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Promising results on LPV design have been recently proposed, concerning the modeling and
control of missiles, rockets, and aircraft. However, very few investigations have been focused on
the development of guided projectile applications. This paper presents a pure linear parameter
varying (LPV) modeling and control design approach intended to improve the range capability
of a new class of Long Range Guided Projectiles (LRGP). The investigated concept consists of
an asymmetric 155 mm fin-stabilized projectile equipped with a reduced amount of control
actuators and characterized by a predominant unstable behavior across the analyzed flight
envelope. The main advantages of the LPV design in terms of guaranteed robustness and
stability are compared to standard gain-scheduling-based linear time-invariant (LTI) control
strategies. A nonlinear simulation scenario is performed in order to assess the reliability of a
pure LPV autopilot design, based on the polytopic formulation, across the entire flight envelope,
over a local modal control design related to a specific set of flight conditions.

I. Introduction

In the last decades, the Linear Parameter Varying (LPV) framework has attracted increasing interest in the modeling
and the control of a wide range of aerospace applications. Initial studies presented the LPV modeling approach as a

perfect match for the well-established gain-scheduling controller design technique, leading to relevant contributions
both in terms of missile [1–5], and aircraft [6–8] applications. Important studies have also focused on the investigation
of guided projectiles, intending to improve the accuracy and the range capability of artillery operations. LPV modeling
of projectiles has been coupled with the employment of robust control design for both spin-stabilized [9–11] and
fin-stabilized [12, 13] architectures. However, the LPV models were generally obtained as a collection of local
linearizations of the original nonlinear dynamics unable to fully characterize the dynamics of the system, with the
possible loss of important information regarding the transient behavior. The gain-scheduled autopilots result from the
interpolation of the corresponding set of linear time-invariant (LTI) controllers, designed at the trimming conditions
selected during the model linearization. Consequently, important properties such as stability and flight performances
are only guaranteed around the analyzed trimming points, but not at all the remaining flight conditions [14, 15].

These limitations motivated the investigation of alternative LPV-based design approaches, providing a better
representation of the full system dynamics [16–18], as well as robustness and performance properties across the entire
flight envelope [19–22]. Concerning guided projectiles, only recently, an LPV approach has been developed [23], in the
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framework of Model Predictive Control (MPC), opening several opportunities to be further investigated. This paper
intends to propose a pure LPV 𝐻∞ controller design for the pitch channel dynamics of a new class of Long Range
Guided Projectiles (LRGP), aiming to improve the operating range of artillery operations employing a Bank-To-Turn
gliding flight strategy. Interesting properties of the analyzed concept derive from the selection of a reduced set of
control actuators, leading to an asymmetric canards/fins configuration [24, 25], and a predominant statically unstable
behavior. Recent research on long-range guided projectiles [26] underlined the impact of the canards/fins configuration,
aerodynamics modeling, and guidance development on the overall range capability. In a previous study, the full nonlinear
dynamics of the projectile have been derived [27], and converted into a corresponding quasi-LPV model through the
State Transformation technique [28], trying to minimize the need for model approximations.

The LPV autopilot design discussed here relies on a polytopic formulation. First introduced in [29], the polytopic
approach allows the formulation of the synthesis of a controller that guarantees stability and performance for any
conditions of the varying parameters in a selected subset, by only targeting the extreme values characterizing each
parameter in that subset. However, the polytopic formulation implies the definition of a convex space of parameter
variations and requires an affine model-parameters relation. As a consequence, the optimization process can be affected
by an excessive level of conservatism that can deteriorate performance of the controller. These aspects are extensively
investigated in the present work, where a modeling procedure is proposed to generate a quasi-LPV model for the
projectile that complies with the requirements of the polytopic formulation and reduces the conservativeness. The
obtained control results are coupled in simulations with a preliminary ad-hoc implemented guidance law, targeting the
optimization of the aerodynamic angle-of-attack during the gliding phase of the trajectory [30, 31].

The proposed article is divided as follows. The pitch channel nonlinear dynamics of the guided projectile is first
discussed in Section II, as well as the derivation of the corresponding quasi-LPV model. In Section III, the theoretical
formulation of the LPV polytopic class of systems is presented. A complete approximation analysis allows reformulating
the obtained quasi-LPV model to satisfy the polytopic requirements. Once the accuracy of the approximations is
verified, the dimensions of the investigated flight envelope are optimized to reduce the complexity of the controller
synthesis process. Later, Section IV details the generalized scheme employed for the robust controller synthesis. A
design comparison between the frequency performance of an LPV 𝐻∞ polytopic controller and a modal state feedback
controller, based on the pole placement approach, assesses the advantages of the LPV formulation over a standard LTI
control design. Finally, in Section V, a reference tracking simulation scenario is proposed, employing the LPV polytopic
controller to target an angle-of-attack guidance trajectory. The ultimate purpose is to prove the capability of the LPV
design, to ensure competitive performances and stability properties across all the conditions described by the selected
flight envelope, which are not guaranteed a priori by standard LTI gain-scheduled controllers.

II. Projectile Pitch Channel Dynamics
This section provides a description of the projectile physical concept, design properties, and operational objectives.

The full nonlinear model related to the pitch channel dynamics is described, including some relevant insights concerning
the aerodynamic characterization and the control input allocation. Later, the nonlinear model is converted into a
corresponding quasi-LPV one using the State Transformation technique. The obtained quasi-LPV model will be
formulated as a polytopic system in the next section and employed for the different controller designs, while the
performances of the resulting autopilot are intended to be tested directly on the nonlinear dynamic model.
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Standard
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Fig. 1 Long Range Guided Projectile: (a) projectile concept; (b) range enhancement flight strategy.
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A. Nonlinear Model
The investigated nonlinear model refers to a 155 mm fin-stabilized guided projectile, characterized by a set of two

front control canards, and a set of four symmetrical rear fins, non-co-planar to the plane of symmetry of the canards, as
shown in Fig. 1(a). The reduced amount of control surfaces, that affects the resulting control authority, is justified by
the intention of improving the projectile operating range through a Bank-To-Turn (BTT) flight strategy employed during
the gliding phase of the trajectory, as is shown in Fig. 1(b).

The full nonlinear model of the projectile, including the analysis and derivation of the aerodynamic contributions,
was discussed in a previous work [27]. For the purposes of this study, we focus the analysis on the pitch channel of the
projectile only, consisting of the dynamics of the aerodynamic angle-of-attack, 𝛼, and of the pitch rate, 𝑞, expressed
with respect to the system of coordinates integral to the projectile body:

¤𝛼 = − 𝑋 sin𝛼
𝑚𝑉 cos 𝛽

+ 𝑍 cos𝛼
𝑚𝑉 cos 𝛽

+ 𝑔

𝑉 cos 𝛽
(sin𝛼 sin \ + cos𝛼 cos \ cos 𝜙) + 𝑞 − 𝑝 tan 𝛽 cos𝛼 − 𝑟 tan 𝛽 sin𝛼,

¤𝑞 =
1
𝐼yy

[𝑀 − 𝑝𝑟 (𝐼xx − 𝐼zz)] .
(1)

The lateral contributions of the yaw rate and the aerodynamic sideslip-angle, 𝑟 and 𝛽, respectively, as well as the
influence of the roll angle and the roll rate, 𝜙 and 𝑝, respectively, are assumed to be negligible for the pitch channel
dynamics. Indeed, the sideslip-angle minimization (BTT) strategy, together with the particular geometry of the concept,
allows the decoupling of the projectile dynamics between its lateral and pitch axes. The variation of the pitch angle, \, is
not accounted as a parameter to be included in the LPV analysis, so a nominal value was selected based on a set of
simulation tests. The term 𝑉 represents the true airspeed in zero relative wind conditions.

In terms of physical parameters, 𝐼xx, 𝐼yy, and 𝐼zz correspond to the moments of inertia relative to the principal axes
of the projectile body, 𝑚 stands for the overall mass, and 𝑔 for the standard acceleration of gravity, under flat Earth
assumptions. Due to the characteristic second-order rotational symmetry of the projectile body, the off-diagonal inertia
couplings terms, 𝐼xy, 𝐼yz, and 𝐼xz, present in the inertia matrix, are neglected as well.

Additionally, the pitch channel dynamics is highly affected by the aerodynamics contributions, in the form of
longitudinal and vertical forces, 𝑋 and 𝑍 , and pitching moment, 𝑀 , modeled through an extensive regression analysis
based on a set of Computational Fluid Dynamics (CFD) data, as follows:

𝑋 = 𝑞𝑆

(
𝐶𝑋𝛼0 + 𝐶𝑋𝛼2 sin2 𝛼 + 𝐶𝑋𝛼4 sin4 𝛼 + 𝐶𝑋𝛿0

+ 𝐶𝑋𝛿2
sin2 𝛿eff

)
,

𝑍 = 𝑞𝑆

[
𝐶𝑍𝛼1 sin𝛼 +

(
𝑑

𝑉

)
𝐶𝑍D𝑞 + 𝐶𝑍𝛿1

sin 𝛿𝑞 + 𝐶𝑍𝛿3
sin3 𝛿𝑞

]
,

𝑀 = 𝑞𝑆𝑑

[
𝐶𝑚𝛼1 sin𝛼 + 𝐶𝑚𝛼3 sin3 𝛼 + 𝐶𝑚𝛼5 sin5 𝛼 +

(
𝑑

𝑉

)
𝐶𝑚D𝑞 + 𝐶𝑚𝛿1

sin 𝛿𝑞 + 𝐶𝑚𝛿3
sin3 𝛿𝑞

]
.

(2)

The aerodynamic model is defined by the values of the reference surface 𝑆 and caliber 𝑑, the dynamic pressure
𝑞 = 1

2 𝜌 (ℎ)𝑉
2, function of the altitude ℎ and the air density 𝜌, and by the set of aerodynamics regression coefficients

related to the longitudinal static (𝐶𝑋𝛼0 , 𝐶𝑋𝛼2 , 𝐶𝑋𝛼4) and control (𝐶𝑋𝛿0
, 𝐶𝑋𝛿2

) forces, to the vertical static (𝐶𝑍𝛼1),
dynamic (𝐶𝑍D ), and control (𝐶𝑍𝛿1

, 𝐶𝑍𝛿3
) forces, and finally to the pitching static (𝐶𝑚𝛼1 , 𝐶𝑚𝛼3 , 𝐶𝑚𝛼5 ), dynamic (𝐶𝑚D ),

and control (𝐶𝑚𝛿1
, 𝐶𝑚𝛿3

) moments. Each of the previous aerodynamic coefficients has been obtained as a function of a
selected range of subsonic Mach values, M.

Furthermore, the local deflection angles characterizing the right and the left control canards, 𝛿r and 𝛿l, respectively,
are allocated into a set of virtual deflections. The virtual set expresses the control action in terms of a roll contribution,
𝛿𝑝 , and a pitch contribution, 𝛿𝑞 , obtained respectively through a differential or a concurrent deflection of the individual
surfaces, following the allocation strategy: [

𝛿𝑝

𝛿𝑞

]
=

[
− 1

2 + 1
2

+ 1
2 + 1

2

] [
𝛿r

𝛿l

]
. (3)

The longitudinal control contribution, 𝛿eff, was modeled as a nonlinear combination of the virtual roll and pitch
deflections and represents a braking effect due to the additional drag generated by canards deflections.
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B. Quasi-LPV Model
The nonlinear dynamics in Eqs. (1)-(3), can be reformulated in a more compact fashion, as an output nonlinear

system. However, this formulation requires the system to be affine in the input, thus a first-order approximation of the
aerodynamic control coefficients (𝐶𝑍𝛿1

, 𝐶𝑍𝛿3
, 𝐶𝑚𝛿1

, 𝐶𝑚𝛿3
) was investigated in detail in [28], and applied to the pitch

channel dynamics. The resulting nonlinear Simplified model is used for the LPV modeling and control design, assuming
the aerodynamic approximations as a source of uncertainties to be handled by the controller. The remaining nonlinear
contributions characterizing the model are functions of the set of continuous time-varying parameters, 𝜌(𝑡), and can be
collected in the generalized terms 𝑓1 (𝜌) and 𝑓2 (𝜌), as it follows:[

¤𝛼
¤𝑞

]
=

[
𝑓1 (𝜌)
𝑓2 (𝜌)

]
+
[
0 𝐴12 (𝜌)
0 𝐴22 (𝜌)

] [
𝛼

𝑞

]
+
[
𝐵1 (𝜌)
𝐵2 (𝜌)

]
𝛿𝑞; 𝜌(𝑡) = [𝛼(𝑡), 𝑉 (𝑡), ℎ(𝑡)] (4)

where:

𝐴12 (𝜌) B 1 +
𝑞𝑆𝑑𝐶𝑍D cos𝛼

2𝑚𝑉2 ; 𝐵1 (𝜌) B
𝑞𝑆𝐶𝑍𝛿1

cos𝛼
𝑚𝑉

;

𝐴22 (𝜌) B
𝑞𝑆𝑑2𝐶𝑚D

2𝐼yy𝑉
; 𝐵2 (𝜌) B

𝑞𝑆𝑑𝐶𝑚𝛿1

𝐼yy
.

(5)

Starting from the nonlinear Simplified pitch channel dynamics in Eqs. (4)-(5), a reliable quasi-LPV model can be
obtained by employing a systematic State Transformation technique [1, 2]. The complete derivation of the LPV model
from the nonlinear Simplified one is detailed in [28]. Despite being restricted to a limited class of systems, the State
Transformation approach provides a quasi-LPV model which corresponds to an exact transformation of the original
nonlinear system, avoiding any form of additional approximations. In particular, the transformation aims to hide the
nonlinear parameter-varying terms 𝑓1 (𝜌) and 𝑓2 (𝜌) present in the model through a redefinition of the non-scheduling
state variables and of the input of the system, respectively 𝑞 and 𝛿𝑞 in Eq. (4). The new state vector of the quasi-LPV
pitch channel dynamics model includes the angle-of-attack, 𝛼, and the off-equilibrium values of the pitch rate, 𝑞dev, and
of the virtual pitch deflection, 𝛿𝑞,dev, defined during the transformation process as:

𝑞dev = 𝑞 − 𝑞eq (𝜌); 𝛿𝑞,dev = 𝛿𝑞 − 𝛿𝑞,eq (𝜌), (6)

where the equilibrium function 𝑞eq (𝜌) and 𝛿𝑞,eq (𝜌), are obtained by trimming the pitch channel dynamics of the
projectile in Eqs. (4)-(5) across the entire flight envelope described by the variation of the scheduling vector 𝜌(𝑡).
The dynamics of the off-equilibrium variables, 𝑞dev (𝑡) and 𝛿𝑞,dev (𝑡), are expressed through the derivatives of the
corresponding equilibrium functions, 𝑞eq (𝜌) and 𝛿𝑞,eq (𝜌), respectively.

Finally, the inclusion of an integrator at the input of the system defines the new input 𝜎 =
∫
𝛿𝑞 . This solution

allows to remove the dependence of the input from the current equilibrium flight configuration, which was introduced
by the transformation process in 𝛿𝑞,dev (𝑡) and can strongly affect the stability of the system [17]. Additionally, the
integration redefines the input matrix, 𝐵, of the quasi-LPV system in a parameter-independent form expressed by the
identity matrix, 𝐼, which is a fundamental requirement for the later LPV control design. From a modeling perspective,
the presence of the integrator can be justified by assuming that the controller intended to be developed accounts for a
pure integral action that is formally included in the system definition.

The resulting Augmented quasi-LPV model of the projectile pitch channel dynamics is expressed as:
¤𝛼
¤𝑞dev
¤𝛿𝑞,dev

 =

0 𝐴12 (𝜌) 𝐵1 (𝜌)
0 �̃�22 (𝜌) �̃�2 (𝜌)
0 �̃�32 (𝜌) �̃�3 (𝜌)



𝛼

𝑞dev

𝛿𝑞,dev

 +

0
0
𝐼

 𝜎, (7)

with:

�̃�22 (𝜌) B 𝐴22 (𝜌) −
𝜕𝑞eq

𝜕𝛼
𝐴12 (𝜌); �̃�2 (𝜌) B 𝐵2 (𝜌) −

𝜕𝑞eq

𝜕𝛼
𝐵1 (𝜌);

�̃�32 (𝜌) B −
𝜕𝛿𝑞,eq

𝜕𝛼
𝐴12 (𝜌); �̃�3 (𝜌) B −

𝜕𝛿𝑞,eq

𝜕𝛼
𝐵1 (𝜌).

(8)
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III. Polytopic Model
In this section, the Augmented quasi-LPV model of the projectile in Eqs. (7)-(8) is reformulated as a polytopic

system, in view of the control design. The main theoretical features and requirements of the polytopic class of systems
are first discussed to verify which aspects of the obtained quasi-LPV model have to be adjusted to comply with the
polytopic formulation. Later, a full model-parameter dependence analysis is presented, aiming to accurately approximate
the quasi-LPV model, by mapping the original set of scheduling variables into a new set of scheduling functions that
respect the polytopic considerations. Finally, an investigation of the dimensions of the polytope defined by the new set
of functions is proposed to minimize the conservatism and the computational complexity of the controller synthesis.

A. LPV Polytopic Background
The polytopic formulation proposed here is based on [29], complying with the same notation. As previously

mentioned, this approach is restricted to a class of LPV systems characterized by an affine dependence on the selected set
of time-varying scheduling variables 𝜌(𝑡) = [𝜌1, . . . , 𝜌𝑁 ]. Additionally, the system is expected to be input and output
parameter-independent to satisfy the affine conditions. The latter restriction can be generally relaxed by pre-filtering the
input and the output. Finally, measurements of scheduling variables are supposed to be available in real-time, while
their variation is assumed to be bounded between a minimum and a maximum value:

𝜌 𝑗 ≤ 𝜌 𝑗 ≤ 𝜌 𝑗

where 𝑗 ∈ [1, 𝑛𝜌], and 𝜌 𝑗 , 𝜌 𝑗 indicate the upper and lower bounds, respectively, of the 𝑗 𝑡ℎ scheduling variable. The
overall set of possible combinations of the variables boundary values defines a convex subspace (polytope) of 2𝑛𝜌
vertices 𝜔 = [𝜔1, . . . , 𝜔2𝑛𝜌 ], where at each vertex, 𝜔𝑖 = [a𝑖1, . . . , a𝑖𝑛𝜌 ] with 𝑖 ∈ [1, 2𝑛𝜌 ], the 𝑗 𝑡ℎ scheduling variable,
a𝑖 𝑗 , equals either 𝜌 𝑗 or 𝜌 𝑗 . The corresponding set of LTI realizations of the system evaluated at each vertex of the
polytope allows to obtain a general representation of the LPV system as the convex interpolation:[

𝐴(𝜌) 𝐵(𝜌)
𝐶 (𝜌) 𝐷 (𝜌)

]
=

2𝑛𝜌∑︁
𝑖=1

`𝑖

[
𝐴(𝜔𝑖) 𝐵(𝜔𝑖)
𝐶 (𝜔𝑖) 𝐷 (𝜔𝑖)

]
. (9)

In the specific case related to the model in Eqs. (7)-(8), the input matrix 𝐵 ∈ R3𝑥1 and the output matrix 𝐶 ∈ R3𝑥3 are
constant parameter-independent, while the matrix 𝐷 = 0. Additionally, from the scheduling vector in Eq. (4), 𝑛𝜌 = 3.

The interpolation function `𝑖 (𝜌) is computed for each vertex as follows:

`𝑖 (𝜌) =

𝑛𝜌∏
𝑗=1

|𝜌 𝑗 − 𝐶𝑐 (𝜔𝑖) 𝑗 |

𝑛𝜌∏
𝑗=1

(𝜌 𝑗 − 𝜌 𝑗 )
> 0;

2𝑛𝜌∑︁
𝑖=1

`𝑖 (𝜌) = 1, (10)

where 𝐶𝑐 (𝜔𝑖) 𝑗 indicates the 𝑗 𝑡ℎ element of the vector 𝐶𝑐 (𝜔𝑖), as follows:

𝐶𝑐 (𝜔𝑖) 𝑗 =
{
𝜌 𝑗 𝑖 𝑓 𝜔𝑖 = 𝜌 𝑗

𝜌 𝑗 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

B. Polytopic Modeling Process
Despite the input-parameter dependence being corrected by the inclusion of the integrator, the Augmented quasi-LPV

model in Eqs. (7)-(8) is non-affine with respect to the selected set of scheduling variables, 𝜌(𝑡) = [𝛼(𝑡), 𝑉 (𝑡), ℎ(𝑡)].
Thus, it can not be directly reformulated as a polytopic system. In particular, the derivatives of the equilibrium functions,
𝑞eq (𝜌) and 𝛿𝑞,eq (𝜌), included respectively in �̃�22 (𝜌), �̃�2 (𝜌) and �̃�32 (𝜌), �̃�3 (𝜌), correspond to complex nonlinear
functions of all the three scheduling variables. A possible solution consists of mapping 𝜌(𝑡) into a new set of scheduling
functions, �̃�(𝑡), which satisfies the affine restriction imposed by the polytopic formulation. In the following, a full
parameter dependence analysis is performed on the quasi-LPV system, trying to derive a new set �̃�(𝑡) characterized by a
number of scheduling functions lower or equal to the original one, 𝑛�̃� ≤ 𝑛𝜌 = 3. Indeed, the computational complexity
related to the later controller synthesis tends to rapidly increase with the number of scheduling variables as O(2𝑛𝜌 ).
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In the analysis, all the nonlinear terms characterizing the state matrix in Eq. (7) are considered and accounted for as
possible functions of the new set �̃�(𝑡). The process of approximation allows reducing step by step the resulting 𝑛�̃� down
to a feasible number. The full set of analyzed scheduling functions includes:

�̃�1 B
𝑞𝑆𝑑𝐶𝑍D cos𝛼

2𝑚𝑉2 ; �̃�2 B
𝑞𝑆𝐶𝑍𝛿1

cos𝛼
𝑚𝑉

; �̃�3 B
𝜕𝑞eq

𝜕𝛼
;

�̃�4 B
𝜕𝛿𝑞,eq

𝜕𝛼
; �̃�5 B

𝑞𝑆𝑑2𝐶𝑚D

2𝐼yy𝑉
; �̃�6 B

𝑞𝑆𝑑𝐶𝑚𝛿1

𝐼yy
.

(11)

As a consequence, the state matrix 𝐴 can be reformulated as a function of the new set, �̃�(𝑡), as:

𝐴( �̃�) =

0 (1 + �̃�1) �̃�2

0 �̃�5 − �̃�3 (1 + �̃�1) �̃�6 − �̃�3 �̃�2

0 −�̃�4 (1 + �̃�1) −�̃�4 �̃�2

 . (12)

The analysis consists of the evaluation of the variation of each �̃�(𝑡) entry, as a function of the original flight envelope
defined by the scheduling variables: 𝛼 ∈ [0, 20] deg, 𝑉 ∈ [160, 280] m/s, and ℎ ∈ [1, 14] km. For brevity, only a few
flight conditions are shown among the overall ones analyzed in the process. The first parameter to be investigated is �̃�1.
The results in Fig. 2(a) show how the value of the function has a negligible impact on the system dynamics. Coherently,
the curves in Fig. 2(b), related to the complete entry of the state matrix, 𝐴12, confirm the accuracy of the following
approximation: �̃�1 ≈ 0 | 𝐴12 ( �̃�) = (1 + �̃�1) ≈ 1. The number of scheduling functions, therefore, decreases to 𝑛�̃� = 5.

As observed in Eq. (11), the functions �̃�2, �̃�5, and �̃�6 have a common affine dependence on the dynamic pressure
value, 𝑞. In particular, the formulation of 𝑞 itself includes the variations of two of the original scheduling variables: 𝑉
and ℎ. Thus, as a second form of system simplification, the three scheduling functions can be approximated uniquely
as a function of the dynamic pressure. All the remaining parameters affecting �̃�2, �̃�5, and �̃�6 are frozen to a nominal
average value in their range of variations, leading to:

�̃�2 B
𝑞𝑆𝐶𝑍𝛿1

cos𝛼
𝑚𝑉

≈
𝑞𝑆�̃�𝑍𝛿1

𝑚�̃�
; �̃�5 B

𝑞𝑆𝑑2𝐶𝑚D

2𝐼yy𝑉
≈
𝑞𝑆𝑑2�̃�𝑚D

2𝐼yy�̃�
; �̃�6 B

𝑞𝑆𝑑𝐶𝑚𝛿1

𝐼yy
≈
𝑞𝑆𝑑�̃�𝑚𝛿1

𝐼yy
.

In particular, the aerodynamic coefficients are functions of the Mach value, hence of 𝑉 and ℎ, but their variations
are very limited. Similarly, the impact of the angle-of-attack variation on �̃�2 can be considered negligible for the
present analysis. The accuracy of these approximations is verified in Fig. 3, where the variation of each of the three
functions with respect to the original scheduling variables (𝛼, 𝑉 , ℎ), is compared to the variations of their corresponding
approximations. Thus, Figs. 3(a)-(c)-(e) provide the curve comparisons for �̃�2, �̃�5, and �̃�6, respectively, at different flight
conditions. Additionally, Figs. 3(b)-(d)-(f) present the corresponding approximation errors, evaluated as the difference
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Fig. 2 Approximation analysis: (a) �̃�1 variation at ℎ = 10 km; (b) corresponding full matrix entry
variation, 𝐴12, at ℎ = 10km.
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between the original and the approximated functions, and normalized by the mean values of the original curves. The
results related to �̃�2 show a general maximum of 30% of error at the more extreme conditions of the investigated flight
envelope, with a corresponding range of Normalized Root Mean Square Error (NRMSE) of [0.06, 0.28]. Similarly, the
error evaluated for �̃�5 has an average value ≤ 10%, with a peak of 23%, and an NRMSE ∈ [0.03, 0.22]. However, the
most accurate approximation is observed in �̃�6, characterized by a peak ≤ 10% on a more general 2% of error, with an
NRMSE ∈ [0.001, 0.06]. Based on these results we can reduce the dimension of the new scheduling vector, 𝑛�̃�, by
representing the variation of three scheduling functions in terms of the dynamic pressure variation, assumed to be the
only parameter with a relevant impact on the functions.

The same analysis is proposed for the remaining functions, �̃�3 and �̃�4. However, the curves in Figs. 4(a)-(b)
reveal the highly nonlinear behavior characterizing the derivatives of the equilibrium functions, especially for 𝛿𝑞,eq (𝜌).
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Fig. 3 Approximation analysis: (a)-(c)-(e) original (solid) and approximated (dashed) curve compar-
isons for �̃�2, �̃�5, and �̃�6, respectively; (b)-(d)-(f) corresponding normalized errors.
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Fig. 4 Approximation analysis: (a) �̃�3 variation at ℎ = 10 km; (b) �̃�4 variation at ℎ = 10 km.

Additionally, their complex symbolic expressions prevent their expression as a linear function of the dynamic pressure,
as previously done, as well as of the original set of scheduling variables. As a consequence, they are both directly
included in �̃�, as new scheduling functions.

The results can be summarized through the definition of the new scheduling vector �̂� = [ �̂�1, �̂�2, �̂�3], with:

�̂�1 B 𝑞; �̂�2 B
𝜕𝑞eq

𝜕𝛼
; �̂�3 B

𝜕𝛿𝑞,eq

𝜕𝛼
, (13)

and the state matrix in Eq. (12) can be finally reformulated in a parameter affine form as:

�̄�( �̂�) =

0 1 �̄�13 ( �̂�1)
0 �̄�22 ( �̂�1) − �̂�2 �̄�23 ( �̂�1)
0 −�̂�3 −�̂�3 �̄�13 ( �̂�1)

 , (14)

where �̄�13, �̄�22, and �̄�33 are the discussed approximated form of �̃�2, �̃�5, and �̃�6, respectively.
In order to assess the accuracy of the overall procedure, and to verify the impact of the new uncertainties on the

dynamics of the system, a comparison between the pole-zero maps of the original (Full) and the approximated (Apprx.)
models is proposed in Figs. 5. In particular, the two maps represent the poles/zeros of the systems at different flight
conditions: Fig. 5(a) corresponds to an unstable 𝛼 = 4 deg and to increasing values of 𝑉 and ℎ; while Fig. 5(b) provides
the same results assuming a stable 𝛼 = 12 deg. In both cases, it is possible to observe a slight difference between the
original and the approximated poles at some flight conditions, especially for higher values of 𝑉 and ℎ. However, the
effects of the approximations do not seem to generate relevant modifications in the system dynamics. These new forms
of uncertainties will be taken into account at the control design stage, which is discussed in the next session.
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Fig. 5 Pole-zero maps comparison: (a) unstable condition 𝛼 = 4 deg; (b) stable condition 𝛼 = 12 deg.
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C. Polytope Dimension Analysis
The final step of the approximation procedure consists of the analysis of the convex polytope defined by the new set

of scheduling functions, �̂� = [ �̂�1 (𝑉, ℎ), �̂�2 (𝛼,𝑉, ℎ), �̂�3 (𝛼,𝑉, ℎ)]. Indeed, it is necessary to properly map the original
variation ranges 𝛼 ∈ [0, 20] deg, 𝑉 ∈ [160, 280] m/s, and ℎ ∈ [1, 14] km, into the corresponding new ones to redefine
the vertices of the polytope. A systematic procedure is developed to estimate the maximum/minimum values of each
scheduling function across the entire set of flight conditions described by 𝛼, 𝑉 , and ℎ. A part of the results of the
analysis is shown in Figs. 6(a)-(b)-(c), where the relations between the scheduling functions allow identifying the actual
area of the fight envelope covered by the function variations. The estimated ranges of variation that define the new
polytope correspond to �̂�1 ∈ [0.2, 4.4] · 104, �̂�2 ∈ [0.03, 0.62], and �̂�3 ∈ [−1, 3].

As a relevant remark, the minimum values for each scheduling function occur at the same flight point (𝛼 = 0 deg,
𝑉 = 160 m/s, ℎ = 14 km). On the other side, the maximum values of �̂�1 and �̂�2 are obtained at the same conditions
(𝛼 = 20 deg, 𝑉 = 280 m/s, ℎ = 1 km), while �̂�3 presents a peak value at (𝛼 = 20 deg, 𝑉 = 230 m/s, ℎ = 7825
km). Despite this last slight difference, the results show a reasonable consistency between the original and the new
polytope vertices, which can reduce the conservatism that might affect the later control design optimization. However,
the polytope dimensions can be further optimized, since the selected variation ranges do not account for the physical
relations between the scheduling variable trajectories. As a consequence, several areas of the polytope described by (�̂�1,
�̂�2, �̂�3), may correspond to inconsistent flight conditions in (𝛼, 𝑉 , ℎ), increasing the conservatism of the optimization.

In order to adjust the dimension of the polytope, a set of ad-hoc designed guidance trajectories is employed as a
reference for the estimation of the variables’ physical relations. In particular, Fig. 6(d) presents the relation between 𝑉
and ℎ, which are affecting all the new scheduling functions. The curve reveals relevant inconsistency for flight conditions
corresponding to high values of 𝑉 combined with low values of ℎ, as well as for low values of 𝑉 in combination
with high values of ℎ. Looking at the Fig. 6(a), these conditions occur especially for �̂�1 ≥ 2 · 104 & �̂�2 ≥ 0.35 and
for �̂�1 ≤ 0.5 · 104 & �̂�2 ≤ 0.05, respectively. Similarly, from Fig. 6(b), inconsistencies arise when �̂�3 ≥ 2 and for
�̂�3 ≤ −0.8. Thus, the final optimized scheduling functions ranges employed in the polytope definition can be adjusted
as �̂�1 ∈ [0.5, 2] · 104, �̂�2 ∈ [0.05, 0.35], and �̂�3 ∈ [−0.8, 2] .
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Fig. 6 Scheduling parameter relations: (a) �̂�2 − �̂�1; (b) �̂�3 − �̂�1; (c) �̂�3 − �̂�2; (d) altitude-airspeed.
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IV. Polytopic Controller Design
In this section, the controller design methods and objectives are presented. The overall generalized plant architecture

is first introduced, followed by the formulation of the LPV 𝐻∞ controller optimization problem. The controller synthesis
addresses the full flight envelope represented by the variation of the scheduling variables 𝛼 ∈ [0, 20] deg, 𝑉 ∈ [160,
280] m/s, and ℎ ∈ [1, 14] km. The polytope is defined through the corresponding ranges of variation of the new set of
scheduling functions (�̂�1, �̂�2, �̂�3), obtained in Section III as a result of the approximation process.

The frequency performances of the LPV 𝐻∞ polytopic controller are compared with a state feedback modal design,
based on the pole placement approach, which imposes the same dynamics at each of the flight conditions represented by
the vertices of the polytope. The comparison emphasizes the benefits of the LPV approach by directly shaping the
frequency properties of the closed-loop system, guaranteeing stability and performance at all flight conditions belonging
to the polytope. Differently, a gain-scheduled controller obtained from the interpolation of the set of local LTI modal
controllers would ensure no a priori stability properties for any intermediate flight conditions away from the vertices of
the polytope.

A. Generalized Plant Architecture
The general architecture employed for LPV 𝐻∞ controller design is presented in Fig. 7(a). A second-order model is

included in the definition of the generalized plant to account for the actuator dynamics, together with the approximated
Augmented quasi-LPV model described in Eqs. (13)-(14). A set of first-order weighting functions,𝑊𝑒, and𝑊𝑢, imposes
the desired closed-loop performances by targeting the tracking error, 𝑒 = 𝑟 − 𝛼, and the control deflection input, 𝛿𝑞,cmd,
respectively. The reference signal, 𝑟, consists of an angle-of-attack trajectory defined through a Lift-to-Drag ratio
optimization law [30, 31]. The weighting functions are selected in a way to be coherent with the dynamics imposed
during the pole placement design, to facilitate the later comparison between the two different approaches.

In particular, the shape of 𝑊𝑒 is defined in order to ensure a reliable tracking capability of the reference signal,
while the roll-off frequency of𝑊𝑢 is selected in accordance with the characteristic bandwidth of the actuator model.
Additionally, a constant weight,𝑊𝑑 = 0.1, is applied to the input disturbance signal, 𝑑, aiming to improve the disturbance
rejection properties of the controller. As a relevant remark, the weighting functions are independent of the scheduling
functions, meaning that during the polytopic design the same performances are imposed at each vertex condition of the
polytope, leading to possible conservativeness in the synthesis results.

The control scheme in Fig. 7(a) is then generalized as in Fig. 7(b), where the LPV plant, 𝑃( �̂�), includes the
dynamics of the actuator, the projectile quasi-LPV polytopic model, and the weighting functions. Thus, the overall
generalized state vector is defined as 𝑥𝑃 = [𝑥, 𝑥act, 𝑥𝑊𝑒

, 𝑥𝑊𝑢
]𝑇 ∈ R7, with 𝑥 = [𝛼, 𝑞dev, 𝛿𝑞,dev]𝑇 ∈ R3. The generalized

exogenous input vector, 𝜔 = [𝑟, 𝑑]𝑇 ∈ R2, accounts for the reference guidance signal and the input disturbance, while
the control input, 𝑢 ∈ R, corresponds to the commanded virtual pitch deflection rate imposed to the canards, ¤𝛿𝑞,cmd.
Finally, the generalized controlled output vector, 𝑧 = [𝑧1, 𝑧2]𝑇 ∈ R2, includes the control optimization objectives, while
the set of available measurements, 𝑦 = [𝑒, 𝑞dev, 𝛿𝑞,dev]𝑇 ∈ R3, is employed as input to the controller.

In the LPV polytopic control design, the generalized plant is evaluated at each flight condition corresponding
to a vertex of the polytope by substituting the corresponding values of the scheduling functions. The resulting LTI
realizations are employed in the formulation of the set of LMIs that defines the controller synthesis optimization.
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Fig. 7 Design scheme: (a) detailed architecture; (b) generalized plant.
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B. Controller Synthesis Comparison
In the standard 𝐻∞ robust control framework, the design aims to minimize the closed-loop induced 𝐿2-norm, of the

generalized plant previously defined, such that:

∥𝑧∥2 ≤ 𝛾∞∥𝑤∥2; 𝛾∞ > 0 (15)

The index, 𝛾∞, expresses how closely the frequency properties of the obtained closed-loop system match the desired
performances, imposed by the weighting functions,𝑊𝑒,𝑊𝑢, and𝑊𝑑 , in the loop-shaping process.

In the specific case of the LPV polytopic design, the controller synthesis is formulated as the solution of a convex
optimization problem, defined by the imposition of the same closed-loop performances at each realization of the LPV
system. Thus, the optimization consists of a set of Linear Matrix Inequalities (LMIs) computed at each vertex of the
polytope and solved offline with a constant Lyapunov function that guarantees the same stability and performance for
each flight condition belonging to the polytope [29]. The solution corresponds to a set of LTI controllers, 𝐾𝑖 , one for
each of the vertices. The general polytopic controller, 𝐾 ( �̂�), for any combinations of the scheduling functions vector, is
obtained through the convex interpolation of the set of LTI controllers:

𝐾 ( �̂�) =
2𝑛�̂�∑︁
𝑖=1

`𝑖 ( �̂�)𝐾𝑖 (16)

As previously mentioned, the performances of the full LPV polytopic design are compared to an LTI state feedback
design, based on the pole placement technique, where a controller is computed at each vertex condition of the selected
polytope. Coherently to the LPV 𝐻∞ design, the same dynamics are imposed at each vertex also in the case of the
modal controllers.

(a) (b)

(c) (d)

Fig. 8 Design results comparison: Sensitivity and Complementary Sensitivity functions related to
(a)-(c) polytopic approach; (b)-(d) pole placement approach.
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The design results obtained through the LTI pole placement approach and the LPV 𝐻∞ technique, are compared in
the frequency domain in Fig. 8 and Fig. 9. As a first observation, Figs. 8(a)-(b) show how the modal control design
improves the transient dynamics properties of the system, which is slightly more responsive than in the polytopic case.
Indeed, the tracking capability benefits from the faster dynamics imposed by targeting individually the flight conditions
at each vertex of the polytope, while the LMIs optimization has to satisfy simultaneously the requirements at all the
conditions. Therefore, the polytopic design is generally affected by a considerably higher level of conservativeness,
which can deteriorate the performance of the controller. However, the high-frequency noise attenuation provided by the
polytopic controller is more reliable than the capabilities obtained with the modal design, as shown in Figs. 8(c)-(d).

The main advantages provided by the LPV 𝐻∞ polytopic synthesis are expressed in terms of the Plant Sensitivity and
the Controller Sensitivity, presented in Fig. 9. Indeed, the polytopic controller is characterized by relevant low-frequency
disturbance rejection properties, as in Fig. 9(a), observed homogeneously at each of the flight conditions described
by the vertices of the polytope. Contrarily, the pole placement design in Fig. 9(b) succeeds in guaranteeing decent
performances only at certain conditions, leaving the system generally affected by any sources of input disturbances.
This represents an important aspect to be considered since the nonlinear pitch channel dynamics of the projectile have
been subjected to several approximations, at first during the quasi-LPV transformation process, and later in the affine
reformulation that generated the final polytopic model.

Concerning the performances imposed on the control effort by the weighting function,𝑊𝑢, the polytopic controller
respects perfectly the limitations at all the flight conditions, both in terms of the operating bandwidth and in terms of the
low-frequency steady-state amplitude, as shown in Fig. 9(c). The results related to the pole placement design in Fig.
9(d), reveals that at higher frequencies the controller requires an excessive authority to stabilize the system than the one
provided by the actuator dynamics. As a consequence, none of the LTI modal controllers at the polytope vertices would
be implementable in practice, since they would generate immediate saturation of the canards.

(a) (b)

(c) (d)

Fig. 9 Design results comparison: Plant Sensitivity and Controller Sensitivity functions related to
(a)-(c) polytopic approach; (b)-(d) pole placement approach.
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V. Trajectory Tracking Simulation
In this section, the LPV polytopic controller is tested in a trajectory tracking simulation scenario. The LTI

gain-scheduled modal controller discussed in the previous section is not implemented, due to the unfeasible results
observed in the frequency domain. The polytopic controller is applied directly on the full nonlinear pitch channel
dynamics model of Eqs. (1)-(3), in order to test its capability to handle all the possible uncertainties introduced by the
modeling and approximation process.

The simulation consists of a trajectory tracking scenario, where the reference signal corresponds to a realistic
angle-of-attack trajectory, 𝛼ref. The signal was previously obtained by testing a range-extending guidance law in a
gliding phase flight scenario, defined through a Lift-to-Drag ratio optimization. The guidance simulations were applied
on a planar point-mass model of the projectile. Since the pitch channel model in Eqs. (1)-(3) does not account for the
dynamics of the airspeed and the altitude of the projectile, two reference signals are imposed in accordance with the
results obtained with the guidance simulator, as presented in Figs. 10(a)-(b), respectively.

The simulation aims to cover most of the range of variation of each scheduling variable to assess the performances
of the controller and to verify which areas of the polytope are actually interested by trajectory.
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Fig. 10 Guidance trajectories: (a) reference airspeed; (b) reference altitude.

A. Simulator Architecture
The scheme in Fig. 11 presents the actual implementation of the LPV controller on the nonlinear projectile dynamics.

In particular, an integrator is interposed between the output of the controller and the input of the actuator model. Indeed,
the quasi-LPV model obtained through the State Transformation technique in Eqs. (7)-(8), was augmented with an
integrator at the input to cancel the internal feedback loop affecting the stability of the system. Thus, the output of the
controller is integrated before being processed by the nonlinear model to ensure consistency between the two models.

Similarly, the output of the nonlinear system, (𝛼, 𝑞, 𝛿𝑞), is deviated in post-processing in order to comply with the
formulation of the transformed state vector in Eq. (6), where 𝑞dev and 𝛿𝑞,dev represent the non-scheduling off-equilibrium
states of the quasi-LPV model. Therefore, the Output Deviation block in Fig. 11 evaluates the equilibrium functions, 𝑞eq,
and 𝛿𝑞,eq, at each flight condition to properly correct the output of the nonlinear system. These implementation solutions
can result in additional sources of model uncertainties that may affect the robustness properties of the controller.

δ̇q,cmd δq,cmd

qdev
α

δq,devOutput
Deviation

Nonlinear

Dynamics

q
α

δq
+

-

K(ρ̂) 1
s

α

αref

qdev
δq,dev

Act.

ρ̂

e

Fig. 11 Trajectory tracking simulation scheme.
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B. Simulation Results
The controller tracking performances on the nonlinear dynamic model are shown in Fig. 12(a). A sudden oscillation

is observed at the initialization of the controller, which depends on the mismatch between the nonlinear and the
quasi-LPV model formulations. Indeed, the quasi-LPV model was derived on base of the aerodynamics approximations
(nonlinear Simplified model), discussed in Section II. Thus, a small difference affects the initial conditions characterizing
the controller and the ones characterizing the nonlinear system.

However, the controller succeeds in rapidly compensating the oscillation and converging to the reference signal,
ensuring reliable tracking performances along the entire angle-of-attack trajectory, which covers most of the flight
envelope described by the polytopic design. A slight steady state tracking error < 2% is observed after the initial transient
when the guidance signal stabilizes around a fixed value. The mismatch derives from the uncertainties introduced
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Fig. 12 Simulation results: (a) angle-of-attack trajectories; (b) pitch deflection input; (c) scheduling function,
�̂�1; (d) scheduling function, �̂�2; (e) scheduling function, �̂�3.
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during the modeling approximation process, as well as from the responsiveness of the system that is characterized by a
limited control authority. Nevertheless, the disturbance rejection properties imposed at the design stage provide the
controller with the capability to stabilize the projectile dynamics and to minimize the tracking error to a reasonable
level, across the entire flight envelope.

Another relevant observation is related to the required control effort. Indeed, Fig. 12(b) shows how the input
signal corresponding to the total pitch deflection angle, 𝛼can, is maintained at a relatively low amplitude during the
trajectory, far below the saturation limits. The total pitch deflection is the overall deflection angle perceived by the
canards, expressed as the linear superposition between the local pitch deflection, 𝛿𝑞 , commanded by the controller, and
the angle-of-attack characterizing the trajectory of the projectile, as 𝛼can = 𝛼 + 𝛿𝑞 .

As a final remark, Figs. 12(c)-(d)-(e) present the simulation trajectory related to the three scheduling functions:
�̂�1, �̂�2, and �̂�3, respectively. It is interesting to notice the quasi-linear relation characterizing the functions �̂�1 and
�̂�2, already observed during the polytope analysis in Section III. On the other side, the scheduling function �̂�3 shows
an evident dependence on the variation of the angle-of-attack, since the trajectories have very similar shapes. This
information can be used for a further process of optimization of the polytope dimension. However, the boundary values
of each scheduling function are perfectly consistent with the variation ranges selected during the polytope analysis.

These results confirm the quality of the modeling and approximation process performed to convert the nonlinear
pitch channel dynamics of the projectile into a quasi-LPV polytopic model, as well as the advantages of the polytopic
controller design. Indeed, the resolution of the set of LMIs only at the vertices of the polytope reduces drastically
the overall computational complexity, allowing the synthesis of a controller able to stabilize the system at any flight
conditions belonging to the polytope. As a drawback, the polytopic approach tends to generate conservative results that
can deteriorate the performance of the controller, as observed for the tracking capability. Thus, a proper analysis of the
scheduling variable ranges is required to optimize the polytope shape and dimension.

VI. Conclusions and Future Work
In this article, the nonlinear pitch channel dynamics of a Long Range Guided Projectile are presented and converted

to a reliable quasi-LPV model using the State Transformation method. The quasi-LPV model is later reformulated in
order to comply with the polytopic requirements of an affine model-parameter relation, through a process that maps the
original set of scheduling variables into a new set of scheduling functions. The resulting quasi-LPV polytopic model is
employed for the design of a pitch controller, with the intention to track a given angle-of-attack reference signal. Two
different approaches are investigated: a modal state feedback design, based on the pole placement approach, and a 𝐻∞
LPV polytopic design. The latter approach is expected to provide the same guaranteed performance for all the flight
conditions belonging to the analyzed flight envelope.

The controller synthesis is performed on the flight envelope defined by the variation of the scheduling functions
of the LPV polytopic model. The investigated envelope is modeled as a convex subspace (polytope), whose vertices
correspond to the combination of the boundary values of each scheduling function. Both the LPV polytopic design and
the LTI modal approach are employed for controller development. The design results in the frequency domain show
how, despite the less responsive tracking performance, the polytopic controller ensures relevant disturbance rejections
and reasonable control requirements properties at all the investigated flight conditions. Differently, the modal controller
guarantees higher tracking capability, but poor disturbance rejection, and requires an unfeasible control effort with
respect to the limitations imposed by the actuator dynamics. Finally, a gliding phase simulation scenario, involving the
full variation range of the scheduling functions, confirms the capability of the LPV polytopic controller to successfully
stabilize the projectile dynamics and to track a reference angle-of-attack guidance trajectory.

In terms of future work, the performances of the polytopic controller will be improved by optimizing the size
of the investigated polytope. Indeed, the scheduling function trajectories observed during simulation tests appear to
belong to a limited subset of the flight envelope described by the vertices of the polytope, suggesting that the controller
synthesis optimization is probably still accounting for inconsistent flight conditions. A more trajectory-based polytope
definition is expected to enhance the tracking capability and optimize the required control effort, by reducing the level of
conservativeness affecting the controller synthesis. The range-extending guidance law will be further developed through
the inclusion of the projectile roll-yaw channels dynamics to additionally provide a reference roll-angle trajectory for the
implementation of a full Bank-to-Turn flight strategy.
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