35

However, readers are likely to be exposed to new words36

throughout their lifespan, so that orthographic learning37
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through self-teaching is observed in both beginning and38

skilled readers (Bowers et al., 2005; Joseph and Nation,39

2018; Joseph et al., 2014; Manis, 1985; Pagan and Na-40

tion, 2019). Interestingly, the capacity to build-up new41

words’ orthographic knowledge across repeated expo-42

sures may be as efficient in beginning as in more ad-43

vanced readers (van Viersen et al., 2022), suggesting44

that the same mechanisms are involved regardless of45

reading practice.46

Orthographic learning is characterized by a reduc-47

tion of both the word length effect (i.e., additional pro-48

cessing cost for longer words) and the lexicality effect49

(i.e., differences in processing between unknown vs.50

known words) in reading. Length effect on word reading51

speed decreases with reading expertise and the develop-52

ment of orthographic knowledge (Marinelli et al., 2016;53

Provazza et al., 2019; Zoccolotti et al., 2005). This is54

accompanied by changes in eye movements. Gaze dura-55

tion and the probability of refixations is less influenced56

by word length in more advanced readers (Joseph et al.,57

2009; Rayner, 1998). A decrease of the length effect58

on reading times was also reported with repeated ex-59

posure to novel words in tasks of orthographic learn-60

ing (Suarez-coalla et al., 2016). At fixed length, online61

measures of eye movements across repeated exposures62

to novel words and known words revealed larger learn-63

ing effects for novel words (Ginestet et al., 2020; van64

Viersen et al., 2022). A larger decrease in gaze duration65

and fixation number across exposures was reported for66

novel words, showing a reduction of the lexicality effect67

with learning.68

The importance of orthographic learning in the tran-69

sition from novice to expert reading is now well es-70

tablished. However, much is still unknown about the71

mechanisms involved in orthographic learning. Ac-72

cording to the self-teaching theory, phonological re-73

coding is the primary mechanism by which an ortho-74

graphic representation is acquired (Share, 1995, 1999;75

Share and Shalev, 2004). The models of reading ac-76

quisition that implement the self-teaching mechanisms77

(Perry et al., 2019; Pritchard et al., 2018; Ziegler et al.,78

2014), assume that phonological recoding relies on the79

mapping of graphemes onto phonemes. Knowledge80

about grapheme-to-phoneme mapping allows generat-81

ing phonemic sequences that can trigger the activation82

of known spoken words in phonological memory. When83

an existing phonological word is sufficiently activated,84

then an orthographic representation is set up in long-85

term memory which is connected to the word phonolog-86

ical representation and its meaning. Simulations within87

these computational models have shown that most novel88

words could be successfully learned through phonolog-89

ical recoding (Perry et al., 2019; Pritchard et al., 2018;90

Ziegler et al., 2014). In contrast, the role of visual pro-91

cessing in orthographic learning is minimized in the92

self-teaching theory (Share, 1999) and computational93

modeling suggests that orthographic learning is more94

sensitive to phonological than visual deficits (Perry95

et al., 2019; Ziegler et al., 2014). However, these mod-96

els make a number of simplifying assumptions about97

the mechanisms of visuo-orthographic processing and98

orthographic memorization. First, they do not imple-99

ment the mechanisms of visual acuity, lateral interfer-100

ence and visual attention that are known to modulate let-101

ter identity processing within strings (Pelli et al., 2007;102

Waechter et al., 2011) but rather postulate that accu-103

rate identity information is immediately available for all104

the letters within the input string. Second, they assume105

that the word complete orthographic representation is106

acquired in a “one-shot” manner, after a single expo-107

sure (Perry et al., 2019; Pritchard et al., 2018; Ziegler108

et al., 2014). This would predict an abrupt shift from109

serial to parallel processing at the item level after a sin-110

gle exposure, which contrasts with behavioral evidence111

that successive exposures to words gradually shape or-112

thographic representations (Ginestet et al., 2020; Joseph113

et al., 2014; Nation et al., 2007; Pagan and Nation, 2019;114

Pellicer-Sanchez, 2016; Suárez-Coalla et al., 2014).115

Despite the importance of phonological recoding116

in reading acquisition, there is behavioral evidence117

that phonological processing cannot be the sole mech-118

anism involved in the development of orthographic119

knowledge. Self-teaching studies on typical read-120

ers have shown that successful phonological recod-121

ing only weakly predicted orthographic learning at the122

item level, suggesting that other mechanisms were fur-123

ther involved (Bosse et al., 2015; Cunningham, 2006;124

Cunningham et al., 2002; Nation et al., 2007; Tucker125

et al., 2016). The dissociations reported in developmen-126

tal dyslexia between word-specific orthographic knowl-127

edge and phonological recoding lead to the same con-128

clusion, showing that good orthographic knowledge129

might develop despite very poor phonological recod-130

ing skills while, conversely, good phonological recod-131

ing skills provided no guarantee of good orthographic132

knowledge acquisition (Castles, 1996, 2006; Howard,133

1996; Valdois et al., 2011, 2003). Furthermore, demon-134

strations that humans can acquire orthographic knowl-135

edge from artificial scripts that do not have any connec-136

tion to phonology (Chetail, 2017; Lelonkiewicz et al.,137

2020), and that nonhuman animals can acquire knowl-138

edge about printed words without any language or139

phonological skills (Grainger et al., 2012; Scarf et al.,140

2016), suggest less phonological dependency in the de-141
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velopment of orthographic knowledge than currently142

postulated.143

Indeed, it has been shown that orthographic learn-144

ing was facilitated when more visual information on the145

input letter-string was simultaneously available during146

the learning phase (Bosse et al., 2015). This suggests147

that the mechanisms involved in visuo-orthographic148

processing may represent additional components that149

contribute to orthographic learning, independently of150

phonological skills. Some insights on these mecha-151

nisms comes from studies on the length effect in read-152

ing (Barton et al., 2014). The fact that longer words (fa-153

miliar or not) are fixated for longer than shorter words154

and have a higher probability to be refixated (Hautala155

et al., 2011; Kliegl et al., 2004; Loberg et al., 2019;156

Lowell et al., 2014; McDonald, 2006; Rayner et al.,157

1996; Vitu et al., 1990) was interpreted as following158

from the fact that more letters would fall in regions159

of poorer visual acuity in longer words, thereby reduc-160

ing the probability of successful identification (Engbert161

et al., 2002; Reichle et al., 2003). However, length ef-162

fects on eye movements have also been reported when163

words were equated for their spatial extent, so that vi-164

sual acuity decline was similar for all words whatever165

their length (Hautala et al., 2011; McDonald, 2006). Ev-166

idence for a length effect beyond the influence of vi-167

sual acuity was interpreted as potentially reflecting dif-168

ferential crowding effects, assuming that more letters169

suffered from crowding (i.e., interference from adja-170

cent letters) in longer than in shorter words (Hautala171

et al., 2011; McDonald, 2006). However, visual acu-172

ity and crowding can hardly account for the evolution173

of eye movement behavior in condition of orthographic174

learning, in which readers are repeatedly exposed to the175

same set of words (at fixed length) (Ginestet et al., 2020;176

Joseph and Nation, 2018; Joseph et al., 2014; Pagan and177

Nation, 2019; Pellicer-Sanchez, 2016).178

Visual attention is a third mechanism involved in179

letter-string processing that might further affect ortho-180

graphic learning. Behavioral studies have mainly fo-181

cused on the visual attention span (VAS), a measure182

of multielement parallel processing (Frey and Bosse,183

2018; Valdois, 2022). VAS is known to relate to184

reading acquisition (Valdois et al., 2019) and children185

with higher VAS show higher reading fluency (Bosse186

and Valdois, 2009) and higher orthographic knowledge187

(Niolaki et al., 2020). By reference to the “Theory of188

Visual attention” (Bundesen, 1990), VAS was found to189

reflect the amount of visual attention available for mul-190

tielement processing (Bogon et al., 2014; Dubois et al.,191

2010; Lobier et al., 2013). Neuroimaging studies re-192

vealed that VAS related to the activation of the superior193

parietal lobules within the dorsal attentional network194

(Lobier et al., 2012; Peyrin et al., 2011; Reilhac et al.,195

2013). Only a few behavioral studies have examined196

whether VAS was involved in orthographic learning. In197

an experiment conducted in adults, Ginestet et al. (2020)198

showed that orthographic learning and eye movement199

patterns across exposures were modulated by VAS. Us-200

ing a self-teaching paradigm without eye-movement201

monitoring in children, Marinelli et al. (2020) showed202

that VAS contributed to promote orthographic learning.203

Interestingly, VAS was further described as relating204

to the length effect in reading. Lower length effects205

on word and pseudo-word reading latencies were re-206

ported in individuals with higher VAS (van den Boer207

et al., 2013) and exaggerated length effects were found208

in individuals suffering from a VAS reduction (Juphard209

et al., 2004; Valdois et al., 2011, 2003). In addition to210

visual acuity and crowding, these findings suggest that211

visual attention might be involved not only in the way212

words are processed (i.e., in a strict serial or more par-213

allel manner), but further in the capacity to acquire new214

orthographic representations.215

1.2. The present study216

The main contribution of the present study was to217

investigate the role of visual attention in orthographic218

learning using a modeling approach. For this purpose,219

we started from BRAID, a word recognition model that220

implements the three mechanisms of visual attention,221

visual acuity and lateral interference that are known to222

affect letter identification within strings (Ginestet et al.,223

2019; Phenix, 2018; Phénix et al., 2018; Saghiran et al.,224

2020). In BRAID, the spatial distribution of visual at-225

tention was modeled by a Gaussian probability distri-226

bution, so that the letters near the focus (i.e., peak) of227

attention were better recognized while the number of228

letters that were allocated attention was dependent on229

attention dispersion. Computational studies have shown230

that variations in visual attention dispersion modulated231

word recognition (Valdois et al., 2021a) and the word232

length effect in tasks of lexical decision, naming and233

progressive demasking (Ginestet et al., 2019; Saghiran234

et al., 2020). The initial word recognition model was235

extended in BRAID-Learn, a model of orthographic236

learning (Ginestet, 2019; Ginestet et al., 2022). The237

model incorporates a mechanism of visual attention ex-238

ploration that optimizes the gain of information on letter239

identity within the input string over time through modu-240

lation of the two parameters of attentional focus location241

and attention dispersion.242

Ginestet et al. (2022) showed that BRAID-Learn suc-243

cessfully simulated the evolution of eye-movement pat-244
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terns across repeated exposure to novel words by skilled245

readers. This was mainly due to the interaction of246

bottom-up sensory information modulated by visual at-247

tention and top-down lexical feedback from the newly248

acquired orthographic representation. However, the249

study focused on words of fixed length and attention250

quantity in the model was defined by its default value,251

thus remaining constant through simulations.252

Our purpose in the present study was to provide a253

more plausible implementation of visual attention pro-254

cessing in BRAID-Learn. Indeed, behavioral stud-255

ies have shown that VAS increased with age dur-256

ing childhood (from first to fifth grade) (Bosse and257

Valdois, 2009) and that inter-individual variations in258

VAS accounted for differences in orthographic learn-259

ing (Ginestet et al., 2020). As VAS reflects the amount260

of visual attention available for processing (Valdois,261

2022), this suggests that a plausible model of ortho-262

graphic learning should be able to simulate the conse-263

quences of variations in visual attention quantity on pro-264

cessing. Our main contribution was thus to introduce265

a new visual attention quantity parameter in the model266

and examine the effect of attention quantity variations267

on orthographic learning through simulations.268

Second, despite behavioral evidence that the length269

effect on word and pseudo-word reading decreases with270

reading expertise (Marinelli et al., 2016; Provazza et al.,271

2019; Zoccolotti et al., 2005), evidence is lacking on272

the evolution of length effects over repeated exposure273

to known or novel words in condition of orthographic274

learning. To fill this gap and provide new insights for275

future behavioral studies, we examined the model’s pre-276

dictions depending on the attention quantity available277

for processing when repeatedly exposed to known or278

novel words that varied in length. We used the model279

as an experimental substitute to study the length effect280

all other factors otherwise equal. For this purpose, a281

single set of words was considered as known words in282

a first series of simulations, in which the target words’283

orthographic information was part of the model’s word284

knowledge, but as novel words in a second series of sim-285

ulations conducted after removing target words’ ortho-286

graphic knowledge from the model database.287

Assuming that higher visual attention quantity would288

allow the model to accurately identify more letters si-289

multaneously, we expected longer stimuli to be more290

proficiently processed as attention quantity increases.291

More proficient processing was expected to result in292

shorter processing time (i.e., fewer iterations) and a293

smaller number of attentional fixations during the visuo-294

attentional exploration of the input word. Novel words295

that do not benefit from top-down lexical knowledge at296

the first exposure, would be processed less efficiently297

than known words; moreover this difference would be298

magnified with low attention quantity. However, or-299

thographic learning being initiated at the first exposure,300

novel word processing would improve across exposures301

due to increasingly strengthened top-down support from302

the newly acquired orthographic representation of the303

target novel word. Assuming that higher attention quan-304

tity allows processing more letters efficiently, ortho-305

graphic knowledge acquisition would be more effective306

at each exposure, leading to more proficient learning of307

the novel word orthographic representation. This would308

also result in a stronger length effect decrease, both on309

processing times and number of attentional fixations,310

across exposures as visual attention quantity is higher.311

The rest of this paper is structured as follows. First,312

we describe the BRAID-Learn model, with a particu-313

lar focus on the visual-attention component. Second,314

we detail the material and procedure used in the exper-315

iment. Third, we present the simulation results, which316

we discuss and relate to behavioral data.317

2. The BRAID-Learn model318

2.1. General outline of the model319

The BRAID-Learn model shares the core of its ar-320

chitecture with the three-layer architecture used, among321

others, by the classical Interactive Activation model322

(IA; McClelland and Rumelhart, 1981). It also fea-323

tures an additional, original layer modeling visual at-324

tention, along with mechanisms for orthographic learn-325

ing. The resulting architecture is shown in Figure 1.326

The BRAID-Learn model is a hierarchical, probabilistic327

model, defined by a joint probability distribution over328

its variables. As it is not relevant for the scope of the329

current study, and as completely defining the model re-330

quires space, we do not describe entirely its mathemati-331

cal definition or its resulting properties here. However,332

they can be found elsewhere (Ginestet, 2019; Phenix,333

2018). Instead, in this section, we provide the necessary334

elements to detail how orthographic learning processes335

are implemented, and how visuo-attentional properties336

affect the learning process.337

The model includes four submodels. The letter sen-338

sory submodel focuses on low-level mechanisms in-339

volved in letter identification within the input string.340

Letter identification at this level is modulated by inter-341

letter visual similarity, implemented through a let-342

ter confusion matrix adapted from experimental data343

(Townsend, 1971) and by two mechanisms of visual344
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4 BRAID-Learn, box-model version, v2 “compacte”
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Fig. 1: Conceptual representation of the BRAID-Learn model. The
four submodels are represented as colored blocks, and arrows repre-
sent information flow or specific processes (blue arrows). This struc-
ture is illustrated here on a 5-letter stimulus. See text for details.

acuity and lateral interference. The acuity gradient pe-345

nalizes letter identification proportionally to the dis-346

tance of the letter to gaze position. Letter identification347

is further affected by interference from neighboring let-348

ters so that inner letters suffer more interference than349

outer letters.350

In the letter perceptual submodel, evidence about the351

identity of letters accumulates over time, to build dy-352

namically evolving perceptual representations of the let-353

ters in the input string. These perceptual representations354

receive sensory information from the letter sensory sub-355

model, in a bottom-up manner. They are further influ-356

enced by top-down information from the lexical knowl-357

edge submodel, so that identity information accumu-358

lates faster at the perceptual level for letters that be-359

long to previously known words. (Note that, in the con-360

text of the current orthographic learning experiments,361

top-down knowledge about gradually improving ortho-362

graphic traces is facilitatory. However, this is not a gen-363

eral property of the model. When top-down information364

from lexical knowledge is discongruent with the stimu-365

lus letters, for instance in priming simulations, it can366

slow down letter perception.)367

The lexical knowledge submodel is configured to rep-368

resent the spellings of a large database of words. The369

current simulations were run using a dataset of 79,673370

English words, taken from the English Lexicon Project371

(Balota et al., 2007). The submodel further includes a372

Fig. 2: Illustration of visuo-attentional distributions on the 5-letter
input word “IMAGE”. Top left: attention distribution for a few values
of parameter µt

A, which defines the position of attentional focus at time
t. Top right: attention distribution for a few values of parameter σt

A,
which defines attentional dispersion. Bottom: attention distribution
for a few values of parameter QA, which defines the total attention
quantity available for processing.

mechanism that evaluates lexical membership and al-373

lows determining whether the input stimulus is a known374

word or a novel word.375

BRAID-Learn further includes a visuo-attentional376

submodel that controls the flow of information from the377

sensory to the perceptual submodel. Given the key role378

of visual attention in letter identity processing and or-379

thographic learning, this submodel is described in more380

detail below.381

2.2. The visuo-attentional submodel382

The visuo-attentional submodel acts as a filter be-383

tween the sensory and the perceptual submodels. Its384

main element is a Normal probability distribution, noted385

P(At | µt
A σt

A), whose parameters µt
A and σt

A describe386

how visual attention is spatially distributed over the in-387

put letter string: the µt
A parameter represents the po-388

sition of the focus of visual attention at time t (see389

Figure 2, top left), whereas the standard deviation σt
A390

parameter characterizes visual attention dispersion (see391

Figure 2, top right). Each letter in the input letter string,392

and therefore each position of the stimulus, is allocated393

a certain amount of visual attention, defined by this394

probability distribution. The amount of visual attention395

allocated to each position defines the amount of sensory396

evidence propagated from the sensory to the perceptual397

submodel. Due to the shape of the Gaussian distribu-398

tion, less evidence on letter identity accumulates in the399

perceptual submodel when the distance from the atten-400

tional focus increases (Figure 2, top left). Letter iden-401

tity processing is further modulated by visual attention402

dispersion. The smaller the attentional dispersion, the403

more attention is concentrated around the attentional fo-404
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cus, favoring efficient processing of a few letters, to the405

detriment of the others. The quality of perceptual repre-406

sentations is thus strongly modulated by the parameters407

of visual attention.408

In previous simulations using either BRAID or an-409

terior versions of the BRAID-Learn model, the total410

amount of attentional resources available for process-411

ing was implicitly equal to 1 (its default value). In the412

context of the present study, we have defined the pa-413

rameter QA to explicitly represent the attention quan-414

tity. It is a multiplicative coefficient applied to the distri-415

bution of attention with the precaution that the amount416

of attention allocated to each position cannot exceed 1.417

Whatever the values of µt
A and σt

A, the higher QA, the418

more attention is available for the processing of the at-419

tended letters, so that perceptual representations accu-420

mulate more identity evidence on these letters at each421

time-step, resulting, overall, in faster processing. The422

effect of parameter QA on the attention value at each423

position is illustrated on Figure 2 (bottom plot).424

2.3. Orthographic learning in BRAID-Learn425

In the model, orthographic learning consists in the426

transfer of letter identity information from the percep-427

tual submodel to the lexical knowledge submodel. As a428

result, orthographic learning is more efficient when per-429

ceptual information is of higher quality (i.e., providing430

enough information on letter identity at each position).431

For the purpose of the current simulations, we con-432

sider that the model is given a task, in which the stim-433

ulus must be freely explored at each exposure, with434

no time-limit, until getting a precise enough percep-435

tual representation of the input letter string. At the end436

of each exposure, the lexical membership mechanism437

evaluates whether perceptual information corresponds438

to a known word, by comparing the perceived letters to439

known words’ letters. If this is the case, then the exist-440

ing orthographic trace of the most likely word (a word441

recognition process, not detailed here, also proceeds in442

parallel) is updated by combining it with the perceptual443

representation of letters. Let us write (using a simplified444

notation) P(P | S ) the probability distribution about let-445

ters P given the stimulus letter sequence S , computed at446

the end of the exposure (i.e., the perceptual representa-447

tion of letters), P(Ln | [W = w]) the probability distri-448

bution over letters for word w in the set of known words449

W, after n exposures (i.e., the orthographic trace of word450

w), θn the learning rate after n exposures (it decreases451

exponentially across exposures), and finally U the uni-452

form distribution over the letter space. The probability453

distribution of the updated orthographic representation454

after n + 1 exposures is as follows:455

P(Ln+1 | [W = w]) ∝

P(Ln | [W = w]) ×
(
θn × P(P | S ) + (1 − θn) × U

)
.

456

If, on the contrary, the perceptual information does457

not correspond to any word in the lexicon, then, a new458

orthographic trace is created. This trace is initialized459

with the perceptual representation of letters at the end460

of the first exposure. At each subsequent encounter with461

the “novel” word, the corresponding orthographic trace462

is gradually reinforced. Orthographic learning is said to463

be successful when the trace of an already encountered464

word is updated at subsequent encounters or when a new465

trace is created for a novel word at the first encounter.466

The influence of lexical feedback on letter perception467

in the model is driven by lexical membership evalua-468

tion, so that the more likely the stimulus is to be a word,469

the stronger the lexical feedback. As a result, grad-470

ual strengthening of the orthographic trace makes novel471

word processing more and more efficient across expo-472

sures. A more detailed description of the mechanisms473

of lexical feedback and trace creation and updating can474

be found elsewhere (Ginestet et al., 2022).475

2.4. Visuo-attentional exploration of a stimulus476

The main goal of visuo-attentional exploration in the477

model is to favor efficient letter perception accumula-478

tion during processing. For this purpose, the model au-479

tomatically selects the visuo-attentional parameter val-480

ues that would allow gaining more information on letter481

identity during a given exposure. The entropy of prob-482

ability distributions in the letter perceptual submodel is483

computed to estimate the quality of perceptual repre-484

sentations. The entropy is close to maximal during the485

first iterations of processing due to limited information486

on letter identity within the input string. Conversely, it487

would be small if letters were perfectly perceived (i.e.,488

if perceptual representations were Dirac probability dis-489

tributions). Thus, a decrease in entropy characterizes490

letter identity information gain at the perceptual level.491

Measuring entropy for each letter position allows iden-492

tifying those letters for which perceptual information is493

lacking, thus indicating where attention should shift to494

significantly decrease entropy. How this might be per-495

formed with an optimization approach was described496

in a previous study (Ginestet et al., 2022). However,497

optimizing information gain entailed systematically ex-498

ploring the parameter space to predict the entropy de-499

crease for all possible combinations of visual attention500

parameters. This was computationally costly. Here,501
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instead, we used a heuristic-based, approximate algo-502

rithm that provides visuo-attentional exploration behav-503

iors that are qualitatively comparable to those produced504

by our previous algorithm (a quantitative assessment of505

this approximation is beyond the scope of the current506

paper).507

Here, we more specifically focus on how location of508

the attentional focus moves over the input string to in-509

crease the gain of information on letter identity at each510

exposure and boost perceptual evidence accumulation.511

We then expose how visual attention dispersion is af-512

fected during processing and then provide an illustra-513

tive example, through the processing of the novel word514

“HOLPING”.515

Displacement of the visuo-attentional focus during ex-516

ploration. The heuristic algorithm proceeds as follows.517

Initially, the position of the gaze and attentional fo-518

cus µt
A is set according to stimulus length and atten-519

tional quantity (note that gaze position always coincide520

with the attentional focus position in the simulations).521

Following eye movement behavioral findings (Rayner,522

1998; Vitu et al., 1990), the attentional focus is located523

slightly left of the word center, except for the smallest524

value of attention quantity (QA = 0.5), for which the525

initial position is located on the first letter of the word.526

This shift towards the beginning of words was motivated527

by the fact that virtually a single letter could be pro-528

cessed at once in this condition, so that no information529

could accumulate on the initial letter of the input stimu-530

lus when the focus of attention was located farther away531

on the right.532

Then, at each time-step, the difference in entropy,533

between the probability distributions of the perceptual534

representation of the letter under the attentional focus535

and all other positions is computed. When this differ-536

ence exceeds a given threshold Tshift (empirically set537

to 1.5 nats, with 1 nat the unit for information quan-538

tity when entropy is computed using the natural loga-539

rithm, as we do, instead of the more usual bit when it540

is computed with the base 2 logarithm), then a visuo-541

attentional shift is initiated towards that position. As542

a result, except for the initial position of the focus of543

attention, all subsequent displacements of the attention544

focus are computed by the model depending on the545

quality of identity evidence previously accumulated at546

the perceptual level. As in the terminology of eye move-547

ment studies, we will refer to time intervals when atten-548

tion does not move as an “attentional fixation”, between549

attentional displacements, and therefore count the num-550

ber of attentional fixations.551

As previously (Ginestet et al., 2022), the entropy dif-552

ference was modulated by a motor cost parameter, noted553

α. This parameter considers the magnitude of the next554

displacement to penalize large attentional shifts. Sev-555

eral displacements of the focus of visual attention, thus556

several attentional fixations, can occur in a single ex-557

posure, as far as each displacement contributes to min-558

imize entropy. Visuo-attentional exploration is stopped559

whenever the average entropy on letters falls below560

threshold Tavg (also empirically set to 1.5 nat), so that561

letter identity processing is considered terminated for562

the current exposure.563

Modulation of visual attention dispersion during ex-564

ploration. The model also automatically adjusts atten-565

tional dispersion during the exploration of the input let-566

ter string. The initial dispersion of visual attention is567

set to its default value σt
A = 1.75. At the end of the568

first displacement of the visuo-attentional focus during569

attentional fixation, a new value is selected by the explo-570

ration algorithm as a function of information accumula-571

tion speed during this first attentional fixation, relative572

to a “reference” information accumulation profile.573

This reference profile was obtained as follows: for574

each length, we randomly selected 100 words from the575

lexicon, and performed letter and word recognition dur-576

ing 1,000 iterations, with a single fixation, and all pa-577

rameters of the model at their default values. In partic-578

ular, gaze and attention position were slightly left of the579

center position. We then measured the evolution of en-580

tropy for all these words, and computed their average.581

An example reference profile is shown Figure 3 (green582

curve of top left plot).583

At the end of the first attentional fixation, if informa-584

tion accumulation was faster than in the reference, the585

model adopts a large attentional dispersion for the rest586

of stimulus exploration. If, on the other hand, infor-587

mation accumulation was slower, attentional dispersion588

is reduced, so that fewer letters are processed in each589

attentional fixation. To compare the current entropy de-590

crease with the reference one, their ratio is computed;591

we have empirically defined a relation that yields atten-592

tion dispersion for subsequent attentional fixations as a593

function of the entropy ratio (Figure 3, top right). The594

value of the adjusted attention dispersion parameter σt
A595

is computed once at the end of the first attentional fix-596

ation and then applied for all subsequent fixations until597

termination.598

In the visuo-attentional submodel, the parameters for599

attention quantity QA and attention dispersion σt
A can600

mathematically be manipulated independently. How-601

ever, the visual exploration algorithm induces a strong602

correlation between them. Indeed, as we have just de-603

7



Fig. 3: Illustration of the modulation of visual attention dispersion
during exploration. Top left: Evolution of the letter entropy over time.
The green curve represents the reference entropy profile; the other
two represent entropy evolution when the model is presented with the
word “IMAGE”, for two different values of QA. Top right: Values of
dispersion parameter σt

A selected by the visual exploration algorithm,
as a function of the entropy gain ratio between stimulus and refer-
ence processing at the end of the first attentional fixation. Bottom:
Values of dispersion parameter σt

A selected by the visual exploration
algorithm, as a function of parameter QA. Color indicates how many
words used each value of σt

A.

scribed, attention dispersion σt
A is selected as a function604

of information accumulation speed, which is itself mod-605

ulated by attention quantity QA. Figure 3 (bottom plot)606

illustrates the correlation between the two parameters607

on an independent experimental dataset. This dataset608

was composed of 200 8-letter words that were randomly609

extracted from the ELP database (Balota et al., 2007).610

As illustrated, the smaller the visual attention quantity611

QA, the smaller the adopted attentional dispersion σt
A.612

In the rest of this paper, we consider QA as our variable613

of interest, to study its effect on the predicted behav-614

ior, while σt
A is considered as a dependent, constrained615

variable.616

Illustration: visuo-attentional exploration of the novel617

word “HOLPING”. Figure 4 illustrates the dynamics618

of visuo-attentional exploration (right plot) and how let-619

ter identity information evolves over time at the percep-620

tual level (left plot), for the novel word “HOLPING”621

at the first exposure, with attention quantity QA = 1.622

At the beginning of processing (iteration 0), the dis-623

tribution of visual attention is characterized by a focus624

aligned on the third letter of the 7-letter input word and a625

default value dispersion σt
A = 1.75. During the 208 iter-626

ations of this first attentional fixation, letter identity in-627

formation gradually accumulates at the perceptual level.628

As can be seen on Figure 4 (left plot), during this period,629

identity evidence accumulates rapidly for the letter un-630

der the focus of attention and less so for other letters,631

Fig. 4: Illustration of the visuo-attentional exploration algorithm on
stimulus “HOLPING”. Left plot: Probability of perceived letters (y-
axis) at each position, as a function of simulated time (x-axis). Each
curve represents the probability value of the most likely letter hypoth-
esis, at each position. Curves are color coded according to position
(green curve for position 1, yellow curve for position 7, etc.). Curves
are in thick lines when the focus of visual attention is on the position
that they correspond to. Right plot: Evolution over time (y-axis) of
the visuo-attentional distribution over the stimulus positions (x-axis).
Letters at each positions are recalled at the bottom of the plot (“H” in
position 1, etc.) Time indices indicated on the y-axis are beginnings
of attentional fixations, for which the visuo-attentional distribution is
the one depicted by the corresponding box plots, with its dispersion
indicated by a number (e.g., between iterations 0 and 208, the focus of
attention was on letter L at position 3; attention dispersion was 1.75).
Box height indicates the attention allocated at each position).

as a function of their distance from the focus of atten-632

tion. As a result, during the first attentional fixation,633

only very few letter identity information accumulates634

for the two final letters that are the most distant from635

the focus of attention.636

At iteration 208, attention shifts to position 6 (i.e., on637

the letter N of “HOLPING”), a position that simulta-638

neously maximizes the expected entropy gain and min-639

imizes the motor cost associated with visual attention640

displacement. Given that identity evidence accumu-641

lated relatively efficiently for most letters during the first642

attentional fixation, visual attention dispersion is only643

slightly adjusted, leading to a σt
A value of 1.5. As can be644

seen on Figure 4 (left plot), the consequence of a visual645

attention shift at iteration 208 is twofold. First, identifi-646

cation of the letters at and immediately around the new647

attentional focus is boosted, yielding a sharp increase in648

identification probability for the final letters (“ING”);649

second, identification probability begins to decrease for650

the initial letters that no longer receive attention. At the651

end of the second attentional fixation (iteration 353), the652

termination criterion based on threshold Tavg is met, so653

that visual exploration and processing of the stimulus654

end.655
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At the end of processing, lexical membership evalua-656

tion assessed the stimulus word as being a novel word,657

so that a new lexical representation was created. This658

lexical representation corresponds to knowledge accu-659

mulated on letter identity during processing. For the660

novel word “HOLPING”, the new memory trace will be661

relatively complete, providing some identity informa-662

tion on all the letters of the input string. However, none663

of the input letters were perfectly identified at the first664

exposure (none reached Dirac probability) and some let-665

ters were better identified than others, thus leading the666

possibility to improve lexical knowledge for this item667

during subsequent exposures. To evaluate simulations,668

two measures characterizing processing at the first ex-669

posure are considered: a measure of processing time (in670

this example with the novel word “HOLPING”, 353 it-671

erations) and a measure of the number of attentional fix-672

ations during this processing time (here, 2).673

3. Method674

3.1. Material675

Seven hundred words were selected from the model’s676

lexical database to serve as stimuli for the current study.677

The words varied in length from 4 to 10 letters. We used678

the Gurobi problem solver (Gurobi Optimization LLC,679

Beaverton, Oregon, USA; Gurobi Optimization, LLC680

2021), to select one hundred words, for each length,681

so that they were matched in frequency and belonged682

to the Noun grammatical category. The selected words683

were of medium frequency, varying between 3.6 and 3.7684

occurrences per million words (the average frequency685

of the whole lexicon was 3.63 occurrences per million686

words). To exclude any potential additional effect of687

neighborhood, all target word neighbors (i.e., all the688

words that differed from target words by a single let-689

ter) were excluded from the lexicon, thus resulting in a690

set of stimuli without orthographic neighbors. This re-691

moved 1,983 words from the 79,673 (2.5%) words of692

the lexicon. Removing the orthographic neighbors al-693

lowed studying the length effect while excluding con-694

founding factors. Indeed, short words typically have695

many more orthographic neighbors than long words, so696

that the number of neighbors cannot be equated for sets697

of words that strongly differ in length.698

For the current experiment, this set of 700 words was699

used twice. They were considered once as known words700

– thus belonging to the model’s lexical word knowl-701

edge – and once as novel words, in which case they702

were removed from the model’s lexical database. This703

was done to ensure a perfect matching between the char-704

acteristics of stimuli, independently of their status as705

known words or novel words; this also ensures that706

stimuli considered as novel words are realistic, in the707

sense that, for instance, they are orthographically legal.708

The list of stimuli can be found in Appendix A.709

3.2. Procedure710

The model was used to simulate the visuo-attentional711

exploration of the 700 stimuli, twice each, as each was712

once considered a known word and once as a novel713

word, for a total of 1,400 simulations. This was re-714

peated for seven possible values of attention quantity715

QA (0.5, 0.75, 1, 1.25, 1.5, 1.75 and 2). In each sim-716

ulation, the same stimulus was presented five times to717

the model: at each of these exposures, we simulated the718

visual-attentional exploration of the stimulus, and the719

subsequent updating of an existing orthographic trace,720

or the creation of a new one.721

From each simulated exposure, we measured two722

variables of interest. First, a measure of Processing723

Time (PT) was computed as the number of iterations724

occurring before the termination criterion was met. Sec-725

ond, we measured the Number of Attentional Fixations726

(NAF) performed by the model in the same time inter-727

val. The length effect was quantified by the slope be-728

tween performance on the two measures of interest for729

the shortest and the longest items, item length being es-730

timated in number of letters (4 versus 10 letters).731

3.3. Statistical analyses732

The simulated Processing Times were analyzed us-733

ing generalized linear models (glm function; R Core734

Team 2020) with a Gamma family and an inverse link.735

To select the most appropriate link function, we tested736

several possibilities (“identity”, “inverse” and “log”)737

and analyzed the results of the subsequent models:738

we chose the model that minimized both the result-739

ing AIC (Akaike Information Criterion; Akaike, 1973)740

and the Fisher Scoring (number of iterations required741

for the model to converge). To analyze the NAF, we742

followed the suggestion of Harris et al. (2012) and743

used a generalized Poisson regression (vglm function;744

R Core Team 2020), as the data were underdispersed745

(dispersiontest function; R Core Team 2020). All746

statistical models and simulated results are provided as747

Supplementary Material1748

First, we used two models to compare PT and NAF749

for words and novel words at the first exposure, in which750

Attention Quantity (7 QA values), Item Type (novel751

1Open access availability for Supplementary Material files:
https://osf.io/g8cbf/.
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word vs. known word) and Item Length (from 4 to 10752

letters) were included as fixed factors. For the sake of753

clarity, results are first presented while focusing on the754

lexicality effect, then, on the length effect.755

Second, we used two models to analyze PT and NAF756

across exposures, but for the novel words only, with At-757

tention Quantity (QA), Item Length and Exposure Num-758

ber (from 1 to 5) as fixed factors. The results are first759

presented while focusing on the interaction between760

QA and the number of exposures, in which case PT761

and NAF are expressed per letter, then focusing on the762

length effect for the two variables of interest (PT and763

NAF).764

4. Simulation results765

For the known words, the process of orthographic766

learning was always successful, for all Item Lengths and767

Attention Quantity QA values. For novel words, ortho-768

graphic learning sometimes failed. This occurred when769

a novel word was erroneously categorized as a known770

word, so that the orthographic trace of the most acti-771

vated known word (typically an orthographically simi-772

lar word) was updated. Erroneous learning further oc-773

curred when a previously encountered novel word was774

once more categorized as novel during a subsequent ex-775

posure, so that a new, extraneous trace was created and776

the orthographic trace previously created for this same777

novel word was not updated.778

The success rates for novel word learning are pro-779

vided in Table 1 for the different QA values and lengths.780

While all the shorter novel words (from 4 to 6 letters)781

were successfully learned regardless of QA, learning er-782

rors were observed for longer items. As shown in Ta-783

ble 1, the success learning rate increased as the Atten-784

tion Quantity QA increased. For each QA value, stimuli785

that generated learning errors were excluded from all786

further analyses.787

The effect of QA on stimuli processing is described in788

the next two sections. We first focus on processing at the789

first exposure to describe how Attention Quantity affects790

PT and the NAF depending on Item Type (novel words791

vs. known words) and Item Length (from 4 to 10 let-792

ters). Given the high level of performance of the model793

for known words from the first exposure, in the second794

section, we focus on novel word processing alone to de-795

scribe how the Item Length effect evolves across the five796

exposures depending on Attention Quantity. Note that797

all the results reported in the following sections were798

derived from the same data set using a single statistical799

model for each measure. They are presented in different800

sections for the sake of clarity.801

4.1. Processing of known words and novel words at the802

first exposure803

The effect of QA on PT and NAF for the two types of804

items at the first exposure is illustrated in Figure 5. Keep805

in mind that stimuli are of variable length, and thus in-806

duce very different PT and NAF. For the coherence of807

the figure, and since we are not focusing on the length808

effect for now, both PT and NAF were normalized by809

word length. Novel words were processed slower than810

known words (β = −5.6e−4, t = −14.70, p < .001). Re-811

gardless of Item Type, average PT decreased when At-812

tention Quantity increased (β = 6.5e−4, t = 59.60, p <813

.001), varying from 188 iterations per letter on aver-814

age for QA = 0.5 to 59 iterations per letter on av-815

erage for QA = 2. More importantly, the Attention816

Quantity (QA) by Item Type interaction was significant817

(β = −1.1e−4, t = −8.80, p < .001), showing that PT818

decreased more for novel words than for known words819

as the Attention Quantity increased. Average PT var-820

ied from 261 iterations per letter for QA = 0.5 to 70821

iterations per letter for QA = 2 for the novel words and822

from 127 to 47 iterations per letter for the known words.823

As a result, the difference in PT between known words824

and novel words, that is the lexicality effect on PT, de-825

creased when more attention quantity was available for826

processing.827

Similar effects characterized NAF performance. The828

Attention Quantity (QA) by Item Type interaction was829

significant (β = −0.078, z = −3.24, p = .001). Post-hoc830

analysis showed that Attention Quantity (QA) affected831

NAF for the novel words (β = −0.095, z = −6.47, p <832

.001) but not for the known words (β = −0.016, z =833

−0.86, p = .392). With respect to novel words, aver-834

age NAF varied from 1.17 NAF per letter for QA = 0.5835

to 0.44 NAF per letter for QA = 2. With respect to836

known words, average NAF varied from 0.52 NAF per837

letter for QA = 0.5 to 0.33 NAF per letter for QA = 2.838

Thus, the lexicality effect on NAF was modulated by839

Attention Quantity, so that the difference in NAF be-840

tween known and novel words decreased when Atten-841

tion Quantity (QA) increased. Otherwise, the main Item842

Type effect was significant; more attentional fixations843

were observed on novel words than on known words844

(β = 0.28, z = 2.87, p = .004).845

At the first exposure, the effect of QA on PT and NAF846

for the two types of items depending on Item Length847

is illustrated in Figure 6. This figure illustrates the848

same data as the previous one, and corresponds to the849

same statistical analyses. However, the graphical rep-850

resentation here focuses on the impact of Item Length851

on the two measures of PT and NAF. With respect to852

PT, the Item Length effect was modulated by Attention853
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Table 1: Successful learning rate, in the learning simulation, for novel words (successful learning rate is 1.0 for words).

QA

Length
4L 5L 6L 7L 8L 9L 10L

0.5 1.0 1.0 1.0 0.88 0.81 0.68 0.56
0.75 1.0 1.0 1.0 0.97 0.95 0.80 0.73

1 1.0 1.0 1.0 0.96 0.96 0.83 0.71
1.25 1.0 1.0 1.0 0.97 0.97 0.85 0.80
1.5 1.0 1.0 1.0 0.97 0.99 0.85 0.85

1.75 1.0 1.0 1.0 0.97 0.99 0.91 0.88
2 1.0 1.0 1.0 0.98 0.98 0.93 0.89

Fig. 5: Processing Time (PT, left) and Number of Attentional Fixations (NAF, right) per letter (y-axes), depending of Item Type (known words, in
light blue, or novel words, in dark blue), as a function of visual Attention Quantity (QA values, x-axes). For each measure, a “violin plot” depicts
the distribution of obtained values, with wider portions indicating higher density of values. The central dot represents the median of the distribution
of values.

Quantity (QA): it was larger when Attention Quantity854

was smaller (β = −4.5e−5, t = −33.91, p < .001).855

There was no larger Item Length effect on PTs for the856

novel words than for the known words, as shown by the857

non significant Item Type by Item Length interaction858

(β = −2.8e−6, t = −0.61, p = .545). This is due to859

the range of explored QA values, in which large values860

yield a floor effect on Processing Times; the interaction861

is significant when considering only small QA values862

(e.g., when QA < 1). However, the Attention Quan-863

tity by Item Type by Item Length double interaction864

was significant (β = 6.92e−6, t = −4.55, p =< .001),865

showing that the Length effect on PT was larger for866

novel words than for words when Attention Quantity867

(QA) was smaller. Otherwise, the main Item Length ef-868

fect on PTs was significant (varying from 431 iterations869

for 4-letter items to 975 iterations for 10-letter items;870

β = −7.0e−5, t = −16.81, p < .001).871

As shown on Figure 6, the Length effect on NAF872

was greater for novel words than for known words873

(β = 0.093, z = 7.42, p < .001), and greater for the874

lower values of Attention Quantity (β = −6.6e−3, z =875

−2.65, p = .008). However, neither the Attention Quan-876

tity by Length interaction nor the Attention Quantity by877

Length by Item Type double interaction were significant878

(β = −4.3e−3, z = −1.37, p < .170). The main effect of879

Length was significant (β = 0.10, z = 10.43, p < .001),880

varying from 2.18 NAF for 4-letter items to 4.52 for 10-881

letter items.882

4.2. Evolution of the processing of novel words across883

exposures884

Figure 7 illustrates the effect of both QA and the Num-885

ber of Exposures on novel words’ PT and NAF. As886

shown on Figure 7 (left), PT decreased across Expo-887

sures (β = 9.5e−5, t = 11.0, p < .001), varying from888
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Fig. 6: Measures of visuo-attentional exploration (PT, top row and NAF, bottom row, on y-axes), at the first exposure, for known (left column) and
novel words (right column), as a function of stimulus length (x-axes) and Attention Quantity QA (colored curves, from blue (QA = 0.5) to pink
(QA = 2.0)). Error bars represent the data’s standard deviation. The curves are slightly shifted horizontally from each other to ensure that the error
bars are readable in the presence of overlap.

Fig. 7: Measures of visuo-attentional exploration (left, PT, in number of iterations per letter; right, NAF, in number of attentional fixations per letter;
on y-axes) across exposures (x-axes) for novel words. Error bars represent the data’s standard deviation. Curves are slightly shifted horizontally
from each other to ensure that the error bars are readable in the presence of overlap. Each curve refers to a given visual Attention Quantity (QA),
from 0.5 (blue) to 2.0 (pink).

128 iterations per letter on average at the first exposure889

to 74 iterations per letter at the fifth exposure. The At-890

tention Quantity (QA) by Exposure interaction was sig-891

nificant (β = 4.6e−5, t = 17.10, p < .001), showing892

that the decrease in PT across exposures was stronger893

when visual Attention Quantity (QA) was more limited.894

Processing Times varied from 261 iterations per letter895

to 130 iterations per letter across the five exposures for896

QA = 0.5, from 70 iterations per letter to 48 iterations897

per letter for QA = 2. For all QA values, Processing898

Time stabilized after a few exposures, but the PT value899

at stabilization was higher for the lower values of QA,900

suggesting less efficient orthographic learning when the901

visuo-attentional quantity allocated to processing was902

more limited. For the lower QA values (QA < 1), PT903

after five exposures remained higher than PT at the first904
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Fig. 8: Evolution of the length effect on PT (left, in number of additional iterations per additional letter) and NAF (right, on number of additional
attentional fixations per additional letter), on y-axes, as a function of exposures (x-axes). Each curve refers to a given visual Attention Quantity
(QA), from 0.5 (blue) to 2.0 (pink).

exposure for the higher QA values.905

Different patterns characterized NAF performance.906

As shown on Figure 7 (right), neither the main effect of907

Exposure nor the Attention Quantity (QA) by Exposure908

interaction were significant (β = −0.031, z = −1.37, p =909

.172 and β = 1.4e−3, z = 0.25, p = .801 respectively).910

The plots on Figure 8 illustrate the evolution of length911

effects on novel words’ PT and NAF across Exposures912

depending on Attention Quantity. As shown on Fig-913

ure 8 (left), the Exposure by Length interaction was914

significant (β = 1.1e−5, t = 9.76, p < .001), show-915

ing that the difference in PT between the shortest and916

the longest words was reduced across exposures. This917

reduction was further modulated by visual Attention918

Quantity (QA), as shown by the significant Attention919

Quantity by Length by Exposure double interaction (β =920

−4.3e−6, t = −13.11, p < .001). The length effect on921

PTs diminishes faster across exposures when Attention922

Quantity was lower.923

The same pattern was observed regarding NAF (see924

Figure 8, right). Both the Exposure by Length inter-925

action (β = −0.031, z = −10.10, p < .001) and the At-926

tention Quantity by Exposure by Length double interac-927

tion (β = 3.6e−3, z = 4.95, p < .001) were significant.928

The NAF was far more important for the longest than929

the shortest words at the first (6.24 vs. 2.23 for the 10-930

and 4-letter words respectively) than at the fifth expo-931

sure (3.08 vs. 1.72) and the NAF difference between the932

longest and the shortest words decreased faster across933

Exposures when (QA) was lower.934

5. Discussion935

In the present paper, computational modeling was936

used to examine the role of visual attention in the transi-937

tion from more serial to more parallel letter-string pro-938

cessing. We used the BRAID-Learn model, a model939

of orthographic processing that includes word recogni-940

tion and orthographic learning mechanisms, as an ex-941

perimental substitute.942

Simulations showed that lexicality and length effects943

on PT and NAF decreased when larger visual attention944

quantity was available for processing. Orthographic945

learning was less successful when visual attention quan-946

tity was smaller and the input novel word longer. The947

evolution patterns of orthographic processing across ex-948

posures were also affected by visual attention quantity.949

Repeated exposure to the same novel word resulted in950

a larger decrease of PT and NAF when the quantity of951

visual attention was smaller. In the same way, smaller952

visual attention quantity yielded a larger decrease of the953

length effect on PT and NAF with repeated exposure954

to the same novel word. Overall, the model predicts955

that variations in visual attention quantity would signif-956

icantly affect letter string processing and orthographic957

learning.958

The advantage of computational modeling is to of-959

fer the opportunity to examine the effect of a single pa-960

rameter manipulation, here visual attention quantity QA,961

on orthographic processing while controlling for all the962

other effects, either inherent to the system (like visual963

acuity or lateral interference) or to the input stimuli (like964

frequency or lexical neighborhood). However, isolating965

a single mechanism in this manner is easier in a compu-966
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tational model than in behavioral studies. Furthermore,967

the amount of visual attention available for processing968

is not easy to measure in humans, even though estimat-969

ing it in reference to the Theory of Visual Attention has970

been attempted (Bogon et al., 2014; Bundesen, 1990).971

Therefore, to evaluate the plausibility and relevance972

of the model’s predictions, we will concentrate on the973

orthographic processing mechanisms that are responsi-974

ble for the simulated lexicality and length effects, first975

without considering the effect of QA variations. Second,976

provided a close relationship between the model’s gen-977

eral predictions and behavioral findings, we will discuss978

to what extent the evolution of the lexicality and length979

effects on PT and NAF depending on visual attention980

quantity provides insights on the serial-to-more-parallel981

transition and is compatible with available behavioral982

evidence.983

5.1. Lexicality and word length effects irrespective of984

QA985

We focused on the two effects of lexicality and word986

length, as markers of serial processing. The lexicality987

effect in the model directly follows from top-down influ-988

ence of word knowledge that speeds up letter identifica-989

tion at the perceptual level and facilitates processing for990

the input letter strings that match an orthographic repre-991

sentation. The length effect in the model follows from992

the fact that the same amount of visual attention spreads993

over the input letter string whatever its length, so that994

less attention is allocated to each letter in longer stim-995

uli. As a result, letter identity information accumulates996

less efficiently at the perceptual level for longer than997

for shorter stimuli, which increases PT and NAF during998

visuo-attentional exploration of the input string. How-999

ever, partial identity information accumulated at the per-1000

ceptual level through visuo-attentional exploration can1001

be compensated by top-down lexical information, so1002

that known words suffer lesser length effects than novel1003

words, that have no orthographic representation (at the1004

first exposure). These simulated length and lexicality1005

effects, and their interaction, are coherent with many be-1006

havioral findings from studies on eye movements, word1007

recognition and reading (Barton et al., 2014). In par-1008

ticular, longer fixation duration and a higher number of1009

fixations are reported in longer than shorter words (Hau-1010

tala et al., 2011; Joseph et al., 2009; Kliegl et al., 2004;1011

Loberg et al., 2019; McDonald, 2006; Rayner, 1998).1012

Readers spend more times fixating novel words (Chaf-1013

fin et al., 2001; Williams and Morris, 2004) and show a1014

larger length effect on these items than on known words1015

(Lowell et al., 2014).1016

In the same way, some general learning effects like1017

the reduction of PT and NAF with repeated exposure1018

to novel words (independently of QA) directly follow1019

from the combined effects of visuo-attentional explo-1020

ration and lexical feedback. At the first exposure, per-1021

ceptual information on letters is only based on stimu-1022

lus sensory processing, since no lexical representation1023

is available yet for this word. From the second expo-1024

sure, perceptual information benefits from the influence1025

of the newly created orthographic representation. Im-1026

provement of the novel word orthographic representa-1027

tion across exposures results in an increase of lexical1028

feedback that enhances letter identification. As a re-1029

sult, orthographic learning in the model is character-1030

ized by a decrease in PT and NAF, which is consistent1031

with behavioral findings from studies on the evolution1032

of eye movement patterns in conditions of orthographic1033

learning (Ginestet et al., 2020; Joseph and Nation, 2018;1034

Joseph et al., 2014; Pagan and Nation, 2019; Pellicer-1035

Sanchez, 2016).1036

In our simulations, we further observed a decrease1037

in the length effect with repeated exposure to the same1038

novel word. This follows from the fact that better-1039

specified orthographic representations have higher in-1040

fluence on letter perceptual information and that lexi-1041

cal feedback is particularly critical when bottom-up per-1042

ceptual identity information accumulates slowly, which1043

more likely occurs for longer than shorter words. Obvi-1044

ously, when the attentional fixation is directed towards1045

initial letters, final letters do receive less attention in1046

longer than in shorter words. As a direct consequence,1047

perceptual information accumulates more slowly for1048

longer words that are thus more dependent on lexical1049

feedback. Several behavioral studies have reported a1050

reduction of the length effect on reading latency after1051

a few repeated exposures to novel words (Kwok and1052

Ellis, 2014; Maloney et al., 2014; Suárez-Coalla et al.,1053

2014). Behavioral evidence that longer words progres-1054

sively tended to be read as quickly as shorter words1055

was interpreted as a marker of orthographic learning,1056

suggesting that more and more letters within the input1057

string were simultaneously processed.1058

5.2. Modulation of lexicality and length effects by at-1059

tention quantity1060

Our main contribution in the present paper was to1061

evaluate the influence of visual attention quantity on or-1062

thographic processing. The model predicts that the two1063

lexicality and length effects are modulated by visual at-1064

tention quantity, thus suggesting that the total amount1065

of visual attention available for processing further con-1066

tributes to the serial-to-more-parallel processing transi-1067
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tion. In the model, the amount of visual attention quan-1068

tity deployed for processing at the first attentional fix-1069

ation modulates the speed of letter identity perceptual1070

identification and the number of letters that fall under1071

the deployed attention. At the second fixation, visuo-1072

attentional dispersion is modulated according to previ-1073

ous information accumulation speed. Fast accumulation1074

of identity information for the higher QA values leads to1075

adopt larger visual attention dispersion. A higher num-1076

ber of letters are then simultaneously identified at each1077

new fixation, leading to more parallel processing. To the1078

contrary, attentional dispersion is narrowed when iden-1079

tity information accumulated laboriously at the first at-1080

tentional fixation. Then, only a few letters can be suc-1081

cessfully identified at each subsequent fixation, leading1082

to more serial processing.1083

Although it is difficult to directly measure the vi-1084

sual attention quantity in humans, the impact of percep-1085

tual processing speed and multi-letter parallel process-1086

ing on behavioral performance have been investigated1087

by reference to two theoretical frameworks, namely the1088

Theory of Visual Attention (Bundesen, 1990; Bundesen1089

and Habekost, 2014) and that of visual attention span1090

(Bosse et al., 2007; Valdois, 2022; Valdois et al., 2004).1091

Moreover, behavioral studies have established a link be-1092

tween perceptual processing speed and VAS, suggesting1093

that lower VAS performance related to slower percep-1094

tual processing (Bogon et al., 2014; Dubois et al., 2010;1095

Ginestet et al., 2020; Lobier et al., 2013). The plausi-1096

bility of the model’s predictions with respect to varia-1097

tions in visual attention quantity can therefore be ques-1098

tioned in the light of available behavioral evidence on1099

how perceptual processing speed and VAS affect letter-1100

string processing and orthographic learning.1101

The model predicts that individuals with smaller vi-1102

sual attention quantity would be more prone to rely on1103

serial processing, thus showing higher lexicality and1104

length effects on processing time and number of fix-1105

ations while reading. The studies carried out by ref-1106

erence to the Theory of Visual Attention (Bundesen,1107

1990; Bundesen and Habekost, 2014) provide some1108

support to this prediction. Perceptual processing speed1109

was consistently found reduced in brain-damaged in-1110

dividuals showing excessive reliance on serial process-1111

ing (Habekost, 2015). In particular, perceptual process-1112

ing speed is markedly reduced in letter-by-letter readers1113

who otherwise exhibit exaggerated word length effects1114

on naming and lexical decision latencies, and eye move-1115

ment measures (Barton et al., 2014; Behrmann et al.,1116

2001). However, we lack direct evidence that word1117

processing and the oculomotor pattern in letter-by-letter1118

readers are related to their perceptual processing speed1119

(or VAS). Future studies should more directly evalu-1120

ate whether differences in perceptual processing speed1121

would predict the amplitude of the length effect in letter-1122

by-letter readers.1123

Lower visual attention quantity might further account1124

for stronger reliance on serial processing in develop-1125

mental dyslexia. Several studies suggest that individ-1126

uals with developmental dyslexia exhibit a reduction in1127

perceptual processing speed (Habekost, 2015; Stefanac1128

et al., 2019; Stenneken et al., 2011) and in visual at-1129

tention span (Bosse et al., 2007; Germano et al., 2014;1130

Zoubrinetzky et al., 2014). Furthermore, it is well docu-1131

mented that a larger word-length effect on naming, lex-1132

ical decision and oculomotor measures is a consistent1133

finding in developmental dyslexia (De Luca et al., 2002;1134

Martens and de Jong, 2008; Spinelli et al., 2005; Zoc-1135

colotti et al., 2005). However, once again, direct evi-1136

dence that reduced processing speed or VAS affects the1137

lexicality or length effects in developmental dyslexia is1138

scarce. An exaggerated length effect has been described1139

in association with reduced VAS in some case studies1140

of developmental dyslexia (Valdois et al., 2011, 2003)1141

and a group study has shown that the number of fixa-1142

tions (but not fixation duration) in text reading increased1143

in dyslexic individuals with lower VAS (Prado et al.,1144

2007). A more rigorous assessment of the model predic-1145

tions would require to systematically evaluate whether1146

a VAS or perceptual processing speed deficit in devel-1147

opmental dyslexia is associated to excessive length and1148

lexicality effects.1149

However, the main prediction of the model is that1150

differences in visual attention quantity should affect1151

the transition from serial-to-more-parallel processing.1152

Relevant behavioral evidence would then come from1153

changes in reading patterns across grades and from or-1154

thographic learning studies. Only piecemeal behavioral1155

information can be related to the model’s prediction.1156

There is evidence that VAS abilities increase across1157

grades (van den Boer et al., 2015; van den Boer and1158

de Jong, 2018; Bosse and Valdois, 2009; Huang et al.,1159

2019). The large decline in word-length effect observed1160

in typical readers as they learn to read might thus sug-1161

gest a decrease in word length effect with growth in1162

VAS skills. Unfortunately, we lack direct behavioral ev-1163

idence for such a relationship across grades. However,1164

van den Boer et al. (2013) showed that variations in VAS1165

skills in second grade children predicted variations in1166

length effect on their reading latencies. This finding and1167

the consistently reported relationship between VAS and1168

reading fluency (van den Boer and de Jong, 2018; Bosse1169

and Valdois, 2009; Chan and Yeung, 2020; Chen et al.,1170

2016; Lobier et al., 2013; Valdois et al., 2021b, 2019;1171
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Zhao et al., 2018) suggest that VAS would contribute to1172

the degree of reliance on serial processing.1173

To our knowledge, no study investigated the relation-1174

ship between VAS (or processing speed) and the lex-1175

icality effect. Antzaka et al. (2017) examined skilled1176

readers’ pseudo-word reading in conditions of very brief1177

presentation duration that prevented serial processing.1178

They showed that the adult readers who played action1179

video games and had larger VAS than non-players could1180

successfully read more pseudo-words through parallel1181

processing. As the two groups of players and non-1182

players were matched on text reading fluency, their find-1183

ings might suggest that larger VAS is associated to a1184

lower lexicality effect on processing times. Behav-1185

ioral studies on orthographic learning should be par-1186

ticularly relevant to evaluate the link between visuo-1187

attentional resources and the shift from serial-to-more-1188

parallel processing. Unfortunately, although available1189

findings convincingly show incremental orthographic1190

knowledge growth across repeated exposure to the same1191

novel word (Joseph and Nation, 2018; Joseph et al.,1192

2014; Pagan and Nation, 2019; Pellicer-Sanchez, 2016),1193

neither VAS nor perceptual processing speed were si-1194

multaneously measured. A single study provided some1195

evidence of better orthographic learning skills in the1196

group of participants with higher VAS (Ginestet et al.,1197

2020).1198

5.3. Conclusion and perspectives1199

The main contribution of the present modeling study1200

is twofold. First, the model provides a sophisticated1201

description of the dynamics of visuo-attentional ex-1202

ploration during printed word processing. Second, it1203

shows how the interaction of visuo-attentional explo-1204

ration and lexical knowledge contributes to the grad-1205

ual strengthening of item-specific orthographic repre-1206

sentations as learning progresses. Decrease of the1207

lexicality and length effect across exposures suggests1208

that the model captures some aspects of the transition1209

from serial to more parallel processing. However, or-1210

thographic learning in the model is performed in the ab-1211

sence of any phonological processing. This drastically1212

differs from previous modeling of orthographic learn-1213

ing through self-teaching (Pritchard et al., 2018; Ziegler1214

et al., 2014), in which successful phonological process-1215

ing was critical to acquire new orthographic knowledge1216

and explain the transition from serial to more parallel1217

processing.1218

In this respect, BRAID-Learn more directly relates1219

to the model of automaticity in reading proposed by1220

LaBerge and Samuels (1974). LaBerge and Samuels1221

(1974) emphasized the role of visual attention in the1222

processing and memorization of increasingly large or-1223

thographic units during the course of learning to read.1224

In the same way, in BRAID-Learn, the amount of vi-1225

sual attention quantity influences the size (in letter num-1226

ber) of the processed units (from individual letters to1227

the whole word letter-string), so that the smaller the at-1228

tention quantity, the smaller the number of letters pro-1229

cessed as a whole. However, in the absence of imple-1230

mented phonological component, the predictive power1231

of BRAID-Learn is limited. Addition of a phonologi-1232

cal module in BRAID-Learn, or the addition of visuo-1233

attentional processes in dual-route self-teaching models1234

(Pritchard et al., 2018; Ziegler et al., 2014), would al-1235

low improving the models’ predictions and examining1236

the combined effects of visual attention and phonolog-1237

ical processing on both orthographic learning and the1238

transition from serial-to-more-parallel processing.1239

One could further question the relevance of our study,1240

in which the BRAID-Learn model was equipped with1241

an expert orthographic lexicon and tasked to learn a sin-1242

gle novel word, to provide insights on reading acquisi-1243

tion. Indeed, during reading acquisition, it is unclear1244

how the current state of the growing lexicon affects the1245

learning of a currently encountered novel word. We1246

surmise that our observations would generalize to this1247

situation, since, at the first encounter, top-down lexi-1248

cal feedback is suppressed in the BRAID-Learn model,1249

so that the current state of the lexicon does not affect1250

perceptual processing and visuo-attentional exploration.1251

However, the interaction with phonological processing,1252

would certainly matter. Current work concerns extend-1253

ing BRAID-Learn in this direction, to study its capac-1254

ity to gradually build up rich lexical knowledge, while1255

starting from only minimal knowledge on word-specific1256

orthographic representations.1257
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Appendix A. Stimuli

4-letter words: acme, arak, ares, barb, bess, boon,
brig, cell, chin, coup, dade, deer, dill, dyne, enos, gale,
gaud, gent, hemp, joss, june, kivu, lear, leek, loch, buri,
cony, lura, mali, marr, mink, moth, nara, huns, oath,
peru, quod, role, rook, scut, slat, soul, tarn, tofu, topi,
tosh, tree, vial, womb, yeas, aide, ainu, aryl, attu, oleg,
bert, body, buna, byes, caff, capn, miry, dodd, dram,
edam, feat, feds, fogg, ludo, fore, gogo, gown, grot,
grub, hake, hume, husk, koan, lakh, pron, menu, mort,
nett, orly, oxen, pane, pomp, quay, sham, sims, skit, talc,
togs, tory, vail, vats, volt, weft, wold, yule

5-letter words: arabs, aroma, aspen, babel, baker,
balsa, berry, blues, cache, chump, codex, compo, crust,
dicks, dildo, flank, drake, fanny, dolly, greer, harem,
horne, jonah, keane, lewis, loren, macon, males, maple,
oasis, ozone, pansy, penis, photo, rabbi, clasp, rotor,
rover, rumba, skull, sloan, snack, syrup, tamil, teeth,
toque, trier, uncle, vigil, wayne, anvil, aorta, argos, as-
pic, atoll, attic, aught, blood, bourn, canoe, carey, chris,
cleva, della, dinar, ernie, ether, folio, foyer, gibby, gusto,
heron, highs, ivory, jones, katie, kurus, levin, maine,
navvy, rhode, robot, sabra, sadie, saran, scuba, sewer,
shank, sioux, skiff, slush, spoof, sprig, swath, tosca,
twine, walls, weiss, whorl, wilde

6-letter words: ablaut, anklet, arrack, beeves, bor-
age, centum, cicala, cotman, cowmen, czechs, dalton,
dowser, flagon, gigolo, hotpot, howdah, icemen, kronor,
krutch, kummel, lugger, mender, noshes, office, oxcart,
pignut, poppet, ranker, rioter, sacker, sateen, scrota,
seekin, shensi, stamen, street, sundew, tatian, tibiae,
tomtom, torrio, tumuli, xavier, yeoman, yogurt, yonder,
zenith, zephyr, zinnia, zombie, andrus, beirut, bistro,
bustle, cactus, cartel, catgut, chukka, cicero, delvin, dib-
ble, doddle, duenna, dustup, emblem, escudo, family,

friend, fulmar, gasmen, gooier, guizot, hangup, hannah,
hippie, hopper, howell, idiocy, jasper, lemons, newton,
orgasm, persia, pulsar, quincy, rapist, rogues, rotter, run-
nel, sayers, schulz, sidney, sinker, strang, strata, varian,
volume, wicket, wilson, yokuts

7-letter words: affaire, alumnae, anthill, autarky,
barnaba, blanket, blemish, brooder, buildup, clayton,
colonus, waiving, corrals, country, crystal, dawdler,
decoder, divider, doublet, dresser, economy, egerton,
erosion, evasion, firearm, flyways, francis, gingham,
gouache, goulash, grenada, hormone, imagery, inkling,
longbow, macedon, maurice, nemesis, newport, news-
men, oregano, panoply, pedicel, poussin, prowess, ref-
eree, seaport, stratum, virgule, vulture, antenna, bab-
cock, beaches, bloomer, booklet, buttock, cabbage, ca-
lypso, concept, dilemma, diploma, dorothy, forrest,
garrett, gazelle, gestapo, grafton, heckler, heywood,
jackson, jenkins, lincoln, liqueur, luggage, mailman,
mankind, mongrel, neilson, oranges, pattern, phan-
tom, pitcher, pitfall, pointer, pompano, pretext, privacy,
provost, sangria, schmidt, siberia, slipper, snowman,
stinger, surgery, syrians, tremolo, untruth, valerie, vir-
gins,

8-letter words: besieger, bombsite, bootlace, bull-
hide, cajolery, causerie, clifford, decoking, division,
entresol, eyetooth, families, findsome, fireclay, gal-
lants, glumness, gripsack, icefloes, infamies, lifebelt,
lifebuoy, lummoxes, majority, mastoids, medicine, or-
chises, overplus, parterre, prattler, property, psalmody,
putsches, quirinal, raciness, raillery, rankness, rock-
hall, tenpence, throstle, tidemark, toadyism, tollgate,
transfer, turnspit, wigmaker, wineskin, wiriness, yu-
goslav, zeppelin, zimbabwe, addendum, botulism, bou-
tique, bulgaria, cambodia, cassette, causeway, churches,
commando, compiler, cupboard, deathbed, detritus,
eyepiece, finisher, haitians, handbook, heraldry, holi-
ness, ideology, instance, laxative, licensee, machismo,
metaphor, musician, namesake, nebraska, plastics, pre-
tense, proposal, roadster, rushmore, seedling, sherlock,
softness, specimen, speeches, stimulus, tamarind, tas-
mania, tendency, theology, treasury, ugliness, universe,
werewolf, westwood, winfield, woodside

9-letter words: ablatives, australia, blowflies,
blutwurst, bourguiba, bowerbird, bridewell, comin-
form, companies, contriver, costumier, crimplene, cuck-
oldry, deauville, exhusband, flageolet, flashcube, abase-
ment, fortifier, identikit, lobscouse, lowlander, lowli-
ness, luckiness, lumbermen, luridness, lustiness, mist-
iness, moralizer, newspaper, nunneries, oratories, orris-
root, patricide, phagocyte, phalanges, polyether, punc-
tilio, repletion, sandshoes, scenarist, september, sixti-
eths, smoochers, stridence, sunniness, technique, timid-
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ness, treatment, woodlouse, agreement, attention, can-
didate, cerebella, charabanc, charwoman, chiseller, ci-
catrice, developer, diathesis, driveller, duchesses, foo-
leries, forcemeat, forewoman, garrulity, germicide,
gushiness, hothouses, ignorance, lactation, lazaruses,
leucotomy, materials, noctiluca, obscurant, omnibuses,
orangeade, packhorse, panatella, papyruses, peccaries,
penknives, personnel, plasterer, poltroons, stokehold,
striation, sucklings, suffusion, sulkiness, sunfishes, tail-
board, telltales, territory, tigresses, wesleyans, young-
ster, zimmerman, zoologist

10-letter words: andromache, basketball, burckhardt,
burlesques, categories, coagulants, conception, con-
cretion, conversion, coronaries, corrigenda, crustiness,
delphinium, employment, evaluation, flagellant, gin-
gersnap, graphology, hobbyhorse, horseflesh, intact-
ness, keypunches, lordliness, maidenhood, manageress,
mortuaries, newsletter, pliability, postscript, preclusion,
preference, properties, propionate, psychology, quin-
tuplet, saleswomen, savageness, scrollwork, special-
ist, speleology, stonemason, submission, suspension,
telephotos, terramycin, thrashings, threepence, trucu-
lence, undulation, vulgarians, alpenstock, angloma-
nia, anointment, antiheroes, apoplexies, artfulness, as-
sumption, bestiaries, braininess, businesses, clerestory,
collieries, colloquies, conclusion, conference, disha-
bille, eisteddfod, foundation, giantesses, glossiness,
goldfishes, hibiscuses, homoeopath, horselaugh, horse-
woman, husbandman, industries, instrument, inten-
dants, inwardness, irishwoman, mainstream, minute-
ness, parliament, petrolatum, preferment, presbytery,
psalteries, reputation, resolution, rheumatics, scant-
lings, subsidizer, succulence, supplanter, swordstick,
throughway, waterpower, workpeople, yellowness
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