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Preface

Our aim in writing this book is to present a clear introduction to algebraic number theory at
the upper undergraduate/graduate level. The first chapters are devoted to elementary Galois
theory, which plays a fundamental role in algebraic number theory. Usually the Galois theory
needed in algebraic number theory is confined to a reference or a brief appendix. We feel it is
useful to have a good traitment of this material at hand. Naturally, there are important parts of
Galois theory, for example radical extensions and inverse Galois theory, which we do not handle,
as they do not concern the main subject of this text.

After this preliminary work we turn to the study of algebraic number fields, i.e., finite
field extensions of the rationals, presenting basic results such as the Kronecker-Weber theo-
rem, Dedekind’s different theorem, Dirichlet’s unit theorem, Hermite’s theorem and Dedekind’s
factorization theorem. We also introduce and study the class group of a number ring and estab-
lish the class number formula. In general, our proofs are detailed and we do not leave important
parts of proofs to the reader. This avoids tedious reading and frustration when faced with gaps
which the reader is often unable to fill in.

As for required reading, we assume a good background in elementary algebra: semigroups,
groups, rings and modules over rings; in particular, the basic isomorphism theorems for groups,
rings and modules. We also assume a basic knowledge of Lebesgue integration and complex
analysis. Finally, we suppose that the reader is acquainted with fundamental number theory, for
example the rings of integers Z,, and the finite fields F,,. All this material is generally covered
in the first years of a mathematics program. Of course, where necessary, we give reminders;
however, as our aim is to reach a relatively high level in a moderately short text, we do not
spend too much time on elementary notions.

Unless otherwise mentioned, we will suppose that all rings are commutative with identity,
although we will often recall these assumptions.
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Part 1

Elementary Galois Theory



Chapter 1

Field Extensions

If F and F are rings, in particular fields, then we say that E is an extension of F', or F' is included
in E, if there is a an injective ring homomorphism ¢, or monomorphism, from F' into E. The
following result justifies these terms.

Theorem 1.1 Let ¢ be a monomorphism of the ring A into the ring B. Then there is an
extension A of A and of ¢ to an isomorphism of A onto B.

PROOF If ¢ : A — B is an isomorphism, then there is nothing to prove, so we can suppose that
this is not the case. We set A = AU B\ ¢(A) and then define ¢ : B — A by

o) = {¢1<y> if y € 6(A),

y ify ¢ ¢(A).

¢ is clearly a bijection. We define an addition + and a multiplication ~ on A by
w1tz =Y @) F 9T @2))  and  @rme =Y (@) YT (a2)).

It is easy to check that

Yy +y2) =) +Y(ye) and  P(y1 - y2) = Y(y1) Y (y2).

In addition (1) = 1. Thus A with the operations just defined is a ring which is isomorphic to B.
What remains to be shown is that the operations + and - restricted to A are the ring operators
+ and - of A. If ¢(x1) = y1 and ¢(x2) = ya, then

r1+r2 = (Y1 +y2) = Y(d(z1) + ¢(22)) = Y(P(21) + P(22)) = 71 + 2.

A similar calcuation gives z17x2 = 7 - £o. Hence A is an extension of A and ¢ = ¢! is an
isomorphism from A onto B. O

When the ring B is an extension of the ring A as defined above we will often write B/A.

We recall that, if F' is a field, then the ring F[X] of polynomials with coefficients in F' is a
PID (principal ideal domain). For f € F[X]| we write (f) for the ideal generated by f, i.e.,

(f) =A{gf:9 € FIX]},



and Ry for the quotient ring F[X]/(f). The zero element of the quotient ring is (f). Using
the euclidean algorithm we see that, if f # 0, then every coset has a unique element r with
degr < deg f. A nonconstant polynomial f is irreducible if there is no pair of nonconstant
polynomials g and h such that f = gh; if such a pair exists, then we say that f is reducible.

Proposition 1.1 The following statements are equivalent:
e a. Ry is a field;
e b. R; is an integral domain;

e c. f is irreducible.

PROOF a. = b. It is sufficient to observe that a field has no zero divisors.

b. = c. Suppose that f is reducible. If f = gh, then (f) = (g + (f))(h + (f)). As neither
(g+ (f)) = (f) nor (h+ (f)) = (f) we have a pair of zero divisors, a contradiction. Therefore f
is irreducible.

c. = a. lf g+ (f) # (f), then g ¢ (f) and, from what we have said above, we may suppose
that degg < deg f. If ged(g, f) # 1, then 1 < degged(yg, f) < deg f, a contradiction to the irre-
ducibility of f. Hence ged(g, f) = 1 and so there are polynomials s and ¢ such that sg +tf = 1.
It follows that (s + (f))(g + (f)) =1+ (f), i.e., g+ (f) is invertible. O

If F is an extension of F', then we may consider F as a vector space over F. The dimension
of E over F', which we write [E : F], is called the degree of the extension. If [E : F'] < oo, then
we say that the extension is finite, otherwise we say that it is infinite.

Exercise 1.1 If f: F — FE is a ring homomorphism, with F and E fields, then show that f is
a monomorphism.

The next result is fundamental.

Theorem 1.2 If f € F[X], with deg f > 1, then there is an extension E of F which contains a
root of f.

PROOF Let g be an irreducible factor of f. From the previous proposition we know that £ = R,
is a field. As the mapping ¢ : ' — Ry, a — a + (g) is a monomorphism, F is an extension of
F.Ifg=>_oarX" and a« = X + (g), then in E

S

g(e) = (ar + (9))a* = g+ (9) = 0.

k=0
As g(a) =01in F and g divides f, f(a) =0 1in E. ]

Exercise 1.2 Let f,g € F[X]. Show that ged(f,g) = 1 if and only if f and g have no common
root in an extension of F'. Deduce that if f # g are nonconstant polynomials in F[X], which are
monic and irreducible, then f and g have no common root in an extension of F'.

If E is an extension of F' and a € E, then we write F(a) for the smallest subfield of E
containing F' and «, i.e., the intersection of all subfields of E' containing F' and «. In fact, F'(«)

is the collection of all fractions of the form %, where f,g € F[X] and g(a) # 0. We also say

that F'(«) is the subfield of FE generated by F and «.



1.1 Prime fields

In this section we will show that every field can be considered as an extension of the rational
numbers Q or of a field F), for a certain prime number p. We begin with a preliminary result.

Proposition 1.2 Let R be a subring of a field F' and K the intersection of all the subfields of
F which contain R. Then K = Frac(R), the field of fractions of R.

PROOF As R is is a subring of F', R is an integral domain and so Frac(R) is a field. We can
define a monomorphism ¢ from Frac(R) into F in the following way:

a _
pla)=a Va€eR and 10 (5) = ¢(a)p(b) .
We set L = Im¢. Then L is a subfield of F' containing R, hence K C L. In addition, if G is
a subfield of F' which contains R, then G contains any element of the form ¢(a)¢(b) !, with
b # 0, because G is a field and ¢(R) = R. Therefore L C G. It follows that L C K. Thus
K =L = Frac(R). |

The intersection of all the subfields of a given field F is itself a subfield of F', called the prime
field of F. Clearly F is an extension of its prime subfield.

Theorem 1.3 The prime subfield of a field F' is isomorphic to Q or to Fj, for some prime
number p.

PROOF Let ¢ be the mapping of Z into F' defined by ¢(n) = n.1, where 1 is the identity for
the multiplication in F'. It is easy to see that ¢ is a ring homomorphism. We write I = Ker ¢.
Then [ is an ideal of Z and the factor ring Z/I is isomorphic to a subring of F, therefore Z/I
is an integral domain, which implies that I is a prime ideal in Z. As ¢ is not the zero mapping,
I =(0) or I = (p), where p is a prime number.

In the first case ¢ is injective and the subring ¢(Z) of F' is included in P, the prime field of
F'. From Proposition 1.2 above, P is isomorphic to Frac(¢(Z)), which is clearly isomorphic to

Q.

If I = (p), then ¢(Z) is isomorphic to Z/(p), which is F,,. However, ¢(Z) is included in
every subfield of F' and so ¢(Z) C P; but ¢(Z) is a subfield of F, hence P C ¢(Z). Thus P is
isomorphic to F,. 0O

This theorem has an important corollary, namely

Corollary 1.1 If F is a finite field, then the cardinal of F is p*, where p is a prime number
and k a positive integer.

PROOF The prime subfield P of F' must be finite, hence of the form F,, for some prime number
p. If [F: F,] = k, then |F| = pF. O

Some final remarks before closing this section. It should be clear that, if one field is an
extension of another, then they both have the same prime field. Also, if Q is the prime field of a
given field F, then the characteristic of F' is 0. On the other hand, if the prime field is F,, then
the characteristic of F is p.

10



1.2 Algebraic extensions

If F is an extension of F and « € F is a root of a nonconstant polynomial f € F[X], then we
say that « is algebraic over F. If « is not algebraic, then we say it is transcendental. If every
element of E is algebraic, then we say that E is an algebraic extension. An extension which is
not algebraic is said to be a transcendental extension.

Proposition 1.3 If [E: F] < oo, then E is an algebraic extension of F'.

PROOF Let a € F and [E : F] = n. The vectors 1,q,...,a™ are dependant and so we can find
aop, a1, ... ,an € F'not all equal to 0 such that Y., a;o' = 0. Hence « is a root of the polynomial
F(X) =301 gai X" |

Corollary 1.2 If an extension is not algebraic, then it is infinite-dimensional.

PROOF Let E'/F be an extension which is not algebraic. By hypothesis, there exists a € E which
is not algebraic over F. If [E : F] < oo, then, from Proposition 1.3, E is an algebraic exten-
sion of F', so a is algebraic over F, a contradicition. It follows that E/F is infinite-dimensional. O

Remark We will see below that the converse of Proposition 1.3 is false (example after Corollary
1.5).

If F is an extension of F' and « € FE is algebraic over F, then the collection of polynomials
f € F[X] such that f(a) =0 form an ideal I in F[X]. The unique monic generator of I, which
we note m(c«, F), or simply m if the field F' is understood, is called the minimal polynomial of a
over F. A minimal polynomial is clearly irreducible. It should also be noticed that if K/F, E/K
and « € E is algebraic over F', then « is also algebraic over K, since m(«, F') € K[X].

Proposition 1.4 If E is an extension of F, a € E and degm(a, F') = n, then [F(«) : F] =n.

PROOF We will first show that F,_;[a], the set of polynomials in « of degree strictly less than n
is a field and thus is equal to F(«). If f € F[X] then we may find g, € F[X], with degr < n
such that

f(X) =g(X)m(X) +r(X) = f(a) = g()m(a) + r(a) = r(a).

Now if f1, fo € F[X] and we set f = f1fo, then we may find r € F,,_1[X] such that f(a) = r(a);
therefore F,,_1[a] is closed under multiplication. Clearly F,_1[a] is closed under addition. It
follows that F,,_1[a] is a subring of F(«). To show that it is a field we only need to find an
inverse for every nonzero element. If f € F,,_1(X) and f # 0, then deg f < degm. As m is
irreducible we may find g, h € F[X] such that

F(X)g(X) +m(X)h(X) =1 = f(a)g(a) = 1.

However, we have seen that there is s € F,_1[X] such that s(a) = g(a), hence f(a) has an

inverse. We have shown that F,,_1[a] = F(a). As the vectors 1,q,...,a" ! are independant
and a™ is a linear combination of smaller powers of «, these vectors form a basis of F,,_1[a]; it
follows that [F(«) : F| =n. O

Corollary 1.3 If « is algebraic over F, then F(«) is an algebraic extension of F.

11



Remark In the course of the proof of Proposition 1.4 we have shown that, if « is algebraic, then
F(a) = Fla).

As examples of algebraic extensions we will consider quadratic number fields. We say that a
finite extension F of Q in C is a number field. It is quadratic if the degree of the extension is 2.
Suppose that d € Z is not a square and let a be a square root of d. If d > 0, then we usually
suppose that « is the positive root and, if d < 0, then « is the product of i and the positive root
of —d. In both cases we write v/d for o. If Vd = % € Q, then b?>d = a2, which is impossible
because d is not a square. It follows that deg m(\/a, Q) >1. As Vd is a root of the polynomial
P(X) = —d+ X?, we have P(X) = m(V/d, Q). Tt follows that [Q(v/d) : Q] = 2 and that (1,/d)
is a basis of Q(v/d) over Q.

If d is a square, then v/d € Z and so Q(\/&) = Q, so we exclude this case. On the other
hand, if d = u?v, where v is square-free, then Q(v/d) = Q(\/v), so we can limit our attention to
square-free integers d. The following result is a little unexpected.

Theorem 1.4 If m and n are square-free integers and m # n then Q(y/m) is not isomorphic
to Q(v/n).

PROOF Suppose that there is un isomorphism ¢ from Q(y/m) onto Q(v/n). As ¢(1) =1, ¢ must
fix all elements of Q. Let ¢(/m) = a + by/n. If b = 0, we have a ¢(a) = a = ¢(y/m), which
contadicts the fact that ¢ is injective, so b # 0. Also

m = p(m) = ¢((vm)?) = (pv/m)? = (a + by/n)? = a* + 2aby/n + b?n.

If a # 0, then /n = m=a’—b’n Q, a contradiction. Hence ¢ = 0 and m = b?>n. If b = %, with

2ab
(e, f) = 1, then we have e?m = f2n, which is only possible if €2 = f2, because m and n are
square-free. It follows that b2 = 1 and so m = n. O

A little later we will see that all quadratic number fields are of the form we have seen here.

Suppose that F', K and E are fields with K an extension of F' and E an extension of K. We
now consider the relation between the degrees of the extensions. We recall that any vector space
over a field has a basis which may be infinite.

Proposition 1.5 If (8;)jes is a basis of K over F and (o;)icr a basis of E over K, then
(aiBj)ier,jer is a basis of E over F.

PROOF If v € E, then « is a linear combination of «;, with coefficients a; € K. As each a;
is a linear combination of §;, with coeflicients b; € I, 7 is a linear combination of a;f8;, with
coefficients in F. Thus the set («;f;)icr jcs generates E. To show that it is a basis of E over
F, we must show that it is independant. To do so, let us consider a (finite) linear combination
> Aijou By, with A;; € F, whose value is 0. Adding some terms A;;ja;3;, with A;; = 0 if necessary,
we may write

0=> Xjaifj =3 | > b | i
i, i J
As the «; are independant, Y j AijB; = 0 for every i. However, the §; are independant and so

Aij = 0, for each pair (7, 7). Hence the elements «;3; form an independant collection. We have
shown that («;f3;)icr,jes is a basis of E over F. O

This leads to the following statement, often referred to as the multiplicativity of the degree:

12



Corollary 1.4 If K/F and E/K, then
[E:F]=[E:K]K:F|.

Suppose now that E is an extension of F' and that aq,...,a, € E. We denote F(ay,...,ay)
the subfield of E generated by F' and the a4, i.e., the smallest subfield of E containing F' and
the a;. (We have already seen this notion when there is only one «;.) In fact, this field is the
collection of all fractions of the form %, where f,g € F[X1,...,X,] and the denominator
is nonzero. We may generalize Corollary 1.3.

Corollary 1.5 Ifaq,...,«a, are algebraic over F, then F(aq,...,ay) is a finite extension of F,
hence an algebraic extension of F. Moreover, F(ay,...,a,) = Flag, ..., ay].

PROOF Let us set
E() = F,El = F(al),Eg = F(Oél,ag),...,En = F(al,ag,...,an).

Then Ej = Fy_1(ag) and oy is algebraic over Fy_1. Now [Ej : Ex_1] = degm(ayg, Ex—1) and

n—1

[Epn : F] =[] [Brg1 : Ex] < o0,
k=0

the result we were looking for.

To prove the second statement we use a simple induction argument. We have aleady seen
that it is true for n = 1. (See the remark after Corollary 1.3). If we suppose that the statement
is true up to n — 1, then we have

F(ay,...,an) = F(ai,...,an_1)(ay)
= Flag,...,an1](an)
= Flag,...,an_1]on]
= F[al,...704n_1;an]7
which concludes the induction step and hence the proof. o

Example Consider the extension F = Q(%/2 : n € N*) of Q. Any element o € E is algebraic
over Q, because a € Q(¥/2:n=1,...,N), for some N € N*, and {/2 is algebraic over Q. Hence
E is an algebraic extension of Q. For any n € N*, by the Eisenstein criterion, f,(X) = -2+ X"
is irreducible and hence the minimal polynomial of {/2. However, E,, C E, where E,, = Q({/2),
and, from Proposition 1.4, [E, : Q] = n. This implies that [E : Q] > n, for all n € N*. Thus we
have found an algebraic extension of Q, which is not finite.

We will see later that we may partially rectify this situation by imposing conditions on the
algebraic extension.

If E is an extension of F then we will write A(E/F) (or simply A when the fields E and F
are understood) for the collection of elements of E which are algebraic over F.

Proposition 1.6 A(E/F) is a subfield of E.

13



PROOF It is sufficient to show that if o, 3 € A, then o, —a, a + 8, af and /7!, with § # 0,
belong to A. However, F(«, ) is an algebraic extension of F, therefore F(«,3) C A. As
a,—a,a+ B,a8, 871 € F(a, 3), these elements belong to A. 0

Remark Proposition 1.6 ensures that A(C/Q) is an algebraic extension of Q. It contains all
the algebraic extensions of Q and is an infinite extension, after the example following Corollary
1.5.

Exercise 1.3 We have seen that if a and B are algebraic, then o+ B and af are algebraic.
Prove the converse, namely, if a + 8 and af are algebraic, then o and B are algebraic.

We may define a relation R on the collection of fields by F'RE if E is an algebraic extension
of F. This relation is in fact a partial order. Clearly R is reflexive and antisymmetric, so we
only need to show that it is transitive. To do so we need the following preliminary result.

Proposition 1.7 If K is an algebraic extension of F, E/K and a € E is algebraic over K,
then « is algebraic over F'.

PROOF Let m(a, K) = > ) _,a; X", with a; € K, for i = 0,...,n, and a, = 1. As the q;, for
1 =0,...,n, are algebraic over F;, A = F(ag,a1,...,a,-1) is a finite extension of F', by Corollary
1.5. Now, « is algebraic over A, therefore A(«) is a finite extension of A, by Proposition 1.4.
Corollary 1.4 ensures that A(«a) is a finite extension of F'. Proposition 1.3 now implies that « is
algebraic over F. |

Corollary 1.6 The relation R is transitive, hence a partial order.

Exercise 1.4 Suppose that E is an algebraic extension of F' and that R is a ring containing F
and included in F, i.e., F C R C E. Show that R is a field.

1.3 Algebraic numbers

An element o € C which is algebraic over Q is said to be an algebraic number. This is equivalent
to saying that there is a polynomial f € Z[X] such that f(«) = 0. If & € C is not algebraic then
we call a a transcendental number. We aim to show that A(C/Q) is countable.

Proposition 1.8 Let (E,)n,en be a countable collection of countable subsets of a set E. Then
the union S = UpenEy, is countable.

PROOF We set Fy = Eg and F,, = E,, \ (EpUFE; U---UE,_1), for n > 0. Then S = UpenFy
and, if m # n, then F,, N F,, = (). Let f,, : E,, — N be an injection and let us set, for x € F},,
f(x) = (n, fu(z)). It is not difficult to see that f is an injection from S into N2. As N? is
countable, S is countable. O

Corollary 1.7 The collection of polynomials Z|X] is countable.

PROOF We note P, the subset of Z[X] composed of polynomials whose degree is d > 0. We
obtain a bijection of P; into Z%t! by associating to each polynomial f its sequence of coeffi-
cients (ag, a1, ...,aq). As Z%*! is countable, P, is also countable. From the previous proposition
Ugen Py is countable. If we now add the polynomial 0, we obtain the result. O

We may now prove the result mentioned in the first paragraph.
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Theorem 1.5 A(C/Q) is countable.

PROOF From the previous corollary we know that Z[X] is countable. The subset of Z[X]
composed of nonconstant polynomials is also countable: we may number these polynomials
fos f1,.... For each k € N, let Ry, be the (finite) set of roots of f;. Then, from Proposition 1.8,
A(C\ Q) = URy, is countable. O

Corollary 1.8 The collection of transcendental numbers is not countable.

As A(C/Q) is a field, it is easy to construct algebraic numbers. For example, v/2 and /3
are algebraic numbers, hence their sum, v/2 + v/3, is also an algebraic number. Although the
transcendental numbers form a much larger set, it is not easy to find explicit examples. We know
that e and 7 are transcental, however the proofs are not easy, in particular for 7. It is an open
question whether the following numbers are transcendental or not: @+ e, m — e, we, £, 7", €€

o
and 7°.

Exercise 1.5 Show that, if o and B are both transcendental, then either a+ 8 or af is tran-
scendental.
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Chapter 2

Splitting fields

Let E be an extension of the field F' and f € F[X]. We say that f splits in F, if we can write
JX)=AMX —a1) - (X —an),

with A € F and a1,...,a, € E. Such a field always exists: it is sufficient to apply Theorem 1.2
an appropriate number of times. We say that an extension E of F is a splitting field of f € F[X]
if f splits in £ and does not do so in any proper subfield of E.

Proposition 2.1 Let E be an extension of F such that f € F[X] splits in E:
FX)=XX —ay) (X —ap).
Then E is a splitting field of [ if and only if E = F(ay,...,ap).

PROOF Suppose first that E is a splitting field of f. Then E contains F' and the elements
Qq, ... 0y, therefore F(aq,...,a,) C E. As f does not split in any proper subfield of E, we must
have equality.

Now suppose that F = F(ai,...,a,) and let G be a subfield of E such that f splits in G.
Then G contains F' and the elements aq, .. ., ay, hence F(aq,...,a,) € G. It follows that £ C G
and so F = G. Thus F is a splitting field of f. m|

Corollary 2.1 If f € F|[X] splits in an extension E of F, then E contains a unique splitting
field of f, namely F(ay,...,an,).

We can obtain an explicit presentation of a splitting field.
Proposition 2.2 The splitting field S of f € F[X] in an extension E of F can be written
S=F(ay,...,an) = Flay,...,an],
i.e., S is composed of the polynomials in the roots «;, with coefficients in F'.

PROOF The splitting field S of f clearly has the form F(aq, ..., ay). As for the second equality, we
only need to notice that the roots aq, ..., a, are algebraic over F' and then apply Corollary 1.5.0

If F is a splitting field of f € F[X], then we can say something about order of the extension.
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Theorem 2.1 If f € F[X] and degf = n, then there is a splitting field E of f such that
[E: F] <nl

PROOF If deg f = 0, then f is constant and we can take £ = F. Now let us suppose that
deg f = n > 1. From Proposition 1.2 we know that there is an extension E’ of F' which contains
a root a of f. The minimal polynomial m = m(«, F') divides f, so degm < deg f. Now, from
Proposition 1.4, [F(«) : F] = degm, so there exists an extension E; of F' which contains a root
ay of f and is such that with [E; : F] < n. In E; we can write f(Y) = (Y — ;1) g(Y), where
r1 > 1 and g(ay # 0. If ¢ is not constant, then we can find an extension Es of E; which contains
a root ag of g (and hence of f) and is such that [Es : 1] < n—1. E, is an extension of F' which

contains o and ag and [Es : F| = [Es : Eq][Eq : F] < (n — 1)n. Continuing in the same way we
obtain an extension E of F' in which f splits and such that [E : F| < nl. To finish it is sufficient
to notice that E contains a splitting field of f. O

We have seen that every polynomial has a splitting field. We now aim to show that all such
fields are isomorphic. We will begin with two preliminary results.

Lemma 2.1 Let f € F[X] be irreducible and E an extension of F which contains a root a of f.
Then there is an isomorphism
®: FIX]/(f) — F(a)

which fizes F, i.e., for g constant, ®(g + (f)) = g, and such that (X + (f)) = a.

PROOF The mapping ¢ : F[X] — F defined by ¢(g) = g(«) is a ring homomorphism. As f is
irreducible and f € Ker ¢, we have Ker ¢ = (f). It follows that the mapping

@ FIX]/(f) — Im¢, g+ (f) — ¢(g)
is a ring isomorphism which fixes F'. In addition,
Im® =Im¢ = {g(a) : g € F[X]} C F(a). (2.1)
As f is irreducible, (f) is maximal and so F[X]/(f) is a field. Thus Im ® a field. However, F’ and
a belong to Im ®, which implies that F'(«) C Im ®. From the equation (2.1) we obtain equality.

d

Lemma 2.2 Let R and S be rings, I is an ideal of R and J an ideal of S. If ¢ : R — S is an
isomorphism such that ¢(I) = J, then the mapping

¢: R/ — S)J,x+ 1+ ¢(x)+J
1s well-defined and is an isomorphism.
PROOF Left to the reader. O
If F and I’ are fields and o : F — F’ is an isomorphism, then by setting
a*(z a; X" = Z o(a;) X"

we obtain an isomorphism from the ring F[X] onto the ring F'[X]. We will say that ¢* corre-
sponds to 0. We will often write f* for o*(f).
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Proposition 2.3 Let o0 : F — F’/ be an isomorphism and f € F[X] irreducible. If E (resp.
E') is an extension of F' (resp. F') and o (resp. &) a root of f (resp. f*) in E (resp. E'), then
there is an isomorphism 6 : F(a) — F'(d') extending o, with 6(«) = «'. This isomorphism is
unique.

PROOF First we notice that o*(f) = (f*); from the preceding lemma the mapping

o FIX/(f) — F'IX]/(f), g+ (f) —> " (9) + (")

is an isomorphism. We now set & as the composition

o1t o* o D
F(a) — FX]/(f) — F'[X]/(f7) — F'(a).
¢ is an isomorphism extending o and 6(a) = o’. The uniqueness is clear. O

We are now in a position to prove the result referred to above, namely that splitting fields
are isomorphic. We will in fact prove a more general result and derive that on splitting fields as
a corollary.

Theorem 2.2 Let F and F' be fields, o : F — F' an isomorphism, f € F[X] and f* € F'[X]
the polynomial corresponding to f. If E is a splitting field of f and E’ a splitting field of f*,
then there is an isomorphism 6 : E — E’ extending o.

PROOF We will prove this result by recurrence on n = [E : F]. First, if n = 1, then F = F and
f € F[X] and f is a product of linear factors (polynomials of degree 1) and it follows that f* is
also a product of such factors, so £’ = I’ and we can define & = o.

Now let us suppose that n > 1 and that the result is true up to n — 1. Let g be an irreducible
factor of f with degg > 2 and a a root of g in F (o € E because « is a root of f). Let g* be
the polynomial in F'[X] corresponding to g and o’ a root of g* (o’ € E’ because o’ is a root of
f*). From Proposition 2.3 there is a unique isomorphism 6 : F'(a) — F’(a/) which extends o
and is such that 6(«a) = /. Now, F is a splitting field of f over F(«) and E’ a splitting field of
f* over F'(a). As

[E:F)=[E: F(a)]|[F(a): F]

and [F(«) : F| > 2, we have [E : F(a)] < n. By the induction hypothesis there is an isomorphism
0 : E — FE’, which extends &, and hence o. O

Corollary 2.2 If f € F[X]| and E and E’ are splitting fields of f over F, then E and E’ are
isomorphic.

PROOF It is sufficient to take F’ = ' and o = idp in the previous theorem. O

Example Let f(X) = —2+X? € Q[X]. Therootsof fin Carea; = V2 € R, ag = al(—%—l—g)
and al(—% - @) As none of the roots belong to Q, f is irreducible. As f is also monic f is the
minimal polynomial of a; and so [Q(«1) : Q] = 3. The field Q(«1) cannot be the splitting field
in C of f, because Q(a1) C R and ay ¢ R. The field K = Q(a1,v/3i) C Q(ay,az,a3); as aq,
ag, ag belong to Q lie in K, we have K = Q(a1,as,a3), i.e., K is the splitting field of f in C.

We only need to find the degree of the extension. From Theorem 2.1 we know that it cannot

be greater than 3! = 6. It also must be a multiple of 3, because

[K: Q] = [K: Q(a)][Q(cn) : Q] = [K : Q()]3.
If [K : Q] =3, then [K : Q(a1)] =1 and K = Q(aq), which is false; hence [K : Q] = 6.
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Exercise 2.1 Find the splitting field K of f(X) = 4 —2X + X? € Q[X] in C and determine
the degree of the extension of K over Q.

Exercise 2.2 Let C' be a family of polynomials in F[X] and K an extension of F such that
every [ in C splits over K ; if, for every proper subfield K' of K, at least one member of C' does
not split over K', then we say that K is a splitting field of C. Show that, C is finite and K is a
splitting field of C, then there is a polynomial f € F[X] for which K is a splitting field.

2.1 Existence of finite fields

We recall that we previously saw that the cardinal of a finite field must be p*, where p is a
prime number and k a positive integer. In this section we show that, for any such p*, there is a
finite field F whose cardinal is precisely p*, and that, in addition, there is essentially only one
such finite field. We will use our knowledge of splitting fields in the proofs. We begin with a
preliminary result, but for this we need a lemma.

Lemma 2.3 Let f,g € F[X] be nonconstant. Then f and g are relatively prime if and only if
they do not have a root in any extension field of F.

PROOF Assume that f and g are relatively prime in F[X]. Then there exist u,v € F[X] such
that
FX)u(X) + g(X)v(X) = 1.

If o is a common root of f and g in some field extension of F, then substituting « for X we
obtain 0 on the left-hand side and 1 on the right-hand side of the equation, a contradiction.
Hence f and g have no common root in an extension field of F'.

Now suppose that f and g are not relatively prime. Then f and g have a common factor h,
which is not a constant. There is a field extension of F in which A has a root a. Clearly, « is a
common root of f and g. m|

Proposition 2.4 If f € F[X], then f has a multiple oot in a splitting field if and only if
ged(f, f') # 1.

PROOF Suppose that f has a multiple root « in a splitting field. Then f(X) = (X — «)®g(X),
where s > 2 and g(a) # 0. Hence,

F1(X) = s(X = a)* 1g(X) + (X — )°g'(X)

and so f’(a) = 0. From the previous lemma f and f’ are not relatively prime, i.e., ged(f, f') # 1.
Now suppose that ged(f, f/) # 1. From the previous lemma, f and f’ have a common root
« in an extension field of F. We may write

with s > 1 and g(a) # 0. Then again
F1(X) = s(X = a)*1g(X) + (X — a)*g(X).
If s =1, then f'(a) = g(a) # 0, a contradiction, hence s > 2 and « is a multiple root. O

Theorem 2.3 If p is a prime number and k a positive integer, then there is a field F' whose
cardinal is p*.
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PROOF To simplify the notation we set ¢ = p*. For k = 1, we may take F,. We now suppose
that k > 1. We set f(X) = —X + X7 € Fy[X]. As f/(X) = —1+¢X9 ! = —1, because ¢ is a
multiple of p, ged(f, f') = 1 and so the roots of f in a splitting field are distinct, i.e., there are
g roots (Proposition 2.4). Let E be an extension of F, which contains the roots of f and F' the
set of roots. We claim that F'is a field. First, if a € F', then

0= f(a)=—a+a! <= 2 =2%
We take z,y € F. Then
(zy)! =2%? =2y = f(zy) =0 and (z+y)!=2'+y' =2 +y= flz+y) =0.

If p # 2, then
(o)t = (~1)ta? = —a
and, if p = 2, then
(—x)=(-1)al=29=2=—uz,

because the characteristic of E is 2. In both cases we have f(—z) = —z. It follows that F'is a
subring of of E. In addition, if = # 0, then, using the fact that F' is an integral domain, we have

—z429=0= —1429=0= 2?2 =1,

hence x has an inverse for the multiplication. Thus F' is a field. We have constructed a field
with ¢ = p¥ elements. O

We now turn to the uniqueness of finite fields. We should notice that the field F' constructed
in the proof of preceding theorem is a splitting field for the polynomial f. Any proper subfield of
F will lack certain elements of F'. As these are all roots of f, f cannot split over such a subfield.

Theorem 2.4 If F' and F' are two finite fields with the same cardinality, then F is isomorphic
to F'.

PROOF If F is a finite field with cardinality ¢ = p*, then F has the prime field F,. There ¢ —1
elements in F* so, if z € F*, then 29! = 1 and it follows that —z + 29 = 0, for all # € F. Thus
the roots of the polynomial f(X) = —X + X? € F)[X] are the elements of F' and it follows that
F is a splitting field of f. As all splitting fields of a given polynomial are isomorphic, if F’ is
another field with cardinality g, then F” is isomorphic to F. O

Notation We often write F, for a finite field with ¢ elements.

2.2 Algebraic closures

We have seen that if f € F[X] then there is an extension E of F over which f splits. It is natural
to ask if there exists an extension C' of F such that every f € F[X] splits over this extension.
(It is well-known that C is such an extension of R; however, we will give a proof of this later on
in the text.) In this section we aim to study this question. We will begin with an elementary
result.

Proposition 2.5 For a field C' the following conditions are equivalent

e a. Every nonconstant polynomial f € C[X] has a root a € C;
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e b. Every nonconstant polynomial f € C[X] splits over C;
e c. Fuvery irreducible polynomial f € C[X] is of degree 1;
e d. C has no proper algebraic extension.

PROOF a. = b. If f is nonconstant, then the condition a. implies that we can write f(X) =
(X —a)g(X). If g is not constant, then we can write g(X) = (X — B)h(X). Continuing the
process if necessary we finally obtain a splitting of f.

b. = c. If f is irreducible, then f is not constant. From the condition b. f splits over C"

fX)=AMX —a1) - (X — an).

As f is irreducible, f has a unique nonconstant facteur, i.e., n = 1.

c. = d. Let E be an algebraic extension of C' and o € E. If f = m(«, C), then f is irreducible
and so of degree 1: f(X) =X — . Hence a € C. Thus £ = C.

d. = a. Let f € C[X] nonconstant. We can find an extension E of C' which contains a root
«a of f. We may suppose that this extension is finite and so algebraic. From the condition d.,
E=CandsoacC. O

A field satisfying the conditions of the above proposition is said to be algebraically closed. An
extension C' of a field F' is an algebraic closure of F if C' is algebraic over F' and algebraically
closed.

Remark An algebraically closed field is infinite. To see this, suppose that F' is algebraically
closed and finite, with elements a1, ..., a,. However, the polynomial f(X) =1+ ][, (—a; + X)
has no root in F', contradicting the fact that F is algebraically closed.

Exercise 2.3 If E is an algebraic extension of F' and C' an algebraic closure of E, show that C
is an algebraic closure of F.

Remark If C is an algebraic closure of F' and FE is an extension of F' which is strictly included
in C, then FE is not algebraically closed. To see this, let « € C'\ E. As « is algebraic over F,
« is algebraic over E. Now, a ¢ E, hence degm(a, E) > 1; from the condition c. of the above
proposition, E is not algebraically closed.

Proposition 2.6 Let C be an algebraic extension of F'. Then C is an algebraic closure of F if
every nonconstant polynomial g € F[X)] splits over C. (We do not need to consider polynomials

f e CIX]\ FIX]).

PROOF Let f € F[X] and « be aroot of f in an extension E of C. The field C(«) is an algebraic
extension of F' and C' is algebraic over F' by hypothesis, therefore C'(«) is algebraic F. Thus
« is the root of a polynomial g € F[X]. As g splits over C, all the roots of g belong to C, in
particular & € C. Thus f has a root in C. |

If E and E’ are extensions of F and ¢ : F — E’ is a homomorphism fixing F (i.e., o(z) = z,
for all € F'), then we call 0 an F' — homomorphism. The following proposition is well-known
if F is a finite extension of F. However, we may relax the conditions:

Proposition 2.7 Let E be an algebraic extension of F' and 0 : E — E an F-homomorphism.
If o is injective, then it is also surjective.
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PROOF Let o € E. We have to show that there exists 8 € E such that a = o(8). Let m = m(a, F)
and L be the subfield of F generated by F and the roots of m which are in E. These roots are
algebraic over F', therefore L is a finite extension of F' (see Corollary 1.5). If o/ is a root of m
in E, then o(’) is also a root of m in E, because ¢ is an F-homomorphism and so (L) C L.
However, o is a linear mapping from the F-vector space L into itself, because F' is fixed by 0. As
L is finite-dimensional over I’ and o injective, oy, : L — L is also surjective. Moreover, o € L,
thus there exists § € L C F such that a = o(f3). O

We now prove the most difficult step in showing that a field always has an algebraic closure.
Theorem 2.5 FEvery field F' has an extension E which is algebraically closed.

PROOF We note S the collection of nonconstant polynomials of F[X]. To each f € S we associate
a variable X¢. Now we let T' be the family of these variables and F[T] the ring of polynomials
in these variables. (The elements of F[T] are finite sums of monomials of the form a Xy, --- Xy,,
with a € F.) Finally we define I to be the ideal generated by the elements of the form f(Xy),
with f € S. (If f(X) = Y1 ga; X", then f(Xy) = 37" ja;X}.). In fact, I is a proper ideal of
FI[T] as we will now see. If this is not the case, then we can find elements g; € F[T] and f; € [

such that .
D afi=1
i=1

Let us write X; for the variable associated with f;. There is a finite number of variables
X1,..., X, with m > s, which are variables of the g;. Hence we have

Zgi(Xh cee 7Xm)fi(Xi) =1
=1

(Even if a certain variable X does appear explicitly in a certain g; we can still include it.)
Suppose now that F is an extension of F' which contains all the roots of the f;. Then E contains
a root «ay of each f;. If we set X; = a; for 1 < i < s and X; =0 for s < i < m, then we obtain
0 =1, a contradiction. It follows that I is a proper ideal of F[T].

As I is a proper ideal, T is included in a maximal ideal M. The factor ring Ey = F[T]/M is
a field, because M is maximal. The canonical homomorphism

¢:F— FEi,a—a+ M
is injective: If ¢(a) = 0 and a # 0, then a + M = M and
(a4 M)a+M)cM=—1¢€M,
a contradiction. Hence we can write F' C E;. If f € F[X] is nonconstant, then Xy € E; and
f(Xp+M) = f(Xp)+M=0,

because f(Xy) € I C M. Therefore f has a root in Ej.

We can now replace F' by F; and repeat the whole argument to obtain an extension Fo of
E; such that every nonconstant polynomial g € E[X] has a root in F5. Continuing in the same
way we obtain a chain of extensions

FCELCEyC---
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such that a nonconstant polynomial h € E,[X] has a root in E, 1. We now let E be the union
of the fields in the chain and we define an addition @ and a multiplication ® on F as follows: If
r€FE,andyeFE,, withm<n,thenz®y=x+,yand r®y ==z, y. These operations are
well-defined (z @ y and = ® y do not depend on the choice of n > m) and a simple check shows
that (E,®,®) is a field.

Now let f be a nonconstant polynomial in F[X]. All the coefficients of f belong to a certain
E,, and so f has a root in E,;1 C E . Thus we have an extension of F' which is algebraically
closed. |

We may now prove the principal result of this section.
Theorem 2.6 FEvery field F' has an algebraic closure.

PROOF From the previous theorem, F' has an extension F which is algebraically closed. Let
G = A(E/F), i.e., the collection of elements of F which are algebraic over F. Proposition 1.6
ensures us that G is a subfield of E. Let us take f € G[X] nonconstant. As f € F[X], f has a
root « € E. As f € G[X], « is algebraic over G. Now, G is an algebraic extension of F' and « is
algebraic over G, therefore « is algebraic over F', by Proposition 1.7. It follows that a € G. We
have shown that G is algebraically closed. O

Remark The previous proof shows that the field of algebraic numbers A(C/Q) is an algebraic
closure of Q. Moreover, the remark after Proposition 1.6 and Theorem 1.5 ensures that A(C/Q)
is a countable infinite extension of Q.

Exercise 2.4 Show that C is an algebraic closure of R.

We have shown that a field always has an algebraic closure. Our next task is to show that
any two such closures are isomorphic.

Lemma 2.4 Let o0 be a monomorphism from a field F into an algebraically closed field C. If E
is an extension of F, a € E algebraic over F, then o can be extended to a monomorphism from
F(a) into C.

PROOF Let F’ = o(F) and f = m(«, F). If f* is the polynomial corresponding to f in F’[X],
then f* has a root o/ € C. Applying Proposition 2.3 we see that there is an isomorphism & from
F(a) onto F'(a’). As F'(a’) C C we have a monomorphism from F(«) into C extending o. O

Theorem 2.7 If 0 : F — C is a monomorphism, with C algebraically closed, and E an
algebraic extension of F', then o may be extended to a monomorphism ¢ : E — C'.

PROOF Let G be the collection of all pairs (K, u), where K/F, E/K and p is a monomorphic
extension of o to K. (From the previous lemma, such pairs exist.) We now order these pairs:
(K1, p1) < (Ko, po) if and only if Ky C K3 and s restricted to K is equal to py. If the pairs
(K, i) form a chain @, then @ has a maximum (K, p), with K = UK; and p(z) = pi(z), if
z € K;. From Zorn’s lemma, G has a maximal element (Ko, po). We claim that Ky = E. If
Ky # FE and a € FE \ K, then from the previous lemma, we may extend po to a monomor-
phism from Ky(«) into C. However, this contredicts the maximality of the pair (K, uo). Hence
Ky = E; This finishes the proof. O

If we add some conditions we obtain the important following corollary:
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Corollary 2.3 If, in the above theorem, E is algebraically closed and C algebraic over o(F),
then & is an isomorphism.

PROOF We only need to show that 6(F) = C. As C is algebraic over o(F'), C is algebraic over
6(E), because o(F) is a subset of 6(E). Now, 6(F) is algebraically closed, because E is alge-
braically closed, hence C' is an algebraic extension of the algebraically closed field (FE). From
Proposition 2.5 d., C' cannot be a proper extension and so 6(F) = C. O

We can now prove that the following theorem holds:

Theorem 2.8 If C1 and Cs are algebraic closures of the field F, then Ci and Cs are F-
isomorphic.

PROOF F' is a subfield of C; and Cs. If 0 : I — () is the inclusion mapping, then, from the
previous corollary, we may extend ¢ to an isomorphism & : Cy — C5. This clearly fixes F. O

Exercise 2.5 Let F be any field. Show that there is an infinite number of irreducible elements
in the polynomial ring F[X]. Deduce that if F is algebraically closed, then F is infinite.
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Chapter 3
Separability

In this chapter we aim to look at two related topics, namely separable polynomials and separable
extensions. We will begin with the first subject.

3.1 Separable polynomials

Let f € F[X] be nonconstant with the factorization into irreducible elements
F(X) = Ag1(X) -+~ gn(X).

If each g; has no multiple root in a splitting field, then we say that f is separable. We will say
that a polynomial is strongly separable, if it has no multiple roots. Clearly, a strongly separable
polynomial is separable, but a separable polynomial is not necessarily strongly separable. For
example, f(X) = (X? +1)2 € Q[X] is separable, but not strongly separable. However, for an
irreducible polynomial these notions are equivalent: If f € F[X] is irreducible, then f is separa-
ble if and only if f is strongly separable.

Proposition 2.4 is useful in determining whether a polynomial is separable or not. Consider
a polynomial f € F[X]. If ged(f, f’) = 1, then f has no multiple root and so this is the case
for any factor; it follows that f is strongly separable and hence separable. On the other hand, if
ged(f, f') # 1, then f is not strongly separable; however, f may be separable or not. We must
consider the irreducible factors of f.

Corollary 3.1 If the characteristic of the field F is 0, then every polynomial f € F[X] is
separable.

PROOF Let g be an irreducible factor of f. As the characteristic of F'is 0, ¢’ # 0. If h = ged(g, ¢'),
then deg h < deg g, because deg ¢’ < degg. As g is irreducible, h = 1. From the preceding propo-
sition, g has no multiple root. 0O

Now we consider finite fields. If F is such a field, then its characteristic is a prime number
p. Let f € F[X]. If, for every irreducible factor g of f, ¢’ # 0, then, using the argument of the
corollary we have just proved, f is separable. We claim that this is always the case. Suppose
that this is not the case and let g be an irreducible factor of f with ¢ = 0. Then g € F[XP].
The mapping
¢:F — F:x+— 2P
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is a homomorphism: ¢(1) =1 and
d(zy) = (2y)’ = 2Py’ = o(x)o(y)
saty) = @iy = Y (D)t = e = o)+ o)

i=0
(We have used the fact that p divides (f) if1<i<p-1.) As F is a field and Ker ¢ is an ideal
Ker¢ = {0} or Ker¢p = F. As ¢(1) = 1, the second alternative is not possible, so Ker ¢ = {0},
which implies that ¢ is injective. Given that F' is finite, ¢ must also be surjective. Now let us
return to g. We may write g(X) = Zf:o a; XP'. As ¢ is bijective, for each a;, there exists b;
such that a; = Y. We have

k k p
0 =i = (o)
i=0 i=0
a contradiction to the irreducibility of g. Hence ¢’ # 0 and we have proven

Proposition 3.1 If F is a finite field, then every polynomial f € F[X)] is separable.

Remark Corollary 3.1 and Proposition 3.1 imply that if char FF = 0 or F is finite, then an
irreducible polynomial f € F[X] is strongly separable.

Although polynomials which are not separable are relatively rare, such polynomials exist.
Here we will give an example. We recall Eisenstein’s criterion:

Let R be a unique factorization domain, with quotient field F, and f(X) = > " ja; X" €
R[X], with deg f > 1. If ¢ is prime in R and ¢ divides a;, for 0 < i < n, ¢ does not divide a,
and ¢2 does not divide ag, then f is irreducible in R[X].

Consider F,(t), the field of rational fractions over the field F,, for any given prime p. The
characteristic of F(t) is p. We note f(X) = XP —t € F,[t][X]. If ¢(¢) is prime in F,[t], then
deg ¢ > 2 and so ¢? does not divide ¢; it follows from Eisenstein’s criterion that f is irreducible.
We claim that f has a multiple root in a splitting field. Let « be a root of f in a splitting field
and suppose that

F(X) = (X = a)"g(X),

where degg > 1 and g(a) # 0. Then
0= f(X)=m(X —a)" g(X) + (X — )" (X).

This implies that mg(X) = —(X — «)g¢’(X) and so mg(a) = 0. However, this is impossible,
because m < p and g(«) # 0. Therefore, f(X) = (X — «)? and f is not separable.

In Theorem 2.2 we showed that an isomorphism o from the field F onto the field F’ may be
extended to an isomorphism & : E — FE’, where F is a splitting field of f € F[X] and E’ a
splitting field of f*, the polynomial in F'[X] corresponding to f. If f is separable, then we can
say a little more.

Theorem 3.1 If f is separable, then o can be extended to E in exactly [E : F] distinct ways.
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PROOF We prove this result by induction on n = [E : F|. First, if n = 1, then there is a unique
extension of ¢, namely & = o. Suppose now that n > 1 and that the result is true up ton — 1.
The polynomial f has an irreducible factor g with degg = d > 1. We may write f = gh. Let
a de a root of g. If & is an extension of o, then o = () is a root of ¢g*, the polynomial in
F'[X] corresponding to g. As f is separable, so is f*, which implies that g* has d distinct roots
o/. From Proposition 2.2 there are precisely d isomorphisms & : F(a) — F'(a/) extending o,
one for each root . Also, F is a splitting field of f over F(«) and E’ a splitting field of f* over
F'(a) (for each o). We have

[E:F)=[E: F(a)][F(a): F].

Because g is irreducible, [F(a) : F] = d, which imlies that [E : F(a)] = 5 < n. Applying the
induction hypothesis, we see that each ¢ has exactly % from F onto E’, hence we have precisely
n extensions ¢ of 0. O

We now turn to our second topic.

3.2 Separable extensions

If F is an extension of F' and o € E, then « is a separable element over F, if « is algebraic
over F' and the minimal polynomial m(a, F) is separable. If every element o« € E is separa-
ble, then we say that E is a separable extension of F. From Corollary 3.1 and Proposition 3.1
we know that every algebraic extension of a field of characteristic 0 or of a finite field is separable.

We have seen in Theorem 2.7 that if o : FF — C is a monomorphism, with C' algebraically
closed, and FE an algebraic extension of F, then ¢ may be extended to a monomorphism & :
E — C. If E is a finite separable extension of I’ then we can say a little more.

Theorem 3.2 Let E be a finite separable extension of F', with [E : F| =n, and o a monomor-
phism from F into C, which is algebraically closed. Then there are exactly n monomorphic
extensions ¢ : E — C of 0.

PROOF We will prove this result by induction on n. If n = 1 then E = F and there is nothing
to prove. Suppose now that n > 1 and that the result is correct up ton — 1. Let o € E'\ F,
m = m(a, F') and m* be the polynomial in K[X] corresponding to m, where K = o(F). As m
is separable, so is m*. Given that C is algebraically closed, m* has a root o’ € C and there is a
unique isomorphism ¢ : F(a) — K (o) extending o and such that 6(«) = o’ (Proposition 2.3).
If degm = d, then

[F(a):F]:d:>[E:F(a)]:%<n.

Also deg m* = d, so m* has d distinct roots in C, because it is separable. Thus we have d choices
for o/, and thus for &, and, by the induction hypothesis, each mapping 6 : F(a) — K (') can be
extended to a monomorphism from F into C'in % ways. We thus obtain %d = n monomorphisms
¢ from FE into C' extending o.

It is not difficult to see that there can be no more than n such extensions. If 7 is such an
extension, then o/ = 7(«) is a root of m* and 7 restricted to F'(«) is an isomorphism onto F(a/).
The mapping 7 is then a monomorphic extension of this restriction and so is one of the mappings
we have already considered. O

Corollary 3.2 If E is a finite separable extension of F, with [E : F| = n, and C' an algebraically
closed extension of F', then there are exactly n F-monomorphisms of E into C.
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PROOF It is sufficient to take o = idp in the preceeding theorem. O

Finite separable extensions have a useful property which Theorem 3.2 enables us to prove.
We will also need an elementary result on finite fields, which is interesting in itself, namely that
the multiplicative group of nonzero elements of a finite field is cyclic. We will prove a more
general result. We recall that Euler’s totient function ¢ is defined on N* as follows: ¢(n) is
the number of elements in the set {d : 1 < d < n,(d,n) = 1}. We have the following identity

2aj 9(d) = 1.

Theorem 3.3 If F is a field and G a finite subgroup of the multiplicative group F*, then G is
cyclic.

PROOF We set |G| = n. If € G, then o(z)|n, where o(x) is the order of the element z. For each
divisor d of n, let us write 1(d) for the number of elements in G whose order is d. If 1(d) # 0,
then there is an element x € G whose order is d. If y € H, the group generated by x, then
y? =1, hence y is a root of the polynomial f(X) = —1+ X% € F[X]. As f has at most d roots
and H has d elements, all the roots of f are in H, in particular, any element of order d is in
H. Also, the elements of order d in H are the generators of this group and there are ¢(d) such
generators, hence we have 1(d) = ¢(d). If ¥(d) = 0, for a certain divisor d of n, then we have

n=) ¥ <) ¢d=n,
d|n d|n

a contradiction. It follows that ¢ (d) = ¢(d) for every divisor d of n. In particular, ¥(n) = ¢(n) >
1 and so G is cyclic. a

Corollary 3.3 If F is a finite field, then its group of nonzero elements is cyclic.
We may now prove the interesting result we referred to above.

Theorem 3.4 (primitive element theorem) If E is a finite separable extension of F, then there
exists an element o € E, such that E = F(a).

PROOF If F is finite, then so is F, being a finite extension. If « is a generator of the cyclic group
E*, then E = F(a).

Now let us consider the case where F' is not finite. We will use an argument by induction on
[E:F]=n. If n=1, then E = F and we can take any element o € F. Now let us suppose
that n > 1 and that the result is true up to n — 1. We take a € E'\ F. We claim that F is a
separable extension of F'(«). To see this, notice that, if v € E, then  is algebraic over F, hence
algebraic over F'(«); in addition, m(y, F(«)) | m(y, F'), thus, if m(vy, F(«)) has a multiple root,
then so does m(v, F), a contradiction. This proves the claim.

By hypothesis there is a 5 € E such that F = F(«a, ). We will now show that there is an
element ¢ € F such that £ = F(a + ¢8). From Corollary 3.2 we know that there are exactly
n F-monomorphisms of E into an algebraic closure C' of F'. For any ¢ € F, each one of these
mappings restricted to F(a + ¢f) is clearly an F-monomorphism into C. If F(a + ¢8) # E,
then [F(a+c¢8 : F] < n and so there are distinct F-monomorphisms o and 7 of E into C' which
coincident on F'(a + ¢f). We have

o(a) +co(f) = 7(a) + c7(B).
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If o(B) = 7(8), then also o(a) = 7(a), which implies that o = 7, because E = F(«, 3). This is
a contradiction and so o(8) # 7(8) and we can write

However, a little reflexion shows that there is only a finite number of values ¢ which can be
expressed in this form; therefore we can find an element ¢ € F such that F = F(a + ¢f3), which
finishes the proof. ]

If F is an extension of F' and a € E is such that E = F(«), then we say that « is a primitive
element, hence the name of the theorem which we have just proved. The primitive element
theorem has an interesting application to quadratic number fields, namely

Theorem 3.5 If E is a quadratic number field, then there is a square-free integer d such that

E =Q(Vd).

PROOF Let FE be a quadratic number field, i.e., an extension of Q in C of degree 2. As this
extension is finite and separable, there is a primitive element o € E'\ Q, with minimal polynomial

f(X)=a+bX +X?
and a,b € Q. As « is a root of f, we have

b+ VB2 —4
ao PEVE AL b2 _dac Q.

2
It is clear that 8 = 2a:+ b does not belong to Q and so [Q(8) : Q] > 1. As [E: Q] = 2, we must
have E = Q(f).
The number 3 may not be a square-free integer. If b> — 4a = Z, then

q7
*(b? — 4a) = p = (q(2a +1))? € Z.

Setting v = ¢(2a + b), we have E = Q(v) and 72 € Z. To finish it is sufficient to observe, as
previously, that if d = u?v, where v is square-free, then Q(vd) = Q(\/v). o

Here is another application of the primitive element theorem.

Theorem 3.6 Let E be a finite separable extension of a field F' of degree n. Then the field of
fractions E(X) is a finite extension of degree n of the field of fractions F(X).

PROOF From the primitive element theorem (Theorem 3.4), there exists o € E such that
E= F(Oz) = Fn_l[()é],

where F),_1[a] is the set of polynomials of degree less than n in o with coefficients in F. We set
A={1,a,0?,...,a" 1}. This set is a basis of E over F. We will show that A is also a basis of
E(X) over F(X). First we notice that F, the collection of expressions of the form

e c’ﬂ—l(X) an—l
do(X) = di(X) dp—1(X) ’




where ;gg € F(X), is a subfield of E(X). We now show that E(X) C F. If f € E[X], then

F(X) =po(a) + p1() X + - + ps(a) X?,

where p;(a) € F,_1]|a], for i = 0,1...,s. Regrouping terms having the same power of a, we
obtain the expression

F(X) = up(X) +u1(X)a+'~~+un,1(X)a”*1,

where u; € F[X], for all j. Hence any polynomial in E[X] lies in F. Now, if f € E[X] and
f # 0, then there exists

Co(X) + Cl(X)O(++ Cnfl(X)

n—1
Bo(X) T dr(X) PR SR

9(X) =

such that fg = 1, because F is a field. As the inverse of f in F(X) is unique, g is its inverse
in E(X). It now follows that E(X) = F, because every element of E(X) is the product of an
element of E[X] and the inverse of a nonzero element of E[X]. Hence A is a generating set of
E(X) over F(X).

To finish we show that the elements of A form an independant subset of E(X) over F(X).

Suppose that
c(X)  a(X) n-1(X) 4
+ a+- -+ —7--a"" =0,
do(X)  di(X) dpn—1(X)

where Zgi € F(X), for all i. Multiplying by the product do(X)d;(X)---d,—1(X) we obtain

1

a(X) ([ []d;(x) |’ =0.
J#i

n

K2

Il
=]

As the elements of A form an independant set over F, they form an independant set over F[X].
Because the products [[,_; d;(X) are nonzero, we have

Co(X) = Cl(X) == Cn,1<X) = 0,
and it follows that A is an independant set over F(X). O

Exercise 3.1 In the proof of Theorem 3.6 we stated that the independance of the set A over F
implied its independance over F[X]. Why is this so?

We have seen that an algebraic extension F of a field F' may not be finite. However, in the
case where E/F is separable and satisfies a certain condition, then this is the case.

Proposition 3.2 Let F be a field and E a separable algebraic extension of F. Then E is a finite
extension of F' if there exists n € N* such that

sup[F(«) : F] < n.
acl

Moreover, [E : F| < n.
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PROOF Let E be a separable algebraic extension of the field F' such that

sup[F(a) : F] < n.

acE
Let » > n and ay, ..., q, elements in E. Then G = F(ay,...,a,) C E is a finite extension of F.
As the «; are algebraic and separable, G is a separable extension of F' (Theorem 3.8). From the
primitive element theorem, there exists « € G such that G = F(«). Asa € E,

[G:F]=[F(a): F] <n.

However, aq,...,a, € G, so these elements form a dependant set. It follows that [E : F] < n. O

It may turn out that every polynomial over a given field is separable. In this case we say that
the field is perfect. As we have seen, fields of characteristic 0 and finite fields are perfect. As
an example of a non-perfect field, we may take the field F,(t), discussed in the previous section.
We will now give two criteria for a field to be perfect.

Proposition 3.3 A field F is perfect if and only if every algebraic extension E of F' is separable.

PROOF Suppose first that the field F' is perfect and that F is an algebraic extension of F. If
a € E, then m(«, F') € F[X] and so this polynomial is separable. It follows that F is separable.

We now turn to the converse. We suppose that every algebraic extension E of F' is separable.
Let f = Ag1 -+ gn € F[X], with A € F and g; € F[X] irreducible for all i. Let E be a finite (hence
algebraic) extension of F' containing the roots aq,...,as of f. The roots of any g; are roots of
f. For a given root oy of g; we have m(ag, F')|g;. As g; is irreducible, we have g; = Am(ag, F),
for some A € F. However, the roots of m(ay, F') are simple, hence those of g; (the same) are also
simple. Therefore f is separable. It follows that F' is perfect. o

We now turn to our second criterion.

Proposition 3.4 Let F be a field of characteristic p > 0. Then F is perfect if and only if, for
every a € F, there exists b € F such that a = bP (or, alternatively F = FP ).

PROOF First let us suppose that for every a € F we can find b € F such that a = P. Let
f € F[X] be irreducible. If f(X) = ap + a1 XP + asX? + -+ + a,, X"?, then

(bo+ b1 X+ -+ X" =b) +/XP+ -+ EX"™ =qag+ a1 XP + -+ + a, X"P,

hence f is reducible, a contradiction. It follows that at least one nonzero monomial in f has a
power which is not a multiple of p. This means that the derivative f’ is nonzero and so f does
not have a multiple root. It now follows that F' is perfect.

Now the converse. Suppose that F' is perfect and let a € F. We set f(X) = —a + XP and
let a be a root of f. Then a = of and f(X) = (—a + X)P. There is an r € N* such that
m(a, F) = (—a+ X)", because m(a, F)|f(X). As f is separable, r = 1 and so o € F'. Thus we
have found a b € F, namely «, with a = bP. m|

3.3 Transitivity of separability
Before looking at the principle theme of this section we will prove a result which is often useful.

Proposition 3.5 Let F, K and E be fields with K/F and E/K. If E is separable over F', then
K is separable over F' and FE is separable over K.
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PROOF Suppose that the conditions on the fields F, K and F are satisfied. First, as K is a
subfield of E, K is separable over F'. We now show that FE is separable over K. If o € E,
then m(a, K)|m(a, F). As m(«, F') has no multiple roots, m(«, K) also has no multiple roots,
because m(«, F) has no multiple roots. Therefore E is separable over K. m|

We have seen that we may define a partial order R on the collection of fields by FRE if E is
an algebraic extension of F. In a similar way, we may define a partial order R' by FR'E if E is
a finite separable extension of F'. As before the relation R’ is clearly reflexive and antisymetric,
so we only need to prove the transitivity. Here however the proof is more difficult than in the
former case. Clearly the difficulty arises only with infinite fields of characteristic p > 0. We will
begin with some preliminary results.

Lemma 3.1 Let f be a field of characteristic p > 0, E an algebraic extension of F' and o € E.
We set m(X) = m(a, F(aP)). Then m splits in E and « is the unique root of m. If « is separable
over F(aP), then a € F(aP).

PROOF We set f(X) = —aP + XP € F(aP). Then f(«) =0 and so m|f. Now, f(X) = (—a+X)?
and so m(X) = (—a+ X)", for some r > 1, thus m splits in F and has « as unique root.

If « is separable over F'(aP), then m is irreducible and so m’ # 0. Therefore m(X) = —a+ X
and o € F(aP). O

Lemma 3.2 Let E be a finite extension of F, where F is of characteristic p > 0. We note
K = F(EP), the subfield of E generated by F' and the pth powers of elements of E. Then K is
composed of all the linear combinations of elements of EP with coefficients in F.

PROOF Let (o, ..., a;,) be a basis of E over F. It is clear that F'(af,...,a?) C K and, ife € E,
then
e=X a1+ -+ \a, = e =Nl +- +XNak — K C F(af,....,a%).

Thus K = F(af,...,ab).

As E is algebraic over F' the elements of F'(af) may be expressed as as polynomials in of
with coefficients in F' (see the proof of Proposition 1.4). Now, o} is algebraic over F, hence over
F(af). This means that every element of F(af,ab) may be expressed as a polynomial in of
with coefficients in F'(of). Simplifying such expressions, we see that every element of F'(af, ab)
may be expressed as a polynomial in of and of with coefficients in F'. Continuing in the same
way we find that every element of F'(o, ..., a®) may be expressed as a polynomial in o, ... o2
with coefficients in F. This implies that the elements of F((af, ..., aP) are linear combinations of
elements of EP, with coefficients in F. Of course, linear combinations of elements of EP belong
to F(af,...,aP) and the result follows. O

We now consider the case where F'(EP) is not a proper subset of E, i.e., E = F(EP).

Lemma 3.3 We suppose that E be a finite extension of F, where F is of characteristic p > 0
and that E = F(EP). If (a1, ...,qy) s a basis of E over F', then so is (af,... ab).

PROOF In the previous lemma we saw that all elements of F(EP) are linear combinations of
pth powers of members of E. At the beginning of the proof we also saw that a pth power of a
member of F can be expressed as a linear combination of pth powers of a basis, so it follows that
(af,...,aP) is a generating set of F(EP) = E. As [E : F] = n, this set must also be a basis of
E. O

The following proposition is interesting in its own right.
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Proposition 3.6 Let E be a finite extension of F, where F' is of characteristic p > 0. Then E
is a separable extension of F if and only if E = F(EP).

PROOF We suppose first that E is a separable extension of F' and take @ € E. The minimal
polynomial m(a, F') has no multiple roots and so this is the case for the minimal polynomial
m(a, F(a?)), because m(a, F(aP))|m(a, F). Hence « is separable over F(a?) and, from 3.1,
a € F(a?) C F(EP). We have E C F(EP) C E, which implies that £ = F(EP).

We now turn to the converse. Suppose that E = F(EP). If E is not a separable extension
of F, then we can find @ € E such that m(X) = m(a, F) is not separable. We have m/(X) =0
and so m(X) = m(XP):

m(X) =bg + by XP + -+ by X677 4 X7,

As m(a) = 0, the elements 1,a?,...,a°? are dependant over F. However, m(X) is a minimal
polynomial, so the elements 1,a?,...,a*?~! are independant over F. Also, sp —1>2s —1 > s,
hence 1, q,...,a® are independant over F. If necessary we may add vectors to obtain the basis
(La,...,a% uy,...,u) of E over F. From the previous lemma, we know that the pth powers of
the elements of this basis form a basis and hence that 1,aP, ..., a*? form an independant set, a
contradiction. Therefore m is separable and so E is a separable extension of F. O

We are now in a position to establish the transitivity of finite separable extensions.

Theorem 3.7 Let F, K and E be fields, with K/F, E/K and [E : F| < 0. If E is separable
over K and K separable over F, then E is separable over F'.

PROOF From Corollary 3.1 and Proposition 3.1 it is sufficient to consider the case where F
is infinite and has a characteristic p > 0. From the previous proposition £ = K(EP) and
K = F(KP). Hence

E = K(E") = F(K?)(E?) = F(K”, E”) = F(EP),
because K C E. From the previous proposition again, F is separable over F'. O

The result which we have just proved enables us to prove another, which seems quite natural.

Theorem 3.8 Let E be an extension of F and aq, ..., ay, elements of E which are algebraic and
separable over F. If E = F(aq,...,an), then E is separable over F.

PROOF We only have to consider the case where F' is infinite and of characteristic p > 0. We
note E; = F(o,...,0;). Thus Ei 1 = Ei(a;). We claim that E; 1y = E;(E? ;). To begin with

Ei,Eiy1 C Eiy1n = Ei(EY ) C Eiy1.

To prove the equality we only need to show that a; 41 € E;(E? t1)- Now, ;1 is separable over F,
hence over E;(af, ), because m(ait1, Ei(a?,;))|m(eiq1, F). From Lemma 3.1 a4 € Ei(al )
and so Ei—i—l = EZ(Eszrl)

Now we can complete the proof. From Proposition 3.6, for each ¢, E;;; is separable over
E;. Applying successively Theorem 3.7 we obtain that E is separable over F, _o, then that F is
separable over F,,_3 and so on. Finally we obtain that F is separable over F. O

Corollary 3.4 If E is the splitting field of a separable polynomial f € F[X], then E is a separable
extension of F'.
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Chapter 4

Properties of finite fields

In the Chapter 7?7 we introduced finite fields and in Corollary 3.3 we showed that the multiplica-
tive group of such fields is cyclic. We now examen more closely such fields.

Proposition 4.1 IfF, is a finite field, with q elements, then the roots of the polynomial A(X) =
—X + X1 € F,[X] are the elements of F,.

PROOF From Corollary 3.3 we know that a?~! = 1, for all a € F,, which implies that f(a) = 0.
This is also the case for & = 0, so the elements of F, are all roots of A. Since A can have at
most ¢ roots, the elements of F, form a complete set of roots of A. O

Determining subfields is not difficult.

Theorem 4.1 Let Fy be a finite field, with ¢ = p" elements, where p is a prime number and n
a positive integer. Then a subfield of Fq has p™ elements, for some m dividing n. On the other
hand, if m divides n, then there is a subfield of Fy with p™ elements, and this subfield is unique.

PROOF Clearly a subfield K of F, must have p™ elements, for some m < n. Let [F}, : K] = s and
B = {b1,...,bs} be abasis of Fj over K. The elements x € F, can be written « = kiby+- - -+ksbs,
with k; € K. Since each k; can take on p™ values, F, must have exactly (p™)° elements. Thus
ms =n and so m divides n.

Conversely, if m divides n, then p™ — 1 divides p™ —1, so f(X) = =1+ X?" ! divides g(X) =
—1+ X?"~1in F,[X]. Hence every root of B(X) = —X + X?" is a root of A(X) = —X + X?"
and so belongs to F,. Considering B as a polynomial over the field F,=, we see that F, must
contain a splitting field of B, which has order p™, because B has p™ distinct roots.

If there were two distinct subfields of order p™ in F,, then the polynomial B, which has
degree p", would have more than p™ roots in F,, which is impossible. Therefore, there is a
unique subfield of F, of order p™, where m divides n, which considts precisely of the roots of B
in F. O

We now consider irreducible polynomials over finite fields. In the first result we use the
primitive element theorem.

Proposition 4.2 For any finite field Fy and positive integer n, there exists an irreducible poly-
nomial f € Fy[X] of degree n.
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PROOF There is a finite extension E of F, with ¢" elements and so [E : F ;] = n. From the
primitive element theorem, there exists a € E such that £ = F,(«). The minimal polynomial
m(a, Fy) has degree [Fy(a) : F] =n, because E = F(a). m|

Remark Since there is only ¢ possibilities for each coefficient, there can only be a finite number
of polynomials, a fortiori of irreducible polynomials, of degree n over any F,.

To continue we need two preliminary results.

Lemma 4.1 Let ¢ = p" and f € F,[X] irreducible. If o is a root of f in an extension of F,
and h € F,[X], then h(a) = 0 if and only if f divides h.

PROOF It is sufficient to notice that the minimal polynomial of o is a~! f, where a is the leading
coefficient of f. ]

Lemma 4.2 Let f € F,[X] be irreducible of degree m. Then f divides A(X) = —X + X" if
and only if m divides n.

PROOF First suppose that f divides A. Let a be a root of f in a splitting of f over Fy. Then
—a+a? =0,s0 a € Fyu. Thus F () is a subfield of Fyn. Since [F,(a) : F,] = m, we have

n=[Fgn : Fg(a)][Fg(a) : Fo] = [Fgn : Fy(a)lm = m|n.

Conversely, suppose that m divides n. Suppose that ¢ = p¥; then mk divides nk and so, by
Theorem 4.2, F,»x contains Fy,m» as a subfield, i.e., Fy» contains Fym as a subfield. Let a be a
root of f in a splitting field of f over F,. Then [Fy(«) : F;] = m and so we have

m=[Fgm : Fg] = [Fgm : Fg(a)][Fg(@) : Fg] = [Fgm : Fy(@)]m = [Fgm : Fg(a)] = 1.

It follows that Fym = Fy(a) and so a € Fgm C Fgn. This implies that « is a root of A(X) =
—X + XP" € F,[X]. Therefore f divides A, by Lemma 4.1. i

Corollary 4.1 Let E be an algebraic extension of a finite field . Then, for any element
a € E*, there exists a positive integer n such that o™ = 1.

PROOF Let f = min(«, Fy). If the degree of f is m, then, using Lemma 4.2 (with m = n), we
obtain that f divides the polynomial B(X) = —X 4 X", Hence —a + o = 0. Multiplying

by a~!, we obtain 4"~ = 1. O

In the next result we show that the roots of an irreducible polynomial may be expressed as
powers of a given root. This will enable us to find an explicit form of a spltting field.

Theorem 4.2 If f € F,[X] is of degree m, then f has a root o in Fym. Moreover, all the roots
of f are simple and are powers of «.

PROOF Let o be a root of f in a splitting field of f over F,. A splitting field of f over F; has
the form Fg«, with s > 1, and Fy(a) C Fye. If F () strictly contains Fym, then

m = [Fg(a) : Fgn][Fgn : Fo] = [Fg(a) : Fgm]m >m,

a contradiction. Hence Fy(a) C Fym, which implies that o € Fym.
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If 3 is a root of f in Fge, then 7 is also a root: If f(X)=>1" a; X", with a; € Fy, then

fB8YH = ap+ a4+ anpi™
Y Y I Ry
= (ao+aif+---+anf™)? = f(B),

so B is a root of f, as claimed. It follows that the elements «,a?,.. .,oﬂm_l are roots of f.
These roots are distincts: Suppose, on the contrary, that a9 = oﬂk, with0<j<k<m-1
Then, multiplying by o™ %, we obtain

k+3

From Lemma 4.1, f divides the polynomial A(X) = —X 4+ X9" """, However, from Lemma
4.2, we have m divides m — k + j, which is impossible, because 0 < k Tj < k — 1 implies that
0 <m —k+j <m. Hence the m roots of f in Fym are a,af,. .., a0, a

Corollary 4.2 If f is an irreducible polynomial in Fy[X] of degree m, then Fm is a splitting
field of f over Fy.

PROOF In Theorem 4.2 we established that Fym = Fy(a), where « is a root of f in a splitting
field of f over F,. However, F (o) = Fy(o, a4, .. .,oﬂmfl), which is a splitting field of f over
F,. Therefore Fym is a splitting field of f over F,. m|

Using Lemma 4.2 we may deduce a factorization of the polynomial A[X] = —X + X9".

Theorem 4.3 For a finite field F, and n € N*, the product of all the monic irreducible polyno-
mials over F, whose degree divides n is equal to A[X] = —X + X9".

PROOF From Lemma 4.2, the monic irreducible polynomials in F,[X] which occur in the factor-
ization of A[X] are precisely those whose degree divides n. Since A'(X) = —1+¢"X7 ~! = -1,
A has no multiple roots in a splitting field over F,. Thus each monic irreducible polynomial
occurring in the factorization of A occurs exactly once. O

Example The monic irreducible polynomials in F5[X] are f1(X) = X, f2(X) = 1+ X and
f3(X) =1+ X + X2 A simple calculation shows that the product of the f; is A(X) = —X + X4,
which is not surprising, because 4 = 22 and the divisors of 2 are 1 and 2.

Exercise 4.1 Let N,(d) be the number of monic irreducible polynomials of degree d in F,[X].

Show that
q" = dN,(d).
d|n
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Chapter 5

Normal extensions

In this short chapter we will consider another type of extension. Let E be an algebraic extension
of F such that any irreducible polynomial f € F[X] having a root o € F splits over E. In this
case we say that F is a normal extension of F.

Proposition 5.1 The algebraic extension E is normal over F if and only if, for each @ € F,
the minimal polynomial m(«, F') splits over E

PROOF Let E be a normal extension of F' and o € E. The polynomial m = m(a, F') is irreducible
and has a root, namely «, in E. Therefore m splits over E.

Now let us suppose that E is an algebraic extension of F' and that, for each a@ € F, the
minimal polynomial m(a, F’) splits over E. Let f be an irreducible polynomial in F[X] and S a
root of fin E. As m = m(f3, F) and f are irreducible and m|f, i.e., f = cm, where ¢ € F. As
m splits over E, so does f. Thus F is a normal extension of F. O

Example The number field Q(+/2) is not a normal extension of Q. The minimal polynomial
m(¥/2,Q) =2 — X? and the complex roots of this polynomial do not belong to Q(+/2).

We have other equivalent conditions particularly when F is a finite extension of F'. We need
a definition. If F = {f;}ics is a collection of polynomials in F[X], E an extension of F' such that
E is generated by F' and the roots of the f;, then we say that E is a splitting field of F.

Proposition 5.2 The following conditions are equivalent for an algebraic extension E of F':
e a. F is a normal extension of F';
e b. FE is the splitting field of a collection of polynomials in F[X];

e c. If C is an algebraic closure of F, with E/F and C/E, and ¢ : E — C is an F-
monomorphism, then o(E) = E.

PROOF a. = b. Let F = {m(«a, F) : « € E} and A the family of roots of the polynomials in
F.Ifa € E, then a € A and so E C F(A), the subfield of E generated by F' and A. To see that
F(A) C E it is sufficient to notice that F' C E, because F is an extension of F' and that A C F,
because the extension E is normal. (If a € E, then all the roots of m(a, F') are in E).

b. = c. By hypothesis there is a collection of polynomials F C F[X] such that E = F(A),
where A is the family of roots of members of F. Let C be an algebraic closure of F' containing

37



E and 0 : E — C a monomorphism. We claim that 0(4) = A. Indeed, if a € A, then a is a
root of a polynomial f € F; this implies that o(a) is also a root of f. Thus 0(A) C A and o
induces an injection from the set of roots of f into itself. As f has a finite number of roots, this
injection is also a surjection and it follows that o(A) = A. Then

c. = a. Suppose that the condition c. is satisfied and that the extension F is not normal.
Then there exists an irreducible polynomial f € F[X] which has roots a and 8, with « € E
and 8 € C'\ E. Let o be the F-homomorphism of F(«) into C' such that o(a) = 8. o is an
F-monomorphism because m(a, F) = m(8,F). As E is an algebraic extension of F(«), from
Theorem 2.7, o may be extended to a monomorphism 7 of F into C. However,

T(a) =o(a) =B ¢ E,

and so we have a contradiction to the condition c. It follows that c. = a. O

We have seen that there is a transitivity property for algebraic extensions and for finite sep-
arable extensions. However, such a property does not exist for normal extensions. It may be
so that K is a normal extension of F' and F a normal extension of K, without FE being a nor-
mal extension of F. Here is an example. We set F' = Q, K = F(«), where « is the positive
square root of 2 and E = F(3), where § is the positive 4th root of 2. K is a splitting field of
the polynomial f(X) = —2+ X? € F[X] and so K is a normal extension of F. Also, F is a
splitting field of the polynomial g(X) = —a+ X? € K[X], so E is a normal extension of K. Let
h(X) = -2+ X? € F[X]. Then h has a root in E (in fact, two roots); however, the roots 4-if3
are not in E. Therefore, E is not a normal extension of F'.

Although we do not have transitivity, we can say something when we have three fields related
by inclusion.

Proposition 5.3 Suppose that K/F and E/K, with E normal over F. Then E is normal over
K.

PROOF As F is normal over F', by Proposition 5.2 a. = b., there is a collection of polynomials
F C F[X] such that E = F(A), where A is the family of roots of the polynomials in F. Now,
F C K implies that F C K[X], hence, by Proposition 5.2 b. = a., E is normal over K. |

For finite extensions we have a particularly simple characterization of normality:

Theorem 5.1 The finite extension E of F is normal if and only if E is the splitting field of a
polynomial f € F[X].

PROOF Suppose that E is normal over F. Let ai,...,a, be a basis of E over F' and m; =
m(a;, F), for i = 1,...,n. As o; € E and F is normal, m; splits over E. It follows that
f=mq---m, splits over E. If K/F and E/K and f splits over K, then ay,...,a, € K. As
the «; form a basis of E, we must have K = E. Therefore FE is a splitting field of f.

For the converse it is sufficient to apply Proposition 5.2 (b. = a.). O

Corollary 5.1 A finite extension of a finite field is normal.
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PROOF Let F be a finite field and E a finite extension of F, with [E : F] = n. As F is finite we
know that there is a prime number p and a positive integer k such that |F| = p*. It follows that
|E| = p*". Every element a € E is a root of the polynomial f(X) = —X + X" e F[X]. As
deg f = p*, f splits in E. If K is a proper subfield of E, then f cannot split in K, because at
least one element of F, i.e., a root of f, is missing. Therefore F is a splitting field of f and so,
from Theorem 5.1, F is a normal extension of F. O

We finish this section with another criterion for an extension to be normal.

Proposition 5.4 Let F be a field and oy, ..., a, algebraic over F such that the roots of the
minimal polynomials m(ay, F') lie in F(aa,...,an). Then the field F(aq,...,an) is a normal
extension of F.

PROOF Let f be the highest common factor of the minimal polynomials m(«;, F'). Then f € F[X]
and f divides the product of the minimal polynomials. Thus every root of f is a root of one of the
minimal polynomials and so, by hypothesis, lies in F(aq,...,ay,). It follows that F(aq,...,a,)
contains a splitting field of f. However, for each i, «; is a root of one of the factors of m(cy, F')
and so is a root of f. This means that each a; must belong to a splitting field of f and so
F(aq,...,a,) lies in such a field. We have shown that F(a1,...,a,) is a splitting field of f and
so , by Theorem 5.1, is a normal extension of F. O

5.1 Normal closures

Let E be an algebraic extension of F' and N an algebraic extension of E such that N is normal
over F. If N is minimal with this property, i.e., there is no proper subfield of N with the same
property, then we say that N is a normal closure of E over F.

Let E be finite extension of F. Then, from Proposition 1.3, E is algebraic over F' and
there exist ai,...,a, € E such that £ = F(ay,...,a,). We note m;(X) = m(oy, F') and
m(X) = my(X)---mp(X) and let N be a splitting field of m. N is a finite extension of F'
containing E. As N is a finite extension of E, N is algebraic over E. From Theorem 5.1, N is
a normal extension of F. We claim that NV is a normal closure of E over F. To see this, let K
be a subfield of N containing E, which is also normal over F'. From Proposition 5.1, each m;
splits over K, hence so does m. It follows that K = N and so N is a normal closure of E over
F'. Therefore, at least in the case of finite extensions, normal closures exist. In fact, this is also
true for transcendental extensions.

Lemma 5.1 Let F be a field and E an algebraic extension of F. If {E;};cr is a collection of
subfields of E normal over F, then the intersection K of the E; is normal over F.

PROOF The intersection K is clearly a field. If « € K, then a € E;, for each i € I. This implies
that the minimal polynomial m(«, F) splits over E;, for each ¢ € I, and hence over K. It follows
that K is normal over F'. m]

Theorem 5.2 If E is an algebraic extension of F, then there is a normal closure of E over F.

PROOF Let C' be an algebraic closure of E. Then C is an algebraic extension of F, hence of
F. C is also a normal over F'. Thus the collection of normal extensions of I’ containing F is
non-empty. Using the lemma, we see that the intersection N of all such extensions of F' is normal
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and contains E and so is a normal closure of F over F. O

We will now see that normal closures are unique up to isomorphism.
Theorem 5.3 If N and N’ are normal closures of E over F, then N and N’ are F-isomorphic.

PROOF Let C' be an algebraic closure of F' and ¢ : E — C a F-monomorphism. (From
Theorem 2.7 such a monomorphism exists.) From Theorem 2.7 again, we can extend o to a
monomorphism 7 (resp. 7’) from N (resp. N’) into C. Then 7(N) and 7/(N’) are both normal
closures of o(FE) over o(F). From Lemma 5.1, 7(N) N 7/(N’) is normal over o(F') and contains
o(E). By minimality, 7(N) = 7(N) N 7'(N’') = 7/(N'). If we set ¢ = 7/ o7, then ¢ is an
isomorphism from N onto N’. O

Exercise 5.1 Let E be finite separable extension of F' and N a normal closure of E over F.
Show that N is a finite separable extension of F'.

An extension F of F' is a Galois extension if it is both separable and normal. In the case of
fields of characteristic 0 or of finite fields such extensions are very common: the extension F only
needs to be a splitting field of a polynomial in F[X]. From what we have seen, a finite extension
of a finite field is a Galois extension.
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Chapter 6

The Galois group

If ' is an extension of F', then the collection of automorphisms of E fixing F', together with the
composition of mappings o, form a group called the Galois group of the extension E of F. We
note this group Gal(E/F). We begin with some basic properties of this group.

Proposition 6.1 If E is a finite extension of F, then the Galois group Gal(E/F) is finite.

PROOF Let (a;)"_; be a basis of E over F' and let us note m; = m(«y;, F). If o € Gal(E/F),
then, for any «;, o(c;) is a root of m;, hence there is a finite number of choices for o(a;). As o
is determined by the values of the o(«;) and those of F'; which are left unchanged by o, there is
a finite number of automorphisms. m|

Let us look at some examples of Galois groups.

Example 1. G = Gal(Q(v/2),Q). An element ¢ € G is determined by its value on v/2. Since
V/2 is a root of the polynomial f(X) = —2+ X2, so is o(1/2), which implies that o(v/2) = +/2.
This leads to two distinct automorphisms, namely the identity and the automorphism 7 defined
by 7(a + bv/2) = a — /2, hence G = {idg(yz): 7} = Zo.

Example 2. G = Gal(Q(V/2),Q). An element o € G is determined by its value on +/2. Since
V/2 is a root of the polynomial f(X) = —2+ X3, so is o(v/2). However, o(v/2) € Q(+/2) C R,
so o(¥/2) = ¥/2, which implies that o is the identity. Thus G = {idg 93 }-

It is interesting to notice that apparently similar extensions may have quite different Galois
groups. It is quite easy to see that the Galois group of C over R has just two elements, namely
the identity and complex conjugation and so is isomorphic to Z,. But what can we say of the
Galois group of R over Q.

Example 3. G = Gal(R/Q). Let o € G and suppose that a < b. Then b — a = y?, for some
y # 0, and

o(b) —o(a) =o(b—a) =o(¥y?) =a(y)? >0 = o(a) < o(b).
If o # idg, then there exists x such that o(z) # z. If o(x) > z, then there exists a rational
number r such that < r < o(z). and o(x) < o(r) < o?(x). However, o(r) = r, because r € Q,
so we have a contradiction, hence o(x) ¥ z. A similar argument shows that o(z) £ x and it
follows thar o is the identity on R. Therefore G = {idr }.
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If the extension E of F' is Galois, then we can be more precise.
Theorem 6.1 If E is a finite Galois extension of F', then we have |Gal(E/F)| = [E : F).

PROOF As F is a finite normal extension of F', E is the splitting field of a polynomial f € F[X],
which is a product of minimal polynomials (see Theorem 5.1 and its proof). However, the ex-
tension E' is also separable, hence the minimal polynomials in the product are separable and it
follows that E is a splitting field of a separable polynomial. Now applying Theorem 3.1 with
E' = E, F' = F and o the identity, we obtain the result. a

Remark From Theorem 6.1, the extension Q(3/2) is not Galois.

6.1 Fundamental theorem of Galois theory

In this section we consider the relation between extensions of a field F' included in a given
extension E and subgroups of the Galois group Gal(E/F). We begin with two definitions. For
H, a subgroup of Gal(E/F), we write

F(H)={zx e FE:0(x)=x, Vo€ H}.

We often write EX for F(H). Tt is easy to check that E¥ is a field and that F C F(H) C E.
EH is called the fized field of H in E. For an intermediate field K, i.e., K/F and E/K, we set

G(K)=Ga(E/K)={0 € Gal(E/F) :0(z) =, Yo € K}.

It is not difficult to show that G(K) is a subgroup of Gal(E/F).

We will note S(Gal(E/F)), or just S(G), the set of subgroups of Gal(E/F) and T(E/F), or
just T, the set of intermediate fields between F' and E. With inclusion both of these sets are
partially ordered.

We recall that, if (A, <,) and (B, <;) are partially ordered sets and ¢ is a mapping from A
into B such that, for z,y € A,

T <qy = d(x) <p ¢(y),

then ¢ is said to order-preserving. On the other-hand, if

T <ay = 9(y) <p o),

then ¢ is said to order-reversing. It is not difficult to see that the mappings F and G are
order-reversing.

Theorem 6.2 Suppose that E is a finite extension of F'. Then E is Galois extension if and only
if F(G) = F, where G = Gal(E/F).

PROOF Let us first suppose that E is a Galois extension of F. We set Fy = F(G). As F C Fp,
every Fp-automorphism is an F-automorphism. If there is an F-automorphism o which is not
an Fy-automorphism, then we can find an element y € Fy \ F such that o(y) # y. However, by
definition of Fy, this is not possible, and so every F-automorphism is an Fy-automorphism. As
E is separable over F' and Fj is an intermediate field, F is separable over Fj (Proposition 3.5).
Therefore, using Theorem 6.1, we have

[E: F| = |Gal(E/F)| = |Gal(E/Fy)| = [E : Ry
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and it follows that Fy = F.

We now turn to the converse. We suppose that F(G) = F. From Proposition 6.1 we know
that the Galois group G = Gal(E/F) is finite. Let G = {01,...,0,}, with o1 the identité. We
need to show that the extension E is both normal and separable. We will first show that it is
normal. We consider an irreducible polynomial f € F[X] with a root « in E. Applying the
automorphisms o; to «, we obtain r distinct images:

a=a; =o1(a),as = o9(a),...,a, = o.(a),

where we have supposed that the first r automorphisms give the distinct images. Let us write

T T
€1 = E Q;, €9 = E a;Q, €3 = E QG Oy vy € = Hai.
i=1 i=1

i<j i<j<k

(These expressions are just the evaluations at (aq,...,q,) of the elementary polynomials in
E(X1,~ c 7XT’)')

Any o € G permutes the «; and so, for each i, we have o(e;) = e;. Therefore the e; belong
to F(G) = F. We now consider the polynomial

g X)=(~a1+X) - (—ap + X)=(—1)"e, + - +ea X2 — e X"+ X" € F[X].
We claim that g = m(a, F). Let h(X) = >_1" , b; X", with h(a) = 0. Then, for every i,
0 = 0i(h(@)) = h(oi(a)) = ().

As the roots of g are roots of h, g divides h and so g = m(a, F') as claimed.

We now return to the polynomial f. As f is irreducible and has « as a root, there is a
constant ¢ € F such that f = cg. As the o; € E, g splits over F, and so does f. We have shown
that E is a normal extension.

We now show that the extension FE is also separable. We take o € E. The polynomial g
which we defined above is the minimal polynomial m(c«, F') and this has distinct roots. Hence «
is a separable element and it follows that the extension F is separable over F. O

In the last result we saw that, in the case of a finite Galois extension, F(G) = F. It is natural
to ask whether there is a subgroup H of G such that F(H) = F. In the next theorem, we will
see that the answer is negative.

Theorem 6.3 If E is a finite Galois extension of F and H a proper subgroup of the Galois
group G = Gal(E/F), then F is properly contained in F(H).

PROOF We will give a proof by contradiction. Suppose that H is a proper subgroup of G and that
F(H) = F. As FE is a finite separable extension of F' we may apply the primitive element theorem
(Theorem 3.3): there exists o € F such that £ = F(a). We define a polynomial f € E[X] by

FX) = I] (~o(e) + X).

occH

For 7 € H, we define the polynomial 7f by applying 7 to the coefficients of f. It is easy to see
that

7f(X) = [] (=ro(a) + X) = f(X).

occH
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Therefore the coefficients of F' are fixed by 7, which implies that f € F[X], because F(H) = F.
Now we notice that « is a root of f. (It is sufficient to take o = id). Thus

deg f=|H| < |G| =[E: F]=[F(a): F] =degm(a, F) < deg f,
a contradiction. This establishes the result. O

We now turn to the fundamental theorem of Galois theory. The theorem has three parts,
which we will handle separately.

Theorem 6.4 Let E be a finite Galois extension of a field F, with Galois group G. As above
we write S the set of subgroups of G and T for the set of intermediate fields between F and E.
Then the mappings F : S — T and G : T — S are bijections, each one being the inverse of
the other.

PROOF First, let us consider the mapping GF. We take a subgroup H of G. Then
c€H=o(x)=xVereF(H) =o€ Gal(F/F(H))=GF(H).

Therefore H C GF(H). Suppose that we do not have equality. Using Propositions 3.5 and 5.3
we see that E is a finite Galois extension of F(H). As H is a proper subgroup of GF(H) =
Gal(E/F(H)), from Theorem 6.3, with F(H) as F, then F(H) is properly contained in itself, a
contradiction. It follows that we have H = GF(H).

We now consider the mapping FG. Let K be a field intermediate between F' and E. Using
Propositions 3.5 and 5.3 we see that F is a finite Galois extension of K. Then, from Theorem
6.2, F(Gual(E/K)) = K, i.e., FG(K) = K. This finishes the proof. O

Up to now we have seen that, in the case of finite Galois extensions, the mappings F and
G are order-reversing bijections. We will now see that these mappings have other properties,
namely they associate certain types of subgroups with particuler sorts of intermediate fields.

We need a definition. If K is a subfield of a field E and ¢ an automorphism of F, then o(K)
is a subfield of E. Such a subfield is called a conjugate subfield of K.

Theorem 6.5 Let E be a finite Galois extension of F' and G the associated Galois group. If
H is a subgroup of G, 0 € G and K = F(H), then F(cHo ') = o(K), i.e., F associates a
conjugate subgroup to a corresponding conjugate subfield.

PROOF We have

FloHo ™) = {xcE:or0 Yz)=aVrec H}
= {reE:7m(c x)=0""(2)Vr € H}
{reE:07(z)e FH)} = o(K).

This ends the proof. |
We now consider normal subgroups of the Galois group. We notice first that, if K is an

intermediate field, then F is always a normal extension of K (Proposition 5.3); however, K may
not be a normal extension of F.
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Theorem 6.6 Suppose that E is a finite Galois extension of F' and G the associated Galois
group. Then K is a normal extension of F if and only if H = Gal(E/K) is a normal subgroup
of G. In this case the Galois group Gal(K/F) is isomorphic to the quotient group G/H.

In addition, for any subgroup H (not necessarily normal),

[K : F]=[G: H| and [E: K]=|H|.

PROOF Let K be an intermediate field which is a normal extension of F and C an algebraic
closure of F, with C/E. (From Exercise 2.3 such an algebraic closure exists.) Suppose that o
is an F-monomorphism from K into E, thus into C. As K is separable over FE, we may extend
o to an F-monomorphism ¢ : E — C (Theorem 3.2). As E is a normal extension of F, from
Proposition 5.2, & is an F-automorphism of E. Hence, every F-monomorphism o of K into E
is a restriction of an F-automorphism ¢ of E. In addition, clearly every F-automorphism of E
restricted to K is an F-monomorphism of K into E. Thus the F-monomorphisms from K into
E are the restrictions to K of F-automorphisms of E, i.e., of elements of 7 € G. As K is a
normal extension of F', using Proposition 5.2 again, we see that 7 is an F-automorphism of K.
If K = F(H), then with Theorem 6.5 we have

FH)=K=7(K)=F(tHr")= H=rHr" !,

and so H is a normal subgroup of G.
Now we suppose that H is a normal subgroup of G. For any o € G, we have H = c Ho~!.
Then, for K = F(H),
o(K)=F(ocHo ') =F(H) =K.

Let f € F[X] be irreducible with a root o € K. Because K C F and E is a normal extension of
F, all the roots of f lie in E, so E contains a splitting field S of f, which is an extension of K. If
o’ is another root of f, then using Proposition 2.2 with ¢ = id, we may find an F-isomorphism
o : F(a) — F(o’), which is such that o(«) = /. Now, applying Theorem 2.2, we can extend
o to an F-automorphism ¢’ of E’. We would like to extend ¢’ to an F-automorphism of E. We
take an algebraic closure C of E’, which is an extension of E. Then we may consider ¢’ as a
monomorphism of E’ into C, which we can extend to 6 : F — C. However, F is a normal
extension of E’, because FE is such an extension of F' and so, from Proposition 5.2, 6(F) = E.
Thus, ¢ is an F-automorphism of E, such that 6(a) = o’. As6(K)=Kanda € K,o' € K. Tt
follows that K is a normal extension of F'.

We have proved the hardest part of the theorem. Now we turn to the remaining parts. First,
we show that Gal(K/F) ~ G/H, if H<1G. Consider the mapping

¢:Gal(E/F) — Gal(K/F),0 — 0|k

In the first part of the proof we saw that the elements of the Galois group Gal(K/F) are the
restrictions to K of the elements of the Galois group Gal(E/F). Hence, the mapping ¢ is an
epimorphism. Also,

Ker¢ = {0 € Gal(E/F) : 0| =id|x} = Gal(E/K) = H.

It follows that
Gal(E/F)/H ~ Gal(K/F).

To conclude, we notice that

|G|:[E:F]:[E:K][K:F]:|H|[K:F]:>[K:F]:||IC;||:[G:H]
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and
) 7[E:F]7 |G| B
[E.K]f[ :F]7|G\/| |7|H\

This ends the proof O

Remark We may sum up the results of Theorem 6.6 in the following way. If H is a subgroup of
the Galois group G = Gal(E/F) and K the corresponding intermediate field between F' and E
(K = F(H)), then
(B K] = |H| = |Gal(E/K)|
and
[K:F]=[G:H].

If, in addition, H is a normal subgroup of G, then K is a normal extension of F' and we may
extend the second line to obtain

K :F| =[G : H| = |G/H| = |Gal(K/F)|.

The Theorems 6.4, 6.5 and 6.6 which we have just proved are usually handled together under
the name of the fundamental theorem of Galois theory. As two of the parts are rather long, it
seems to us preferable to divide the theorem into parts.

We have seen that a finite extension F of a field F' gives rise to a finite group of automor-
phisms of F, namely the Galois group Gal(E/F). Suppose now that we have a finite group of
automorphisms G of a field E. It is natural to ask whether there exists a subfield F' of E such
that G is the Galois group Gal(E/F'). This is in fact the case as we will now see.

Let E be a field and G a finite subgroup of the group of automorphisms of E. We suppose
that |G| = n and set
F=EY={zecE:g(x)=ux YgecG}.

F is clearly a subfield of FE; it is called the fized field of G in E.
Theorem 6.7 (Artin) The field E is a finite Galois extension of F' and
Gal(E/F) =G.
PROOF We define an action ® of the group G on F :
b:GxE— E, (g9,2) — g(x).
Let us take o € E and note O, the orbit of a:
On ={9(a) : g€ G} ={an,...,as},

with oy = o and s < n. We set
S

f(X) = H(—Oék + X).
k=1
An element of G permutes the «;; given that the coefficients of the polynomial f are symmetric
polynomials in the «;, these coefficients are fixed by G and so f € F[X]. Hence every element
a € F is the root of a f € F[X], with deg f < n. As the roots of f are distinct, E is a separable
extension of F. From Proposition 3.2, E is a finite extension of F and [E : F] < n.
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We need to show that E is a normal extension of F'. From the primitive element theorem,
there exists & € E such that E = F(«a). As the roots of the minimal polynomial m(a, F)) lie in
the orbit of «, which is contained in F, F is a splitting field of m(«, F); it follows from Theorem
5.1 that E' is a normal extension of F. We have shown that F is a Galois extension of F'.

To conclude, we show that G is the Galois group Gal(E/F'). By definition of F', every element
of G fixes the elements of F, so G C Gal(E/F). In addition, from Theorem 6.1, we know that
|Gal(E/F)| = [E : F] < n, hence

n =G| < |Gal(E/F)| < n

and it follows that
G = Gdl(E/F).

This ends the proof. |

The theorem which we have just proved has an interesting application. We recall a definition.
If F is a field and F[X;,...,X,] is the ring of polynomials in n variables with coefficients in
F, then we write F(Xy,...,X,) for the field of fractions of F[X7,...,X,]. This field is called
the field of rational functions in n variables over F. The rational fractions of the symmetric
polynomials form a subfield of F/(X;,...,X,), which we will note Fs(X1,...,X,). We are inter-
ested in finding the degree of the extension F(X1,...,X,)/Fs(X1,...,X,) and its Galois group.

If o € Sy, then the mapping defined by X; —— X, (;) induces an automorphism & of the
field F(X4,...,X,). The mapping ¢ — & is a group monomorphism, so S,, may be considered
to be a subgroup of the group of automorphisms of F(Xy,...,X,). The fixed field of S, is
clearly Fs(X1,...,X,). From Artin’s theorem (Theorem 6.7) we deduce that F(Xy,...,X,) is
a finite Galois extension of Fs(X1,...,X,), with Galois group S,,. It folows that the dimension
of F(Xy,...,X,) over Fg(Xy,...,X,) isnl.

Conjugates in Galois extensions

If F is a finite field extension of a field F' and o € E, then we say that any root of the
minimal polynomial m(a, F') is an (F-)conjugate of . It is clear that, for all o € Gal(E/F),
o(a) is an F-conjugate of a. However, in general, not all conjugates of a are of this form. For
example, the Q-conjugates of /2 are v/2, j4/2 and j2+/2, where j is a primitive 3rd root of
unity. If o € Gal(Q(3/2),Q), then Im (o) C R, so there is no o € Gal(Q(+v/2), Q) such that
o(V/2) = j¥/2. The following result ensures that, if £/F is a finite normal extension, then all
F-conjugates of an element o € E are images of a by an element in the Galois group.

Proposition 6.2 If E is a finite normal extension of F and o € E then the set
A={o(a) :0 € Gal(E/F)}
is the set of conjugates of .

PROOF If 8 is a conjugate of «, then, from Proposition 2.3, there is an F-isomorphism ¢ :
F(a) — F(B) such that ¢(a) = 8, since m(«, F') € F[X] is irreducible. Both F(«) and F(3)
are subfields of E. (As FE is a normal extension of F, we may suppose that all the conjugates
of a lie in E.) From Theorem 5.1 there exists a polynomial g € F[X] whose splitting field is E.
Now, g € F(«)[X] and, in the notation of Theorem 2.2, with ¢ = o, we have ¢g* = g. It follows
that there exists o’ € Gal(E/F) such that o'(a) = S. O
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We have shown, at least in the case where E is a normal extension of F', that the set of
conjugates of the element « € F' is composed of elements of the form o(«), where o € Gal(E/F).
However, it may be so that there are members 0,7 € Gal(E/F) such that o(a) = 7(«). We
are interested in knowing the number of automorphisms o € Gal(E/F) which give us the same
conjugate.

Proposition 6.3 Let E be a finite Galois extension of F, a € F and 3 a conjugate of o € L.
Then the number of o € Gal(E/F) such that o(a) = B is equal to the dimension [E : F(a)].

PROOF Let 3 be a conjugate of a. There exists o’ € Gal(E/F) such that ¢’(a) = 5. We have

{c € Gal(E/F):0(a) =8} = {o€Gal(E/F):o(a)=0c'(a)}
= {0 €Gal(E/F):0'"'o(a) = a}.
Thus we have a bijection between the automorphisms o € Gal(E/F) such that o(«a) = 8 and

the automorphisms o € Gal(E/F) such that o(a) = a. However, o € Gal(E/F) fixes « if and
only if 0 € Gal(E/F(c)). From Theorem 6.6 we have

(Gal(E/F(a))| = [E : EGF/Pe),

where ECE/F(@) ig the fixed field of Gal(E/F(a)). Moreover, by Propositions 3.5 and 5.3 E
is a Galois extension of F'(«). Using Theorem 6.2 we obtain

EGal(E/F(Dz)) — F(Oé)

and so
[E: ECAUE/F@)] — [ F(a)].

This ends the proof. m]

Remark If F is a Galois extension of F' and the conjugates of an element o € E are distinct,
then it is natural to ask whether these elements form a basis of E over F. (If E is a Galois
extension of F, then |Gal(E/F)| = [E : F].) This is not in general the case. However, the
normal basis theorem ensures that for some a € F this is the case. (For a proof, see for example
23]).

6.2 Composita

In this section we will be primarily interested in intersections of subgroups of the Galois group.
We begin with a definition. If K and L are subfields of a field F, then the intersection of all
subfields of E' containing these fields, which we note KL, is called the compositum of K and L.
Clearly KL is the smallest subfield of E containing K and L. Of course we may easily generalize
this definition to more than two subfields, even to an infinite number of subfields.

The subset R of E defined by

R={> kili: ki € K,I; € L,|I| < o0}
i€l

is the smallest subring of E containing both K and L. The ring of fractions of R is the compositum
KL in E.
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Theorem 6.8 Let K and L be extensions of F in E, where K is a finite Galois extension of F.
Then

e a. KL is a finite Galois extension of L;
e b. Ifoc € Gal(KL/L), then the restriction of o to K belongs to Gal(K/F) and the mapping
¢:Gal(KL/L) — Gal(K/F),0 — ok
is a monomorphism;

e c. K is a Galois extension of K N L and the image of ¢ is Gal(K/K N L); ¢ is an
isomorphism if and only if KN L =F.

PROOF a. From the primitive element theorem there is an element o € K such that K = F(«),

hence
KL =LF(a) = L(a).

As « is algebraic over F, therefore over L, L(«) is a finite extension of L. As K is a separable
extension of F, « is separable over F', hence over L, and it follows that L(«) is separable over
L. We have shown that KL is separable over L.

We now need to show that K L is a normal extension of L. Let f = m(«, F') and g = m(a, L).
Then g|f. As f has a root « € K and K is a normal extension of F', all the roots of f are in
K. Tt follows that all the roots of g are in K C KL = L(a) and so L(«) is a splitting field of g.
Thus KL is a normal extension of L.

b. Let 0 € Gal(KL/L). We need to show that o(K) = K and 0|k fixes F. For any a € K,
o(a) is a root of the minimal polynomial m(a, F'). As K is a normal extension of F, o(a) € K.
Thus o(K) C K. In the same way, 0~ }(K) C K and so o(K) = K. In addition, the fact that
F C L implies that o fixes I" and so 0| fixes F. Therefore o € Gal(K/F). If T € Gal(KL/L)
and a € K, then

(0oT)k(a) = (oo7)(a) =0 (7()) = o)k © T (),
therefore ¢ is a homomorphism.

We now need to show that ¢ is injective. If o)k fixes each element of K, then o fixes each
element of K and each element of L and so fixes each element of K L. This establishes the
injectivity of ¢. Hence ¢ is a monomorphism.

c. First we show that K is a Galois extension of K N L. As F C KNL C K and K is a
Galois extension of F', from Propositions 3.5 and 5.3, K is a Galois extension of K N L.

We set A = Im¢. A is a subgroup of the Galois group Gal(K/F), thus, by Theorem 6.4,
A = Gal(K/K#). Moreover,

KA = {reK:o(x)=xVo € Gal(KL/L)},

since the elements of A are restrictions of elements of Gal(KL/L) to K. Theorem 6.2 ensures
that any element of K'L fixed by all elements of Gal(KL/L) lies in L. Hence

KA=KnL

and A= Gal(K/KNL),ie Im¢=Gal(K/KNL), as claimed.

Now, ¢ is an isomorphism if and only if Gal(K/K N L) = Gal(K/F). However, Theorem 6.2
ensures that KGU(K/KNL) — | N [, and KG9(K/F) = F. Finally, ¢ is an isomorphism if and
only if K N L = F. This finishes the proof. O

The theorem we have just proved has an interesting corollary linking the degrees of the
extensions over F'.
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Corollary 6.1 Under the conditions of Theorem 6.8 , we have

. [K:F][L:F]
[KL.F]fm.
PROOF We have KL F
[KL:F}:[KL:L][L:F]:[[L:'F]]:[KL:L]
and
[K : F]

[K:F]=[K:KNL[KNL:F] = = [K:KnL).

[KNL:F)
From the previous theorem, KL is a Galois extension of L and there is no difficulty in seeing
that this is also the case for K over K N L. Hence,

[KL: L] =|Gal(KL/L)| = |Gal(K/K N L)| = [K : KN L.

The second equality holds, because in the proof of Theorem 6.8 we showed that the Galois groups
Gal(KL/L) and Gal(K/K N L) are isomorphic. The result now follows. m|

Exercise 6.1 Show that [KL : L] divides [K : F).

We may now consider the image under F of the intersection of two subgroups of the Galois
group and of the group generated by two subgroups.

Theorem 6.9 Let E be a finite Galois extension of F' and Hy, Hy subgroups of the Galois group
G = Gal(E/F). We note K1 = F(H;) and Ko = F(Hz). Then F(Hy N Hy) = K1K> and, if H
is the subgroup generated by Hy U Hy, then F(H) = K1 N K.

PROOF If o fixes each element of K7 K5, then o fixes each element of K7 and each element of Ko,
hence 0 € H; N Hy. On the other hand, suppose that o € H; N Hy. Then o restricted to K or
to Ky is the identity mapping. Therefore a polynomial in elements of K; and K5 is fixed by o
and, more generally, K1 K> is fixed by o. Thus

H NH, = g(KlKg) — ]:(Hl N HQ) = K1 K>.

If 0 € Hi U Hs, then o fixes K; or o fixes Ko. As K1 N Ky C Ky, and K1 N K> C Ky, o fixes
K1 NKy. Hence H C G(K1 NKy). If H # G(K; N Ky), then Ky N K5 is properly contained in
F(H), hence there exists x € F(H) \ K1 N Ky. If # ¢ K1, then we can find 0 € H; C H such
that o(x) # z, hence x ¢ F(H), a contradiction. We have the same situation if + ¢ K5 and so
H = g(Kl N KQ), which implies that .F(H) = K1 n KQ. O

Remark There is no difficulty in extending the above result to n subgroups and n subfields for
any n > 2.

We now return briefly to Corollary 6.1. It is easy to deduce that
[KL:F)<[K:F|[L:F].
However, we do not need the condition on K.

Proposition 6.4 Let E be a finite extension of F'. In addition, let K and L be extensions of F
in E. Then
[KL:F)<|[K:F|[L:F],

with equality if [K : F| and [L : F] are coprime.
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PROOF Let (a;)2, and (B;)7_; be respective bases of K over F' and L over F. Then
K=F(a1,...,am),L=F(p1,...,6n) = KL=F(a1,...,0m,B1,...,0n).
As KL = L(ay, ..., qmn), we have
[KL:L] <m=>|KL:F|=|[KL:L|[L: F] <mn.

Now suppose that (m,n) = 1. As m|[KL : F| and n|[KL : F], mn|[KL : F] and hence the
equality. O

We say that K and L are linearly disjoint over F if [K : F] and [L : F] are coprime. If this
is not the case, then we may have a strict inequality in the equation of the proposition. For
example, if K # F and K = L, then

[KL:F|=[K:F|<|[K:F]|L:F].

If K, L are linearly disjoint over F' and (aq,...,am), (B1,--.,0n) respective bases of K and L,
then a basis of K'L may be found by taking the products «;3;. Indeed, from Corollary 1.5,

KL:F(alv"‘amaﬁlv"wﬁn):F[alw"an’mﬂlw"aﬁn]?

so the elements of KL are polynomials in the o; and 3;. However, an expression of the form
aj’---adm belongs to K, so we may it write it as a linear combination (with coefficients in
F) of the «;. In the same way, we may write an expression of the form Bil .-+ Bin as a linear
combination of the ;. As a consequence, the elements a;3; form a generating set of KL (as
a vector space over F). Given that there are mn such elements and that the dimension of KL
over F'is mn, the o;3; form a basis of K'L.

In Theorem 6.8 we considered the compositum of two extensions of a field, one of which was
Galois. We now suppose that K and L are both Galois extensions of the field F' contained in a
field E. We claim that the compositum KL is a Galois extension of F. As KL is a separable
extension of L and L a separable extension of F', from Theorem 3.7, K L is a separable extension
of F'. Proving that KL is a normal extension of F' is a little more difficult. First we notice that
K and L are splitting fields of respectively polynomials f and g of F[X]. We have

K=F(a,...,an) and L=F(,...,5n),

where a1, ..., q;, (resp. Bi,..., Bn) are the roots of f (resp g) in E. If 74, ..., are the distinct
elements in the set {a1,...,@m,B1,...,0n}, then KL = F(y1,...,7s). The polynomial fg splits
in KL. Let U C KL be asplitting field of fg. Asvy...vs €U, F(y1,...,7s) CU,ie, KLCU.
It follows that K L is a splitting field of fg and so a normal extension of F'. We have shown that
KL is a Galois extension of F', as claimed.

If o € Gal(KL/F), then o € Gal(K/F) and oy, € Gal(L/F'), because K/F and L/F are
both normal.

Theorem 6.10 Let us suppose that K/F and L/F are both normal. The mapping
Y : Gal(KL/F) — Gal(K/F) x Gal(L/F),0 + (0, 0L),

is a monomorphism and ¥ is an isomorphism if and only if K "L = F.
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PROOF The mapping ¢ is clearly a homomorphism and, if o € Gal(K L/F') fixes each element of
K and each element of L, then ¢ fixex each element of K L. Cosequntly, ¢ is a monomorphism.

The mapping 1) is an isomorphism if and only if [KL : F| = [K : F|[L : F], which applies
only under the condition [K'L : L] = [K : F]. This is the case if and only if the mapping

¢:Gal(KL/L) — Gal(K/F),0 — 0|
is an isomorphism. From Theorem 6.8, a necessary and sufficient condition for thisis KNL = F.0O

Remark We have seen that if K and L are both Galois extensions of F', then KL is Galois
extension of F' and we may consider that the Galois group of KL over F' is a subgroup of the
direct product of the Galois groups of K and L over F. In particular, if the Galois groups
Gal(K/F) and Gal(L/F) are both abelian, then so is the Galois group Gal(KL/F).

6.3 The fundamental theorem of algebra

It is a well-known that any nonconstant complex polynomial has a complex root. This is the
fundamental theorem of algebra. In this section we will give a proof based on the field theory we
have developped.

Proposition 6.5 The field of complex numbers C has no extension of degree 2.

PROOF Suppose tht C has an extension F of degree 2. If « € E \ C, then degm(a, F) = 2.
However, every polynomial f € C[X] of degree 2 has a complex root, hence m(«, F') is reducible,
a contradiction. Hence the result. a

Now we consider extensions of the field of real numbers R.
Proposition 6.6 R has no extension of odd degree strictly greater than 1.

PROOF Suppose that R has an extension E with odd degree strictly greater than 1. Let o €
E\ R. If degm(a, R) is odd, then the polynomial m(a,R) has a real root and so is reducible,
a contradiction. It follows from Proposition 1.4 that [R(«) : R] is even. As

[E:R] = [E: R(a)][R(a) : R),

[E : R] is even. O
We are now in a position to prove the fundamental theorem of algebra.

Theorem 6.11 If f € C[X] is nonconstant, then f has a root in C.

PROOF We will first prove the result for a nonconstant polynomial f € R[X]. We note g(X) =
(1+X?)f(X) € R[X] and let E be a splitting field of g. The complex numbers +i and R belong
to E so C is contained in E. As the characteristic of R is 0, g is separable and so F is separable
(see Theorem 3.8). Therefore E is a Galois extension of R. We now set G = Gal(E/R), i.e., G
is the Galois group of g. If |G| = 2°m, with m odd, then G has a (Sylow-)subgroup H of order
2°. We set K = F(H). Then, from Theorem 6.6,

[K:R]=[G: Hl =m.
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As m is odd and R has no extension of odd degree strictly greater than 1, m = 1. Thus G is a
2-group.

We now set H' = Gal(E/C) (the Galois group of g considered as a member of C[X]). As
H' is a subgroup of G, H' is a 2-group. If |[H'| = 2!, with ¢ > 1, then H’ has a subgroup H" of
index 2. If K" = F(H"), then

[K":C]=[H":H"] =2,

which contredicts Proposition 6.5. It follows that H' = {id} and E = C and so all the roots of
g, and hence of f, lie in C.

We now consider polynomials f € C[X]\ R[X]. If we set g = ff, where f is the polynomial
whose coeflicients are the complex conjugates of those of f, then g € R[X]. If « is a root of g,
then «a is a root of f or of f. This implies that « or & is a root of f. Hence f has a root in C.
This ends the proof. m]

6.4 Normal closures

In this short section we give a useful characterization of the normal closure N of E over F' in
the case where F is a finite extension of F. In Section 5.1 we saw that, if E = F(aq,...,ap)
and m;(X) = m(«;, F), then a splitting field of m(X) = m1(X)---m,(X) is a normal closure
N of E over F. We recall that if Ly and Ly are subfields of a field F, then L L is the smallest
subfield of E containg both L and L. More generally, if Lq,..., L, are subfields of E, then
L1Ls...L; is the smallest subfield of E containing the Lj;.

Theorem 6.12 Let E be a finite extension of ' and N the normal closure of E over F in an
algebraic closure C of E. Then
N= [ e®.

c€Gal(N/F)

PROOF We use the description of N as the splitting field of m = mgy---m, seen above. If
0 € Gal(N/F), then o(F) = F and o(a;) € N, for all 4, because the o(a;) are roots of m. Hence
o(E) C N, for all 0 € Gal(N/F) and so

II eoECcN

0c€Gal(N/F)

If « € N is a root of m, then « is a root of m;, for some i. From Proposition 2.3, we know
that there is an F- isomorphism 7 : F(«;) — F(a), with 7(a;) = a. Using Theorem 2.7, we
may extend 7 to a monomorphism o from N into C. As N is a normal extension, we know from
Proposition 5.2 that ¢ is an automorphism of N, i.e., ¢ € Gal(N/F'). Given that o; € E and
o(a;) = a, we have a € o(E). It follows that

o€ H o(E)= N C H o(E).

oc€Gal(N/F) oc€Gal(N/F)

This ends the proof. ]
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Chapter 7

The Galois group of a polynomial

In this chapter we continue our study of the Galois group. If f is a polynomial with coefficients
in the field F' and E a splitting field of f, then we call Gal(E/F) a Galois group of the polynomial
f. As splitting fields of a polynomial are isomorphic, any two Galois groups of a polynomial are
isomorphic, so we often, with an abuse of language, speak of the Galois group of a polynomial.

Proposition 7.1 If E is a splitting field of a separable polynomial f € F[X], then E is a Galois
extension of F'.

PROOF From Theorem 2.1 we know that the extension F is finite. Being a splitting field of a
polynomial, we also know that it is normal, so we only need to show that F is separable. Now,

E = F(ay,...,a,), where the a; are the roots of f. Each minimal polynomial m; = m(«a;, F)
divides an irreducible factor of f. As the irreducible factors of f do not have multiple roots,
no m; has a multiple root. Thus each «; is separable. From Theorem 3.8, F(aq,...,ap) is
separable. O

Corollary 7.1 If G = Gal(E/F) is the Galois group of a separable polynomial, then
|G| = [E : F].

PROOF It is sufficient to apply Theorem 6.1. O

Different polynomials over the same field may have the same Galois group. This may be
useful in determining the Galois group of a given polynomial. For example, if f € F[X] has
the splitting field E and a € F, then E is also the splitting field of g(X) = f(—a + X) : if
Qi,...,a, are the roots of f inE, then a + a,...,a+ a,, are the roots of g in E. The following
result is useful, because certain methods of determining the Galois group only apply to monic
polynomials with integer coefficients.

Proposition 7.2 If f € Q[X], then there is a strongly separable monic polynomial g € Z[X]
with the same Galois group over Q as f.

PROOF Let E be the splitting field of f € Q[X] in C. If we set f; = W7 then f; has the
same roots as f and these roots are simple. Therefore f; is strongly separable and has the same
splitting field as f.

Now let u be the lem of the denomoinators of the coefficients of f;. If we set fo = uf;, then
f2 € Z]X] and has the same roots as fi.
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Finally, if fo(X) = > ;a; X", then we set
n—1
g(Y) = ar(a,)" YR+ Y € Z]X].
k=0

As
9(anX) = a3, f2(X),
g has the same roots as f up to multiplication by the contant a, and so has the same splitting

field as fo. Thus we have found a monic strongly separable polynomial in Z[X] with splitting
field F. m|

By Cayley’s theorem, any finite group of cardinal k£ can be identified with a subgroup of
Sk, the group of permutations of the set Ny = {1,...,k}. In general, a Galois group G of a
polynomial can be identified with a subgroup of a group of permutations S,,, where n is much
smaller that the cardinal of the group.

Proposition 7.3 If f € F[X] has n distinct roots in a splitting field, then the Galois group of
f is isomorphic to a subgroup of S,.

PROOF We set A = {ay,...,a,} the set of roots of f in a splitting field E. If 0 € Gal(E/F),
then o permutes the roots of f, so we may define a mapping

¢:Gal(E/F) — Sa,0 — 04,

where S4 denotes the group of permutations on A. The mapping ¢ is clearly a group homomor-
phism. The F-automorphism o is determined by its effect on the roots of f, so ¢ is injective.
Thus Gal(E/F) is isomorphic to a subgroup of S4. As S4 is isomorphic to S,, Gal(E/F) is
isomorphic to a subgroup G of 5. ]

We have assumed a certain order on the roots of the polynomial. It is natural to ask what
happens when we change the order. Suppose that we choose a different ordering of the roots:

A={a),...,a}.
We obtain an isomorphism ¢ of the Galois group Gal(E/F) onto another subgroup G’ of S,,. If
o€ Gal(E/F), ¢(o) = s and ¢'(0) = ¢, then
o(a;) = o) and o(a) = a;,(i),
for i = 1,...,n. There is a unique permutation r € S, such that aj = a,;), for all i, hence we
can write
Qgr(i) = J(Oér(i)) = O’(Oz;) = 0/5/(1') = Qpg/(4)-
Therefore, for all 4,

1

sr(i) =rs'(i) = r lsr =8 = G' =r~'Gr,

i.e., G’ is a conjugate of G.

The general polynomial

The general polynomial of degree n over a field F' is
fY)=Y" =XV 4+ XV 2 — o ()" Xy 4+ (1)"X™ € F(X1, ..., Xa)[Y],

where F'(X1,...,X,) is the rational function field over the field F' in n variables. It is not difficult
to determine the Galois group of f.
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Theorem 7.1 The Galois group of the general polynomial f is the symmetric group Sy.

PROOF Let L = F(Xy,...,X,,). Then f € L[Y]. Now let Z3,...,Z, be the roots of f in some
extension of L. Then X; = s;,(Z1, ..., Z,), where s; is the ith elementary symmetric polynomial.
Hence L = F($1(Z1, .1 Zn), -y 8n(Z1,...,Zy)) and a splitting field of f is given by

L(Zl,...7Zn) = F(Sl(Zl,...,Zn)7...,Sn(Zl,...,Zn),Zl,...,Zn) = F(Zl,Zn)
Therefore
Galp(f) ~ Gal(F(Zy, ..., Z0)/F(s1,-..,s0)) ~ Gal(F(Zy, ..., 2,) | Fs(Z1, ..., Zy)) = Sn,

according to the discussion after Theorem 6.7. O

7.1 Irreducible polynomials

Before studying the particular properties of Galois groups of irreducible polynomials, we will
revise the notion of the action of a group on a set. We recall that a group G, with identity e,
acts on a set X if there is a mapping ® : G x X — X, called an action and usually written
®(g,x) = g.x, such that

e cx=u, forall x € X;
e (gh).x = g.(h.x), for all g,h € G and x € X.

(We sometimes refer to the action we have just defined as a left action to distinguish it from a
right action, where we replace the second condition by the following;:

(gh).x = h.(g.x),

for all g,h € G and x € X. Of course, if the group G is abelian, then there is no distinction
between left and right actions.)

The orbit of an element x € X, written O,, is the collection of y € X for which there exists
g € G with y = g.x. We define a relation R on X by 2Ry if y € O,. Then R is an equivalence
relation on X and the distinct orbits are its equivalence classes. We say that the action is tran-
sitive if there is a unique orbit, i.e., for any z,y € X, there is a ¢ € G, with g.x = y. The action
is free if g.x = x implies that g is the identity of G.

If x € X, then the stabilizer of x, which we write G, is the set of elements of G which leave
x unchanged:

G,={9€G:gax=nxa}.
Clearly G, is a subgroup of G. The following result is known as the orbit-stabilizer theorem.
Theorem 7.2 If G is finite and x € X, then

@
O =[G :G,] = .
0:=16: Gl = 1
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PROOF We define a mapping
¢:G— Oy, +— g.x.

¢ is clearly surjective. As G, is a subgroup of G,
#(g) = ¢(h) <= g.x = hax <= g 'h € G,.

Therefore we have a well-defined bijection ¢ : G/G, — O, defined by

$(9G=) = ¢(9)-

It follows that

|G|
0. =[G:G,] = )

This ends the proof. o

If f € F[X] is separable, A = {a1,...,a,} the roots of f in a splitting field £ and G =
Gal(E/F), then the mapping
O:Gx A (0,0;) — o)
defines an action of G on A. (As the Galois group G of a polynomial of degree n is isomorphic to
a subgroup H of S,,, we may consider that G acts on N,,.) For irreducible, separable polynomials
we can say more.

Theorem 7.3 Let f be a separable polynomial in F[X]| of degree n with Galois group G =
Gal(E/F). If f is irreducible, then

e a. n divides the order of G;

e b. the action of G on A is transitive.

PROOF a. Let a € E be a root of f. From Proposition 1.4 we have [F(a) : F|] = n. Now
[F(o) : FJ|[E : F]. In addition, F is a Galois extension of F' and so, from Corollary 7.1,
[E : F] = |G|. Therefore n divides |G|.

b. Let f € F[X] be irreducible and «, o' two roots of f in E. From Proposition 2.3, with
F' = F and o = idp, we obtain an isomorphism & from F(«) onto F(a') extending idg such
that 6(a) = o/. We now apply Theorem 2.2 to obtain ¢ € Gal(E/F) taking « to «’. This
implies that the action of the Galois group on A is transitive. a

Remark We recall that a group of permutations G on a set X is said to be transitive if for any
pair (x,y) € X2, there exists 7 € G such that () = y. Thus, if f is irreducible, then Glais a
transitive permutation group.

The second part of the theorem which we have just proved has a partial converse.

Proposition 7.4 Let f € F[X], with deg f > 2, and G be its Galois group. If f has two distinct
irreducible factors, then the action of G on A is not transitive.

PROOF Let oy, ag be roots of f and g1, g2 be distinct irreducible factors of f, with gi(a;) =
g2(a2) = 0. If 0 € G and o(ay) = ag, then

g1(a2) = g1(o(a1)) = o(gi(a1)) = 0.
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We may suppose that g; and g are monic polynomials. Then both g; and g» are minimal poly-
nomials of ao, which is impossible. Therefore the action of G on A is not transitive. O

Remark If f = Ag™, where A € F, g € F[X] is irreducible and m > 2, then the action of G on
A is transitive. It is sufficient to notice that a splitting field of ¢ is a splitting field of f and then
apply the second part of Theorem 7.3.

7.2 Cyclotomic extensions

We consider the polynomial f(X) = —1+ X" € F[X]. The roots of this equation in a splitting
field are called nth roots of unity. If char F' = 0 or char F = p > 0, with (p,n) = 1, then f is
separable:

f(X)=nX""! = ged(f, f') = 1.

In this case, f has n distinct roots in a splitting field E. The set of these roots, which we will
note p,, form a subgroup of the multiplicative group of E. As p,, is finite, by Theorem 3.3, u,
is cyclic. A generator ¢ of this group is said to be a primitive nth root of unity. An extension
E = F(¢), where ¢ is a primitive nth root of unity is called a cyclotomic extension of F. In
fact, E is a splitting field of the polynomial f(X) = —1 + X", so we have E = F(u,) and it
follows that E is a Galois extension of F'. Clearly, if ¢’ is another primitive nth root of unity,
then F = F({’). We write u* for the subset of u,, composed of primitive nth roots of unity. The
cardinal of p is ¢(n), where ¢ is Euler’s totient function.

Exercise 7.1 Show that, if char F = p > 0 and (p,n) # 1, then there is no primitive nth root
of unity.

Up to now we have assumed that char FF = 0, or char F' = p > 0 with (p,n) = 1. In this
section we will continue to do so. We consider the Galois group of the cyclotomic extension

F(pn).

Proposition 7.5 If o € Gal(F(u,)/F), then there is an integer a = a(o), with (a,n) =1, such
that o(x) =z, for all x € .

PROOF Let ¢ be a generator of u,,. Then
o(Q)" =0o((")=0(1) =1

and, for j=1,...,n—1, , .
a(¢) = o(¢?) # 1,

because ¢/ # 1 and o is injective. Hence o(¢) is also a generator of u,. This implies that
o(¢) = ¢, where (a,n) = 1. Now take any = € p,,. There exists an integer k such that z = ¢*,
SO

o(z) =0o(¢") =0(Q)fF = (¢ = (F)* =2,

which is what we set out to prove. O

We may define a mapping ¢ from Gal(F(p,,)/F) into Z., the group of units of Z,,, by setting

¢(0) = [a(0)], where [u] denotes the congruence class modulo n of w.

Theorem 7.4 The mapping ¢ is a monomorphism.
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PROOF Let o and 7 be elements of Gal(F(uy,)/F) and ¢ a primitive nth root of unity. Then

(07)(Q) = o(7(0)) = o(¢"7) = o(O)™7) = (¢*7)7) = ¢,

In addition, (o7)(¢) = ¢*°7) and it follows that a(o7) = a(c)a(r)( mod n). Therefore

[a(o7)] = [a(0)][a(T)] = ¢(oT) = d(0)(T).

We have shown that ¢ is a homomorphism. It remains to establish the injectivity. If ¢ is in the
kernel of ¢, then a(c) = 1 and so o(¢) = (. As o fixes all the elements of F, o is the identity on
F(un), ie., ¢ is injective. ]

Corollary 7.2 If E is a cyclotomic extension of F, then the Galois group G = Gal(E/F) is
abelian.

PROOF As @ is isomorphic to a subgroup of Z), which is abelian, G is abelian. a

Remark The Galois group of a cyclotomic extension may be cyclic. This is so if n = 2*, with
k =1,2, or n = p*, where p is an odd prime and k € N*, because in these cases the group ZX
is cyclic (see [21], for example).

Exercise 7.2 Let n = 5 or n > 6. Show that the injection of Gal(R(u,)/R) in Z)} is not
surjective.

It is interesting to consider composita of cyclotomic extensions. To do so we will need a little
elementary group theory.

Theorem 7.5 Let G be a group, with identity e, and x, y elements of G which commute. If
o(x) =m, o(y) =n and (m,n) =1, i.e., m and n are coprime, then o(xy) = mn.

PROOF We first notice that (x) N (y) = {e}. By Lagrange’s theorem, |(z) N (y)| divides both m
and n. As (m,n) =1, we have (x) N (y) = {e}. Now,

(zy)™ = (&™) (y")" = ee =e.

On the other hand, if (zy)* = e, then 2* = y=* and so z* € (x) N (y). Hence, 2* = e, which
implies that m|k. In the same way, we have n|k. It follows that mnl|k, because (m,n) = 1 and
so o(zy) = mn. |

It would be natural to assume that if  and y commute then o(xy) = [m, n]. However, this is
not true. We only need to consider the case where y = 27! and = # e; then o(zy) = o(e) = 1 and
[m,n] = [m,m] > 1. On the other hand, we have a result which is quite close to the statement
we have just considered. It follows from the theorem.

Corollary 7.3 Let G be a group, with identity e, and x, y elements of G which commute. If
o(x) = m, o(y) = n, then there are powers a of x and b of y such that o(z*y®) = [m,n].

PROOF If py,...,p, are the primes in the decomposition of m and n and m = [];_, pi" and

n =TI, P, then [m,n] = [T5_, p™, where m; = max(a;, ;). We divide the indices i into two

% i

distinct classes, I being composed of those i for which «; = m; and J of those indices for which

B; = m; > «;. We set
m = Hpm" and n' = Hpm"’.
iel ieJ
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Clearly [m/,n'] = [m,n]. We also notice that m’|m, n'|n and

1L /

oair) =ml, olyi) =

and (m/,n’) =1,

hence, by Theorem 7.5,

which completes the proof. O

We now consider the compositum of two cyclotomic fields.
Proposition 7.6 The compositum of the fields F(iy,) and F(pun) is F(fmn))-

PROOF Because [m,n] is a multiple of m and n, both the fields F(u,,) and F(u,) are included
in F'(f4{,n)), hence the compositum of these two fields is also included in F'(4[m, n)). Now let ¢,
(resp. () be an mth (resp. nth) primitive root of unity. From Corollary 7.3, there are powers
a of (, and b of ¢, such that o(C%(") = [m,n], which implies that a primitive [m, n|th root of
unity lies in the compositum F (g, ) F (ptn). Therefore F(pupm n)) C F(pim)F (). We thus have
the equality we were looking for. O

Remark We might be tempted to think that F(um) N F(in) = F(l(m,n)). As m and n are both
multiples of (m,n), we certainly have F'(it(m n)) C F(ttm) N F(pn), however the other inclusion

may not be true. Here is an example. We set F' = Q(v/3) and we consider F(u3) and F(u4). As
(3,4) =1, F(us,4)) = F(1) = F. On the other hand,

F(us) = Q(V3,4) = F(ps) = F(ps) N F(us) = Q(V3,i) # F.

With more knowledge of the field F we can say more about cyclotomic extensions. We will first
consider the case where F' = Q. To do so we will introduce cyclotomic polynomials.

Exercise 7.3 Let F be field and & (resp. &) an mth (resp. nth) root of unity. Show that the
compositum F (&) F(§2) is included in the cyclotomic field F(pfm »)-

7.3 Cyclotomic polynomials

In this section we will be concerned with a class of polynomials with coefficients in Q. The nth
cyclotomic polynomial ®,, € C[X] is defined by

o, (X) = [] (~¢+X).
cens,

The degree of @, is ¢(n), because |uk| = ¢(n).
If 2 € pn, then o(2)|n, hence z € Ugj,py;. On the other hand, if d|n and z € ), then z € py,.
Thus pi,, = Ugpppey. As pyNpy =0, if d # d', the sets p, with d|n, form a partition of p, and

1+ X" =[[ [ [[ (== +X) | =]] ®a

dln \z€py d|n

In fact, all the coefficients of ®,, are integers.
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Proposition 7.7 The polynomial ®,, belongs to Z[X] and is monic; in addition, its first coeffi-
cient is 1, if n > 2.

PROOF From the definition of ®,,, it is clearly monic. We now prove by induction that ®,, € Z[X]
and also that the constant term of the polynomial is 1, if n > 2. As ®;(X) = -1+ X and
Dy(X) =1+ X, the claim is true for n =1 and n = 2. Suppose now that it is true up to n — 1,
with n > 2, and consider the case n. We have

“1+Xx"=| [ ®a|@n=A2,
d|n,d<n
If A(X) = Y0 a; X" and ©,(X) = Z;:o b; X7, then a; € Z, for all i and agp = —1. As
apbg = —1, we have by = 1. Also,

agby +a1bg = —b1+a1 =0=—= by = a; € Z.
In addition, as
agbs + a1by + asbg = —bs + a1b1 + a9 =0 = by = a1b1 + ay € Z.

Continuing in the same way, we see that b; € Z, for all j. a

r—1

Exercise 7.4 Show that, if p is a prime number and r € N*, then ®,-(X) = &,(X? ).

We have seen that the coeflicients of a cyclotomic polynomial are integers. We can say more.
In particular, any integer figures as a coefficient of at least one cyclotomic polynomial. A proof
of this may be found in [17]. For n > 3, the degree is even so there is a middle coefficient. If n
is a power of 2, then this coefficient is 0; otherwise it is an odd number. This is proved in [7].

We may thus consider the polynomials ®,, as members of Z[X]. We will now show that they
are irreducible over Q. However, we need some preliminary results.

If £ is a polynomial in Z[X] and p a prime number, then we may define f € Fy[X] by replacing
the coeflicients of f by their congruence classes modulo p. The polynomial f so obtained is called
the reduction modulo p of f. Clearly, if f = AB, then f = AB. The next result needs a proof.

Lemma 7.1 Let F be a field and A, B € F[X], with A irreducible. If A and B have a common
root, then A divides B.

PROOF Let a be a common root of A and B. If A does not divise B, then A and B are coprime
and so there exist S, T € F[X] such that

SA+TB=1= S(a)A(a) + T(a)B(a) =1,
which is a contradiction, because « is a root of A and B. Hence A divides B. ]

Lemma 7.2 If p is a prime number and As,..., A, € Fp[X], then (31, A)P = Y i AP,
Also, if A(X) € Fp[X], then A(X)? = A(XP).
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PROOF As char F,[X] = p and p|(?), for i = 1,...,p — 1, we have (A; + A3)? = A} + A}, An
induction argument allows us to obtain the result for any n.
If A(X)=>"",a; X" then from the first part of the proof,

m m m

AX)P =D (0 X =) alX? =) " al XP' = A(XP).
0 =0 1=0

1=

This ends the proof. |

Before turning to the proof of the irreducibility of cyclotomic polynomials, we recall the fol-
lowing result, which follows from Gauss’s lemma:

If A€ Z[X] and A = BC, with B,C € Q[X] and monic, then B,C € Z[X].
Theorem 7.6 For all n € N*, the polynomial ®,, is irreducible over Q.

PROOF Let A be a monic, irreducible polynomial in Q[X], which divides ®,,. If « € C is a root
of A, then « is also a root of ®,, and so a primitive nth root of unity.

As A divides ®,, and ®,, divides f(X) = —1+ X", there exists B € Q[X] such that AB = f.
As A is monic, so is B. Now using the result cited before the statement of the theorem, we see
that A, B € Z[X]. In addition, A and B are coprime. (If this were not the case, then A and B
would have a common root and their product at most n — 1 distinct roots, a contradiction.)

Let p be a prime number such that p < n and p fn. We will show that oP is a root of A.
If this is not the case, then af is a root of B. (As « is a root of f, any power of « is also a
root of f, hence of A or B.) It follows that « is a root of B(X?). From Lemma 7.1, we have
A(X)|B(XP). Taking reductions modulo p, we obtain A(X)|B(XP?). If C € F,[X] is irreducible,
then, using Lemma 7.2,

C(X)|A(X) = C(X)|B(XP) = C(X)B(X)? = CO(X)|B(X).

Hence A and B are not coprime in Z,[X]. However, A and B are coprime, so we have a
contradiction. It follows that o is a root of A, and also a primitive nth root of unity.

If 1 < s < n) is coprime with n and has the prime factorization s = p; - - - pg, then all the p;
are coprime with n. From what we have just seen, aP! is a root of A, and also a primitive nth
root of unity. Replacing a by P! we obtain that aP'P2 is a root of A and also a primitive nth
root of unity. continuing in the same way, we see that o is a root of A and also a primitive nth
root of unity. It follows that all the primitive nth roots of unity are roots of A and therefore
A=, ie., ¢, is irreducible. O

Corollary 7.4 The cyclotomic polynomial ®,, is the minimal polynomial over Q of each primi-
tive nth root ¢ of unity, i.e., m(¢, Q) = ®,,.

Exercise 7.5 Show that the polynomial
Pn(X) =1+X+--+X"€ Q[X]

is irreducible if and only if n + 1 is a prime number.
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7.4 Cyclotomic extensions of the rationals

We now consider the Galois group of certain polynomials in Q[X], namely the cyclotomic poly-
nomials.

Theorem 7.7 The Galois group G = Gal(Q(pr)/Q) is isomorphic to Z. .

PROOF From Theorem 7.4 we know that G is isomorphic to a subgroup of Z). However, if ( is
a primitive nth root of unity, then

Gl =1Q(C) : Q] = deg @y, = ¢(n).

The second equality comes from Corollary 7.4. As |ZX| = ¢(n) and Q(uy) = Q(C), G is isomor-
phic to Z%. |

In the remark after Proposition 7.6 we observed that F'(ii(m n)) C F(itm) N F'(it,) and then
gave an example to show that equality is generally not the case. However, using the theorem we
have just proved, we may show that, in the case where the field F' is Q, then we do indeed have
equality.

Corollary 7.5 The property
Q1(m,m)) = Qlim) N Q(pn)
is true for all m,n € N*.
PROOF As Q(ft(m,n)) C Q(ttm) N Q(pn), we only need to prove that

[Q(1(m.ny) : Ql = [Qsm) N Q(n) : Q-

From Proposition 7.6 we know that Q(im)Q(tn) = Q(km,n). Now, using Corollary 6.1, we

obtain
Q) : QUIQn) : Q)

[Q(Hpm.n) - QI = [Q(km) N Q) : Q]

Now, using the theorem, we have

_ p(m)o(n)
D = Q) 1 Q) - @
However,
o([m, n))p((m, n)) = p(m)é(n) = [Qum) N Qun) : Q] = d((m, n)) = [Q1im.n)) : Ql-
This finishes the proof. a

There are other interesting questions concerning cyclotomic extensions of the rational num-
bers. We will now consider two of these, namely the number of roots of unity in a cyclotomic
extension and the coincidence of two such extensions. We will begin with two results concerning
Euler’s totient function ¢.

Proposition 7.8 For any given positive integer N, there are at most finitely many integers n
such that ¢(n) = N.
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PROOF Let N be a positive integer and p the least prime number greater than N + 1. Suppose
that n is an integer such that ¢(n) = N. If ¢ > p is a prime divisor of n, then n = ¢¥m, for some
k,m € N*, with (¢,m) = 1. We have

¢(n) = ¢(¢")p(m) >q—1>p—1> N,

a contradiction. Therefore no prime divisor of n is greater than N + 1. In particular, the distinct
prime divisors of n belong to a finite set. Let us note these primes p1,...,ps. Then

n = p(lll .. .pgs = ¢(n) — Hp;lq—l(pl _ 1)
i=1

For each prime p; we have

¢(n) = p " (pi — 1)
If a; sufficiently large, the expression on the right hand side of the equality is greater than N,
hence there is a finite number of choices for the exponents. Therefore the set of all n such that
¢(n) = N is finite. O

Remark If N is not 1 or an even number, then there are no integers n such that ¢(n) = N.
It has been shown that, for any integer k£ > 2, there is an integer N such that there are just k
solutions to the equation ¢(n) = N [8]. For the case k = 1, the question is open.

Corollary 7.6 We have
lim ¢(n) = cc.

n— oo

PROOF If lim,,_,~ ¢(n) # 0o, then there is an integer N > 0 and an infinite sequence of integers
(n;) such that ¢(n;) < N, for all n;. For the values of the ¢(n;) let us write Ni,..., Ns. There
is a finite number of such values and N; < N, for all i. However, from Proposition 7.8, there
can only be a finite number of elements of the sequence whose image is equal to one of N;. If
we take an element n; larger than all these elements, then we must have ¢(n;) > maxN;, a
contradiction. This implies that lim, ., ¢(n) = oco. O

We need another elementary result.

Proposition 7.9 If a and b are positive integers, then

¢(a)p(b)(a,b

sta) — @O0,

¢((a,b))

PROOF If @ = 1 or b = 1, then the result is trivial, so suppose that this is not the case. Let
p1,...,Ps be the prime divisors of a which are not divisors of b and ¢y, ..., ¢ the prime divisors

of b which are not divisors of a. Finally let uq,...,u, be the prime divisors of both a and b.
Then

¢(ab)
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This ends the proof. m|

We may now handle the questions referred to before Proposition 7.8. We will say that a root
of unity is an nth root of unity for some n € N*. By definition, the set Q(u,,) contains the mth
roots of unity in C. There are m such roots of unity. The following result shows that if, if m
is even, then Q(u,,) contains no other roots of unity and, if m is odd, then Q(u,,) contains the
mth roots of unity and m other roots roots of unity.

Theorem 7.8 If m is a positive integer, then the number of roots of unity in Q(uy,) is [2,m].

PROOF In this proof ¢ denotes a primitive mth root of unity; then —¢ € Q(u,,) and, by Theorem
7.5, it has order 2m, if m is odd. This implies that the set ji[3 n) C Q(pm). We have shown that
Q(ftrm) contains pua ). Let us show that Q(u.m,) contains no other roots of unity.

We claim that there is a largest r, which we note 7, for which Q(u,) contains a primitive rth
root of unity. If Q(u,,) contains a primitive rth root of unity, then p, C Q(gm), which implies

that Q(ur) C Q(um) and
[Q(km) : Q] = [Q(km) : Qlmur)]Q(ur)][Q(ur : Q] = ¢(m) = ¢(r).

Now, using Corollary 7.6, we see that there is a largest r for which Q(u,,) contains a primitive
rth root of unity.

Suppose now that « is a nth root of unity belonging to Q(u,) and y a primitive #th root of
unity. From Corollary 7.3, there is a power a of x such that o(x®y) = [m,7]. Since %y € Q(tm),
the definition of 7 implies that [n,7] < 7. It follows that [n,7] = 7 and n|F. Finally, every root
of unity belongs to py.

Let us now show that 7 = [2,m]. As ¢ is an mth root of unity, from what we have just seen,
m divides 7. Let ¥ = ms. Using Proposition 7.9, we have

¢(m)¢(s)(m, s)
¢((m, s))

Now, as m/|F, we must have Q(pm) C Q(ur). Given that Q(u.,) contains a primitive #th root of
unity, we also have Q(uz) C Q(um) and so Q(pm) = Q(ur). This implies that

¢(7) = p(ms) = > ¢p(m)¢(s).

dm)=¢(F) = 1> ¢(s) = d(s) =1=s=1 or s =2,

and so ¥ = m or 7 = 2m. If m is even, then ¢(2m) = 2¢(m) > ¢(m), so ¥ = m; on the other
hand, if m is odd, then —( has order 2m, so ¥ > 2m, and so 7 = 2m. We have shown that
7 =[2,m)].

To conclude, we have shown that the set of roots of unity belonging to Q(fi,,) contains jijg m
and is contained in pi[2 ,,). This implies that this set is pi[a - O

Corollary 7.7 If m # n, then Q(um) = Q(un) if and only if n is odd and m = 2n, or m is odd
and n = 2m.

PROOF If m is even, then Q(u,,,) has m roots of unity. If Qi) = Q(uy), then Q(uy,) also has
m roots of unity. If n is even, then Q(u,) has n roots of unity, so m = n, a contradiction. It
follows that n is odd and Q(u,,) has 2n roots of unity. Thus we have m = 2n.

If m is odd, then Q(u,,) has 2m roots of unity. If Q(um) = Q(un), then Q(u,) also has
2m roots of unity. If n is odd, then Q(u,) has 2n roots of unity, so m = n, a contradiction. It
follows that n is even and has n roots of unity. Thus we have 2m = n. |
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7.5 Cyclotomic extensions of finite fields

We have looked in some detail at cyclotomic extensions of Q. We will now consider cyclotomic
extensions of finite fields. Being finite extensions of finite fields such extensions are Galois
extensions (Proposition 3.1, Corollary 5.1). We will begin with a preliminary result, which is
interesting in its own right. We recall that the cardinal of a finite field has the form p*, where p
is a prime number and k a positive integer.

Theorem 7.9 Let F be a finite field, with |F| = p*, and E a finite extension of F of degree n.
Then the Galois group G = Gal(E/F) is cyclic and generated by the Frobenius automorphism

k
Frixw—— zP .

PROOF To simplify the notation, let us write ¢ for p*. First we show that the mapping Fr is
indeed an automorphism. Fr is clearly linear. If ¢ = 0, then = = 0, because z? = z, for all
x € F, so Fr is injective. An endomorphism of a finite-dimensional vector space is also surjective,
so Fr is a bijective endomorphism of F. Finally, (zy)? = 29y?, so Fr is an automorphism of E.
Asax? =z, forallz € F, Fr € G.

If 2 € E, then 29" = z, which implies that o(Fr) < n. However, if Z is a generator of E*,
then Z° # Z, for any s < ¢", and so o(Fr) = n. Now, |G| = [E : F] = n, therefore G is cyclic
with generator Fr. m|

Now we turn to cyclotomic extensions of F),. (As usual we suppose that p and n are coprime.)
From the previous theorem the Galois group of a cyclotomic extension F,(u,) of F, must be
cyclic. We are interested in finding a generator of this group in Z). As the Frobenius mapping
Fr defined on E maps every element = of F,(u,,) to 2P, we have ¢(Fr) = [p], where ¢ is the
mapping defined in Theorem 7.4. Hence we have

Proposition 7.10 The image of the Galois group G = Gal(Fy,(uy)/Fp) in Z under the map-
ping ¢ is generated by the congruence class [p], so the cardinal of G is the order of [p] in Z).

Exercise 7.6 Find the value of the following degrees :

[F3(u7) : F3] [F5(pa) : F5]  [Fr(po) : Frl.

7.6 Quadratic and cyclotomic extensions

An easy calculation shows that

27i 4mi 6mi 8mi

(65 —e 5 —es5 +65)2:5,

which implies that the expression between the brackets is a square root of 5. As this expression
is an element of the cyclotomic field Q(us) the quadratic extension Q(v/5) of the rationals is
contained in the cyclotomic field Q(u5). The goal of this section is to generalize this by showing
that any quadratic extension of the rationals is included in some cyclotomic field. In fact, we
may say more. A quadratic extension F of Q is abelian, i.e., the Galois group Gal(E/Q) is
abelian, since its cardinal is 2 (see Theorems 3.5, 5.1 and 6.1). The Kronecker-Weber Theorem,
which we will prove further on, states that any finite abelian extension of Q is included in some
cyclotomic field.
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We begin with Gauss sums. Let ¢ be a primitive pth root of unity, where p is an odd prime
number. We define the Gauss sum by

where (,) denotes the Legendre symbol. Then

Proposition 7.11 We have

PROOF First

LN (1
£ O

)

If wefix ke {l,...,p— 1}, then the set {k-1,k-2,...,k-(p—1)} is a set of representatives of
the nonzero congruence classes of Z,, hence we can write

PR kN [k
P EE D)

m=

S <k52) Ck+km (m)
—\P p

=
==

k=
p—

I
(]
(]

3

MY o k+k
= <)< + m’
k=1m=1 p

because (%f) = 1. Rearranging the terms, we obtain

SN
=

S
[u

If m # p — 1, then the sequence ¢!+, ¢20+m)  ¢@=11+m) ryns through all the pth roots of
unity with the exception of 1, hence their sum has the value —1. On the other hand, if m = p—1,
then the sum of the members of the sequence has the value p — 1. Therefore

3-8 G0 (5)-E () () ()

m=1

because the number of nonzero squares in Z, is the same as that of the nonsquares. The result

follows from the fact that (%) = (—1)%. m|
Corollary 7.8 We have

V(=D p e Q).
PROOF 7, is a square root of 77 = (-=1)"z p and T, € Q(¢) = Q(up)- O

We now consider the relation between quadratic and cyclotomic extensions of Q.
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Proposition 7.12 Let p be an odd prime number. Then the field Q(u,) contains a unique
quadratic extension of Q, namely
-1
Q (Vo).

(If p = 1(mod 4), then (—1)PT71p = p and if p = 3(mod 4), then (—1)1%1]) =—p.)

PROOF Theorem 7.7 ensures that G = Gal(Q(u,)/Q) is cyclic of order p — 1, hence contains a
unique subgroup H of order %. Let K be a field intermediate between Q and Q(,) such that
[K : Q] =2. By Theorem 5.1, Q(p,) is a Galois extension of Q. Consequently, Proposition 5.3
ensures that Q(u,) is a Galois extension of K. Thus, Theorem 6.1 entails that Gal(Q(u,)/K) is

a subgroup of G of order p%l. From the unicity of H, we have H = Gal(Q(u,)/K). Theorem 6.4

now implies that K = F(H). We have shown that Q(u,) contains a unique quadratic extension.
To conclude the proof it suffices to notice that Q ( (—1)pr1 p) is a quadratic extension of Q

contained in Q(u,), by Corollary 7.8. O

For the moment we have only seen that quadratic extensions of a certain form are included in a
cyclotomic extension of Q. This is not difficult to extend. First let us suppose that p = 1(mod 4)
and consider —p. We may write \/—p = i,/p. Then, using Proposition 7.6, we obtain

Q(V-p) = Q(ivp) € Q(1)Q(VP) € Q1a)Q(1p) = Qlpya,p) = Qlhap)-
If p = 3(mod 4), then

Q(vp) = Q(iv=p) C Q())Q(1p) = Q(iap)-

We have considered odd primes. What can we say about the prime 2? We claim that Q(v/2)
and Q(v/—2) are included in Q(ug). First we notice that ¢ = '™ is a primitive 8th root of unity.
Also, ¢" = (1. Hence, ¢ + (™! is an element of Q(ug). However, this sum has the value V2. Tt
follows that Q(v/2) C Q(us)-

Now, v—2 = iv/2 and 7,v/2 € Q(us), therefore /=2 € Q(ug) and it follows that Q(v/—2) C
Q(us)-

Theorem 7.10 Every quadratic extension of the rationals is included in some cyclotomic ex-
tension.

PROOF We have seen that, if F is a quadratic extension of the rationals, then there is a square-
free integer d such that E = Q(v/d) (Theorem 3.5). If d = «p; - - - p, where the p; are distinct
primes, then

Q(Vd) = Q (VEp1vDz2-+vPr) € QWEP)Q(VD2) -+ Q(VPr)-

However, we have just seen that, if p is a prime number, there is an integer n > 2 such that
Q(y/p) C Q(prn) and the same applies for —p. Hence, there are integers n; > 2 such that

Q(\/&) - Q(Mnl)Q<Mn2) e Q(Mnk) = Q(M[nl,ng ..... nk])

This ends the proof. O

Exercise 7.7 Find a condition on d which ensures that Q(Vd) C Q(14)-
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Remark We have seen that the square root of an integer lies in some cyclotomic extension of Q.
A natural question arises, namely, if p is an odd prime, does a pth root of an integer necessarily lie
in some cyclotomic extension of Q. In fact, this is not in general true. Let a = {/2, where p is an
odd prime and ¢ a primitive nth root of unity for some n. The Galois group G = Gal(Q(¢)/Q) is
abelian. If o € Q(¢), then Q(«) is a subfield of Q(¢) and the Galois group G' = Gal(Q(¢)/Q(w))
is normal in G, because G’ is a subgroup of the abelian group G. This implies that Q(«) is a
normal extension of Q. However, this is not so, because lies in Q(«a), but the other roots of
f(X) = -2+ X? do not. It follows that o ¢ Q(().

7.7 Orbites of the Galois group action

In Section 7.1 we introduced the action of a Galois group of a separable polynomial f on its
roots. In this section we aim to look more closely at this. In particular, we will show that there
is an interesting relation between the orbits of the action and the decomposition into irreducible
polynomials of the polynomial f. We consider a separable polynomial f € F[X], with set of
roots A = {a1,...,a,} in a splitting field £ and we note ® the action of the Galois group
G = Gal(E/F) on A. We write Oy, ..., O, for the orbits of ® and set n; = |0;]|.

Proposition 7.13 Let S be a subset of A and the polynomial fs € E[X] be defined by

fo(X) =[] (~as + X).

a; €S

If SC is the subset of S fived by G, i.c., the subset of elements x € A for which o(x) = x for all
o € G, then fs € F[X] if and only if S¢ = S.

PROOF Suppose that fg € F[X] and take o € G. Let

fs(X) = 11 (=o(e) + X).

a; €S

The coefficients by of this polynomial are expressions, i.e., sums of products, of the o(«;). As o
is an automorphim, a coefficient by is the image under o of the corresponding sum of products
of the ay, i.e., by = o(ax). As o fixes the elements of F', ay = by, for all k£ and so fs = fg. This
implies that o fixes S. As this is so for all o € G, we have S¢ = S. B

Now suppose that S¢ = S and let o be an element of G. As o fixes S, fs = fs. However,
this is so for all 0 € G, so the coefficients of fg belong to the set of elements of F fixed by G,
i.e., the field F' (see Theorem 6.2). Hence fg € F[X]. O

Remark Let g be a monic, irreducible factor of the polynomial f. Then there is a subset S of
A such that g = fs. As g € F[X], by the previous proposition, we have S¢ = S, which implies
that S is a union of orbits of the action ®.

Proposition 7.14 Suppose that the polynomial fs defined above is in F[X|. Then fg is irre-
ducible if and only if S is a minimal set fived by G.

PROOF Suppose that fg is irreducible. If S’ is strictly included in S and S’ is fixed by G, then
fsr € F[X] and fs/|f, with deg fsr < deg fs. This is a contradiction to the irreducibility of fs.
Hence S must be minimal.

Now suppose that S is a minimal set fixed by G. If fg is not irreducible, then there exists
g € F[X] which is monic, divides fg and is such that degg < deg fs. There exists S’ strictly
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included in S such that ¢ = fs and so S is not minimal, a contradiction. It follows that fg is
irreducible. o

We may now prove the main result of this section.

Theorem 7.11 If the separable polynomial f € F[X] has the decomposition into irreducible
factors

f=A fr
where A € F' and the f; are monic, then the action ® has r orbits O1,...,O,, with deg f; = |0;|.

PROOF The minimal sets fixed by G are the orbits of ®, therefore the monic irreducible factors
of f are in one-to-one correspondence with the orbits and we have

[ =Ao," fo,

where A € F' and the polynomials fo, are monic, irreducible. The degree of fo, is n; = |0;]. O

It is interesting to consider the case where F' = F;,. From Theorem 7.4 we know that, if &/
is a finite Galois extension of F,, then the Galois group G = Gal(E/F}) is cyclic and generated
by the Frobenius automorphism Fr : x —— 2P. If we suppose that E is a splitting field of a
separable polynomial f € F,[X], then the orbits of the action ® defined above are of the form
0; = {Fr*(o;)}sen, for some a;. If s’ is the smallest index s > 1 such that Fr®(a;) = a;, then
s =n; — 1 and O; = {a;,Fr(a;),...,Ft™ ()}, i.e., O; is a cycle of Fr of length n; = deg f;.

70



Chapter 8

Dedekind’s reduction theorem

We recall that, if f is a polynomial in Z[X] and p a prime number, then we may define f € F,[X]

by replacing the coefficients of f by their congruence classes modulo p. The polynomial f so
obtained is called the reduction modulo p of f. We will sometimes refer to f as a reduced
polynomial. In this chapter we aim to establish an important relation between the Galois groups
of f over Q and f over F,, which will enable us to find useful information about the former
Galois group. We will need some preliminaries.

8.1 A basic result in module theory

We say that a module M over a ring R is finitely generated if there are my,...,ms € M such
that every element m € M can be expressed in at least one way as

m=rymy+ -+ rsms,
with the r; € R. The module M is free if it has a basis, i.e., a set U which has the properties:
e U is a generating set: every element m € M can be expressed as
m=riu; + -+ Tsls,
with the u; € U and the r; € R;
e U is an independant set:

riur +...+rsus =0=1r; =0, for alli.

Let M be a module over an integral domain R. If x € M and there exists » € R* such that
re = 0, then we say that x is a torsion element. The set of torsion elements form a submodule of
M, which we write tM. (Clearly tM is closed under scalar multiplication; if rz = 0 and sz = 0,
then rs(z + y) = 0, so tM is closed under addition.) We say that M is torsion-free if tM = {0}
and torsion if tM = M. We now bring these ideas together.

Proposition 8.1 Let R be principal ideal domain and M a finitely generated R-module. Then
M has a finite basis if and only if M is torsion-free.

We will give a proof of this result in Appendix E.

Exercise 8.1 Show that a free module over an integral domain is torsion-free.
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8.2 Dedekind’s lemma

In this section we present an important result due to Dedekind, which we will need further on
in this chapter. Let G be a (multiplicative) semi-group and F a field. A character of G into
F' is a mapping from G into F' which preserves multiplication and is not identically zero. We
will write Char(G, F') for the set of characters from G into F. The set of all mappings from G
into F, which we note F'“, can be given a vector space structure over F with the vector space
operations defined pointwise. The following result is referred to as Dedekind’s lemma.

Theorem 8.1 The set of characters Char(G, F) is a linearly independant subset of FC.
PROOF Let n > 1 and x1, ..., xn be distinct elements of Char(G, F'). Suppose that
ai1x1+ -+ apxn =0, (81)

where aq,...,a, € F. We will show by induction that a; =--- =a, = 0.

For n = 1, let © € G be such that x1(z) # 0. Then ayx1(z) = 0 implies that a; = 0. Now
suppose that n > 1 and that the result is true up to n — 1. Since x1 # Xn, there exists y € G
such that x1(y) # xn(y). Evaluating equation (8.1) at 2 and yx, where x is an arbitrary member
of GG, we obtain

arx1(x) + -+ apxn(z) =0 (8.2)
and
a1x1(¥)x1(x) + -+ + anxn(y)xn(z) = 0. (8.3)

We now multiply equality (8.2) by x,(y) and subtract it from equality (8.3). Bearing in mind
that the element x was chosen arbitrarily, we obtain

ar(x1(y) = xn(@)x1 + -+ an—1(xn-1¥) = Xn(¥))Xn-1 = 0.

From the induction hypothesis we deduce that all the coefficients of the linear combination on
the left hand side of the equality have the value 0. In particular, a;(x1(y) — xn(y)) = 0. As
x1(y) — xn(y) # 0, we must have a; = 0. However, now equation (8.1) is reduced to n — 1 terms
and so, using the induction hypothesis again, we obtain ay = --- = a, = 0. O

Remark A character is not required to have only nonzero values; it is sufficient that it has at
least one nonzero value. However, if G is a monoid, then the image of an invertible element is
nonzero. In particular, if G is a group, then the image of G under a character is a subgroup of
the multiplicative subgroup F™* of F.

Corollary 8.1 A set of distinct automorphisms S = {o1,...,0,} on a field F is independant.

PROOF An automorphism o of a field F', when restricted to the multiplicative group F™* becomes
a group automorphism, hence o is a character of the group F* into the field F. O

8.3 Splitting fields of polynomials in Z[X]
In this section (and the following sections) we aim to consider certain properties of splitting fields
of monic polynomials belonging to Z[X]. Let f € Z[X] be monic, A = {a1,...,a,} the set of

roots of f in C and F a splitting field of f contained in C. We may consider f as a polynomial
in Q[X]. Then, from Proposition 2.2, we have

E = Q[ah...,anL
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i.e., E is composed of the polynomials in the «; with coefficients in Q. We set
D =7Z[ay,. .., ap)].
Then D is a subring of E and also a Z-module.

Proposition 8.2 The Z-module D 1is finitely generated and torsion-free, therefore has a finite
basis U = (uq,...,u,).

PROOF If f(X) ="  a;X" and o € A, then o = — Z?:_Ol a;o’, therefore D is generated by
the elements af'as? -+ - agr, with 0 < e; <n — 1. Thus D is finitely generated.
If am = 0, with a # 0, then considering D C E, we have

a t(am) = (a"ta)m =0 = m = 0.

Thus D is torsion-free.
As Z is a P.I.D. and D is finitely generated and torsion-free, we may apply Proposition 8.1
to obtain the existence of a finite basis U = (uq,...,u,). m|

A natural question now arises: Can we find a natural basis of the Q-vector space E? In fact,
this is the case.

Proposition 8.3 The basisU = (u1,...,u,) of D is a basis of the Q-vector space E = Q[ayq, . .., qy].

PROOF F is the fraction field of D, so, by Corollary E.1, U is a basis of the Q-vector space F.O

8.4 Splitting fields of reduced polynomials
Our aim in this section is to find a splitting field of a reduced polynomial.

Proposition 8.4 Let p be a prime number and M a mazimal ideal of D which contains the
proper ideal Dp. If f € Z[X] and is monic, then K = D/M s a splitting field of f, the reduction
modulo p of f.

PROOF It is clear that the characteristic of K is p, hence K is an extension of F),. Let us write
7 for the standard projection of D on K. If U = (u,) is the basis found in the preceding section
and

T =au + -+ aru,., with a; € Z,

then
m(x) = w(ar)m(ur) + - - + 7(aq)m ().

We may identify the image of 7 restricted to Z with F,, because the kernel of this mapping is
ZNM = Zp. Thus we may consider the 7(a;) belonging to F,,. Therefore {r(u;)} is a generating
set of K over F), and K is a finite extension of F,. We next notice that f splits over K:

n

F(x) = #(£(x)) = #([] (= + X)) = [[(~(as) + X),

=1 i=1

where 7 is the mapping of Z[X] into F,[X] which corresponds to = and the «; are the roots of
f. In addition,

K =7n(D) =7n(Zlon,...,an)) =Fyr(ar),...,m(an)] = Fp(r(a1),. .., m(an)),
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because F,[r(a1),...,m(ay,)] is a field. Tt follows that K is a splitting field of f. O

The mapping 7 : D — K is a surjective ring homomorphism and the roots of f are the
images of the roots of f. In fact, we may generalize this.

Proposition 8.5 If ¢ : D — K is a ring homomorphism, then ¢ restricted to Z 1is the same
for all € Hom(D, K). Also, ¢ is surjective and the images of the roots of f are roots of f.

PROOF That ¢ restricted to Z is the same for all ¢ € Hom(D, K) follows from the fact that
o(1)=1+ M.
Now we observe that

Sf(X)) = (H(—ai + X)) = [[(=o(ei) + X),
i=1 =1
hence the ¢(o;) are the roots of f.
Finally let us consider the surjectivity. We have

¢(D) = (25(2[051, .. ~7an]) = Fp[¢(a1)7 e a¢n(an)]

Also, Fplp(a1),. .., ¢(ay)] is a subset of K and also a splitting field of f (Proposition 2.2), there-
fore Fplo(au),. .., ¢(ay)] is isomorphic to K. It follows that ¢(D) = K. O

Remark This generalization, which is interesting in its own right, will be used in a proof a little
further on, namely that of Proposition 8.7.

8.5 Resultants and discriminants

In the following we will use the discriminant of a polynomial, which is useful in determining
whether an extension is separable. However, in order to study this concept it is useful to intro-
duce another concept, namely the resultant of two polynomials.There is an important relation
between the discriminant of a polynomial and the resultant of a polynomial and its derivative.
Here we will only introduce the subject. Further on we will handle it in more detail.

Resultants
We fix m,n € N*. Let F be a field, f € F,,,[X], with coefficients ag, ..., a, and g € F,[X], with

coefficients by, . .., b,. We define the square n + m Sylvester matriz Sy, »(f,g) (or S(f,g)), it m
and n are understood) as follows:

(am @m-1 @m—2 ... 0 0 O

0 Oy Q1 ... 0 0 O

0 0 0 ar ag O

o 0 0 0 a9 a1 [e1)

T A A 0 0 0
by, bp—1 0O 0 O

0 0 0 ... by by O
1 0 0 0 oo by b1 bo
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We obtain S, ,,(f,g) by shifting the line vector of the coefficients of f successively to the right
by 0,1,...,n — 1 steps and the vector line of the coefficients of g successively to the right by
0,1,...,m — 1 steps and then filling in the remaining places with 0.

Remark If 0 < deg f = k < m, then we have a,,, = a;p—1 = -+ = agy1 = 0 and if f = 0, then
a; = 0, for all i. We have an analogous situation if deg g # n.

Here is an example. With m = 3 an n = 2, we have

as az aip ag 0
0 as a2 a1 Qo
Sm,n(fv g) =1by b1 bo 0 0
0 by by b O
0 0 b2 b bo

The resultant of f and g, which we note Ry, (f,g), (or R(f,g), if m and n are understood) is
the determinant |S,, ,(f,g)|. Clearly,

Rn,m(ga f) = (*1)man,n(fa g)

Remark We may consider the a; and b; as variables. In this way we obtain a mapping from
Fmtl x Frtlinto F, which is mn-homogeneous.

Discriminants

Let f(X)=>1",a; X" a polynomial with coefficients in a field F. We suppose that the degree
m of f is greater than 1 and that f has the roots &;1,...,&, in some splitting field E. The
discriminant of f is defined by

A(fy=ap I E-¢)*
1<i<j<m
From the theorem which follows this definition is unambiguous: it does not depend on the split-

ting field chosen.

Tt is useful to notice that A(f) belongs to F'. Indeed, the multivariate polynomial
A = gZm=2 H1<z‘<j<m(Xi — X;)? is a symmetric polynomial in F[Xi,...,X,]. Consequently,
from Corollary B.1, A(f) € F. Using the same corollary, we may also say that, if f € R[X],
where R is an integral domain, then A(f) € R.

The following result links the resultant and the discriminant.
Theorem 8.2 If char F =0 or char F =p >0 and p fm, where deg f = m, then
A(f) = (=)™ D20 Ry o (f, f)-

Remark The polynomial f has a multiple root if and only if A(f) = 0. From the above formula,
we see that we are able to determine the existence of a multiple root only taking into account
the coefficients of f. We should also notice that the formulas show that the discriminant belongs
to the field F'.
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8.6 The Galois group of a polynomial and of its reduction

In this section we aim to show that the Galois group of the reduction of a monic polynomial
f € Z[X] may be considered as a subgroup of the Galois group of f. This will give us information
about the Galois group of f. We begin with a simple proposition, which we can prove using
discriminants, thus justifying their introduction in the last section.

Proposition 8.6 Let f € Z[X] be a monic polynomial, p a prime number and f € Fy[X] the
reduction modulo p of f. Then, if f is strongly separable, then so is f.

PROOF If M = (m;;) € Mu(Z) and M = (m;;) € M, (F,), where 1, is the congruence class of
m;; modulo p, then the det M = det M. Hence, if deg f = n, then

Rn,nfl(f; f/) =0= Rn,nfl(.fa .f/) =0

and it follows that, if f is strongly separable, then so if f. o

We suppose from here on that f is strongly separable and that E, D and K are defined as
in Sections 7.3 and 7.4. We define a right action ¥ of G = Gal(E/Q) on Hom(D, K), the set of
ring homomorphisms of D into K, by

V(o,¢)=0.0= ¢OU\D7
for all o € G and ¢ € Hom(D, K). (The action is defined, because o(D) C D. )

Proposition 8.7 The action V¥ is free and transitive.

PROOF Let A be the set of roots of f. If ¢ oo restricted to D is equal to ¢, then (¢po0)j4 = ¢ja.
In addition, o(A4) C A, so we may write

Pla=(po0)a=daco)a.

From Proposition 8.5, ¢4 is surjective from A into A, the set of roots of f. As f is strongly
separable, so is f (Proposition 8.6), hence

|A| = deg f = deg f = |A].

It follows that ¢4 is a bijection of A on A and so invertible. We deduce that 0|4 is the identity
on A, which implies that o is the identity of the Galois group of f. We have established that ¥
is free.

We now cousider the transitivity. Let us fix ¢ € Hom(D, K) and note N the cardinal of the
Galois group G = Gal(E/Q), where E is a fixed splitting field of f. We write O for the orbit of
¢:

O={o.¢:0€G}.
As the action ¥ is free, we have |O] = N. We aim to show that O = Hom(D, K). Let us
write ¢1,...,¢n for the homomorphisms in O. If O # Hom(D, K), then there exists ¢n41 €
Hom(D, K)\ O. We may consider the homomorphisms as characters of the monoide (D, -) into
K. We have
N =|Gadl(E/Q)|=[F: Q] =1k D.
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(For the last equality see Proposition 8.3.) Hence there is a basis (u;) of D whose cardinal is N.
The system

r1p1(ur) + -+ rypidnyi(u) = 0
r1¢1(un) + -+ Tvpidnyi(uy) = 0
is composed of N equations and N+1 unknowns, therefore has a nonzero solution (A1, ..., An41).
Ifae D anda= Zjvzl a;uj, then
N+1 N+1 N
doNgi(a) = D N [ Y au
i=1 i=1 j=1
N+1 N
- S A woim)
i=1  j=1
N  N+1
= a; Z )\l@(u]) =0.
j=1 =1

Therefore Zf\;l Aigi(a) =0, for all a € D, which contredicts Dedekind’s lemma (Theorem 8.1).
It follows that O = Hom(D, K) and therefore that the action ¥ is transitive. i

We may now prove the principal result of this section. This is particularly important, in that
it often gives us important information concerning the Galois group of certain polynomials. It is
often referred to as Dedekind’s Theorem.

Theorem 8.3 Let f € Z[X] be monic and p a prime number. If f, the reduction of f modulo
p, is strongly separable, then there is an injective group homomorphism g of the Galois group of

f, G = Gal(K/F,), into the Galois group of f, G = Gal(E/Q).

PROOF As in Section 7.4, we note 7 the standard projection of D on K. Then gor € Hom(D, K),
for all & in the Galois group G. As the action W of the previous proposition is free and transitive,
there exists a unique 7 € G such that

OOM=T.MT=TOT.

We define g(5) = 7 and so obtain a mapping from G into G. In fact, g is an injective group
homomorphism, as we now see. First,

mog(dr002) = (1002)om = Gr0(Ga0m)

|
QI
it
o
3
¢}
Q
—
QI
()
S—
S—
I
Q
i
¢}
2
o
Q
—~
Q
)
N~—

|
—
3
o
Q
=
Ql
=
N
N~—
o
)
—
QI
V]
N—
I
3
o
—~
Q
—~
Q
-
N
o
N
—
Q
V]
N~—
N—

As the action W is free,
9(01002) = g(a1) 0 g(72),

i.e., g is a homomorphism. In addition,

g(6)=idg = dom=m.
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Let © € K. As  is surjective, there exists y € D such that 7(y) = z, so 7 o w(y) = 7(y), i.e.,
m(x) = x. Hence, & = idg. It follows that g is injective. O

Remark We have fixed the splitting field of f over Q (resp. f over F,) to obtain a given Galois
group of f (resp. f). Changing the splitting fields and thus the Galois groups does not of course
affect the result above, because all Galois groups of a given polynomial over a certain field are
isomorphic.

From the theorem which we have just proved, for a root a of f, we obtain the relation

1(9(7)(@)) = a(v(a)),

where 7 is the mapping 7 restricted to A. 7 is an invertible function from A into A, since f is
strongly separable. Indeed, as a function from A into A, v is surjective and the fact that f is
strongly separable ensures that A and A have the same cardinality. Thus on A we have

v0g(G)=d0y=g(@) =7 "ogon.
From Section 7.7 we know that the Galois group G = Gal(K/F,) is generated by the Frobenius
automorphism F'r : x — 2P and is composed of cycles whose length correspond to the degrees of
the irreducible polynomials in the decomposition of the reduced polynomial f. From the relation
g(5) = v~ 1 05 o, we obtain a permutation in the Galois group of G = Gal(E/Q) with the
same cycle structure. By varying the value of the prime p we may find sufficient permutations
to characterize the Galois group of f.

Example If f(X) =3+ X + X%+ X° then the factorizations of the reductions of f modulo 2
and 3 are

fX)=0+X)1+X+XHA+X+X3) and f(X)=X(2+X)(2+2X +2X2+ X3+ X*).

The reductions have no multiple roots and so are strongly separable. Applying the theorem, we
see that G has elements o and 7 such that 0|4 is a permutation with the cycle structure (1,2, 3)
(a product of a 2-cycle and a 3-cycle) and 74 a permutation with the cycle structure (1,1,4) (a
4-cycle). Going a little further, we find that the reduction modulo 5 has the form

FX) =B+ X)22+ X +3X2 +4X3 + X*)

This has a factor which is a square and hence a multiple root, so we cannot apply the theorem.
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Chapter 9

Determination of the (alois group

In general, it is difficult to determine the Galois group of a polynomial. However, we can often
find certain properties of the group. In some cases this may be enough to determine the group.
We will mostly consider irreducible rational polynomials.

9.1 Inclusion in an alternating group A,

We have seen that a Galois group G of a polynomial having n distinct roots may be considered
as a subgroup of the permutation group S,. It is natural to ask whether permutations of this
group are even, i.e., if G C A,. We will begin with a criterion applying to this question.

Proposition 9.1 Let F be a field whose characteristic is not 2 and f € F[X] strongly separable
of degree n. Then the Galois group G of f is isomorphic to a subgroup of A,, the alternating
group of order n, if and only if the discriminant of f, A(f), is a square in F.

PROOF Let A = {ay,...,a,} be the set of roots of f in a splitting field E of f and §(f) =
[Ticicj<n(ei —aj). As f is strongly separable, 6(f) # 0. Also, 6(f) € F(au,..., ) and
§(f)? = A(f) € F. To shorten the notation let us write § for 6(f) and A for A(f). Clearly, A
is a square in F' if and only if § € F.

We now take o € Gal(F(au,...,a,)/F). If ¢, = £1 is the sign of the permutation o = 0|4
of A, then

0(6) = H (aa(i) - ao(j)) = €o H (ai - aj) = €,0,
1<i<j<n 1<i<j<n

hence o(d) = £4. As char F' # 2, we have § # —J and so o(d) = 0 if and only if the permutation
o is even, or, identifying A with N,, = {1,...,n}, if and only if o € A,,. We thus obtain that
the Galois group G fixes § if and only if G C A,,, or equivalently, by Theorem 6.2, § € F' if and
only G C A,,. As A is a square in F' if and only if § € F', this finishes the proof. a

Example Let f € F[X] be separable, irreducible and of degree 3. From Theorem 7.2, 3 divides
the cardinal of the Galois group G of f over Q. If we now suppose that A is a square, then,
identifying G with a subgroup of S,,, we have G C A;. However, as |A3| = 3, we have G iso-
morphic to Az. If, on the other hand, A(f) is not a square in F, then G ¢ A3. The only other
subgroup of Ss divisible by 3 is S3 itself, so in this case G is isomorphic to Ss.
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We will now consider another criterion which enables us to determine the nature of the Galois
group, but this time only over Q.

9.2 A criterion for rational polynomials

In the last section we considered a criterion which was generally applicable. Often criteria can
only be used for certain types of field. This is the case with the criterion which we now consider.
We will first need to do a little preliminary work on permutations.

Lemma 9.1 If p is a prime number, then every element of S, of order p is a p-cycle.
PROOF Let 7 € S}, be of order p. We may write
T=Tq Ty,
where the m; are nontrivial disjoint cycles. We have
p=o(rn) =[o(m),...,o(m)].

Hence, o(m;)|p, for all i. As o(m;) > 1, we must have o(m;) = p. This implies that all the m; are
p-cycles and so 7 is a product of p-cycles. However, we cannot have more than one such cycle,
because the permutation is on p elements. Therefore, 7 is a p-cycle. O

It is well-known that the transposition (1 2) and the n-cycle (1...n) generate S,. This is
not in general true for any transposition and n-cycle. For example, the cycles (1 3) and (12 3 4)
in Sy generate a subgroup G isomorphic to Dg. To see this, it is sufficient to notice that G is
a nonabelian group of cardinal 8, with an element of order 4 and an element of order 2 (see
Appendix B). However, if n is prime, then any transposition and n-cycle generate S,,. We will
prove a related result and then establish this as a corollary.

Proposition 9.2 For 1l < a < b <mn, the transposition (a b) and the n-cycle (12 ... n) generate
Sn if and only if (b—a,n) =1.

PROOF Let d = (b — a,n). We claim that if 7 € ((a b),(12 ...)), then
i =7 (mod d) = 7 (i) = 7(j) (mod d).

To prove this, it is sufficient to consider the cases where 7 = (a b) and 7 = (12 ... n). We have

e for i # a,b, (ab)(i) =i

e for i =a, (ab)(i) =10

e fori=1", (ab)(i) =a.
From these equalities, we see that, if 7 = (a b), then

al(j — i) = di(x(i) — 7(j)),

i.e., the assertion is true for ¥ = (a b). Now let us consider the case where 7 = (12 ... n). We
have
7(i) =i+ 1 (mod n) = 7(i) =i+ 1 (mod d),
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because d|n. As
i=j(modd) = i+1=j+1 (modd),

the assertion is true for 7 = (12 ... n). We have proved the claim.
Now suppose that d > 1 and consider the transposition (1 2). We have

(12)1)=2 and (12)=1+d.

However, 1 =1+ d (mod d), but 2 # 1+ d (mod d). Hence, (12) ¢ ((ab),(12 ...)). Therefore
Sy, is not generated by (a b) and (12 ... n).
We now prove the converse. Let 0 = (12 ... n); then o(a) = a + i (mod n). Hence

o®=%(a) = b (mod n).

As 1 < 0% %a),b < n, we have 0°~%(a) = b. Next we notice that there exist s and ¢ such that
s(b—a)+tn =1, because b — a and n are coprime. This implies that

o =ocb"sgm = (=05 — (4 1), 0) = ((a b),d""?).

b—a b—a

Now o is an n-cycle. If this is not the case, then o
disjoint cycles of length less than n. However,

can be written as a product of

o= (1) =1+ alb—a) =1 (mod n) = n|a(b — a) = nla,

because (b —a,n) = 1. If 1 < a < n, then this is not possible, so 0*®*=*) (1) # 1. This means
that 1 belongs to no cycle of length smaller than n and so ¢~ is an n-cycle.

There exists a permutation w € S, such that 7(12 ... n)r~! = o6®~% and 7(1) = a, 7(2) = b.
Then
S, = 7Syt = w((12),(12...n))r !
= (127 712 ... n)n Y
((ab),0"")
= ((ab),0).
This finishes the proof. O

Lemma 9.2 Let p be a prime number. If T is a transposition and o a p-cycle in Sy, then
H = (1,0), the subgroup of S, generated by T and o, is the whole group Sp,.

PROOF Let 7 = (a b). There is a permutation 7 € S, such that 7(1 2 ... p)r—! = 0. Let
7= (ab) and 7(a’) = a, 7(V') = b. Then we have

S,=n(d¥),(12 ... p)hHr 1,
because (b’ — a’,p) = 1 (Proposition 9.2). Now

w{(d b),(12 ...pha ' = (x@d V)r Hw(12 ... p)t)
= <(a b),0> = <Ta0>'

We have proved what we set out to establish. O

We now turn to a result which enables us to determine the Galois group of a rational poly-
nomial under certain conditions.
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Theorem 9.1 Let f € Q[X] be irreducible and of prime degree p. If f has only two complex
roots, o and &, then the Galois group G of f over Q is isomorphic to Sp.

PROOF From Lemma 9.2, it is sufficient to show that G has a transposition and a p-cycle. The
mapping conjugate conjugation restricted to the set of roots of f is a transposition. Also, from
Theorem 7.2, p||G|, so G has an element of order p. From Lemma 9.1, this must be a p-cycle.
This finishes the proof. O

Example The polynomial f(X) = —1+ X + X3 is irreducible over Q: If f is reducible over Q,
then f is also reducible over Z and, in this case, f, the reduction of f modulo 2, has a root in
Z,. However, this is not the case, and so f is irreducible over Q. Also, f/(X) = 1+ 3X2, which
does not vanish in R, so f has a unique root in R. This means that f has a pair of complex
roots and we may apply the theorem: the Galois group of f is isomorphic to S3.

Example The polynomial f(X) = —1—4X + X° is irreducible over Q. To see this it is sufficient
to show that f, the reduction of f modulo 2, is irreducible. This is so, because f has no root in
Z> and no polynéme of degree 2 in Z,[X] divides f. The derivative of f is f'(X) = —4 + 5X*.
As a function defined on R, fis positive for z* > % and negative for z# < %. As f(0) = -1,
f(=1) = 2 and limg 4+ f(x) = Fo0, f has precisely three real roots. Applying the theorem,
we see that the Galois group of f is isomorphic to S5.

We will now look at a more general polynomial. Let p be a prime number, with p > 7, and
m,ni,...,Np—s positive even integers such that n; < n;41 and Zf:_f n? —2m < 0. We define
the polynomial g € Z[X] by

g(X) = (m+ X?)(—ny +2)(—n2 + X) -+ (—np_a + X).

The polynomial g has the roots ni,...,n,—2. On an interval (n;,m;4+1) C R the sign of the
polynomial function g does not change, because there is no real root in such an interval. Also,
as ¢'(n;) # 0, the signs of g on adjacent intervals are opposites. Thus g has % positive relative
maxima and %_3 negative relative maxima. If k is an odd integer, then it is not difficult to see
that |g(k)| > 2, hence the relative maxima have a value strictly superior to 2.

We now set f(X) = g(X)—2. From what we have seen, there exist z1,...,Zp—2 € (n1,np_2)
such that for the polynomial fuction f we have f(xz;)f(x;+1) <0, fori=1,...,p— 4. Therefore
f has a root in each interval (x;,z;41). As f(n;) = —2, and f(z1) and f(x,—3) have opposite
signs, there must exist a root of f in (n1,x1) or in (zp—3,np—2). In addition, as f(n,—2) = —2
and limg,, +o f(2) = +00, we have another root of f in the interval (n,—2,00). We have shown
that f has at least p — 2 real roots.

We will now show that f has two roots in C\ R. We have
F(X)=(X+ivm)(X —ivm)(—n1 + X)(—n2 + X) - (—np—2 + X) — 2

and the constant term is not divisible by 4 and

P

=1

where the a; are the complex roots of f. If we compare the coefficients of X?~! and X?~2 in
the two expressions for f, then we obtain

p p—2
E o = E n; and E oo = E nin; + m.
i=1 i=1

i<j i<j
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p 2 p—2 2 p—2
Za?:<2ai> —22@0@:(271,») -2 anj—i-m :Zn?—Qm.
i=1 i=1

i<j i<j

As Zf;lz n? —2m < 0, we have > 1_ a2 < 0, so at least one a; € C\ R. However, as f is a real
polynomial, the complex conjugate of «; is also a root of f. We have shown that f has only real
roots except for a pair of complex conjugates.

To complete the discussion we show that f is irreducible over Q. Now, all the coefficients of
f, except the leading coefficient, are divisible by 2 and the constant term is not divisible by 4
(4lmny - -np_g =>4 f(mnq ---ny_o —2)). From Eisenstein’s critrerion, f is irreducible over Q.
We may now apply Theorem 9.1 to see that for the class of polynomials under consideration the
Galois group is Sp. It is worth noticing that there is an infinite number of polynomials in this
class.

9.3 Possible forms of the Galois group

As we have seen, the Galois group of a polynomial f of degree n may be considered as a sub-
group of S,,. However, not all subgroups of 5,, are possible. If we suppose that f is separable
and irreducible, then the Galois group of f must be transitive and its cardinal a multiple of n
(Theorem 7.2). Therefore, if we are considering such polynomials, then we know that the Galois
group must belong to a certain finite subclass of subgroups of S,,. For example, if f € Q[X]
is irreducible and of degree 5 and G is its Galois group, then 5||G|. If we also know that the
discriminant of f is a square in Q, then we can say that G is a subgroup of A,, (Proposition 9.1).
This limits considerably the possibilities.

Now we aim to consider the Galois group G of a an irreducible rational polynomial of degree
n. If n = 2 and |S,| = 2, in this case there can only be one possibility for the Galois group,
namely Ss. Let us now consider the case where n = 3. We have already seen (in the first
section of this chapter) that there are two possibilities, namely S,, and A,,, the first when the
discriminant of the polynomial is not a square in Q and the other when it is. We now turn to
the case where n = 4. This is more instructive and we will need some elementary group theory.
We recall that the only subgroup of S, of index 2 is A,,.

Transitive subgroups of S; divisible by 4

Now let us consider the possible Galois groups for irreducible rational polynomials of degree
4. We must find the subgroups of S; which are transitive and whose cardinal is divisible by 4.
The possible orders for such subgroups are 4, 8, 12 and 24. The only subgroup of order 24 is Sy
and the only subgroup of order 12 is A4. Therefore we are left with subgroups of order 4 and 8.

If G is a subgroup of order 8, then G must be a Sylow 2-subgroup of S4. All such subgroups are
conjugate and hence isomorphic. Thus, up to isomorphism, there is only one possible subgroup
of order 8. If we set

p=(1234) and o=(13),

then we find that
opot=(1432)=0""

and that the set
S ={e,p,p*,p%,0,p0,p°c, p’c}
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is a group (generated by p and o). This group is thus isomorphic to the dihedral group Ds.

Finally we turn to the case where the subgroup G is of order 4. Clearly the subgroup generated
by a 4-cycle is a transitive subgroup of Sy of order 4 and all such subgroups are isomorphic. The
other subgroups of Sy of order 4 are isomorphic to the Klein subgroup, i.e., Zy X Z3. In addition
to the identity, such a group has elements of order 2 of cycle types (2,1,1) or (2,2). There are
three possibilities:

o All the o; are transpositions: then we must have (1 2), (1 3) and (2 3) and the product of
the first two is the 3-cycle (1 3 2), a contradiction.

e One of the o; is of type (2,2) and the other two are transpositions: in this case, the two
transpositions must be disjoint, otherwise their product is a 3-cycle and the group has the

form
{e.(12),(34),(12)(34)},

which is not transitive.

e Two of the o; are of type (2,2), which implies that the third is also of this type and the

group has the form
{e,(12)(34),(13)(24),(14)(23)},

which we note Vj. This subgroup is clearly transitive.

We are now going to consider transitive subgroups of S5. However, before doing so, we need
to introduce a little group theory.

We recall that a group is simple if it has no proper normal subgroup other than {e}. For
n > 5, A, is simple. (A proof of this may be found, for example, in [19].)

Exercise 9.1 Show that Ay is not simple. What can we say about Ay and As?
Exercise 9.2 Show that, for n > 5, A, is the unique nontrivial normal subgroup of Sy,.
We need a technical result, which is not standard.

Proposition 9.3 If G is a finite group and H a nontrivial subgroup such that |G| does not divide
[G : H]!, then H contains a nontrivial normal subgroup of G.

PROOF Let n =[G : H]. Each g € G induces a permutation 7, on the quotient set G/H:
wg(xH) = gaH.
As [G : H] = n, we may identify m, with an element of S,,. The mapping ¢ : g — 7, is a

homomorphism:
mwgh(xH) = gha H = mg(haH) = mg o mp(x H).

Now ker ¢ is a normal subgroup of G contained in H:
grH=H — zH =g 'H.
As this is true for all z € G, it is true for the identity element, so we obtain

eH=¢g 'H=— ¢ 'cH= gcH,
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and it follows that ker ¢ C H.
Also
G/ ker ¢ ~Im ¢p = |G/ ker ¢||n! = |G||| ker ¢|n!

If |G| does not divide n!, then |ker ¢| # 1 and so ker ¢ is not trivial. O

The knowledge of semidirect products needed in the next part of our exposition can be found
in Appendix B.

Transitive subgroups of S5 divisible by 5

Now let us consider the possible Galois groups for irreducible rational polynomials of degree
5. The orders of such groups must be multiples of 5 and divisors of 120. In fact, the transitivity
does not enter into the question.

Proposition 9.4 Let G be a subgroup of S5 whose order is divisible by 5. Then G is transitive.

PROOF By Cauchy’s Theorem G contains an element of order 5, i.e., a 5-cycle o = (x1,...,25).
It is not difficult to see there is a power k of ¢ which sends z; to x;, for any pair of numbers z;
and z;. Therefore G is transitive. |

Remark We can generalize this result to S, for any prime p: If p is a prime number and G a
subgroup of S, such that p||G|, then G is transitive.

Taking into account what we have seen, the possible orders of subgroups of S5 which interest
us are 5, 10, 15, 20, 30, 40, 60 and 120.

Let us first consider the possible cyclic subgroups. In S5 the highest possible order of an
element is 6; this results from the decomposition of a permutation into distinct cycles. It follows
that the only cyclic groups of S5 whose order is divisible by 5 are those generated by a 5-cycle.

Now we consider subgroups of order 10. If G is such a subgroup, then it is cyclic or isomorphic
to D1 (Proposition C.4). The first possibility has already been ruled out, so there only remains
the second. This occurs: If we set 0 = (1234 5) and 7 = (1 3)(4 5) and then G ~ (o, 7). If we
set H = (o) and K = (1), then it is easy to check that G is isomorphic to the semidirect product
of H and K, which is not direct.

Suppose that G is a subgroup of S5 of order 15. From Theorem C.2, G is cyclic, which is
impossible, so there is no subgroup of order 15 in Ss.

We now turn to the case where |G| = 20. This is a little more interesting. G has a Sylow
5-subgroup P and a Sylow 2-subgroup @, with |P| = 5 and |Q| = 4. Writing s5 for the number of
Sylow 5-subgroups, we have s5|4 and so s5 can take the values 1, 2 or 4. However, s5 = 1 (mod 5),
so the only possibility is s5 = 1. This implies that P is normal in G. As the order of elements
in P and @ are coprime PN Q = {e} and so PQ = G. If Q is normal in P, then G is the direct
product of P and Q and so abelian. However, in this case G has an element of order 10, which
we have excluded, so G is a semidirect product of P and (), which is not abelian.

We would like to know a little more about the subgroup Q. We consider the mapping

¢:Q — Aut(P),y — ¢y,

where

by(z) = yzy ',
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for all x € P. If a is a generator of P and y € ker ¢, then

yayil =a = ya = ay.
As y and a commute, we have o(ya) = o(y)o(a), since the orders of y and a are coprime. If
o(y) = 2, then o(ya) = 10, and if o(y) = 4, then o(ya) = 20, both of which are impossible.
Therefore o(y) = 1, which implies that y = e. Thus ¢ is injective. As Aut(P) ~ Z4, Q ~ Z4 and
Q is cyclic. It is a simple matter to check the subgroup of S5 generated by the cycles (1234 5)
and (2 3 5 4) is a subgroup of order 20 of the required type.

What about subgroups G of order 30. The index [S5 : G] of such a subgroup is 4 and 120,
the cardinal of S5 does not divide 24 = 4!, so, from Proposition 9.3, G contains a nontrivial
normal subgroup N of S5. However, the only nontrivial normal subgroup of S5 is A5 (Exercise
9.2). Thus N = As, which is impossible, because |N| < |As|. So there is no subgroup of order
30. We may use an analogous argument to show that there is no subgroup of order 40.

Finally we come to subgroups of order 60 or 120. In the first case there is only As and in the
second Sj itself.

The following theorem sums up our work on the transitive subgroups of Sy and Ss:

Theorem 9.2 For Sy and S5 we have

o The transitive subgroups of Sy of order divisible by 4 are Sy, A4, Ds, subgroups generated
by a 4-cycle and Vy.

e The (transitive) subgroups of S5 of order divisible by 5 are S5, As, D1, subgroups generated
by a 5-cycle and subgroups isomorphic to the nonabelian semidirect product of Zs and Zy4.

The examples of S; and S5 show the difficulty in determining those subgroups of S;, which
can be Galois groups of irreducible rational polynomials of degree n. Determining whether such
subgroups are actually Galois groups of an irreducible rational polynomial of degree n is another
problem. We will come back to this question presently.

In the cases we have considered, the absence of abelian groups has probably been observed.
This is not an accident, as we will soon see. We recall that if the group G acts on the set X,
then the stabiliser G, of x € X is defined as

Gy ={9€G:g9x=nxa}

and the orbit O, of z as

O, ={gx:9€G}.
The orbit-stabilizer theorem asserts, that if G is finite, then
6l
|G|

|O:r‘ =

We say that the action is transitive, if for any pair z,y € X, there is a g € G such that g.x = y.
If G is a group of permutations on a set X, then there is a natural action of G on X defined
by
gz = g(z),
for all g € G and =z € X. We will be interested here in the case where G C S,, and X = N,, =

{1,...,n}.
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Proposition 9.5 If G C S, is transitive and abelian, then |G| = n.

PROOF From the orbit-stabilizer theorem we have

G|

(€4

As @ is transitive, the action of G on N,, is transitive and so, for any = € N,,,
|0:] = n = |G| = n|Gyl.

We claim that |G| = 1. Let g € G, and take a € N,,. As G is transitive, there exists h € G
such that h.z = a. Hence, using the fact that G is abelian,

|Ow‘ =

g.a=g.(hx) =h(g.x) = hx=a.

As this equality is true for any a € N,,, g = e, which proves our claim. We obtain |G| =n. O

Corollary 9.1 If p is a prime number, and G is a transitive abelian subgroup of Sy, then G is
generated by a p-cycle.

PROOF This is a consequence of Proposition 9.5 and Lemma 9.1. O

We now return to the question of the existence of an irreducible rational polynomial of degree
n whose Galois group is isomorphic to a given transitive subgroup of .S,,. For .S,, itself the answer
is always positive.

We now consider the case where n = 4.

o If f(X)= —2+ X*, then the Galois group of f is Dg. We give a proof of this in Appendix
D.

e From Theorem 7.7 we know that the Galois group G = Gal(Q(us)/Q) is isomorphic to
Z:, which is in turn isomorphic to Cy. However, Q(us5) is a splitting field of ®5(X) =
1+ X+ X2 4 X3+ X4, which is irreducible. Thus the Galois group of ®5 is isomorphic to
Cy4 and so must be generated by a 4-cycle.

e For V; we have the following argument. The splitting field of g(X) =1+ X% is Q(4,v2),
which is also the splitting field of h(X) = (1 + X?)(—2+ X?). However, the Galois group
of h is isomorphic to Cy x Cs (see Example 1 in the next section), so this must be the case
for g. Given that V} is the only transitive subgroup of Sy isomorphic to Cy x Cs, V4 must
be isomorphic to the Galois group of g.

e Finally we consider A4. We will show that this group is isomorphic to the Galois group
of k(X) = 12+ 8X + X*. First we notice that the discriminant A(k) = 21234, a square,
so the Galois group G of k is a subgroup of A4, by Proposition 9.1. As 4||G|, |G| = 4 or
|G| = 12. Now we use Dedekind’s Theorem. Factorizing k& modulo 5, we find

E(X)=(1+X)(2+ X +4X% 4+ X?3),

hence the Galois group of k has a permutation of the form (1, 3), i.e., an element of order
3. This means that 3||G| and it follows that |G| = 12. Thus the Galois group of k is
isomorphic to Ay.

It is also the case that, for n = 5, n = 6 and n = 7, all transitive subgroups of S,, are
isomorphic to the Galois group of an irreducible polynomial in Q[X] (see [22]); however, for
n > 7, the question is open.
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9.4 Reducible polynomials

In the previous section we were concerned with irreducible polynomials. Here we aim to con-
sider reducible polynomials, in particular, products of two polynomials whose Galois groups are
known. We will begin with some examples.

Example 1 Let f(X) = (14 X?)(—2+ X?) € Q[X]. The splitting field of g(X) =1+ X2 in C
is Q(i). As Q(i) is a Galois extension of Q, we have

Gal(Q(1)/Q)| = [Q(7) : Q] = 2

and it follows that the Galois group of ¢ is isomorphic to the cyclic group Cs. A similar argument
shows that the Galois group of h(X) = —2 + X? is also isomorphic to Co. We now consider the
Galois group of f. The splitting field of f in C is Q(4,v/2) and

[Q(,v2) : Q] = [Q(i,V2) : Q(vV2)][Q(V2) : Q] = 2.2 = 4.

Using Corollary 7.1, we see that the cardinal of the Galois group G of f is 4, which implies that
G is isomorphic to C4 or Cy x Cy. If 0 € G, then

o(i)? =o(i?) = o(~1) = =1 = o(i) = +i.

In the same way
(V22 = 0(v2') = 0(2) = 2 = 0(+/2) = V2.

Hence 02(i) = i and 02(1/2) = v/2 and it follows that 02 = idg. This means that all elements of
G have order 1 or 2 and so G is isomorphic to Cy x Cs.

Example 2 We consider the polynomial f(X) = (1 + X + X?)(3 + X?) € Q[X]. The splitting
field of g(X) = 14+ X + X2 is Q(j), where j = exp(25*). Hence Q(j) is a Galois extension of
Q. It follows that the cardinal of the Galois group of g is 2 and so this group is isomorphic to
Cs. There is no difficulty in seeing that the Galois group of h(X) = 3 + X2 is also Co. What
can we say about the Galois group of f? First, the splitting field of f is Q(j,iv/3). However,
j= _H'Ti\/g, and so Q(4,iv3) = Q(j) = Q(v/3), therefore the Galois group of f is isomorphic
to CQ.

Example 3 This time we take the polynomial f(X) = (=2 + X3)(=5 + X?) € Q[X]. From
Theorem 9.1, the Galois groups of g(X) = —2 + X3 and h(X) = —5 + X3 are both isomorphic
to S3. The splitting field of f is

Q(V2,j¥2,5°V2,V/5,jV5,7°V5) = Q(V2,jV2,V/5,jV/5) = Q(V2,4, V5).
Clearly [Q(V/2, 7, ¥/5] : Q] < 27 so the Galois group of f cannot be isomorphic to S3 x Ss.

In the first example the Galois group of the product of the two polynomials is the product
of their Galois groups. In the second and third examples this is not the case. The essential
difference is that in the first example the intersection of the splitting fields is Q, while in the
other two examples, this is not the case. In the next result we formalize this. (Beforehand it
may be useful to briefly look at Appendix A, where semidirect and direct products are handled.)
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Theorem 9.3 Let f € F[X] be separable. Suppose that f = gh, with g,h € F[X] irreducible, E
is a splitting field of f and K (resp. L) a splitting field of g (resp. h) in E. Then

Gal(E/F) ~ Gal(K/F) x Gal(L/F)
if and only if KNL =F.

PROOF First it should be noticed that the separability of f, together with Theorem 3.8, ensures
that E is a separable extension of F. Let us write G = Gal(E/F), Gk = Gal(E/K) and
G = Gal(E/L). The extensions K and L are normal, so the Galois groups Gx and G are
normal subgroups of G.

As K and L are included in F, KL is included in E. On the other hand, if « is a root of f,
then « is a root of g or h and so f splits over KL, hence F C K L. We have shown that £ = K L.
Using Corollary 6.1, we may write

) B ) _[K:F][L:F]
B F] = [KL: F] = S

If we now suppose that the Galois group of f is the direct product of the Galois groups of g and
h, then
[E:F]=[K:F]I[L:F]= |[KNL:F]l=1— KnNnL=F.

We now consider the converse. Setting G for the subgroup of G generated by Gx and Gy,
we have, from Theorem 6.9,

F(G)=KNL=F=G=G.

From Theorem 6.9 we know that F(Gx N Gr) = KL = E. This implies that Gx N G, = idg.
Since Gi and Gy, are normal subgroups of G, the elements of G commute with those of G,
and it follows that G = G = GxGr. Thus G = Gk x G and it follows that Gx (resp. Gp) is
isomorphic to G/G, (resp. G/Gg). We have shown that

G~G/GL xG/Gkg ~Gal(L/F) x Gal(K/F),
from Theorem 6.6. This ends the proof. O

Remark This result may be easily extended to the case where f is a product of more than two
polynomials.
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Chapter 10

Norm, trace and discriminant

In this chapter we introduce some important notions which will be used later on in the text, in
particular, when we come to study in more detail number fields.

10.1 Norm and trace
Let E be a finite extension of a field F'. For x € E, we define a linear endomorphism m, of E by
ma(y) = xy,
for all y € E. We define the norm and the trace of z, relative to the extension E of F, by
Ng,p(r) = det m, and Tp/p(x) = trmg.

We also define the characteristic polynomial of x. This is just the characteristic polynomial of
the endomorphism m, and we write char g, () for this polynomial. To simplify the notation,
when the fields F and F' are understood, we often omit the symbol E/F. From the definitions,
if n = [E : F], then,

char g/p(z) = (=1)"N(x) +--- — T(x)X" ' + X"

As the coefficients of a matrix of m, belong to F, the coefficients of char g,r(x) belong to F.
In particular, if £ is a number field and x € K, then Ng,q(x) and T/q () are rational numbers.

Example Let n be a squarefree integer and E = Q(y/n). Then [K : Q] = 2 and (1,/n) is a
basis of E over Q. If z = a + by/n, then

mz(1)=a+byn and  m,(v/n) =ayn+ bn,

therefore the matrix of m, in the basis (1,+/n) is
a bn
M= < b a > ’

Ng/q(z) =d® —b*n and Tg/q(r) = 2a.

Hence
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If n is negative and a,b € Z, then Ng,q(z) € N and Tg/q(z) € N.

If x € F, then the matrix of m, in any basis is just xI,, and so
N(x) =z", T(x) =nx and char () = (—z + X)™.
Exercise 10.1 Show that the norm is multiplicative, i.e.,
N(xz129) = N(x1)N(x2),
for all x1,x9 € E, and that the trace is F-linear. Also, show that the mapping
B:EXE— F:(x1,22) — T(x122)
is bilinear.

If x € F, then m(z,F) = —x + X, so char (z) = m(z,F)™. In the next proposition we
generalize this fact.

Proposition 10.1 Ifr = [E : F(z)], then
char pyp(z) = m(z, F)".

PROOF First let us consider the case = 1. Then E = F(z). From the Cayley-Hamilton
Theorem, we know that char (m,) = 0, hence

(=1)"N(z)y+ -+ = T(x)a" "'y +a"y =0,

for all y € E. If we set y = 1, then we see that x is a root of char (z). Hence m(x, f)|char (z).
Now,
n=I[E:F|=[F(z): F]=degm(z, F)

and so m(x, F') = char (z), hence the result for r = 1.

Now let us consider the general case. Let y1,...,ys be a basis of F(z) over F and z1,..., 2,
a basis of E over F(z). The elements y;z;, with <4 < sand 1 < j <r, form a basis of E over
F. Let A = (ax;) be the matrix representing m,, in the basis (y;), for the extension F(z) of F.
(Notice that A € M (F').) Then

oy =Y amye = (yiz) = »_ ani(ypz)-
k=1 k=1
Now we order the basis (y;2;) as follows:
Y121, Y2215 - -+, YsZ1, Y1225 - -+ YsZ2y -+ o5 YsZr.
The matrix representing m,, in the basis (y;z;), for the extension E of F is
B =diag(A4,...,A).
(There are r blocks A.) Thus
char g/ p(2) = (det(—A+ X1,))" = m(z, F)",

where we have used the case » = 1 in the second equality. o

The following result provides an expression for Ng,p(x) in terms of the conjugates of 2 over
F.
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Corollary 10.1 Let E be a splitting field of the minimal polynomial m(z, F). If n = [E : F],
[F(z) : F] =d and x1,...,zq are the roots of m(x, F) in E (with repetition of roots possible),

then .
d a n
Np/r(z) = (H Jﬁz) o Tgyrle) =~ >
i=1 =1

d d
char g p(z) = (H(xl JrX)) .

=1

and

PROOF We have
[E:F]=[E: F@)][F(z): F],

hence [E : F(x)] = 4. From Proposition 10.1,

d i
char p/p(z) = m(z, F)i = (1_[(—:10z —l—X)) .

i=1
If
m(z, F) =ap + a1 X + - +ag_1 X1 + X9,

then . n

m(x’F)E = aOE 44 Eadlen_l + X"
It is clear that the constant term is aO% : however, the coefficient of X! needs an explanation.
From the multinomial theorem, with ag = 1, we have

d—1 dy2 _ q Cyivks
(a0 + a1 X+ +ag1 X7 + X% = Z (kO»kla -,/fd) H (a; X*)".
ko+ki+-+ka=1% 0<i<d
To obtain the coefficient of X"~ !, first we notice that
n
k0+k1+--~+kd=E (10.1)
and
Oko + 1k1 +2ko + -+ +dkg =n — 1. (10.2)
Multiplying equation (10.1) by d we obtain
dky + dk1 + - - - + dkg = n. (10.3)

We now subtract equation (10.2) from equation (10.3). This gives us
dko+ (d—1)k1 + (d—2)ka +---+ (d— (d = 1)) kqg—1 = 1,

from which we deduce that k; =0, for 0 <i < d—1, and kq_1 = 1. To find kg it is sufficient to
use equation (10.3):

d+dkd:n:>kd:%—1.

Hence, for the term with X! we have

<O,. . .O,EL ) (adled_l)l (X'd)%_1 — gadlen_l.

-1

a3
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We may now continue the proof. Since ag = (—1)% Hle x; and (=1)"N(z) = %%7 we have
N(z) = (H?Zl $i)g. In a similar way, ag_1 = —Z?Zl z; and —T'(x) = Zagq—; imply that

n —~d
T(r) = Fi Zizl ZTi. O

Separable extensions

Suppose now that E is a finite separable extension of the field F. If [E : F] = n and C is
an algebraic closure of F', then there are n F-monomorphisms o1, ...,0, of E into C (Corollary
3.2). (If E is a number field, then it is natural to take C' = A(C/Q), the field of algebraic
numbers, from the remark after Theorem 2.6.)

Proposition 10.2 Suppose that E is a finite separable extension of F. Then, for all x € E,

Np/r(z HUz Tp/r(z Zaz

and

char pyr(z) = H(—Uz‘(l‘) + X).

PROOF We have
[E:F

If [F(z) : F] = d, then [E : F(x)] = From Corollary 3.2, we know that there are d F-
monomorphisms 71, ..., 74 of F(x) into C and each one of these F-monomorphisms sends x to a
distinct associate x;. From Theorem 3.2, each 7; can be extended to an F'(z)-monomorphism o;
from E into C. An F'(x)-monomorphism is an F-monomorphism, thus we obtain n (= %4 x d) F-
monomorphisms o; from F into C. As [E : F] = n, these F-monomorphisms form the complete
set of F-monomorphisms from F into C'. Now we have

Hm(x) = (H’Q > (H%) = Ng/p()

3

als

and

For the characteristic function we have

n

d d d d
H(—ai(sc) +X)= (H(—Tz(l‘) + X)) = (H(—L + X)) = char g/ p(z).

i=1 i=1
This finishes the proof. m|

The proposition which we have just proved has an important corollary. If we have a tower
of fields F C K C E, where E is a finite extension of F, then it makes sense to speak of the

compositions Ng/p o Ng/g and Tx/p o T/, because Ng i () and T,k (v) are elements of
K, for any z € F.
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Corollary 10.2 (transitivity of norm and trace) If K/F and E/K, where E is a finite separable
extension of F', then

NE/F:NK/FONE/K and TE/F:TK/FOTE/K

PROOF Let n = [K : F] and m = [E : K|. From Proposition 3.5, K is separable over F' and
FE separable over K. Let N be a normal closure of E over F'. We saw in Section 5.1 that NV
may be considered as the splitting field of a polynomial f € F[X] which is a product of minimal
polynomials m(«, F'), with « € E. As E is a separable extension of F', the polynomials m(«, F')
are separable, and so f is separable. Therefore, from Corollary 3.4, N is a separable extension
of F. We have shown that N is a finite Galois extension of F.

Let C be an algebraic closure of N. From Corollary 3.2, there are n F-monomorphisms
01,...,0n of K into C and m K-monomorphisms from 74,...,7, from E into C. Each one of
the monomorphisms o; and 7; may be extended to a monomorphism &; or 7; from N into C
(Theorem 3.2). Proposition 5.3 ensures that N is normal over K, since N is normal over F.
Applying Proposition 5.2, we see that, for each i and each j, 6,(N) = N and 7;(N) = N, hence
6; and 7; are automorphisms of IV, for each ¢ and j. Hence we can compose the mappings &;
and 7;.

We now use Proposition 10.2. If z € E, then

Tx/r (T x(x ZUz Z Zaz ZA' sz}ﬁg(iﬂ)
=1 j=1

j=1 j=1

Each mapping ;7;|, is an F-monomorphism of E into C' and there are mn such mappings. We
claim that for distinct pairs (i,7) these mappings are distinct. Suppose that 6;7; = 6,7 on
E. Then, as K C E, this is also true on K. Given that 7;x = TMK = idk, and 0y = o;
and 6y = oy, we have o; = 0y, ie., 1 = [. Also, 6; = 6; and J; is a monomorphism, hence
7j(x) = Tr(x), and this is so for any € E. It follows that 7; = 74, and thus that j = k. We
have shown that the F’-monomorphisms 6;7;, restricted to E, are distinct and so form the set of
F-monomorphisms from F into C. Hence, using Proposition 10.2 again, we have

Tg/r(z) = Z 6:75(2) = Tr/r (Tr /K (2)),

for all x € F.
For the norm we proceed in an analogous way:

Nep@) = [T 6%@) =[]o: | [T 7@ | = Nesp (Ngjx () -
, , ok
This ends the proof. O

Remark Corollary 10.1 supposes that E is a splitting field of the minimal polynomial of x over
F. Using Corollary 10.2 we may show that Corollary 10.1 is true if the field E only contains
a splitting field K of the minimal polynomial (providing that E is a separable extension of F).
Indeed, we have the tower of fields ' C K C E and Ng,p(x) = Ng/po Ng/k(v). Asz € K, we

have Ng g (z) = zlZK]. Thus

(K:F] . ] [E:F]

(i)

Ng/p(x) = (Ng/p(2) <H $z>
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For the trace the calculation is analogous.

We now suppose that F/F is not only separable but also normal, i.e., E is a Galois extension
of F.

Corollary 10.3 If E is a finite Galois extension of the field F, then for all x € E
Ng/p(z) = H o(x) and Tp/p(z) = Z o(x).

oc€Gal(E/F) oc€Gal(E/F)

PROOF As F is a finite separable extension F, there are n = [E : F| F-monomorphisms o1, ..., 0y,
of F into an algebraic closure C' of F'. However, E is a normal extension of F' and C an alge-
braic closure of F', with C/E, therefore o;(E) = E, for i = 1,...,n (Proposition 5.2) and so
01,...,0n € Gal(E/F). As the cardinality of Gal(E/F) is n, the o; form the Galois group. The
result now follows from Proposition 10.2. ]

We conclude this section with a result concerning the bilinear form B defined in Exercise
10.1:
B:ExFE—F: (551,1'2) — TE/F(LEL’ﬂQ)

Corollary 10.4 If E is a finite separable extension of F', then the bilinear form B is nondegen-
erate.

PROOF Suppose that B is degenerate, then there exists a nonzero 1 € F such that T'(xz122) =0,
for all 25 € E. If 2 € E, then there exists x5 € E such that 2125 =z, so T'(z) =0, for all € E.
However, this means that Y., 0;(z) = 0, for all z € E, which contradicts Dedekind’s lemma
(Theorem 8.1). Therefore B is nondegenerate. |

10.2 Discriminant of a polynomial

In Section 8.5 we introduced the discriminant of a polynomial. Also, we defined the resultant of
two polynomials and stated an important relation between these two concepts. Our aim in this
section is to study these concepts in more detail. In order to make the reading easier, we regive
the definitions.

Resultants
We fix m,n € N*. Let F be a field, f € F,,[X], with coefficients ag, ..., a,, and g € F,[X], with

coefficients b, . .., b,. We define the square n +m Sylvester matriz Sy, »n(f,9) (or S(f,g)), if m
and n are understood) as follows:

(am @m-1 @m—2 ... 0 0 O

0 Oy Q1 ... 0 0 O

0 0 0 ar ag O

o 0 0 0 a9 a1 [e1)

T A A 0 0 0
by, bp—1 0O 0 O

0 0 0 ... by by O
1 0 0 0 oo by b1 bo
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We obtain S, ,,(f,g) by shifting the line vector of the coefficients of f successively to the right
by 0,1,...,n — 1 steps and the vector line of the coefficients of g successively to the right by
0,1,...,m — 1 steps and then filling in the remaining places with 0.

Remark If 0 < deg f = k < m, then we have a,,, = a;p—1 = -+ = agy1 = 0 and if f = 0, then
a; = 0, for all i. We have an analogous situation if deg g # n.

Here is an example. With m = 3 an n = 2, we have

a3 a2 ai; Qo 0
0 az a2 a1 Qo
Smm(fr9)=|ba b1 by 0 0
0 by b1 by O
0 0 b2 b1 by

The resultant of f and g, which we note R, .(f,g), (or R(f,g), if m and n are understood) is
the determinant |S,, ,,(f,g)|. Clearly,

Rn,m(ga f)= (_1)man7n(fa g)- (10.4)

Remark We may consider the a; and b; as variables. In this way we obtain a mapping from
Fm+l » Fntlinto F, which is mn-homogeneous.

Proposition 10.3 Let f € F,,[X] et g € F,,[X]. If m > n and h € F,,,_,[X], then

R(f + hg,g) = R(f, 9)-

In the same way, if m <n and h € F,_,,[X], then

R(f,g+hf) = R(f.9).

PROOF Let us begin with the case m > n. If h(X) = ¢ is a constant polynomial, then the
coefficients of f 4+ hg are

Ay A1y -+« 5 Gy + Cbpy @1 + b1, ..., a0 + ¢by,0,...,0.

From this, we see that the first line of S(f + hg,g) is the first line of S(f, g) plus ¢ multiplied
by a line in the bloc of the b;. This also applies to the lines 2,...n, so in this case we have

R(f + hg,9) = R(f. 9)-
Now suppose that h = ¢X. Then the coefficients of f 4+ hg are

Gy Gmy—1y -« - 5 Q1 + Cbp, @y + b1, ..., a1 + cbg, ap, 0. .., 0.

Again the first line S(f + hg, g) is the first line of S(f, g) plus ¢ multiplied by a line in the bloc of
the b;. This also applies to the lines 2,...n, so in this case too we have R(f + hg, g) = R(f,g).
If h =cy+ c1 X, then

R(f +hg,9) = R(f + (co + c1X)g,9) = R((f + cog) + c1Xg,9) = R(f + c0g,9) = R(f,9).

Continuing in the same way, we obtain the first result. The second result is obtained in an
analogous way. o

In the next proposition we consider the case where degg < n or deg f < m. This result is
useful in proving the fundamental theorem which follows.
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Proposition 10.4 Let f € F,,,[X]| and g € F,[X]. If0 < degg =k <m =degf, then

Rm,n(fa g) = aﬁ@_kRm,k(fv g) (105)
If, on the other hand, 0 < deg f = k < n = degg, then
Rou(f.9) = (1) 60 F Ry (f, 9). (10.6)

PROOF Let us look at the first equation. If k = n, then there is nothing to prove, so let us

suppose that k& < n. Then b,, = 0 and the only nonzero element in the first column of the matrix

Smn(f,9) is am. The submatrix obtained by eliminating the first line and the first column

Smon(f,9) 18 Smn—1(f,g9). If we continue the process, then we finally obtain the first formula.
Now we look at the second formula. Using the formulas (10.4) and (10.5) we have

R n(f,9) D™ Rin.n(9, f)

1™ b " Rk (9, f)

D™ b~ (=1)" Ry (f, 9)
DR Ry (1, ).

(_
= (-
(_
(_

This ends the proof. ]

We now turn to one of the most important results of this section. We will see that there is a
relation between the roots of the polynomials f and g in a splitting field and the resultant.

Theorem 10.1 Let f € F,,[X] and g € F,[X]. If deg f = m, then

m

Rm,n(fv g) = a?n Hg(&)?

i=1

where the &; are the roots of f in some splitting field of f. On the other hand, if degg = n, then

Rynn(fo9) = (1) b [T £j),

j=1
where the n; are the roots of g in some splitting field of g.

PROOF We begin with the first formula and suppose that n > m and that f has the roots
&1,..., &y in some splitting field. We will use an induction on s = degg. If s = 0, then the
matrix Sy, (f,¢) is upper triangular and on the diagonal we have a,, n times and by m times,

therefore
m

Ronn(f,9) = apby = an, [ [ 9(60),

i=1
so the result is true for s = 0.
Now suppose that 0 < s < n and the result is true up to s — 1. Dividing g by f we obtain

g=Trfa+r,
with degr < deg f = m. Then

degq = deg fq —deg f =deg(g —7) —m <n—m.
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From Proposition 10.3 we have

Rm,n(f»g) = Rm,n(fvg - fq) = Rm,n(f, 7“).

We set degr = k < s and use Proposition 10.4 and the induction hypothesis.
Case 1: r #0

Rm,"(fv T) = aﬁfkRm,k(f,T)

m

= aptal [ (&)
=1

and so the result is true for s.
Case 2: r =0

In this case the last m lines of the matrix S, »(f, ) are composed of zeros, hence R,, ,(f,r) = 0.
In addition, for any root & of f, we have g(&;) = q(&)f(&) = 0, which implies that &; is also
a root of g. This implies that the expression [[;~, g(&) vanishes, so in this case also we have
equality. Thus the result is true for s.

In both cases, the result is true for s, so by induction, the result is true for all s < n.

Now let us suppose that m > n. Then g € F,,,[X] and, using Proposition 10.4, we have

Rm,m(fv g) = a:zian,n(fv g)'

In addition, from what we have seen above,

m

=1

Therefore,

amian,n(fv g) = am Hg(gz) - Rm,n(f7g) = aﬁ), Hg(gz)
i=1

i=1

Hence, for m > n also the formula holds.

We now consider the second part of the theorem. We suppose that g has the roots ny,...,nm,
in some splitting field. Then,

Rm,n<f7g) = (_1)man7m(gaf)
= (=nmop I £y,
j=1
where we have used the first part of the theorem. O
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Corollary 10.5 Ifdeg f =m, degg =n and, in a splitting field of f and g, the roots of f (resp.
g) are &1, . & (TESP. M1y . .. M), then

Rm,n(fvg) = a%b;n H H(&’L - 77_])
i=1j=1
PROOF It is sufficient to notice that
9(X) =0p(X —m) -+ (X —mn)
and then apply the first part of the theorem. ]

Discriminants

Let f(X)=>1",a; X" a polynomial with coefficients in a field F. We suppose that the degree
m of f is greater than 1 and that f has the roots &;1,...,&, in some splitting field E. The
discriminant of f is defined by

A(f)y=ap? I @-¢)*
1<i<j<m
We will see in the theorem which follows that this definition is unambiguous: it does not depend

on the splitting field chosen.

Tt is useful to notice that A(f) belongs to F'. Indeed, the multivariate polynomial
A = gZm=2 [licicjom(Xi = X;)? is a symmetric polynomial in F[X7,...,X,]. Consequently,
from Corollary B.1, A(f) € F. Using the same corollary, we may also say that, if f € R[X],
where R is an integral domain, then A(f) € R.

In Section 8.5 we stated the following result linking the discriminant of a polynomial and the
resultant of the polynomial and its derivative. Here we prove this result. it.
Theorem 10.2 If char F =0 or char F =p >0 and p fm, where deg f = m, then
A(f) = (=1 Pag Ry 1 ()

PROOF We have

FX) =am [[(X = &) = F(&) =am [[(& - &)
i=1 i

Hence,

m

Rm,mfl(fv fl) = az_l fl(gl)

1=

= a1 - )

—

i=1j%#i

| R
1<i<j<m

SR GVl | GRS,

1<i<j<m

_ (_1)m(m—1)/2amA(f)
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and the result follows. O

If char F' = p > 0 and p|m, then deg f' = k < m — 1. In this case, if k # —o0, then

Rm,mfl(f? f/) = am_l_kRm,k(f’ f/)

and
A(f) = (=)™ Ram = 2 Ry i (f, ),

Remark The polynomial f has a multiple root if and only if A(f) = 0. From the formulas here,
we see that we are able to determine the existence of a multiple root only taking into account
the coefficients of f. We should also notice that the formulas show that the discriminant belongs
to the field F.

Example 1: A(b+aX + X™)

Our aim in this section is to determine a formula for the discriminant of the polynomial f(X) =
a+bX + X" € F[X]. We will suppose that FE is a field containing F' and the roots of f.

Lemma 10.1 If f € F[X] is monic and ap € E, then

A((=ao0 + X)f(X)) = f(a0)*A(f(X)).

PROOF Let vy, ..., a;, be the roots of f in C. Then the roots of (—ag+X) f(X) are ag, a1, ...,
and
A(—ao + X)f(X)) = H (ai — a;)?
0<i<j<n
= I (@w-a)* J[ (ai-ay)?
1<j<n 1<i<j<n
= f(ao)*A(f(X)).
This ends the proof. |

We need a second preliminary result.

Lemma 10.2 If f(X) =c+ X" € F[X], then

n(n—1)

A(f) = (~) =T e,

PROOF Let ag,...,a, be the roots of f in E. Then
ap---ap = (=1)". (10.7)
Also,
FX) = e+ X) = f(0) =3 [[(~05 + X) = fle) = [[ (a5 + )
=1 i=1 j#£i Gei

It now follows that



and, using the identity (10.7), we obtain

(*1)%A(f) =n"(on - ap)" =0t (=) = pren

hence the result. O

We are now in a position to consider the polynomial f(X) = b+ aX + X" € F[X]. The
following theorem provides a formula for the discriminant of f involving only its coefficients.

Theorem 10.3 For the polynomial f(X) = b+ aX + X™ € F[X], with n > 2, we have the
formula

n(n—1)

(n—1)""ta" +(=1)" =z n"p" L.

(n—=1)(n—2)
2

A(f) = (=1)

PROOF For the the case where a = 0 we may use Lemma 10.2, so we may suppose that a # 0.
We begin with the case where b = 0. Then, using Lemmas 10.1 and 10.2, we have

A(f) = AX(a+X")
a*Ala+ X1
= (-1 (- 1)l 2
_ (1 (n=1)(n—2) —1)”_1(1”
— ()T T (=) e 4 (<)

because b = 0.
Now we turn to the case where b # 0. The calculations are much longer. If ay,...,a, are
the roots of f, then, for all 4,

b+aa; +a =0 and ay - a, = (=1)"7. (10.8)

As b # 0, none of the roots «; vanish. Now, proceeding as in the proof of Lemma 10.2, and
setting A = (—1)n(n2_1) A(f), we have

n n n

A= Hf/(ozi) = H(a +na?™t) = H M.

6%}

i=1 i=1 i=1
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Using the expressions (10.8), we continue:

A = (—;)n [T(aci +nap)

= - ) )

- e el ()

- . bn
- ! b) a*(n=1)" (_a(nl) _O"’)
=1
(=™ bn
We now simplify the expression on the right-hand side:

A = (_;)n ((—1)"()"11" —a"bn(n — 1)("_1) +a"b(n — 1)”)

)" (
- ((—1)"()”_171” —a"(n— 1)"_1)
= " In" — (=1)"(n - 1)" " ta”

)n—l(n _ 1)7L—1an 4 nnbn—l
) (n—1)" e + "t

n(n—1)

Multiplying through by (=1)" 2z , we obtain the desired result.

Applications We have
o for n =2, A(f) = a® — 4b;
o for n =3, A(f) = —4a® — 27b%
o for n =4, A(f) = —27a* + 256b°.

Example 2: A(D,)

Proposition 10.5 If p is an odd prime, then
A®,) = (-1) T p2.
PROOF Let ¢ be a primitive pth root of unity. Then

14+ XP = (14 X)8,(X) = pXP~! = 0,(X) + (-1 + X)®)(X).
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Substituting ¢* for X, since ®,(¢?) = 0, we obtain

p—1 -
, _ pc(p 1)
E@p@) = [[ o
_ PPt
OIS (1<)
pp—l _ ;1)—2.

T Core,) P

(The second equality follows from the relations Zf:_ll j=ple=b o D and ¢? = 1 and the third from
the identity ®,(X) =1+ X +---+ XP71)

Also,
p—1 , p—1 4
o,(X)=[[(-¢+X) = @x)=>_J[(-¢+Xx)
i=1 i=1 ji
= () =]](-¢ +¢)
JFi
— JI2.¢)=TITI¢ +¢) =T]¢ +¢H.
i=1 i=1 j£i j#i
Therefore,
A@,) =TI = ¢ = ()" =F I - ¢) = (-7 p 2
j<i ki
This ends the proof. O

10.3 General discriminants

We have seen the notion of the discriminant of a polynomial. Here we extend this notion, al-
though at first it will not be clear how the new concept is actually an extension of the previous
one. This we will see later.

Let E be a finite separable extension of degree n of a field F'. We note o1,...,0, the n
F-monomorphisms of E into an algebraic closure C' of ' and we take n elements aq,...,q, in
E. We define the discriminant of the set a,...,a, by

discg/p(o,...,an) = \Ui(aj)|2,

i.e., the square of the determinant of the matrix S = (0;(;)). As we take the square of the
determinant, the order of the o; and a; do not have an effect on the value of the discriminant.
We will also see that the discriminant does not depend on the algebraic closure we use, hence
we are justified in speaking of the discriminant.

Exercise 10.2 Show that
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o discp p(zay,...,an) = a:QdiscE/F(al, cooy ), for any x € F;

o If B is a linear combination of as, ..., a,, with coefficients in F', then
discg/p(a1 + B,aa,...,an) = discg/p(a, ..., an).

The next result is useful as we will see later on.

Proposition 10.6 Suppose that U = {uy,...,u,} and V = {vy,...,v,} are sets of vectors in
E such that u; = Z?zl a;jv;, with a;; € F. Then

discp/p(ur, ... up) = (det(as;))*discp/r(vi, ..., vn).

PROOF By definition
discE/F(“’l? C) Un) = (det(ol(uj)))z )

where the o; are the n F-monomorphisms of F into an algebraic closure of . Now
n n
oi(u;) = Uz‘(z ajkVk) = Zajka'i(Uk).
k=1 k=1

We define the matrices X = (0;(u;)), A = (a;j) and Y = (04(v;)). Then X = YA’ and so
(det(X))? = (det(Y A%))?, i.e.,
discg/p(ut, ..., un) = (det(aij))zdiscE/F(vl, ey Un),

as required. 0O

The next result will enable us to show that the discriminant is indeed independant of the
algebraic closure of F chosen.

Proposition 10.7 We have
diSCE/F(Oél, . ,O[n) = |TE/F(C¥Z'Oéj)|,
where [Ty p(cioy)| is the determinant of the matriz T' = (Tg/p(a;ay)).

PROOF As above let us set S = (0;(;)). Then

StS = (Z Uk(aiaj)> = (Tg/r(cuiag)),
k=1

hence

SI? = T r(aiaj)|.
This ends the proof. m|
Remark From the proposition we see that discg/p(au, ..., a,) is independant of the algebraic
closure chosen. Also, as Tg/p(a;a;) € F, for 1 <i,j < n, we have discg/p(a1,...,a,) € F.

The discriminant can help us to determine whether n elements in an extension of degree n
form a basis of the extension.
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Proposition 10.8 The elements aq, ..., ay form a basis of E over F if only if their discriminant
does not vanish.

PROOF Let Z?:l cja; = 0, where the ¢; € F' and at least one ¢; # 0. Then, for 1 < i < n,
> j=1¢joi(a;j) = 0. This implies that the columns of the matrix S = (o;(;)) are dependant. It
follows that discg/p(a1,...,a,) = 0.
Now suppose that the «; are independant and so form a basis of E over F'. If

discg/p(a, ..., an) = 0, then the rows of the matrix S are dependant, hence there exist elements
c1,...,cn € F, with at least one ¢; # 0, such that Y ;" ¢;o:(a;) =0, for 1 < j < n. As the «;
form a basis of E over F', we have >, ¢;o;(u) = 0, for all u € E; therefore the monomorphisms
o; are dependant. However, this contradicts Corollary 8.1. Hence discg,p(1,...,0a,) #0. O

In Section 8.5 we defined the discriminant of a polynomial. There is a relation between this
notion and the notion of discriminant which we have defined here.

Proposition 10.9 Let E be a finite separable extension of a field F'; then there exists o € E
such that E = F(a) (Proposition 3.4). If m = m(a, F) and degm = n, then the elements
1,a,...,a" "t form a basis of E over F. We have

n(n—1)

discp/r(l,a,...,a" ") = A(m) = (=1)" 2 Ng,p(m'(a)).

PROOF Let C be an algebraic closure of F and oy, ...,0, the n F-monomorphisms from E into
C. Since E = F(a), each o; is determined o;(«). Moreover, « is a root of m € F[X], so o;(«) is
also a root of m. If a = ay, g, ..., a, are the roots of m, then we may suppose, without loss of
generality, that o;(a) = a;. Consequently, 0;(a?) = o and discg/p(1,a,. .., o™~ 1) is the square
of the determinant of the matrix

1 a; of ... a?_l

1 az o3 ... oyt
S = ) )

1 a, a% 04271

However, S is a Vandermonde matrix, therefore

|52 = [J(w — a;)* = A(m).

i<j

[T(es = ) = (-1 (e ~ )

i<j i#£j

Moreover,

and, from Proposition 10.2,

Ng/r(m'(a) = Ha,» (m/(@)).

Now, o;(m/(«)) = m’(0;(ct)), because m € F[X], thus

Ng/r(m'(a) = Hm'(ai(a)) = Hm’(ai).
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Finally, as m(X) =[], (—a; + X), we have
m/ (o) = [[(—ey + )
o

and so

Ngyp(m'(a)) = HH(—%‘ + i)
i=1j#i
= -5 +a)
JFi
= ()" [l — ),

i<j

which implies that

n(n—1)

A(m) = (—1) 2 NE/F(’ITL/(OZ))
This ends the proof. ]

Remark From Proposition 10.9 and the calculation of the discriminant of the pth cyclotomic
polynomial ®,, for p an odd prime (Proposition 10.5), we obtain

: ) L
discqe)/Q(1, G-, CP72) = (1) T pr2,

where ( is a primitive pth root of unity, because ®,, is the minimal polynomial of ¢ over Q.

We now use the previous proposition and the notion of norm and trace to calculate the
discriminant of the p"th cyclotomic polynomial, where r € N*.

Corollary 10.6 We have
A(®,r) = (_1)01917’"*1(7“(17—1)—1)7

where ¢ = 4)(57‘), if pis odd or v > 1, and ¢ = 0 otherwise. (¢ is the Euler function.)
PROOF Let ¢ be a primitive p"th root of unity. Setting n = ¢(p") = p"~!(p—1), from Proposition
10.9

n(n—1)

A(®,r) = discqe)/q(1, ¢, ..., ") = (=1)" = Na(o)/a(®)-(Q))-

We now calculate the norm. First, using Exercise 7.4, we have

- X —1 prer TR = 1)
— P - T ! _
(I)pr(X) - (I);U(X ) - Xt _q = q)pr (C) - (Cprl — 1)2 )
because (P* — 1 = 0. Hence,
’ _ pTCpT71
(I)pT (C) - Cpr—l -1 .

To calculate Nq(¢)/q (@;T(C )) we use the multipliplicity of the norm. To begin, we determine
NQ(O/Q(CPT“). This norm is the product of all the primitive p"th roots of unity (Corollary
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10.1), i.e., (—1)™ times the constant term of ®,-. However, &, (X) = <I>p(XpT71) (Exercise 7.4)
and ®,(X)=1+---+ XP~!, hence

Nq(¢y/q(¢? 1) = (1)

Let us now calculate Nq()/q (¢P"" —1). To do so we initially notice that P is a primitive
pth root of unity. (C”Pl is clearly a pth root of unity; if (Cprfl)k =1, with k£ < p, then there is
a power u of  less that p” such that p* = 1, which is impossible, so CPPI is a primitive pth root
of unity.) Let £ be a primitive pth root of unity. We apply Corollary 10.3 to the tower of fields
Q C Q(&) C Q(¢) to obtain

Nq(¢)/q(c?

-1

—1) = Nq)/q ° Nay/ae (¢ —1).

Moreover,
1 r—1 r—1

No@yae? -1 =" -1,
since (7" —1 € Q(£) and

Hence, we have to consider

r—1 r—1

r—1 r—1 p
Na@/a((¢” =1 ) = (Naga  —1))
Since Cpril is a primitive pth root of unity, its minimal polynomial over Q is ®,. The minimal
polynomial of Cpr_l —1 over Qis ®,(1 — X), which has the splitting field Q(&). Therefore, from
Corollary 10.1,

p—1
r—1

Naeyra(¢® -1 =][[E -1 =(1"e,1) = (1" 'p

i=1

and )
r—1 -1 re1 et
Nawy(? —1) = ((-1)7"1p)" = (=)= pp

To conclude

PNy ™) prm(=1)" P p(p—1)—1
N o,(C)) = € _ )]
Q©)/q(®,-(Q)) Now/q@™ =1 ~ (D)

If pis odd or r > 1, then n = ¢(p") is even and the parity of n(”;l) is that of 5. On the other
hand, if p is even and r = 1, then n = ¢(2) = 1, so (—1)% = 1. This finishes the proof. O

Further on we will generalize this result, i.e., we will determine A(®,,), for any n € N*.
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Part 11

Algebraic Number Theory
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Chapter 11

Number fields

In our previous work we have already seen number fields, namely finite extensions of the rational
numbers Q. In this chapter we will look into these fields in more detail. In particular, we will
study a natural subring occurring in such fields, namely that composed of algebraic integers.

11.1 Algebraic integers

We recall that an algebraic number is an element o € C for which there is a polynomial f € Z[X],
such that f(«) = 0. The algebraic numbers form an extension of the field Q. We say that a € C
is an algebraic integer if there is a monic polynomial f € Z[X], such that f(«) = 0. An algebraic
integer is an algebraic number, but the converse is not necessarily true; for example, as we will
soon see, a rational number is an algebraic integer only if it is an integer.

Lemma 11.1 Let f € Z[X] and f = gh, with g,h € Q[X]. If f and g are monic, then
g,h € Z[X].

PROOF Let m (resp. n) be the smallest positive integer such that mg (resp. nh) belongs to Z[X].
Since g and h are monic, we claim that the contents ¢(mg) and ¢(nh) have both the value 1.
(We recall that the content of a polynomial in Z[X] is the hef of its coefficients.) If ¢(mg) # 1,
then the coefficients of mg have a common divisor d > 1, such that d|m, since g is monic. If we
set m' = 2 < m, then m'g € Z[X], a contradiction, since m' is a positive integer. A similar
argument applies to ¢(nh). We claim that this in turn implies that m = n = 1: If m > 1 or

n > 1, then mn > 1; for p a prime divisor of mn, we have
mnf = (mg)(nh) = 0 = mgnh,

where the bars indicate the reductions modulo p. As Z,[X] is an integral domain, because Z,, is
a field, mg = 0 or nh = 0, which implies that p divides the coefficients of mg or the coefficients of
nh. However, this is impossible, because ¢(mg) = ¢(nh) = 1. Therefore m = n = 1, as claimed.
This implies that g, h € Z[X]. O

Theorem 11.1 If o € C is an algebraic integer, then there is a monic polynomial f € Z[X]
such that f(«) = 0. If f is of minimal degree, then f is irreducible in Q[X].

PROOF If f is reducible in Q[X], then there are nonconstant polynomials g, h € Q[X] such that
f = gh. We may suppose that g and h are monic. From Lemma 11.1, we have g, h € Z[X]. In
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addition, g(«) = 0 or h(«) = 0. However, degg < deg f and degh < deg f and so we have a
contradiction to the minimality of f. Thus f is irreducible. |

From this result we obtain an important corollary.
Corollary 11.1 Ifa € C is an algebraic integer, then the polynomial m = m(a, Q) lies in Z[X].

PROOF Let f be a monic polynomial in Z[X] of minimal degree such that f(a) = 0. Then f is
irreducible in Q[X] and m|f. It follows that m = f. O

Exercise 11.1 Show that if E is a number field and x € E is an algebraic integer, then Ng,q(x)
and Tg/q(x) are integers.

We now consider the algebraic integers in Q.
Theorem 11.2 The number o € Q is an algebraic integer if and only if o is an integer.

PROOF If a € Z, then f(X) = —a+ X € Z[X] and f is monic. Clearly f(a) = 0, so « is an
algebraic integer. Now suppose that « € Q is algebraic. If m = m(a, Q), then m € Z[X] and
m(a) =0. As a is a root of m, g(X) = —a+ X divides m. Now, m is irreducible and so g = m;
it follows that m € Z[X], which implies that o € Z. |

We will now establish criteria permitting us to decide whether a complex number is an
algebraic integer. This will enable us to show that the collection of algebraic integers, which we
will note O, is a subring of the field of algebraic numbers.

Theorem 11.3 The following conditions are equivalent:
e a. « is an algebraic integer;
e b. The additive group of the ring Z[a] is finitely generated;
e c. « belongs to a subring R of C whose additive group is finitely generated;

e d. There is a finitely generated subgroup G # {0} of the additive group of C such that

aG C G.
PROOF a. = b. If a is a root of a monic polynomial f € Z[X] and deg f = n, then the additive
group of Z[a] is generated by the elements 1, q,...,a" L.
b. = c¢. = d. These implications are elementary.
d. = a. Suppose that ai,...,a, generate G. Then each term aa; can be expressed as a

linear combination of the a; with coefficients in Z. Therefore there is a matrix M € M,,(Z) such

aaq aj ai
=M\ : = (al, — M) | : =0.
Al [o2% [o2%

As all the a; are nonzero, det(al — M) = 0. However, this determinant can be written :
a4 cp1a" o qa+ =0,

with ¢; € Z. Hence we have a monic polynomial f € Z[X] such that f(a) = 0. O

We may now show that the subset O of C composed of algebraic integers is a ring.
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Corollary 11.2 The subset O of C is a ring.

PROOF It is sufficient to show that o + 8 and af are in O, when « and 3 are in O. Let m, n
be the degrees of the minimal polynomials of «, 3. Then 1,c,...,a™ ! is a generating set of
the additive group of Z[a] and 1,3,..., 3" ! a generating set of the additive group of Z[3]. The
elements a’37, for 0 < i < m and 0 < j < n, form a generating set of the additive group of
the ring Z[a, 8]. As Z[a + f] is a subring of Z[«, 8], from 11.3 c., o + 3 is algebraic. A similar
argument shows that af is also algebraic. |

We may generalize the notion of algebraic integer. If R is a commutative ring and S a subring,
then we say that a € R is integral over S if there is a monic polynomial f € S[X] such that
f(a) = 0. With Theorem 11.3 as model we may establish criteria allowing us to decide whether
an element of R is integral over S.

Theorem 11.4 If S is a subring of the commutative ring R, then the following conditions are
equivalent for an element o € R:

e a. « is integral;

e b. The S-module S|« is finitely generated;

e c. « belongs to a subring U of R containing S which is a finitely generated S-module;
e d. There is a nonzero finitely generated S-module N in R such that o N C N.

PROOF a. = b. If « is a root of a monic polynomial f € S[X] and deg f = n, then o™ and
all higher powers of « can be expressed as linear combinations (with coefficients in S) of lower

powers of a. Hence S[a] is generated by the elements 1, q,...,a" 1.
b. = ¢. = d. These implications are elementary.
d. = a. Suppose that aq,...,a, generate N. Then each term aa; can be expressed as a

linear combination of the a; with coefficients in S. Therefore there is a matrix M € M,,(S) such

aal ai ai
=M| : |=(al,-M)|[ : |=0.
aan, [17% o7

As all the a; are nonzero, det(al — M) = 0. However, this determinant can be written:
o+ Cn_l()énil +---t+ca+cy = O,

with ¢; € S. Hence we have a monic polynomial f € S[X] such that f(a) = 0. |

Using arguments analogous to those employed in the proof of Corollary 11.2 we see that the
collection of elements in R which are integral over S form a subring of R. We call this subring
the integral closure of S in R. If the integral closure is S itself, then we say that S is integrally
closed in R. If S is an integral domain and integrally closed in its field of fractions, then we say
that S is integrally closed. Above we saw that Z is integrally closed in Q, its field of fractions,
so Z is integrally closed.

If S is a subring of the ring R such that every element of R is integral over S, then we say
that R is integral over S.

The integral closure of S in R is naturally an S-module. We will now explore some of its
properties. We first consider minimal polynomials over integrally closed domains.
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Proposition 11.1 Let R be an integrally closed domain, with field of fractions K, and L an
extension of K. If x € L is integral over R and L is a splitting field of the minimal polynomial
m = m(z, K), then all the K -conjugates of = belong to L and are also integral over R. It follows
that m € R[X]. If S is the integral closure of R in L, then SN K = R.

PROOF Let us write R for the integral closure of R in L. Then R ¢ RN K C R, because R is
integrally closed. Thus RN K = R.

If 2 € L is integral over R, then there exists a monic polynomial f € R[X] such that f(z) = 0.
The minimal polynomial m = m(z, K) divides f. It follows that the K-conjugates of x (which
are in L) are also roots of f, hence integral over R and so belong to R.

The coefficients of m are, up to sign, defined by the elementary symmetric functions evaluated
at the K-conjugates of z and so belong to RN K = R, i.e., m € R[X].

To finish, we consider the integral closure S of R in L. If x € SN K, then x € R, because R
is integrally closed, so SN K C R. Clearly R C SN K, so we have SN K = R. a

The next result concerns the field of fractions of an integral closure of an integral domain.

Proposition 11.2 Let R be an integral domain and K its field of fractions. If L is an algebraic
extension of K and S the integral closure of R in L, then the field of fractions F of S is L.

PROOF Clearly R C S C FF C L. As F C L, we only need to show that L C F. Let x € L. If x =
0, then there is nothing to prove, so let us suppose that this is not the case. As L is an algebraic
extension of K, z is algebraic over K: there exists a polynomial f(X) = >"" a; X" € K[X]
such that f(z) = 0. Then > ;" ) 4= (apx)" = 0. Setting b; = %=, we obtain a monic polynomial
g € K[X] such that g(amz) = 0. Hence s = a,x € . As K is the field of fractions of R, there

exist 71,72 € R such that a,, = JL, so x = %2 € F, because 71,72 € S. Hence L C F. ]

Corollary 11.3 If R, K, L and S are as in Proposition 11.2, then every element of x of L has
the form 2, where s € S and r € R*.

r?

PROOF For x = 0 there is nothing to prove, so we suppose that this is not the case. In the proof
of Proposition 11.2 we showed that, if x € L, then z = %, where 71,79 € R and s € S. As
R C S, we have sry € S, hence the result. O

Exercise 11.2 Show that there exists a basis of L over K composed of elements in S.
We now introduce an interesting result, which we will use further on.

Theorem 11.5 Let R be an integrally closed domain, K its field of fractions and L a separable
extension of degree n of K. Suppose that S is the integral closure of R in L. Then there exist
free R-modules M and M’, of rank n, such that M' C S C M.

PROOF Let ¢ be a primitive element of L over K, i.e., L = K(t). From Lemma 11.1, we may write
t =2, with s € S and r € R*. Thus L = K(s). Since L is an extension of degree n of K, , the
degree of the minimal polynomial m(s, K) is also n. Consequently, the elements 1,s,...,s" !
are K-independant. These elements are also R-independant elements of the R-module S. The

n—1

R-submodule of S generated by 1,s,...,s is
M =R®Rs®- @ Rs"™ !,

which is a free module of rank n.
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It is a little more difficult to show that S is contained in some free R-module. Let d =
discL/K(l, 8,...,8"1). As the elements 1,s,...,s" ! are K-linearly independant, Proposition
10.8 ensures that d # 0. Then é, I % are R-linearly independant elements of the R-
module L. The R-module generated by these elements is

1 S sl
N RN®---®dR .
Der(C) e oR(C )
M is a free R-module of rank n. We aim to show that S C M. As the set {1,s,...,s" '} isa
basis of L over K, any y € S can be written

n—1 n—1 :
y = chsj = chj (SJ> ,
=0 =0 d

where the ¢; € K. We need to show that dc; € R. Since dc; € K and R is an integrally closed
domain, it is sufficient to prove that the dc; are integral over R.

Since L is separable extension of K of degee n, Corollary 3.2 ensures that there are n distinct
K-monomorphisms o1, ..., 0, from L into an algebraic closure C of K. As L = K(s), each o; is
entirely determined by o;(s), hence the elements o1(s),...,0,(s) are distincts. In addition, for
i=1,...,n, 0;(s) is a K-conjugate of s and so the set {o1(s),...,0,(s)} is equal to the set of
K-conjugates {s1,...,5,} of s. Without loss of generality, we may suppose that o;(s) = s;, for

M = R(

all 7. Applying o; to the equality y = E;:Ol cjs’ we obtain, for all i,

n—1 n—1
oiy) =Y ¢ (oi(s)) =D sl
j=0 j=0
We may express this in matrix form:
o1(y) 1 s ... st o
an(y) 1 s, ... stt Crn—1

The matrix V = (sz) is a Vandermonde matrix with all s; distinct, so its determinant 6 does
not vanish. Using Cramer’s rule, we obtain expressions for the c¢;, namely c¢; = %, where v; is
the determinant of the matrix V; obtained from V' by replacing the column j + 1 by the column
(gl(y)’ s 707L(y))t'

Now, from Proposition 10.9, d = discy (1,5, ..., s"71) is the discriminant of the minimal
polynomial m(s, K); hence, using the formula for the determinant of a Vandermonde matrix, we
obtain

d= H (SZ'—Sj)QZ(SQﬁde :(5’}/]‘,

1<i<j<n
for j =0,...,n—1. As § and ; are determinants of matrices with coefficients in S, because y
and s belong to S. Therefore the dc; are integral over R, as required. O

11.2 Number rings

Let K be a number field and let us note Ok the collection of algebraic integers in K. Clearly
Ok = ON K and so, being the intersection of two subrings of C, Ok is a subring of C. We
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say that Ok is the number ring associated to K or the ring of integers of K. We will see that
this ring has many interesting properties. However, let us first consider a "simple" case, namely
that of number rings associated to quadratic number fields. We know that, if K is a quadratic
number field, then there is squarefree integer d such that K = Q(v/d ) (Theorem 3.5). It would
be natural to think that associated number ring has the form Z[v/d ]. The next theorem shows
that Oq /7, always contains Z[v/d ], but inclusion can be strict.

Theorem 11.6 Let d be a squarefree integer. Then

o _Jzvd] ifd = 2,3 (mod 4)
QVA) T Z[=LEYD] ifd =1 (mod 4).

PROOF Case 1: d = 2,3 (mod 4). We take o =7 + sv/d € Oqva)- If s =0, then o € Q, hence,
from Theorem 11.2 « € Z, and so « € Z[\/& ]. Now suppose that s # 0. We note

f(X)=(r? —ds®) —2rX + X? € Q[X].

Then A(f) = 4ds?. As d is squarefree, A(f) is not a square in Q, hence f is irreducible. Now,
f(a) = 0, therefore f = m(a, Q). From Corollary 11.1, f € Z[X] and so r? — ds?,2r € Z. This
implies that 4ds? € Z. Using the fact that d is squarefree, we obtain 2s € Z. Let us note m = 2r
and n = 2s. Then

1
r? —ds® = Z(m2 —dn?®) € Z
and so 4|(m? — dn?). Then
d =2 (mod 4) = m? — dn* = m* 4 2n? (mod 4)
and
d =3 (mod 4) => m? — dn? = m? + n? (mod 4).
As m? — dn? = 0 (mod 4), in both cases m and n are even, which implies that r,s € Z. Thus
o € Z[Vd).
Suppose now that o = r + sv/d, with r,s € Z. If s = 0, then a € Z C OQ(\/E)' If s # 0, then
r? —ds? 2r € Z and so f € Z[X]; as f(a) = 0, it follows that a € Oq(va)-
We have proved the result for the case d = 2,3 (mod 4).

Case 2: d = 1 (mod 4). We take a@ = 7 4 sv/d € Oq(va)- If s =0, then o € Q, hence, from

Theorem 11.2, « € Z and so a € Z[_l%\/a]. To handle the case where s # 0, we define f € Q[X]

as above and proceed as in Case 1 to find 4|(m? — dn?), where m = 2r and n = 2s.
d =1 (mod 4) = m? — dn? = m? — n? (mod 4).
Thus we have 4|(m? — dn?) and 4|(m? — n?), which implies that m and n have the same parity.

Now,
m+nvd m+n —1++4d —1+Vd
5 = +n 5 eZ 5

]

Now suppose that o = r + s_l%\/&, with r,s € Z. If s =0, then a € Z C OQ(\/E)- For the
case where s # 0 we have 2r, 72 —ds? € Z, so f € Z[X]; as f(a) = 0, it follows that o € OQ(ﬁ)'
This proves the result for d = 1 (mod 4). O

Examples

114



¢ Oqi) = Z[i], because —1 = 3 (mod 4);
* Oq(3) = Z[/3], because 3 = 3 (mod 4);

Oq(vs) = Z[_lg‘/g], because 5 = 1 (mod 4);

Oqve) = Z[/6], because 6 = 2 (mod 4).

We now consider certain basis properties of number rings. In particular, we will show that
the additive group of such a ring is a free abelian group. We begin with a characterization of
invertible elements.

Proposition 11.3 If K is a number field and o € O, then a € O if and only if

PROOF If a € O%, then a=! € O} and
1= NK/Q(l) = NK/Q(Q)NK/Q(Q_l).
As o and o~ ! are algebraic, Ni/q(a) and Ny, q(a ™) are integers, hence Ny q(o) = +1.
Now suppose that Ng,q (o) = £1. Since a € Ok, Proposition 10.1 and Corollary 11.1 ensure
that char g,q(a) belongs to Z[X]. Thus we have
char g/q(a) =1+ a1 X + - +a, 1 X"+ X7,

with a; € Z, for 1 < i < n — 1. From the Cayley-Hamiltonian Theorem, we know that « is a
root of char g q(a).

Now o~ ! is a root of the reciprocal polynomial
fX)=14a, X+ - +a X" 1 £X"
Since f € Z[X], a~! is algebraic and it follows that o € O}. ]

Exercise 11.3 Show that, if K = Q(v/—2), then O is finite. Considering the positive powers
of 1 + /2, show that the diophantine equation a®> — 2b> = 1 has an infinite number of solutions
and deduce that, if K = Q(v/2), then O} is infinite.

As Ok is an integral domain, it has a field of fractions (in C). It is natural to try to determine
this field. This we will now do.

Lemma 11.2 If a € C is algebraic over Q, then there is an integer k € N* such that ka is an
algebraic integer.

PROOF If a = 0, then there is nothing to prove, so let us suppose that this is not the case.
Let m(X) = Zf:_ol a; X" + X be the minimal polynomial of o over Q. If k is the lem of the

denominators of the coeflicients a;, then ka; = b; € Z, for 0 <i < d— 1. We have
k0o + K920y (ko) 4 - - - 4 kbg_o(ka)? 72 + by (k) 4 (ka)? = k%m(a) = 0.

As the coefficients k% bg, ..., kby_s, bg—1 are integers, ka is an algebraic integer. O
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Theorem 11.7 The field of fractions of Ok is the number field K.

PROOF Let us write L for the field of fractions of Og. The clearly O C K. If L # K, then
there exists « € K\ L. As K is a finite extension of Q, K is algebraic over Q. In particular, «
is algebraic over Q. From Lemma 11.2, there exists £ € N* such that ka is an algebraic integer,
hence ka € Ox C L. Ask € Ok, a = %0‘ € L, a contradiction. O

We now consider bases of the vector space K over Q. It turns out that there is a basis
composed entirely of elements in Og.

Proposition 11.4 If K is a number field, and [K : Q] = n, then K has a basis aq,...,q,
composed of elements in Ok .

PROOF From Lemma 11.2, we know that, if o is nonzero and algebraic over Q, then there in an
integer k € N* such that k« is an algebraic integer. Let (81,...,0,) be a basis of K over Q.
As K is a finite extension of Q, K is algebraic over Q and so each [; is algebraic over Q. For
each (;, we may find k; € IN* such that k;3; is an algebraic integer. If «; = k;[5;, then clearly
(a1,...,qy) is a basis of K over Q. O

We now turn to the result referred to above concerning the nature of the additive group of
Ogk. To understand the proof it is necessary to have a knowledge of free abelian groups. We
have included an appendix on the subject.

Theorem 11.8 The additive group of Ok is a free abelian group of rank n.

PROOF Let (a,...,a,) be a basis of K over Q composed of elements of Ox and A = Za; @
-+« ®Zay,. (The sum is direct because the «; are independant over Q.) If we can show that there
exists d € Z* such that dOg C A, then the theorem is proved. Indeed, in this case, O C éA,
where éA is a free abelian group. Thus, by Theorem E.3, Ok is a free abelian group of rank r,
with » < n. Moreover, A is subgroup of Ok and so, using Theorem E.3 again, the rank of r of
Og is is larger than n. Finally, Ok is a free abelian group of rank n.

Let us now show that this d exists. For any a € Ok, there exist z1,...,z, € Q such that
a=3" za;. Weset d= disck/q (a1, .., ay); then d is nonzero by Proposition 10.8. Using
Proposition 10.7 and Exercise 11.1 we see that d is an integer, since the algebraic integers form
a ring.

We now show that dz; € Z, for 1 < i < n, which implies that dao € A. We note o1,...,0,
the Q-monomorphisms of K into C. We have, for 1 <i <n,

oi(a) = z10i(ar) + - + 2o (ay).

This is a system of n equations in n unknowns (the x;). Applying Cramer’s rule we obtain

vj
.TJ = g,
where 9§ is the determinant |o;(c;)| and v; is the determinant of the matrix obtained from the
matrix (o;(c;)) by replacing the jth column by the column composed of the elements o;(c).
Now, 62 = d, so § is an algebraic integer. In the same way, we may show that v; is an algebraic
integer, since

v? = discg q(a 1,0, Q; )

7 K/Q\&1y .., Q1,0 Xjt1,...,Un),
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and « € Og. To finish, we notice that

vy
)
which implies that dx; is an algebraic integer, since both d and v; are algebraic integers. More-

over, dr; € Q. As an algebraic integer in Q is an integer, dz; is an integer. This concludes the
proof. O

dl‘j = 62 = §Vj

Discriminant of a number ring

Let K be a number field with number ring Og. As Oy is a free abelian group, O has a
basis (a1, ..., ay,), where n is the dimension of the vector space K over Q:

O =Z2Zo1 @ @ Zay,.

We call such a basis an integral basis. There may be many bases; however, they are related
through their discriminants.

Proposition 11.5 If (a1,...,a,) and (B1,...,B,) are integral bases of Ok, then

discK/Q(al, N ,Oén) = diSCK/Q(ﬁl, N 75»,1)
PROOF First we notice that there is a matrix M = (m;;) € M,,(Z) such that
ai IG31
n Bn

Let 01,...,0, be the Q-monomorphisms of K into C. Then

ai =Y mifr = oj() =Y miro;(Br),
k=1

k=1
for 1 < 4,5 <n. In terms of matrices,
(0j(ei)) = M (0 (Bk)) ,
which implies that
discg/q(a1,...,an) = |M|2discK/Q(617 ey Bn).

As the a; and j; are algebraic integers, from Proposition 10.7, the discriminants in the above
equations are integers. Given that M € M,,(Z), the determinant |M| is an integer and it follows
that disck/q(B1,. .., Bn) divides discg/q(ai,...,ay). In the same way, discx/q(a1, ..., ay,) di-
vides discg/qQ(f1;---,Bn). As the discriminants clearly have the same sign, they are equal. O

We call the common value of the discriminant in the foregoing theorem the discriminant of the
number ring O and we write disc(Og) for this. We emphasize that disc(Og) € Z.

Example Let K = Q(V/d), where d is a squarefree integer. The Galois group Gal(K/Q) =
(01,02), where oy is the identity and oy permutes v/d and —vd. If d = 2,3 (mod 4), then
Ok = Z[Vd) and (1,V/d) is an integral basis of Og. It follows that

disc(Ok) = disck/q(1, Vd) = 4d.
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Exercise 11.4 Show that, if d =1 (mod 4), then disc(Ok) = d.

We may extend the notion of the discriminant of a number ring. Let K be a number field
with ring of integers O. An order in K is a subring R of Ok such that the index of R in Ok
(as additive groups) is finite. The order is said to be maximal if R = Ok.

If R is a subring of Ok, from Theorem E.3 we know that R is a free group with rank at most
that of O.

Proposition 11.6 A subring R of Ok is an order if and only if R has the same rank as that of
Ok.

PROOF Let n be the rank of Ok and r that of R. From Theorem E.4, Ok has a basis {e1,...,e,}
for which there exist integers dy, . ..,d, € N*, such that {dey,...,de.} is a basis of R. If r = n,
then the cosets of R in Ok can be written

sie1+--+8,en+R, with 0<s;, <dy—1,...,0<s;, <d,—1.

Thus there are d; - - - d,, cosets, i.e., [Ox : R] < oo and R is an order. If r < n, then the cosets
of R in Ok may be written

sie1 4+ 8 e X1+ F Tpe, + R,

with0<s;, <dy—1,...,0<s;, <d.—1and z,41,...,Z, € Z. In this case there is an infinite
number of cosets, so [Ok : R] = oo and R is not an order. O

If R C Ok is an order, then we may define the discriminant of R in the same way as we did for
Ok. If (aq,...,ap) and (f,. .., Bn) are integral bases of R, then the argument of Proposition
11.5 shows that

disck/q(a1, ..., an) = disck/q(Bi, .- -, Bn)-

and that the common value is an integer. We call this the discriminant of R and note it disc(R).

Example Suppose that K = Q(«), where @ € Og. Then tkOg = [Q(«); Q). However,
degm(a, Q) = n = [Q(a) : Q], so the set {1,q,...,a" 1} is a basis of Z[a]. Thus Z[a] and Ok
have the same rank: Z[a] is an order in K.

We will return to orders further on.

We say that an integral domain D is a normal domain if the integral closure of D in its field of
fractions is D itself. It is worth noticing (although we will not prove it here) that the polynomial
ring D[X] is a normal domain if D is normal. We aim to show that a number ring is a normal
domain. We will first prove a preliminary result, which is interesting in its own right.

Lemma 11.3 A subgroup of a finitely generated abelian group is finitely generated.

PROOF We will use an induction on the number of generators. Let G be a finitely generated
abelian group: G = {(a1,...,a,). If n =1, then G is cyclic. As a subgroup of a cyclic group is
cyclic, the result is true in the case n = 1.

Nos suppose that we have proved the result up to n and G = (ay,...,an,an+1). Let H be
a subgroup of G and 7 : G — G/(a,+1) the canonical quotient mapping. As G is abelian, the
quotient G = G/(a,41) has a natural group structure and G = (r(ay),...,n(a,)). From the
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induction hypothesis, the subgroup H = 7(H) of G is finitely generated: H = (hy,. .., h,,), with
h; = m(h;) for some h; € H.

We now notice that H N (a,41) is a subgroup of (a,+1), hence cyclic: H N {ap+1) = (A1),
with Apy1 € H. We claim that H = (hq,..., hpm, hig1). If h € H, then there exists g €
(a1, ..., hmy) such that w(g) = w(h). Therefore h = g + k, with k € Kerm = (an41). In addition,
k=h—g¢€ H,sok=shy41, for some s € Z. To conclude,

h =g+ shmi1 € (h,..., himy1).

We have shown that H = (h1, ..., hmy1)- O

Remark The abelian hypothesis in the previous lemma is important. Here is a counter-example.
Theorems 11.2 and 11.3 ensure that the additive group of the ring Z[%] is not finitely generated.
Consequently the group of matrices

Go=1( o | ) MA@z ezl3])

is not finitely generated. However, the elements of Z[1] are of the form £, with p € Z and

2q
qg € N, and

CE-GDGGYGY”

where mo and mq are respectively the quotient and remainder after division of p by 29. Hence
Gy is a subgroup of G, the subgroup of Ms(Q) generated by the matrices

2 0 1 1
S=<01> and T:<01>.

Thus we have a subgroup of a finitely generated group which is not finitely generated.
Exercise 11.5 Find an explicit description of the matrices in G.
Proposition 11.7 A number ring Ok is a normal domain.

PROOF We have seen that Ok has a finite basis. Let o € K be integral over O: there exists a
poynomial f(X) = Z?;Ol a; X"+ X", with a; € O, such that f(«) = 0. This implies that

Q" = —a, 12"~ —aja — ap.

It follows that the additive group of the ring Ok|[a] is finitely generated. As Z[a] C Ok|a], the
additive subgroup of the ring Z[a] is also finitely generated (Lemma 11.3). From Theorem 11.3,
« is an algebraic integer and so a € Og. |

Stickelberger’s criterion

We may say a little more about the discriminant of a number ring. Let K be a number field
of degree n over Q and B = {f31,...,8,} an integral basis of the number ring Og. There exist
n Q-embeddings o1, ...,0, of K in C. By definition,

disc(Ox) = det(o;(8;))>.
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The determinant is the sum of expressions of the form

Sgn(ﬂ-)aﬂ'(l) (61) ©Ox(n) (/871)7

where 7 is a permutation of the set {1,...,n}, i.e.,, 7 € S, and sgn(m) is the sign of 7. To
simplify the notation, let us set X = A,, and Y = S,, \ 4,,. Then

det(oi(8;)) = > [[sen(mony(B:) = > [[onwy(B:) = D> [[ on(8:) = P — N.

weSy i=1 TeX i=1 TeY i=1

Thus
disc(Og) = (P — N)? = (P + N)? — 4PN.

Now let L be a normal closure of K over Q. By Exercise 5.1, L is a finite Galois extension
of Q. We aim to show that ¢(P + N) = P+ N and ¢(PN) = PN, for all ¢ € Gal(L/Q), the
Galois group of L over Q. First, we extend every embedding o; to an embedding &; of L into
C. (This is possible by Theorem 2.7.) From the normality of the extension L/Q we deduce that
7;(L) = L. (The image of 5; is included in the set A(C/Q), which is an algebraic closure of Q,
by the remark after Theorem 2.6; therefore, from Proposition 5.2), 3;(L) = L.) It follows that
0;(K) C L. Hence, for every o;, the mapping ¢ o o; is defined and is a Q-embedding of K into
C.

We now notice that the mapping o; — ¢o0; is a bijection on the set S = {o1,...,0,}, so we
can find a permutation 7 € S, such that ¢ o 0; = 0,(;), for every i € {1,...,n}. We distinguish
two cases:

Case 1: T even
Here we have 7X = X and

¢ (Z Hoﬁm(ﬂi)) = > [Iéo0w®8)

mreX i=1 reX i=1

= Z H Orn(i) (/Bz)

TeX i=1

TeTX i=1
= > o B)-
meX i=1

Hence ¢(P) = P. In a similar way, using the fact that 7Y = Y, we may show that ¢(IN) = N.

Case 2: T odd
Now we have 7X =Y and 7Y = X and so ¢(P) = N and ¢(N) = P.

From what we have seen, in both cases we have ¢(P + N) = P + N and ¢(PN) = PN.
This applies for any ¢ € Gal(L/Q), so P+ N and PN belong to the fixed field of Gal(K/Q),
i.e., Q. Now the f3; are algebraic integers; since the elements o (;)(f3;) are roots of the minimal
polynomial m(f;, Q), these elements are also algebraic integers. This means that P and N are
algebraic integers in Q, i.e., integers. From the formula

disc(Og) = (P 4 N)? — 4PN,
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we may deduce the following: If P and N have the same parity, then P + N = 0 (mod 2) =
(P + N)2 = 0 (mod 4); if P and N have different parities, then P + N = 1 (mod 2) =
(P+ N)? =1 (mod 4). Thus we have:

Theorem 11.9 (Stickelberger’s criterion) If K is a number field, with number ring O, then
disc(Or) =0 (mod4) or disc(Og) =1 (mod4).

Remark In a certain sense Stickelberger’s theorem generalizes Exercise 11.4 and the remark

preceding it.

11.3 Roots of unity in number fields

In any commutative ring with identity, the roots of unity form a multiplicative group. In a
number field, as we will soon see, this group is cyclic. If K is a number field and z is a root of
unity, then —1 + 2™ = 0, for some n € N*, so x lies in the number ring O.

Proposition 11.8 Let K be a number field and c € RY.. Then there are only a finite number
of elements © € Ok such that || < ¢, for all conjugates () of x.

PROOF Let [K : Q] = n and Xy, ...,%, be the elementary symmetric polynomials in n variables.

We set
¢ = max{nc, (Z) A, (Z) A S

Let S be the set of monic polynomials of degree at most n, whose coefficients are integers a such
that |a| < ¢/. Then S is finite. Now let T be the set of elements of K which are roots of some
polynomial belonging to S; T is also a finite set. If |x(z)| < ¢, for all conjugates of x in K, then

|Dp(zM, .. 2] < ¢, for k=1,...,n. Since x is an algebraic integer, Xy (), ..., 2™) € Z
and so the polynomial f(X) = H:’:l(—x(i) + X) belongs to S. As z is a root of f, x belongs to
T. O

We may now prove a fundamental result.

Theorem 11.10 The group W of roots of unity of a number field K is a finite multiplicative
cyclic group.

PROOF It is sufficient to notice that W is a finite subgroup of the multiplicative group of K and
apply Theorem 3.3. O

The next result gives us a criterion for determining roots of unity.

Proposition 11.9 If f € Z[X] is monic and is such that all its roots in C have absolute value
1. Then these roots are all roots of unity.

PROOF Let z1,..., 2z, be the roots of f in C repeated according to their multiplicities. For every
l € N* we set
fX) = (=21 + X) - (=2 + X).

From Exercise B.1, f; € Z[X] for all [. If

fl(X) =ag+a X + ...ak_le—l +Xk7
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then, taking into account the fact that |z;| = 1 for all 4, we find that

i< ()

for j = 0,1,...,k — 1. There are only a finite number of monic polynomials g € Z[X] with
deg g = k and jth coefficient bounded by (’;) for j =0,1,...,k— 1, hence there exist [ < m such

that f; = f,,. It follows that the roots of these two polynomials are the same. If 24, ... 2L are
the distinct roots of f; and 27%, ..., 2" the distinct roots of f,,, then there exists a permutation
o € ¥, such that 2! = Z?(i)’ fori=1,...,r. We claim that sz = z;’L(i), for k € N*. For this we

give a proof by induction. For k = 1, there is nothing to prove. Suppose now that the result is
true for k and consider the case k + 1. We have
l l 1%\l et
Zokt (i) = Zo(or (i) = (Forp)" = (Zor@) = (5 ) =4
so the result is true for £+ 1 and, by induction, for all £ € N*. In particular, it is true for k = r!,
the cardinal of the symmetric group ¥, and hence zzl-r’ = z". From this we deduce that z; is
root of unity. a

Corollary 11.4 z is a oot of unity in a number field K if and only if x € Ok and |zV| =1,
for every conjugate of x.

PROOF Let x be a root of unity. We have already seen that a root of unity must lie in O . There
exists a positive integer m such that 2™ = 1. As the conjugates z(?) of z are also roots of the
polynomial f(X) = —1+ X™, we must have |z(Y|™ = 1, which implies that |z(?| = 1.

Now suppose that = € Ok and |2(¥| = 1, for all conjugates (") of z. The conjugates are
the roots of the minimal polynomial m(z, Q), so by Proposition 11.9 they are roots of unity; in
particular, = is a root of unity. O

Exercise 11.6 Let K be a number field, v € K and m € N*. Show that the conjugates of =™
are mth powers of the conjugates of x.

27mi

If p is an odd prime, ( = e » and K = Q((), then we can be more precise with respect to
the roots of unity of K.

27i

Theorem 11.11 If p is an odd prime and ¢ = e v, then the roots of unity in K = Q(¢) are of
the form £¢7, with 1 < j < p.

PROOF From Theorem 11.10 we know that the roots of unity form a finite cyclic group C. If
. 2mit . . .

|C| = m, then there is a generator z = e"m of C. (It is sufficient to take ¢ coprime to m.) If

x € C, then —z € C, because 2* = 1 implies that (—2)2* = 1, hence —¢ € C and so there exists

s € N* such that 2° = —(, i.e., e* 5 = ¢t From this we deduce that there exists k € Z
such that o o
T8 T | it 2kmi = 2sp = m(2 + p(2k + 1)) = 2p|m,
p

m

because neither 2 nor p divide 2 + p(2k + 1).
As z is a generator of C, ( is a power of z and so Q({) C Q(z). However, z € Q({) and so
we also have Q(z) C Q(¢) and it follows that Q({) = Q(z). This being the case, we have

o(m) =[Q(2): Q] =[Q(0) : Q] = o(p) =p—1,
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where ¢ is Euler’s totient function. We may write m = 2%p®m’, with a > 1, 3> 1 and 2 7/,
p fm’, and

p—1=¢(m)=2""p""(p—Dp(m') = 1=2""p""1g(m).
Therefore a = 8 = ¢p(m') = 1. As m’ # 2, we have m’ = 1 and so m = 2p. Thus the cardinal

of C'is 2p. Since the elements +(?, with 1 < i < p, belong to C and are distinct, these are the
roots of unity in K. m|

Exercise 11.7 Show that a number field of odd degree has just two roots of unity.

11.4 Composita of number fields

We recall that, if K and L are subfields of a field F, then the compositum of K and L in FE,
which we write KL, is the smallest subfield of E containing both K and L. In this section we
consider the case where K and L are number fields (considered as subfields of C.) We will be
particularly interested in the number ring Ok, of KL.

Let K and L be number fields and Ok, O the associated number rings. From Proposition
6.4 we know that

[KL:Q]<[K:QJL:Q],
with equality when [K : Q] and [L : Q] are coprime, or said otherwise, when K and L are linearly
disjoint. We set R = Ok, S = O, and
RS = {Zrisi i1, € R,s; €S, || < oo}
il
RS is clearly a subring of O . The following result provides a sufficient condition for equality.

Theorem 11.12 Let K and L be linearly disjoint number fields and d = ged(disc(R), disc(S)).
Then Ok, C RS. Thus, if d =1, then Ok = RS.

PROOF Let m = [K : Q], n =[L: Q] and {a,...,qm}, {B1,...,Bn} integral bases respectively
of R and S. These bases are bases over Q of respectively K and L. As K and L are linearly
disjoint over Q, the set

A={wpf;:1<i<m,1<j<n}

is a basis of KL over Q. (See the discussion on linear disjointness after Proposition 6.4.) Hence,
if z € Ok, then there exist rational numbers g;;, for 1 <7 <m and 1 < j < n, such that

z = gijoif;.
4,
We aim to show that dg;; € Z,for all ¢ and j. If this is the case, then we may write

1 1
T= Z(dqij)aiﬂj € 8RS

i,J

and it follows that Ok C éRS. To establish that dg;; € Z it is sufficient to show that
disc(R)q;; € Z. If we can do this, then with an analogous argument we may show that
disc(S)q;; € Z. As there exist u,v € Z such that d = udisc(R) + vdisc(S), dg;; € Z.
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From Corollary 3.2 we know that there are exactly [K : Q] Q-monomorphisms of K into
C. Let o be such a monomorphism. Theorem 3.2 ensures that there are exactly [KL : K]
monomorphic extensions & of ¢ into C. Restricting the & to L, we obtain [KL : K] distinct
monomorphisms ¢’ from L into C. (If two such restrictions of and o} are equal, then the
corresponding mappings 1 and 69 are equal on K and L and consequently on K L, contradicting
the fact that &; and 9 are distinct.) As K and L are linearly disjoint [KL : K| = [L : Q],
therefore the considered restrictions are the Q-monomorphisms from L into C. In particular,
one such restriction is the identity on L. Consequently, for the corresponding &, we have

m

5(x) =D > 6(gi5)5 ()5 (B)) = Z%U(az%

i=1 j=1
where z; = Z?Zl ¢i; 3. We may use the same procedure for each of the [K : Q] Q-monomorphisms
01,...,0m, from K into C and obtain the corresponding extensions &1, ...,0,,. In this way we
obtain a system of m equations in m unknowns, the x;:

gi(z) = oi(a)r+ -+ oi(am)Tm
6’2(!E) = 0'2(041),%1 +~--+O’2(Oém)$m
om(x) = om(a)zr+ -+ om(@m)Tm.

Applying Cramer’s rule we find the expression for the z;:

Vi
xl - 5 )
where J is the determinant of the matrix (Ui(aj)) and v; the determinant of the matrix obtained
from the previous matrix by replacing the ith column by that composed of the elements &;(z).
(As the a; are independant , § # 0, from Proposition 10.8.) Asz € Ok, « is an algebraic integer
and so &;(z) is an algebraic integer; also, the a; belong to R and so are algebraic integers, which
implies that the o;(c;) are algebraic integers. It follows that ¢ and the v; are algebraic integers.
Now, we have
(SQLUZ' =dv; =u; € Okr.

However, 62 = disc(R) € Z, so
u; = disc(R)z; = Z disc(R)g;; ;.
i=1

Hence, u; is an algebraic integer in R and its coefficients in the basis (8;) are disc(R)g;;. It
follows that the elements disc(R)g;; are integers. This finishes the proof. a

We now consider the relation between the discriminants of the number rings R and S and
the discriminant of Og,.

Theorem 11.13 Let K and L be linearly disjoint number fields whose number rings have co-
prime discriminants. Then

disc(Ok 1) = disc(R)F*Q disc(S)FQ,
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PROOF Let m = [K : Q], n = [L : Q], and (a1,...,am), (b1,...,b,) be integral bases of
respectively R, S. As the a; and b; are algebraic integers, so are the products a;b;, hence
a;b; € Ok, for all i and j. From the previous theorem, the a;b; generate Ok, over Z. Moreover,
as K and L are linearly disjoint, the elements a;b; form a basis of KL over Q and hence are
independant over Z. Thus, the a;b; form an integral basis of Ok, and we can use this basis to
calculate the discriminant of Og,.

From Proposition 10.7 the discriminant of Ok, is the determinant of the matrix

M = (Txr/q(aibk - a;br)).

We now apply Corollary 10.3 to the tower of fields Q C K C KL to obtain

Trr/qlaibr - ajbi) = Tg/qoTkr/k(aiby - a;jby)
Tx/q (Txr/k (aiazbeby))
= Tx/q (aia; Tk (bibi))
because a;a; € K.

We claim that, for [ € L, we have Tk k() = T)q(l). Let us consider the [KL : K] K-
monomorphisms from KL into C. Restricting these monomorphisms to L we obtain [KL : K]
distinct Q-monomorphisms from L into C. As K and L are linearly disjoint over Q, we have
[KL : K] = [L : Q], hence the restrictions to L of the [KL : K| K-monomorphisms of K into
C are precisely the Q-monomorphisms of L into C. Applying Proposition 10.2 establishes the
claim.

Since bib; € L, we have
Txr i (brbr) =T q(bkb) € Q

and so
Trr/qlaibe - ajb) = Tk /q (aia;j Ty q(bibi)) = Tr/q(bib) Tk q(aiay).
Setting Tx/q(aia;) = a;; and Ty q(brbr) = bii, we obtain

det M = det(a;;br) = det ((@i;) ® (b)) -
From Theorem H.1, we have
det ((ai;) @ (br1)) = det(ai;)" det(br)™,
as required. O

Application to cyclotomic fields

We now apply the previous theorems to the study of cyclotomic fields, i.e., cyclotomic extensions
of the rationals. We have already studied these fields in Chapter 7. Here we will be particularly
interested in the form of the associated number rings and their discriminants. We begin with
the case Q((), where ( is a primitive p"th root of unity, p being a prime number and r a positive
integer.

Lemma 11.4 If( is a primitive nth root of unity, then the set A = {1,¢,...,¢?™M~1Y is a basis
of Q(C) over Q. (¢ is the Euler totient function.)

125



PROOF In the proof of Theorem 7.7 we observed that [Q(¢) : Q] = ¢#(n). As |A| = ¢(n), we only
need to show that the set A is linearly independant over Q. If

Ao+ A+ Agy -1 ¢ =0,

where the \; are elements of Q, which are not all zero, then ( is a root of a nonzero polynomial
f € Q[X], whose degree is less than ¢(n). However, the minimal polynomial of ¢ over Q is ®,,,
whose degree is ¢(n), so we have a contradiction. Hence A is a basis of Q(¢) over Q. O

Proposition 11.10 If p is a prime number, r € N* and { a primitive p”th root of unity, then

PROOF From Lemma 11.4 the set A = {1,(,...,¢?®P)~1} is a basis of Q(¢) over Q. Also, the
elements of this set belong to Oq(¢), because ¢ is an algebraic integer. The proof of Theorem
11.8 shows that

dOqe)y CZO LD -+ ® ZLCHPI

where d = discq(¢)/q(1,¢,-- -, ¢*®)=1). Thus, Oq(¢) C SZ[¢]. Moreover, from Corollary 10.6,
d is a power of p (up to sign). Therefore there exists m € N* such that p™Ogq(¢) C Z[(].
If

Z[¢] NpOq(¢) = PZId], (11.1)
then, as p™Oq(¢) C Z[(], we have
P"Oq(¢) C Z[¢] NpOq(¢) C pZ[¢] = p™ ' Oq(¢) C Z[(].

If m = 1, then we immediately have Oq) C Z[C]; if not, then it is sufficient to iterate the
process to obtain the same inclusion. As Z[(] is clearly contained in Oq(), we only need to
establish the identity (11.1) to finish the proof. This is what we now do.

Our first step is to show that

Oq(o)p = Oq(e)(—¢ +1)?%") (11.2)

To begin,

()= [ (Cex)=,)= [[ (¢4

1<i<p”,(i,p)=1 1<i<pr,(i,p)=1

However, from Exercise 7.4, we know that

SO
p=%pr(1) = II ¢+
1<i<pm,(i,p)=1
Next we observe that the elements —_C;—r%ll’ with 1 < < p" and (4,p) = 1, are units in Ogq¢).
We have )
—¢'+1 i—1
=1+C+-+ (7L € Oqo)-
fé‘ +1 C C Q(¢)
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As (% is a primitive p"th root of unity, there exists s € N* such that ¢ = (%, hence

(1 _ =41 - (1)
LA S g I TS 0)
_CZ—’_]- _Cz_’_]_ +C + +g € Q(¢)»

SO __Cg:ll is a unit in Ogq(¢)-
We may write 4
i - +1
(1= S () = (),
SO

p= Il w¢+)=u(-¢+1)°"),

1<i<pr,(i,p)=1

where u is a unit in Og). As p and (—¢ + 1)?(®") are associates in Oq(¢), they generate the
same ideal, i.e.,

Oqo)p = Oq(ey(—¢ + 1)),

as asserted.
Our second step is to show that
OQ(C)(_C + 1) NZ = Zp. (11.3)

From the identity (11.2) we obtain p € (—=( 4 1)Ogq(¢), and so pZ C (=(+1)Oq(¢) NZ. Now the
reverse inclusion. If x € (= + 1)Oq(¢), then z = y(—¢ + 1), with y € Oq(¢), and

Noy/@(®) = Naw)/a)Naw /(¢ + 1)
As y € Oq(c), Nao)/q(y) € Z (Exercise 11.1). Also, from Corollary 10.1,
Noo(—¢+D = JI (=¢+1)=n
1<i<pr,(i,p)=1

because Q(() is the splitting field of the polynomial ®,-(1 — X), whose roots are —(* + 1, with
1 <i<p"and (i,p) = 1. Finally, as x € Z, Nq(¢)/q(z) = z?®") | 50 plz, i.e., x € pZ. This
concludes the second step. We have

OQ(C)(_C + 1) NZ = Zp,

as required.

We are now in a position to prove the identity (11.1). There is no difficulty in seeing that

Z[¢lp € Z[¢] N Oq(e)p-

For the reverse inclusion, let us take 2 € Z[(]NOgq(¢)p. Using the fact that A = {1,(¢, ..., ¢orn-1y
is a basis of Q(¢) over Q, we see that the set B = {1, = +1,..., (= +1)?®)~1} is also a basis
of Q(¢) over Q. The set B is included in Z[¢] and is independant over Z, because it is indepen-
dant over Q. As A is a generating set of Z[(] and the elements of A can be written as linear
combinations of those of B with coefficients in Z, B is a generating set of Z[(]. Thus B is a basis
of the Z-module Z[(]. Therefore there exist integers ¢y, cy, . . . s Cp(pr)—1 such that

r=cot+ca(-C+1)+-+ Coppry—1(—C + l)qb(pr)_l.
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Moreover, from the identity (11.2), there exists v € Oq(¢) such that = (—¢ + 1)*®)v. Thus
co € Oq(ey(—¢ +1)NZ, which from the identity (11.3) is equal to Zp. Therefore ¢y € pZ. Using
the identity (11.2) again, we see that p € (—( +1)?®)Oq ), hence x — ¢ € (—¢ +1)?®)O0q¢).
We may write z — ¢g = (—( + 1)z, where

z1 =1+ ea(—CH+ 1)+ cgpry—1(—C+ 1)¢(zf)f2 € (—C+ 1)¢(pr)f1OQ(<).

As for ¢y, we find that ¢; € Zp. Continuing in the same way, we obtain that ¢; € Zp, for all 4
and so z € Z[(]p. This ends the proof. O

We have shown that Oq(¢) = Z[¢] when ( is a p"th root of unity. We now turn to the general
case. Here Theorem 11.12 plays an important role. We will need a preliminary result.

Lemma 11.5 If( is a primitive nth root of unity, then the discriminant discq¢)/q(1,¢,-- ., Cd’(")*l)
divides n®™.

PROOF From Proposition 10.9

¢(n)(¢(n)—1)

discq(e)/q(1, G-+ (P = (=1)7 = Nao)/q(@;, () -
Since ®,, is the minimal polynomial of { over Q and (™ = 1. there exists g € Q[X] such that
1+ X" =9,(X)g(X).

As ®,, is monic, ¢ is also monic and Lemma 11.1 ensures that g € Z[X]. Differentiating both
sides of the previous equation and evaluating at ¢ leads to

nC" ™ =87 (0)g(¢) = n = (2;,(0)g(C).

Taking the norm on both sides, we obtain

n?™ = Nq)/(®,(¢) Na)/q(¢9(Q)).

However, @ (¢) and (g(¢) are elements of Z[(], which is included in Ogq). Applying Exercise
11.1 we obtain the result. o

Theorem 11.14 If { is a primitive nth root of unity, then

PROOF We will use an induction on s, the number of prime factors in the decomposition of n.
For s = 1, we have already proved the result, so we consider the induction step. Let us suppose
that the result is true up to s — 1. We now consider the case s. We have

— %1 Q2 Qs
n_p]_ p2 ps _m1m27

' and me = p3? - p%e. As my and mg are coprime, from Proposition 7.6

where (, is a primitive uth root of unity. From Proposition 11.10 (or the induction hypothesis),

where m; = p{

diSC(OQ(gml)) = diSCQ(le)/Q(L Crgyeves 7‘731(17”1)—1)’
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because {1, (mys - - - s ffqlml) } is an integral basis of Oq(c,,,)- Also, by the induction hypothesis,

diSC(OQ(sz)) = diSCQ(sz)/Q(]., Cmm .. C¢(m2 )

because {1, Gnyy -« - s 5,’5;”2)‘1} is an integral basis of Oq(c,,,)- From Lemma 11.5, as m(f(ml)

and m%") are coprime, so are the discriminants disc(Oq(¢,,,)) and disc(Oq,,,))- In addition,

Q(&my ) and Q((n,) are linearly disjoint over Q, because ¢(mimsg) = ¢(my)p(ms). Applying
Theorem 11.12 and the induction hypothesis, we obtain

0q(¢,) = 0Q(¢m)0Q(¢my) = LlCmi]Z[Cms]-

Given that (2 is a primitive mjth root of unity, (,, € Z[(,]. In the same way, (n, € Z[(,], so
Z[(m,Z[Cm,] C Z[Cn]. Moreover, as my and mg are coprime, there exist integers u and v such
that myu + mov = 1. Thus,

Cn = (Crnzh)”(cgl)u € Z[le]Z[sz] = Z[Cn] - Z[le]z[ﬁmz},

therefore
Z[(n) = Z[Gn ) Z[Cms] = Oqc,):

as required. O

We now turn to the discriminant of a cyclotomic number ring Ogq¢). Proposition 10.9 ensures
that

A(®,) = discq(e)/q(1,C, -, CP™M ) = disc(Oqg))s

so, in finding disc(Oq(¢)), we find A(®,,), or vice-versa. In fact, we have already found A(®,-),
where p is a prime number and r a positive integer (Corollary 10.6). We now generalize this
result. Theorem 11.13 will play an important role.

Theorem 11.15 Let ( be a primitive nth root of unity. Then

(=1)enpo()
e(n)

[pp7=

where ¢, = @, ifn#2 and co = 0.

PROOF We will use an induction on s, the number of prime factors in n. First, if n has a single
prime factor p, the n = p", for some r» € N*. In Corollary 10.6 we found the expression

A(®,r) = (_1)01917’”*1(7“(19—1)—1)7

o(")
2

where ¢ = ,if pisodd or r > 1, and ¢ = 0 otherwise. However,

<pr)¢(p"') _ (pr)zf'*l(p—l) _ pp”lr(p—l)

and

Hpq%) = Hp”H —p .

plp” plp”

Hence, if n = p”, i.e., s = 1, then the expression for A(®,,) given in the statement of the theorem
is correct.
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Let us now suppose that s > 2 and that the result is true up to s — 1. We have

As

— 1,02
n=p;y Py” " Ds mima,

where my = p{* and mg = p3? - - p¢=. As in the proof of Theorem 11.14, we find that disc(O,,, )
and disc(O,y,) are coprime. Using the induction hypothesis and Theorem 11.13 we obtain

(m2) #(ma)
c ¢(m1) c, ¢(m2)
_1 m _1 m
disc(Oq(c,)) = e R L S e =
n mq mo
Hmmlp L Hp|m2p p—1

(= 1) (m2) ey 6(m) é(n)
o(n) '

Hp\np%1

To finish the induction step we only need to consider the term (—1)¢m1#(m2)+emy@(m1) If a]] the
primes in n are odd, then

&
22(n)

cm1¢(m2) = cm2¢(m1) E (_1)C,n1¢(m2)+cm?¢(m1) = (_1) =1.

If p1 = 2 and a3 > 2, then we have an analogous argument. To finish, suppose that p; = 2 and

a1 = 1. Then
m m n
Cm, ®(M2) + ey d(my) = o( 1)2¢( 2) _ ¢(2 ) — cn,
because n has at least two factors. This ends the induction step. O

We have seen in Theorem 11.14 that if « is a primitive nth root of unity, then the number
ring of Q(«) is Z[a]. In Theorem 11.6 we observed a similar phenomenon for the case where
« is the square root of a square-free integer d = 2,3 (mod 4). In the next proposition we give
another criterion.

Proposition 11.11 If K is a number field, then there is an algebraic integer s such that K =
Q(s). If the discriminant of the minimal polynomial m(s, Q) is a square-free integer, then Ox =
Z[s].

PROOF The primitive element theorem (Theorem 3.4) ensures that for any number field K, there
is an element t € K such that K = Q(¢). Since ¢ is an algebraic number, because K is a finite
extension of Q, Lemma 11.2 ensures that ¢t = %, where s is an algebraic integer and k a positive
integer. Consequently, K = Q(s), for some algebraic integer s.

As s € Ok, we must have Z[s] C Og. We now aim to show that the condition on the
discriminant of the minimal polynomial m(s, Q) ensures the reverse inclusion. From Theorem
11.8 we obtain that the number ring Ok has an integral basis {xo,. .., Zn—1}, where n = [K : Q].

Since s € Ok, there is a matrix M € M,,(Z) such that

1 Zo
S X1
. =M . )
Sn—l Tr1
Let 01,...,0, be the Q-monomorphisms from K into C. For j =1...,n, we have
a;(1) (o)
oi(s) | _ " Uj(.xl) |
a;(s") 0;(®n—1)
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We may write this expression in matrix form:

(05(s") = M (05 (x:)) -
Taking determinants and squaring we obtain

discg/q(1,s,..., s"71) = (det M)QdiscK/Q(wo,xl, cey Tp—1).

Now Proposition 10.9 ensures that discx,q(1,s,.. .,s"71) is the discriminant of the minimal

polynomial m(s, Q), which, by hypothesis, is a square-free integer. In addition, the discriminant
discx/q (20, 21,...,2n—1) belongs to Z. (Clearly, disck/q(z0,21,...,2n-1) € Q; it is integral
over Z, because each z; is integral over Z.) Since det M € Z, because M € M, (Z), we have
det M = £1, and it follows that the entries of M ~! are integers. As

and the z; generate Ok, the s’ also generate Ok over Z, which proves that O C Z[s], as
required, and so Ox = Z][s].
As the set {1,s,...,5" '} is independant over Z, it is an integral basis of O. a

Example Let K = Q(a), where —1 — a + a® = 0. The minimal polynomial of o over Q is
f(X)=—-1- X + X3, whose discriminant is —23. As —23 is square-free, we have O = Z[a].

Remark We should notice that, if the discriminant of the minimal polynomial of « is not square-
free, then Ox may or may not be equal to Z[a]; it is sufficient to consider the case where d is
square-free and a = V/d.

11.5 Ideals in number rings

In this section we concentrate on the properties of ideals in number rings. Our first result
concerns the factor ring Ok /I for an nonzero ideal. We recall that n denotes the dimension of
K over Q.

Proposition 11.12 If I is a nonzero ideal in a number ring O, then the factor ring Ok /1 is
finite.

PROOF Let I be a nonzero ideal in the number ring Og and « a nonzero element of I. We set
m = Ng/q(a). As a € Ok, a is an algebraic integer and so m € Z. From the definition of the
norm, m # 0. We claim that m € I: From Proposition 10.2, m = «af, where /3 is a product
of conjugates of a (in C); as m,a € K, f = = € K. As a conjugate of an algebraic integer is
also an algebraic integer, [ is an algebraic integer. Thus 8 € Ok and it follows that m € I, as
claimed.

As m € I, the principal ideal (m) is included in I. Since the rank of the free abelian group
Ok is n, then it is easy to see that Ok /(m) is isomorphic to Z},, hence |Og /(m)| = m™. Also,
(m) C I implies that the mapping

¢:0k/(m) — Og/I,x+ (m)— z+ 1

is a well-defined surjective homomorphism. Therefore Ok /I is finite. O
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Corollary 11.5 If I is a nonzero ideal in a number ring O , then the rank of I as a free abelian
group is the same as that of Ok .

PROOF If rkOg = n and rkI = r, then r < n (Theorem E.3). There is a basis (e1,...,e,) of
Ok and elements dy,...,d, € Z, with d; < d; 1, such that (dyey,...,dre,) is a basis of I. We
define a mapping ¢ from O onto Zg, X --- X Zg, X Z"~" by

d(xier + - xpen) = (w1 + 12, ... xp + dp 2y g1, ..., Ty).
It is clear that ¢ is a surjective group homomorphism. Also,
Ker¢ = {zie1+ -+ anen 01 €d1Z,...,x, €dy 2,21 = =2, =0} =1I.

Hence, as groups,
OK/I ~Zg, XX 1gq, X VAL

However, O /I is finite, so the last term on the right-hand side must be {0}, i.e., r = n. O
The next property of ideals in number rings is useful.

Proposition 11.13 If 1 is a nonzero ideal in a number ring O, then there is a nonzero integer
ainl.

PROOF Let a be a nonzero element of I. There exists a monic polynomial f € Z[X] such that
fla) = 0. We may suppose that the constant term of f is nonzero. (If not, we may write
f(X) =X*%g(X), with g(0) # 0 and g(«) = 0 and replace f by g.) Then,

alf(a) = f(0) = f(a) = £(0) € I.
Now, f(a) — f(0) = —f(0) € Z*, therefore I has a nonzero integer a. O
Remark As Z C Og, the set Za C I, so there is an infinite number of nonzero integers in 1.
We now consider prime ideals in a number ring.
Theorem 11.16 If I is a nonzero prime ideal in a number ring Ok, then I is a maximal ideal.

PROOF From Proposition 11.12 we know that Ok /I is a finite ring. If I is a prime ideal, then
the quotient ring O /I is an integral domain. However, a finite integral domain is a field. This

implies that I is a maximal ideal. O
We recall that a ring R is noetherian if every ascending sequence of ideals Iy C Iy C --- is
finally stationary, i.e., there exists an ideal Iy in the sequence such that I = Ix41 = ---. This

condition is equivalent to showing that every ideal I in R is finitely generated.
Theorem 11.17 A number ring Ok is noetherian.

PROOF We will show that every ideal I in Ok is finitely generated. If I = {0}, then there is
nothing to prove, so let us suppose that I is nonzero. [ is a free abelian group of rank n, the
rank of Ok . Thus I has a finite basis and so is finitely generated. a

An integral domain D is said to be a Dedekind domain if it has the following properties:
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e D is normal;
e D is noetherian;
e every nonzero prime ideal in D is maximal.

We have shown above that a number ring is a Dedekind domain. As many of the properties
of number rings are derived from their properties as Dedekind domains, for the moment we will
handle the more general case. Later we will return to the more specific case of number rings.
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Chapter 12

Dedekind domains

In the last chapter we defined the notion of a Dedekind domain and we saw that number rings
are examples of such domains. Dedekind domains are not in general UFDs. However, we will see
that the ideals have an interesting factorization similar to that found in UFDs. This statement
will be made more precise in the following. We will begin with some preliminary results.

Exercise 12.1 Show that Z[v/—5] is a Dedekind domain. Prove that 2 is irreducible in Z[\/—5],
but not prime, and so deduce that Z[\/—5| is not a UFD.

12.1 Elementary results

We have seen in the last chapter that number rings are Dedekind domains. There is another
large class of Dedekind domains.

Theorem 12.1 A principal ideal domain is a Dedekind domain.

PROOF Let R be a PID. As every ideal in R is generated by a unique element, R is noetherian.
Next we show that R is a normal domain. Let x = ¢ be an element of the field of fractions of
R. We suppose that a and b are coprime. If x is algebraic over R, then there exists an equation

of the form
+a (g)-i-”--&-a <g)n71+(g)n_0
aop 1 b n—1 b b — Y

where the a; belong to R. Multiplying by b" we obtain an equation
bc+a™ =0

with ¢ € R. Hence bc = —a™. As R is a UFD and a and b are coprime, b is a unit and it follows
that b~' € R. Hence z = ¢ € R. Therefore R is a normal domain.

It remains to show that a nonzero prime ideal is maximal. Let (a) be a prime ideal in R. (a)
is included in a maximal ideal (b) and there exists k € R such that @ = kb. As a is prime, a is
irreducible, which implies that k is invertible and it follows that (a) = (b). O

To continue, we need two lemmas, the second depending on the first.

Lemma 12.1 In a Dedekind domain D every nonzero ideal I contains a product of monzero
prime ideals.
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PROOF Suppose that the proposition is not true and let C be the collection of nonzero ideals in
D which do not contain a product of nonzero prime ideals. As D is noetherian, C contains a
maximal element M. (If not, then it would be possible to create an infinite chain of distinct
ideals, contradicting the noetherian hypothesis.) As M € C, M is not a prime ideal, hence there
exist z,y € D\ M such that zy € M. Clearly, M is strictly contained in the ideals M + (z)
and M + (y), which are not elements of C, because M is maximal. It follows that M + (z) and
M + (y) both contain products of nonzero prime ideals, so the ideal (M + (z))(M + (y)) also
contains a product of nonzero prime ideals. As this ideal is included in M, which is an element
of C, we have a contradiction. O

The proof of the second lemma is a little longer.

Lemma 12.2 Let D be a Dedekind domain, with fraction field K, and I a proper ideal in D.
Then there exists « € K \ D such that ol C D.

PROOF If I = {0}, then the result is obvious, so let us suppose that this is not the case. We fix
a # 0in I. From Lemma 12.1, the principal ideal (a) contains a product of nonzero prime ideals.
We take such a product P ... P,, with r minimal. If » = 1, then we have

P C(a)CI=P,

because P; is maximal, hence I = (a). Since I is a proper ideal in D, we can take b € D \ (a);
then o = 2 ¢ D, because in this case we would have b € (a), a contradiction. If z € I then there
exists s € D, such that x = sa, hence

aac:éac:ésa:beD,
a a
so for r = 1 the statement is true.

Now suppose that » > 1. Since [ is a proper ideal in D, Zorn’s lemma ensures that there
exists a maximal ideal M such that I C M. The ideal M contains at least one of the ideals P;.
(If not, then, for all 4, there exists a; € P; \ M; however, the product a; ---a, € M, which is
prime, implying that a certain a; € M, a contradiction.) If P; is a prime ideal contained in M,
then P; = M, because all nonzero prime ideals are maximal. Without loss of generality let us
suppose that j = 1. As r is minimal, there exists b € (P, -+ P,) \ (a). We consider a = 2. As
above oo ¢ D, hence a € K\ D. Then

IPQ"'PTCMPQ"'PT:P1P2~-~PTC((L):>IbC(a).
Hence, if z € I then there exists s € D, such that b = sa, which implies that
b
ar=-x=s€D
a
and so ol C D. O

We may now establish a result which will prove important further on, but is also interesting
in its own right.

Theorem 12.2 If [ is an ideal in a Dedekind domain, then there is a nonzero ideal J in D such
that IJ is a principal ideal.
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PROOF If I = {0}, then we may take any ideal in D for J, because in this case IJ = {0},
which is a principal ideal. So let us now take I nonzero. We choose a € I, with a # 0 and set
J={be D:blI C(a)}. Then J is a nonzero ideal and I.J C (a).

Let us now consider the set A = %IJ. As IJ C (a), A C D; also A is an ideal in D. If
A = D, then IJ = (a) and we have the result we are looking for. If this is not the case, then A
is a proper ideal in D and we can apply Lemma 12.2: there exists v € K \ D such that yA C D.

We now notice that A contains J: asa € I, 1 = %a € %I, hence J C %IJ. It follows that
vJ C vA C D. This allows us to show that vJ C J :

YACD = ~IJC (a) = (4J)I C (a) = ~J C J.

As D is noetherian, the ideal J has a finite generating set ai,...,a,,. Using the relation
~vJ C J, we may find a matrice M € M,,(D) such that

al ay
gl =M1 |
A A
which implies that
ay 0
(71m - M) : =
A, 0

As the a; are not all 0, we have det(y[l,, — M) = 0. Thus ~ is the root of a polynomial f € D[X].
However, D is a normal domain, so v € D, a contradiction. We have shown that IJ = (a), i.e.,
1J is principal. O

The result which we have just proved has two immediate consequences. The first of these is
a cancellation rule for ideals in a Dedekind domain.

Corollary 12.1 If A, B and C are ideals in a Dedekind domain D, with A nonzero, then
AB=AC = B=C.

PROOF There exists a nonzero ideal J such that AJ is principal: AJ = (a), with a # 0, because
A and J are nonzero. Hence,

AB =AC = AJB =AJC = (a)B = (a)C = aB = aC.

Multiplying by a~!, we obtain B = C. O

In a commutative ring R we may define a division on ideals in a natural way. If [ and J are
ideals, then we say that I divides J, and write I|J, if there exists an ideal K such that TK = J.
In Dedekind domains this is equivalent to an inclusion condition.

Corollary 12.2 If A and B are ideals in a Dedekind domain, then
AlB<= ADB.

PROOF If A divides B, then there exists an ideal C' such that AC = B. If b € B, then there exist
ai,...,as € Aand cy,...,cs € C such that b = ajc; + - - - + ascs. However, a;c; € A, for all 4,
and so b € A. Therefore B C A.
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Now suppose that A D B. If A = {0}, then B = {0} and it is clear that A divides B. Suppose
now that A # {0}. There exists a nonzero ideal J and a € D* such that AJ = (a). Let us set
C = 1JB. Then

L) =D.

1 1
BCA= -JBC -JA=-
a a a

It is easy to see that C is an ideal in D. We have
a

and so A divides B. O

12.2 Prime factorization of ideals

We have seen that a nonzero ideal in a Dedekind domain contains a product of nonzero prime
ideals. In fact, we can strengthen this statement.

Theorem 12.3 In a Dedekind domain D, every ideal I # {0}, D can be expressed in a unique
way as a product of nonzero prime ideals.

PROOF Suppose that there exists an ideal I # {0}, D which cannot be expressed as a product of
prime ideals. As D is noetherian, the collection of such ideals has a maximal element M. The
ideal proper M is included in a maximal ideal P. As P is a maximal ideal, P is a prime ideal.
However, from Corollary 12.2, P D M implies that P|M, i.e., there exists an ideal I such that
PI = M. Using Corollary 12.2 again, we obtain I D M. If I = M, then, using Corollary 12.1,

DM = DPI =PDM = PM = D =P,

a contradiction. Hence we have M ; I and so [ is a product of prime ideals. As M = PI, M is
also a product of prime ideals, which is a contradiction. It follows that an any ideal I # {0}, D
is a product of prime ideals.

We now consider the uniqueness. Suppose that

P1P2"'Pr:Q1Q2"'Qsa

where the P; and Q; are nonzero prime ideals (not necessarily distinct). Then

PlQ1Q2- Qs = P1 D Q;,

for some i (see the proof of Lemma 12.2). Without loss of generality, let us suppose that ¢ = 1.
As @7 is maximal, P| = ;. Using Corollary 12.1 we obtain

P2"'Ps:Q2"'QT-

Continuing in the same way we obtain the postulated uniqueness. O

Corollary 12.3 In a Dedekind domain a countable intersection of distinct nonzero prime ideals
is trivial.
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PROOF Let (P,)nen be a collection of distinct nonzero prime ideals in a Dedekind domain D
and I = NpenP,. We have
P, DI = P,|I,

for each n. If I is nontrivial, then I has a unique decomposition into prime ideals and each P,
must appear in this decomposition. This is impossible, because the decomposition is composed
of a finite number of prime ideals. Hence the result. g

An integral domain which is principal ideal domain (PID) is always a unique factorization
domain (UFD). For a Dedekind domain the converse is also true. This is a corollary of the
theorem which we have just proved.

Corollary 12.4 A Dedekind domain which is a UFD is a PID.

PROOF Let D be a Dedekind domain and I an ideal in D. If I = {0} or I = D, then I is
clearly principal, so let us suppose that this is not the case. From Theorem 12.2, I divides a
nonzero principal ideal (a). As D is a UFD, we may write a as a product of irreducible elements:
a = p; - - ps. Bach principal ideal (p;) is a prime ideal and we have

(@) = (p1) -+ (ps)-
As I divides (a), there exists an ideal C' such that
1C = (p1) -~ (ps)-
By Theorem 12.3 there exist (p;,), ..., (p;,) such that
I'=(pi)- (pi,) = (Pir -+ i)

We have shown that [ is a principal ideal. O

Remark We might be tempted to think that the ideals in a Dedekind domain form a UFD.
However, the ideals in a nontrivial ring do not form an additive group: If I is a nonzero ideal,
then I 4+ I = I, which would not be possible if I had an additive inverse. We can only affirm
that the ideals form a monoid.

12.3 1Ideal classes

If R is an integral domain, then we may define a relation R on the nonzero ideals in R as follows:
IRJ if and only if there exist elements o, 5 € R\ {0} such that o = SJ. It is easy to see
that R is an equivalence relation, so we will write ~ for R. We define a multiplication on the
equivalence classes in an obvious way:

H[J] = [L]].

This multiplication is well-defined, since I ~ I’ and J ~ J' implies that IJ ~ I'J". We will
show that the equivalence classes with this multiplication form a monoid and, in the case of a
Dedekind domain, a group.

Lemma 12.3 If R is an integral domain, I an ideal in R and there exists o # 0 such that ol
s principal, then I is principal.
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PROOF Let al = (a). Then there exists u € I such that a = au. If s € I, then we may find
v € R such that as = va. We have

as =vau = a(s —vu) =0 = s = vu.
It follows that I C (u). As u € I, (u) C I and so we have I = (u). O

We now consider a particular equivalence class.

Proposition 12.1 If R is an integral domain, then the nonzero principal ideals form an equiv-
alence class.

PROOF Let I be a nonzero principal ideal: I = (a). If J is also a nonzero principal ideal and
J = (b), then
bla) =a(b) =1 ~ J,
hence J € [I].
Now suppose that J is a nonzero ideal in R and I ~ J: there exist a, 8 € R\ {0} such that

al =pJ. If I = (a), then fJ = a(a) = (aa). From Lemma 12.3, J is principal. Therefore the
class of I is composed of the nonzero principal ideals in R. O

We will note the set of equivalence classes CI(R). Clearly, CI(R) contains a unique element
if and only if R is a PID.

Theorem 12.4 CI(R) is a monoid. If R is a Dedekind domain, then CI(R) is a group.

PROOF It is clear that the multiplication which we have defined is associative. We claim that the
class of nonzero principal ideals, which we note E, is a neutral element. To see this, let (a) be a
nonzero principal ideal and I any nonzero ideal. Then (a)l = al. As al = lal, I ~ al and it
follows that E[I] = [I]. Thus CI(R) is a monoid.

Now suppose that R is a Dedekind domain and I a nonzero ideal. From Theorem 12.2 we
know that there is a nonzero ideal J such that I.J is principal. Moreover, I.J # {0}, since I # {0}
and J # {0}. Hence the class [I] has an inverse [J]. Therefore CI(R) is a group. O

The group of classes Cl(D) of a Dedekind domain D is called the ideal class group of D.

12.4 hcf and lem

We have seen above that division of ideals in a Dedekind domain may be characterized by a
simple inclusion condition: I|J <= I D J. Keeping this in mind, we will now study in more
detail the division of ideals in a Dedekind domain.

We define a highest common factor (hcf) and a lowest common multiple (Icm) of two ideals
in the same way as we do in an integral domain. Let I and J be nontrivial, proper ideals in a
Dedekind domain D. An ideal U is an hcf of I and J if

e UlI, U|J,;
o X|I,X|J = X|U.
An ideal V is an lem of I and J if
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o 1|V, J|V;
o I|Y,J|Y = VY.

Exercise 12.2 Show that the hcf and the lem are unique; hence we can speak of the hcef and
the lem of two ideals.

Another point is worth making. We say that two elements in an integral domain are coprime
if they have 1 as an hef. If R is a PID and = and y are coprime, then there exist a,b € R such
that ax + by = 1. This is equivalent to saying that (z) + (y) = R. This suggests the following
generalization: if I and J are ideals in ring R, then we say that these ideals are coprime, if
I+ J=R.

Proposition 12.2 If I and J are nontrivial, proper ideals in a Dedekind domain D, then
hefiI,J)=1+J and lem(I,J)=1NJ.
PROOF First the hef. We have
I+J>1LJ=I1+JI,I+J|J

and
XIILLX|J=XD>I,XD>DJ=XDI+J= X|I+J,
hence hef(I,J) =1+ J.
Now we consider the lem. We have

IJ>INJ = I[INJ,JINJ

and
1Y, JY =IDY,JDY=INnJDY = 1InNnJY,

hence lem(1, J) =INJ. |

The following characterizations of the hef and lem are not difficult to establish:

Proposition 12.3 Let D be a Dedekind domain and I, J nontrivial, proper ideals in D. We
note Py,...Ps the prime ideals appearing in the factorization into products of prime ideals in
either I or J:

I= f[P;”i and  J = HP"
=1 =1

where the m; and the n; are elements of N and, for any given i, m; and n; are not both equal to
0. Then

S

hefi, J) = [ B and  lem(1,J) = [] PR,
=1

i
i=1

Corollary 12.5 If I, J are nontrivial, proper ideals in a Dedekind domain D, then
hef(I, J)lem(I,J) =1J.

Remark Propositions 12.2 and 12.3 can be naturally generalized to a finite number of ideals.

The following result is also useful:
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Proposition 12.4 In a commutative ring R, if the ideals I and J are coprime, then INJ = 1J.
If R is a Dedekind domain and I, J are nontrivial, proper ideals, then the converse is also true.

PROOF Let R be a commutative ring with ideals I and J. If I + J = R, then
INd=InJHR=INnJ)I+J)=InIHI+InJ)JCJI+1J=1J.

Clearly IJ CINJ,soINJ=1J.
Now suppose that R is a Dedekind domain. Then

IJ=InJ= (I+J)IJ)={I+J)(INJ)=1J,

because I + J = hef(1,J) and I NJ =lem(,J). If I + J is a nontrivial, proper ideal, then we
have a contradiction to the unique factorization of ideals. On the other hand, clearly I+J # {0},
sol+J=D,ie., I and J are coprime. O

We may slightly strengthen Theorem 12.2. To do so we need a preliminary result.

Lemma 12.4 Let I be a nonzero ideal in a Dedekind domain D. If P is a prime ideal, then
PI C I and the inclusion is strict.

PROOF The inclusion is clear. If I = D, then the strict inclusion is clear. On the other hand, if
I # D, if the inclusion is not strict, then we have a contradiction to the unicity of the factorization
of ideals, so the inclusion must be strict. O

Theorem 12.5 If I and Q are nonzero ideals in a Dedekind domain D, then there exists an
ideal J of D such that IJ is principal and J and Q) are coprime.

PROOF If I = D, then it is sufficient to take J = {0}. On the other hand, if @ = D, then, from
Theorem 12.2, there is a nonzero ideal J such that I.J is principal; as J + D = D, J and D are
coprime. Let us now suppose that I # D and @ # D.
Let Pi,..., Ps be the prime ideals which occur in the decomposition into prime ideals of I
and Q). Then
I=Pm™...pMs

S

withm,; > 0fori=1,...,s. If m; =0, then P/ = D. From Lemma 12.4, for each i € {1,..., s},
we can find y; € P/™ \Pimiﬂ. Also, if i # j, then from Proposition 12.3

hef(PT, PITY) = PPPY = D,

so P/ and Pf *1 are coprime. From the Chinese remainder theorem (Theorem F.1), we see

that there exists z € D such that x = y; mod Pimi“, for each i € {1,...,s}. Thus, for all
1e{l,...,s},
€ P, a ¢ P = P|(a), PP (a).

This implies that I|(z) and so there exists an ideal J in D such that IJ = (z). J and Q are
coprime, since no prime ideal divides both J and Q). Indeed, any prime ideal dividing both J
and Q is a P; for some i € {1,...,s}. This contradicts the fact that = ¢ P/, O

Dedekind domains are ’almost principal’, i.e., their ideals are generated by at most two
elements.
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Corollary 12.6 If I is an ideal in a Dedekind domain D, then there exist x,y € I such that
I'=(z,y).

PROOF From Theorem 12.2 we know that there is a nonzero ideal @) in D such that I(Q is principal:
there exists y € D such that IQ = (y). In addition, Theorem 12.5 ensures the existence of an
ideal J in D such that IJ is principal and J and @ coprime: IJ = (z), for some x € IJ. We
have

(,9) = @)+ (W) = [T+ 1Q =I(J+ Q) =ID =1,

the result we were looking for. O

We have seen above in Corollary12.4 that a Dedekind domain which is a UFD is a PID. We
can use Theorem 12.5 to obtain another criterion for a Dedekind domain to be a PID.

Corollary 12.7 A Dedekind domain with only a finite number of prime ideals is a PID.

PROOF Let D be a Dedekind domain with only a finite number of prime ideals. We write @ for
the product of these ideals. If I is a nonzero ideal in D, then from Theorem 12.5 there is an
ideal J such that IJ is a principal ideal (a), with J and @ coprime. As J and @ are coprime,
we must have J = D. Hence

(a)=1J=1ID=1,

therefore I is principal. m|

12.5 Fractional ideals

If R is a commutative ring, then by definition R is an R-module and an ideal of R is an R-
submodule. In an integral domain we may extend the notion of ideal. This proves to be par-
ticularly useful in Dedekind domains. Let R be an integral domain with field of fractions K.
If J is an R-submodule of K such that rJ C R, for some r € R*, then we say that J is a
fractional ideal. We call r a denominator of J. Setting r = 1, we see that an ordinary ideal is a
fractional ideal, so the notion of fractional ideal does indeed generalize that of ideal. When han-
dling fractional ideals we sometimes refer to ordinary ideals as integral ideals to distinguish them.

Example %Z is a fractional ideal of Z, but not an integral ideal.

The ring R is a fractional ideal, but in general its field of fractions K is not. If K is a
fractional ideal, then there exists r € R* such that rK C R. As r is inversible in K, we have
K = %R. Now, %2 € K, so %2 = %s, with s € R. This implies that s = %, ie., % € R, and so

K = R. We will suppose that K # R.

We define the addition and multiplication of fractional ideals in the same way as we do for
ideals, i.e.,

n
I+J={x+y:xze€l,yeJ} and I-J:{inyi:nZl,xiEI,yiEJ}.
i=1
As in general for multiplication, we write I.J for I - J.

Proposition 12.5 If I and J are fractional ideals with denominators r and s respectively, then
INJ, I+ J and IJ are fractional ideals with respective denominators r or s, rs and rs.
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PROOF There is no difficulty in seeing that I NJ, I + J and IJ are R-submodules of K. In
addition,

rINnJ)crlICR, rs(I+J)Crli4+sJCR and rs(IJ)=(rI)(sJ)CR.
This ends the proof. O

Proposition 12.6 Let R be an integral domain. The nonzero fractional ideals of R are the
expressions of the form J = al, where I is a nonzero ideal of R and o € K*.

PROOF Let J = al, where I is a nonzero ideal of R and o € K*. If a = ¢, with a,b € R*, then
bJ = al C I C R, therefore J is a nonzero fractional ideal of R.

Now let J be a nonzero fractional ideal of R. There exists r € R* such that »J C R. More-
over, J = L(rJ) and rJ is an ideal of R. As 2 € K*, J has the required form. O

Remark An R-submodule is not necessarily a fractional ideal. For example, Z[%] is a Z-
submodule contained in Q, but is not a fractional ideal of Z. (There is no positive integer
n such that nZ[1] C Z).

Exercise 12.3 Let R be an integral domain. Prove the following statements:
e a. If J is a fractional ideal of R and r a denominator, then rJ is an integral ideal of R.
e b. If a fractional ideal J of a ring R is contained in R, then J is an integral ideal of R.

The next result enables us to characterize fractional ideals in the case where the ring R is
noetherian.

Proposition 12.7 Let R be a noetherian domain. The nonzero fractional ideals of R are the
nonzero finitely generated R-submodules of K, where K is the field of fractions of R.

PROOF Let J be a nonzero finitely generated R-submodule of K:
J=Rxi1+ -+ Rzx,,

where x; = %, with a; € R and b; € R*. If we set b = by---b,, then bJ C R and so J is a
nonzero fractional ideal of R.

Reciprocally, let J be a nonzero fractional ideal of R and r a denominator of J. Then J C %R.
As an R-module, %R is isomorphic to R, hence %R is a noetherian R-module. Since J is a sub-

module of %R, J is a finitely generated R-module. a

The product of two nonzero fractional ideals is a nonzero fractional ideal and the multipli-
cation is associative. If J is a fractional ideal, then, using the fact that J is an R-module, we
have

RJCJ=1J C RJ,

and so R is an identity for the multiplication. It follows that the nonzero fractional ideals form
a semigroup. In the case of a Dedekind domain the nonzero fractional ideals form a group, as
we will presently see.

Proposition 12.8 Every nonzero fractional ideal in a Dedekind domain D has an inverse in
the set of fractional ideals. More explicitly, if I is a nonzero fractional ideal of D and J = {x €
K,xI C D}, then J is a fractional ideal and IJ = D.
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PROOF Let us first suppose that I is a nonzero integral ideal. It is easy to see that J is a nonzero
D-submodule of K, the field of fractions of D. If r is a nonzero element of I (and so of R) and
x € J, then rx € D, so there exists r € D* such that rJ C D. Thus J is a nonzero fractional
ideal.

Let a € I, with a # 0, and J, = {b € D : bI C (a)}. The proof of Theorem 12.2 shows that
1J, = (a). In addition, %Ja = J. Indeed, %Ja is clearly included in J and every ¢ € J can be
written ¢ = %ca and ca € J,. Thus

1 1
IJ=1I-J,==(a) = D,
a a

therefore J is an inverse of I.

Now let us consider the more general case, i.e, I is a nonzero fractional ideal, which is not
necessarily integral. There exists a nonzero integral ideal A and o € K*, where K is the field
of fractions of D, such that I = aA (Proposition 12.6). If we set B = a~!A~! then B is a
fractional ideal and IB = D, so I has an inverse, namely B. It remains to show that B = J =
{z € K,xI C D}. From the first part of the proof we know that A=! = {z € K : zA C D}.
If u e I7!, then w = a 'z, where A C D, which implies that uaA C D and it follows that
u € J. We have shown that I~ C J. To complete the proof, we show that J C I~!. If u € J,
then uI C D, i.e., uaA C D. This implies that ua € A~ and so v € o= A~! = I~!. Therefore
JcI . O

Corollary 12.8 The nonzero fractional ideals of a Dedekind domain form an abelian group.

In fact, Proposition 12.8 has a converse. If R be an integral domain, then the nonzero
fractional ideals form a monoid, with identity R. The nonzero invertible fractional ideals form
an abelian group. If R is a Dedekind domain, then every nonzero fractional ideal is invertible,
hence the result of Corollary 12.8. However, the converse is also true.

Proposition 12.9 If R is an integral domain such that every nonzero fractional ideal is invert-
ible, then R is a Dedekind domain.

PROOF We must show that R is noetherian, that prime ideals are maximal and that R is normal.
Let K be the field of fractions of R.

Let I be a nonzero (integral) ideal of R. Then [ is invertible and J = {x € K : zI C R}
is the inverse of I. (We can easily verify that IJ = R and in a monoid, if an element has an
inverse, then this inverse is unique.)

As IJ = R, there exist a1,...,a, € I and by,...,b, € J such that a1by + -+ 4+ a,b, = 1. If
a € I, then

a=ay(bia) + -+ an(bpa) € (a1,...,an),

because ba € R, for ¢ = 1,...,n. It follows that I C (ay,...,a,). Clearly (ai,...,a,) C I, so
we have equality. As every ideal is finitely generated, R is noetherian.

Let P be a prime ideal in R and M a maximal ideal containing P. As M is invertible, there
exists an ideal J such that P = JM. (J = M~!'P C R, because P C M; from Exercise 12.6
the fractional ideal J is an integral ideal.) Since P is a prime ideal, we have J C P or M C P.
(If J ¢ Pand M ¢ P, then there exist z € J\ Pand y € M\ P; but zy € JM = P, a
contradiction.) If J C P, then P = JM C PM; multiplying by P~!, we obtain R C M, a
contradiction. Therefore M C P and it follows that M = P. Hence P is a maximal ideal.
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It remains to show that R is a normal domain. Let z € K be integral over R. Then there

exist elements cg, c1,...,cn_1 € R such that 2" = cy + c1z + -+ - cp_12" 1. Let
n—1
A={ye K :y= Zuix’,ui € R}.
i=0

A'is clearly an R-module. The element x = %, with r € R and s € R*, so s" 1A is a subset

of R. Hence A is a fractional ideal of R. Since 2™ € A, we have A C A. By hypothesis A is
invertible, so multiplying by A~! we obtain o € R. Therefore R is integrally closed in K, i.e., R
is a normal domain. O

Remark Propositions 12.8 and 12.9 provide us with a useful characterization of Dedekind do-
mains, which will use further on.

Decomposition of fractional ideals

We have seen that in a Dedekind domain D an ideal I # {0}, D can be written in a unique
way as a product of prime ideals. We may extend this result to fractional ideals.

Theorem 12.6 If J is a fractional ideal in o Dedekind domain and J # {0}, D, then
J=PM...pm

where the P; are distinct nonzero prime ideals of D and the n; integers (possibly negative). This
decomposition is unique.

PROOF We first observe that such a decomposition exists. As J is a fractional ideal there is an
r € D* such that rJ C D. Clearly rJ is a nonzero ideal of D. There are two cases to consider:
1. r is a unit of D, 2. r is not a unit of D.

Case 1. If r is a unit of R, then J is subset of D, hence an ideal of D (Exercise 12.6). By
hypothesis, J # D, so we have the required decomposition.

Case 2. If r is not a unit, then rD is a nonzero proper ideal in D and so there exists a
decomposition
rD=P" - P

where the P; are distinct prime ideals and the n; positive integers. From Proposition 12.8 each
P; has an inverse in the set of fractional ideals. Consequently, D has an inverse in the set of
fractional ideals:

(rD)y~t=p;™ ... P, (12.1)

As rJ is an integral ideal of D (Exercise 12.6), we have DrJ = rJ, thus
r'DrJ=J= (rD)"'rJ = J.

If rJ = D, then (rD)~! = J and, using Equation (12.1), we obtain a decomposition of .J of the
required type. On the other hand, if rJ # D, then rJ is a nonzero proper ideal of D and it
follows that J has a decomposition of the required type.
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We now consider the unicity of the decomposition. If
PM™M. P = QM. Qe

and all the exponents are positive, then there is no difficulty as we have an ideal in D. The P;
and (); are the same with the same positive powers. Suppose now that there are negative powers
in the expression. If, for example, ng < 0, then we may multiply both sides of the expression
by Q5 "'. If we do this for all prime ideals with negative powers, then we obtain an expression
with positive powers of the P; and the @J; on both sides. If we now have a ); on the lefthand
side, then we must have a P; on the righthand side such that @); = P; and —n; = —my;, which
implies that n; = m;. If a Q; remains on the righthand side, then there must be a P; on the
lefthand side such that Q; = P; and n; = m;. We may use an analagous argument for the P;
and so obtain the uniqueness of the decomposition. m]

We may distinguish the integral ideals among the fractional ideals in a simple way, as the
next result shows.

Corollary 12.9 A nonzero fractional ideal J of a Dedekind domain D, such that J # D, is an
integral ideal if and only if the powers of all the prime ideals in its decomposition are positive.

PROOF If all the powers are positive, then we have a product of ideals, which is an ideal.
Suppose now that at least one power m; is negative:

J=Pm™...pmi...pmr
with m; < 0. If J is an ideal, then we may write
J = Qrfl gs’

where the @); are ideals and n; > 0, for all j. Given the uniqueness of the factorization of I, we
must have P; = ); for some j, and m; = n;. However, this is impossible, because

and n; —m; > 2 and P; is a proper ideal. Hence, if a power of a prime ideal in the decomposition
is negative, J is not an ideal. O

Further properties of fractional ideals

Certain properties of ideals may be generalized to fractional ideals. First we consider divis-
ibility. Let I and J be fractional ideals in a Dedekind domain D. We say that I divides J if
there exists an integral ideal H such that ITH = J.

Exercise 12.4 Show that division defines an order relation on fractional ideals.

Exercise 12.5 Show that division of fractional ideals is equivalent to inclusion, i.e., if I and J
are fractional ideals of a Dedekind domain D, then I divides J if and only if I contains J.

It is also interesting to notice that inclusion is reversed by inversion:

Exercise 12.6 Let I and J be nonzero (integral) ideals in a Dedekind domain D. Show that if
I C Jthen J-' € I™'. Deduce that this is also the case for any pair of nonzero fractional ideals.
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If R C S are commutative rings and I an ideal in R, then we define an ideal ST in S, the
extension of I in S, by letting ST be the collection of finite sums of the form Y ;" s;z;, with
s; € S and x; € I. This is the smallest ideal in S containing I (or the ideal in S generated by
I). We may generalize this idea to fractional ideals.

Let C be Dedekind domain and D a commutative ring containing D. We note K the field of
fractions of C. If J C K is a fractional ideal of D, then we write D.J for the collection of finite
sums of the form Z:il d;z;, with d; € D and x; € J. We claim that, if D is an integral domain,
then DJ is a fractional ideal of D. Indeed, DJ is clearly a D-module of the field of fractions
of D and any denominator of J is a denominator of DJ. This fractional ideal is the smallest
fractional ideal of D containing J.

If R C S are commutative rings and I an ideal in R, then it is not necessarily the case that
SINR = 1. For example, if R =7, S = Q and I = (2), then ST = S, because Q is the only
nonzero ideal in Q. As QNZ = Z # (2), in this case SIN R # I. This example also shows that,
even if R and S are Dedekind domains, it may not be true that SIN R = I. The following result
provides a framework where this property holds.

Theorem 12.7 Let C' be Dedekind domain, D a commutative ring containing C' and K the field
of fractions of C. In addition, we suppose that CND C K.

e a. If J is a fractional ideal of C, then DJNK = J;
e b. If I is an (integral) ideal of C, then DINC =1.

PROOF a. To begin with, DJ N K is always a fractional ideal of C. Indeed, it is clearly a C-
submodule of K and any denominator of J is a denominator of DJ N K, because DN K C C. If
J = {0}, then the result is evident, so suppose that this is not the case. Proposition 12.8 ensures
that J has an inverse. Then

D =DC =D(JJ™ ') = (DJ)(DJ ™),

hence
CO>DNK = (DJ)DJ H)NK > (DJNK)(DJ 'NK).

Since DJ N K is a fractional ideal of C, from Proposition 12.8 again, DJ N K has an inverse. We
have

C=(DJNK)DJNK) ' = (DJNK)(DJNK)™' >(DJNK)(DJN™!'NK).
Now, using Exercise 12.5, we obtain
(DJNK)'>DJ'NnK.
Since J C DJ N K, from Exercise 12.6,
DIJHYNK>J > (DINnK)™!

and so
(DINK)'=DJ 'nK=J"'= DJNK =,

as required.
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b. Let I be an (integral) ideal in C'. Since I is also a fractional ideal, the part a. ensures that
DINK =1.
Taking the intersection with D on both sides leads to
DIN(KNnD)=1.

Clearly C € K N D and we have seen in part a. that KN D C C, so KN D = C and it follows
that DINC = 1. |

Example If D is integral over C, then DN K is included in the integral closure of C in K. As C
is a normal domain, its integral closure in K, its field of fractions, is C' itself. Thus DN K C C
and so Theorem 12.7 applies.

If R is an integral domain, then we may extend the equivalence relation defined in Section
12.3 to fractional ideals. In the same way as for the nonzero integral ideals, we define a relation
R on the nonzero fractional ideals of R as follows: IRJ if and only if there exist elements
a,B € R\ {0} such that af = SJ. There is no difficulty in seeing that R is an equivalence
relation and so we write ~ for R.

Proposition 12.10 If R is a Dedekind domain and I is a nonzero fractional ideal in R, then
there is a nonzero integral ideal J such that I ~ J.

PROOF Let I be a nonzero fractional ideal. From the decomposition of fractional ideals we obtain
the existence of integral ideals B and C' such that I = g, with C nontrivial. We take t € C', with
t #0. Then C D Rt = C|Rt. Hence there exists an integral ideal E C R such that CE = Rt.

Therefore we have B CEB

hence I ~ EB. O

Remark From the above proposition, every equivalence class contains an integral ideal.

12.6 Localization in a Dedekind domain

Before studying localization in a Dedekind domain, we will first revise (or introduce, for those
not familiar with localization) the basic notions of localization in a commutative ring.

Let R be a commutative ring. A subset U of R is said to be multiplicative if
e 1€U;
e x.ycU = zyeclU.
We define a relation R on R x U by
(r,w)R(r',u'),
if there exists ¢t € U such that

t(ru’ —r'u) = 0.
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It is easy to show that R is an equivalence relation, so we will write ~ for R. Also, we write 7 for
the equivalence class of (r,u). In general, we write U 'R for the collection of equivalence classes.

We may give U R a ring structure:

ru’ +r'u ror rr’
=—>— ad .o =-—
o u U U

,,,,/
T
u

Sl

It is easy to check that these operations are well-defined and that U 'R with these operations is

a commutative ring. (The element % (resp. %) is the identity for the addition (resp. multiplica-

tion).) The ring we have obtained is called the localization of R with respect to U. Clearly, the
procedure we have used generalizes the construction of the rational numbers, with R = Z and
U=727".
Exercise 12.7 Show that U"'R is a zero ring if and only if 0 € U.
From now on we suppose that 0 ¢ U.
Exercise 12.8 Show that, if R is an integral domain and K its field of fractions, then the
mapping
1 r r
¢o: U "R— K,— — —
U U
is an injective ring homomorphism. It follows that, if R is an integral domain, then so is U"'R,

For a commutative ring R, the mapping
r
7T:R—>U_1R,rb—>I

is a ring homomorphism. In addition, if w € U, then

el S
S

so the elements of 7(U) are invertible in U~ R.

Exercise 12.9 Show that the mapping m defined above is injective if and only if U has no zero
divisors. It follows that, if R is an integral domain, then 7 is injective.

If X is a subset of R, then we set
U_lX:{fzxeX,ueU}.
u

Clearly, if I is an ideal in R, then U 1T is an ideal in U~ 'R. It is not difficult to see that U1
is the collection of all finite sums of the form Y, y;m(x;), where y; € U~'R and z; € I, which
is the ideal in U~!R generated by m(I). If 7 is injective, then we may consider I as a subset of
U~'R and we write (U"'R)I for U7'I.

Remark We may extend this idea. Suppose that A and B are commutative rings with identity
and f: A — B a homomorphism. If I is an ideal in A, then f(I) is not necessarily an ideal in
B, even if f is injective (for example, the image of the ideal 2Z in Z by inclusion of the ring of
integers Z in the rationals Q is not an ideal in Q.) However, if we let I¢ be the collection of all
finite sums of the form ", y; f(z;), where y; € B and x; € I, then I¢ is an ideal in B, called
the extension of I (under f) in B. I¢ is the ideal in B generated by f(I). If f is an injection,
then we write BI for I¢.
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Lemma 12.5 Let I be an ideal in R. Then U~'I is a proper ideal in U™'R if and only if
INU=0.

PROOF If w € I NU, then % =5n€ U~'I, so U7 is not a proper ideal. On the other hand, if

U1 =U"'R, then % =+, for some r € I and u € U, hence there exists ¢t € U such that
tu—r)=0=tu=tr.
However, tu € U, because t,u € U, and tr € I, because r € I, so INTU # (). O

The next result is elementary, but important.
Proposition 12.11 If I and J are ideals in R, then

ea. U lI+J)=UtT+U'J;

eb. U 'INJ)=UtNUJ;

e c. UTL(1J)= (U (U1).

PROOF It is clear that in all three cases the lefthand side is contained in the righthand side, so
we only need to show that the righthand side is included in the lefthand side.

a. If L e U ' and & € U~'J, then

/ / /
E+L:we[]—1([+<})7

v u uu/
because ru’ € I and r'u € J. Thus
U r+utgycuY1+J).
b. If = € U~'INULJ, then there exist r; € I, u; € U and #; € U such that
ti(ruy —riu) =0 = tyrug = tyrqu €1
and ro € J, uy € U and ty € U such that
ta(rug — rou) = 0 = tarug = torqu € J.

It follows that
titoruius € I N J.

Thus there exists @ € U such that ru € INJ. Now L = % ¢ U~1(INJ), so

U tinuTtJycuTt(inld).

» - T‘, ’I", —
c.let ™ .. ImecyUTand & ..., ln e U~1J. Then
wy? ) W, ul )
n 1 n
r1 Ty Tn T r
w gl ugd, - -
1 Wy n Up 1’LL1 unun

where r € 1.J, so
(Utnw-ty) cuTt1g).
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This ends the proof. m|
Above we introduced the mapping
1 r
m:R—U "R,7r—> 1

As 7 is a ring homomorphism, if J is an ideal in U~!R, then 7=1(J) is an ideal in R. Also, we
have seen that, if I is an ideal in R, then U ' is an ideal in U~ R. It follows that U~ (7=*(.J))
is an ideal in U~!'R. In fact, we have a stronger result.

Proposition 12.12 If J is an ideal in U™ R, then
Ut (r () =
PROOF If £ € U~ (7=*(J)), then there exist 7’ € 77!(J), v’ € U and t € U such that

tru’

1 e J.

tiru' —r'u) = 0= truv’ = tur’ € 7 1(J) =

Therefore
T tru’ tru 1

w  tud' 1 tud

Hence
U=t (x=1(J)) C J.

To prove the converse, let us take - € J. Then

r_r.u -1 T evu-t(rt
= p€S—ren (J)=>ueU (7=1(J])) .
Thus
JcUu ™ (x7H()).
This completes the proof. O

Let us write Zp (resp. Zy-1) for the collection of ideals in R (resp. U~ 'R).
Proposition 12.13 The mapping
7 Typ — I, J — 1 H(J)
18 1njective.
PROOF If 7 1(J;) = m~1(Ja), then from Proposition 12.12 we have
J=U" (a7 (N)=U" (77 ()2)) = J2
and the injectivity follows. a

The main object of this section is to show that the localization of a Dedekind domain is a
Dedekind domain. We have already observed that the localization of an integral domain D is
an integral domain (Exercise 12.8). We now show that the noetherian property carries over to a
localization.
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Proposition 12.14 If R is a noetherian ring and U a multiplicative subset of R, then the
localization U R is a noetherian ring.

T

PROOF Let 7 : R — U~'R be the standard ring homomorphism taking r to . We take an
ascending sequence of ideals in U~ ' R:
JoC i CJyC -
The inverse images under 7 of these ideals form an ascending chain of ideals in R:
7N (J) cn () cat(J) C -
As R is noetherian, this chain eventually stabilizes, i.e., there exists k such that
(k) =7 () = -

1

However, the mapping 7! is injective (Proposition 12.13), so we have

Je = Jpp1 =

and it follows that U~ R is noetherian. O

Our next step is to show that
Proposition 12.15 If R is a normal domain and 0 ¢ U, then U™ R is a normal domain.

PROOF Let o be an element of the fraction field of U ' R which is integral over U 'R, i.e., there
exists a polynomial f(X) = Ef:_ol a; X"+ X* € U7LR[X] such that f(a) = 0. We take u € U
such that u is a multiple of the denominators of the a;, then uag,uay,...,uar_1 € R. Setting
F(X) =S¥ ubia; X7 + X*, we have f € R[X] and f(ua) = 0, so u« is integral over R. We
may also choose u such that ua lies in the field of fractions of R. To see this, notice that

/7“2.

If we choose u € U to be a multiple of u;, then ua belongs to the field of fractions of R. As R
is a normal domain, ua € R, which implies that o = “* € U~'R. Tt follows that U 'R is a
normal domain. O

T ) U ) uriug
qO=—/—=—uax=u—/,/— =
Uy u2 Uy u2 Ui

To show that U~!'D is a Dedekind domain if D is a Dedekind domain we must show that
prime ideals are maximal. To do so, we first consider the mapping 7! restricted to prime ideals.

Lemma 12.6 If I is an ideal in R, then
Icr Y U™n,
with equality if I is a prime ideal disjoint from U.

PROOF If 7 € I, then | € U~'I, hence r € =1 (U~1I). This proves the first part of the lemma.
Now suppose that I is a prime ideal in R such that I NU = @ and let » € 7=} (U~1I). Then
m(r)=2eU ', s0% = Z—/,, for some r’ € I and v’ € U. Thus there exists ¢ € U such that
tiru' —1') = 0= tru’ = tr’,
with tu’ ¢ I, because UNT = (. (If tw’ € I, then ¢t € I or v/ € I, a contradiction.) Since tr' € I,
also tru’ € I. Given that tu’ ¢ I and [ is prime, we must have r € I. Hence 71 (U~'I) C [. O

We will write Py -1 for the set of prime ideals in U 'R and Pr\v for the set of prime ideals
in R disjoint from U.
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1

Theorem 12.8 The mapping m~ restricted to Py-1p defines a bijection onto Pr\y -

PROOF We have already observed that, if J is an ideal in U~ R, then 7~1(.J) is an ideal in R and
that the mapping 7! is injective (Proposition 12.13). It is elementary to show that 7—1(J) is
prime when J is prime. We must show that 7=1(J)NU = (. From Lemma 12.5 and Proposition
12.12

TN NNU=0«=U" (7)) #U 'R<= J#U 'R

Since J is a prime ideal of UT'R, J # U 'R, so 77 1(J) NU = (), as desired. We have shown
that the image of 7! restricted to Py-1p lies in Pr\v-

To finish we only need to show that 7= (Py-1p) = Pr\v- Let I € Pr\y. From Lemma 12.6
we have

o (U).

I =
As I is a prime ideal in R and INU = @, U] is a prime ideal in U"'R, so 7! restricted to
Pu-1g is surjective. a

Corollary 12.10 If R is a commutative Ting in which every nonzero prime ideal is maximal,
then this is also the case for the localization U 'R.

PROOF Let J be a nonzero prime ideal in U ~' R which is not maximal. Then there exists a nonzero
prime ideal J’ in U~'R which properly contains J. From the previous theorem, both 7~1(.J)
and m~1(J’) are nonzero prime ideals and 7—1(J) is properly contained in 7~!(J’). However,
this is a contradiction, because 7~!(J) must be maximal. Hence J is maximal. o

Exercise 12.10 If I is a prime ideal in R and I NU # 0, show that U~'I is not a prime ideal
in UT'R.

We are now in a position to establish the main theorem of this section.

Theorem 12.9 If D is a Dedekind domain and U a multiplicative subset of D mnot containing
0, then U'D is a Dedekind domain.

PROOF We noticed in Exercise 12.11 that if the multiplicative set U has no zero divisors, then
U~'R is an integral domain. Since D is an integral domain, so is U ' D. Next, from Proposition
12.14, U~'D is a noetherian ring. Now, using Proposition 12.18, we see that U~ !D is a normal
domain. To finish we only need to show that every nonzero prime ideal in U~'D is maximal.
However, this follows from Corollary 12.10. a

Suppose now that I is an ideal in D such that I # {0},D and I = P;'--- Pt is the
decomposition of I into prime ideals of D. In the Dedekind domain D' = U~'D the ideal J
generated by I has a decomposition into prime ideals of D’. The following proposition gives us
the form of this decomposition.

Proposition 12.16 Let I be an ideal of the Dedekind domain D, such that I # {0}, D, and U
a multiplicative subset of D not containing 0. If I = Py --- Pt is the decomposition of I into
prime ideals of D and J the ideal in D' = U~'D generated by I, then the decomposition of J
into prime ideals has the form

J= 1] (o'P)~.

P,NU=0
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PROOF First we have

J=DT1=D (ﬁ Pf) = ﬁ(D’Pi)e".
i=1 i=1

If P,NU # 0 then D’P; contains a unit, so D’P; = D’. Thus

J= ][] @pr).

P,NU=0

It remains to show that D'P; is a prime ideal if ;,NU = (). Let &, % € D’ be such that %% e D'P;.
Then %% = 2, with z € P, and w € U. So abw = uvzx € P;, because = € P;. Given that w ¢ P,
because P, N U = (), we have ab € P;, which implies that a € P; or b € P;. Hence L ¢ D'P; or
% € D' P;, which shows that D’P; is a prime ideal. O

A special case

If a commutative ring has a unique maximal ideal, then we say that it is a local ring. In certain
cases the localization of a commutative ring is a local ring. We will be particularly interested in
the case where the ring is a Dedekind domain. However, we will first present a result giving two
characterizations of local rings.

Proposition 12.17 The following conditions are equivalent for a commutative ring R:
e a. R is a local ring;
e b. There is a proper ideal I of R which contains all the nonunits of R;

e c. The set of nonunits of R is an ideal.

PROOF a. = b. If r is a nonunit, then (r) is a proper ideal in R and so is contained in the
unique maximal ideal of R.

b. = c. Let A be the collection of nonunits in R. If r,7’ € A and x € R, then r + 7' and xr are
in A. If not, then there exists a € R such that a(r +7') = 1, or b € R such that b(ar) = 1. In
both cases, 1 € A C I and so I = R, a contradiction. Hence A is a proper ideal in R.

c. = a. If I is the ideal of nonunits, then I is maximal. If not, then there is an ideal I’ # R
which properly contains I. As I’ must contain a unit, I’ = R. It folllows that I is maximal. If
H is a proper ideal in R, then H cannot contain a unit, so H C I. Therefore I is the unique
maximal ideal. a

Exercise 12.11 Show that the unique mazimal ideal of a local ring is composed of its nonunits.

If P is a prime ideal in the commutative ring R, then U = R\ P is a multiplicative subset of
R and 0 ¢ U. We write Rp for the localization (R \ P)"'R. We call Rp the localization of R
at P. The expression X N R\ P = (), for X C R, is equivalent to X C P. We also notice that
R\ P has no zero divisors, so from Exercise 12.11 the mapping 7 : R — Rp is injective.

Theorem 12.10 If R is a commutative ring and P a prime ideal in R, then the localization Rp
s a local ring, with unique mazximal ideal

(R\P)—le{g,xeP,ueR\P}.
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PROOF As PN R\ P = (), from Lemma 12.5, (R\ P)~!'P is a proper ideal in Rp. Let J be a
maximal ideal in Rp. As J is prime, 7=1(J) is a prime ideal in R, which is disjoint from R\ P
by Theorem 12.8. As observed above, 7= 1(J) N (R \ P) = () is equivalent to 7~1(J) C P, since
7~1(J) C R. Then, by Proposition 12.12,

J=(R\P)"" (7' (J)) C(R\P)"'P.
Since J is a maximal ideal in Rp and (R\ P)~! P is a proper ideal in Rp, we have J = (R\P)~'P.
It follows that (R \ P)~!P is the unique maximal ideal of Rp. 0

In accordance with the discussion after Exercise 12.11, for an ideal I in R, (R\ P)~'I = Rpl,
i.e., (R\ P)~'I is composed of finite sums of the form

n
z =y yim(x),
=1

where y; € Rp and x; € I. In particular, the unique maximal ideal of Rp can be written RpP.

Now let us now consider the particular case of the localization of a Dedekind domain D at a
prime ideal P.

Theorem 12.11 If D is a Dedekind domain and P a prime ideal in D, then the localization
Dp is a PID.

PROOF From Theorem 12.9, Dp is a Dedekind domain. By Theorem 12.10, Dp is also a local
ring and so has a unique ideal. However, a Dedekind domain having only a finite number of
prime ideals is a PID (Corollary 12.7), hence the result. g

We may characterize the nonzero fractional ideals of Dp; however, we need to do some
preliminary work. We recall that in Proposition 12.11 we showed that if U is a multiplicative
subset of the ring R, and I and J ideals, then

vY1g) = Wwtnw-t).
If R is an integral domain, P a prime ideal of R and U = R\ P, then we obtain
Rp(1J) = (RpI)(RpJ). (12.2)

We aim to extend this relation to fractional ideals of R. First we extend the definition RpI to
fractional ideals. For a fractional ideal I’ of R we let RpF be the subset of the fraction field K
of Rp composed of finite sums of the form

n
j=1

where i; € I, z; € Rp. (If f € F, then f = 7, with r € R, ' € R*; then fz = 77 € K and it
follows that RpF C K.) In fact, RpF is a fractional ideal of Rp. If F' is the zero ideal, then
there is nothing to prove, so let us suppose that this is not the case. Then F' = al, where o € R*
and I an ideal of R (Proposition 12.6). If f € F and « € Rp, then fx = afsx, where s € I. Tt
follows that RpF' = aRpl. As Rpl is an ideal in Rp, another application of Proposition 12.6

shows that RpF is a fractional ideal of Rp.

We may now extend Equation (12.2) to fractional ideals.
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Proposition 12.18 If R is an integral domain, P a prime ideal in R and F', G fractional ideals,
then
Rp(FG) = (RpF)(RpG).

PROOF An element of Rp(FG) can be written in the form =Y. | figr, where f; € F, g; € G
and ¢ € Rp. Since x = £, with r € R and u € R\ P, we have

2Y figr = Y (R g) € Re(F)Re(G)

Hence RP(FG) C (RPF)(RPG>

Moreover, any element of (RpF)(RpG) is a finite sum of terms of the form (zf)(yg), where
z,y € Rp and f € F, g € G. However, (xf)(yg) = (zy)(fg). Given that xy € Rp and fg € FG,
(f)(yg) € Rp(FG) and it follows that (RpF)(RpG) C Rp(FG). O

We are now are in position to establish a result which will prove essential further on. It pro-
vides us with a characterization of the nonzero fractional ideals of the localization of a Dedekind
domain at a prime ideal.

Theorem 12.12 If D is a Dedekind domain and P a monzero prime ideal in D, then every
nonzero fractional ideal J of Dp is a power of DpP and, for any m € Z, (DpP)™ = DpP™.
In addition, for any m >0, Dp(P™)N D = P™.

PROOF Theorem 12.9 ensures that Dp is a Dedekind domain and Theorem 12.10 that Dp has
a unique prime ideal, namely DpP. Now, using Theorem 12.6, we obtain that every nonzero
fractional ideal J of Dp is a power of DpP: J = (DpP)™, for some m € Z. If m = 0, then
J = Dp.

Let us now show that (DpP)™ = Dp(P™). We will consider three cases, namely, m = 0,
m>1and m < —1.

Case 1: m = 0. For m = 0, this amounts to showing that Dp = DpD. Clearly, DpD C Dp. If
% € Dp, then % = %% € DpD, so Dp C DpD and we have the desired equality.

Case 2: m => 1. For m > 1 we use an induction argument. For m = 1, there is nothing to
prove. For m > 2, it is sufficient to apply Proposition 12.18.

Case 3: m < —1. From Proposition 12.18 we have
Dp = DpD = Dp(PP™ ') = (DpP)(DpP™ ') = DpP~' = (DpP)"".
If m < —2, let us set n = —m. Then, using Proposition 12.18 again, we have
DpP™=Dp ((P~")y™™) = (DpP™)™™.
However, DpP~! = (DpP)~1, so
(DpP~H™™ = (DpP)™') " = (DpP)™.

We now turn to the final part of the theorem. Let m > 1. It is clear that P"™ C DpP™ N D.
Suppose now that £ € DpP™ N D, with x € P™ and u ¢ P. There exists r € D such that
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£ = L. This implies that there is a ¢ ¢ P such that ¢(z —ru) = 0. Hence we have tru = tx € P™,
with tu ¢ P. As tru € P™, P™ contains the product of the principal ideals Dtu and Dr. This
means that P™ divides DtuDr. As tu ¢ P, P does not divide Dtu. Since P is a prime ideal, P™
divides Dr, which implies that r € P™. Thus £ = 1, with r € P™. Therefore DpP™ND C P™.

This ends the proof. o

Quotient rings of localizations

If I is a proper ideal in R, then we have a canonical homomorphism A of R onto the quotient
ring R = R/I. A multiplicative subset U of R induces in a natural way a multiplicative subset
of R = R/I, namely U = A(U). The following proposition characterizes the localization of R
with respect to U.

Proposition 12.19 Let U be a multiplicative subset of the ring R and R' = U™'R. IfI is a
proper ideal in R such that
rucl,re RuelU —=rel,

then the image U of U under X is a multiplicative subset of R with no zero divisors, and U 'R
is isomorphic to R'/R'I.

PROOF First we notice that INU = (: If a € INU, then al € I and so, by hypothesis, 1 € I,
which is impossible, because I is a proper ideal of R.

To see that U is a multiplicative subset of R, first we notice that 1 € U implies that 1 € U.
Next, if a,b € U, then a = a + I, witha € U, and b= b+ I, with b € U, hence ab = ab+ I € U,
because ab € U.

Finally we show that U has no zero divisors. Let a € U. If ab = 0, with b € R/I, then ab € I.
As a € U, by hypothesis b € I, so b = 0. Therefore U has no zero divisors.

We now define a mapping ¢ from U~'R into R’ = R'/R'I by

where ﬁ is the image of L under the canonical homomorphism of R’ onto R’. We need to show

that ¥ i 1s well-defined, i. e

Indeed, if there exists £ € U such that

t(ruy —ru) =0,

then
roor Uy — T1U
(ruy —rmu)t €I = rug —ru € l = AL A L St € R,
U U Uy
where in the first implication we have used the hypothesis on I. Thus E = ;—} and the mapping
1

1 is well-defined.

Clearly, 1 is a ring homomorphism. If z € R/, then = £ + R'I, withr € R, u € U. If we
set y =L then 7€ R, u € U and ¢(y) = z. Thus ¢ is surjective. If Z =0, then £ € R'I. Then
= ;l,, with 7" € I and v’ € U. Hence there exists ¢t € U such that t(ru’ —r u) = 0 and so
tru € 1. As tu' € U, by hypothesis r € I and it follows that % =0 in U7'R, so v is injective.
This ends the proof. o

157



The next result characterizes the residue field of the localization of a commutative ring with
respect to a maximal ideal.

Corollary 12.11 If all the elements of U are invertible in R, then R is isomorphic to R'/R'I.
If P is a maxzimal ideal in a commutative ring R, then R/P is isomorphic to Rp/RpP.

PROOF Suppose that all the elements of U are invertible in R. If % € U"'Rand weset 7| = ru~!,
then %1 = g, so the canonical mapping from R into U™'R is an isomorphism. Thus we have an
isomorphism from R onto R'/R'I.

Let us set U = R\ P. If ru € P, with r € R and v € U, then r € P, because P is a prime
ideal. Hence we can apply Proposition 12.19 with I = P: U~'(R/P) is isomorphic to Rp/RpP.
Because R/P is a field, every element of U is invertible. It follows that there is an isomorphism
from R/P onto Rp/RpP. O

Localization and integral closure

If U is a multiplicative subset of a ring R, and S a ring containing R, then U is also a
multiplicative subset of S. We aim to consider the case where L is some field containing R and
S the integral closure of R in L. Thus the set U~'S is defined. However, if R’ = U~ 'R is also
contained in L, then integral closure of R’ in L also exists.

Proposition 12.20 Let R be an integral domain and L a field containing R. We suppose that
S is the integral closure of R in L and that U is a multiplicative subset of R. Then S’ = U"1S
is the integral closure of R' = U 'R in L.

PROOF As R’ C K, the field of fractions of R, and K C L, the integral closure of R’ in L exists.
Let x = 2 € §'. As S is integral over R, there exist 79,71,...,7,—1 € R such that

1
To+ris4 - Frp_ 1V Fs"=0=—= —n(r0+r15+~~+rn_15”71 +s")=0.
u

This can be written

T TS Tpo1 8771 s™
% n1—17++ — n—1 711_0
u ur~luy u o u u
which implies that * is integral over R'.
Now let & € L be integral over S’. There exist 2, IL . Io=L e &’ such that
0’ U1 Un—1

Tn—1

S " 2™ =0.

Uo Ui Un—1

Setting u = uguy - - - Uy_1, We may write

"<T°+”x+~--+r”‘1x"1+x”> = 0.

uo UL Un—1
However,
n n—ia n—i
u-'r; u T ; . T
xt = (uz)® with €R,
Usg Uq Usg

so ux is integral over R. As the integral closure of R in L is S, we have ux € S, which implies
thatx:“—u"”eU_ls. m]

Remark We may sum up the proposition by saying that localization of the integral closure

is the same as the integral closure of the localization, i.e., the operations integral closure and
localization commute.
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12.7 Integral closures of Dedekind domains

If D is a Dedekind domain, then certain extensions of D are also Dedekind domains. We have seen
that this is in general the case with localizations. In this section we aim to consider another class
of such extensions. The properties of such extensions enable us to establish certain important
results.

Lemma 12.7 Let A C B C C be commutative rings. If B is a finitely generated A-module and
C a finitely generated B-module, then C is a finitely generated A-module.

PROOF Let {b1,...,by,} be a generating set for B over A and {cy,...,c,} a generating set for C
over B. For x € C, there are 3,..., 3, € B such that

n
T = Z Bici.
i=1

For any ¢ = 1,...,n, there exist ay1, ..., € A such that

m
Bi = E ai;bj,
i=1

hence
n m n m
Xr = Z aijbj C; = ZZaij(bjci).
i=1 \j=1 i=1 j=1
As B C C, the elements bjc; belong to C' and it follows that the bjc;, for 1 < j < m and
1 <i < n, form a generating set for C' over A. |

Theorem 12.13 (transitivity of integrality) Let A C B C C be commutative rings. If B is
integral over A and C integral over B, then C is integral over A.

PROOF Let z € C. As C is integral over B, there exist by, b1, ...,b,_1 € B such that
bo+bix+ -+ b1z + 2™ = 0. (12.3)

We set D = Albg,b1,...,bp—1] and E = D[z]. From equation (12.3), powers of x higher than
n — 1 can be expressed as a linear sum of powers of  (with coefficients in D) smaller than n.
Hence F is a finitely generated D-module. In the same way, as B is integral over A, for each b;,
there is a positive integer m; such that powers of b; higher than m; — 1 can be expressed as a
linear sum of powers of b; (with coefficients in A) smaller than m;. As D is composed of finite
sums of of expressions of the form

aby® byt - b,

with a € A, D is a finitely generated A-module. From Lemma 12.7, E is a finitely generated A-
module. Thus z belongs to a subring of C containing A, which is a finitely generated A-module.
From Theorem 11.3, x is integral over A. It follows that C' is integral over A. O

Corollary 12.12 Let S C R be commutative rings and C' the integral closure of S in R. Then
C 1is integrally closed in R.

The intersection of all subrings of R which contain S and integrally closed in R is the integral
closure C of S in R.
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PROOF Let = € R be integral over C. From Theorem 12.13 we deduce that C[z] is integral over
S. In particular, z is integral over S, so = € C.

Suppose now that S C T' C R are commutative rings, where T is integrally closed in R. Let
x € C. Then z is a zero of a monic polynomial with coefficients in S. As S C T, x is also a zero
of a monic polynomial with coefficients in 7. Given that T is integrally closed, x € T. Thus
C C T and the result now follows. a

We have a second corollary.
Corollary 12.13 If K C L are number fields, then Oy, is the integral closure of Ok in L.

PROOF Let A be the integral closure of Ok in L. Then we have Z C Og C A, with Ok integral
over Z and A integral over Og. From Theorem 12.13, A is integral over Z and so A C Op. On
the other hand, of x € Op, then x is integral over Z. As Z C Ok, x is integral over Ok, i.e.,
r € A. Thus O, C A. O

We now aim to consider in particular integral closures of noetherian domains.

Lemma 12.8 Let E be a separable extension of F, with [E : F] =m. If {b1...,by} is a basis
of E over F, then there is a basis {ci,...,cm} such that Tg/p(bic;) = dij, where ;5 is the
Kronecker symbol.

PROOF The trace Tg/p : E — F is linear, so Tg/p € Hom(E, F), the dual space of the F-vector
space E. We define 7 : E — Hom(E, F) by

7(b)(z) = B(b, z),

where B is the bilinear form defined by the trace. The mapping 7 is clearly linear; it is also
injective, because B is nondegenerate. As E and Hom(E, F') hve the same dimension, 7 is an
isomorphism. Let {¢1,..., ¢} be the dual basis of {b1 ..., b}, so that ¢;(b;) = d;;. As 7 is an
isomorphism, there exist ¢1, ..., ¢, € F such that 7(¢;) = ¢, for i = 1,...,m, therefore

7(ci)(x) = ¢i(x) = 7(c:)(b;) = 0ij = Tpyr(cib;) = i,
which is what we set out to prove. O

We now consider integral closures of noetherian domains.

Theorem 12.14 Let D be a noetherian integrally closed domain, with field of fractions F. If E
is a finite separable extension of F' and B the integral closure of D in E, then B is a noetherian
Ting.

PROOF From Theorem 11.5, B is a submodule of a finitely generated D-module, which we note
M. As D is noetherian and M finitely generated, M is noetherian. However, a submodule of a
noetherian module is noetherian, and so B is a noetherian D-module.

Let I be an ideal in B. Then I is a submodule of the D-module B. As B is a noetherian,
is finitely generated D-module: there exist zq,...,2z, € I such that

I=Dxi+ -+ Dx,.
Given that D C B, we may also write

I =Bxy+---+ Bx,
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and so [ is a finitely generated B-module. As every ideal in B is finitely generated, B is noethe-
rian. O

Our next step is to show that every prime ideal in the integral closure B as defined above is
maximal. We need some preliminary results.

Lemma 12.9 Let D be a domain which is integral over the subring R. If J is a nonzero ideal
of D, then J N R is a nonzero ideal of R.

PROOF J N R is clearly an ideal. Let = € J, = # 0. There exists a monic polynomial
f(X)=a+a1 X+ +a, 1 X" '+ X" € RIX]

such that f(z) = 0. We may take f of minimal degree, which implies that ag # 0. (If ag = 0,
then
a1+ aox 4+ ap_ 12" 242" =0,

because x # 0 and R is a domain and so f is not of minimal degree, a contradiction.) Hence
ag = —(a; +asx + -+ 12" 2% + m"‘l)m e JNR,

so JN R # {0}. |
Remark It is easy to see that, if J is a prime ideal, then J N R is also a prime ideal.

Before considering the case of maximal ideals we prove another lemma.

Lemma 12.10 Let D be a domain which is integral over the subring R. Then D is a field if
and only if R is a field.

PROOF Suppose that D is a field and let = be a nonzero element of R. The inverse ! of z is
integral over R, hence there exist a1,a1,...,a,-1 € R such that

ag+arr ™ 4t an (2" 4 (a7 = 0.

1

Multiplying by ™" we obtain

apx” P a1z 4 an_ 2 =0,

hence 27! € R and so it follows that R is a field.

Now suppose that R is a field and let x be a nonzero element of D. From Lemma 12.9 there
exists a € Dx N R, a # 0. We can write a = bz, with b € D. Let a’ be the inverse of a in R.
Then

1=da=d(bx) = (a'b)z,

and so z is invertible in D and thus D is a field. O

Proposition 12.21 Let D be a domain which is integral over the subring R and J a prime ideal
in D. Then J is a mazximal ideal in D if and only if J N R is a mazximal ideal in R.
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PROOF Let J be a prime ideal in D. Then the ring homomorphism
¢:R/(JNR)— D/Jo+(JNR)— x+J

is injective, so we may consider R/(JNR) to be a subring of D/J. We claim that D/J is integral
over R/(J N R). To see this let us take x + J € D/J. As D is integral over R, there exists a
monic polynomial

fX)=ap+a1 X+ +a, 1 X" '+ X" c RIX]

such that f(z) = 0. To simplify the notation we set / = J N R. We define a monic polynomial
f € R/I[X] by

fX)=(ao+ D)+ (a1 + DX +...4 (a1 + DX+ X™

Then

fla+J)=flx)+J=J.
As J is the zero element of D/J, x + J is integral over R/I. This establishes the claim.
If J is a maximal ideal in D, then D/J is a field. From Lemma 12.10 R/(J N R) is a field,
therefore J N R is a maximal ideal.
Conversely, if J N R is a maximal ideal in R, then R/(J N R) is a field and so, from Lemma
12.10 again, D/J is a field and thus J is a maximal ideal. |

We may now establish the principal result of this section.

Theorem 12.15 Let D be a Dedekind domain, with field of fractions F'. If E is a finite separable
extension of F' and B the integral closure of D in E, then B is a Dedekind domain.

PROOF As B is contained in F, which is a field, B is an integral domain.

Let C be the integral closure of B in its field of fractions. Then C' is integral over B and B
is integral over D, so C is integral over D (Theorem 12.13). Thus, if z € C, then x € B and it
follows that C' = B, i.e., B is integrally closed.

To see that B is noetherian, it is sufficient to apply Theorem 12.14.

Finally, we show that every nonzero prime ideal is maximal. Let P be a nonzero prime ideal
in B. Then P = QN D is a nonzero prime ideal in D (Lemma 12.9). As D is a Dedekind domain,
P is a maximal ideal in D. From Proposition 12.21, ) is a maximal ideal in B. O

Remark From Proposition 11.2 the field of fractions of B is E. If F' # E, then D and B have
different fields of fractions and so are distinct. Thus D is strictly included in B. We have shown
that a Dedekind domain is strictly included in another Dedekind domain.

Let C be a Dedekind domain and D an integral domain containing C. If P is a nonzero prime
ideal in C, then C'/P is a field and the mapping

¢:C/P— D/DP, a4+ P+~ a+ DP

is a well-defined homomorphism. Hence we may consider that D/DP is a C/P-vector space.
(The scalar multiplication is defined as follows: ¢z = ¢(¢)z, for ¢ € C/P and & € D/DP.) There
is a natural question: If K and L are the respective fraction fields of C' and D and we know
the dimension [K : L], what can we say about the dimension of the C/P-vector space D/DP?
We aim to give an answer to this question for a particular integral domain D. We will need the
following standard result, for which a proof may be found, for example, in [5].
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Theorem 12.16 If R is a PID and M a free R-module of rank n, then any submodule N of M
is free and has rank at most n.

Theorem 12.17 Let C be a Dedekind domain, K its field of fractions and L a separable exten-
sion of K of degree n. Suppose that D is the integral closure of C' in L. If P is a nonzero prime
ideal in C, then the dimension of the C/P-vector space D/DP is n.

PROOF Let U = C'\ P and ¢’ = U~'C = Cp. From Theorem 12.11, C’ is a PID. Proposition
12.20 ensures that, as D is the integral closure of C' in L, D’ = U~!D is the integral closure of
C’ in L. Since the fraction field of C’ is that of C, from Theorem 11.5, D’ is contained in a free
C’-module M of rank n. As C’ is a PID and D’ a submodule of M, from Theorem 12.16, D’ is
a free C’-module of rank at most n. Using Theorem 11.5 again, we see that D’ contains a free
C’-module of rank n. Thus, using Theorem 12.16 again, we obtain that D’ is a free C’-module
of rank n.

The extension of P to C’ is C' P and its extension to D’ is D'P. As D'P = D'(C'P), D'P is
also the extension of C'P to D’, so the mapping

v:C"/C'"P — D'/D'P, +C'P+— +D'P

is a ring homomorphism. Since C’P is the maximal ideal of the local ring C’, the quotient
C'/C'P is a field. Thus D'/D’'P is a C'/C’ P-vector space. (The scalar multiplication is defined
by ¢.7' = (@)%, for ¢ € C'/C'P and ¥ € D'/D’'P.) We now consider the dimension of this
vector space.

We have seen that D’ is a free C’-module of rank n, so D’ has a basis B’ = {«,...,z],}. Let
us write Z; for the image of 2} in D'/D’'P (under the standard mapping of D’ onto D’/D’P).
We claim that B’ = {Z],...,Z, } is a basis of D'/D’'P. Clearly B’ is a generating set of D’/D’P,
so we only need to consider the independance. Let Y . | ¢,.z, = 0, where &, € C'/C'P. Then

i=1 "1

4

> daj e D'P=D'(C'P)
=1

and so we may write > i, ciz; = > 0L, ¢hy;, with y; € D’ and ¢} € C"P. Expressing the yj in

terms of the x, we obtain ) " | cjzj = Y1, &aj, with & € C'P C C'. Tt follows that ¢; = ¢,
for all ¢, which implies that ¢, € C'P and so & = 0, for all . We have shown that B’ is an
independant set and so a basis of D'/D'P: D'/D’P is a C'/C’ P-vector space of dimension n.

We now consider the mappings
d
a:C/P—C'/C'Pc+ P+ % +C'P and (:D/DP— D'/D'P d+ P+ 1 +D'P.

These mappings « and [ are clearly well-defined ring homomorphisms. We aim to use Corollary
12.11 to show that they are in fact isomorphisms. For « there is no difficulty, because P is a
prime ideal in a Dedekind domain, hence maximal. We now consider 3. Let us set U = C'\ P.
Because C'/P is a field, for u € U there exists v € U and ¢ € P such that uv = 14+ z. As
P C DP, every element of U + DP has an inverse in the same set and it follows that 3 is an
isomorphism.

We now notice that D’'/D’P is a C'/ P-vector space for the scalar multiplication ¢-7' = «(é)Z’,
where ¢ € C/P and ¥’ € D'/D’'P. (We distinguish scalar multiplication and ring multiplication
by using a dot in the former case.) It is not difficult to check that B’ is a basis of this vector
space, so it too has dimension n. We claim that § is an isomorphism of C/ P-vector spaces. We
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only need to verify that the scalar multiplicaion is respected. Let ¢ € C/P and Z € D/DP.
Then

Ble-x) = B(o(0)z) = B (6(0) B(T),

with §(¢(¢)) = § + D'P. Thus

B(¢(@) B(z) = (% +C'P)-B(x) = alc+ P) - B(z) = ¢- B(1)

and so

Ble-z) =c- B(z),
as required. Since D'/D’'P is a C'/P-vector space of dimension n, so is D/DP. This finishes the
proof. O

12.8 Norm and trace for ring extensions

We have studied traces and norms in field extensions. We now consider ring extensions. We
suppose that R C S are commutative rings. In addition we consider that S is a free R-module
whose rank n is finite. Let B = {z1,...,2,} be a basis of the R-module S and § : S — S a
linear mapping. We have

0(x;) = aimi,
=1

with a;; € R. The matrix M (0) = (a;;) is called the matrix of 6 with respect to the basis 5. If
B ={},...,z),} is another basis of the R-module S, then

with aj; € R. We note the matrix with respect to this basis M’(0). We now look for the relation
between the matrices M () and M’(9). If z; = >.1" | ¢;ja%, then

n n n n n
9(1‘]) = AijTq = (%7 CkiTy, = CriQij | Ty,
i=1 i=1 k=1 k=1 \i=1

and, on the other hand

n

0(z;) = ;Ciﬂ(ﬂﬁé) = Z;cij (Z akﬂk) =>

k=1 1

n
2 : / /
AiCij | T

i=1
Therefore, with C' = (c¢;;), we have
M'(0)C = CM(6).
As C' is the matrix of a change of basis, C' € Gl,,(R), hence we may write
M'(6) = CM(0)C™ . (12.4)
Also, as

det(C) det(C™1) = det(I,) = 1,
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det(C) is a unit in the ring R.

We now consider the special case where 6 is defined by multiplication by a nonzero element
of S:
0(z) = 0,(2) = z=.

We define the trace, norm and characteristic polynomial of x as we did for field extensions,
namely
TS/R(CU) = TT(M(QJ/’)) NS/R(m) = det M(em)
and
char g/ () = det (XI — M(0,)).

(The relation (12.4) ensures that the trace, norm and characteristic polynomial are unaffected
by the choice of basis.) In the same way as for field extensions, the trace is linear and the norm
multiplicative.

We now turn to rings of fractions. Let U be a multiplicative subset of R. As R C S, U is
also a multiplicative subset S. We set R’ = U~ 'R and S’ = U~!S. It is not difficult to see that
R C 5, s0 58" is an R'-module. Let B = {z1,...,z,} be a basis of the R-module S. We claim

that B’ = {%,..., 5} is a basis of the R’-module ', hence S’ is a free R’-module of rank n.
First we show that B’ is a generating set of S’. Let ¢ € S’. Then there exist 71,...,7, € R such
that

a_ r1x1L+ -+ TRy :Qﬂ+.._+@ﬁ7

u U u 1 u 1

which implies that B’ is a generating set of S’. Now we show that the set B’ is independant. If
nty I _
up 1 Uy 1 ’
with - € R’, then
rulTy + -+ rpulr, =0,

Uy Unp

where u} = . Hence

Tlull :...:rnu;:0:>r1 :...:rn:07
because u; = 0, for all i. It follows that 7= = 0, for all i and so B’ is an independant set. We

have shown that B’ is a basis of the R'-module S'.

Let 7 be the canonical mapping from S into S’. If z € S, then vy(z) € S’ and we have linear
endomorphisms 0, : S — S and 0’7(@ 28" — S, If the matrix of 6, in the basis B is (a;;),
then the matrix of 6/ ) in the basis B’ is (v(ai;))-.

Tsyr(v(x)) =v(Ts/r(x))  Nsyr(v(z)) =v(Ns/r(x))
and
char s/ (v(7)) = 7" (char s/r(2)),

where ~* is the mapping from R[X] into R'[X] which applies 7 to each coefficient of a polynomial
in R[X]. Identifying S with its image under -y, we obtain

Tsiyr(v) =Ts/r(x)  Nsiyri(x) = Ng/r()
and
char ¢/ /p/(x) = char g/g(z).
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Chapter 13

Ramification theory

Let K and L be number fields, with K included in L, and R = Og and S = Oy, the associated
number rings. If I is an ideal in R, then we write ST for the ideal generated by I in S: ST is the
collection of expressions of the form Y . | z;y;, with z; € S and y; € I. If I is a principal ideal
(a), then SI = Sa, i.e., the prime ideal generated by a in S. We will be particularly interested
in the case where I is a prime ideal and the relation of such an ideal with prime ideals in S.
For example, I = Z2 is a prime ideal in Z, but J = Z[v/2]2 is not a prime ideal in Z[v/2], since
(2+3v2)? € J, but 2+3v/2 ¢ J. The way a prime ideal "lifted" to a larger ring is decomposed
is a central topic of algebraic number theory.

Remark The ideal ST is in fact the extension of the ideal I in S with respect to the injection
mapping of R into S.

13.1 First notions

Let P be a prime ideal in R; if @) is a prime ideal in S such that @ O SP, then we say that @
lies over P, or P lies under Q.

Remark If K = Q, then R = Z and a prime ideal P # {0} is of the form (p) = Zp, where p is
a prime number, so SP = Sp.

Proposition 13.1 Let Q be a proper ideal of S and P a nonzero prime ideal of R. Then @Q O SP
if and only if P=Q N R.

PROOF If @ D SP, then @@ D P, because 1 € S. This implies that QN R D> PNR=P. As P is
a maximal ideal, because P is prime and nonzero, and Q N R # R, we have Q N R = P.
On the other hand, if @ N R = P, then @ O P, which implies that @ = SQ D SP. a

Proposition 13.2 If I is a proper ideal in R, then SI is a proper ideal in S.

PROOF If ST = S, then there exist n € N*, s1,...,s, € S and z1,...,x, € I such that

n
1= E S;%;.
i=1

Let 8" = R|[s1,...,8,] be the subring of S generated by R and the elements s1,...,s,. The ring
S’ is a finitely generated R-module, since the s; are algebraic integers. In addition, as 1 € S'I,
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S’ c S'I. We now take a set of generators g1, ...g, of the R-module S’. Because S’ C S'I, we
may write

n

gi=Y wysiy =y wiy | Y rign ) =D [ Dz | gus
j=1 j=1 u=1 j=1

u=1

where z;; € I, s;; € S’ and 7%/ € R. As Z§;1 zi;r¥ € I, we have

n
9i = Z LTuGus
u=1

with z,, € I. Hence there is a matrix A € M,,(I) such that

g = Ay,
where
g1
g= :
In
Therefore, (I, — A)g = 0. Multiplying on the left by the adjoint matrix of I,, — A, we obtain
det(I, — A)I,g = 0. Consequently det(l,, — A)s’ = 0, for any s’ € S’, which implies that
det(l,, — A) = 0. If we develop the determinant, then we obtain an expression which is 1 plus
a sum of products of elements of I, i.e., of the form 1 + z, with z € I. From this we have

1 = —x € I, which contradicts the fact that I is a proper ideal of R. We have shown that ST is
properly contained in S. O

Exercise 13.1 In the proof of the theorem we used the fact that the s; are algebraic integers.
Why is this important?

Corollary 13.1 Let P be prime ideal in R. Then SPN R = P.

PROOF If P = {0}, then the result is clear, so let us suppose that this is not the case. As P is a
prime ideal of R, P is a proper ideal of R, therefore SP is a proper ideal of S. From Proposition
13.1, with Q = SP, we have SPN R = P. O

Remarks
e a. Corollary 13.1 is in fact a particular case of Theorem 12.7.

e b. If K = Q and P = Zp, where p is prime number, then we obtain

OLpﬂZ = Zp.

It is natural to ask whether there exists a prime ideal lying over a given prime ideal.

Theorem 13.1 FEvery nonzero prime ideal QQ of S lies over a unique nonzero prime ideal P of
R.

Every prime ideal P of R lies under at least one prime ideal Q of S. If P # {0}, then there is a
finite number of prime ideals @ lying over P.

167



PROOF Let @ be a nonzero prime ideal of S. Clearly P = @Q N R is a prime ideal of R. Since
Q # {0}, there is a nonzero integer x € ) (Proposition 11.13). Asz € R, z € QN R, so P # {0}.
If @ lies over the nonzero prime ideal P’, then, from Proposition 13.1, P’ = QN R, so @ lies over
a unique prime ideal.

Suppose now that P is a prime ideal of R. If P = {0}, then P lies under {0} C S. Now
let us suppose that P # {0}. We claim that a prime ideal @ of S contains SP if and only if Q
appears in the decomposition of SP into prime ideals: From Corollary 12.2, @ D SP if and only
if Q|SP; as SP # {0} nor S, from Theorem 12.3, SP has a unique decomposition into nonzero
prime ideals, so @ divides SP if and only if @ is one of the prime ideals in the decomposition of
SP. It follows that P lies under a prime ideal of S, namely any prime ideal in the decomposition
of SP. These are the only ideals which can lie over P, so the number of prime ideals lying over
P is finite. O

Exercise 13.2 Use Theorem 13.1 to find a proof that a prime ideal P in a number ring Ok
contains exactly one prime number p. (This result has already been seen in Proposition 13.6.)

If P is a nonzero prime ideal of R, () a nonzero prime ideal of S dividing SP and e the highest
power of ) in the decomposition of SP into prime ideals, then we call e the ramification index
of @ over P. We note the ramification index e(Q|P). In the case where R = Z and P = Zp,
then we write e(Q|p).

Suppose again that P is a nonzero prime ideal of R and @) a nonzero prime ideal of S dividing
SP. As P and @Q are maximal ideals, R/P and S/Q are fields, which, from Proposition 11.12,
are finite. The mapping

¢:R— S/Q,x—x+Q

is a well-defined ring homomorphism, with kernel @ N R = P, so we may consider R/P as a
subfield of S/Q. We set f(Q|P) = [S/Q : R/P], which is called the inertial degree of Q over P.
In the case where R = Z and P = Zp we write f(Q|p).

We often say that the ramification index and the inertial degree are multiplicative due to the
properties given in the following proposition.

Proposition 13.3 Suppose that P, Q and U are nonzero prime ideals in the number rings
R C S CT such that U lies over Q and Q lies over P. Then U lies over P and

e(UIP) =eU|Q)e(Q[P)  and  f(U|P)=fUIQ)f(QIP).
PROOF @ lies over P means that we have
SP = QE(QIP)ng QO

where e; = e(Q;|P). Since TS =T and T" = T, for all n € N*, when we multiply the previous
expression by T' we obtain

TP = (TQ)*(TQ2)* -+ (TQu)".
Now, U lies over @), so we can write
TQ = UWIRygz ...y,
where a; = e(U;|Q). Hence,

TP — UC(U|Q)6(Q|P)U§2€(Q|P) o Utate(Q\P) (TQ2)%* - (TQ,)%.
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Moreover, U does not divide T'Q;, for i = 2,...,s. Indeed, if U|TQ;, then U|TQ and U|TQ;,
which implies that
UDT(Q+ Qi) =Thef(Q,Q;) =TS =T,

which is not possible. Therefore U lies over P and
e(U|P) = e(U|Q)e(QP).

We now consider the inertial degree. S/Q is a field extension of R/P and T'/U is a field extension
of §/Q, so we have

fU/P)=[T/U: R/P|=[T/U:5/QIS/Q : R/P] = f(UIQ)f(Q|P),

as claimed. O

13.2 Norm of an ideal

In this section we introduce the norm of an ideal in a number ring, which will play an important
role in the following. We have seen above that |Og/I| is finite when I is a nonzero ideal
(Proposition 11.12). We define the norm of I by

1| = [0 /1].

The norm has an important multiplication property, namely, if I and J are nonzero ideals,
then
LT = (L1

We will first prove this in the case where the ideals are coprime and then later in the general
case.

Proposition 13.4 If [ and J are nonzero coprime ideals in a number ring O, then
(LTI} = [H1[1]-
PROOF From the Chinese remainder theorem (Appendix F) we have
Ok/(INJ)=0k/IxOg/J.
However, from Proposition 12.4, I N J = IJ, hence the result. O
We now generalize Proposition 13.4.
Theorem 13.2 If I and Q are nonzero ideals in a number ring O, then

QI = Tl

PROOF From Theorem 12.5, there is an ideal J in O, coprime with @, such that IJ is principal.
Let IJ = (z). Then

(2)+IQ=I1J+Q)=10k)=1. (13.1)
We now define a mapping ¢ from O into I/IQ by
¢(a) = ax 4+ 1Q.
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The mapping ¢ is an Og-module homomorphism, which, from equation 13.1, is surjective. Also,
Ker¢ = {a € Og : ax € IQ}.
We claim that Ker ¢ = @. First,

ar € IQ (a)(z) C IQ

=
— (a)lJ CIQ
—

()] CQ,
thus, for all a € Ker ¢,
(a) = (a)Ox = (0)(J + Q) = () + (1) CR+Q = Q.

This implies that Ker ¢ C Q. In addition, if a € Q, then ax € IQ, since x € I, and so Q) C Ker ¢
and we have Ker ¢ = Q.
As ¢ is surjective, from the third isomorphism theorem for groups, we have

Ok /Q~1/1Q = Q| = |[I/1Q)|

and
QI = [0k /IQ| = |0k /T||1/IQ] = [ I|[[|Q]-
This ends the proof. o
If K is a number field, with [K : Q] = n and I a nonzero ideal in Ok, then I is a free abelian

group of rank n (Corollary 11.5). From a basis of I we may obtain an expression for the norm
of I.

Theorem 13.3 If B={by,...,b,} is a basis of I, then

||IH . diSCK/Q(B) %
| disc(Ok) |
PROOF From Theorem E.4, there exists a basis £ = {ey, ..., e,} of Ox and numbers dy, ..., d, €

N* such that D = {dyes,...,dne,} is a basis of I. We define a mapping ¢ of Og onto Zg4, x
-+ X Zgq, in the following way:

ifx=x1e1 4+ -+ xpey,, then ¢o(x) = (v1 + di2Z, ..., z, + d, Z).
The mapping ¢ is a ring homomorphism and Ker ¢ = I, hence
OK/IEZdl X e X Zdn — |OK/I‘ =dy---dy.

If we set C = diag(dy,...,d,), then C is the matrix transforming the basis £ into the basis D

and
‘OK/I| =det C.

If B ={by,...,b1} is any basis of I, then the b; are linear combinations of the elements of
D with integer coeflicients. The matrix M transforming the basis B into the basis D thus has
integer coefficients. This is also the case of the matrix N transforming the basis D into the
basis B. It follows that det M = +1 (and also that det N = £1). It follows that the matrix C”
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expressing the basis B in terms of the elements of the basis £ is such that det ¢/ = +det C' and
SO
Ok /I| = |detC’'| =dy - - d,.

However, from Proposition 10.6,
disck/q(B) = | det C’|2discK/Q(5) = ||I||*disc(Ok),
from which we deduce

1
disci,q(B) |2
1) = /Q\

disc(Ok)
This finishes the proof. O

If an ideal I of Ok is principal and I = (a), then we consider two norms, namely the norm
of the generator a and the norm of the ideal. In fact, we have

Theorem 13.4 Ifa € Ok \ {0}, then

[Ni/q(a)l = [[(a)]-

PROOF Let £ = {ey,...,e,} be a basis of Og. Then B = {aey,...,ae,} is a basis of (a). Now
disck/q(B) = ( et(oz(ae])))2
= (det(oi(a Z(ej)))
= (01(a) -~ on(a) det(oie;)))”
= (01(a) - on(a))*(disc(Ok)*.

By Theorem 13.3, we have

Nl

@)

as required. O

We will now investigate further the properties of the norm.

Proposition 13.5 Let K be a number field, Ok its associated number ring and I a nonzero
ideal in Og.

e a. If ||I|| is prime, then I is a prime ideal.
o b. ||l
PROOF a. If I = P; - - - P;, where the P; are prime ideals, then
Il = [Pl - 1 Ps -
As ||I] is prime, only one P;, say Pj, has a norm different from 1. This means that P, = --- =

P, =0k and so I = P;.
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b. If A = {a1,...,q)} is a complete set of residues modulo I; we claim that the set
B = {1l +aiq,...,1 4+ o} is also a complete set of residues modulo I. If 2 € Ok, then
x—1=a;+y, for some 1 <j <|I] and y € I. From this we obtain x = a; + 1 + y, so the set
B={(1+ai)+1,....,(1+ayy) + I} covers O. In addition, if (1 + a;) — (1 + ;) € I, then
a; — a; € I, which is impossible if ¢ # j. This proves the claim. Then

a1+ Fap=0+a)+-+ (1 +aq) (modl),

which implies that ||7||1 = 0 (mod I), and it follows that ||| € I. O

Before going further we introduce a preliminary result.
Lemma 13.1 A nonzero integer belongs to at most a finite number of ideals in Ok .

PROOF Let a be a positive integer and suppose that I is an ideal containing a. We now let
B = {w1,...,w,} be an integral basis of Og. If & € Ok, then there exist c1,...,¢, € Z such
that

@ =cCclwy + -+ CLWy.

For each ¢; we may write ¢; = aq; + r;, where ¢;,7; € Z and 0 < r; < a. Then
a=(aqg +m)wr + -+ (agn + rn)w, = a(qrwr + - + guwy) + (rwy + -+ - + rpwy) = ay + B.

Clearly v € Ok and 8 € B, where B is a finite subset of Og. The ideal [ is finitely generated,
because Ok is noetherian, so there exist aq,...,as; € Ok, such that

I=(ag,...,a4).

As a € I, we may also write
I=(a,...,as,a)

and then
1= (ar}/l —1—61,...,&’}/5 +6saa)7

where v1,...,7s € Ok and B1,...08s € B. It is not difficult to derive the expression

I'=(B1,...,0sa).

As there is a finite number of ideals of this form, the result follows for the case a > 0.
If a < 0 and a belongs to an infinite number of ideals, then so does —a, which contradicts
what we have just proved. This finishes the proof. o

We may now prove an interesting result concerning the number of ideals having a given norm.
Theorem 13.5 There is only a finite number of ideals in Ok of a given norm.

PROOF Suppose that there is an infinite number of ideals having the same norm «. From Propo-
sition 13.5, a belongs to an infinite number of ideals, which contradicts Lemma 13.1. Therefore
there can be only a finite number of ideals with a given norm. O

We now consider the special case where [ is a prime ideal.

Proposition 13.6 If P is a nonzero prime ideal in Ok, then P contains exactly one prime
number p and ||P|| = p™, for some natural number m <n = [K : Q].
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PROOF If P is a prime ideal, then P is maximal and so Ok /P is a finite field. It follows that
||P|| = p™, for some prime number p and positive integer m. The characteristic of the field Ok /P
is p, which implies that the number p € P and so the principal ideal (p) = Okp is contained in
P. If ¢ # pand g € P, then (¢) = Ogq is also contained in P. However, (p) + (¢) = Ok, so
Ok C P, which is impossible; hence there is a unique prime number p in P.

As (p) is a subset of P, P divides (p), hence || P|| divides ||(p)||. From Theorem 13.4, ||(p)|| =
Nk /q(p) = p", therefore || P|| = p™, with m < n. O

13.3 Principal theorem of ramification

Our goal in this section is to prove an important result connecting ramification indices and
inertial degrees. We will refer to this as the principal theorem of ramification. We begin with a
special case of this result and then generalize it.

Proposition 13.7 Let p be a prime number and L an extension of K = Q, with number field
S. Ifn=[L:Q] and
Sp = Ql@IP) .. Qe(@slp)

is the decomposition of Sp into nonzero prime ideals, then

n=>_f(Qilp)e(Qilp).

i=1

PROOF To simplify the notation, let us write e; for e(Q;|p) and f; for f(Q;|p). From Theorem
13.2 we have

€s

[1Spll = |Q1* - - - [|Qs

Also,
fi =18/Qi : Z/pZ] = || Qi = p”,

therefore
1Sp|| = pfrer - plrer

However, from Theorem 13.4 and Section 10.1
1Spl| = [NL/q(p)| = p",
so we have .
n=> f(Qilp)e(Qilp),
i=1
as announced. O

We aim now to generalize this proposition to the case where K is not necessarily Q. We will
begin with a preliminary result.

Lemma 13.2 Let I, J be nonzero ideals in a Dedekind domain D, with J C I # D, and K the
field of fractions of D. Then there exists v € K such that vJ C D and vJ ¢ I.
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PROOF From Theorem 12.2 we know that there is a nonzero ideal C' in D such that JC is
principal: JC' = (a). Then JC ¢ al, because

1
JCCaI=>£JCCI:>IEI:>I=D,
a contradiction. We now take b € C such that bJ ¢ al and set v = g. Then

b 1 1
yJ =-JC=JC==(a) =D.
a a a

If vJ C I, then bJ C al, a contradiction, so vJ ¢ I. a

We now establish another preliminary result. This is a little longer to prove.

Proposition 13.8 Let K C L be number fields, with corresponding number rings R C S, and I
a nonzero ideal in R. Then
1S = (111",

where n = [L : K].

PROOF It is sufficient to prove the result for a prime ideal: If this is the case and I = P; --- P,
is the decomposition of the ideal I into prime ideals, then

ISI| = |Pr--- S|
= [|AS--- RS
= [[PS]--- [P S]
= [Bl™--- 2]

= P Bfl* = []"

So let us now establish the result for a nonzero prime ideal P.
To begin with, we notice that S/SP is a vector space over the field R/P. (The scalar
multiplication is defined by
(z + P)(y + PS) = ay + SP.

There is no difficulty in seeing that this scalar multiplication is well-defined.) We claim that the
dimension of the vector space we have defined is n. First we show that the dimension is at most
n. Let aj,...,any1 € S and consider the corresponding cosets of S/SP. The a; are linearly
dependant over K, because they are elements of L and n = [L : K|. As K is the field of fractions
of R, the a; are linearly dependant over R. Hence we have

Birar + -+ + Bnyi1an+1 =0,

with 8; € R and at least one 3; nonzero. We need to show that we can find 31,...,5,,, € R
such that
Brai + -+ Bhi1ane1 =0,

and at least one 8, ¢ P. If one of the §; ¢ P, then we have nothing to do, so let us suppose that
all the B; belong to P. If J is the ideal generated by the f;, then J C P # R. Applying Lemma
13.2 we obtain an element v € K such that vJ C R and vJ ¢ P. If we replace 8; by 8. = 75,
then the set of 3] so obtained has the properties we were looking for. Thus we have shown that
S/SP is at most n-dimensional over R/P.
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Now we establish the equality. As P NZ is a nonzero ideal of Z, there is a prime number
p € Z such that P NZ = Zp. We consider the prime ideals Py, ..., P. of R lying over Zp. From
Proposition 13.1 P is one of the ideals P;. From what we have just seen S/SP; is a vector space
over R/P; of dimension n; < n. Also, from Proposition 13.7 we have

m =" f(Plp)e(P|p) =Y fiei,
=1

=1

where m = [K : Q]. Then

Rp:ﬁpiei — Sp=RSp = (ﬁpf> SZﬁ(PZ-S)ei,

i=1 i=1 i=1

therefore .

nie; _ H(pf’)"’e’

i=1

Ispl =TT lsP:
i=1

:
“ =1L~
i=1

(The second equality follows from the fact that S/SP; is a vector space over R/P; of dimension
n; <n.)
On the other hand, we have

ISpll = [N/q(@)| =",

because
[L:Q]=[L:K]|K:Q]=nm.

If there exists n; < n, then
T T
Zfiniei <n (Z fi€i> =nm,
i=1 i=1

a contradiction. Hence n; = n, for all P;, in particular, for P. We have shown that the dimension
of S/SP over R/P is n. If V is a vector space of dimension u over a finite field of s elements,
then V has s* elements. As S/SP has ||SP| elements and the dimension of S/SP over R/P is
n, S/SP has || P||™ elements, i.e., ||SP|| = || P||". This finishes the proof. O

We now prove the main theorem of this section, which we refer to as the principal theorem
of ramification.

Theorem 13.6 Let K C L be number fields, with [L : K] = n, and R, S the corresponding
number rings. We suppose that Q1,...,Qs are the nonzero prime ideals in S lying over the
prime ideal P of R and we denote by e1,...,es and fi,..., fs the corresponding ramification

indices and inertial degrees. Then
S

Z eifi =n.

=1
PROOF We have
fiei

SP=1[oQ; = IIsPll =]l
i=1

i=1

“=TTIP
i=1

Also,
ISPl =P,
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therefore .

Z eifi =n.

i=1
This ends the proof. O

Example If L is a quadratique extension of Q, with number field .S, and p is a prime number,
then there are three possible decompositions of pS into prime ideals:

Q> f@p) =1,
Sp=40Q, f(@Qlp) =2,
Q1Q2, [(Qilp) = f(Q2|p) = 1.

13.4 Normal extensions

Let us now suppose that K and L are number fields, with L a normal extension of K. As
char Q = 0, L is separable over Q. Using Proposition 3.5 we obtain that L is separable over
K. Hence L is a Galois extension of K. As usual we set R = O and S = Op. If x € S, then
there exists a monic polynomial f € Z[X] such that f(x) = 0. However, Z C R C K, so the
coeflicients of f are fixed by any automorphism o € Gal(L/K), which implies that o(z) is an
algebraic number. Thus o(z) € Op = S and so o(S) C S. In the same way, c~1(S) C S, which
implies that S C o(S), hence o(S) = S.

We now consider ideals in S. Let @ be an ideal in S. If x,y € @, a € S and 0 € Gal(L/K),
then

o(x)—o(y) =oc(z—y) € 0(Q)
and
ao(z) = o(a')o(x) = o(d'z) € 0(Q),

where a’ = 071(a) € S. Therefore o(Q) is an ideal of S.
Suppose now that @ is a prime ideal in S. If z,y € S and zy € o(Q), then

oM zy) €Q = o M(2)o M (y) €Q
= o l@)eqQ or o (y) €Q
= z€0(Q) or y€o(Q).

As 0(Q) # S, 0(Q) is a prime ideal.
If @ is a prime ideal in S lying over the prime ideal P in R, then

Q > SP = (Q) D o(SP) = (S)o(P) = So(P).

Since P C R C K, o(P) = P, so o(Q) lies over P. Thus we obtain an action ¢ of the group
Gal(L/K) on the set Q of nonzero prime ideals @ lying over the prime ideal P:

¢:Gal(L/K) x Q: (0,Q) — o(Q).
In fact, due to the normality of the extension L/K, this action is transitive:

Theorem 13.7 If Q and Q' are nonzero prime ideals in S lying over the prime ideal P in R,
then there exists o € Gal(L/K) such that o(Q) = Q.
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PROOF If this is not the case, then o(Q) # @', for all 0 € G = Gal(L/K). Let us suppose
that 01(@Q),...,0s(Q) are the distinct images of @ under G = Gal(L/K). (We may assume that
o1 =1idg, so @ = 01(Q).) The prime ideals Q’,01(Q),...,0s(Q) are coprime in pairs. By the
Chinese remainder theorem (Theorem F.1), there is a solution a € S of the system of congruences

0 (mod Q")
1 (mod 01(Q))

z = 1 (modos(Q)).

Let us now consider Ny (a). Corollary 10.3 ensures that

Nijx(a) =] o' (a).

ceG

Since idy, € G and 071(a) € S, we have
NL/K(CL) € KQQ/ = Q/OR

As Q' lies over P, Ny /i (a) € P.
On the other hand, 0! (a) ¢ Q, for every o € G. Given that Q is a prime ideal, Ny, /x (a) ¢ Q,
which is a contradiction, because P C SP C Q) a

Corollary 13.2 Let K and L be number fields with corresponding number rings R and S. If L
is a normal extension of K, P a nonzero prime ideal in R and Q, Q' nonzero prime ideals in S
lying over P, then
e(QIP)=e(Q|P)  and  f(QIP) = f(Q'|P).
PROOF We may write
SP=QuQQ% - Q,

where e; = e(Q|P), ea = e(Q'|P), Qs,...,Qs are the other prime ideals lying over P and
e; = e(Qilp), for i = 3,...,s. There exists 0 € Gal(L/K) such that o(Q) = Q'. We have

SP=0(PS) =0(Q)"0(Q)?0(Qs)” - 0(Qs)™ = Qo(Q)?a(Q3) - - 7(Qs)*.

However, we also have
SP=Q Q" Q5 Q"

As (@ is the only prime ideal whose image under ¢ is Q' and the decomposition of SP into prime
ideals is unique, we must have
Q=Q" = ex=ce1.

Now we show that f(Q|P) = f(Q'|P). There exists 0 € Gal(L/K) such that o(Q) = Q’. The
mapping o restricted to S is a ring automorphism. We set ¢ = wo o, where 7 is the projection
of S onto S/Q’. Then

Kerg={ze€S:0(x)eQ'}=Q.
Hence
S/Q ~S/Q'.

and

[S/Q": R/P)=[S/Q": §/QI[S/Q: R/P] = [S/Q: R/P],
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- FQ'P) = F(Q|P),

as announced. O

Remark From Corollary 13.2 , if L is a normal extension of K and P is a nonzero prime ideal
in R, then
SP=(Q1...Qs)°,

where e is the common ramification index of the prime ideals in S lying over P.

Example The cyclotomic field Q(u,,) is a normal extension of Q, because Q(uy,) is the splitting
field of the minimal polynomial m(u,, Q). If p is a prime number and Q1, ..., Qs are the prime
ideals in S = Oqy,,) which lie over p, then Sp = (Q1,--- Qs)°, where e is the common ramifica-
tion index of the ideals @);.

13.5 Ramified prime ideals

Let R C S be number rings, with respective number fields K and L. We say that a prime ideal
P in R is ramified in S, if e(Q|P) > 1 for some prime ideal @ in S lying over P. This amounts
to saying that SP is not squarefree. If p is a prime number, then we say that p is ramified in
S, if e(Qlp) > 1, for some prime ideal @ lying over (p). A prime ideal (resp. prime number) is
unramified in S, if it is not ramified in S. It may occur that e(Q|P) = n (resp. e(Qlp) = n),
where [L : K] = n; in this case we say that P (resp. p) is totally ramified in S.

We recall that all integral bases of a number ring R have the same discriminant, which we
note disc(R). We have seen that disc(R) € Z. The discriminant of a number ring R helps us to
determine whether a prime number p is ramified in R.

Theorem 13.8 Let L be an extension of Q of degree n. If S = Op, and p € Z a prime ramified
in S, then p|disc(S).

PROOF Let @ be a prime ideal in S lying over p such that e(Q|p) > 1. Then
Sp=QI,

where [ is an ideal of S divisible by all prime ideals lying over p. We note o1,...,0, the
Q-monomorphisms of L into an algebraic closure C' of Q. (We may take the set of algebraic
numbers A(C/Q) for C.) From Section 5.1 we know that there is a finite extension N of L which
is normal over Q. Now, using Theorem 3.2, we extend each o; to a monomorphism &; from N
into C. As N is a normal extension of Q, from Proposition 5.2 we have 5;(IN) = N and so &; is
an automorphism of N.

Let a1, ...,a, be an integral basis of S and take o € I\ Sp; a belongs to every prime ideal
of S lying over p. We may write

a:mla1+"'+mnana

with m; € Z. If p|m;, for all 4, then o € pS, a contradiction, so there exists an m; such that
p fm;. Without loss of generality, let us suppose that i = 1; then p fm;. We set

d = disc(S) = discr/q(a1, ..., an).
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Then, using Exercise 10.2 we see that
discr,/q(a, oz, ..., o) = mid.

As p fmy, to show that p|d it is sufficient to prove that p|disc(c, s, ..., ay). This we will now
do.

As a belongs to every prime ideal in S lying over p, a must lie in every prime ideal in 7' = Oy
lying over p: If @ is such a prime ideal, then @) D T'p and so p € Q; if we set Q@ = QNS, then Q) is a
prime ideal in S lying over p, so a € @ C Q. We now fix a prime ideal @ in 7" lying over p; we claim

o(a) € Q for every Q-automorphism & of N. We notice first that 5 '(Q) is a prime ideal in T
lying over p, hence a € =1(Q). It follows that 5;(a) € Q, fori = 1,...,n. Since C is an algebraic

closure of L, from the definition of the discriminant we see that discy /q(a, a2,..., o) € Q.
However, the discriminant is an integer, so discy/q(a, a2, ..., a,) € QNZ = Zp. Therefore
pldiscr/q(a, ag, ..., ay). O

Exercise 13.3 Consider the quadratic number field K = Q(\/&), where d is squarefree. Show
that if an odd prime number p is ramified in the number ring O, then p divides d.

Corollary 13.3 Only finitely many primes in Z are ramified in a given number ring S.

PROOF The discriminant of S has only a finite number of prime divisors. O

We may extend this result.

Corollary 13.4 Let R and S be number rings, with R C S. Then only a finite number of prime
ideals in R are ramified in S.

PROOF Let P be a prime ideal in R which is ramified in S. Then there exists a prime ideal @ in
S which lies over P and is such that e(Q|P) > 1. However, the prime ideal P lies over a unique
prime number p € Z (Theorem 13.1). From Proposition 13.3, we have

e(Qlp) = e(Q|P)e(Plp) > 1.

Corollary 13.3 states that there is only a finite number of such primes p. Now, each such prime
lies under a finite number of prime ideals in R (Theorem 13.1) and the result follows. O

13.6 Decomposition and inertia groups

Let K and L be number fields, with L normal over K. As L is a Galois extension of K, we
have n = [L : K| = |Gal(L/K)|. Let R and S be the number rings of K and L respectively, i.e.,
R = Ok and S = Op, and P a prime ideal in R. All the prime ideals @ lying over P have the
same ramification index e and inertia degree f. If there are r such prime ideals, then n = ref.
For each prime ideal @ lying over P we define two subgroups of G = Gal(L/K):

e the decomposition group

D=D(QIP) = {0 € G:0(Q) = Q}

e the inertia group
E=E(Q|P)={0c €G:0o(a) = a(mod Q), Ya € S}
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It is clear that D and F are subgroups of G. Also, F is a subgroup of D: for all 0 € E, we have
o(a) = a(mod Q), Ya € S = o(a) = a(mod Q), YVa € Q = od(Q) C Q.
As F is a subgroup of G, 0~ ! € E, so we also have

o7 Q) c Q= Q Ca(Q).

Therefore
o(Q)=Q.

The members o of D induce elements & of the Galois group G = Gal(S/Q/R/P) in a natural
way. If we restrict o € G to S, then we obtain an automorphism o5 of S. We now set ¢ = woo g,
where 7 is the projection of S onto S/Q. As

Kergp={aeS:0(a)eQ}=0Q,

the mapping
7:5/Q — S/Q,a+Qv+— o(a) +Q

is an automorphism. In addition, & fixes R/P, so ¢ € G = Gal(S/Q, R/ P).

It is not difficult to see that the mapping
v:D— G o— &

is a group homomorphism, whose kernel is E. It follows that E is a normal subgroup of D
and D/FE is isomorphic to a subgroup of G. However, from Proposition 13.10 proved below,
[LF . LP] = f = [S/Q, R/P] and [S/Q, R/P] = |G|, because S/Q is a Galois extension of R/P,
being a finite extension of a finite field, hence [LF : LP] = |G|. In addition, [LF : LP] = |D/E|,
so |D/E| = |G| and it follows that the groups D/E and G are isomorphic. From Theorem 7.9
the group G is cyclic (and generated by the Frobenius automorphism Fr : & — 2%, where
q = |R/P|), which implies that D/E is also cyclic.

Exercise 13.4 If P C R is a prime ideal, then there is a finite number of ideals Q1,...,Q, C S
lying over P. Corresponding to each Q; is a decomposition group D; and an inertia group E;.
Show that the decomposition (resp. inertia) groups are conjugate in the Galois group Gal(L/K),
if L is a normal extension of K. Deduce that, if the Galois group is abelian, then there is only
one decomposition (resp. inertia) group.

We now consider the fixed fields L” and L¥, called respectively the decomposition field and
inertia field. We have the relations

KcILPcILFclL

and
R=0gcSP csSfcs,

where SP = O;p and S¥ = O s. We also introduce two other prime ideals, namely QP and
QF, where QP (resp. QF) is the unique prime ideal in S” (resp. S¥) lying under ). Then

PcQP cq@fca.
We aim now to consider the relation between the fields K, L, LP and L¥, in particular, to

determine [LP : K], [L¥ : LP] and [L : LP].
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Proposition 13.9 We have
[LP: K] =r.

PROOF We define a mapping ¢ from the set of left cosets of D into the set of prime ideals over
P in S by

¢(oD) = o(Q).
We have

Q) =7(Q) = T1'0(Q)=Q =170 €D+ 0D =1D,

therefore ¢ is well-defined and injective. From Theorem 13.7 ¢ is also surjective, so ¢ is a bi-

jection. There are r prime ideals lying over P, so [G : D] = r. However, from Theorem 6.6
[LP : K] =[G : D], hence [L? : K] =r. O

Using the multiplicativity of the degree, we obtain

Corollary 13.5 The degree
[L:LP] =ef.

Our next task is to show that [LF : LP] = f. To do so we need some preliminary results.

Lemma 13.3 We have
fQIQ7) =1.

PROOF Since 5/ /Q is a Galois extension of the finite field S¥/QF it is sufficient to prove that the
Galois group G = Gal(5/Q/S” /QF) is reduced to the identity. We take 6 € S/Q and consider
the polynomial
f(X)=(=0+X)" € §/Q[X],
where m = |E|. We claim that the coefficients of f belong to the subring of S/Q
S ={a+Q:acS¥}.
To see this, first we notice that there exists o € S such that 8 = a4+ ). We set

9(X) = [[ (~o(e) + X) € L[X].

In fact, g € SP[X]: The coefficients of g are fixed by any element o € E, so they belong to L¥;
in addition, as « € S, o(«) € S, for all ¢ € E, hence the coefficients of g belong to S; it follows
that the coefficients of g belong to L¥ NS = S¥. If we now consider the coefficients of g modulo
@, then we obtain a polynomial g with coefficients in S;. However, this polynomial is precisely
f, hence the coefficients of f belong to S1, as claimed.

Now we consider the ring homomorphism

v:SF — S, z— 2+ Q.

The kernel of this mapping is S¥ NQ = QF, hence S¥/QF ~ S¥/Q. Therefore we may consider
that the coeffiients of f belong to S¥/Q. If o € G, then o fixes the coefficients of f, so o(f) is
aroot of f. As f has the unique root 6, we must have o(6) = . We have shown that the only
element in G is the identity, as required. O

The prime ideal @ lies over QP. This is the unique prime ideal in S with this property:
Theorem 6.7 ensures that L is a finite Galois extension of LP. If Q' lies over Q”, then there
exists o € Gal(L/LP), such that 0(Q) C Q' (Theorem 13.7). However, Theorem 6.7 also ensures
that Gal(L/LP) = D, so Q@ = o(Q) C Q', which implies that Q@ = @Q’. We will use this
observation to obtain our second preliminary result.
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Lemma 13.4 We have
e(QP|P) = f(Q"|P) =1.

PROOF First we notice that
ef =[L: LP]=e(QIQP)f(QQP),
because @ is the unique ideal in S lying over Q. Also,
e =e(Q|P) = ¢(QIQP)e(Q"|P) = ¢(QIQ") < e.

In the same way,

F@QIQP) < f.
Hence

e(QRP)=e¢ and  f(QIQV)=f
and it follows that
e(QP|P) = f(QP|P) =1,
as claimed. O
The third preliminary result is the following:

Corollary 13.6 For QF and QP we have

F@QFIQP) = 1.
PROOF Using the multiplicativity of the inertial degree, we obtain

F@QIP) = FRIQP)F(QFIQP)F(QPIP) = f =1f(QF|Q")1 = fF(QF|QP).

The result now follows from Lemma 13.3 and Lemma 13.4. O

Now we are in a position to consider [LF : LP]

Proposition 13.10 We have
[LE . LP]=f.

PROOF As QF lies over Q7, from Theorem 13.6 we have
(L7 : LP] > e(QFQ) F(Q7|QP).
and then, using Corollary 13.6, we obtain
[LE:LP] > f.

We have seen that L is a Galois extension of LP, with D = Gal(L/L"), and that E is a normal
subgroup of D, with D/E embedded in G = Gal(S/Q,R/P). Then Theorem 6.4 ensures that
E = Gal(L/L?); in addition, from Theorem 6.6 we obtain that L¥ is a Galois extension of L
and D/E is isomorphic to Gal(L¥ /LP). From this we deduce

[LP : LP] = |Gal(L"/LP)| = |D/E| < |G,

Moreover, |G| = f, because S/Q is a finite extension of the finite field R/P and thus a Galois
extension. This finishes the proof. o

We can now easily obtain [L : L¥]. In fact,
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Proposition 13.11
[L:LF]=e.

PROOF We have
ef =[L:LP)=[L:LP|[L¥: LP)=[L: L”|f

and the result follows. O

13.7 Optimal properties of L” and L”

Let K and L be number fields with L normal over K. The prime ideal @ lies over Q. This is
the unique such prime ideal in S with this property: If Q' is such a prime ideal, then there exists
o € Gal(LP) such that o(Q) = Q'. However, we have seen that Gal(L/LP) = D, so Q' = Q.
This suggests the following question: If K’ is a field intermediate between K and L, is there a
prime ideal Q' € R’ = O such that @ is the unique prime ideal of S lying over Q’? We claim
that any such field must contain LP, or, in other words, L is the smallest intermediate field
with this property.

Theorem 13.9 Let L be a normal extension of K. If K' is a field intermediate between K and
L and there is a prime ideal Q' C R’ such that Q is the unique prime ideal of S lying over Q’,
then LP C K'.

PROOF If K’ is an intermediate field between K and L, then there is a subgroup H of Gal(L/K)
such that K’ = L. Suppose that @Q is the unique prime ideal lying over Q’. Every element
o € H sends Q to a prime ideal lying over Q’. As there is only one such prime ideal, H C D,
which implies that LP ¢ LH = K. ]

We are going to consider another property of LT, but, before doing so, we must do some
preliminary work. We suppose that K’ is an intermediate field between K and L. From Propo-
sition 5.3, L is a normal (hence Galois) extension of K’. We now set R’ = Ok and Q' = QN R'.
Then Q' is the unique prime ideal in R’ lying under Q). Also, Q' lies over P. We aim to replace
K by K'. We set

D'=D(Q|Q) and E'=E(Q|Q).
There is a subgroup H of the Galois group Gal(L/K) such that K’ = L. We have

D' ={cecGa(L/L"):0(Q)=Q}={c€H:0(Q)=Q}=DnNH

and
E' = {o€Gal(L/L"):0(a) = a(mod Q), Va € S}
= {o€ H:o(a)=a(mod Q), Yo € S}
= ENH

Now, from Theorem 6.9, L?" = LPK’ and L¥ = LFK’.

We now consider the property of L referred to above. We restate Lemma 13.4 as a propo-
sition:

Proposition 13.12
e(Q|P) = f(Q7|P) = 1.
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This proposition suggests the following question: If K’ is a field intermediate between K and
L and there is a prime ideal / C R’ = O such that

e(Q'|P) = f(Q'|P) =1,

what can we say about the relation between K’ and LP? We claim that L” must contain such
a field, or, in other words, L is the largest intermediate field with this property.

Theorem 13.10 Let K and L be number fields with L normal over K. If K' is a field in-
termediate between K and L such that the prime ideal Q' in R' = Oy lying under Q has the
property

e(Q'|P) = f(Q'|P) =1,
then K' C LP.

PROOF Since Q lies over Q' and Q' over P, we notice that
e=e(QQ)e(Q'|P)=e(QIQ) and  f=f(QIQ)f(Q|P)= f(QIQ).
Therefore, since L is a normal extension of K’ (Proposition 5.3), from Corollary 13.5,
[L: L] =e@QIQNf(QIQ) = ef = [L: L"),
However, L? ¢ LP’, which implies that L? = L?" = LPK’ and so K’ ¢ LP. This ends the
proof. O
We now turn to a property of L¥.

Proposition 13.13 We have
(QF|P) = 1.

PROOF We notice that
e(QIP) = e(Q7Q")e(QP|P) = e(Q”|Q"),

from Proposition 13.12. It remains to show that e(Q¥|Q”) = 1. This can be derived from
Corollary 13.6 and Proposition 13.10. We have

f=IL7: L7 = e(QF1QP)F(Q7IQ") = e(QP|Q)f
hence e(QF|QP) = 1. O

This property suggests the following question: If K’ is a field intermediate between K and L
and there a prime ideal Q' C R’ = Ok such that

e(Q|P) =1,

what can we say about the relation between K’ and L¥? We have seen that K/ C LP. We claim
that L¥ must contain any intermediate field containing K’, or, in other words, L¥ is the largest
intermediate field with this property.

Theorem 13.11 Let K and L be number fields with L normal over K. If K' is a field interme-
diate between K and L and the prime ideal Q' of R’ = O lying under Q is such that

e(Q'|P) =1,
then K' C LE.

184



PROOF We will use a procedure analogous to that used in the proof of Theorem 13.10. As in the

proof of this theorem, we obtain e(P’|P) = 1 and e = e(Q|Q’), where P’ = Q N R’. However,

since L is a normal extension of K’ (Proposition 5.3), using Proposition 13.11 we obtain
[L:LP)=e(Q|Q) =e=[L: L")

Because LE C LE'| we have the equality L¥ = L¥ = LFK’, thus K’ C L¥. This ends the
proof. O

Remark It is interesting to compare Theorems 13.10 and 13.11. In the first case we obtain
K' C LP, which is stronger than K’ C L¥, the result obtained in the second case, because

LP c LE.

Non-ramification and complete splitting in composita

Let K, L be number fields, with L an extension (not necessarily normal) of K, and R and S
the corresponding number rings. If P is a nonzero prime ideal in R, then we say that P splits
completely in S, if PS can be written as a product of n = [K : L] distinct prime ideals in S.
From Theorem 13.6 we have

n
Zezf,:nﬁez:fzzl
i=1
Clearly, if e; = f; = 1, for all ¢, then P splits completely in S.
We can compare this notion with that of non-ramification. If the ideal P splits completely
in .S, then P is unramified in S. However, the converse is false: We may have

SP=Q1---Qs,

with s < n and certain f; > 1. Non-ramification is thus weaker than complete splitting. In the
following, if F' and G are number fields, with F' C GG, and @ is an ideal in O¢g, then we will write
QF for Q N Op, the unique prime ideal of O lying under Q. If @ is a prime ideal, then so is
Qr. (It should be noticed that QP = Qrp and QF = Qr».)

Theorem 13.12 Let K, L and M be number fields, with L and M extensions of K, and P a
nonzero prime ideal in Ok which is unramified (resp. splits completely) in Op, and Opr. Then
P is unramified (resp. splits completely) in Op .

PROOF We first consider the non-ramification. Suppose that P is a nonzero prime ideal which
is unramified in Oy, and Oy; and @’ a prime ideal in Op s lying over P. We must show that
e(Q'|P) = 1. As LM is a finite extension of K, there exists a finite normal extension N of K
containing LM (see Section 5.1). Let @ be a prime ideal in O lying over @)'. Proposition 13.3
ensures that @) also lies over P. We note E the inertia group F(Q|P), i.e.,

E(Q|P) ={0c € Gal(N/K) : o(a) = a(mod Q), Ya € Opn}.

As Qp NOkg = P and Q) N O = P, Qp and Qs lie over P. Given that Q; and Pp are
unramified over P, we have

e(QL|P) = e(Qu|P) = 1.
From Theorem 13.11 N¥ contains both L and M and hence LM. As Q is a prime ideal, so is
Qne. Then, using Proposition 13.14, we have

1 =e(Qne|P) = e(Qne|Qra)e(Qrm|P).
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This implies that e(Qra|P) = 1, i.e., e(Q'|P) = 1.

We now consider the complete splitting. As we have seen, the nonzero prime ideal P in O
splits completely in Oy if and only if | for every prime ideal Q' in Op s lying over P, we have
e(Q'|P) = f(Q'|P) = 1. As above we take a prime ideal @’ in Opps, let N be a finite normal
extension of K containing LM and @ be a prime ideal in N lying over @’. Once again, Q also
lies over P. We note D the decomposition group D(Q|P), i.e.,

D(QIP) ={o € Gal(N/K) : 0(Q) = Q}.
We define @, and Qs as above and so @ and Qj; lie over P. As P splits completely in Oy,
and Oy, we have

e(QulP) = f(QLIP)=1 and  e(Qu|P)= f(Qu|P)=1.
From Theorem 13.10, N” contains both L and M, hence LM. Then, by Proposition 13.12

1 =e(@Qnr|P) =e(Qnr|QrLrm)e(Qrm|P) and 1= f(Qnp|P)= f(Qnr|QLm)f(Qrm|P),

and so
e@Qru|P) = f(QLm|P) =1, ie., e(Q|P)=f(Q|P)=1
This finishes the proof. m|

Exercise 13.5 In the preceeding proof, we take the normal closure N of K over LM. What is
the reason for doing so?

Corollary 13.7 Let K and L be number fields, with K C L, and P a nonzero prime ideal in
Og. If P is unramified or splits completely in O, then the same is true in a normal closure N
of L over K.

PROOF Let P be a nonzero prime ideal in Ox. We first suppose that P is unramified in Oy.
We must show that, if @ is a nonzero prime ideal in Oy lying over P, then e(Q|P) = 1. If
o € Gal(N/K), then we have

OLP = Q- Q= Po(Or) = 0(Q)) - (QL),
which means that P is unramified in O,(z). However, from Theorem 6.12, we know that
N = H o(L).
oc€Gal(N/K)

Applying Theorem 13.12 successively we obtain that P is unramified in Op.
We use an analogous argument to show that, if P splits completely in L, then P splits com-
pletely in Oy. O

A criterion for complete splitting

We begin with a preliminary result.

Proposition 13.14 Let K, L be number fields, with L a normal extension of K. We suppose
that P is a prime ideal in Og and Q a prime ideal in O lying over P. In addition, we assume
that the decomposition group D = D(Q|P) is normal in G = Gal(L/K). If r is the number of
distinct prime ideals in the splitting of P in Oy, then P splits into r prime ideals in Opp.
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PROOF Since D is normal in G, the corresponding field L” is a normal extension of K. From
Lemma 13.4 we have

e(QP|P) = f(Q|P) = 1.
Thus, using Corollary 13.2, for every prime ideal P in O o lying over P
e(P|P) = f(P|P) = 1.
If 7 is the number of distinct prime ideals P; in the splitting of P in Oyp, then
> _e(BIP)f(P|P) = [LP : K],
i=1

ie, 7 = [LP : K]. However, from Proposition 13.9 we know that [L? : K] = r, so ¥ = r as
claimed. O

Theorem 13.13 Let Q be any ideal in Op, lying over the prime ideal P of Ok . Let us assume
the conditions of Proposition 13.14 and let K' be an intermediate field between K and L. Then
P splits completely in O if and only if K' ¢ LPQIP),

PROOF If P splits completely in O, then

e(Q'IP) = f(Q'|P) =1, (13.2)

where @' is the unique ideal of Ok lying under Q. (Q’ lies over P and the relation (13.2) follows
directly from the definition of complete splitting.) By Theorem 13.10 we have K’ C LP.

Now suppose that K’ ¢ LP@IP)  As in the proof of Proposition 13.14, Lemma 13.4 and
Corollary 13.2 ensure that P splits completely in O, ps. If P’ is a prime ideal in Ok lying over
P, then P’ lies under some prime ideal P in O o lying over P. We have

e(P|P) = f(P|P) = 1 = e(P'|P) = f(P'|P) = 1,

Hence P splits completely in Og:. m|

13.8 Existence of ramified prime numbers

In this section our goal is to establish a necessary and sufficient condition for the existence of
a ramified prime number in a given number ring. We have already seen that, if p is a prime
number which is ramified in a number ring R = Ok, then p divides disc(R) (Theorem 13.8). We
aim to show that this condition is also sufficient.

Theorem 13.14 Let K be a number field and R = O . Then the prime number p is ramified
in R if and only if p divides the discriminant of R.

PROOF We have already shown that if p is ramified in R, then p|disc(R), so we only need to prove
the converse. Let us suppose that p|disc(R). We fix an integral basis aq,...,a, of R. Then,
from Proposition 10.7,

disc(R) = |Tk/q(aia;)l;

where [T /q(eviq; )| is the determinant of the matrix T' = (Tx/q(c;a;)). From the definition of
the trace in Section 10.1 the elements Tk /q(a;c;) € Q. However, a;a; € Ok, 50 T (i) € Z
(Exercise 11.1). Working modulo p, i.e., considering these elements lying in F,, and, knowing
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that disc(R) = 0 in F,, we see that the rows of the matrix T" are linearly dependant, i.e., there
exist mq,...,my € Fp, not all 0, such that

my (TK/Q(a1a1) . TK/Q(alan)) + 4+ my, (TK/Q(anoq) .. .TK/Q(anan)) =(0,...,0).

We may express this by saying that there exist integers my,...,m,, not all divisible by p, such
that
n
> Trsqlaiag)m;
i=1

is divisible by p, for j =1,...,n. If we set « = > | m;«;, then

for j =1,...,n, and it follows that p|Tk,q (), for any 8 € R, i.e., T q(Ra) C Zp. Moreover,
a € R\ pR, since the integers my, ..., m, are not all divisible by p and (a4, ..., «,) is an integral
basis of R.

Let Qq,...,Qs be the prime ideals in R involved in the decomposition of the ideal Rp.
Propositions 12.2 and 12.3 ensure that N;_;Q; = Q1 ---Qs. If p is unramified in R, then Rp =
Q1 - Qs; thus, as a ¢ Rp, there exists @; such that o ¢ Q;.

We now consider a normal closure N of K over Q. From Corollary 13.7, p is unramified in
Oy = S. Let @' be a nonzero prime ideal in S lying over Q;. If « € Q’, then . € Q' N R = Q;,
a contradiction, thus o ¢ Q'. We claim that T,q(Sa) C Zp. To see this, we apply Corollary
10.3:

TN/Q(SOé) = TK/Q o TN/K(SOé) = TK/Q (TN/K(S)Oé> C TK/Q(ROé) C Zp.
As @' lies over Q; and Q; lies over p, Q' lies over p. We take the complete set Q', @5, ..., Q}
of nonzero prime ideals in S which lie over p. From the Chinese remainder theorem (Theorem
F.1), there is a solution 8 € S of the system of equivalences

= 1 (mod Q')
= 0 (mod Q})

r = 0 (modQy}).
The element § lies in @}, for i = 2,...,¢, but not in @’. We claim that
o Tn/q(aBy) € Q' for v € S;
e g(afy) e @, forye Sand o € G\ D,

where G = Gal(N/Q) and D = D(Q'|p). The first assertion is easy to prove. We only need
to observe that fy € S and T q(Sa) C Zp C Q'. The second assertion requires a little more
work. First we notice that o € G\ D implies that ¢(Q’) # Q’, or equivalently Q' # o~ 1(Q’).
As 071(Q’) lies over p, 3 € 071(Q’), which implies that o(3) € Q’, which in turn implies that
o(aBy) € Q.

We now claim that

> o(apy) €@

oceD
for all v € S. To see this, we first remark that from Corollary 10.3

Tnjq(aBy) =Y o(aBy).

ceG
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Then
> o(aBy) =TyjqlaBy) — Y o(aBy),

oeD oce€G\D

i.e., the difference of two elements in Q’.
We may now finish the proof. The members o of the subgroup D of G induce automorphisms
g of S/Q":
oz+Q)=0(2)+Q"

Reducing «, 8 and v modulo Q’, we obtain

oceD

for all v € S. We have seen above that o, 3 ¢ @', so af3 is a nonzero member of the field S/Q’.
As 7 runs through all the elements of S, 4 runs through all the elements of S/Q’. It follows that

> a(z) =0,

oceD

for all z € S/Q’. Hence the automorphisms &, with ¢ € D, are not independant, which contra-
dicts the corollary to Dedekind’s lemma (Corollary 8.1). The supposition that p is unramified
led us to this contradiction, hence p must be ramified. O

Remark We will show in the next chapter that, if K # Q, then |disc(R)| > 1. Thus, in this case
there exists a prime number p which divides disc(R). Consequently, Theorem 13.14 ensures the
existence of a ramified prime number. More generally, if K C L are number fields, then there
exists a prime ideal in Ok which ramifies in Op. To see this, it suffices to consider any prime
ideal in Ok in the decomposition of Ok p, where p|disc(Oy).

13.9 Prime decomposition in cyclotomic number rings

Let p be a prime number, s a positive integer and ( = e7 . We will be interested in the
decomposition of a prime ¢ in the number ring of the cyclotomic field K = Q(¢). As K is normal
over Q we may write

Okq=(Q1-- Q)"

where the Q; are prime ideals in Og.

We will first consider the case where ¢ = p. In the proof of Proposition 11.10 we saw that
Oxp = Ok (1= Q") = (Ok (1= )" (13.3)
and
Ni/q(l—=¢) =p.

From Theorem 13.4
Nkl =¢) = [|0x(1 =),

hence ||Ok (1 —¢)|| = p. However, from Proposition 13.4, the principal ideal O (1 —() is a prime
ideal, therefore the expression (13.3) is the decomposition of Okp into prime ideals.
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We now turn to the case where ¢ # p. This is more difficult. From Theorem 11.15 the
discriminant of O is a power of p. As g # p, q does not divide the discriminant, so, by Theorem
13.14, g is not ramified in Og. This implies that the decomposition has the form

Okq=Q1---Qr,

where the ; are prime ideals in Ox. We now aim to determine the value of r.

We recall that O = Z[(]. For i =1,...,r, since Q;|Okq, we have Q; D Oxq = Z[{]q and it
follows that Q; lies over Zg. From Corollary 13.2, the inertial degrees f(Q;|q) all have the same
value. If f is the common value of the inertial degrees, then we can write

rf=9¢(°)=p""'(p—1), (13.4)

where ¢ denotes the Euler totient function. We claim that f is the order of ¢ in the multiplicative
group Z,..

Let @ be one of the @Q;. Then Z[(]/Q is isomorphic to Fr, with subfield F,. (This is obtained
from the mapping ¢ defined just before Proposition 13.3.) We may identify the elements of F
with the cosets of ), which we will write in the usual way, i.e., a =a+ Q. If a € Z, thena € F,
and from this it follows that F,; = F,(0). This implies that an element of the Galois group
G = Gal(F ;s /F,) is determined by its value at (.

Moreover, from Theorem 7.9, G is cyclic and generated by the Frobenius automorphism
Fr: o+~ 9. Since F s = F,(¢), the Frobenius automorphism, is determined by its value at .
Let f" be the order of ¢ in in Z,.. Then

Fri'(§) = ¢ = o = Ok, (13.5)

for some k € N*. Therefore Frf/(f) = (, which implies that f|f’.
We now show that f’|f. If ¢/ = 1(mod p®), then f’|f, so this is what we will show. We set

¢’ = a(mod p*),
with @ € {1,...,p° — 1}. Suppose that a > 1. Then
¢ =gt = =0

However, from equation 13.5),
ot

¢ =g

hence

(r=C(=("" =

=1

—1-¢"teq.

On the other hand we have

p®—1 p®—1 1 —I—Xps
—1+4+XP = 4+ X (4 X)=— =14 X4+ XL
+ g(c+ ):>i1;[1(<+ )= —ix + X+t

Noting g(X) the last expression on the right-hand side, we obtain
p°—1

[T (¢ +1)=g01)=p".

i=1
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Since one of the factors in the expression on the left-hand side of the equation is 1 — (%~! and
all the factors are in O, we see that p* € . This means that ¢ contains both p® and ¢, which
are coprime. Hence 1 € (), a contradiction. Therefore a = 1 and it follows that

¢ =1(mod p*),

as required. To conclude, we have shown that f is the order of ¢ in Z;57 as claimed.
To conclude, from (13.3) we obtain

s—1 -1
S A )’

f

where f is the order of ¢ in Z.

Remark Further on, in Chapter 18, we will reconsider the question of the decomposition of a
prime number in a number ring, but in a more general context.

13.10 Higher ramification groups

Let K and L be number fields, with L a finite normal extension of K. We set R = Ok, S = O,
and let P C R, @ C S be prime ideals with @ lying over P. We recall the definition of the inertia

group:
E=E(Q|P)={0c€G:0(a) =a(mod Q) Va € S},

where G = Gal(L/K). We now extend this definition. For m € N, we set
Vi ={0 € G:0(a) = a(mod Q™) Va € S}.

Thus Vo = E. The V,, form a descending chain of subgroups of the decomposition group
D = D(Q|P) and are called ramification groups .

We recall the Krull Intersection Theorem:

Theorem 13.15 If R is a commutative noetherian domain and I a proper ideal in R, then

nze_, I™ = {0}.

Proposition 13.15 The groups V,, are mormal subgroups of D and their intersection is the
identity.

PROOF Let 0 € V,,, and 7 € D. Then, for a € S, we have
or(a) =7(a) + x
with € Q™*!. This implies that
7 tor(a) = a+ 177 ().
Since 771Q = Q and x € Q™" 771(x) € Q™*!, thus
77 or(a) = a(mod Q™T1),

and it follows that V,,, is normal in D.
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As S is a noetherian domain, from Theorem 13.15, N%°_,Q™ = {0}. If 0 € N°_,V;,, and
a € S, then
ola) —aeni_Q™" ={0} = o(a) =a.
Therefore o is the identity on S and consequently on L, because L is the field of fractions of S.
O

Corollary 13.8 There exists n > 0 such that V,,, is reduced to the identity for m > n.

PROOF As D is finite, so are the subgroups V,,, and the chain must be stationary after a certain
point, i.e., there exists n such that V,,, = V,,, for m > n. If V,,, is not reduced to the identity for
m > n, then the intersection of the groups V,,, must contain elements other than the identity,
which is a contradiction. Therefore, for m > n, V,, is reduced to the identity. O

We recall that S is the number ring of L, i.e., S¥ = Opr, and that QF is the unique
prime ideal in S¥ lying under Q. We now consider the localizations Sg and SZ;. These rings

are both Dedekind domains, being localizations of Dedekind domains (Theorem 12.9). They are
also local rings with respective unique maximal ideals So@ and S, g Q¥ (Theorem 12.10). From
Theorem 12.11 these localizations are PIDs.

If 2 € SgE, then s € S, because S¥ C S. In addition, u ¢ Q (If u € Q, then € SENQ = QF,
a contradiction.) Hence SgE C Sg, and we may consider Sg to be a SE _-module. Let ¢ be a

generator of the principal ideal So@. We may suppose that t € S: if ' = % is a generator, then
so is t.

Theorem 13.16 The module Sq is a free module over SSE, with basis B = {1,t,...,t°71},
where e = [L : L¥].

PROOF Our first step is to show that if a is a nonzero element of L¥, then there exists s € Z
such that Sga = SqQ*¢. Let us write L for the fraction field of Sg and Lge for that of SE.

Then L¥ C L C Lg and so any nonzero element a of L¥ generates a nonzero fractional ideal of
Sq, which we may write Sga. We aim to study the decomposition of Sga into prime ideals in
Sq. Since LF c Lge, a also generates a fractional ideal of Sg £, hamely Sg pa. From Theorem
12.11 there exists s € Z such that

SEsa = (SE:QF)* = S5.Q*,
and so, using the fact that SQE?E is contained in Sg, we obtain
Sga = SoS5ea = So(S5=Q"°) = SoQ"°.
Now, using the inclusion of S in Sg, we have
SQQ7° = 85(Q%) = So(SQ”)*.

Since Q¥ lies over QP and Q is the unique prime ideal of S lying over QP (see Section 13.7), Q is
the unique prime ideal of S lying over QF: SQF is a power of ). Taking into account Theorem
13.6, with K = L¥, and then Lemma 13.3 and Proposition 13.11, we obtain SQ¥ = Q¢. Finally,
we have shown that, for any nonzero element a in L, there exists s € Z such that Soa = SqQ°°.

Our next step is to show that the elements 1,%,...,t*"! form a basis of L over L. As
[L : L¥] = e, it is sufficient to prove that these elements are linearly independant over L.
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Suppose that z = Zj;é a;jt/, with a; € L¥ and some a; # 0. If 0 < k,l < e—1, with k # [, and

ar # 0, a; # 0, then we claim that sxe + k # sje + [, where
SQak = SQQeSk and SQal = SQQESL.

If not, then
0#k—1=ce(s; — si),

which is impossible, because |k — I| < e. We now set
m =min{es; +j : a; #0, Sga; = SgQ*" }.

Let i be such that m = es; + ¢; then, if 0 < j < e and a; # 0, there exists o; € Sg such that
a; = a;1%¢. Therefore there exists 8 € Sg such that

J,a;#0

If o; € SgQ, then a; = t*°ut, with u € Sg. This implies that
(SQQ)* = Sqai C (SeQ)* ™,

which is not possible. Hence «; ¢ Sg@ and it follows that a; +t5 ¢ SgQ. Thus o; +t3 # 0 and
so x # 0. We have shown that the set {1,¢,...,t°" '} is independant.

At this point we should also notice that Sgr = SoQ™. Indeed, as Sg is a local ring, its
maximal ideal Sg@ is composed of its nonunits. Hence a; + t3 is a unit and so

Sox = Sot™ = 5S0Q™.

The final step is to show that B is also a basis of the SZ-module Sg. Suppose that there
exist bo,b1,...,be_1 € SgE such that Zj;é bit! = 0. As Sg,; is included in L® and we have
shown that B is an independant set over LY, the b; all have the value 0, so B is an independant
set over Sg 5.

We must now show that B a generating set of the SgE-module Sqg. Let x be a nonzero
element of Sg. As Sg is included in L, we may write z = Zj;é a;jt!, where aj € L¥, for all j,
and at least one a; is nonzero. We claim that each a; belongs to S £ . Looking at the beginning
of the proof, we notice that, if a; # 0, then there is an integer s; such that the fractional ideal
SgE a; = (SSEQE)SJ'. This is the decomposition of this fractional ideal into prime ideals of SSE'
In addition, we have shown that Sz = (SgQ)™ is the decomposition into prime ideals of Sq
of the fractional ideal Sgx. As z € Sg, Sgz is an integral ideal of Sg and so m > 0 (Corollary
12.9). However,

m = min{es; +j : a; #0, Sga; = SgQ*},
so, if a; # 0, then es; + j > 0, which implies that s; > f% > —1. Therefore s; > 0, because
s;j is an integer. It follows that SgEaj is an ideal of 5513, because SgEaj = (SgEQE)SJ, and so
aj; € SSE. We have shown that B is a generating set of Sg as a SSE—module. This finishes the
proof. O

We continue our study of the ramification groups using a generator ¢ € S of the principal

ideal Sg@. We notice that ¢t € S C L, so it makes sense to write o(t) for any automorphism
o € Gal(L/K).
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Proposition 13.16 For:=20,1,2,...,
Vi={oc € E:0(t)—tec SoQ"}.

PROOF If 0 € V;, then o € E and o(t) —t € Q" since t € S. However, Q'™ C Sp(Q**!), thus
o(t) —t € SeQ. _
Now suppose that o € E and o(t) —t € SgQ"™*. If z € S, then we may consider that x € Sg

°_ga;t!, with a; € S§5e (Theorem 13.15), hence

and so we can write x = >

e—1
o(@)—x =Y a;(c(t) —t/),
j=0

because the a; are fixed by the automorphisms of E. (Indeed, a; € SgE and SgE cSPcLF)
Also, o(t) —tlo(t)? —t7 in S, i.e., o(t)? —t/ = s;(c(t) —t), for some s; € S. As both SSE and S
are included in Sg,

e—1
Zaj (J(t)j — tj) € St
j=0
Given that x € S, we now have
olx)—x € SQQi+1 ns=qQ",
where we have used Theorem 12.12 for the equality. This ends the proof. 0O

We have seen that the ramification groups V; form a sequence of normal subgroups of the
inertial group E. As V41 C V;, we have a sequence

E=V>Vi>Vo>---

We also know that after a certain point V;11 = V;, so we may consider the sequence to be finite.
We are now interested in the factor groups V;/Vii1.

Theorem 13.17 There exists a group monomorphism from E/Vy into S/Q*. Thus E/Vy is a
cyclic group whose order is coprime to p, where Q NZ = Zp.

PROOF Let t € S be a generator of the principal ideal Sp@, sot € SNSpQ = Q(Theorem 12.12).
If o € E, then 0 € D, which implies that o(t) € Q, because t € Q. As Q C SgQ, there exists
Zs € Sg such that

o(t) = zyt.

From Exercise 12.8 we may suppose that Sg as a subset of L, i.e., we consider x = + € Sq
as an element of I. This permits us to induce a mapping ¢’ on Sg from ¢ € E by setting

o' (z) = Z((Z)) € L. Clearly, o(r),o(u) € S. It is elementary to check that ¢’ is an automorphism

of Sg. We should also notice that, since o € E, for all z € S,
o'(z) = z(mod SgQ).
Indeed, there exists ¢ € Q such that o(r) = r 4+ ¢ and so

o) _r+q v rd —ug _
7O = ) T T u wlare) T
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with ¢; € Sp@.
To simplify the notation, from here on we will write o for ¢’. Our next step is to show that
T, & SgQ. As 07! € E, there exists z,-1 € Sg such that

o Ht) = zgat.

Then
t=0(c7(t)) = o(zy-1t) = o(Ty-1)0(t) = o(Ty—1)T0t.

As Sg is an integral domain, we have
l=0(x,-1)x,,

S0 x, is invertible in Sg, which implies that z, ¢ So@, because SgQ is a proper ideal of Sg.
From Corollary 12.10, there is an isomorphism ¢ from Sg/Sq@ onto S/Q. Noting Z, the
image ¢(z, + SgQ), we have T, # 0, because z, ¢ SoQ. We now define a mapping
0: E— S/Q* by
0(c) = Ty
We consider the properties of 6. First we notice that 6 is a group homomorphism: If 0,7 € F,
o(t) = z,t and 7(t) = x,t, then

o7(t) = o(xt) = o(x:)o(t) = (v, + vt)x,t = (X725 + VXL,
where v € Sg, therefore
0(oT) = 2,25 + 025t = T T, = 0(z,)0(2,),

so 6 is a homomorphism. We claim that the kernel of 8 is V3. To establish this we use Proposition
13.16. If o € V4, then

o(t)—t € SoQ* = o(t) =t +vt* = (1 +vt)t = (o) =1 + vt = 1,
where v € Sg. Hence o € Ker. On the other hand, if o € Ker 6, then §(c) =1 and we have
To=1=0(t) —t=ast —t=(1+0vt)t —t =vt?

where v € Sg. It follows that o € V;. We have shown that V; = Ker6.

As V; is the kernel of 0, the quotient group E/V; is isomorphic to a subgroup of S/Q*, which
is the group of nonzero elements of the finite field S/Q. From Corollary 3.3 ,S/Q* is cyclic and
so E/Vj is cyclic, being isomorphic to a subgroup of a cyclic group.

There exists a unique prime number p such that Q NZ = pZ. As pZ C @), we have p € @,
so the characteristic of S/Q is p. This implies that the prime field of S/Q is F,, and it follows
that |S/Q| = p™, for some positive integer n. Hence |S/Q*| = p™ — 1. As |E/V;] divides p™ — 1,
|E/Vi| must be coprime to p. O

Remark In the proof of the theorem we chose a particular generator ¢t € S of Sg@. In fact, we
obtain the same mapping 6 if we choose another such generator ¢’. First we notice that ¢ = at,

where a € Sj5. This implies that a ¢ SgQ. Then we have

o(t') =2t = 2! at.
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As we saw in the proof of Theorem 13.17, if z € Sg and o € E, then o(z) = x(mod SgQ), so
there exists ¢ € SgQ such that o(a) = a + ¢ = a + vt, with v € Sg. Hence

2at = o(at) = o(a)o(t) = (a+vt)zst
a = (a+vt)z,

/ - _ =
o — Ty = To,y

8

!
o
— 4%, = aT

because Sq/SqQ is a field and @ # 0. Therefore the value of §(o) is unaltered by choosing
another generator in S of Sp@Q.

We now counsider the quotient groups V;/V;41, with ¢ > 1.

Theorem 13.18 There exists a group monomorphism from V;/Viy1 into the additive group of
the field S/Q. Hence V;/V;y1 is an abelian p-group, where Q N'Z = Zp.

PROOF As in the proof of Theorem 13.17, we let ¢t € S be a generator of the principal ideal SgQ
and so t € SN SQQ. If 0 € V;, then o(t) = t + z,t'"!, where z, € Sg (Proposition 13.16).
From Corollary 12.10, there is an isomorphism ¢ from Sg/So@ onto S/Q. Noting Z, the image
d(xs + SoQ), we obtain a mapping 6; from V; into S/Q defined by

0:(0) = z,.
We claim that 6; is a homomorphism into the additive group of S/Q. If o,7 € V;, then
or(t) = o(t + xt") = o(t) + o(x,)o(tT).
If v =7 € Sqg and o € V;, then there exist q,¢" € Q! such that

_o(r) r4+q v ¢ —uqg
U(x)_o’(u) Cu+q u u(utq) =Tt

with ¢1 € SgQ"™*. Thus
or(t) =t + 2ot 4 (2, + 0t T (E + ppt )L
However,
(t + 2t = ¢ L (i 4 1)t* ! 4 expressions in higher powers of t,
with 2 +1 > i+ 1, because ¢ > 1. Hence
or(t) =t + (x4 + z, + V')t
where v,v" € Sq. It follows that
0i(07) = 5 + 2, + V't =T + X7 = To + Tr = 0i(0) + (7).

We have shown that 6; is a homomorphism from V; into the additive group of S/Q.
Our next task is to consider the kernel of 8;. If o € V;11, then, for some v € Sg,

o(t) —t € SoQ"™? = o(t) =t + vt =t + (vt)t'™!
and so

0;(c) = vt = 0.
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So we have V; 1 C Ker6,. Now suppose that §;(c) = 0. Then Z, = 0, which implies that
o(t) =t+ ()t =t + ot

with v € Sg. Therefore o € V11 and it follows that Ker 6; = V; 1. Therefore the quotient group
V;/Viz1 is isomorphic to a subgroup of the additive group of S/Q. We have seen in the proof of
Theorem 13.17 that |S/Q| = p™, where QNZ = Zp and n is a positive integer, so |V;/Viy1| = p™,
where m < n. Therefore the order of an element in V;/V;11 is a power of p. O

Exercise 13.6 In the proof of the preceding theorem we have used a particuler generatort € S of
the principal ideal SQ to construct the homomorphism 0;, which in turn gives us a monomor-
phism 0; of V;/Viy1 into S/Q. Suppose that we take another generator t' € S of SoQ and
so obtain another monomorphism of 0. of V;/Vi11 into S/Q. What can we say of the relation
between 0; and 0. ?

We recall the definition of a solvable group. A normal series of a finite group G, with identity
e, is a chain of subgroups
G=GyDG D - DG, ={e},

where the subgroup G;11 is normal in G;, for all i. If a finite group G has such a series and all
the quotient groups G;/G;4+1 are abelian, then we say that G is a solvable group.

Proposition 13.17 The inertia and decomposition groups are solvable.

PROOF The series
DO>EDVID---DV,={ldp}

is a normal series, because E, Vi,...,V,, are normal in D. In Section 13.6 we saw that D/FE is
cyclic and from Theorems 13.17 and 13.18 above, for ¢ > 0, V;/V;11 is a subgroup of an abelian
group, hence abelian. It follows that E and D are solvable groups. O

Here are two further results concerning the first ramification group V;.
Proposition 13.18 We have
e a. The cardinal of Vi is a power of p, hence V1 is a p-group: |V1| = p*, where k > 0;
e b. If e is the ramification index e(Q|P), then e = mp*, where p fm and m = |E/V;].
PROOF a. As V,, is reduced to the identity, we may write
Vil = [Vi/Vin| = [V /Va|[Va/ V3| - [Vin—1/Vinl.

As all the factors on the right hand side are powers of p, so is |V;].
b. From Proposition 13.11, e = [L : L¥]. In addition, from Theorem 6.6, [L : L¥] = |E|, which
in turn is equal to |V;||E/V4|. Using part a. we obtain e = p*m, and p fm, by Theorem 13.17.0

We have seen that V3 and E are normal subgroups of D. As F is contained in D, V; is also

normal subgroup of F and so the cosets of V; in E form a group, the quotient group E/V;. We
may define an action of D on E/V; by conjugation: for o € D and 7V} € E/V;, we set

o-™Vi=0(tVi)o ™t = (o7 V1.
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(It is simple to check that this action is well-defined, i.e., if 7'V = 7V;, then o - 7'V} = o - 7V7.)
From the group action we obtain, for each o € D, a bijection 6 of E/V; defined by

(Vi) =0 -7Vi = o(tVi)o L.
We may also define an action of D on S/Q: for 0 € D and s + Q € S/Q, we set
o-(s+Q)=0(s) + Q.

(There is no difficulty in seeing that this action also is well-defined.)
From this second group action we obtain, for each o € D, a bijection & of S/Q defined as follows:

s+ Q)=0c-(s+Q)=0c(s) + Q.

In Section 13.6 we saw that the the bijections & belong to the Galois group Gal(S/Q, R/P) =
G and that the corresponding mapping 1 : ¢ — & is an epimorphism. Moreover, G is a cyclic
group generated by the Frobenius automorphism: Fr : T — %%, where ¢ = |R/P|. The following
result links the bijections 6 and &.

Proposition 13.19 If o € D is such that ¥(c) = & is the Frobenius automorphism, then
a(tVp) =79V,
for all cosets TV; € E/V;.

PROOF First we fix a generator ¢ of the ideal SpQ, i.e., SoQ = Sot. As 6(7V4) = oro™1, we

have
6(TVi) =11V, <= o1 o T € V) <= o7 o1 7(t) = t (mod SgQ?).

We now sum up some basic facts which we will need further on in the proof:
e For all 0 € D, there exists z, € Sg such that o(t) = z,t and
o(z,-1)zs = 1.
(This result is established in the proof of Theorem 13.17.)

e If o € D and z € Sg, then

o(z) € Sq.
Indeed, 2 = £ € S can be considered an element of L, thus o(z) = 28, because
o(L)o(u) = o(Lu) = o(r). If o(u) € Q, then u = 07 (o(u)) € 071(Q) = Q, because

o(r)

o~ ! € D, a contradiction. Therefore o(u) ¢ @ and so otn) €S-

o If 7€ Fand x € Sg, then
7(x) = z (mod SgQ).

Since 7 : L — L satisfies the condition 7(a) = « (mod Q), for all @ € S, we have
7(x) = z (mod SqQ), for all = € Sg, because

a::%ESQCL:>T(x):—: = —=zx+q,
with ¢1 € SpQ.
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With these rules in mind we aim to show that
ot tor(t) = t (mod SpQ?).
To begin with, we establish that for 1 < i < ¢ we have
() = zLt (mod SuQ?).
For i = 1, the result is clear, because 7(t) = x,t. Next we counsider the case i = 2. First,
7(t) = 2.t = 72(t) = 7(x)7(t) = 7(25)2 L.
As 7 € E, there exists v € Sg such that 7(z;) = 2, + vt, hence
72(t) = (z, + vt) 2 t = 22t + va t? = 22t + vyt

As vy € 8¢, we have
72(t) = 22t (mod SQ?).
Our next step is to consider the case i = 3. We have
) = 7)) = T(x2t + vit)
= 7(@3r(t) + r(vi)7(t)?
= (2, +vt) 2zt +7(v1)(z,t)?
= xit + vyt?,
where v2 € Sg. Hence
73(t) = 23t (mod SoQ?).

Continuing in the same way we obtain
7(t) = 2t (mod SgQ?),
for 1 <i < ¢ and, in particular for i = q. Therefore there exists w € Sg such that

TU(t) = 29t + wt?.

1

We now consider the expression o7~ 'o 179, First,

o 7)) = o Halt + wt?)
= o YaD)zyat+ o H(w)o L (t)?
= o Hal)zg 1t + o (w)a? _t?
= o HaDzy 1t +wit?,

where w; € Sg. Thus
o (TU(t) = 0 H(@l)zy 1t (mod SoQ%)

and so

o re(t) Yo N 29)zy-1 )z, 1t (mod SpQ?)

-
o N xD)z, 12,1t (mod SgQ?),
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because 7! € E implies that
o (@) r,-1) = 07 H(@D)we-1 (mod SgQ).
Thus

220(2y-1)0(x,1)x,t (mod SgQ?)
20 (x,—1)t (mod SgQ?),

Q

\]
I

Q
I

\]
2
—
~~
N—

1l

—~

because o(x,-1)xs = 1.
Our next step is to find useful expressions for 24 and o(x,-1). Firstly, as 77! € E, we have

T, =7 H(x,) (mod SoQ) = 24 = 77 (x,)? (mod SuQ).

Secondly, we consider o(z.-1). Since o(a) = a? (mod Q), for all « € S, because & is the
Frobenius automorphim, we have o(z) = 27 (mod Sq@Q), for all z € SoQ: For x = = € Sq C L,
we have

o(r) _m+aq 1 rig—ulq _ 17

olu) uwl+q ul  wi(ud+qe) ud

Hence
o(x;-1) =2?_, (mod SgQ).

Using these two expressions, we have
ot o7 () = alo (w1 )t = 77 (@) %2 it (mod SpQ?).
As 771z, )z,—1 = 1, we finally obtain
ot o7 r9(t) = t (mod SQQQ),

and the result follows. O

Corollary 13.9 If the decomposition group D is abelian, then then |E/V;| divides g — 1.

PROOF If D is abelian, then the action of D on E/Vj is trivial, i.e., 0 - 7V4 = 7V4, for all 0 € D
and cosets 7V; € E/Vi. Tt follows that & is the identity for every o € D. If o is such that
its image under the mapping v is the Frobenius automorphism, then from Proposition 13.19
6(7V1) = 74V}, Thus we have 7V; = 79Vy, or 747 1(7V) = 7V;. Hence the order of 7V; divides
g — 1. However, E/V; is cyclic, so if 7V is a generator of E/Vj, then its order is the cardinal of
the group, hence the result. O

Remark In the proof of Theorem 13.17 we showed that |E/V;]| divides ¢’ — 1, where ¢’ = |S/Q)|.

On the other hand, in Corollary 13.9 we show that |E/V;| divides ¢ — 1, where ¢ = |R/Q|. As
g — 1 divides ¢’ — 1, when D is abelian we obtain a stronger result.
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Chapter 14

Number fields and lattices

Before reading this chapter we advise the reader unfamiliar with lattices in euclidian space to
read our appendix on the subject. There we have brought together the basic notions on the
subject and, in particular, we state and prove Minkowski’s convex body theorem.

14.1 Number rings as lattices

We consider a number field K, such that [K : Q] = n, with associated number ring R. There are
n monomorphisms of K into C which fix Q. (If K is a normal extension of Q, then the monomor-
phisms are automorphisms of K and so form the Galois group Gal(K/Q).) Let 01, ...,0, be the
monomorphisms with image in R. The others occur as pairs of complex conjugates, which we
write 71,71, ..., Ts, Ts; Clearly, n = r + 2s. We obtain a mapping ¢ : K — R"™ by setting

o(a) = (o1(@),...,00(a),Re (), Im 71 (), ..., Re 75(a), Im 75 () ,

for all « € K. This mapping is a monomorphism from the additive group of K into the additive
group of R™. The image of R, which we note Ag, is a subgroup of the additive group of R"™. We
claim that Ay is a lattice. To see this, let (aq,...,a,) be an integral basis of R. Clearly

n

Arp={veR":v= Zaiqﬁ(ai),ai €Z}.

i=1

In order to show that A = {¢(a1),...,d(a,)} is an independant set in R™ we consider the
determinant D of the matrix having these elements as rows. Applying appropriate column
operations we obtain that D is the product of (—2i)™* and the determinant D’ of the matrix
with rows

o1(e)...op(a;) T1(a;) 1) ... To(ay) Ts(ay)

However,

D"? = disc(R) # 0,

since any integral basis of R is a basis of the vector space K over Q and Proposition 10.8 holds.
Thus A is an independant set. It follows that Ag is a lattice.

We recall that the determinant of a lattice A is the volume of a parallelepiped formed by the
vectors of any basis (u;)?_;. This volume is the absolute value of the determinant of the matrix
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U having these vectors as columns. Hence det Ag = |D|. Now,
D = (-2i)"*D' = D? = (-1)*272*D"?,
therefore

det Ap = |D| = 27°/|disc(R)|.
If I is a nonzero ideal of R, then we claim that A; = ¢(I) is a sublattice of Ar. To see this,
we notice that I is a free abelian group of rank n and hence has a basis (81,...,3,). The set
B = {¢(B1),...,9(Bn)} generates ¢(I) over Z and is independant, hence A; is a sublattice of
Agr. Also, the index of Aj in Ag is that of I in R, since the mapping

WZR/I—)AR/ALT—FI}—)(ZS(T)‘FAI

is a bijection. Therefore, using Theorem G.5, we have

detAI _s -
11l = 1R/ 1] = G2t = det Ay = det Ag|[ 7] = 27 V[disc(R) 1]

14.2 Some calculus

In this section we consider a particular subset of R™, with n > 1, which we will use further on.
We devote a section to the calculation of its volume. We suppose that n = r + 2s and set

A={zeR": |~Tl|+"'+fﬂr|+2(\/x3+1+$?+2+'“+\/$i1+x%) <n}.

Before considering the volume of the set A, we observe certain of its properties. For
= (X1, -, Ty Tpy1,---,Trios) € R™, we set

S(x)=a; - .$T($72”+1 + $2+2) .. (56271 + xi)

Proposition 14.1 The set A is a convez, compact, centrally symmetric subset of R™, such that,
forallx € A,
|S(z)| < 1.

PROOF A is clearly convex, compact and centrally symmetric. The arithmetic mean of the
numbers

|$1|7 ] ‘xT|7 \/$3+1 + .%‘$+2, \/‘753-&-1 + x$+27 Tt \/xgz—l + xr%v \/3’5%_1 + x%
is at most 1 and their geometric mean, which is {/|S(z)| is bounded above by the arithmetic
mean, therefore |S(z)| < 1. |

We now turn to the calculation of the volume of A.

Theorem 14.1 We have
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PROOF We consider the volume v, (t) of the subset of R"+2*

AT,s(t)—{xeR":|:E1|—|—~~~—|—|x,n|—|—2(\/I%H+x$+2+~~~+\/z%_1+x%> <t}.

As A, 4(t) =tA, (1), we have

Ups(t) = 750, (1), (14.1)
Given that vol A = v, s(r + 2s), it is sufficient to show that
1 T\ $
ro() = —— 2" (5) . 14.2
vrs(1) (r+2s)! 2 (14.2)

We first consider the case where r = 0; this implies that s > 1, because n # 0. For s = 1 we

have
vo,s(1) = // 1 dzdy = T
z2+y?< g 4

We now suppose that s > 1 and aim to find a relation between vy 5(1) and vy s—1(1). To simplify
the notation we let f be the characteristic function of Ag s(1). f is a function in the variables
X1y...,T2s. Let usset u = (1,...,T25_2 and v = (T25-1,%25). If f, is the function in u obtained

by fixing v and we set
= /fv (u) du,

then, by Fubini’s theorem (see for example [20]), we have

/d) dv—//fuvdudv

However, f,(u) is the characteristic function of the set

A, = {(gch...,xgs,g) €eR*7%:2 (\/x% +ad+. .+ 23, —l—x%SQ) <1-24/23,_ —l—x%s}.
From equation (14.1),
25—2
[atian= (1-2/ v ad) et

and so, writing f(u,v) for f,(u),

/f(u,v) dudv = vg4(1)

/ / voemt(1) (1—wx2+y2)2“ dady

24y2<g

= vgs-1( // 2\/x2+y2) dxzdy.
x24y?2 %

Using polar coordinates we obtain

.

NH

25—2 21 3
1 —2v/22 + y2) dxdy / / (1 —2p)*2p dpdb
o Jo
= 27T/2 (1-2p)*2pdp
0

1
/ u?*72(1 — u) du
0
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and hence the recurrence relation

T 1

11073(1) = UO,s—l(l)§m.

With an induction argument we find that

wa() = (3) (zi)!'

We now consider the case where » > 0 and s > 1. Let g be the characteristic function of
Ay s(1). g is a function in the variables x1,...,z2,. Let us set u = (x1,...,Tr_1,Tr41,.-.,T2s
and v = z,. If g, is the function in u obtained by fixing v and we set

00) = [ gu(w du,

then, by Fubini’s theorem, we have

/¢(U) dv = //g(u, v) dudv.

However, g,(u) is the characteristic function of the set

Bv = {(1’1,...,$r71,$r+1,...,l’25)ERT_1+281‘$1‘+"'+|$r,1|

b2 (Voo tetg bt ) <1 o)

From equation (14.1), we obtain

/ go(u) du = (1 = [2,) 1250,y (1)

and so, writing g(u,v) for g,(u),

/g(u,v) dudv = vr4(1) = /(1—\1:|)’"71+2511,~_17s(1) dx

-1
1

= 2vr_175(1)/ (1—2) 1%y
0

2
——v,_1.5(1).
7"—1—251}7 1’8( )

Using this recurrence relation and the value of vy (1), which we have already determined, we
obtain the expression for v, s(1) in equation (14.2), namely

vrs(1) = ﬁf (g)s

There is one case we have not considered, namely that where r > 0 and s = 0. However, this
is not difficult. As above, for r > 1 we may obtain the recurrence relation

2
vro(1) = ;%4,0(1)-
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This, together with the fact that v1 (1) = 2, enables us to establish by induction that

2T
vro(1) = o
and hence n
vol A= 2o
n!
as desired. This finishes the proof. O

In the next section we will use the results we have considered here to prove certain important
properties of number rings.

14.3 The ideal class group of a number ring

We now return to number rings. As usual, let K be a number field with number ring R. We
recall that in the first section of this chapter we defined a monomorphism ¢ : K — R"™, where
n is the degree of the extension of K over Q, such that the image of R is a lattice Ag. We begin
with a property of general lattices.

Theorem 14.2 If A is a compact, convex, centrally symmetric subset of R™, with vol A > 0,
satisfying the property

ac€ A= 1S(a)| <1,
then every lattice A C R™ contains a nonzero point x such that

n

1S(z)] <

A.
~vol A det

PROOF We use Minkowski’s convex body theorem (Theorem G.4). First we set B = tA, where

t >0 and on
th = VOlAdetA.

Then
vol B = t"vol A = 2" det A.

From Minkowski’s theorem, B contains a nonzero lattice point . As § € A, we have
n

2
ol A det A.

I
S()l =15 <
This ends the proof. m]

Suppose now that we can write n = r + 2s and we take A to be the corresponding set defined
in the previous section, then
n' T\
wora="ar(7)
n!

2
and so we obtain

Corollary 14.1 FEwvery lattice A C R"™ contains a nonzero point x such that

' S
S() < <8> det A.

n s
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Remark We emphasize that the set A and the application S depend on the values of r and s.

We now return to the number field K.
Lemma 14.1 If o € K, then for x = ¢(a), we have
S(x) = Nk /(o).
PROOF Since
o(a) = (o1(a),...,o0(a),Re 71 (), Im 71 (), ... Re 75(a), Im 75(c)) ,
then, by Proposition 10.2,
S(¢(a)) = o1(a) - or(a)ni(a)mi(a) - 7s(a)Ts(@) = Nk /q(a).
This ends the proof. O

Theorem 14.3 A nonzero ideal I in R, the number ring of K, contains a nonzero element «

such that | .
nl 4\ -
Nia(@)] < 2 () VI 1

PROOF Corresponding to the ideal I is the lattice A; = ¢(I). From Lemma 14.1, there exists a
nonzero lattice point z such that

' S
S(z) < 2= (i) det Ay,

n

There exists a nonzero in I such that z = ¢(«) and, from Lemma 14.1, S(z) = Ng/q(a). In
addition, in Section 14.1 it is established that det A; = 5-+/|disc(R)|||I||, therefore

Nia(@)] < 2 () Vi@ ]

as required. O

From this theorem we may deduce two important results, namely

e the number of ideal classes in a number ring is finite;

e for any number field K # Q, there is a prime number p which is ramified in the number
ring R of K.

Let us consider the first question. We set A = 2t ()| /[disc(R)[. (The number ) is called
a Minkowski bound.)

Proposition 14.2 Every ideal class of R contains an ideal J such that ||J|| < A.

PROOF Let C be an ideal class. As the ideal classes form a group, there exists an ideal class
C~'. Let I be an ideal in the class C~!. From Theorem 14.3, there exists a nonzero a € I such
that [Ng/q(a)| < A|I||. I contains the principal ideal («), which implies that I divides (c), i.e.,
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there exists an ideal J such that IJ = (a). As («) is an element of identity class, J lies in the
class C. Therefore, using Theorems 13.2 and 13.4, we have

[Nk jq(e)| = ll(e)l = [IZ]II7]],
which implies that
Nisa()] _ A _
(24 —

as required. O

171/ = A,

We may now handle the first question.
Theorem 14.4 If R is a number ring, then there is only a finite number of ideal classes in R.

PROOF We claim that there is only a finite number of nonzero ideals J such that ||.J|| < A. Let
J be such an ideal. If the decomposition of J into prime ideals is

J =P ... Pl

then, by Theorem 13.2,
[P [P < A

Each prime ideal P; lies over a unique prime number p; and || P;|| = p;"*, for some u; € Nx. Hence

17|

i S A= g S A

There is only a finite number of prime numbers p such that p < A, thus in the decomposition of
J there can only be prime ideals lying over a finite number of prime numbers. However, from
Theorem 13.1, we know that there is only a finite number of prime ideals lying over a given prime
number, so in the decomposition of J there can only be members of a certain finite set of prime
ideals. If P is one such prime and P™ is in the decomposition of J, then ||P||™ < A, so there
can only be finite number of powers of P in the decomposition of ideals J. It now follows that
there is only a finite number of nonzero ideals J such that ||J|| < A, as claimed.

As any class contains a nonzero ideal J such that ||.J|| < A, there can only be a finite number
of ideal classes. a

Remark To prove Theorem 14.4 we only need to know that there is some constant A such that
every ideal class of R contains an ideal J satisfying the inequality ||J|| < A. There exists at least

one other such constant, namely
n n
Hi =D loa(vy),

i=1j=1
where B = {by,...,b,} is an integral basis of O and o1,...,0, are the embeddings of K in C
(see [15]). This constant is known as Hurwitz’s constant, hence the notation, although it is not
certain that Hurwitz was the first to find it. It has the disadvantage of being dependant on the
basis chosen and is also in general larger than Minkowski’s constant. We will see further on that
the bounding constant can be used in determining the class group and it is important that this
be as small as possible.

Definition The cardinal of the class group of a number ring O is referred to as the class number
of K. In general we write h(K) (or just h) for the class number.

We now turn to the second question.
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Theorem 14.5 For any number field K # Q, there is a prime number p which is ramified in
the number ring R of K.

PROOF From Proposition 14.2 we know that there is a nonzero ideal J such that

n! [4\° n" /m\ T
<A=—|[-— i 1 > —
<= 25 (2) Vide®)] — Vi@ = 5 (5)

because n = r + 2s. As 7 < 1, we have

n" /mw
Vdise(R)] > (7>
de(m) > 0 (7

) is increasing, so

V |disc(R)| > %w% >1,

when n > 2; hence some prime number p divides |disc(R)|. From Theorem 13.14, p is ramified
in R. |

n
2

_n"

For n > 1 the sequence (57

The Minkowski bound (or equivalent bound) is useful in determining the class number. In
particular, if X\ is less than 2, then the class number is 1, because every ideal class contains the
unique ideal with norm 1, namely R.

For example, consider the quadratic number field K = Q(v/5). From Exercise 11.4 we
know that disc(Og) = 5. Also, there are no complex embeddings of K into C. Therefore

A= 22—2!(%)0\/5 = @ < 2 and the class number is 1.
As a second example, we take the quadratic number field L = Q(1/—2). From the example

before Exercise 11.4, we know that disc(Or) = —8. As there are two complex embeddings of L
into C, we have \ = 22—;(%)1\/8 = %\/i < 2, s0, as in the first example, the class number is 1.

14.4 Dirichlet’s unit theorem

Let K be a number field of degree n over Q. We recall that, if a € Og is a unit, then
Nk /q(a) = £1 (Proposition 11.3).

We define the monomorphism ¢ as in Section 14.1 and let Ug be the set of units in O.

As in Section 14.1, we let 7 be the number of real and 2s the number of complex embeddings of
K into C (n = r+2s). The complex embeddings arise in pairs, namely 7; and 7;, fori =1,... s.
Fori=1,...,s, let us set o,4; = 7;,. We define a new mapping A : O3 — R""*, which we will
refer to as the logarithmic mapping, by

AMa) = (In]oy(a)|, ..., In|or ()], 2In|org1 ()], ..., 2In |orps(a)]).

Proposition 14.3 Let Y be a bounded subset of R™"* and X = {a € O3 : M«a) € Y}. Then X
is a finite set.

PROOF As Y is bounded, all the coordinates of A\(«) are bounded and it follows that the elements
|o; ()| belong to a bounded interval. Hence the absolute values of the elementary symmetric
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functions of the o;(a) lie in some bounded interval. However, the elementary symmetric func-
tions of the o;(a) are the coefficients of the characteristic polynomial of a (Proposition 10.2),
which is a power of the minimal polynomial m(«, Q) (Proposition 10.1). As this polynomial has
integer coefficients, there is a real bounded interval containing the coefficients of the character-
istic polynomial of o and these are all integers. Therefore there can only be a finite number of
characteristic polynomials of elements « belonging to X. Since « is a root of its characteristic
polynomial, X is a finite set. O

Corollary 14.2 The kernel G of A is a finite group.

PROOF To see that G is finite, it is sufficient to take Y = {0} in Proposition 14.3. We also need
to show that G is a group. If a € G, then |o;(«)| = 1, for all 4, From Proposition 10.2,

n

INisq(@)l =] loi@)l =1,

i=1

so « is a unit. Therefore G is the kernel of A restricted to Uk, which is a homomorphism. Hence
G is a group. O

We now examine G in more detail.
Proposition 14.4 The kernel G of A consists of all the roots of unity of K and is cyclic.

PROOF As G is a finite subgroup of K*, by Theorem 3.3, G is cyclic. If n is the order of G and
a € G, then o™ = 1, hence all elements of G are roots of unity.
Suppose that a € K and o™ = 1, for some m € N*. Then o € Ok and, for every i, with
t=1,...,7r+s,
|oi(a)|™ = |oi(a™)] = 1] = 1.

Thus, for all ¢, |o;(a)] = 1, so In|o;(a)| = 0, which implies that « € G. O

We now turn to the analysis of the group of units Ux. We recall that a subgroup H of a
topological group G is discrete if the topology induced on H is discrete. For example, (Z", +) is
a discrete subgroup of (R",+) with the usual metric topology.

Proposition 14.5 If K is a number field, then its group of units Uk is finitely generated and
there exists t < r + s such that Ug is isomorphic to the product G x Zt.

PROOF From Proposition 14.3, every bounded subset of R""* contains only a finite number of
elements of A\(Uk ), hence \(Uk) is a discrete subgroup of R"*¢. From Theorem G.6, there exists
t < r+ s such that \(Uk) is a lattice in R, hence a free abelian group of rank ¢ (Corollary
G.1). By the first isomorphism theorem A(Ug) is isomorphic to the quotient group Uk /G, hence
Uk /G is a free abelian group of rank ¢, which we write multiplicatively. If B = {Gay,...,Gay}
is a basis of Uk /G and Ga belongs to Uk /G, then Ga is a finite product of powers of the Ga;:

Ga=Gal ... Galt = Gal .. ol

where the k; are unique. Thus there exists § € G such that a = Bo/fl ~-~af". Clearly, B is
unique. From Proposition 14.4 , G is cyclic, so Uk is finitely generated. We also notice that the
mapping

g:Ux — G xZ' avr—— (B k1,..., k)
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is a group isomorphism. O

We will now aim to make precise the value of ¢t. If &« € Ui then

n r r+s
+1 = Ngjq(e) = [[oi(e) = [[oi(e) [] oi(@)oi(e),

i=1 i=1 j=r+1

which implies that
T r+s
0=> Iloi(e)|+ Y 2In|o;(a)l.
i=1 j=r+1
Thus A(«) belongs to the hyperplane
r+s

H={(z1,.. ., Trqs) : sz =0},
i—1

which has dimension r + s — 1. Hence A\(U) may be considered a discrete subgroup of R" 571
and it follows that A\(Uk) is a lattice in RY, where t < r + s — 1 (Theorem G.6). Therefore
A(Uk) is a free abelian group of rank ¢t < r + s — 1 (Corollary G.1). This improves our estimate
of ¢t found in the proof of Proposition 14.5, where we only found that the rank ¢ of A(Uk) was
bounded by 7 + s. It follows that Ug is isomorphic to the product G x Z!, with t <7 + s — 1.

If r+s =1, then t = 0 and Uy is isomorphic to the group G. In fact, in all cases we have
equality, i.e., t = r + s — 1. This is the content of Dirichlet’s unit theorem, which we will now
prove. The proof is much longer than those of the results we have encountered up to now in this
section.

Theorem 14.6 The group Ug of the number field K is isomorphic to the product G x Zt, where
G is the finite cyclic group consisting of all the roots of unity in K andt=1r+s— 1.

PROOF We have already covered the case where r +s = 1, so we will suppose that r+s > 1. Let
W be the R-span of A(Uk). Above we defined a certain hyperplane H. Since A(Uk) is contained
in H, W is a subspace of H. We aim to show that W = H. To do so, it is sufficient to prove
that W+ C H*, or equivalently that * ¢ H+ = x ¢ W+, We fix x = (21,...,7,15) ¢ H* and
define a function f: K* — R by

fla)=z1n|o(a)| + -+ z. In|op ()] + r412In |or 1 (@) + Tpps2n |0y s ()]

To show that x ¢ W+ we will find u € Uk such that f(u) # 0. We will procede by steps.

Step 1: An application of Minkowski’s theorem

Let
. 2 s *
A= \/|dlSC(OK)|(;) cR}.
and let us choose ¢y, ..., ¢4 € RY such that

Cl...cr.(67,+1...cr+s)2:A.
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We define S to be the subset of R™ composed of elements (z1,...,z,) such that, fori =1,...,r,
lzi] < ¢, and a2 + a2, <2y, at g+ at, <Ay, @2 22 < 2, We may view S
as a product of r intervals and s discs. We obtain

r r+s
vol (S) = [[(2ei) [] (wc}) =2"n"A.
r=1 i=r+1

We may associate a lattice Ao, (= ¢(Ok)) with O. From Section 14.1 we have

det Ao, = 27°4/|disc(Ok)|

and so
o , 2.
277_‘_6A — 27"7_r<5 |d1$C(OK)|(7)‘5
Vs
= 2775 /|disc(Ox)|
= 27T2%det Ao,
2” detAOK5
ie.,

vol (S) = 2" det Ao,

From Minkowski’s theorem (Theorem G.4), S contains a nonzero lattice point, i.e., the set
SN¢(Ok) contains a nonzero element. Therefore there exists 5 € Ok which is nonzero and such
that |o;(8)] < ¢, fori=1,...,r+s.

Step 2: Properties of the point

First we consider the norm of 8. To simplify the notation, for i = 1,...,s, we set o,4; = 75
and 0,454; = 7;. Then

r+2s

INx/q(B)] = |Hoi(5)|

r4+s

= [l I loa()
1=1

1=r+1

IN

Cl"'cr'(cr+1"'cr+s)2:A~

As 3 is nonzero we also have |[Ng,q(83)| > 1, because the norm of an algebraic integer is an
integer. Thus we have 1 < |[Ng,q(B)| < A.

We now use the norm to estimate the values of the elements |o;(5)|. Suppose that for some
i <r we have |0;(8)] < §. Then

C; A
L2 INgr@B)l < exeeGorens(enperers)” = 3 =1,

2
a contradiction, so |o;(8)| > %, for i = 1,...,7. In the same way, |0;(8)]* > <%, for i =

r+1,...,7r4+s. Thus we have
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2
¢ ¢
L _ <A, i=1,...,r and <1) <A i=r+1,...,r+s. (14.3)
|o4(B)] |os(B)]
From Theorem 13.5, there is only a finite number of ideals in Ok of a given norm, therefore
there exists a finite number of nonzero principal ideals (71), ..., (9m) of norm at most A. Since

(B = [Nk/q(B)| < A, we must have (8) = (i), for some k, so there exists a unit u € O
such that 8 = uyg.

Step 3: Showing that f(u) #0

For the point z ¢ H* we define
a=a(ci,...,Crys) =2x1Incy + -+ xp12lnepy + -0
We recall the definition of the function f: K* — R:
fle) =z1lnjor(a)| + -+ @pp12In o () + -
Then
[f(u) —al = [f(B) = f(w) —al

< |f)l+la— £(B)]
|f ()| + |z1(lner —Infor1(B)]) + -+ + 2z 41 (Incppr — Infor 1 (B)]) + -+ |

2
f(’Yk)|+|301hl( a )+...+xr+1ln(cr+1) o

lo1(8)] lor+1(8)
r+s
< fOw)+ A
=1
r4+s
< max|f(y)|+mAY |z = B.
i=1

where we have used the equations (14.3). If we can find a, which depends on the ¢;, such that
|a| > B, then |f(u) — a| < B would imply that |f(u)| > 0. We will now show that it is possible
to find such an element a.

We recall the definition of the hyperplane H:

r+s
H={2=(21,...,2,45) ER"T: Zzi =0}
=1

Since H' is the vector subspace generated by the vector
v=(1,...,1) e R""*,

xé mt implies that we cannot have z; = --- = x,45. To simplify the notation, we set d; = ¢;,
fori=1,...,rand d; =c?, fori=r+1,...,7 +s. Then

a=z1Ind; + -+ zrpsInd, s
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and H::f d; = A. As already stated there exist z; # x;. Without loss of generality, let us
suppose that i =1 and j = 2. If we set dg3 = --- = d, ;s = 1, then dyde = A and

r+s

la] = | sz In d;|
i=1

|l‘1 hldl + X9 lnd2|

A
|l‘1 In dq —|—J,‘21I1f|
dy
= |(z1 —2z2)Ind; + z2In A] — o0,

when d; — co. Hence we can find an element a such that |a] > B and so W = H.

In Proposition 14.5 we saw that there are elements aq, ..., a; € Uk such that for any element
a € Uk we have a = ﬂo/fl -~~af‘, where [ is a root of unity. Then

AMa) = ABak - aft) = kyAon) + - + k(o).

It follows that the set B = {A(a1),...,A(ay)} is a generating set of W and hence of H. Given
that the dimension of H is r+s—1, we have t > r+ s — 1. However, we know that t <r+s—1,
so we have t = r + s — 1. We deduce that B is a basis of the vector space H. Also, A(Uk) is a
free abelian group of rank ¢ and the elements of B form an independant generating set, so B is
also a basis of the free abelian group A(Uk). O

Dirichlet’s unit theorem implies that there are t = r 4+ s — 1 particular units in Ok such that
any unit o € Ok can be expressed uniquely in the form

o= pab ok,
with 8 a root of unity and the k; in Z. The set {a1,...,a;}, which is not unique, is called a
fundamental system of units.

As an example, let us consider the cyclotomic field K = Q((), where ¢ = ezgi, with p an odd
prime number. The degree of the extension K over Q is p — 1 and so there are p — 1 embeddings
in C. As the applications o;, with 0;(¢) = ¢/, for j = 1,...,p — 1, are distinct embeddings, all
the embeddings are complex, i.e., r = 0,2s = p— 1, which implies that t = 0+ ”2;1 —1= %. If
p = 3, then the only units are the roots of unity. If p > 5, then there is an infinite number of units.

If K = Q(y/m) is an imaginary quadratic field, then there are no real embeddings and so
2s =n=2=—s=1=1t=0, so again the only units are the roots of unity.

Now we consider real quadratic fields, which are more interesting. If K = Q(y/m) is a real
quadratic field, then there are no imaginary embeddings in C, so s =0 and r = 2. Thus ¢t =1
and there is an infinite number of units. There are only two roots of unity, namely +1, hence
there exists an element x € Uk such that the elements u € Uk can be written u = +x", with
n € Z. If u is a unit, then so are —u, % and f%. This implies that there are units v with v > 1.
Let us set U; for the set of such units. The elements of Ux can be determined from those of
UE: u € Uk if and only if there exists v € U?; such that u = £v or u = :I:%.

Let us look more closely at the set Uj. If v € Uy, then v = 42", which implies that v = |z|".

Clearly |z| € Uk. If |z| < 1, then we may replace « by L, which ensures that v = |z|", with
n € N*. It is clear that |z| is the minimum of U}; and that the elements of U}t are the positive
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powers of this minimum, which we call the fundamental unit of K.

We now consider how we might calculate the fundamental unit. There are different ap-
proaches to this question. We will give an elementary method. There are two cases.

Case 1: m = 2,3 (mod 4) The algebraic integers are of the form x = a + b\/m, with a,b € Z (see
the proof of Theorem 11.6). The units are those whose norm is +1, i.e., a? — b*m = +1. We
seek the smallest such element whose value is greater than 1. Here is a simple method to find
it: Compute mb? for b = 1,2,3... until either mb? + 1 or mb? — 1 is a square a2, where a > 0.
Then set u = a + by/m. u is the fundamental unit.

Example Let m = 6. Then 6 - 12 & 1 is not a square. However, 6 -2% = 24 and 24 + 1 = 52,
hence the fundamental unit is 5 + 2v/6.

Case 2: m = 1 (mod 4) The algebraic integers are of the form z = %(a + by/m), where a,b € Z

and have the same parity (see the proof of Theorem 11.6). Since the norm of z is §(a® — mb?),
x is a unit if and only if a® — mb? = 44, with a and b both odd or even. We seek the smallest
such element whose value is greater than 1. Here is a simple way to find it: Compute mb? for
b=1,2,3...until either mb>+4 or mb*>—4 is a square a?, where a > 0. Then set u = 3 (a+by/m).
u is the fundamental unit. (As m is odd, the elements a and b found will have the same parity;

this may be seen by considering the norm of w.)

Example Let m = 17. Then 17-1244 is not a square. However, 17-22 = 68 and 68—4 = 64 = 82,
hence the fundamental unit is u = (8 + 2v/17) = 4 + V17.

Exercise 14.1 Calculate the fundamental unit of Q(v/m) form =7, m =11 and m = 21.

Exercise 14.2 Let m = 2,3 (mod 4), K = Q(y/m) and v = a + by/m be an element of Uk.
Show that +a + by/m all belong to Uk. FEstablish a similar result for m = 1 (mod 4) and
u = %(a+by/m) an element of Uk

Remark We have seen here that all the embeddings of the number field K into C may be real.
In this case we say that K is totally real. Then the units in Ok are the roots of unity and so Uk
is finite. On the other hand, it may be so that no embedding is real. In this case we say that K
is totally imaginary.

Exercise 14.3 Show that a number field K which is a normal extension of Q is either real or
1Maginary.

14.5 Hermite’s theorem

In this section we will see another application of Minkowski’s theorem (Theorem G.4). We will
show that for any given positive integer there is only a finite number of number fields whose ring
of integers has a discriminant equal to the positive integer in question. We will begin with a
preliminary result.

Proposition 14.6 Let K be a number field of degree n and r (resp. 2s) the number of real
(resp. complex) embeddings of K into C. If I is a nonzero ideal in O and cy, ..., Crys positive

constants such that
r+s

2 . )
1> (=)°Idise(Ox)|* | ],
=1
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then there exists o monzero in I, with |o;(a)| < ¢; for 1 <i < r, and |o,1j(a)* < ¢ryj, for
1<j<s.

PROOF Consider the region
Xe)={z=(y,2) ER"~R"x C*: |y;| < ¢;, 1 <i <ri|2]? <erpjy 1 <5 < s}
It is clear that X(c) is convex and centrally symmetric. Also
r+s
wX(@) = 2x[Jea > 2 5( )*[disc(Or)|2 1]
= 2"27*|disc(Ok)|? | 1],
where 11 denotes Lebesgue measure on R™. In Section 14.1 we saw that
det A; = 27%|disc(Og)|2 ||| = u(X(c)) > 2" det A;.

From Minkowski’s theorem there exists an « € I such that ¢(«) # 0 and ¢(«) € A;NX(c). Thus
we have a # 0 and |o;(a)| < ¢; for 1 <4 <r, and |o,1j()|? < ¢rq4, for 1 < j < s, as required.O

We are now in a position to establish Hermite’s theorem.

Theorem 14.7 For a fized positive integer d there exist only finitely many number rings Ox
such that disc(Ok) = d.

PROOF If K is a number field and [K : Q] = n, then there is an ideal I in Ok such that

n! 4 P 1 n" s . 1
171 < 22 ldise(Or0)F = (D) < Jdise(O) 1
because ||| > 1. Hence the degree of the extension is bounded and so it is sufficient to prove
that there is only a finite number of number rings with a given discriminant when the degree of
the corresponding number field has a certain value. We consider two cases : (1) K has a real
embedding in C, (2) all embeddings of K in C are complex.

Case 1 In this case r > 0. We choose real numbers ¢;, for 1 <i <r+s, such that ¢; > 1, ¢; < 1

for i > 1 and
r4+s

H ci > |d18C(OK)|%

From Proposition 14.6 there exists a nonzero a € Ok such that |o;(«)| < ¢;, for 1 < i <r, and
|04 ()]? < ¢y, for 1 < j < s. Since

1 < [Ng/q(a)| = loi(a |H|Uz I ] lorss(@)],
j=1

we have |oq(«)| > 1 and |o; ()| < 1, for o; # 1. Hence o1(a) # o;(«), if ¢ # 1.
Case 2 We define a centrally symmetric convex region X of C* as follows:

,2<j <s},

1 1
X ={2€C’:|R(=)| < 3 1S(21)] < en, |22 < ¢ = 3
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where ¢; is some constant such that p(X) > 2727%|disc(Ox)|2 = 2" det A. From Minkowski’s
theorem there exists a nonzero a € O such that ¢(a) € X N A, where ¢ is the usual monomor-
phism of K into C. Therefore we have [R(o1(a))| < 3, |S(o1(a))| < 1 and |oj(a)?> < &, for
2 <j<s. Now

1< [Ngjq(@)l = o) [T loj (@) = |o1(a)® > 1.
j=2

Therefore, if 2 < j < s, we have 0;() # o1(a). (As |o1(a)| > 1 and [R(01(a))| < %, we must
have |S(o1(a))] > ?)

In both cases we have n = [Q(«) : Q]. If this is not the case, then [K : Q(a)] = m > 2 and oy
restricted to Q(«) may be extended to K in m distinct ways (Theorem 3.2), which implies that
there exists o; # o1 such that o;(a) = 01(a), a contradiction. It follows that [K : Q(«)] = 1,
ie, K =Q(a). If f =m(a,Q), then deg f =n and f € Z[X].

From Proposition 10.2 we have

n

char g/q(a) = [[(—oi(a) + X) € Z[X],

i=1

because char g, q(a) is a power of f, by Corollary 10.1. Also, as the ¢; are bounded, so are
the coefficients of char x,q(a) and it results that the coefficients of f are all bounded. We now
observe that there can only be a finite number of polynomials in Z[X] with all the coeflicients
bounded. Let us write P(c) for the set of such polynomials obtained here. If K is a number field
whose ring of integers Ok has discriminant d and [K : Q] = n, then, from what we have seen,
there exists @ with minimal polynomial f in P(c) such that K = Q(«a). As a polynomial has a
finite number of roots, there can only be a finite number of number fields with K = Q(«) and «
a root of a polynomial in P(c¢). This finishes the proof. ]
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Chapter 15

Differents

In this chapter we introduce the different, which, as the norm, trace and discriminant, plays an
important role in algebraic number theory. We will define the different and then consider its
properties. As the definition requires quite a lot of preliminary work, we will consecrate a section
to it.

15.1 Definition of the different

Let C be a Dedekind domain and K its field of fractions. Suppose that L is an n-dimensional
separable extension of K and D the integral closure of C' in L. From Theorem 12.15, D is also
a Dedekind domain and, from Proposition 11.2, L is the field of fractions of D. We consider
the bilinear form B defined on L x L by (z,y) — T,k (zy). This is nondegenerate, because
L is a separable extension of K (see Corollary 10.4). From Lemma 12.8, we know that if
B = {z1,...,z,} is a basis of L over K, then B has a dual basis B* = {z},...,z}}, ie.,
B(x;, x;‘) = 0;;, where ¢;; is the Kronecker symbol.

Proposition 15.1 Let L be a separable n-dimensional extension of K and B the nondegenerate

bilinear form on L x L defined above. We suppose that {x1,...,x,} is a basis of L over K and
{z%,...,xk} its dual basis. Then

discr i (21, .., %) - discp g (27, ..., 2,) = 1.
PROOF Let 01,...,0, be the K-monomorphisms of L into an algebraic closure C of K. We set

X = (0i(z;)) and X* = (0y(x3)). Then
Xz = (T x(z}z;)),

therefore
det X*det X =det ], = 1.

However,
discr, /g (21, - .., 2,) = (det X)? and discr, /e (2}, ..., 25) = (det X*)?,

therefore
discr /g (x1,...,2pn) - discr /g (27, ..., 25,) =1,
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as required. O

For a subset M of L, we define
M* = {.'L' elL: TL/K(.’L'y) eC, Yy € M}

M* is called the complementary subset of M. In the next proposition we consider some elementary
properties of complementary subsets.

Proposition 15.2 We have
e a. M* is a C-module. If DM C M, then M* is a D-module.
e b. My C My = Mj C M{.
e c. DCD* and Ty, /g (D*) C C.

o d. If M is a free C-module with basis B = {x1,...,x,}, then M* is a free C-module with
basis {xF,..., x5} and M** = M.

(The basis B is also a basis of the vector space L over K, so has a dual basis B* = {x7,...,z}}
in L.)

PROOF a. Let z1,22 € M* and y € M. Then
Trk (w1 4+ 22)y) = Tr /(1Y) + Tk (22y) € C,
soxy+ag € M*. fae C,x € M* and y € M, then
Tk ((ax)y) = aTr k (zy) € C,

so ax € M*. We have shown that M* is C-module.
Suppose now that DM C M. If be D, x € M* and y € M, then

Tk ((bx)y) =Tk (x(by)) € C,

because by € M. Hence bx € M* and it follows that M* is a D-module.
b. The proof of this part is elementary.

c. Let x € D. As x is integral over the integrally closed domain C, from Proposition 11.1
the minimal polynomial m(z, K) has coefficients in C. However, the characteristic polyno-
mial char 7,/ (x) is a positive power of m(xz, K) (Proposition 10.1), therefore the coefficients of
char 1, (x) belong to C, in particular T/ (v) € C. Thus Ty k(D) C C. If z,y € D, then
xy € D and so T,k (xy) € C, which implies that » € D* and it follows that D C D*.

By definition, if z € D*, then 17,k (vy) € C, forally € D. As 1 € D, Ty, /g (x) € C and so
TL/K (D*) cC.

d. We know that B* is a basis of L over K. To show that B* is a basis of M*, we first need to
establish the inclusion of B* in M*. If 7 € B*, then, for z; € B, we have

Ty k(vjzj) = 6i € C =Ty x(zjy) € C, Vy € M,

because {x1,...,z,} is a C-basis of M. Thus x} € M*, for all 7.
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As B* is independant over K, this is also the case over C, which is a subset of K. To show
that B* is a basis of M*, we need to show that it is a generating set. As B* is a basis of L over
K, for x € M*, we have x = " | a;x}, with a; € K. It is sufficient to show that the a; € C.
We have

a; :TL/K ((Zam?) :L'j> eC Vj = a; € C,
i=1

Thus B* is a generating set of M*.
We now turn to the second part of d. M* is composed of those elements x € L which can be
written in the form z = Y"1 | a;z}, with a; € C, for all i. Replacing M by M*, we see that M**
is composed of those elements x € L which can be written in the form z = "7 | a;x}*, with

a; € C, for all i. As z}* = x;, for all i, we have
M*™ =M

)

as claimed. O

We now concentrate our attention on D*. For the next proposition we will need two standard
results on Noetherian rings. Proofs may be found, for example, in [1].

Lemma 15.1 e a. If M is a finitely generated module over a noetherian ring R, then M 1is
noetherian.

e b. A submodule of a noetherian module is finitely generated.
Proposition 15.3 D* is a fractional ideal of D.

PROOF As DD C D, from Proposition 15.2 a., D* is a D-module (contained in the field of
fractions of D). It is sufficient to show that D* is a finitely generated D-module. (If this is
the case, then the product of the denominators of the elements of a generating set provides a
denominator of D*.)

Since the extension L/K is finite and separable, from the primitive element theorem there
exists a € L such that L = K(«). As « is algebraic over K, the fraction field of C, there exists
¢ € C'\ {0} such that d = ca is is integral over C; then d belongs to D, the integral closure of
C in L. Moreover, the set D = {1,d,...,d" '} is a basis of L over K, since [L : K] = n and
L = K(d) ensure that the the degree of the minimal polynomial m(d, K) is n. The free module
C-module generated by D is the module C[d].

As C[d] € D, we have D* C C[d]*, using Proposition 15.2 b. Also, C' is a Dedekind domain,
hence a noetherian domain, and C[d]* is finitely generated over C, so C[d]* is a noetherian
C-module (Lemma 15.1 a.). Since D* is a submodule of the C-module C[d]*, D* is finitely
generated over C' (Lemma 15.1 b.). Given that C' C D, this is also the case over D. m|

We are now in a position to define the different. We notice that D* is nonzero, because
D C D*, so it has an inverse in the set of fractional ideals of D. The fractional ideal (D*)~1 is
called the different of D over C and is denoted A(D|C). In the next section, we will see that the
different is in fact an integral ideal of D.

Remark Suppose that K and L are number fields, where L is a finite extension of K. If we set
C = Ok and D = Op, then C and D are Dedekind domains and D is the integral closure of C
in L. In this case we often write Ay /i for A(D|C). If K = Q, then, instead of writing Ay, /q,
we often use the shorter form Ayp. Ay is called the absolute different of L.
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15.2 Basic properties of the different

As we said at the end of the preceding section, the different is an integral ideal of D. We will
now prove this.

Proposition 15.4 The different of D over C is an integral ideal of D.

PROOF As D C D*, we have (D*)~! ¢ D=! = D, so (D*)~! is an integral ideal of D. O

We may generalize the product of two ideals in the following way. If R C S are commutative
rings and I (resp. J) is an ideal in R (resp. S), then we may define the product JI to be the
collection of all sums of the form Z?Zl x;y;, where x; € I and y; € J. Then clearly JI is an
ideal in S. In the case where R and S are integral domains, we may generalize the product of
fractional ideals in a similar manner.

We recall that C' is a Dedekind domain with field of fractions K, L a finite separable extension
of K and D the integral closure of C' in L. In addition, let M be finite separable extension of L
and E the integral closure of D in M. Then M is also a finite separable extension of K and E
the integral closure of C' in M. The differents A(D|C), A(E|C) and A(E|D) are all defined and
related in the following way:
A(E|C) = A(E|D)A(D|C).

We say that the different is transitive. To prove this result we need a lemma.

Lemma 15.2 Let C be a Dedekind domain, with field of fractions K, L a finite separable exten-
sion of K and D the integral closure of C in L. Assume that J is a fractional ideal of D. Then
Tk (J) C C if and only if J C D*.

PROOF Suppose that 77k (J) C C. As J is a D-module, we have J = DJ. If z € J and d € D,
then 17,k (xd) = Tk (y), with y € J. Thus T,k (2d) € C and it follows that J C D*.

We now consider the converse. Suppose that J C D*. If x € Jandd € D, then Ty, /i (zd) € C.
Setting d = 1, we obtain 77,k (x) € C and it follows that T/ (J) C C. O

We may now establish the transitivity of the different referred to above.

Theorem 15.1 We have
A(E|C) = A(E|D)A(D|C).

PROOF To simplify matters, we will proceed in steps. However, first of all we recall that
A(E|D)™' ={z € M : Ty (zy) € D,Vy € E}

and
A(EIC) ™ ={z € M : Ty x(zy) € C,Vy € E}.

Also, we will write D* for A(D|C)~L.
Step 1 If Jg is a fractional ideal of E contained in A(E|D)~!, then

Tk (JED®) C Tryi (D).

Indeed, if d € D, d* € D* and jg € Jg, then

Tr i (T (Ged*)d) = Tr i (dd* (Tar/n(GE))) »
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because d* € L. Moreover, jp € A(E|D)~" implies that Th/1(jp) € D. Consequently,
Ty K (TM/L(jEd*)d) C C, since d* € D*. This means that

TM/L(JED*> C D* — TL/K OT]V[/L<JED*) - TL/K(D*)

and transitivity of the trace ensures that the statement of Step 1 holds.
Step 2 Jp C A(E/C)~1D*.

From Proposition 15.2 c. and the first step, we have
COTy(D*) D Tnyr(JeD").
Now, using Lemma 15.2, with L = M, D = FE and J = JgD*, we obtain
JeD* C A(E|C)™!' = Jg C A(E|C)"*A(D|C),
because D* = A(D/C)~ 1.

Step 3 A(E|C) = A(E|D)A(D|C).

Setting Jp = A(E|D)~!, we obtain
A(E|D)™! ¢ A(E|C)*A(D|C).
Since C' C D, we have A(E|C)~! ¢ A(E|D)~! and so
A(E|D)™! c A(E|C)"*A(D|C) ¢ A(E|D)"'A(D|C) c A(E|D)™!,
because A(E|D)~! is an E-module and A(D|C) C D. Therefore
A(E|D)™' = A(E|C)*A(D|C) = A(E|C) = A(E|D)A(D|O).

This ends the proof. O

If we multiply A(D|C) on the left by E, we obtain an ideal of E and an analogous expression
to that of Theorem 15.1, but involving a multiplication of ideals in E.

Corollary 15.1 We have
A(E[C) = A(E|D) (EA(DIC)).

PROOF It is sufficient to show that

A(EID) (EA(D|C)) = A(EID)A(D|C).
As A(D|C) Cc EA(D|C), we have

A(E|D)A(D|C) C A(E|D) (EA(D|C)).
Now let € A(E|D) and y € EA(D|C). Then y = >_"" | a;b;, with a; € E and b; € A(D|C), so

zy=xY abi =Y (ax)b; € A(E|D)A(DC)),
i=1 i=1

because A(E|D) is an ideal in E. It follows that

A(EID) (EA(D|C)) € A(E[D)A(D|C),

and hence the required equality. m|
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15.3 Rings of fractions

We now consider rings of fractions. Let C be a Dedekind domain, with field of fractions K, and
L a finite separable extension of K. We suppose that D is the integral closure of C'in L and U
a multiplicative subset of C. As C C D, U is also a multiplicative subset of D. We recall that
D’ = U~'D is the integral closure of C' = U~1C in L. (Proposition 12.20).

If P is a prime ideal of C' and U = C'\ P, then we write Ap(L|K) for A(D’|C"). The different
Ap(L|K) is called the different of L|K over P.

We now consider the special case of number fields. We wish to find a relation between Ay /g
and A(D'|C").

Theorem 15.2 Let K C L be number fields, where L is a finite extension of K and C = Ok,
D = Oy, the corresponding number rings. If U is a multiplicative subset of C and C' = U~'C,
D' =U"'D, then

D'Apx = AD'|C).

PROOF If € D'Ap f, then z is a finite sum of products of the form ab, with a € D" and
b€ Ap k. However, a = g, with d € D and u € U. As Ap g is an ideal in D, db € Ap g, so
r=2% withye Ap/x andu e U.

Let z € D"™; then Ty /i (2D") C C'. As D is a finitely generated Z-module, D is a finitely
generated C-module. Let {t1,...,t,} be a generating set of D. Then Ty k(2t;) = %, with
¢; € Cand u; € U. We set ug = uy - -u,, € U. Then

TL/K(zuoti) = UOTL/K(Zti) e C,
fori=1,...,m. Hence
TL/K(ZUUD) cC= U € D*.

Now, A(D|C) = D*~! and y € A(D|C), so, by Proposition 12.8, yzug € D. From this we deduce

that
_yzug

uug

xz eD.
Thus, for every z € D™*, xz € D’. Using Proposition 12.8 again, we obtain that = belongs to the
inverse of D™, i.e., x € A(D'|C”"). We have shown that D'Ar/x C A(D'|C").

We now consider the reverse inclusion. Let x € A(D’|C’). First we recall that D* is a
fractional ideal of D (Proposition 15.3), hence D* is a finitely generated D-module (Proposition
12.7). Let {z1,...,2,} be a generating set of the D-module D*. Then Ty x(z;D) C C. If
Y ¢ D', then

1
TL/K(ZZ'%) = ETL/K(Ziy) €' = Ty g(zD') CC,

which implies that z; € D’*. Using Proposition 12.8, we obtain zz; € C’ C D’ = U~'D and so
we may write xz; = %, with d; € D and u; € U. Let ug = uy---u, € U. Then ugxz; € D, for
i=1,---,n, hence ugxD* C D, thus

urA(D|C)™t € D = ux € DA(D|C) = A(D|0)

and so
r € U'A(D|C) ¢ D'A(D|C).
Therefore
A(D'|C") c D'A(DI|C).
This ends the proof. m|
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15.4 Preliminary work for Dedekind’s different theorem

Let K C L be number fields with respective associated number rings C' and D. The different
Ak is an ideal in D such that Ay g # {0}. If A, # D, then there exist nonzero prime
ideals @1, ...,Q, in D and positive integers nq,...,n, such that

Ap/g =QT --- Q).

If @ belongs to the set of prime ideals in this decomposition and @ = @, then we set sg =
5Q(L/K) = n;. For any other prime ideal @ in D, we set s = 0. In particular, if Ay x = D,
then sg = 0, for all nonzero prime ideals in D. sq is called the exponent at QQ of the different
AL/K.

If @ is a nonzero prime ideal in D, then P = C'N Q is a nonzero prime ideal in C' (Theorem
13.1). From Proposition 13.1 we have Q|DP. If

DP =Q% - Q¢

then @ = Q;, for some @; in the decomposition of DP. We call e; the ramification index of @
and note it eg. (In fact, eg = e(Q|P), where P = CNQ.) Q is said to be ramified if eqg > 2.
There is an important relation between sg and eq:

Result For every nonzero prime ideal ) in D, we have sg > eg — 1. In addition, sg =eg — 1
if and only if the characteristic of the field D/Q does not divide eg.

The proof of this result is rather long and requires some preliminary work. This we will do in
this section and in the next we will concentrate our attention on the proof of the result.

Lemma 15.3 Let ¢ : S — S be a surjective ring homomorphism. We suppose that R is a
subring of S such that S is a free R-module with basis B = {x1,...,x,}. We note R the image

of R and B={%1,...,Z,} the image of B and we suppose that S is a free R-module with basis
B. If x € S, then

¢ (Ngyr(z)) = Ng/p(Z) (15.1)
¥ (Tsyr(x)) = Ts/r(T) (15.2)
P~ (char S/R(x)) = char S/R(f), (15.3)

where ¥* is the mapping from S[X|] into S[X] which applies 1 to each coefficient of a polynomial
of Slzx].

PROOF We note 0, the mapping from S into itself defined by multiplication by x and M (6,.) the
matrix of 6, in the basis B. In the same way we note ¢; the mapping from .S into itself defined
by multiplication by Z and M (6;) the matrix of 8z in the basis B. If

n
T = E T3 T; j=1,...,n,
i=1

then

n

jﬂ_ﬁj: E Fijfi ]:1,771

i=1
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Therefore,
M(Qx) = (Tij) and M(Qi) = (’Fij).

If we apply 1 to the coefficients of the characteristic polynomial char g/z(x) = det (X1 — M (6y)),
then we obtain det (X1 — M(0z)) = char g,(%), i.e., the third relation. The other two relations
follow easily. O

The next preliminary results are more difficult. Let R be a ring and K a subfield of R.
Then R is a K-vector space. We suppose that dimg R = n < oo. In addition, let § : R — R
be a K-linear endomorphism and we suppose the existence of K-subspaces R; of R forming a

decreasing sequence
R=RyDR1 DD Rik_1DRr={0}

such that O(R;) C R;, for i = 1,...,k. Then 6 induces a K-linear endomorphism 6; on R;_1/R;
defined by

(If 2" € Ry, then
O(x+2')+ R =0(z) + 0(2') + R; = 0(z) + Ry,

because 0(z') € R;, so 6; is well-defined.)

Lemma 15.4 For each index i =1,...,k, let B; = {xi1,...,Zim,} be a set of elements of R;_1
such that {x;1 + Ri,...,Tim, + Ri} is a basis of R;_1/R;. Then, for i =1,... k, the set

B, =B;U---UBy
is a basis of R;_1. In particular,
B=B =B U--UBy
is a basis of R.
PROOF If x € R;_1, then there exist A;1,..., \im, € K and y € R; such that
T = A% + 0+ N Tim, + -

As y € Ry, there exist A\iy11,..., Niy1,m,s, € K and z € R;; 1 such that

Y= N 1,1Ti41,1 T+ N mi Tidlmay, T+ 2

Continuing in the same way, we see that B; is a generating set of R;_1, since Ry, = {0}.
Suppose that

Ai1Ti1 e F A, Tim, A 1,1Ti 11,1+ F AN Lmay Tit Lmags T A1 TRL T+ Ay, Thomy, = 0.
Then
Aid1,1Ti+1,10 T - F Memp Toomy, € B == AT + -+ + Xim, T, € R

As {zi1 + Ri,...,Tim, + R;} is a basis of R;_1, we have \j; = -+ = A\;,, = 0 and it follows
that A\jtr11Zit1,1 + - + Aemg Thm, = 0. We now repeat the preceding argument to show that
Ait1,1 = -+ = Ait1,m;,, = 0. Continuing in the same way we find that all the coefficients \;;
have the value 0. Hence B; is an independant set and so a basis of R;_1. O

The basis B enables us to find a factorization of the characteristic polynomial of the K-linear
homomorphism 6 defined above.
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Proposition 15.5 We have

k
char gk (0) = H char (r,_, /R,y K (03)-
i=1

PROOF We consider 6 with respect to the basis B. As §(z;;) € R;—1, we may express it in terms
of the basis B;:

my Mi+1 mpe
0(zi;) = E XijiTa + E Ni1,jiTip1,0 + -+ E AkjlTrl,
=1 =1 =1

where the coefficients A, belong to K. Then

0;(Zi) = > AijiTi
=1

and so
M(6,) 0 0
My M(62) 0
M) = . )
M}d ng e M(@k)

where M () is the matrix of 6 in the basis B and, for i = 1,...,k, M(6;) is the matrix of ¢; in
the basis B; = {Zi1, ..., Tim, } of Ri—1/R;; the other blocks M;; are matrices with entries in K.
It now follows easily that

k
char p/ K (0) = Hchar (Ri1/Ri)) K (03).

i=1
This ends the proof. a
Suppose now that we remain in the same context and add the following conditions (C):
e a. Each R; is an ideal in R;
e b. For each i =1,...,k, there is no ideal I in R such that R; 1 2 I 2 R;;
e c. Ifye Ry and z € R;,_1, then yz € R;.
Lemma 15.5 Under the conditions (C), if y,z € R with yz € R; and y ¢ R;, then z € R;.

PROOF From a. and b. R; is a maximal ideal in R. We claim that R; is the unique maximal
ideal. Suppose that t € Ry; then t € Ry_1, so, from c., t> € Ry. Now t € Ry and t?> € R3_1, so
t3 € R3. Continuing in the same way, we find that t* € Rj, = {0}, so

(1-tA+t+-+tFH=1-t"=1,

so 1 — t is invertible. If I is a maximal ideal of R such that I is not included in R;, then
R = Ry + I, because [ is a maximal ideal in R, so there exist t € Ry and u € I such that
1 =t + u. However, u = 1 — t is invertible, which is impossible, because I is a proper ideal in
R. Tt follows that any maximal ideal I in R is included in R; and so R; is the unique maximal
ideal of R.
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Suppose that z € R\ Ry and z is not invertible. Then z lies in a maximal ideal I. As there
is only one such ideal, namely Ry, z € R;, a contradiction, so z is invertible.

Let y,z € R, with yz € R;. If 2 ¢ Ry, then z is invertible. Since R; is an ideal, we have
y=z2"tyz € R;. |

We are now in a position to establish a key result of this section. We will remain in the same
context, with the conditions (C') and suppose that the linear mapping 6 = 6, (multiplication by
x € R, for some fixed x € R).

Theorem 15.3 Fori=1,...,k,

char (Rl_l/Rl)/K(ﬁz) = char (R/Rl)/K(Gl),
Hence .
char gk (z) = (char (r/R,) Kk (01))

PROOF We claim that, for i = 1,..., k, there exists a linear isomorphism \; : R,_1/R; — R/R;
such that §; 0 \; = \;06;. Let u € R;_1 \ R;. Then R; C R; + Ru C R;_1. As R; is an ideal of
R (condition (C) a.), R; + Ru is also an ideal of R. In addition, R; + Ru = R;_1 (condition (C')
b.) f y+ R; € R;—1/R;, then y = ya + y1u, with y2 € R; and y; € R. We set

Ai(y + Ri) = y1 + Ra.
Suppose that y = zo + zyu, with 29 € R; and z; € R, then
0= (312 - Z2) + (3/1 - 21)u - (y1 - zl)u € R;.

Given that u ¢ R;, from Lemma 15.5 we obtain that y; — 21 € Ry, s0 y1 + R1 = 21 + Ry, l.e., A;
is well-defined. Clearly J; is a surjective R-module homomorphism. Suppose that A\;(y + R;) =
0€ R/Ry. If y =ys + y1u, then y; € Ry and, from condition (C) c., y1u € R; and so y € R;,
ie., y=0¢€ R;_1/R;. Tt follows that )\; is injective. We have shown that \; is an isomorphism.

It remains to show that 61 o \; = \; 06;. Let y be an element of R;_; such that y = ys + y1u,
with yo € R; and y; € R. Then xy = xys + (zy1)u, with 2y, € R; and zy; € R. We have

01 (Ni(y + Ri)) = 01(y1 + R1) = 0(y1) + R1 = wyr + Ry,

and then
zyr + Ry = Ni(zy + Ry) = N (0(y) + Ri) = i (0i(y + Ry)) -

Hence 61 o A\; = \; 0 6;, as claimed.

Let B, = {x1,...,zm} be a K-basis of R,_1/R; and B} = {zf,...,z),}, where ], = \;(xy),
for k =1,...,m. Then B} is a K-basis of R/R1, because ), is a linear isomorphism. If 0;(z;) =
> ohey @}y, then

A (Bi(x5)) =D ajhilak) = Y aial,
=1 =1
and

01() = 01 (i) = N (0(5)) = D @l
k=1

Thus the matrix of §; with respect to the basis B; and the matrix of 6; with repect to the basis
B; are the same. It follows that

Char (Ri_l/Ri)/K(gi) = char (R/Rl)/K(el)
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and, using Proposition 15.5, we obtain

k
char R/K(g) = (char (R/R1)/K(01)) )
as required, since # = 6,, the multiplication by =x. O
We now turn to Dedekind domains. Let C be a Dedekind domain, with field of fractions K,
and L a separable extension of degree n of K. We suppose that D is the integral closure of C'
in L. (We know from the remark after Theorem 12.15 that D is a Dedekind domain, which is

distinct from C, if n > 1.) We take a nonzero prime ideal P of C. As DP is an ideal in D and
DP # {0}, D, we have a decomposition

pp=]Ja5.
i=1
where the Q; are prime ideals in D and the e; positive integers. From Theorem 12.16, D/DP is a
vector space over the field C/P = F of dimension n. We now define certain canonical mappings:
¢IC—)F, ’(ﬂoD—)D/DP and wlD—)D/QZZLL,
for i =1,...,r. It will be shown during the proof of Theorem 15.4 that L; is a field extension
of F of finite degree. If i # j, then @); and @); are coprime and this is also the case for Q;* and
Q5. With
U=C\P, c'=vu"'c, D'=U"'D and P =C'P
we define the following canonical mappings:
Y:0'—C'/P'=F  and  ¢y:D' — D'/D'P.

From Corollary 12.11, there is a ring isomomorphism ¢ from D/DP onto D’/D’P, taking d+ DP
to % + D'P. The image of F is F’.
From Proposition 12.4, we have

N, @ =[] @5 = DP,
i=1
so, using Corollary F.1, we obtain
D/DP~ ][ D/Q5.
i=1

Explicitly the isomorphism is defined by

n(y+DP) = (y+Qf,...,y + Q).

Fori=1,...,r, we define
mi(y + DP) =y + Q7
i.e., m; is the projection of D/DP onto D/Q;".
If A and B are rings and o : A — B a ring homomorphism, then we define a* to be the
mapping from A[X] into B[X] which applies a to each coefficient of a polynomial in A[X].
With this preliminary work, we may now state (and prove) the second key result of this
section.
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Theorem 15.4 If x € D, then char 1,k (x) € C[X] and
o a. (char L/K(a:)) = H;Zl char 1 /p (Y (x)7;
o b. ¢ (TLk(x) =>_ e, r (P;(2));

o c. ¢ (Nyk(z)) = H;:1 Ny, r ().
(It is important to show that char /i (x) € C[X], because the mapping 1 is defined on C.)

PROOF The proof of this result is rather long, so we have divided it into parts and paragraphs.
Also, to simplify the notation, in general we write z for 7.

Part 1

- As z € D, z is integral over C, therefore the minimal polynomial m(z, K) belongs to C[X]
(Proposition 11.1). Given that the characteristic polynomial char k() is a power of m(z, K)
(Proposition 10.1), it belongs to C[X].

- Using the proof of Theorem 12.17, we note certain properties of C’ and D’, namely C” is
a PID, D’ is the integral closure of C’ in L and D’ is a free C’-module of rank n. In addition,
D’/D’'P is an F'-vector space of rank n: if B’ = {«},...,2),} is a basis of the free C'-module D’,
then B’ = {z},...,2},} is a basis of the F’-vector space D'/D’P, where ¥/ is the image z/ under
the canonical mapping o of D’ onto D'/D'P.

- Now let V.= C"\ {0}. The set V is a multiplicative subset of the integral domain C’ and
V~1C’ is the field of fractions of C’, which is K. Also, D’ is the integral closure of C' in L, so,
by Proposition 12.20, V~'D’ is the integral closure of V~'C’ in L, i.e., the integral closure of K
in L. If y is the canonical monomorphism from D’ into V~!D’, then from Section 12.8 we have

char y-1p/ vy 10/ (7(x)) = v*(char pr/or(x)).
As 7 is the canonical inclusion of D’ in V~'D’, we may identify D’ with its image under v and
so we obtain
char L/K(x) = char V—ID//V—lc/(QZ‘) = char D’/C’ (J?)
We aim to study char ps/c/(x). At the beginning of the proof we recalled certain properties of
¢’ and D', which permit us to apply Lemma 15.3 with ¢ in the place of 1. We obtain

1/;3 (char D’jC’ (JU)) = char (pr/p/p)/F (150(17)) )

- From Corollary 12.11, there is a ring isomorphism ¢ from D/DP onto D'/D’'P, taking
d+ DP to d+ D'P. The image of F is F’'. We now show that

char (p//p'py/F (&0(@) = ¢* (char (p/pp),r (Vo())) .

If B={d + DP,...,d, + DP} is a basis of the F-vector space D/DP, then B' = {d; +
D'P,...,d,+D'P} is abasis of the F'-vector space D'/D'P. Also, if v € D, then ¢o(z) = z+DP
and vg(x) = = 4+ D'P. We consider the matrices of 6, (,) and 912)0(90) in the respective bases B
and B'. If
n n
to()(di + DP) = (ai + P)(d; + DP) = (aix + DP)(d; + DP),

=1 i=1
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then

n

¢(to(x))p(dy + DP) = Z ¢(ai + DP)¢(d; + DP)
i=1

= ) (aix+C'P)(dr + D'P).

i=1

However,

¢ (o(x)) = o(x) + D'P = ¢ o p(x) = 1o (),

hence
n

Yo(x)(d + D'P) = (aix + C'P)(d; + D'P).

i=1
If (ai) is the matrix of 6, (,) in the basis B, then the matix of 91/;0(_%) in the basis B’ has the
form (¢(a;x)). From this we obtain

char (p//p'py/F: (@0(@) = ¢* (char (p/pp)/r (Yo(x))),
as required.

- To sum up, we have shown that

1&3 (char Dr/C (m)) =¢" (Chal" (D/DP)/F (7/)0(55))) .

This finishes the first part of the proof.
Part 2
- Our first step in this part is to show that
char (p/ppy/r (Yo(z)) = char T, (D/Q)/F (m(o(z))) .

- The ring isomorphism 7 : D/DP — [[;_, D/Q{" enables us to define a scalar multiplica-
tion on [[;_, D/Qf", making it into an F-vector space:

(c+ P)-7(D + DP) = n(c+ DP)x(d + DP) = n(c + DP)(d + DP)).

Then
w((c+ P)-(D+ DP))=n(c+ DP)(d+ DP)) = (c+ P) -n(D+ DP),

and so 7 is an F-linear isomorphism.

- With the notation already used, we define 6y, (,) to be multiplication by to(x) in D/DP
and 6 (o (x)) to be multiplication by 7(¢o(x)) in [[;_; D/Q%. We claim that

To elﬁo(w) o1 = HW(%(I)). (15.4)
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Using the fact that 7 is a ring homomorphism, we have

70 0pyz)(d+DP) = w(¢o(x)(d+ DP))
m(Yo(x))w(d + DP)
= eﬂ(ll,o(x)) O7T(d+DP),

hence the claim.

-If B={z1,...,2,} is a basis of D/DP, then B’ = {z},...,z,} is a basis of [[,_; D/Q.
For z), € B’ there exist a;;, € F, with ¢ = 1,...,n, such that

n n n
w(go(@))ay = Y _awat =) apm(z:i) =7 ) apwi,
=1 =1 =1

where we have used the linearity of #. Employing equation (15.4), we obtain

T (Y0(2)) T}, = O (o)) (Th) = T 0 Oy @) 0 T (33,) = T 0 Oy (2 (Tk) = 7(Yo(z)71).
Therefore

m(Yo(w)z)) = Wzaik(fvi) = Yo(x)r) = Zaikxi-

Thus the matrix of 6y, (,) in the basis B is the same as that of 6.(y, () in the basis B’. From
this we conclude that

char (p/pp)/p (Yo(x)) = char - (/g% /r (T(tho(2)))

as required.
- We now show that

char (- (p/qciy/F (m(¥o(x))) = char [1,_.(D/Q{1)/F (m(Yo(z))) -
We now use Theorem 15.3. Let
R=][Dp/@“ B =]]D/Q" R:=]][D/Q%,.... R, ={0}.
i=1 i=2 =3

Then
RDODR,DR:D--- DR, ={0},

and the R; are F-linear subspaces. Considering the explicit form of the mapping © we deduce
that 0:(p0(2))(Ri) C R;. In addition, we have R;_1/R; ~ D/Q;*. The linear endomorphism 0;
induced on R;_1/R; by 0x(y,()) is the multiplication by 7;(¢)o(x)) in D/Q5*. Using Proposition
15.5, we obtain

char I, (D/QE1)/F(7T(,(/)O($)) = H char (D/in)/F (7Tl(¢0(x))) . (155)

i=1

This ends the second part of the proof.
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Part 3

- Our aim in this section is to determine the polynomials in the product on the right hand
side of equation (15.5), namely, for i = 1,...,r, to show that

char (pqeey e (i(Yo(2))) = char 1y (41()).

We apply Theorem 15.3 for a given j and set k = e¢;. To apply the theorem, we define
R=D/QF and Ry =Q;/QF ... Ri_1=Q"/Q¥ R =Q}/Q% = {0}.
Then R is a ring. We notice that P C DP C Q?, so the mapping
§:F— Rc+Pr—c+QF
is a well-defined ring homomorphism. If §(¢ + P) = 0, then ¢ € C'N Q?. However,
PCCPCQi=PcCCNQf and CNQYcCNQ;=P,

so C'N Q;“ = P and it follows that ¢ is a monomorphism. Hence we may define an F-vector
space structure on R. In fact, R is finite-dimensional. To see this, we notice that D/DP is an
n-dimensional F-vector space and that Q;j /DP is a vector subspace of D/DP. Given that

(D/DP)/(Q5 /DP) ~D/Q} = R,

R is finite-dimensional. We also need to show that the R; are vector subspaces of R. For
i =1,...,k — 1, the set R; is clearly an additive group. If ¢ € C' and x € Q;-, then cx € Q;-,
because ¢ € D and @ is an ideal of D. Therefore we may define a scalar product on R; by
(c+P)(z+Q;) = cz+Qj. (There is no difficulty in seeing that this scalar product is well-defined. )
Hence the R; are F-vector spaces. Clearly

RDODRi D D Ri DRkZ{O},
so the R; are finite-dimensional subspaces of R.

- In order to apply Theorem 15.3 we need to check that the conditions (C') given before
Lemma 15.3 are satisfied:

e a. Ifxz-+ Q? € R and y+Q§ € R;, then (erQ?)(erQ?) = :verQ?, with zy € Qi,
because y € Q%, so the R; are ideals of R.

e b. Suppose that there is an ideal I of R such that R;_1 DI D R;. Let A\: D — D/Q;c be
the standard homomorphism. If J = A~%(I), then J is an ideal and Q;fl OJD Q; As
Q;‘-*l D J, there is an ideal A such that J = Q;‘-*lA. If A= D, then J = Q;fl. If this is
not the case, then, as J 5 Qj, A =@ and so J = Q. It follows that R;_; = I or I = R;.

e C. If@:y—i—Q? € Ry andez—&—Qf € R;_q; thengézyz—i—Q?, WithyZEQé,SO
7z € R;.

Therefore the conditions (C') are satisfied.
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- We now apply Theorem 15.3. Let z € D and & = = + Q;“ € R and consider the mapping
0 = 0z defined by multiplication by Z: for all § € R,
0(y) = 2y = zy + Q5.

Since R; is an ideal of R, (R;) C R;. From Theorem 15.3 we have

k
char (g p (7j((1o(2))) = char g p (m;((¥o(2))) = (char (r/r,)/r(01))
and for ¢; we have
01(y + R1) =y + Ru.

- Next we notice that

R/Ry = (D/QF)/(Q;/Qf) =~ D/Q; = Lj.

(As R; is a finite-dimensional subspace of R, R/R; is finite-dimensional and hence this is the
case for L;.) The isomorphism of F-vector spaces from R/R; onto L;, which we note «, has the
explicit form:

a(y+ Ry) =y+Q; =1;(y).

If € D, then the element 1;(z) belongs to L; and, in conformity with the notation already
used, we define the mapping 6, () to be multiplication by the element j(x). Then, for all
yeD,

Op, () (¥ + R1)) = (z + Q;)(y + Qj) =2y + Q;

and
a(01(g+ R1)) = a(Zg + R1) = 2y + Qj,

thus
Oyp;(z) 0 x =0 0.

We may now write

char (r/p,)/r(61) = char (r/r,)/p (7" 00y, 0 @)
= char o(r/ry)/F (O, ()
= char L;/F (%(33)) .

Therefore we have obtained
char (/g (w5 ((vo(2))) = char 1/ p (¢ (2))*

and it follows that

Hchar (D/Q:l)/F (71'1(1[)0(.%'))) = HChar L;/F (wl(x))EL N
=1

i=1

Part 4

We have now shown that

char (D/DP)/F (¢0($>) = Hchar Li/F (wz(l'))el .

i=1
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and so .
1&3 (char fotes (JJ)) =" (H char 1,/ (wi(x))ei> .
i=1

However, ~
Y5 (char pryer(x)) = ¢* o™ (char /x(2))
and it follows that -
¥* (char 1)k (z)) = Hchar LF (i)
i=1

which is the first equality in the statement of the theorem.
Part 5

Let us set n = degchar i (x) and nj = degchar 1, /p (¢;(x)), for j = 1,...,7. The constant
term of ¥* (char 1, (x)) is the product of the constant terms of the polynomials char 1, g (1;(z)),
each taken respectively to the power e;. However, the constant term of v (char ,x(z)) is

(=1)"¢ (Np/k () and the constant term of the product of the polynomials char 1 /g (1;(x)),
each taken respectively to the power e;, is

(=)= T No, e (0 (2)

j=1

Asn= Z;zl nje;, we obtain the third equality, namely

T

¥ (Noyx(@) = [ (N, r (5(2))) .

j=1

For the second equality we consider the coefficients of X™~! in the two sides of the first
equality. The coefficient of X™~! on the lefthand side is —1 (TL /K (x)) The coefficient of X!
on the righthand side is the sum of coefficients of the X™ ~!, each multiplied respectively by e;.
As the coefficient of X1 is —Tp,/r (¥j(x)), we have the second equality, i.e.,

(T k() = ZejTLj/F (¥(z)) .
j=1

This ends the proof. o

The theorem we have just proved has an interesting corollary.

Corollary 15.2 Let C be a Dedekind domain with fraction field K, L a finite separable extension
of K and D the integral closure of C in L. If P is a prime ideal of C and DP = [[._, QF', then

r

[L: K] =Y eifs

i=1

where f; = [D/Q; : C/P].
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PROOF It is sufficient to consider the degrees of the characteristic polynomials in the statement
of Theorem 15.4 a. m|

Remark The corollary which we have just proved is in fact a generalization of Theorem 13.6.

We will need another result, based on the Chinese remainder theorem.

Proposition 15.6 Let D be a Dedekind domain and Py, ..., Ps distinct nonzero prime ideals in
D. Suppose that x1,...,x5s € D and eq,...,es € N. Then there exists x € D such that

r—x, € P and z—x; ¢ Pf”l,
fori=1,...,s.

PROOF For each 4, P7"! is strictly included in Pf*, so there exists a; € P\ Pfit'. If i # j,
then P! and PJ? *1 are coprime. From the Chinese remainder theorem (Theorem F.1) there
exists z € D such that

r = (x1+ay) (mod P{*HY)

r = (v4+as) (mod P&Th).

Then, for all 7,
x—(z;+a;) € Pfi“ =z —u; € P
If 2 — z; € PSY then
(x—x;) —a;j+a; € PP = q; € Pieiﬂ,

7

a contradiction. This proves the result. O

15.5 Proof of Dedekind’s different theorem

Having done the preliminary work, we may prove the inequality referred to in the last section.
For the notation, it is sufficient to look at the beginning of the previous section. We only recall
that K C L are number fields with associated number rings C' and D. We set n = [L : K].

Theorem 15.5 For every nonzero prime ideal Q@ in D, we have sg > eg — 1. In addition,
sq = eq — 1 if and only if the characteristic of the field D/Q) does not divide eq.

PROOF As the proof is long, we will break it up into three parts, namely
e a. Proof of the inequality;
e b. The case where the characteristic of D/Q divides eg;

e c. The case where the characteristic of D/Q does not divide eq.
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a. Proof of the inequality Let @) be a nonzero prime ideal in D and set P = Q@ NC. We now
set U=C\P,C'=U"1C and D' = U~'D. In the decompositions of Ap/k and DP appear a
finite set of nonzero prime ideals Q1,...,Q,,. We have

Apg=]]Q¢ and DP=]JQ5.

i=1 i=1
(Certain s; or e; may be equal to 0.) From Proposition 12.16,
D'P=][DQ;
i=1
and, having number fields, from Theorem 15.2,

A(D'|C")y=D'Ary = [[D'Q;

i=1
Hence the complementary module D’* has the form [~ D'Q;*". Then the inequalities
s; >e; —1 i=1,....m
hold if and only if [[[", D'Q;~“ C D"*. We aim to show that this is the case.

Let z € [\~ D'Q}~%. From Theorem 12.11 we know that P’ = C'P is a principal ideal, so
there exists t € C’ such that P’ = C't. We may suppose that t € C. However,

[[PQ; =D P=DC'P=DP =DC't=D",
=1

so xt € [[;~, D'Q;. We claim that Ty /k(2t) € P'. (As 2t € D', we may consider that xt € L,
so Tr i (wt) is defined.) We notice first that D’ is a free C'-module of rank n. This has already
been shown in the proof of Theorem 12.17 in a more general framework. We have also seen,
in the proof of Theorem 15.4, that if V' = C’\ {0}, then V is a multiplicative subset of C’,
V-IC' = K, V71D’ = L and, for € D/, we have

char L/K(x) = char V—ID//V—lc/(l‘) = char D’/C’ (.2?)
It follows that
TL/K (l‘t) = TD’/C’ (l’t),
because xt € D'.
We now consider Tpr /¢ (xt). In the proof of Theorem 12.17 we saw that, if B’ = {x,...,2},}
is a basis of the free C'-module D', then B’ = {z!,...,Z),} is a basis of the C’/C’ P-vector space

D'/D'P, where Z} is the image of x} under the standard mapping of D’ onto D’/D’'P. We can
thus apply Lemma 15.3, with 1 this standard mapping, to obtain

TD’/C’ (.Z‘t) = T(Dl/(D/P))/(C//PI) (E)

We claim that zt is a nilpotent element of the ring D'/D’'P. Let r = e; + -+ + e,,. Then

m
xteHD/Qi:>It:yl"'ym inD/Qi,
=1
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where y; = d;q;, with d; € D’ and ¢; € );. Hence
(ﬂft)r _ yel y“el .. yfr;nyrfem — dil qfl .. dfrvlnqz;n d,

where d € D'. As [[", D'Q{" is an ideal, (zt)" € [[/~, D'Q{* = D’'P, which implies that zt
is a nilpotent element of the ring D'/D’P, as claimed. From the fact that zt is a nilpotent
element of the ring D'/D'P we obtain that char (p/(p/py)/cr/py(2t) = X", which implies
that T(D’/(D’P))/(C’/P’)(E) = O, this in turn implies that TD’/C’ (a:t) = 07 which means that
TD’/C’ (I’t) € D'P. However, TD’/C’ (I’t) € C,, SO

TL/K(.It) = TD//C/(xt) c C'P=P.

Now,
tTL/K(I) = TL/K(.’,Et) S Pl = Clt — TL/K(‘T) S Cl.

If y € D', then zy € [[1~, D'Q} %, so, replacing = by zy, we obtain Tr/k(xy) € C'. Therefore
x € D™, which finishes the proof of the first part of the theorem.

b. The case where the characteristic of D/Q divides eg Suppose that Q is a prime ideal
in D such that the characteristic of the field D/Q divides the ramification index eq. If P = CNQ,
then P is a nonzero prime ideal. Supposing that DP = Q7* - - Q% is the decomposition of DP
into prime ideals, then @ = @Q;, for some i. Without loss of generality, let us suppose that
Q = Q1. We set

m
J=DQr [[D'e;*.

=2

If Jc D*=][",D'Q;*, then
D/Q;SI|D/Q;61 _— D/Q;51 D D/Q;el _— D/Q‘il C 1)162(1517
which implies that s; > e;. We aim to show that J C D’*. Let x € J. We notice that
Jc][pQ = e[ D@
i=2 i=2

Since 1 —e; > —s;, for i = 2,....m, [[, Qi % D [, Q; %, so x € [[I", Q; ', and, from
part a., we may write zt € [[;", D'Q;. Then xt € D’ and Ty, k(xt) = Tprjcr(at) € C'. We
now use Theorem 15.4, with ¢ : ¢/ — C’/P’ and ¢; : D' — D'/D’'Q;, for i = 1,...,m, the
standard mappings. Then, setting L, = D'/D'Q; and F' = C'/P’, we have

U (Toyk(at)) = el p ($i(xt) = Ty, pr (¥1(at),

i=1

because zt € [[1~, D'Q; = Ny D'Q;.

In addition, v («t) is in D'/D’Qq, which is isomorphic to D/Qq, by Corollary 12.11, and
so has a characteristic which is a divisor of e;. Given that the trace Ty, s (¢1(xt)) belongs to
D'/D'Q1, we have ¢ (T, i (xt)) = 0. This implies that T}, /i (zt) € P’, hence

tTL/K(J)) = TL/K(Jﬁt) eEP=0Ct= TL/K(QJ‘) cC.
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If y € D', then xy € J, because J is a D’-module. It follows that Tk (zy) € C’, which shows
that x € D'*, as required. We have shown that

31261:317661—1.

This finishes the proof of part b.

c. The case where the characteristic of D/Q) does not divide ey We will use the nota-
tion defined in a. and b. For example, we set P = C'NQ and suppose that DP = Q5" - -- Q%
with @ = Q1. Let z € D’ be such that 11 (z) € D’/D'Q1 has nonzero trace, i.e., Ty, (1(x)) #
0. (For example, we could take x = 1.) From Proposition 15.6 there exists y € D’ such that
y—xz € D'Qr and y € D'QS, for i = 2,...,m. On the one hand, ¥;1(y) = ¢¥1(x) # 0, and so
11(y) has nonzero trace; on the other hand, for ¢ = 2,...,m such that e; # 0, y € D'Q;, hence
¥;(y) = 0. Applying Theorem 15.4 we obtain

m

U (Ty () =Y eiTr e (%i(y) = erTuy e (Y1 (y)) # 0,

i=1

because the characteristic of D'/D’'Q1 (equal to that of D/Q1) does not divide e;. Therefore

Ty x(y) = Tpjor(y) ¢ P = C't = TL/K(%) ¢

Now,
m

m
D't=][DQ5 = D'y =) ' [[PQ;
=2

=1 1=

Also, 1 € (D't)!, because (D't)~! = D'%, and, for i = 2,...,m,
m
yeD'Qf =y eni,D'Qr =[] D'ay,
i=2
because the ideals D'Q;" are pairwise coprime. Therefore
y m
Ve [0 = Do,
i=2
Given that ¥ ¢ D™, it must be so that D'Q;“* is not included in D".
Suppose now that s; > e;. Then D'Q{* [T, D'Q;" divides [[;~, D'Q;*, which implies that
D'QY divides [, D'Q;", ie.,
m

D'Qy > [[P'Qy = D'yt c v,

i=1

a contradiction. Therefore
e1>s1>2e— 1= s =€ —1,

as required. O

The theorem which we have just proved has an important consequence.
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Corollary 15.3 A nonzero prime ideal Q in D is ramified in L/K if and only if Q divides the
different Api. Hence D has only a finite number of ramified prime ideals.

PROOF If @ is ramified in L/K, then eg > 2, which implies that sg > 1 and so @ divides the
different Az/x. On the other hand, if @ is not ramified in L/K, then eg = 1, which implies
that sqg = 0, so @ does not divide the different Ay k. m|

15.6 Total ramification

We recall the definition of a totally ramified prime ideal or prime number. Let K C L be number
fields such that L/K is Galois and [L : K] =n < co. We set R = Og and S = Oy, and suppose
that P is a nonzero prime ideal in R. If there is a prime ideal @ in S such that SP = Q", then
we say that P is totally ramified in S. If K = Q and p € Z is a prime number, then we say that
p is totally ramified in S if the ideal (p) is totally ramified in S.

Example 1 + i is irreducible in Z[i], so prime. Hence (1 + 7) is a prime ideal in Z[i]. As
Z[i]2 = (1 +14)?, the prime number 2 is totally ramified in Z[3].

We will presently return to the context of number fields; however, before doing so, we will
establish some results in the more general context of Dedekind domains.

Proposition 15.7 Let C be a Dedekind domain, K its field of fractions, L a finite Galois
extension of K and D the integral closure of C' in L. We suppose that P is a prime ideal in C
and assume that there is a unique ideal Q such that C N Q = P. Finally we let U = C\ P and
set D' =U~'D. Then Dg = D'.

PROOF Let z € D'. AsQNC = P,if v ¢ P, then © ¢ Q, so U C D\ (. This implies that
D' C Dg. We now must show that Dg C D’. If every element of D¢ is integral over C’, then
Dg is contained in the integral closure of C’ in L, which is D’. We aim to show that this is the
case. If v € Dg, then z = %, where d € D and v € D\ Q. As d is integral over C, d is also
integral over C'p, so it is sufficient to show that % is integral over Cp. Let

mv,K)=ao+a X +---4+a, 1 X"+ X™ € C[X]

be the minimal polynomial of v over K. (From Theorem 11.1, m belongs to C[X], because v
is integral over C.) Since L/K is a Galois extension and @ is the only ideal of D such that
CNQ = P, we have 0(Q) = Q, for all ¢ € Gal(L/K). This implies that no conjugate of v lies in
Q@ and hence the product of the conjugates of v is not in . Hence ag € C'\ P and so % e Cp.
However, % is a root of the polynomial

1 Qp—1

FX)=—+ 2 x4 Bxn-ly X e Op[X],
ao an agp

1

hence  is integral over Cp. O

The next result is technical.

Proposition 15.8 Let C be a Dedekind domain, K its field of fractions, L a finite Galois
extension of K and D the integral closure of C in L. We also suppose that L = K(t), where
t € D and we set f =m(t, K) and n = deg f. Then
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® a. TL/K (f/t(Lt)) :0, fO’I“Z':O7]_7... ’I’L—Q andTL/K (t"(;) :1;

e b. Clt]* = +=C[t].

PROOF a. As L is a Galois extension of K, we may write

n
H tk—l—X

with ¢ = t; and tq,¢9,...,t, distinct elements of L. (As L/K is separable, the roots of f are
simple; these roots lie in L because L/K is normal.)

We now consider the rational fraction . To begin with, the partial fraction decomposition
theorem (Theorem A.9) in L[X] ensures that there exist ay,...,a, € L such that
n

L ! N
FX) - T+ X) ; —tp + X

where aj, € L. Multiplying by f(X) we obtain
=S L0 S ([
k=1 itk
Setting X = t;, we find
L= ap | [Tt +5) | = a; [T(~t: + 1)),
k=1 itk i#j

and so

From this we obtain the expression

n

—_

1
f) ; ) (—te + X)
To continue we consider the rational fraction ﬁ in the ring of formal Laurent series L((%))7

composed of series of the form "' a;X*, with a; € L and m € Z. It is easy to check that, for
k=1,....n
(e +X) ' =X X TP X

hence

Z/ (X + 8 X2+ 65X 540,
k:lf

However, ﬁ is also equal to m and so
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= (X T X TP AX T ) (X e X2 T )

= X "0+ uX T 48X 24 (U X X2 )
= X" b X D ppx (2 4

Comparing the two formal Laurent series for ﬁ we find

=0,
; J'(tr)

fori=0,1,--- ,n—2, and
tn—l
k

frite)
Now, using Corollary 10.3 and the fact that f’ € K[X], we obtain

w(7m) =20 (@)

c€Gal(L/K)
_ 3 o(t)’
secaty 1 @0
e
= fr(tk)’

since the sets {t1,...,t,} and {o(t),0 € Gal(L/K)} are both composed of the conjugates of ¢
(Proposition 6.2). This establishes part a. of the proposition.

b. We first show that f%(t)C [t] € C[t]*. Astis a root of a monic polynomial in C[X] of degree

n, there exist ag,...,a,_1 € C such that
t"=ag+ait+- -+ a,_1t" L
Thus, for all s > n, there exist ¢, ..., c,_1 € C such that

t°=co+cit+ -+ Cnfltn_l.

tn_l

This implies that the set B = {1,¢,...,t""1} (resp. B = {f%(t), f%(t), cee f,—(t)}) generates the
C-module CJt] (resp. C-module f%(t)C [t]). As B and B’ are clearly independant sets, they are

bases of the respective C-modules C[t] and f%(t)C [t].
For0<i<n-—1and 0 <j<n-—1, there exist dy,...,d,—1 € C such that

i = dodit + -+ + dn_1tn71.

(For i + j > n, this is clear; for ¢ + j < n, it is sufficient to take d;1; = 1 and d = 0, for
k#1i+j.) Thus

T <ti+j>—dT <1>+dT <t)+--~+d T <tnl)—d
v\ iy ) = T\ i\ 7 1Ty | gy ) = dnet
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from part a. Hence Ty, (},Z)) ecC.
However,
Clt]* ={x e L: Ty k(xz) € C,Vz € O[t]}

and an element of f%(t)C [t] (resp. C[t]) has the form Z?;ll al-f,t—(t) (resp. Z;L;ll b;t7). Hence, for
x € f,l(t)C[t] and z € C[t], we have

it

n—1 4 n—1 )
xz) = Q= bit! | = aibj | - ¢
Tr r(xz) =Tk ; () ; it Z ! <f'(t)) ©

0<i,j<n—1
and so f%(t)C[t] C C[t]*.

We now consider the reverse inclusion C[t]* C f%(t)C [t]. An element y of C[t]* isin L = K(¢).

Thus there exist kg, ..., k,_1 € K such that
ko kit k‘n_ltn_l

ORI O 0

(Clearly y = ngol kt', with k] € K; setting k; = k. f’(t), we obtain the required expression for
y.) Moreover,

1 t tn—t
Tr/r(y) = koTr K (f’(t)) + k1 (f’(t)) +o ko (f’(t)) = kp—1,
from part a. Asy € C[t]*, Tx/r(y) = Tk (yl) € C, i.e., ky_1 € C. Now,

t t2 tnfl "
Tryx(yt) = koTp/k <f’(t)> + k1T Kk (f’(t)) + k2T K (f’(t)) +kn1Tp K (f’(ﬂ)

t'n
= knotkn 1Tk (f’(t)) -
Since y € C[t]* and t € C[t], we have Ty, /i (yt) € C. Also, we have shown above the existence of
Co,.--,Cpn_1 € C such that

tn
t" :Co+61t+"'+cn,1tn_l = TL/K () S C,
T
using a. It follows that k,_o € C. If we replace t by t2, then we find that k,_3 € C. Continuing
the process we finally obtain that all the k; belong to C, which implies that C[t]* C f%(t)C [t], as
required. O

Corollary 15.4 Let C be a Dedekind domain, K its field of fractions, L a finite Galois extension
of K and D the integral closure of C in L. We also suppose that L = K(t), where t € D, and
we denote f = m(t, K) € C|X]. Then the different A(D|C) = Df'(t) if and only if D = C[t].

PROOF If D = C[t], then

1 1 / Y,
th)CM = D= AD|C) = f(t)D = Df'(t),

br=ciif= 7o)
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because D~ = D.
Now suppose that A(D|C) = Df’(t). As C[t] C D, we have D* C C[t]*, hence

D=D"'= f(t)D* C f'(t)C[t]* = C[t]| = C]t] = D,
because C[t] C D. O
We now return to number rings, with the notation of the first paragraph of this section, i.e.,
K C L are number fields such that L/K is Galois and [L : K] = n < co. We set R = Og
and S = O, and suppose that P is a nonzero prime ideal in R which is totally ramified in S:
SP = Q", where @ is a prime ideal in S. To simplify the notation, we write Ag for A(Sg|Rp).

As Ag is an ideal in Sg, there exists an integer s > 0 such that Ag = SoQ°. In addition, there
exists ¢ € S such that SgQ = Sgt (Theorem 12.12 and remark before Theorem 13.16).

Proposition 15.9 The exponent at Q of A(S|R), i.e., the power of Q in the decomposition of
A(S|R) into prime ideals of S (sq(L|K)), is equal to s.

PROOF The decomposition of A(S|R) into prime ideals of S has the form
A(S|R) = @O T @,
i=1

where Q1,...,Q, are prime ideals in S. Setting S’ = (R\ P)~1S, from Proposition 12.16 the
decomposition of S’A(L|K) into prime ideals has the form

S'A(SIR) = (8'Q)** ™ T[T  (s'Q)™.
i=1
5'QiN(S\Q)=0
However, from Proposition 15.7, S" = Sg, and from Theorem 15.2, Ag = S/, thus

Ag = SQQSQ(L\K) H (SoQn)
i =1
Qin(\@)=0

Since the decomposition of Ay is unique, we must have sg(L|K) = s and the product of the
other ideals equal to Sg. O

There is an important relation between the exponent sg(L|K) and the ramification groups
Vi of @ in the extension L/K.

Theorem 15.6 If L/K is a finite Galois extension of number fields, P a nonzero prime ideal
of Ok totally ramified in Or, Q the unique prime ideal in Oy, lying over P and

Voo ViD--- DV, ={id}

are the ramification groups of Q in L/K, then

r—1

sQ(LIK) = (Vi = 1).

=0
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PROOF We aim to apply Corollary 15.4, with C'= Rp and D = Sg. However, we need to justify
this.

First we show that L = K(¢). (Ast € S, we have t € Sg.) Since K C Land t € S C L, we
must have K (t) C L. For the reverse inclusion, to begin we notice that the set B = {1,¢,...,t" 7!}
is a K-basis of L (Corollary E.1 ). Thus, if y € L, then there exist ag,a1,...,a,-1 € K such
that y = S.7" a;t?, hence y € K|[t] = K(t). We have shown that L = K(t).

Now we show that Sg is the integral closure of Rp in L. From Corollary 12.13, O, is the
integral closure of O in L. Setting U = R\ P, R = U"'R and S’ = U~1S, from Proposition
12.20 we obtain that S’ is the integral closure of R’ in L. However, by definition R’ = Rp and,
from Proposition 15.7, Sg = S’. Thus Sg is the integral closure of Rp in L.

Our next step is to show that Sg = Rp[t]. As 0(Q) = Q, for all automorphisms o €
Gal(L/K), the decomposition group D = D(Q|P) = Gal(L/K). Thus L” = K. From Corollary
13.5 and the fact that e = n, we obtain f = 1. Now, using Proposition 13.10, we see that
L¥ = K and so E = Gal(L/K). Tt follows that

SF=0,6=0xk=R and QF=P

From Theorem 13.16 S, is a free module over SE = Rp, with basis B = {1,¢,...,t" "'}, where
t € S is a generator of the principal ideal Sg@Q. Hence Sg = Rplt] as required.

We have shown that the conditions for applying Corollary 15.4, with C' = Rp and D = Sg,
are met. Thus Ag = Sqf'(t), where f = m(t, K). (This makes sense, because f € R[X] and
R C Rp C Sg, which implies that f'(t) € Sg.) To simplify the notation we set G = Gal(L/K).

Then
FX) = T[ (e +X) = &) = [[ (~o(0) +1).
ceG oeG
o#id
We may partition the elements of G into disjoint subsets V,,,/Vi11, for m = 0,1,...,r — 1.

If 0 € V;y, \ Vi1, then, from Proposition 13.16, o(t) —t € Q™ \ Q™. As Sg (—o(t) — t) is
an ideal of S, there exists s(c) € N such that Sg (—o(t) +t) = Sgt*(?). With s as defined in
the paragragh before Proposition 15.9, we obtain

Sot* = Aq = Sqf'(t) = Sq [[ (o) +t) = T] Sat*.

oeG ceG
a;ﬁld O';éId
Therefore
r—1
S STEES S )
c€G m=0 g€V, \Vin+1

o#id
We need to determine the values s(o), for o € Vp, \ Viy1. If 0 € V,,, \ Vipg1, then
SQtS(U) =5q (—o(t)+1t) = SQQm+1 = Sth+1,

which implies that s(o) = m + 1. As there are |V,,,| — |Vin41| elements in V,,, \ Vi41, we have

r—1 r—1
oD s(0) = Vil = VgD (m +1).
m=0 €V, \Vint1 m=0

Writing A for the sum on the right hand side, we have
A= Vol = VDL + (Wil = IV2)2 + - + (Ve = [Ve)r = Vol + Vi + - -+ [Vea | =,

because V, = {id}. Simplifying the right hand side, we find Z;;:loﬂvm\ —1). However, from
Proposition 15.9, s = sq(L|K), hence the result. a
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Chapter 16

The Kronecker-Weber theorem

In this chapter we present and prove one of the principle theorems of algebraic number theory.
The proof is long and needs certain preliminary results, which we handle in detail. The theo-
rem states that any abelian finite normal extension of the rationals is included in a cyclotomic
extension. Our proof follows that given in [18].

16.1 Preliminaries
We begin with a sufficient condition for a prime number to be totally ramified in a number ring.

Proposition 16.1 If L/Q is a finite normal abelian extension such that the discriminant disc(Op)
is a power of a prime p, then p is totally ramified in Of.

PROOF We need to show that there is a unique prime ideal @ in S lying over p and that its
inertial degree is 1. Let @ be a prime ideal in Of, lying over p. To simplify the notation we set
E = E(Q|Zp). As usual we write L for the fixed field of E. We claim that no prime number
divides the discriminant disc(Orx). Indeed, if ¢ is such a prime number, then ¢ ramifies in Oz,
hence in Or,. Thus ¢ divides disc(Op,), which is a power of p and so ¢ = p. So we need to show
that p does not ramify in Opr.

To see this, let @1 be a prime ideal in O = lying over p and Q5 a prime ideal in Oy, lying over
Q1. Then @ and Q2 are both prime ideals in O, lying over p. As the Galois group G = Gal(L/Q)
is abelian, from Exercise 13.4 we deduce that E(Q2|Zp) = E. Now, () is the unique prime ideal
in O e lying under @2, so, from Proposition 13.14, we have e(Q1]Zp) = 1, i.e., p is unramified
in Ok, as required, which implies that p does not divide disc(Opx).

As no prime number divides disc(Opz), from Theorem 14.5 we must have L¥” = Q. Since
Q C LP C LFP, it is also the case that L” = Q. From Theorem 6.7, we obtain

Gal(L/Q) = Gal(L/L”) = D.

Let @ and Q' be prime ideals in Oy, lying over p. Given that L/Q is normal, there exists
o € Gal(L/Q) such that o(Q) = Q. However, Gal(L/Q) = D(Q|Zp), which implies that
Q = Q' and so there is a unique prime ideal in O, lying over p.

We now consider the inertial degree f(Q|p). Proposition 13.10 assures that [L¥ : LP] =
f(Qlp). As L¥ = LP, we have f(Q|p) =1 and so p is totally ramified in Or. O
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Example Let ¢ be a p” primitive root of unity, where p is an odd prime and r > 1, and K = Q(().
From Theorem 11.15 we know that the discriminant disc(Of) is a power of p, hence p is totally
ramified in Og.

If L is a number field as in Proposition 16.1, i.e., L/Q is a finite normal abelian extension
such that the discriminant disc(Op) is a power of a prime p, and K a number field included in L,
then K/Q is also a finite normal abelian extension. This follows from Theorem 6.6: We can write
K = L where H is a subgroup of G = Gal(L/Q), which is normal, because the Galois group
is abelian. It follows that K/Q is a normal extension. Also, the Galois group G’ = Gal(K/Q)
is isomorphic to the quotient group G/H, which is abelian, because G is abelian. To simplify
the notation we write S = O and R = Og. Let @ be the unique prime ideal of S lying over p
and @ the unique prime ideal of R lying under Q. We aim to show that, if [K : Q] = p, then
50, (K|Q), the exponent at @1 of the different A(K|Q), is independant of the field K which we
choose.

Proposition 16.2 Let L/Q be a finite normal abelian extension such that the discriminant
disc(Oy) is a power of an odd prime p and K a number field included in L whose degree over Q
is p. Then p is totally ramified in R and, if Q1 denotes the unique prime ideal of R lying over
p, then sg, (K|Q) = 2(p — 1), where sq, (K|Q) is the exponent at Q1 of the different A(K|Q).

PROOF Our first step is to show that p is totally ramified in R. Suppose that Q2 and Q3 are
distinct prime ideals in R lying over p. Then @ (resp. @3) lies under a prime ideal Q% (resp.
Q%) in S. Clearly Q% and Qf are distinct and lie over p. As p is totally ramified in S, this is
impossible, hence there is a unique prime ideal in R lying over p. We also notice that

1= f(Qlp) = f(QIQ1)f(Q1lp) = f(Qulp) =1

and so p is totally ramified in R, or equivalently, Zp is totally ramified in R.

We now apply Theorem 15.6 to obtain

r—1

sq, (K1Q) = > (IV/| - 1),

=0

where V' denotes the ith ramification group of @ in the extension K/Q. Now, each V/ is a
subgroup of Gal(K/Q) and |Gal(K/Q)| = [K : Q] = p, so |V/| has the value 1 or p and it follows
that p — 1 divides sg, (K|Q).

In the spirit of the discussion before Proposition 15.9, we write Ag, = A(Rq,|Zzp), which
is an ideal in Rg,. In addition, there exists ¢ € R such that Rg, Q1 = Rg,t and an integer s > 0
such that Ag, = R, Q3 = Rg,t*. Proposition 15.9 tells us that sg, (K|Q) = s. We will use
this relation to determine the precise value of sg, (K|Q).

We aim to use Corollary 15.4 with C' = Zz, and D = R¢, and respective fields of fractions
Q and K. We need to check that the conditions of the corollary are satisfied. R = O is the
integral closure of Z in K by definition; Proposition 15.7 then assures us that Rq, is the integral
closure of Zz, in K. Showing that K = Q(t), with ¢ € Rg, is a little more difficult.

We claim that Rg, is a free module over Zz,, with basis B = {1,t,...,t*?~'}. To establish
this we use Theorem 13.16. We set E = E(Q1|Zp) and D = D(Q1|Zp). From Proposition 13.10,

[KE: KP] = f(Qi]p) =1 = K¥ = KP.
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For all o € G = Gal(K/Q), we have 0(Q1) = Q1, because Q) is the only prime ideal lying over
p. This implies that G C D and so D = G Thus

KF =KP =K% =qQ.

and so
RE = Okr = 0q = Z.

Continuing we have

Qf:REﬁlezrﬁQl:Zp:R(gf:Zzp.

In addition, e = e(Q1]p) = p. From Theorem 13.16 we obtain that Rg, is a free module over
Zz,, with basis B = {1,¢,...,t*P"'} as required.
From Corollary E.1, B is a basis of K over Q, which implies that K = Q[t] = Q().

Now we have the conditions for applying Corollary 15.4. Also, we have seen that Rg, is a
free module over Zz, and so Rq, = Zz,[t]. It follows that

A(Rq,|Zzp) = Ro, f'(1),
where f is the minimal polynomial m(¢, Q). If
f(X)=a+a X+ +a, 1 X2+ XP,
then f € Z[X] and
f'(t) = a1 +2ast + -+ (p— a,_1tP7% + ptP L.

We notice that
Rp = RZp = QF,

because Zp is totally ramified in R and @) is the unique prime ideal of R lying over Zp. Hence,
Rqg,p= Rq,Rp = RQlQll) = RQltpv

thus
Ro,pt"! = (Rg,p)(Rq,t"™ ") = R, 1",

from which we deduce that there exists a;, € Rg, such that pt?~! = q,t??~1. It is important to
notice that ¢ fo,. If t|oy, then pt?~! = o/ 1?7, with af, € R, and we obtain

RQ1t2p_1 C RQltzp - RQ1t2p_1 = RQltzp,

Thus
(RQl )21)71 = (RQl )2])’

which is impossible, because Rg, @1 is a nonzero prime ideal in the Dedekind domain Ry, .
For i=0,1,...,p — 1 such that v,(ia;) > 0, we can write ia; = pU»(@)p,;  where p Ab;. Then

Rqiait’™" = (Rg,ia;)(Ro,t' ") = (Rq,p"*"*))(Rg,bi) (Rq,t' ).
As p [b;, b; is invertible in Rg,, we have Rg,b; = Rg, and thus

Rg,iait’™! = Rg, 1?4 Ry #1771 = Rg tPorliadti=1,
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from which we deduce that there exists a; € Rg, such that ia;tt=1 = q tPvrlien)+i=1 We notice
that ¢ foy. If t|ay, then ia;t' " = o/tPPr(1@)+ with o) € Ry, and so

RQltpvp(ial)+i71 c RQltpv,,(iai)+i — RQltpvp(ial)+i71 _ RQltpvp(iai)Jri’

or ) ) ) ‘
(RQl )pvp(2a1)+zfl _ (RQ1 )pvp(za1)+z

)

which is impossible, because Rg, (1 is a nonzero prime ideal in the Dedekind domain Ry, .

We notice that the integers pv,(ia;) +¢ — 1, for i = 0,1,...,p — 1, with da; # 0, and 2p — 1
are distinct. If m is the minimum of these integers and «;, corresponds to the minimum, then

f1(t) = (ai, + B,
where o;,,8 € Rg, and t fa;,. Thus,
t )((Ofio +tﬂ) = Q4 + pt ¢ RQlt = RQlQl?

the unique maximal ideal of Rp,. From Exercise 12.11, the element o, + 5t is invertible in Rg,
and hence
RQlf/(t) = RQltm — 5@, (K|Q) =1m.

We now conclude. By definition of the minimum m, we have sg, (K|Q) < 2p — 1. Also, from
Theorem 15.5, s, (K|Q) > p — 1. The characteristic of the field R/Q; is p, because p € Qq,
hence sqg, (K|Q) # p — 1, which implies that sg, (K|Q) > p. Putting this information together,

we obtain X ) ) )
Lo P sEQ 2p-1_, <3
p—1 p—1 p—1 p—1
because p # 2. Therefore w = 2, as required. ]

Having developed some preliminary results, we will now turn to the proof of the theorem.
We will proceed by steps.

16.2 Step 1: [L : Q] and disc(Oy) are both powers of the
same odd prime.

Let L/Q be a finite normal abelian extension such that the discriminant disc(Op,) is a power of
a prime p. Then Proposition 16.1 ensures that p is totally ramified in Or. We have also seen
that

E(Qlp) = D(Qlp) = Gal(L/Q),

where @ is the unique prime ideal of Oy, lying over p. We now suppose that [L : Q] is a power
of the same prime number p. Then Proposition 13.18 b. ensures that E(Q|Zp) = V1(Q|Zp).
Indeed, as p is totally ramified e(Q|p) = [L : Q], which is a power of p; this in turn implies that
|E/Vi| =1 and it follows that E(Q|Zp) = V1(Q|Zp). We now aim to show that there is a unique
field extension K of Q of degree p contained in L. To do this we will use Proposition 16.2.
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Proposition 16.3 Let L/Q be a finite normal abelian extension such that disc(Or) and [L : Q]
are both powers of the same odd prime p. We suppose that Q is the unique prime ideal of O,
lying over Zp and that V;(Q|Zp), for j > 0, are the higher ramification groups. In addition, we
let i be the smallest index j such that V;(Q|Zp) # Gal(L/Q). Then i > 2, [LVi(QZP) . Q] = p
and LVi(Q1Zp) s the only field extension of degree p over Q contained in L.

PROOF From hereon, to simplify the notation, we will write E for E(Q|Zp) and V; for V;(Q|Zp).

By definition Vj = E, and in the preamble to the proposition we have seen that E =
Gal(L/Q), which implies that ¢ > 1. However, we have also seen that V; = Gal(L/Q), hence
i > 2. Now we establish that [LYi : Q] = p. Since V;_; = Gal(L/Q), we have

(LY : Q] = |Gal(L/Q)/Vi)| = |Vi-1/Vil.

From Theorem 13.18, V;_1/V; is isomorphic to a subgroup of the additive group of S/Q, because
i > 2. As p is totally ramified in Op,, we have

1= f(QlZp) = [S/Q : Z/Zp],
which implies that S/Q is isomorphic to F),. It follows that |V;_1/V;| = p, because V;_1 # V;.

Now let K be a number field contained in L whose degree over Q is p. We aim to show that
K =L%. Weset R' = O and Q; = R' N Q. Then Q, is totally ramified in S = Oy,. There is
a unique ideal in S lying over @)1, namely @, and

1= f(QlZp) = f(QlQ1)f(Q1|Zp) = f(QIQ1) = 1.
By definition (Section 15.3), we have
Aq,(LIK) = A((R"\ Q1) 7' S|Rg, ).
Using Proposition 15.8 we obtain
Aq, (LIK) = A(Sq|Rg,)-
To simplify the notation we will write Ag(L|K) for Ag, (L|K).

Next we set R?2 = Opv; and Q2 = R>N Q. Then Q- is totally ramified in S = Or: There is
a unique ideal in S lying over @2, namely @, and

1= f(Q|Zp) = f(QlQ2)f(Q2|Zp) = f(QQ2) = 1.

By definition (Section 15.3), we have
Aq,(LILY) = A((R*\ Q2)7'S|Rg,)
and, using Proposition 15.8 again, we obtain
Aq, (LILY) = A(Sq|R,).
We simplify the notation by writing Ag(L|LY?) for Ag, (L|LY?).
From Theorem 15.1 we have

AQ(LIQ) = Aq(LIK)SeAq, (KIQ) (16.1)
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and
AQ(LIQ) = Ag(LILY)SqAq, (LY

Q). (16.2)
To clarify these equalities, we recall the definitions of the ideals appearing in the equalities:
AQ(LIQ) = A(Sq|Zzp),
AQ(LIK) = A(Sq|Rg,)  AQ(LILY) = A(Sq|R?,)

and
A, (K|Q) = A(Rp,|Zz,) A, (LY'|Q) = A(RY,|Zz,).

We now consider Ag, (K|Q) and Ag, (LY

Q) more closely. From Proposition 16.2 we have
2(p—1
Aq, (K|Q) = R, Q1"

and
Do, (LV]Q) = R, Q1.

As R}Ql is embedded in Sg, we have
SoAq, (K|Q) = Se@7" Y.
Now Q) is totally ramified in S, so SQ; = QXK1 and we have
S08Q1 = SeQF K = S4Q1 = SR = SqAq, (K|Q) = SeQEH12e=1),

In the same way .
SQAQz(LVi|Q) — SQQ[L:L i12(p—1)

As [L: K] =[L: L"], we have

SQAQ1 (K|Q) = SQAQz (LVi

Q)

and from equations (16.1) and (16.2) we derive

Ag(LIK) = Ag(LILY).

We now show that this equality ensures that K = LY:. First we notice that
Ag(LIK) = (SoQ)*2™®) and  Ag(L|ILY') = (SgQ)*2HE™),

which implies that
sq(LIK) = sq(LIL%).
From Theorem 15.6 .
T —

sQ(LIK) =Y (IV;(QIQu)| - 1),

=0

where V;(Q|Q1), for j =0,1,...,7 — 1, are the ramification groups of @ in the extension L/K.
(Indeed, L/K is a Galois extension and @ is totally ramified in S.) The same theorem ensures
that

7“2—1

sQ(LILY) =Y (IVi(QIQ2)| - 1),

J=0
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where V;(Q|Q2), for j =0,1,...,75—1, are the ramification groups of @ in the extension L/LV:.
(Indeed, L/L" is a Galois extension and Qs is totally ramified in S.) We can take r = max(ry, o)
in both cases.

Now we consider orders of the ramification groups. We notice that

where H = Gal(L/K) and
Vi(QlQz2) =V; NV,
since V; = Gal(L|L"?). Therefore, for j = 0,1,...,7 — 1, we have

Vi@ =H  and  Vi(Q|Q2) =

Then
N (20 12T )
1| = |Gal(L/K)] = L+ K] = =
and I
p= 1%+ Q) = Gal(2/Q)Vi| — %] = 23,

therefore |[H| = |V;], ie., |[V;(Q|Q1)| = |V;(Q|Q2)|. If j > i, then V;(Q|Q2) =V}, because V; C V;
and it follows that [V;(Q|Q1)| < |V;(Q|Q2)]. As

r—1 r—1
S V@QIQI 1) = (IV;(QIQ2) — 1),
j=0 j=0

we must have
Vi(QlQ1) = |Vi(Q|Q2) = ViNnH = V; = V; C H.

However, this implies that K = L c LY. As K and LY are subspaces of L of the same
dimension, they must be equal, as required. ]

Our next step is to show that under the conditions we have assumed at the beginning of
the section, i.e., p is an odd prime, L an abelian finite normal extension of Q of degree p” and
disc(Or) = p*, where m,k € N*, then L is a cyclic extension of Q. We will use an elementary
result from group theory, namely, an abelian group of order p”, where p is a prime, with a unique
subgroup of order p™~!, is cyclic. We need a preliminary result.

Lemma 16.1 Let G be an abelian group of order p™, where p is a prime and m > 1. If G has
a subgroup H of order p* and k < | < m, then there is a subgroup K of G containing H and
having order p'.

PROOF Suppose first that [ = k+ 1 < m and let G = G/H. Then |G| = p™~* and so, by
Cauchy’s theorem, there exists an element Z € G/H of order p. Let K be the subgroup of G
generated by H and x. Since x ¢ H, the group H is properly contained in K. Also,

K=HUHzU---UHa" ! = |K| = p"*t.

Repeating the argument if necessary, we finally obtain the desired subgroup. O
where p is an odd prime and m, k € N*
We may now prove the result concerning the cyclicity of G.
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Proposition 16.4 If G is an abelian group of order p™, where p is a prime, with a unique
subgroup H of order p™~1, then G is cyclic.

PROOF Let © € G\ H. If = has order less than p™, then, from Lemma 16.1, the cyclic group
(x) is contained in a subgroup K of G of order p™~!. By hypothesis, K must be equal to H, so
x € H, a contradiction. Hence = has order p™ and so G is cyclic. O

We may now show that, under the conditions given above, the extension L/Q is cyclic.

Theorem 16.1 Let p be an odd prime, L a finite normal abelian extension of Q of degree p™,
where m € N*, and disc(Or) a power of p. Then the extension L/Q is cyclic.

PROOF By hypothesis the Galois group G = Gal(L/Q) is abelian of order p™. From Proposition
16.3 we know that G has a unique subgroup of order p™~!. Applying Proposition 16.4 we find
that G is cyclic. ]

We are now in a position to prove the Kronecker-Weber theorem in a particular case. Further
on we will extend the theorem to the general case.

Theorem 16.2 If L is a finite normal abelian extension of Q of degree p™, where p is an odd
prime and m € N*, and disc(Oyr) is a power of p, then there exists a root of unity ¢ such that

L C Q(¢).

PROOF Let K = Q((), where ¢ is a primitive p™+1th root of unity. The extension K/Q is a
Galois extension and, writing G = Gal(K/Q), from Theorem 7.7 we have

G| = [K : Q] = deg Dprsr = ¢p(p" ) = p™(p— 1).

Also, by Theorem 7.7, G is isomorphic to Z;mH, which is cyclic, because the group of units of
Z,, is cyclic, when n is a power of an odd prime (see, for example, [4]).

The cyclic group G has a subgroup H of order p — 1. (If o is a generator of G, then ¢?" has
order p — 1.) We set K’ = K; then [K’ : Q] = p™. Since H is a subgroup of G, H is cyclic,
and so, by definition, K’ is a cyclic extension of Q. We claim that the discriminant disc(Ok)
is a power of p. To see this, notice that a prime ¢ dividing disc(Og-) is ramified in O, hence
also ramified in Ok, thus ¢ divides disc(O ), which is a power of p. It follows that ¢ = p. This
proves the claim.

Now we consider the composition field LK’. As L is a finite Galois extension of Q, so is LK’
(Theorem 6.8). Both L and K’ are normal extensions of Q, therefore, from Theorem 6.10, the
Galois group Gal(LK’/Q) is isomorphic to a subgroup of the product Gal(L/Q) x Gal(K'/Q),
which is abelian. Hence Gal(LK'/Q) is abelian.

Now, from the proof of Corollary 6.1, we know that the Galois groups Gal(LK'/K') and
Gal(L/L N K') are isomorphic, hence

[LK':Q]=[LK': K'][K': Q] =[L: LN K'|][K": Q],

which is a power of p, because [L : L N K'] divides [L : Q] and [L : Q] = p™. We claim that
the discriminant disc(Opk-) is also a power of p. If ¢ is a prime and ¢|disc(O k), then ¢ is
ramified in Opg/. From Theorem 13.12, ¢ is ramified in L or in K’. This means that ¢|disc(Opr)
or g|disc(Ok+). In both cases we obtain ¢ = p, so disc(Op k) is a power of p, as claimed.

We now apply Theorem 16.1 to LK': the Galois group Gal(LK'/Q) is cyclic. Both L and
K’ are normal extensions of L N K’'. With L N K/ = F in Theorem 6.10, we obtain

Gal(LK'/LNK') ~ Gal(L/LNK') x Gal(K' /L N K).
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We notice that both Gal(L/L N K') and Gal(K’'/L N K’) have orders a power of p and are
cyclic, because Gal(L/L N K') is a subgroup of Gal(L/Q) and Gal(K'/L N K') a subgroup of
Gal(K'/Q).

We have seen that Gal(LK'/Q) is abelian, thus Gal(LK’/L N K')) is also abelian. The
previous isomorphism gives us a primary decomposition of this finite abelian group. Moreover,
Gal(LK'/LN K') is a cyclic p-group, since Gal(LK'/Q) is a cyclic p-group. Thus Gal(LK'/LN
K') is its own primary decomposition. The uniqueness of the primary decomposition ensures
that Gal(L/L N K') or Gal(K'/L N K') is trivial. In the first case,

L=LNK = LCK'

In the second case
K =LNK =K' CcL

hence
[L:Q]=[L:K'|[K': Q)= [L:K']=1,

because [L : Q] = p™ = [K' : Q]. Therefore L = K’. In both cases we have found a cyclotomic
extension containing L. This finishes the proof. o

16.3 Step 2: [L: Q] and disc(Oy) are both powers of 2.

Up to here we have considered the case where the order of the Galois group Gal(L/Q) is the
power of an odd prime p and the discriminant disc(Oy,) a power of the same prime. It should
be clear that certain arguments we have used will not work if the prime p is 2. In this section
we aim to look at this case. We will first consider real fields, i.e., subfields of the field of real
numbers R. To begin we establish a preliminary result analogous to Theorem 16.1.

Proposition 16.5 Let L be a real field which is a finite normal abelian extension of Q of degree
a power of 2 such that the discriminant disc(Opr) is also a power of 2. Then the extension L/Q
is cyclic.

PROOF Let [L : Q] = 2™, with m € N*. We first consider the case where m =1, i.e., [L: Q] = 2.
Then L = Q(v/d), where d is a square-free integer. In this case disc(Or) = d, if d = 1 (mod 4),
and disc(Or) = 4d, if d = 2,3 (mod 4). As disc(Oyr) is a power of 2, the only possibility is d = 2
and so L = Q(v/2) (and disc(Or) = 8). Thus the extension L/Q is cyclic.

Now suppose that m > 2. From Lemma 16.1 we know that the Galois group Gal(L/Q)
contains a subgroup H whose order is 2™~ !. For any such subgroup H, from Theorem 6.6,

.o - Gal/Q), _
19 q = | CUHQ) o
Moreover, disc(Oy,) is a power of 2, since any prime ¢ dividing disc(Op# ) ramifies in Op» and so
ramifies in Op. As 2 is the only prime ramifying in Op, ¢ = 2. Thus disc(Op#) is a power of 2
up to sign. As [L7 : Q] =2, L = Q(V/d), where d is a square-free integer, and disc(Opn) = d
or disc(Opr) = 4d. Tt follows that d = 2. Since L C L, d = 2 and so L = Q(v/2) and
H = Gal(L/Q(\/2)). We conclude that the Galois group Gal(L/Q) has a unique subgroup of

order 2™~1. Applying Proposition 16.4 we obtain that Gal(L/Q) is cyclic. O

We now establish another result concerning real extensions.
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Proposition 16.6 If m € N* and ¢ a primitive root of order 22, then L = Q(¢) NR. is the
unique real finite normal abelian extension K of Q such that [K : Q] = 2™ and disc(Ok) is a
power of 2. In addition, L C Q(().

PROOF We will begin by showing that L satisfies the conditions. L is clearly a real field and
L € Q(¢). Any prime ¢ dividing the discriminant disc(Op,) ramifies in Oy, hence in Q(¢). This
implies that ¢ divides disc(Ogq(c¢)), which is a power of 2, by Theorem 11.15. Thus ¢ = 2 and It
follows that disc(Op) is a power of 2.

Now

[Q(C) : Q] = deg Pyms> = p(2mF2) = 2m+1

where ¢ is Euler’s totient function. From the primitive element theorem (Theorem 3.4), there
exists @ € Q(¢) such that Q(¢) = L(a). If @ = a + bi, then « is a root of the polynomial
f(X) = (a® 4+ b?) — 2aX + X2. Moreover, & = a — bi € Q(¢), because @ is a root of the minimal
polynomial m(«, Q) and Q(¢) is a normal extension of Q. Hence
T and b=2"2

2 24
since i = ¢4 = ¢?" € Q(C). Tt follows that f € L[X] and degm(a,L) is 1 or 2. As a ¢ L, we
have degm(a, L) = 2 and so [Q(¢) : L] = 2. As

[Q(¢) : Q = [Q(¢) : L][L : Q],

we have [L : Q] = 2™, as required.

a =

€L,

It remains to show that L is unique. Let F' and K be two fields satisfying the conditions
in the statement of the proposition. We aim to show that F' = K. Both F' and K satisfy the
assumptions of Proposition 16.5, so the compositum F K also satisfies the assumptions. Indeed,
the extensions F/Q and K/Q are both normal, so FK/Q is normal and the Galois group
Gal(FK/Q) is isomorphic to a subgroup of the product Gal(F/Q) x Gal(K/Q), by Theorem
6.10. Therefore Gal(FK/Q) is abelian of order a power of 2. If a prime ¢ divides the discriminant
disc(OFr), then it is ramified in Op g and hence ramified in O or in Ok (Theorem 13.12). Thus
g divides disc(Op) or disc(Of), which are both powers of 2. Hence ¢ = 2 and it follows that
disc(OFpk) is a power of 2.

Now, from Theorem 6.10,

Gal(FK/FNK) ~ Gal(F/FNK) x Gal(K/F N K).

As Gal(FK/FNK) is a subgroup of the abelian group Gal(FK/Q), Gal(FK/FNK) is abelian.
Both Gal(F/FNK) and Gal(K/F N K) are cyclic and of order a power of 2, being respectively
subgroups of Gal(F/Q) and Gal(K/Q), which are cyclic by Proposition 16.5. Thus the previous
isomorphism is a primary decomposition of the finite abelian group Gal(FK/F N K). However,
Gal(FK/FNK) is cyclic of order a power of 2, being a subgroup of Gal(FK/Q), which is cyclic
by Proposition 16.5. The uniqueness of the primary decomposition of a finite abelian group
ensures that Gal(F/F N K) or Gal(K/F N K) is trivial. Therefore F = FNK or K = FN K,
which implies in the first case that F' C K and in the second that K C F. As [F: Q] =[K : Q],
we must have F' = K. |

We have shown in the previous section that when the extension L/Q is abelian of degree a

power of p, with p an odd prime, and disc(Of) a power of p, then there exists a root of unity ¢
such that L C Q(¢).We will now establish an an analogous result for the prime 2.
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Theorem 16.3 Let L/Q be a finite normal abelian of degree a power of 2, with disc(Or) a
power of 2. Then there exists a root of unity ¢ such that L C Q(().

PROOF In Proposition 16.6 we have already proved the theorem in the case where L is a real
field. Our aim is now to generalize this to any field contained in C.

Let K = L(i) "R. Then K is a real extension of Q. As L(i) = Q(i)L and both Q(i)/Q
and L/Q are finite normal abelian extensions, L(:)/Q is also a finite normal abelian extension
(Theorem 6.10). Since K is a subfield of L(i), K is a finite normal abelian extension of Q.

Next we notice that [K : Q] is a power of 2. Indeed,

[L(i) : Q] = [L(i) : LI[L : Q]

As m(i, L) divides f(X) = 1+ X?, the degree of m(i, L) is 1 or 2 and so [L(i) : L] is equal to
1 or 2. By hypothesis [L : Q] is a power of 2, so [L(i) : Q] is a power of 2. However, [K : Q]
divides [L(7) : Q], hence [K : Q] is a power of 2.

Our next step is to show that the discriminant disc(Og) is also a power of 2. If ¢ is a
prime number dividing disc(Op;)), the ¢ ramifies in L(i) = Q(i)L, which implies that ¢ ramifies
in Qi) or in L (Theorem 13.12), i.e., ¢ divides disc(Oq(,;)) or ¢ divides disc(Or). Now, by
hypothesis disc(Op ) is a power of 2, and disc(Oq;)) = —4, because —1 = 3 (mod 4) implies that
disc(Oqi)) = 4(—1) = —4. Tt follows that ¢ = 2 and so disc(Op;)) is a power of 2. As K is a
subfield of L(7), disc(Ok) is also a power of 2. Indeed, if ¢ is a prime dividing disc(Of), then ¢
ramifies in Ox and hence in Op;); thus ¢ divides disc(Op;)) and so ¢ = 2.

We now apply Proposition 16.6: there exists a root of unity ¢ such that K C Q(¢). From
the primitive element theorem (Theorem 3.4), there exists a € L(i) such that L(i) = K(«a). Let
a =a+ib. As @ = a — ib is a root of the minimal polynomial m(«, K) and L(4) is a normal
extension of K, a = 4% € K and b = QZ;Z& € K. Also, i = (4,80 a = a+1ib € Q({4)Q(¢). Then

L c L(i) = K(a) € Q(¢)Q(¢) = Q();
where £ is a root of unity, by Exercise 7.3. O

Exercise 16.1 With K and L as defined in Theorem 16.3, show that L(i) = K (i).

16.4 Step 3: [L: Q] is a power of a prime p.

We have shown that a normal abelian extension L of the rationals of degree a power of a prime
p such that the discriminant disc(Op) is also a power of p can be considered as a subfield of a
cyclotomic extension of the rationals. In this section we aim to show that we may dispense with
the condition on the discriminant. We will begin with a preliminary result.

Proposition 16.7 Suppose that L/Q is a normal abelian extension of degree n and q a prime
dividing disc(Or) but not dividing n. Then there exists a normal abelian extension L'/Q and a
primitive qth root of unity ¢ such that

o [L': Q] divides n;
« LCL(Q);
e g does not divide disc(Op);

e any prime ¢' dividing disc(Or+) also divides disc(Op).
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PROOF We consider two cases, namely when L contains a primitive gqth root of unity and then
when this is not the case.

Case 1: L contains a primitive gth root of unity (.

Suppose that @ is a prime ideal in Oy, lying above q: QNZ = Zq. To simplify the notation we
write e for the ramification index e(Q|q), V4 for the corresponding ramification group V4 (Q|Zq)
and FE for the corresponding inertia group E(Q|Zgq).

The assumption that ¢ does not divide [L : Q] ensures that L = L"*. Indeed, from Proposition
13.18 we know that V; is a ¢g-group, i.e., the order of V; is a power of ¢, thus Theorem 6.7 ensures
that [L : L'] is a power of . Moreover, [L : L"1] divides [L : Q). Since ¢ does not divide [L : Q]
we must have [L: LV'] =1, ie., L = L"1.

Now we consider LZ. As L/Q is normal, by Proposition 13.11 we have [L : LZ] = e. Now,
from Theorem 6.7 we obtain Gal(L/L¥) = E and so

e=[L"": L¥] = |E/W, (16.3)

by Theorem 6.6. Since Gal(L/Q) is abelian, the decomposition group D(Q|Zg), being a subgroup
of Gal(L/Q), is also abelian. Given that L/Q is normal, Corollary 13.9 ensure that |E/V; | divides
q' — 1, where

¢ =|0q/Zq| = |Z/Zq| = q. (16.4)

We now set L' = L¥. As E is a subgroup of Gal(L/Q), [L’ : Q] divides n. Also, L'/Q is a
normal abelian extension, because L’ = L¥ and E is a normal subgroup of Gal(L/Q), which is
abelian.

By hypothesis there is a primitive gth root of unity ¢ in L. We claim that L = L'({). As
Q C L and ¢ € L, we have Q(¢) C L. The prime ideal @ in Oy, lies over a unique prime ideal @’
in Oq(¢). To simplify the notation we write e’ for the ramification index e(Q|Q’) and E’ for the
inertia group F(Q|Q’). We notice that £ = ENGal(L/Q(()), the intersection of two subgroups
of Gal(L/Q). Using Theorem 6.9 we have

LB — [E[Ga(L/Q()

= L*Q(Q)
= L*(¢)
= L'(Q).

To establish the claim it is sufficient to show that LZ = L. By Proposition 5.3 L/Q(¢) is a
normal extension, so we may use Proposition 13.11 to obtain [L : L¥] = ¢’. Also,

e=-¢e(Q|q). (16.5)

From equations (16.3) and (16.4) we obtain e|g— 1. However, we also have ¢—1|e. From Theorem
11.15, disc(Oq(¢)) is a power of ¢, so ¢ is totally ramified in Ogq¢), by Proposition 16.1, which
implies that e(Q'|q) = ¢ — 1, because [Q(C) : Q] = ¢ — 1. Therefore, by equation (16.5), ¢ — 1]e.
It follows that e = ¢ — 1 and so ¢’ = 1, which implies that [L : LF'] = 1. We have shown that
LE" = L and hence established the claim.

We now show that the remaining two conditions of the proposition are satisfied. First we
show that ¢ does not divide disc(Or+). Let Qi be a prime ideal of Oy lying over ¢ and @
a prime ideal in Op lying over Q1. Both Q2 and @ are prime ideals in Op, lying over q. As
Gal(L/Q) is abelian, Exercise 13.4 ensures that E(Q3|Zq) = E(Q|Zq). Hence L' = LF(Q21Z9),
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The ideal Q; is the unique prime ideal in Oy s (=Op/) lying under Q2, so, by Proposition 13.14,
e(Q1]Zq) = 1, i.e., ¢ is unramified in Oy, which implies that ¢ does not divide disc(Oyr-).
Finally, we show that, if ¢’ is a prime dividing disc(Op/), then ¢' divides disc(Op). If ¢’ is a
prime dividing disc(Op), then ¢’ ramifies in Oy, which implies that ¢’ ramifies in Oy, because
L’ C Op; hence ¢ divides disc(Op). O

Case 2: L does not contain a primitive gth root of unity.

We begin by adding a primitive gth root of unity ¢ to L. We may apply Case 1 to L(().
Indeed, L(¢) = LQ(({). As both L and Q({) are normal extensions of Q, by Theorem 6.8,
LQ(() is a normal extension of Q. In addition, by Theorem 6.10, Gal(LQ(¢)/Q) is a subset of
Gal(L/Q) x Gal(Q(¢)/Q), hence abelian. By construction, L({) contains a primitive gth root of
unity. Moreover, ¢ divides disc(Op(¢)), because ¢ divides disc(Or) and Or, C Op¢), It remains
to show that ¢ does not divide [L(¢) : Q]. As

[L(C) - Q] = [L(¢) : LI[L : QJ,

if ¢|[L(C) : Q], then either ¢|[L(¢) : L] or ¢|[L : Q]. By hypothesis, the second alternative is not
possible. Also, by Theorem 7.4, the Galois group Gal(L(¢)/L) is a subset of Z, which implies
that [L(¢) : L]l¢ — 1. As ¢ does not divide ¢ — 1, the second alternative is also not possible. We
have shown that ¢ does not divide [L(¢) : Q].

As all the conditions of Case 1, with L replaced by L((), are satisfied, there exists a finite
normal extension L’ of Q and a primitive gth root of unity £ such that

e [L': Q] divides [L(C) : QJ;

o L(C) C L'(&);

e ¢ does not divide disc(Op/);

e any prime ¢’ dividing disc(Or) also divides disc(Orc))-

As I'(¢) = L'(€), we may suppose that £ = {. In the course of proving Case 1 we showed that
e = q— 1, thus by Theorem 13.11 [L : L¥] = ¢— 1, i.e., [L : L'] = ¢ — 1. Replacing L by L(¢) we
obtain [L(¢) : L'] = ¢ — 1. In a similar way, we obtain L' C L(().

We maintain that L’ has the required properties of the proposition.
e [L': Q] divides n = [L : Q]: Using Corollary 6.1, we have

ol o) ol - QI Q] _ Q-1
HORI O TR ) T Ehe@ Al

Thus
[L:Qlllg— 1) =[LNnQ(¢): QJIL() - L'][L" : Q],
which implies that
[L:QI=[LNQ(C): QL :qQl,
because [L({) : L'l = ¢ — 1. Hence [L' : Q] divides [L : Q].

e L C L'((), since L C L(¢) C L'(¢).

e ¢ does not divide disc(Oy/): Here there is nothing to prove.
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e Any prime ¢’ dividing disc(Oy/) also divides disc(Or): As L' C L({), ¢'|disc(Or) =
q'|disc(Orcy), which implies that ¢’ ramifies in Op(). However, L({) = LQ(C), so ¢’
ramifies in O, or in Oq(¢) (Theorem 13.12). As g does not divide disc(Oy/), ¢' # ¢, so ¢’
does not ramify in Oq(¢), so ¢’ must ramify in O, which implies that ¢ divides disc(Op,).

This finishes the proof. O

We are now in a position to dispense with the condition on the discriminant in Theorems
16.2 and 16.3.

Theorem 16.4 If L/Q is a normal abelian extension of degree p™, for some prime p, then there
exists a root of unity ¢ such that L C Q(().

PROOF If the discriminant disc(Op,) is also a power of p, then there is nothing to prove, so let us
suppose that this is not the case. Then there is a prime ¢ # p dividing the discriminant. From
Proposition 16.7 there is an abelian extension L;/Q and a gth root of unity ¢; such that

e [L; : Q] divides p™ and so is a power of p;

o LCLi(G);

e ¢ does not divide disc(Op, );

e any prime ¢’ dividing disc(Op,) also divides disc(Orp,).

Thus disc(Op, ) has fewer prime factors than disc(Or). We can repeat the process and so find a
normal abelian extension Ly/Q and a root of unity (s such that Ly C La((2), [L2 : Q] is a power
of p and disc(Op,) has fewer prime factors than disc(Opr,). Continuing in the same way, we
finally obtain a normal abelian extension L,./Q and a root of unity ¢, such that L,_y; C L,({),
[L, : Q] is a power of p and disc(Oy,, ) is also a power of p, possibly 1, in which case L, = Q
(Theorem 14.5). It follows from Theorems 16.2 and 16.3 that there is a root of unity (41 such
that L, C Q(¢r4+1). To sum up, we have the inclusions

LcC Ll(Cl)’Ll - L2(<2)a .. ~7Lr71 - LT(CT),LT C Q(Cr+1)v

which implies that
LcC Q(Cl?CQ7 cee 7C’f‘+1) - Q(C)a

where ( is a root of unity (Exercise 7.3). This ends the proof. a

16.5 Step 4: The general case
We are now in a position to prove the general case of the Kronecker-Weber theorem.

Theorem 16.5 If L/Q is a finite normal abelian extension, then there is a primitive root of
unity ¢ such that L C Q(().

PROOF As Gal(L/Q) is abelian, there exist prime numbers p1, ..., ps and p;-subgroups Hy, ..., Hs

such that
Gal(L/Q) ~ Hy x --+ x Hy.
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If |Hi| = po, then |Gal(L/Q| = [[°_, p5. Let H; = [liz; Hi and L; = LA, Then [L;:Q] =
pjfj, Moreover, since L/Q is assumed normal, Theorem 6.9 ensures that

S S
L=t =TT =] L
i=1 i=1

Since N_, H; = {e}, we obtain [[{_, L; = L. Also, each subgroup H; is normal in Gal(L/Q),
so, by Theorem 6.6, L;/Q is normal and Gal(L;/Q) ~ Gal(L/Q)/ﬁi. Therefore L;/Q is a finite

normal abelian extension, with degree a power of a prime, and so there exists a root of unity (;
such that L; C Q(¢;). Thus

L=Ly Ly CQ(&) Q<) C Q0),

where ( is a primitive root of unity (Exercise 7.3), i.e., L is included in a cyclotomic extension
of Q. O

The Kronecker-Weber theorem answers an important question. Earlier we saw that a cy-
clotomic extension of the rationals is normal and abelian; it follows that any subextension of a
cyclotomic extension of the rationals is also normal and abelian. It is natural to ask whether
there are other finite normal abelian extensions of the rationals. The Kronecker-Weber theorem
gives a negative response to this question.
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Chapter 17

Factoring primes in extensions

In a unique factorization domain R any element x which is neither the identity for the addition
nor a unit can be expressed as product of prime factors and a unit : x = up{* ---p&n, where
w is a unit and pq,...,p, are prime factors, which are not associated. There may be different
such factorizations, but the number n is always the same, as are the powers ay,...,q,. If we
take the powers of the primes in increasing order, then we obtain a finite sequence of positive
integers, which we call the form of the decomposition. For example, 12 = 3.22, so the form of
the decomposition of 12 is (1,2). Similarly, 30 = 2.3.5 has the form (1,1,1), 36 = 22.32 the
form (2,2) and 20 = 5.22 the form (1,2). We should notice that the factorizations of 12 and
20 have the same form (1, 2); thus different elements may have factorizations with the same form.

If K is a number field and O its number ring, then any nonzero ideal of Og not equal to
Og has a unique factorization into prime ideals, because Oy is a Dedekind domain. For a prime
number p we will be concerned in this chapter with the form of the factorization of the ideal

OKp.

17.1 Preliminary results

Proposition 17.1 Let K be a number field of degree n over Q and R an order of Ok . Then
|disc(R)| = [Ox : R)?|disc(Ok)|,

where [Ok : R] is the index of R as an additive subgroup of O .

PROOF We argue as in Section 14.1, defining ¢ in the same way. If B = (81,...,08,) is a basis of
R, then B’ = (¢(81),...,0(B,)) generates ¢p(R) over Z and is an independant set, hence ¢(R) is
a sublattice of Ao, , which we note Ar. We have

det Agr

Ao, : Aj]l= ————
[Aox : Al det Ao,

= det AOK [AOK : AR] = detAR.

However, from Section 14.1 we have
det Ao, = 27%/|disc(Ok)| and det Agp = 27°4/|disc(R)],
hence

|disc(R)| = [Ok : R)*|disc(Ok),
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because [Ao, : Ar] =[Ok : R). O

A particular application of this result is when o € O, K = Q(«) and R = Z[«]. In this case
the elements 1,c,...,a" ! form an integral basis of Z[a]. As we will see presently, it is often
important to know whether a given prime number p does not divide [Ok : Z[a]]. In particular,
if the discriminant disc(Z[a]) is square-free, then [Of : Z[a]] = 1 and so Z[a] = Ok.

In fact, we may improve the equality of Proposition 17.1.

Lemma 17.1 Let K be a number field such that [K : Q] = n. We suppose that there are r real
embeddings of K in C and 2s complex embeddings. Then the sign of the discriminant of an order
R in K is (—1)°.

PROOF Let B = {by,...,b,} be an integral basis of R. Then
disc(R) = det(a;(b;))?,

where 01, ...,0, are the real embeddings of K into C and o,41,...,0,425 the complex embed-
dings of K into C. We have

det(o:(6;)) = (~1)° det(3(b;)),

because complex conjugation interchanges s rows. If s is even, then det(o;(b;)) is real, so its
square is positive. On the other hand, if s is odd, then det(o;(b;)) is purely imaginary, so its
square is negative. O

We may now improve Proposition 17.1:
Theorem 17.1 Let K be a number field of degree n over Q and R an order of O . Then
disc(R) = [Ok : R)*disc(Og),
where [Ok : R] is the index of R as an additive subgroup of Ok .

PROOF From Lemma 17.1 the discriminants of both R and Og have the sign (—1)°. O

We also need some elementary results from group theory.

Lemma 17.2 Let G be a finite (additive) abelian group of order n. If p is a prime and p does
not divide n, then the mapping
¢:G— G, x+— px

is an automorphism.

PROOF The mapping ¢ is clearly a homomorphism. As G is finite, it is sufficient to show that
¢ is injective. Suppose that pr = 0. If = # 0, then 1 < o(x) < p, which implies that o(x) = p.
Then we have p|n, a contradiction. So ¢ is injective. a

Proposition 17.2 Let ¢ : G' — G be an injective homomorphism of (additive) abelian groups.
If H=9(G") and |%| is finite and not divisible by the prime p, then the induced mapping
o

G
w:pG’ —>]sz’+pG’n—>z/J($’)+pG

18 an isomorphism.
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PROOF It is clear that v is a homomorphism. From Lemma 17.2 the mapping

G G
P = — H H
Y H—>H,x+ — px +

is an automorphism. If z € G, then there exists x; € GG such that

v+ H=pr1+H=2—pr1 € H= z—pr; =(z'),
with 2 € G’. Then

@+ pG = pry + () + pG = ¥(a') + pG = (2’ + pG"),
so 1) is surjective.

We now show that ¢ is injective. Let 2’ + pG’ € p%, be such that (2’ + pG’) = 0, i.e.,

Y(a') € pG. Then there exists x; € G such that ¥ (2') = pr1. We now set z = ¢(z') = px;.
Then z € H N pG. Now

plxr+H)=pr1+H=x+H=H=0.

From Lemma 17.2 the mapping v is an automorphism, hence x; + H = H, which implies that
x1 € H. Thus we may write 1 = ¢(z}), with ] € G'. We have

z =) and @ =pr =py(z}) =P(pzh),

which implies that 2’ = pz7, because ¢ is injective. This shows that 2’ € pG” and so 2’ +pG" = 0.
It follows that ¢ is injective. m|

17.2 Dedekind’s factorization theorem

In the following discussion which will lead to Dedekind’s factorization theorem we will use some
general results from ring theory. Let us begin with these results.

Proposition 17.3 If f : R — S is a surjective ring homomorphism, then the inverse image of
a mazximal ideal M in S is maximal. If N is a mazimal ideal in R, then its image in S is either
S or a maximal ideal.

PROOF Let M be a maximal ideal in S. If f~1(M) = R, then f(x) € M, for every x € R. As
f is surjective, this is not possible, so f~1(M) is a proper ideal in R. We set h = 7 o f, where
7 is the canonical projection of S onto % Then h is a surjective homomorphism, with kernel
f7H(M). Moreover, 2 is a field, so f,%M) is a field. It follows that f~1(M) is a maximal ideal.

Now let N be a maximal ideal in R and suppose that f(N) is properly contained in S. Let
J be an ideal of S properly containing f(N). Then N C f~1(f(N)) C f~1(J). We claim that
N # f7Y(J). Let z € J\ f(N). As f is surjective, there exists y € R such that f(y) = x, which
implies that y € f~(J). If y € N, then = f(y) € f(N), a contradiction. Hence N # f~1(J),
as claimed. Since f~!(J) is an ideal in R, the maximality of N ensures that f~!(J) = R and so
f(f~1(J)) = f(R). Using the surjectivity of f, we obtain J = S, and it follows that f(N) is a
maximal ideal. a

Proposition 17.4 If I and J are coprime ideals in a commutative ring R and m,n € N*, then
I™ and J™ are coprime.
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PROOF As I + J = R, we have (I + J)™™ = R™*" = R. Each term in the development of
(I +J)™*" is included in I"™ or J™, therefore R is included in I"™ + J™. The reverse inclusion
is trivial, so we have I 4+ J" = R, i.e., I and J™ are coprime. O

Proposition 17.5 Let R be a commutative ring and I an ideal in R. The projectionm : R — %
defines a bijection from the set of ideals containing I onto the set of ideals in % If restricted
to prime (resp. mazximal) ideals, then we obtain a bijection of the set of prime (resp. mazimal)

. . . . . . . R
ideals containing I onto the set of prime (resp. maximal) ideals in .

PROOF Let A be the set of ideals in R containing I and B the set of ideals in % Using the fact
that 7 is a surjective homomorphism, there is no difficulty in seeing that 7 defines a mapping
from A into B, which we will write 7. If J € B, then 7=1(J) is an ideal in R and w(7~1(J) = J,
so 7 is surjective.

Suppose now that there exist ideals Iy, I> containing I such that #(I;) = 7(I3), i.e., &t = 2.
If s € I1, then s+ 1 = t+1, for some t € Is. Hence there exist x1, x5 € I such that s+z; = t+xo,
which implies that s =t + x5 — x1 € I5. Thus I; C I5. In the same way; I C Iy, so Iy = I3 and
7 is injective.

Now let us restrict 7 to prime ideals. If P is a prime ideal, then it is easy to see that 7(P)
is a prime ideal in %. Suppose that @ is a prime ideal in %; then 771(Q) is a prime ideal in R
containing I and 7(7~(Q)) = Q. Thus 7 as a mapping from the prime ideals containing I into
the prime ideals in % is surjective. Since 7 is injective, the mapping 7 must be injective when
restricted to prime ideals.

Finally let us consider maximal ideals. Let NV be a maximal ideal in R containing I. We
claim that 7(NV) is properly contained in R/I. If 7(N) = R/I, then, for any r € R, there exists
x € N such that r—x € I. Thus r € N, because N contains [; this implies that R = N, which is
not possible, because N is a maximal ideal in R. Thus 7(N) # R/I. From Proposition 17.3 we
deduce that 7(V) is a maximal ideal in R/I. Hence 7 takes maximal ideals to maximal ideals.
If M is a maximal ideal in R/I, then 7= (M) is a maximal ideal in R and w(7~'(M) = M, so 7
is surjective when restricted to maximal ideals. As 7 is injective, 7 is injective when restricted
to maximal ideals. a

Exercise 17.1 Let I be an ideal in the commutative ring R and w the canonical projection of R
onto R/I. If M is a mazimal ideal in R/I, then we know that there is a unique mazimal ideal
N of R containing I such that 7(N) = M. Show that the field (R/I)/M s isomorphic to the
field R/N.

The principle result which we will establish in this section enables us, in all but a finite number
of cases, to find the form of the factorization into prime ideals of an ideal which is the extension
of a prime number in a number ring. Let K be a number field with associated number ring
Ok, a € Ok and K = Q(a). We suppose that p is a prime which does not divide [Ok : Z[a]].
From Proposition 17.2, the natural ring inclusion ¢ of Z[«a] into Ok induces an additive group
isomorphism
Z[a} OK
Z[alp Okp’

There is no difficulty in seeing that 1) is also a ring isomorphism.

¥

It is worth studying the mapping 1/ in more detail. If I is an ideal in %, then its image is
an ideal in g—lfp. However, there is is a minor difficulty. The ideal I has the form m, where [

is an ideal containing Z[a]p in Z[a] and (1) = o+<p is composed of the classes of (%fp having a
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representative in 1. At first Viewing it is not clear how OL can be an ideal in g—K In particular,

when we multiply an element in O—p by an element in O—Kp how can we be sure that the result
lies in I + Ok p? This in fact is the case. We consider the case

(a+ Okp)(z + Okp),

where a € Ok and z € I. As 1) is bijective, there exists a’ € Z[a] such that a + Oxp = a’ +Ogp.
Hence we may write

T
(a+ Okp)(z + Okp) = (o' + Ogp)(x + Okp) = a'z + Ogp € Onp’

which resolves the apparent problem.
The mapping ¢ provides us with a bijection from the set of ideals in Zz[fj]p onto the set of

ideals in OO—pr and maps a prime ideal to a prime ideal We may find an interesting expression

for the imageooflan ideal in Zz[[o?j]p First zﬁ(m) = . As I C Ogl, we have O—p C 8—%.
VK1

Now let u € Then we may write u = Zle a;x; + OKp with a; € Ok, x; € I. As above,
for each a;, there exists a; € Z[a] such that a; + Ogp = a, + Okp, thus

S

Z a;z; +Ogp = Z(Gi + Okp)(z; + Okp)
im1 i1

= > (a; + Okp)(x: + Oxp)

i=1

S
= Z aix; + Okp.
i=1
As a’[x]i € I, for each i, we see that u € O%{p. It follows that 87@[) C O%(p‘ Thus for an ideal Z[i]p
. _ Okl
in 75, we have w(Z[a]p) Orp-

Remark The mapping 1/ enables us to define a bijection between prime ideals containing p in
Z[a] and prime ideals in Ok containing p. Let m; be the projection of Z[a] onto Z[a]p and 72 the
projection of Ok onto Ogp. If P is a prime ideal in Z[a] containing p (or, equivalently Z[a]p),

t_hen, from Proposition 17.5, m(P) = ﬁ is a prime ideal in Zz[[a] As 1) is an isomorphism,
w(ﬁ) is a prime ideal in g—p, ie. % is a prime ideal in 5%-. Then Ox P = 7, (OOKKP) is

a prime ideal in Ok containing Okp (or, equivalently p). Thus the mapping P — Og P sends
prime ideals in Z[a] containing p to prime ideals in O containing p. Since O P = w5 *(4(7(P)),
this mapping is a bijection. We should also notice that it is multiplicative, i.e., if I, J are ideals
in Z[a] such that p € I, p € J and p € IJ, then O (IJ) = (O I)(OkJ).

We now study the quotient ring Z[[ ]] in more detail. We write g for the polynomial g € Z[X]
reduced modulo p.

Let h be the minimal polynomial m(«, Q). By Corollary 11.1, h belongs to Z[X]. The
mapping e,, : Z[X] — Z[a] defined by e, (g) = g(«) is a surjective ring homomorphism. As h
is monic and h(a) = 0, the kernel of ¢ is the ideal (h). It follows that the mapping

o : Z[X]/(h) — Z[a], g + (h) — g(a)
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is an isomorphism. We set ¥ = e 1. Notice that, for a € Z C Z[a], we have ¥(a) = a + (h).

Proposition 17.6 We have

N
a5
=

h)
PROOF First we notice that the image of the ideal Z[a]p under ¥ can be written %, SO we

obtain an isomorphism ¥ from Z[[Oj] onto Z[X] /Z[X P

We now consider the mapping

z|X] ZXl)p 7 X ZIXlp g

=g+ (h)+ —~—r— g+ (h)
(h) © (h) (h) (h)
The mapping 4 is clearly a surjective ring homomorphism. We need to show that 4 is also
injective. If f € (h), then there exists u € ZLP[X} such that f = @h = uh. Thus f —uf =0, so
f — uh is a polynomial in Z[X], all of whose coefficients are multiples of p, i.e., f — uh € Z[X]p.
Then

0

Z[X]p o ZIX) ZXp

Hence § is injective and so we have the required isomorphism, namely n = 6§ o U. Explicitly 1

f+(h) = (f —uh)+(h) €

maps g(a) + Z[a]p to g + (h). 0
Remark The image of Z[a]p is (h). m|
Corollary 17.1 Ifp is a prime which does not divide [Ok : Z[a]], then the rings OO—pr and Fl(’—[;q
are isomorphic.

Now let us turn to Dedekind’s theorem. We first consider the prime ideals in FZ’}—S(] From
Proposition 17.5 the prime ideals in FP—[) I are of the form (h), where [ is a prime ideal in F,[X]

containing (k). As F,[X] is a PID, every ideal I is principal, i.e., I = (f) for some f € F,[X].
If (f) is an ideal containing (h), then f divides h. Moreover, if ( f) is a prime ideal, then f is a
prime element. Given that a PID is a UFD, f must be an irreducible polynomial. Hence we are
looking for irreducible polynomials in F,[X] dividing h. If h = A{* ... A% is the factorization
of h into irreducible polynomials in F,[X], then the A; are the irreducible polynomials we are

looking for. Hence the prime ideals in FE’;[S(] are of the form J; = ((’%’7))

. As the (A;) are maximal

ideals, so are the J;.

Our next step is to consider prime ideals in Z[«a]/Z]a]p. The inverse image of the mapping 7
defined in Proposition 17.6 is given by the evaluation at «, namely, if f € F[X] and g € Z[X]
is such that g = f, then the preimage of f + (h) is g(a) + Z[a]p. (There is no difficulty in seeing
that, if g,g1 € Z[X] and § = g1, then g(a) + Z[a]p = g1(«) + Z[a]p.) In particular, if (f) is

() (9())

an ideal in F,[X] containing (h), then J = U 1s an ideal in FE}[S(] and its preimage is 7702

Clearly, if (f) is a prime ideal, then so is J.

For each A;, let h; € Z[X] be such that h; = A;. Fori=1,...,s, we set P, = n~(J;) =
(}Z“[((lo]‘;) The P; are the prime ideals in Z[[Cﬁ] As the P; correspond to maximal ideals in FE’}—E;(],

they are also maximal.
Let 7 be the natural projection of Z[«] onto Z[[ ]] Then P; = 7~ 1(P;) is a prime ideal in Z[a]

containing Z[a]p (or, equivalently, containing p). From Proposition 17.5, we know that these are
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the only prime ideals in Z[a] containing Z[a]p. Setting Q; = O P;, for i = 1,...,s, we obtain
the prime ideals in Ok containing p. The fact that @; contains p may be written Q;|Ogp. Thus
the decomposition of O p into prime ideals has the form

Okp=QY' QY

where e is the ramification index of @Q;. We aim to show that e = e;. B
To begin with, we show that €] < e;. We claim that (7= 1(FP;))% C n 1(Pf"). Let u €
(7~1(P;))%. Then u is a finite sum of products of the form a; - - - a., such that 7(a;),...,7(ac,) €

P;. Suppose, for example, that u = a; ...ae, + by ...b., Then
m(ay) - m(ae,) +w(by) - m(be,) € PF* = 7(ay...ac, +b1...be,) € PF' = u & Y(PF).

The other cases, with more or less products in the sum, can be handled in an analogous way,
hence (W’l(P))el C = 1(Pf), as claimed. B B
We now consider the intersection N{_;m~1(Pf*). Let u € N{_;7 1 (Pf). Fori=1,...,s, we

e (1" (0) (h')
i
Zllp ()
and so n(w(u)) = E}:l; which in turn implies that 7(u) = %mg Therefore, u € Z[a]p and it
follows that N:_,7~1(P{") C Z[a]p. From this and the preceding paragraph we obtain

n(m(w) €

m(u) €

Zlalp D Niym ™ (P D My (rH(P)* = iy P

We claim that N;_, P = [[;_, P{’. In the light of Proposition 12.4, it is sufficient to show
that the ideals P/ are coprime, when i # j. First, 7 is a surjective homomorphism and, for each
i, the ideal P; is maximal, so P; is a maximal ideal from Lemma 17.3. It follows that P, and P;
are coprime, when ¢ # j. Now, from Lemma 17.4, P/* and Pjej are coprime and thus we obtain

alp D f[ Pf
i=1

Therefore

Oxp D Ok (H Pf) = HQ?v
i=1

i=1

This implies that e, < e;, fori =1,...,s, as Oxgp=[[;_, Q;".

We now show that e, = e;, for all i. We need to consider the inertial degree f; = f(Q;|p),
i.e., the degree of the extension % over F,,. We notice that the mapping

Z 0
f:—zp —>—QI:,a+Zp»—>a+Qi
Ok

is a monomorphism, so 2 is a field containing F;,. Now, we have the following chain of additive
group isomorphisms:

Ok Ok , Qi _ZloJ, B Zo) 5 FlX]

(P glo) B[] (A) | FylX]
Qi ~ Okp' Okxp ~ Zlolp' Zlolp — Z[oJp' ™'~ (k)

(h) — (A)

~
12
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These spaces are also F,-vector spaces and it is not difficult to see that the additive group
isomorphisms are also Fp-vector space isomorphisms. Therefore the dimension of the field %

over F), is that of FPTP()] over F,,. This vector space has the dimension d;, the degree of the

polynomial A;: If f € F,[X], then there exist g,r; € F,[X] such that : deg (r;) < d; and
f=gA; +r;. Then
f+(Ai) = gAi i+ (i) =ri + (A)

and it follows that B = {1+ (A;), X + (A4;),..., X%~1 + (A;)} is a generating set of F(‘Z[f] B is

also an independant set. Let
Ao(1+ (A0) + A (X + (A) + -+ g1 (X7 + (A) = (Ad),

where the \; € Fp,. Then U(X) = E?i:_ol ;X7 € (A;). Asdeg (U) < d;, U is the zero polynomial
and it follows that the A; all have the value 0. Therefore B is an independant set and so a basis
of F&[S}. We have shown that F(‘;\[i)] has dimension d;. It follows that the inertial degree f; is
equal to d;.

We now use Proposition 13.7:

n=[K:Q]= ie;fi < ieidi.
=1 =1

As the degree of the polynomial A" is e;d;, the product AT --- A% has degree Y °_, €;d;. Given
that this product is h, which has degree n, we have >_°_, e;d; = n.
To conclude we have

S S
i=1 i=1
As d; = f; and € < e;, we must have e} = e;, as required.

To sum up, we have proved the following result, known as Dedekind’s factorization theorem:

Theorem 17.2 Let K = Q(«) be a number field, with « € Ok, and h = m(«, Q). If p is a
prime number and p [ [Ok : Z[a]], then the factorization of Ok p into prime ideals has the same
form as that of h (=h modulo p) into irreducible polynomials.

Remark In proving Theorem 17.2, we have seen that d; = f;. If @; is the ideal corresponding to
h; and Q; lies over the prime p, then ||Q;|| = p%. This follows from the proof of Proposition 13.7.

Theorem 17.2 may be difficult to use in practice, since, in order to know that p does not
divide the index [Ok : Z[a]], we have to know this index. The corollary which follows provides
us with a condition which is easier to check.

Corollary 17.2 Let K = Q(«a) be a number field, with o € Ok, and h = m(a,Q). Ifp is a
prime number and p [disc(Z]a]), then the factorization of Op into prime ideals has the same
form as that of h (=h modulo p) into irreducible polynomials.

PROOF As
disc(Z[a]) = [Ok : Z]a]]*disc(Ok),

if p fdisc(Z[a]), then p [ [Ok : Z[a]] and Theorem 17.2 applies. O
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Examples 1. Let K = Q(v/d), where d is a square-free integer. Then Ox = Z[w], where
w=d,ifd=2,3 (mod 4) and w = 14 if ¢ = 1 (mod 4). In both cases [O : Zw]] = 1,
so no prime number p divides [Og : Z[w]], hence Theorem 17.2 is applicable. In the first case
m(w, Q) = —d + X? and in the second case m(w, Q) = 3¢ — X + X2.

For instance, if d = 2 and p = 3, then

m(w, Q) = -2+ X% =1+ X? (mod 3),

which is irreducible. It follows that Ox3 = @, for some prime ideal Q.
To take another example, if d =5 and p = 5, then we have

mw,Q)=-1-X+X>=4+4X + X? = (2+ X)? (mod 5).
Hence Og5 = @2, for some prime ideal Q, i.e., 5 is totally ramified in Og.

2. Let K = Q(+/10) An elementary calculation shows that disc(Z[v/10]) = —2700 = —22.33.53.
From Corollary 17.2, for any prime number p other than 2, 3 or 5, the form of the factorization
of Ogp can be determined from that of m(4/10, Q) (mod p).

For instance,

m(v10,Q) = =10+ X3 =4 + X* (mod 7),
which is irreducible, so Og7 = @, for some prime ideal Q).

We now consider Og3. We look for an element 5 € Ok such that K = Q(8) and 3 f [Ok :
Z[B)]. (Of course, B # a). If B = 1(1+ V10 + {/100)), then 3 is a root of the polynomial
f(X) = -3 -3X — X2+ X3 As f has no rational root, f is irreducible over Q and so
f=m(5,Q). It is not difficult to see that Q(5) C K, so we have

[K:Q]=[K:QMQ(B): Q] = [K:Q(B)] =1,

because [K : Q] = [Q(B) : Q] = 3. Hence K = Q(f). As disc(Z[B]) = —300 = —22.3.52, from
the formula

disc(Z[f]) = [Ox : Z[]]*disc(Ok),
we see that 3 f [Ok : Z[8]] and we may apply Theorem 17.2:
m(B,Q) = -3 -3X — X?+ X3 = (~1+ X)X? (mod 3),
so O3 = Q1Q3, for prime ideals Q1, Qs.

3. If K = Q(¢), where ( is a primitive root of unity, i.e., K is a cyclotomic extension of Q, then
Ok = Z[¢], so in this case [Of : Z[(]] = 1 and no prime number p divides [O : Z[(]]. We may
apply Theorem 17.2 for any prime p. Let us consider the case where { = e Then

-1

m(<7 Q) = (I)P” (X) = q)P(Xpn )7
where ®,» is the cyclotomic polynomial of order p™. Now,
O,(X)(-14+X)=—-1+XP=(-1+ X)? (mod p),

®,(X) = (—1+ X)P! (mod p) = ®,n(X) = (—1 + X1’7L71)I’_1 (mod p),

and finally
Pn(X)=(—1+ X)p”il(p_l) (mod p).
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It follows that
Oxp=Q"" @Y,

for some prime ideal @, i.e., p is totally ramified in O-.
Let us consider the case where p =5 and n = 1. Then

P5(X)=14+X+X*+X°+ X*
and Og5 = Q*, for some prime ideal Q. Now let us consider Oxp, where p # 5. We have
P5(X) =1+ X + X2+ X? + X* (mod 3),

which is irreducible modulo 3. (To check this it is sufficient to observe that the polynomial has
no root in F3 and is not divisible by any irreducible polynomial of degree 2 in F3[X].) Thus
Ok3 = @, where @ is a prime ideal. A similar situation applies for p = 7.

On the other hand,

O5(X)=(-3+X)(—4+ X)(-5+ X)(—9+ X) (mod 11),
so Orll = Q1Q2Q3Q 4, where the @); are distinct prime ideals.

Remark We could have obtained the results in this example by applying the theory we devel-
opped in Section 13.9.
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Chapter 18

Monogenic fields

A monogenic field is an algebraic number field K for which there exists an element « in the ring
of integers Ok such that Ox = Z[a]. Such an element « is called a power generator . We have
seen that quadratic fields and cyclotomic fields are monogenic. Also, from Proposition 17.1, if
the discriminant of Z[a] is square-free, then K is monogenic. If K is monogenic, then we may
apply Dedekind’s factorization theorem to find the form of the factorization into prime ideals of
the ideal Ok p for any prime p. If K is monogenic and O = Z[a], then Ok has an integral basis
composed of powers of «, called a power basis , and the discriminant disc(Ox) may be calculated
using this basis, which is simpler than in the general case. In addition, such fields have other
interesting properties as we will presently see.

Remark If the number field K is monogenic and « is a power generator, then « is not unique.
In fact, for any integer n, a4 n is also a power generator. It is interesting to know whether there
are other power generators. This may well be the case. The following result gives us an example.

Proposition 18.1 Let ¢ be a primitive pth root of unity, with p an odd prime, and K = Q(().
Ifn =1+ + ¢+ + P! (even powers), then ¢ and n do not differ by an integer and
Z[¢] = Z[n).

PROOF Let us suppose that there is an integer k such that { —»n = k. We notice that n = ﬁ, SO

ﬁw:k:n:<k+<)(1+<)=>0=<k—1>+<k+1><+<2-

However,

(k+1)? —4(k—1) =5 — 2k + k2,

which is positive for all values of k. This implies that ( is a real number, a contradiction. Hence
¢ and n do not differ by an integer.

Clearly Z[n] C Z[(]. To establish that Z[¢] C Z[n], it is sufficient to show that ¢ € Z[n]. We
have seen that 7 is a unit with inverse 1+ (. As 7 is invertible, from Proposition 11.3, the norm
Ng/q(n) has the value £1 and so the constant term of the minimal polynomial f = m(n, Q) has
the value £1. Without loss of generality let us suppose that the constant term is positive. Then

f(X):1+a1X+02X2+~~+as,1X5*1_|_Xs’

where the a; are integers. From this we obtain

1 2 s—1

l=—amm—ay’ = —as ' =0 = 1+ (= —a1 —agn — - —a;n* 2 =n° 1,
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and it follows that ¢ € Z[n]. O

Remark It can be shown that a monogenic field can only have a finite number of distinct power
generators, i.e., power generators which do not differ by an integer ([11]).

18.1 Monogenic and non-monogenic fields: examples

Other number fields than those we have already mentioned are monogenic; however, many num-
ber fields are not. Before giving examples of non-monogenic number fields, we will give some
further examples of monogenic fields.

Suppose that p is an odd prime and ¢ a primitive pth root of unity in C. Let K = Q(().
We set Ko = Q(¢ + ¢~ 1). We claim that Ky is monogenic. First, K is a real subfield of K and
K : Q] = [K : K|[Ko: Q. Weset f(z) =1—(C+¢1)X+ X? € Ko[X]. Then f(¢) =0
and ¢ ¢ Ko, so f = m((,Kp) and it follows that [K : K] = 2. From this we deduce that
[Ko: Q] = 2=L and that K, is a maximal subfield of K. Now we show that K is monogenic,

2
with ¢ + (! as power generator.

As ¢ + ¢! is the sum of two algebraic integers, it is an algebraic integer. Clearly, ¢ + (1
belongs to Ko, thus Z[¢ + (~1] C Ok,. The reverse inclusion requires more work.

Let u € Ok,. Then, by Proposition 11.10, we may write u = Zf:_ll w;Ct, with u; € Z. Then
p—1 et p—1 et et
UZZUZCZ = Zulcl—k Z U,Z‘CZ = Zuz‘ci‘FZ’U;p_icpil.
i=1 i=1 pt1 i=1 i=1

1:72

Because u is real, we have u = u, hence

p—1 p—1 p—1
w= uiCt =3 ulT = u
i=1 =1 i=1
p—1

Hence, for i =1,..., %5~ we have u; = u,_; and so

w=> u(¢'+ (7).
=1

We claim that each of the elements (? + ¢~ are linear sums of powers of ¢ +(~!. We use an
induction on i. For i = 1 there is nothing to prove. Suppose that the result is true up to a given
i and consider the case ¢ + 1. We have

(C4+ Y = (1) e+ (i 1)+ D),
from which we deduce
(CH YT — G+ 1) (¢ ¢OD) o = ¢ D,

Using the induction hypothesis, we obtain that ¢***4+¢ =+ is a linear sum of powers of ¢ +¢ 1.
Thus we have proved the claim. It follows that u belongs to Z[¢ + ('] and we have the inclusion
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Ox, C Z[¢ + (1], as required. Thus Q(¢ + ¢~!) is a monogenic field.

We now turn to cubic number fields. This case is more complex than that of quadratic
number fields. We will first show that the field Q(%/2) is monogenic. To prove this we need a
preliminary result.

Proposition 18.2 Let K = Q(«), with o € Ok, be such that [K : Q] =n and f = m(a, Q). If
p s a prime number and f is Eisenstein at p, then p {[Ok : Z[a]].

PROOF Let
f(X)=a+a X+ +a,1 X"+ X",

where pla;, for i = 0,1,...,n — 1 and p? 4. We have
a0+a1a+~~-+an_1a"*1+a”:0:>Z[a] =Z+Za+---+Za" !
and %L € Z[a]. Also,
Ngq(a) = (—1)"ap # 0 (mod p*).

Suppose that p|[Ox : Z[a]]. Then there is an element of order p in the quotient group
Ok /Z[a]. This means that there exists € Ok, but not in Z[«a], such that px € Z[a]. Thus

pr=bo+bia+ - +by_1a" ",

with b; € Z. As x ¢ Z[a], there is at least one b; which is is not divisible by p. Let j be the
smallest index with this property. So

b b bi_1 b: . b ) b
y=.13—<0—|-1(X+-~-—|-]104j_1>=Jozj—‘y-j—Hoz]—H—l—"'—F "104"—1.
p p p p p p

bj,1

Because both x and %" + %a 4+ 4+ Taj*I belong to O, y belongs to Ok and so this is the
case for ya™~7~1. Now

) b a™ .
ya" I = ;Jan% + 3 (bj1 + bjroo+ -+ byga™ 772

am

Since o€ Z[a] C Ok, we have %a”fl € Og. Also, the norm of an algebraic integer is an
integer, hence

b, b N a)t b ag|™ !
Niq(Larty = @l 1 Bl g
p " p"
However,
p fo; and p* Jao,
=) |NK/Q(%04"_1)| ¢ Z and we have a contradiction. It follows that p [[Oxk : Z[«]]. O

We are now in a position to show that the field KX = Q(+/2) is monogenic. From Theorem

17.1 we have
disc(Z[V2]) = [Ox : Z[V/2]]2disc(O).

The polynomial m(+/2, Q) has the form f(X) = —2+4 X3 and its discriminant is —108 = —22.3%,
so 2 and 3 are the only primes which could divide [Of : Z[¥/2]]. As f is Eisenstein at 2, by
Proposition 18.2, 2 A[Ok : Z[V/2]]. The number 1 + ¥/2 is a root of the polynomial g(X) =
(—14+X)? -2 = —-3+3X —3X2+ X3, which is Eisenstein at 3, so 3 [[Of : Z[1 + V/2]]. However,
Z[1 + V2] = Z[/2], s0 3 f[Ox : Z[v/2]]. As both 2 and 3 do not divide [Of : Z[/2]], we must
have [Og : Z[V/2]] = 1, i.e., O = Z[¥/2] and K is monogenic.
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Exercise 18.1 Show that K = Q(/5) is monogenic.

Remark We may generalize these results in the following way. If ¢ is a prime such that 3|(1+q)
and 32 /(1 + ¢), then the field Q(/q) is monogenic. For example, Q(v/11) and Q(v/23) are
monogenic. In this way we obtain a family of monogenic cubic fields. We may be tempted to
think that all cubic number fields are monogenic. The following example, due to Dedekind, shows
that this is not the case.

Proposition 18.3 (Dedekind) If 0 is a root of the polynomial f(X) = -8 —2X — X2+ X3, then
K = Q(6) is non-monogenic.

PROOF First we calculate the discriminant of O. As the polynomial f has no root in Q, f is
irreducible over Q. Let n = #. Then the set S = {1,6,7n} is independant over Q. (If the set
S is not independant, then 6 is the root of rational polynomial of degree 2 and it follows that f
is reducible over Q.) Now A =Z ® Z0 @ Zn is a free Z-module of rank 3 contained in Ok, with
basis S. To calculate the discriminant of A, we use the formula developped in Proposition 10.7,
i.e., disc(A4) = det(X), where

Tk/q(1) Tgj0) Tik/q(n)
X =| Tr/Q(0) Twx/q(0?) Ti/q(on)
Tr/q(m) Tr/qmb) Tr/q(n?)
To determine the elements of this matrix we first find the respective matrices My and M, of
the applications # — 6z and x — nz in the basis B = {1,0,0?}:
8
2 M, =

00
Myg=|1 0
0 1

== O
—o
N O O

1

Multiplying these matrices we find those of the applications z — 6%z, x — 6nz and
x — 0’z Mo = Mg, Mg, = MyM, and M,> = M. We obtain

0 8 8 4 8 16 6 12 40
Mpg=1|1 2 10 My, = |1 6 12 M, = % 9 22
1 1 3 1 2 8 S 5 14
Therefore
3 1 3
X=|1 5 18
3 18 29

The determinant of X has the value —503, so the discriminant of A is —503. From Theorem
17.1 we have
disc(A) = [Ok : A]*disc(O).
As 503 is a prime number, we must have [Ok : A] = 1, i.e., the free groups Ok and A are the
same. Thus any element o € O can be written a + b0 + ¢n, with a,b,c € Z. We aim to show

that disc(Z[a]) is even and so Ok # Z[a]. To begin with, we determine the matrix M, of the
application  — ax in the basis B = {1,0,n}:

a 4c 4b
M,=1b a-—b» 2c
2b+4+2¢ a-+2b+ 3c
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Reducing modulo 2, we obtain

a 0 0
My=|b a=b 0 (mod 2).
c 0 a+c

Then for the trace of the application z — a*z we have
tr My =tr (M¥) ="+ (a—b)* +(a+c)f=a+(a—b)+(a—c)=a—b+c(mod?2).

We now set
tr(1)  tr(a) tr(a?)
Y=| tr(a) tr(a?) tr(a?)
tr(a?) tr(a?®) tr(a?)

From Proposition 10.7, we have disc(Z[a]) = det(Y). All the elements of Y are equivalent to
a—b+c (mod2). If a—b+c¢ =0 (mod 2), then the the last column of the matrix Y is composed
of even numbers, hence det(Y) is an even number. On the other hand, if a — b+ ¢ =1 (mod 2),
then all the elements of the matrix are odd. The determinant is composed of a sum of 3! products
of 3 elements of the matrix, i.e., of a sum of 6 odd numbers, which is an even number. Therefore,
in this case too, det(Y) is an even number. We have shown that disc(Z[«]) is an even number.
As disc(Og) is odd, we cannot have Og = Z[a], i.e., K is not monogenic. O

Up to here we have only seen one example of a non-monogenic number field. We now turn
to biquadratic number fields . (We recall that a number field is biquadratic if it is obtained by
adjoining to Q the square roots of two square-free integers.) The family of such fields, which we
will present, will provide us of infinite number of non-monogenic fields.

Let d # 1 be a square-free integer such that d = 1 (mod 3), then m(vd, Q) = —d + X?2. Let
us write f for this minimal polynomial. Reducing modulo 3 we obtain f(X) = (1+ X)(—1+ X),
so from Dedekind’s factorization theorem we obtain Oq( \/5)3 = P, P, where P, P, are prime
ideals in OQ(\/g), i.e., 3 splits completely in OQ(\/g).

Now let dy, ds be distinct square-free integers such that d; # 1 and d; = 1 (mod 3), for
i = 1,2. From Theorem 13.12, the prime 3 splits completely in O, where K = Q(v/d1, Vd2),
ie.,

O3 = P PyPs Py,

where the P; are prime ideals in Og. Suppose that there exists a € Ok such that Ok = Z[a];
then 3 A[Ok : Z[a]]. If we set f = m(a,Q), then from Dedekind’s factorization theorem we
obtain

F(X) = (a1 + X)(—az + X)(~a3 + X)(~as + X),

where f denotes the reduction of f modulo 3 and a1, ag, as, as € F3. However, F3 contains only
3 distinct elements, a contradiction. It follows that Ox # Z[a] and so K is not monogenic.

Example The number field Q(v/7,/10) is not monogenic.
More on biquadratic number fields can be found, for example, in the articles [9], [16]).

Remark Proposition 18.2 together with Theorem 17.2 may be used to prove the following result:
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Proposition 18.4 If K = Q(«a) and the polynomial minimal h is Eisenstein at p, then h = X™,
so the factorization of Ogp into prime ideals has the form Og = P™, i.e., p is totally ramified
m OK.

PROOF We leave the proof as an exercise.

18.2 Properties of orders in a number ring

We recall that an order in a number ring K is a subring R of Ok whose index as a subgroup of
Ok is finite. We know that Ok is a Dedekind domain, but what can we say of an order R which
is a proper subring of Og? It turns out that certain properties of O carry over to R, but not
all. (Of course, we are primarily interested in orders of the form Z[«a], where Z[a] is a proper
subset of Og.)

Proposition 18.5 If R is an order, then R is noetherian.

PROOF It is sufficient to show that every ideal in R is finitely generated. If I is the zero ideal,
then there is nothing to prove, so let us suppose that this is not the case. Let I be a nonzero
ideal. As I is a subgroup of O, I is a free group of rank at most that of Ox. Hence I has a
finite basis, which implies that it is finitely generated. o

We now consider the fraction field of R. But first a preliminary result (not without interest).
For an order R, we write QR for the collection of sums of the form Zle q;ri, with ¢; € Q and
r; € R.

Lemma 18.1 Let K be a number field with ring of integers Ok . If R is an order in K, then
QO0x = QR =K.

PROOF First we show that QOx = K. Clearly QO C K. Suppose now that o € K. As « is
algebraic over Q, from Lemma 11.2 there exists a positive integer k such that ko is an algebraic
integer, i.e., ka € Og. Hence a € QOk and so K C QOg. As QOg C K, we have an equality.

Now suppose that R is any order in Og. As R C Og, we have QR C QO = K. We
now consider the reverse inclusion. There exists a basis {ej, ..., e, } of Ok and positive integers
dy,...,d, such that {dye1,...,dpe,} is a basis of R. Let a € K. From Lemma 11.2 there exists
a positive integer k such that ka € Og. Therefore we can find integers ki, ..., k, such that

ka—Zkelz dezeQRzaeQR

Therefore K C QR and it follows that K = QR. a
We recall that the fraction field of Ok is K. It turns out that this is also the case for any

order in Og.

Proposition 18.6 Let R C Ok be an order. Then the fraction field of R is K.

PROOF Let us write Frac(R) for the fraction field of R. If o € K, then, from Lemma 18.1, there
exist q1,...,qx € Q and rq1,...,7, € R such that a = Zle ¢;iri- We may write ¢; = %, with
ai,bi € Z and b, 7é 0. Then

k k
Z Z L € Frac(R),

@‘@
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because both a;r; and b; belong to R. Thus K C Frac(R). By definition Frac(R) C K, hence
the equality Frac(R) = K. O

As Ok is a Dedekind domain, every nonzero prime ideal in O is maximal. This is also the
case for orders.

Proposition 18.7 If R C Ok is an order, then every nonzero prime ideal is mazimal.

PROOF Let P be a nonzero prime ideal in R and a a nonzero element of P. Let f = m(a, Q).
Then f(X) = Z?;OI c; X'+ X™ € Z[X]. As f is minimal, ¢y # 0. Given that f(a) = 0, we have

—cp=cra+-+ecp 16" +a" = o€ P.

The quotient R/P is a finitely generated Z-module, such that c¢o(R/P) =0 (co € P). From the
theorem of the decomposition of finitely generated modules over a P.I.D., we know that R/P is
a direct sum of cyclic submodules [5]. As ¢o(R/P) = 0, all these submodules must be finite and
so R/P is finite. However, R/P is an integral domain and a finite integral domain is a field. It
follows that P is a maximal ideal. a

Exercise 18.2 In the proof of the above proposition we have used the fact that a finite integral
domain is a field. Prove this statement.

Up to here the properties of rings of integers have carried over to orders. However, one
important property does not carry over and this prevents orders which are not rings of integers
from being Dedekind domains. We recall that an integral domain R is normal if its integral
closure in its field of fractions is R itself. This is so for rings of integers (Proposition 11.7), but
is not true for other orders.

Theorem 18.1 Let K be a number field, with ring of integers Ok . If R is an order in K and
R # Ok, then R is not a normal domain.

PROOF Since R # Ok, there exists 8 € Og \ R. As Og C Frac(Ok) = Frac(R), B lies in
Frac(R). Moreover, 3 is an algebraic integer, there exists a monic polynomial f € Z[X] C R[X]
such that f(8) = 0. Hence § lies in the integral closure of R. However, § ¢ R, so the integral
closure of R in its field of fractions is not R, i.e., R is not normal. a

Corollary 18.1 An order R in a number field K is a Dedekind domain if and only if R = Ok.

An important property of Dedekind domains is the expression of a nonzero fractional ideal
as a unique product of powers of prime ideals, with positive powers for integral ideals. This
property does not carry over to orders which are proper subrings of number rings.

Proposition 18.8 Let K be a number field with ring of integers O . If the order R is a proper
subset of Ok, then the unique factorization of fractional ideals fails.

PROOF Suppose that R has the factorization property. We will show that this implies that every
prime ideal is invertible. Let P be a prime ideal of R and a a nonzero element of P. By hypothesis

(@) = Q1 Qs,

where the @); are prime ideals in R. Then

R=Qi(Qs Q).
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so (1 is invertible. In the same way, the ideals @Qs,...,Qs are also invertible. If no Q; is
contained in P, then for each i there is an element ¢; € @); which does not belong to P. However,
the product ¢; - - - ¢; € P, which is impossible because P is a prime ideal. Therefore, for some i,
we have @); C P. As every nonzero prime ideal is maximal, we must have @; = P and so P is
invertible.

We now consider a nonzero fractional ideal I. By hypothesis we can write

I=PpPM".. Pim,
where the aq,...a, € Z. Then [ is invertible, with
I—l — Pn—a,n L. Pl_al'

Thus every nonzero fractional ideal is invertible.

In the proof of Proposition 12.9 we showed that, if R is an integral domain such that every
nonzero fractional ideal is invertible, then R is integrally closed in its fraction field, i.e., R is
normal. From Theorem 18.1 we see that R = Ok, a contradiction. Therefore the factorization
property does not apply to orders which are not maximal. O

18.3 Different of a number ring

We now return to the different, which we defined in Chapter 15 for a general Dedekind domain.
We will be particularly interested in number rings and will first summarize the discussion of the
different in this context.

The ring of integers Z is a Dedekind domain and Q is its field of fractions. (In the language
of Chapter 15, Z = C and Q = K.) Let L be a number field and Oy, its ring of integers. Oy, is
the integral closure of Z in L. (In the language of Chapter 15, Oy, = D.) We set

Op ={z e L:Ty)q(xy) € Z,Yy € OL}.

From Proposition 15.3, O} is a fractional ideal of Op. We now set A(Op|Z) = O3~ '. (To
simplify the notation we will write A for A(Or|Z). A is called the different of O, over Z, or
simply the different of Op. From Proposition 15.4 we know that A is an integral ideal of Op.

The bilinear form defined on L x L by (z,y) +—— Tr/q(wy) is nondegenerate. If B =
{x1,...,z,} is an integral basis of Or, then B is a basis of L over Q. There is a basis
B* = {z7,...,z;} of L over Q such that Ty q(ziz}) = dij, where §;; is the Kronecker sym-
bol. This second basis is called the dual basis of B and, from Proposition 15.2, is a basis of the
free Z-module O} .

Different and discriminant

In this subsection our principal aim is to prove a relation between the discriminant and the
different of a number ring Oy,.

Theorem 18.2 For a number ring Oy, we have

[A(OL|Z)|| = |disc(Or)].
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PROOF As Oj is a fractional ideal of Oy, there exists a nonzero element of o in Oy, such that
aO7 is an ideal of Oy. We claim that we may choose o € N*. As L is a finite extension of Q,
each 7 is algebraic over Q. From Lemma 11.2, there is a positive integer «; such that o,z is an
algebraic integer and so belongs to Or,. If & = ;- - - vy, then ax} € O, for all ¢, and it follows
that a0} C Or.

Now
o071 = Zaz] + - - + Zaz;),.
Given that az} € Of, we may write

n

n
Qi i
* i * ]
ar; = E a”xj:::»xi<— E —Bjxw

j=1 j=1

where the a;; are rational numbers. Also, for ¢ =1,...,n, we have

n

*

€Ty = E @jxj,
J=1

with the b;; rational numbers. Let us set A = (a;), A’ = (%£) and B = (b;;). These matrices
have their components in Q and A’B' = I,,, i.e., Bt = A'~1. Then

Tpjq(wiz;) =Trq (Z bz‘kQ?Z»’Cj) =Y biTrq(wizs) = by

k=1 k=1

Therefore, by Proposition 10.7,

det(B) = disc(Oyp). (18.1)
Now aOj is an ideal in Oy, and has the integral basis B’ = {az7, ..., az)}. Using Theorem
13.3 we obtain
discr,/q(azi, ..., az}) = a0} ||*disc(OL).

However, from Proposition 10.6 we also have
discr,/q(azi,. .., az}) = det(A)*disc(Oy),

which shows that

O*
[det(4)] = a0} | = |det(4')] = 129L1,
Moreover,
* *— * *— n *— an
laOL 07| = 0L 07 || = l[(@)]l = " = 07| = ==
Ol
Since A’ is the inverse of B?, we have
10771l = [ det(B)| = |disc(O1)],

where we have used the relation (18.1). |

Corollary 18.2 If the discriminant of Oy is a prime, then A is a prime ideal.
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PROOF If disc(Oyp) is equal to a prime number, then so is |A(OL|Z)||. From Proposition 13.5,
A is a prime ideal. O

Factorizing the different

The different is an ideal and so has a factorization into prime ideals. Here we will be concerned
with this factorization. We will first study some examples where the number field is monogenic
before giving a more general result.

Some examples in the monogenic case

The goal of this paragraph is to provide the decomposition into prime ideals of the differents
of the number rings of the cyclotomic fields Q(¢,) and the quadratic field Q(v/10), using the
tools which we have previously developped. In particular, we will reconsider Corollary 15.4.
We may interpret this result in the context of number fields. Let L be a number field which
is a normal extension of Q. If L is monogenic, a a power generator and f = min(«a, Q), then

A(OL|Z) = Or(f' ().

We start with cyclotomic fields. Let {, be a primitive pth root of unity and L = Q((,).
We know that L is monogenic and that the minimal polynomial m(¢,, Q) has the form f(X) =

S R Then

_pXPTH (=14 X) — (-1 4 X7)

Since (77! is a unit, we find

p
A=0 )
14 G
Moreover, in the proof of Proposition 11.10 (equation (11.2)) we saw that Oqc,)p = Oq(c,)(1 —
¢p)P~1, therefore
A=0p(1-¢)P 2 (18.2)

From Section 13.9, Op (1 — () is a prime ideal, so the expression (18.2) is the decomposition of
A into prime ideals.

Now let us look at quadratic number fields. If L = Q(+/d), with d = 2,3 (mod 4), then

Oy, = Z[V/d] and the minimal polynomial m(v/d, Q) has the form f(X) = —d + X2. Tt follows
that A = Or,(2V/d). On the other hand, if d = 1 (mod 4), then L = Q(1Y4) and O}, = Z[1£Y4).
In this case the minimal polynomial m(HT‘/E, Q) has the form f(X) = 1%4‘1 — X + X? and so

f'(X)=—1+2X. Therefore A = Oz V/d.

Finding the factorization of the different may not be so easy as in the case of the cyclotomic
field above. From Corollary 15.3 a nonzero prime ideal @ in Op divides the different A if
and only if @ lies over a prime which ramifies in Op. Thus we can find the factors in the
decomposition, but not necessarily their powers. Let us consider an example. Let L = Q(+/10).
Then A = O(2v/10). The discriminant of Oy, has the value 40 = 235, so the primes which
ramify in O, are 2 and 5. As Oy, = Z[/10], from Theorem 17.2, there exist prime ideals Q5 and
Qs in Z[v/10] such that

ZV10]2=Q2 and  Z[V10]5 = Q2.
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Therefore ()2 and ()5 are the prime divisors of A and eg, = eq, = 2. In fact,
QQ = (27 v 10) and QS = (5a \ 10)
To see this, we notice that

zvig ., zvi .,
2,Vi0) (5,v/10)

hence (2,/10) and (5,+/10) are maximal ideals, and therefore prime ideals. There is a unique
prime ideal in Z[v/10] dividing Z[+/10]2 and (2,+/10) is such an ideal. Therefore Q2 = (2,+/10).
In the same way @5 = (5,+/10). In addition, the characteristics of Z[é/?] and Z[é/jo] are respec-

tively 2 and 5. From Theorem 15.5, as the characteristic of Z[T\/}T)] (=5) does not divide eq, (= 2),

we have sg, = eg, —1 =2—1=1. On the other hand, the characteristic of Z[T\/ZTO](: 2) divides

e, (= 2) and so from Theorem 15.5 we can only deduce that sg, > eg, —1 =2 —1=1, which
of course we already know.

and

To determine s, we turn to Theorem 15.6. We recall the definition of the ramification groups
in the context of number rings. We suppose that L is a finite normal extension of Q, p a prime
in Z and Q C Oy, a prime ideal lying over p. We set G = Gal(L/Q). Then, for i € N, we define
the ramification groups V; by

V;={0€G:o(a)=a(mod Q") Va c O1}.

The particular case Vj is called the inertia group. The V; form a descending sequence and from
Corollary 13.9 there is an index r such that V,. = {id}. From Theorem 15.6, if p is totally ramified
in O, and @ is the unique prime ideal in Oy, lying over p, then

r—1

sQ = (IVil = 1).

i=1

Thus, in order to determine the value of sg, we need to find the corresponding ramification
groups V;, i.e., the V; with G = Gal(Q(v/10)/Q) and Q = Q2 = (2,v/10). The Galois group
G has two elements, namely the identity and the automorphism o for which o(v/10) = —/10.
Hence V; is equal to the Galois group or contains only the identity. The former will be the case
if and only if —/10 = /10 (mod Qéﬂ), i.e., when 2v/10 € Qé“. This is the case for i = 0,1, 2,
but not for ¢ = 3, because

(2,V10)* = (Z[V10]2)* = Z[V10]4.
Therefore,
Vol = Vil = [Va| =2, V3| =1 =50, = 2-1)+(2-1)+(2-1)=3.

To conclude
A(Oqy15)|Z) = (2,V10)*(5,V10).

The non-monogenic case

If L is a monogenic field, then there exists an algebraic number « € Oy, such that L = Q(«)
and Op = Z[a]. We have seen that in this case A(Or|Z) = Orf'(a), where f = m(a, Q).
From Proposition 10.1, f is the characteristic polynomial of a, so we may say that A divides the
principal ideal generated by the derivative of the characteristic polynomial of « evaluated at «.
We may generalise this to the case of a field which is not monogenic.
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Proposition 18.9 Let L be a number field which is a normal extension of Q and not monogenic
and o € Op. If g is the characteristic polynomial of o, then A(OL|Z) divides Org'(«).

PROOF If L # Q(«), then [L : Q(a)] = r > 1. From Proposition 10.1, g = f", where f = m(a, Q).
It follows that ¢'(a) = 0 and so A|Or¢g ().
Now suppose that L = Q(«). Using Proposition 15.8 we have

1 1
Z O O} C Z[o]* Al Cc ——7Z ——Or.
[a] COp = O} C Z[o]" = Cf,(a) [a]cf/(a) L
Taking inverses we obtain
Orf'(a) C A = A|OLf'().
From Proposition 15.8, g = f and hence the result. O
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Chapter 19

Elementary class groups

The determination of class groups is not easy. In this chapter we identify class groups of some
number fields in each case using a particular set of generators. We will certainly not be exhaustive.
In Chapter 14, for a number field K of degree n over Q, we defined the Minkowski bound

A= 2 (2) Vil

nn

where 2s is the number of complex embeddings of K into C. We observed that if A is less than
2, then the class number must be 1, because every class contains a nonzero ideal J whose norm
is less than \. This is a sufficient condition, but is not necessary as we will presently show.

Let us look more closely into the structure of the class group. Each class contains a nonzero
ideal J whose norm is bounded by A. If P is a prime ideal in the decomposition of J, then, by
Proposition 13.6, P contains a unique prime number p and ||P|| = p™, for some m € N*; clearly
p < A. Therefore the class group is generated by the classes of prime ideals P in Ok containing a
prime p < A. Certain of these classes may contain a principal ideal, in which case they are equal
to the identity e, the class composed of principal ideals and we may eliminate them. Finally, we
are left with the identity e alone, in which case the group is trivial, or a set of generators distinct
from e and we look for relations between them. To understand the procedure we will look at
some examples.

Example 1. K = Q(v/14)

First we calculate the Minkowski bound:
2!
A= ?\/4.1 =414 and 3 < V14 < 4,

so we look for prime ideals P containing 2 or 3.

There is a unique prime ideal P containing 3. Indeed, 3 belongs to P implies that P contains
Ox3. We set f = m(v/14,Q). Then f(X) = —14 + X? and the reduction modulo 3 of f is
f2(X) = 1+ X2, which is irreducible. Then Theorem 17.2 ensures that O3 is a prime ideal and
so P = Og3. Thus there is a unique prime ideal containg 3, which we will note Ps. Pj5 is clearly
principal.

Now we consider prime ideals containing 2. In fact, there is only one such ideal P. Indeed,
2 belongs to P implies that P contains Og2. By Proposition 18.4 there exists a prime ideal
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Py in Ok such that Ox2 = PZ. Hence P = P,. We claim that P, is principal. Since 2 =

(4 +/14)(4 — V/14), we may write
P2 = Ok2 = Ok (4 + V14)Ox (4 — V14) = Py = O (4 + V14) = O (4 — V14),

using the unique decomposition of ideals. Hence P is principal.

As P, and Pj are principal, the class number is 1, i.e., the class group is reduced to the
identity. This example shows that the Minkowski bound may be greater than 2 and at the same
time the class number 1.

Example 2. K = Q(v/-5)

We calculate the Minkowski bound:
2! 4 2 4 4
= ()"V45=2V20==v5 and 2< -V5<3.
22 T T T

The only prime we need to consider is 2. We set f = m(v/=5,Q). Then f(X) =5+ X2. The
reduction modulo 2 of f is fo(X) =1+ X? = (1+ X)?, so there is a prime ideal P, in O such
that Ox2 = PJ. Thus there is a unique prime ideal lying over 2. This implies that the class
group is cyclic. We now determine its order, which must be 1 (if P is principal) or 2.

We claim that P, is not principal. If P, is principal, then we can write

Py = O (a +bv—=5) = P} = Ok (a+byv/—5)> = 2 = (a + bv/—5)?u,
where u is a unit in Og. Taking norms we obtain
Nkq(2) = Ngjq(a+bvV=5)* Nk q(u) = 4 = +(a® + 5b°)?,

which is impossible with a,b € Z. Hence P, is not principal and we have two distinct classes,
i.e., the class group is cyclic of order 2.

If the class number is prime, then we know that the class group is cyclic. On the other hand,
if the class number is greater than 1 and not prime, then we need to find the distinct classes and
study the relation between them.

Example 3. K = Q(v/—14)

We calculate the Minkowski bound:

2! 4 4 4
= (=)"4l14=—-V14 and 4< —V14<5.
22 T 0

We need to consider the primes less than 5, namely 2 and 3.

There is a unique prime ideal P containing 2. Let f = m(v/—14,Q). Then f(X) = 14+ X2.
The polynomial f is Eisenstein at 2, so there is a prime ideal P such that Og2 = P22 and it
follows that P = P;.

The situation is different for 2. In fact, there are two prime ideals containing 3. The reduction
of f modulo 3 is f3(X) = —1+ X% = (=14 X)(1 + X), therefore there are prime ideals P; and
Pj such that O3 = P3Pj. Thus the class group is generated by the classes [Pz], [Ps] and [Pj).
However, the product P3P} is a principal ideal, hence [Pj] = [P5]™! and we may neglect [P4]:
the class group is generated by [P;] and [Ps)].
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We claim that P, and Pj3 are not principal. If P, is principal, then there exist a,b € Z such

that

2 = (a+bv—14)%u
where u is a unit. Taking norms we find

4 = +(a® + 14b%)?,

which is impossible, therefore P, is not principal. Suppose now that Pj is principal, with P; =
Ok (a + by/—14). There must be an element ¢ + dv/—14 € P} such that

3=(a+bv/—14)(c+ dv—-14).

Taking norms we find
9 = (a® + 14b%)(c* + 14d?),

which is impossible. So Ps is not principal.

We now investigate the relation between the classes [Ps] and [P;]. We consider the principal
ideal I = Ok (2 +v/—14). As |I|| = Ng/q(2+ v—14) = 18 = 2.3%, there must be a prime
ideal containing 3 which divides I, i.e., Ps divides I or P4 divides I. However, P3 and Pj cannot
both divide I. If this is the case, then their product O3 divides I, which implies that 3 is
a multiple of 2 + /=14 (in Of), which is not the case. Therefore only P or P§ can divide
I. Without loss of generality, let us suppose that Ps divides I. We also notice that ||Ps|| = 3,
because |Ox3|| = Ni/q(3) =9 and [[Ok3|| = || P]|[| P5]-

Since

[P[P)? = e = [P3)° = [P] ! = [P2],
the class group is generated by [Ps] and is cyclic. Also,

[P3)' = [Po)? =e and [P]* = [P2] #e,
so the order of the group is 4.

Our next example provides a group of order 4 which is not cyclic.

Example 4. K = Q(+/—30)

We begin by calculating the Minkowski bound:

2! 4 4 4
A==(=)'"V430=-v30 and 6<—V30<T.
2207 s ™

We consider the primes 2, 3 and 5. There are unique prime ideals P, P; and Ps, containing
respectively 2, 3 and 5.

We set f = m(v/—30,Q). Then f(X) = 30+ X2. The polynomial f is Eisenstein at each of
the primes 2, 3 and 5, hence there are prime ideals P>, P; and Ps in Ok such that

Ok2 = Pj Ok3 = Pj Ok5 = P2

We claim that P,, P; and Ps; are not principal. For example, if P, is principal, than there
exist a,b € Z such that Py = Ok (a + bv/—30) and so

Ok (a+bv/=30)? = Og2 = (a + bv/—30)%u = 2,
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where u is a unit. Taking norms we obtain
Nk q(2) = £Ng/q((a +bvV=30)%) = 4 = £(a* + 300*)?,

which is impossible. Thus P; is not principal; we show in an analogous manner that P; and Ps
are not principal. Therefore each of the elements [P,], [Ps] and [Ps] are of order 2 in the class
group.

Next we notice that

P2|OK2, Pg‘OK-?), P5|OK5:>P2P3P5|OK30,
hence there exists an ideal @ such that P, P3;P5Q = Og30. Taking norms we find
235HQH =30 = HQH =1= P,P;P; = Og30.

Therefore
[P,][Ps][P5] = e => [P2][Ps] = [P5] " = [P),

which implies that the group is generated by [P] and [Ps].

Our next step is to show that [P»] and [Ps] are distinct. If [P2] = [Ps], then [P5] = [P]? =e,
which is false. Hence [P5] # [Ps] and so the group is generated by two distinct elements of order
2 and thus is isomorphic to a product of two cyclic groups of order 2.

We now consider a cubic number field, for which we will use some new ideas.
Example 5. K = Q(V/2)

We have already seen that the field K is monogenic. As usual we determine the Minkowski
bound. There are three monomorphisms from K into C, namely the identity, which is real, and
a pair of complex embeddings. We have

3 4 8 16 16
A= ()18 = —V4.93=—V3 and 6< —V3<T.
33 9T 3T 0

Thus we consider the primes 2, 3 and 5. There is a unique prime ideal P, (resp. Ps) containing
2 (resp. 3) and two prime ideals, P; and P?, containg 5.

Let f = m(¥/2,Q). Then f(X) = —2+ X3. As f is Eisenstein at 2, there exists a prime
ideal P, in O such that Og2 = Pj.

The reduction of f modulo 3 is f3(X) =1+ X3 = (1 + X)3, so there exists a prime ideal P;
in Og such that O3 = Pg’.

The reduction of f modulo 5 is f5(X) = -2 + X® = (=3 + X)(-1 + 3X + X?). As
g2(X) = =1+ 3X + X? has no root in Fs, gy is irreducible, hence there exist prime ideals
Ps, P! in Ok such that that Og5 = PsP;.

We claim that the prime ideals P5, P3, Ps and P! are all principal. We set a = {/2. Then
8 = |Ox2| = |Okal® = [|Okal = 2.
From Proposition 13.4 Ok« is a prime ideal. Given that P; is the unique prime ideal in Og
lying over 2, we have P, = Okq, i.e., P5 is a principal ideal, as asserted.

For P; we proceed in a similar manner. We have

27 = |Ox3|| = |0k (1 + a)||> = IOk (1 + )| = 3.
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Hence Ok (1 4 «) is a prime ideal. Given that P; is the unique prime ideal in O lying over 3,
we have P; = Ok (1 4 «), i.e., P3 is a principal ideal.

Before considering Ps and P} we will establish a preliminary result.

Lemma 19.1 If K = Q(8), f =m(B,Q), deg(f) =d and r € Q, then f(r) = (—1)dNK/Q(6 —
r).

PROOF First we notice that
FX) = (=B + X)(=f2+ X) -+ (=fa+ X),
where the 3; are the conjugates of 5. It follows that
fX+r)=(Br+r+ X)(=Bot+r+ X)) (=Batr+X).

As f(X +7)=m(B —r,Q), the elements 5 —r,..., B4 — r are the conjugates of § — r and so,
using Corollary 10.1, we have

Fr) = (=Br+r)(=P2+7) - (=Ba+71) = (~1)"Ng/q(8 — 1),

as required. O

Now we turn to Ps and P. We suppose that Ps corresponds to the factor ¢1(X) = -3+ X
and P} corresponds to go. Then ||Ps|| =5 and || Pf|| = 25. From Lemma 19.1 we obtain

because P; and Ok« are the only prime ideals in O with respective norms 5 and 2. Therefore

Py = Oxc(2 4 )0x(2) = Ok (> +1) = Oge(a? + 1),
We have shown that Ps is principal. Now we consider P;. We have
Ok5=O0k(1+a*)P. = (1+a?)P;,
s0, from Lemma 12.3, P/ is principal.

As Py, P53, Ps and P} are all principal, the class group is trivial.

The following proposition summarizes the previous calculations:

Proposition 19.1 We have:
e The ideal class group of Q(v/14) is trivial, hence the number ring of Q(v/14) is a PID;

e The ideal class group of Q(v/—5) is isomorphic to the cyclic group of order 2 Cy;

The ideal class group of Q

(
(
e The ideal class group of Q(v/—14) is isomorphic to the cyclic group of order 4 Cy;
(v/—30) is isomorphic to the product Cy x Cy;
(

The ideal class group of Q(3/2) is trivial, hence the number ring of Q(+/2) is a PID.
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There are various problems raised by the class number of a number field, some of which
were originally considered by Gauss. Probably the most well-known of these is the Gauss
Class Number Problem, namely to determine the imaginary quadratic number fields with class
number 1. Gauss supposed that there were only nine such number fields: Q(v/k), with k =
-1,-2,-3,-7,—11,—-19,—43,—67,—163. This was subsequently proved in the 20th century
(long after Gauss). There has also been work on determining the imaginary quadratic number
fields with class number n, for certain other n.

Another question raised by Gauss is known as the Gauss Conjecture, namely h(Q(v/—d)) —
+00 as d — 400, where h(Q(y/—d)) denotes the class number of the number field Q(v/—d).
This too was only proved in the 20th century. This result shows that there can only be a finite
number of imaginary quadratic number fields with a fixed class number.

Gauss also conjectured that there is an infinite number of real quadratic number fields of
class number 1. This has yet to be proved (or disproved).
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Chapter 20

The distribution of ideals

Let K be a number field of degree n over Q. For each real number d > 0, we note i(d) the
number of nonzero ideals I in Ok with ||I|| < d, which is finite by Theorem 13.5. For each ideal
class C we write i¢(d) for the number of ideals I in C such that ||I|| < d. In addition, Theorem
14.4 ensures that there is a finite number of ideal classes and so i(d) = > ic(d). We aim to
show that there is a constant k, independant of C, such that

io(d) = kd + O(d"~ ). (20.1)
We will refer to this equation as the ideal counting equation. If hx is the class number, then
i(d) = hickd + O(d"~ 7). (20.2)

Our treatment of the question is inspired from that in [15].

20.1 Transformation of the problem

We consider a class C' and fix an ideal J € C~!. Let A be the set of nonzero ideals in C
with ||I|| < d. We define an application ¢ on A by multiplication by J, i.e., for I € A, we set
¢(I) = IJ. From Corollary 12.1 the mapping ¢ is injective. Let B be the image of ¢. We claim
that B is the set of nonzero principal ideals () C J satisfying the inequality |[(a)| < d||J].
There is no difficulty in seeing that I.J is a nonzero ideal included in J and, by the choice of .J,
1J is principal. If IJ = («), then

)l = 1T = L1 < dll T

Finally, suppose that («) is a nonzero principal ideal included in J with ||(«)| < d||J||. Then J
divides (), so there exists an ideal I such that IJ = («). In addition,

(L] = [[()] < dl|J]],

LI =
from which we deduce that ||I]| < d. This concludes the proof of our claim concerning B.
To determine i¢(d), the number of elements in A, given that there is a bijection from A onto

B, we may count the number of elements in B. We notice that two nonzero principal ideals («)
and (B) are the same if and only if S is a multiple of a by a unit.
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Let D be any set of coset representatives of U = Uk in Oj. The cardinal of B is then the
cardinal of the set of elements o in D such that a € J and [Nk q()| < d||J]|. Instead of using
the set D to determine |B|, we proceed indirectly.

Dirichlet’s unit theorem (Theorem 14.6) ensures that

U=WxYV,

where W is the group of roots of unity of K and V a subgroup of U generated by a fundamental
system of ¢ = r + s — 1 units. We set w = |W|. Let D’ be any set of coset representatives of V'
in Oj. Then w|B| is the cardinal of the set of  in D’ such that o € J and |Ng/q(a)| < d||J].
Thus to determine |B| we calculate w|B|.

20.2 Preliminary results

We begin with an elementary group result.

Lemma 20.1 Let G be a commutative semigroup and G’ an abelian group. We suppose that
[ G — G is multiplicative, i.e., f(xy) = f(x)f(y), for x,y € G, and that S is a group
included in G. Also, we suppose that [ restricted to S is an isomorphism onto its image S’
in G'. If D' is a set of coset representatives of S’ in G', then D = f~Y(D') is a set of coset
representatives of S in G. If [ is injective, then there is a bijection of D’ onto D.

PROOF Let z € G and consider the coset zS. As f(2)S’ is a coset of S” in G’, there exists ' € D’
such that f(2)S’ = 2’S’. Thus there exists w’ € S’ such that f(z)w’ = 2’. However, there exists
w € S such that f(w) = w’ and so f(2)w’ = f(2)f(w) = f(2w). Hence zw € f~Y(D’) = D.
Therefore zS has a representative in D.

Suppose now that there are two elements z,y € D representing the same coset zS. Then
r = zwy and y = zws, with wy,ws € S and we have

flzwr) = f(2) f(w1) and f(zw2) = f(2) f(w2).

Since f(wi) and f(we) liein S’, f(zw1) and f(zwq) represent the same coset of S’ in G'. Let 2/
be the representative of this coset in D’. Then

flzwn) = 2 = f(zwz) = f(w1) = f(w2).

As f restricted to S is an isomorphism, we have w; = wg. Thus there is a unique representative
of the coset zS in D.

Suppose now that f is injective and let 2’ € D’. If 1,29 € f~1(2'), then f(x1) = 2’ = f(z2).
As f is injective, we have z; = 3. Thus the mapping ¢ : D’ — D,a2’ — f=1(2') is well-
defined. There is no difficulty in seeing that ¢ is bijective. O

Remark As a group is a semigroup, we may replace semigroup G by group G in the statement
of the lemma.

For the second result we need some definitions. Let [0,1]"~! denote the unit cube in R" 1.
A function
f:[0,1"t —R"

is said to be Lipschitz if there is a constant x, referred to as a Lipschitz constant, such that

1f(2) = F)ll < sllx =yl
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for all z,y € [0,1]"%, where |- || denotes the length in R"~! or R™. If B is a nonempty bounded
region in R™, then we say that the boundary 0B of B is (n — 1)-Lipschitz parametrizable,
or Lipschitz, if it can be covered by the images of a finite number of Lipschitz functions f :
[0,1]""1 — R,

Lemma 20.2 Let A be a lattice in R™ and B a bounded set in R™ whose boundary is (n — 1)-
Lipschitz parametrizable. Then
vol B

A Bl = n n—1
|ANaB| Tt A C +0(a"),

for a sufficiently large a.

PROOF Let us first suppose that A = Z". We will call a translate of the unit cube [0, 1]™ whose
centre is a point z of Z™ an n-cube. We will write C(z) for such a cube. An n-cube contains a
unique lattice point, namely its centre, and has volume 1. We may divide the n-cubes intersect-
ing aB into two classes, namely those containing no boundary points of aB and those containing
boundary points of aB. We will write X for the set of n-cubes of the first type and Y for the
set of n-cubes of the second type.

Together the sets X and Y form a covering of aB and so we have the the relation
vol aB < |X| + |Y].

In addition, a lattice point in aB must lie either in an n-cube in X or in an n-cube in Y. This
implies that
|Z" NaB| < |X|+|Y].

Putting these two relations together, we obtain
Y] < |X| — vol aB < 0 < |Z" NaB| - |X| < Y],
from which we deduce
—Y|<|Z"naB|—volaB <|Y| or [||Z"NaB|—volaB|<|Y|.

We aim now to estimate |Y|. Unfortunately this is a quite arduous. The boundary of B is
covered by a finite number of sets of the form f([0,1]"!), where f is a Lipschitz function. We
may suppose that the functions all have the same Lipschitz constant « (by taking, for example,
the maximum of the constants). Then the boundary of aB is covered by the sets af([0,1]"71).
We suppose that @ > 1 and subdivide the cube [0,1]"! into |a|"~! subcubes S. The subcubes
have side length ﬁ If o =(x1,...,20-1) € [0, ﬁ]"*l, then

-1 vn—1
e SL:>||$||S n 7
1 n—1 LGJ

la)?

so the largest distance between two points in f(.5) is & V[:Jl. This is the same for any of the

small cubes S (by translation). It follows that the distance between two points in af(S) is at

most ak V[;]l < 2kv/n — 1, because

a 1
1<a<|a|+l= — <14+ —<2.

la] la)
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Thus we have a bound on the distance between pairs of points in af(S).

Our next step is to find a bound on the number of n-cubes C(z) intersecting af(S). We
fix a subcube S and take a point x € af(S). To simplify the notation, we set h = 2k/n — 1.
The closed ball of radius h centered on x, which we note B(z, ), contains af(S) and intersects
a number of n-cubes bounded by p = (2(h + y/n))". This last point needs an explanation. If
B(r,y) is a closed ball in R™, then

R ()

IB = fry R
VLB ) = 5y T TG )

where I' denotes Euler’s gamma function. Now

TS 4+1)=

2 SCREDL T i = 2k + 1.

{k! if n = 2k,
(k+1)14k+1

Thus, for n > 2 we have I'(§ 4+ 1) > 1, and so vol B(r,y) < (y/ar)". Now let C(z) be an n-cube
intersecting B(z, h). Since the distance between two points in C(z) is at most /n, if y € C(2),
then ||y — z|| < h + /n, which implies that C(2) C B(x,h + /n). As

vol B(a, h+ V) < (Va(h+ V)" < (2(h +v/n))",

the number of n-cubes intersecting B(x, h) is bounded by u = (2(h + 4/n))", as claimed. Since
af(S) C B(z,h), the number of n-cubes intersecting af(S) is also bounded by .

To conclude, we find a bound on the number of n-cubes intersecting the boundary 9(aB).
Since there are |a]"~! cubes S, the boundary d(aB) intersects at most u|a]”~! n-cubes. Given
that |a] < a, the number of n-cubes intersecting d(aB) is bounded by pa™1, i.e., |Y] is bounded
by pa”~!. Hence we may write

|Z" NaB| —vol aB| < |Y| < pa™*,
where p is a constant which is independant of a. From this we deduce
|Z" NaB| = vol aB + (|Z™ N aB| — vol aB) = vol aB + O(a™1).
Since det Z™ = 1 and vol aB = a™vol B, we have

vol B
det Zn

|Z" NaB| = a” + 0(a™1),

as required.

We now consider the case where A is a general lattice in R™. There exists a linear automor-
phism L sending A onto Z". Let B’ = L(B). We notice that 9B’ = L(9B). If f : [0,1]""! — R"
is a Lipschitz mapping with constant x, then Lo f is also Lipschitz with Lipschitz constant || L||x.
If OB is covered by the images of the Lipschitz mappings f1,..., fm, then 0B’ is covered by the
images of the Lipschitz mappings Lo f1,...,Lo f,,. Then,

Z"NaB' = L(A)NaL(B) = L(ANaB) = |Z" NaB'| = |ANaB
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and

vol B’
A — n n—1
|ANaB| otz +0(a"™7)

C lLB)
= derz@)® O

vol B I
~ detA” +0(e"™),

as required. (To pass from the second line to the third, we have used Proposition G.2.) O

20.3 Proof of the ideal counting equation: first steps

From Section 20.1 we need to find a set D’ of coset representatives o of V' in O3 and determine
the cardinal of those a € D’ which belong to J and satisfy the norm condition | N q ()| < d||J||.
In fact, we will ’deplace’ the problem to another context.

We define the mapping p : O}y — R*" x C** by

wla) = (o1(a),...,o0(a), 71(a), ..., 7s(a)).

Then g is a semigroup homomorphism, which is also injective. Let V'’ be the image of V in
R* x C** and Y a set of coset representatives of V! = p(V) in R” x C*. By Lemma 20.1,
X = p~ 1Y) is a set of coset representatives of V in O%. However, we have two conditions on
X to take into account, namely

e 1. the norm condition |Ng,q(a)| < d||J||;
e 2. the inclusion of a in J.

From Lemma 14.1, S(y) = Ng/q(a), where y = pu(a), so we may take into account the norm
condition by imposing that |S(y)| < d||J|. For the second condition we consider R*" x C*® as
a subset of R™ and impose that y € Ay, the lattice corresponding to J in R™. Moreover, the
set of @ € X such that o € J and |Ng/q(a)| < d||J|| is in 1 — 1 correspondance with the set
T={yeY:yeA;I|S(y)| <d|J|} via the mapping o — p(a). Thus w|B| is the cardinal of
T.

We now determine an appropriate set of coset representatives Y of V’. To do so, we define a
mapping Ln : R*" x C** — R"™* by

Lon(xy,... & 21,...,25) = (In]aq], ..., In x|, 2In]|z],. .., 210 |z)).

We notice that Ln(zy) = Ln(z)+Ln(y), hence Ln defines a group homomorphism into (R"%, +).
We also observe that Ln o p is the mapping A which we defined in Section 14.4. The image of A
restricted to Ux spans the hyperplane

r+s
H= {(;U1, ey Xpys) € R le = 0}.

i=1

Since V is a subgroup of Uk, F = A(V) = Ln(V’) is also an additive subgroup of H. As p
defines an isomorphism from V onto V', Ln restricted to V' can be written Ln = Ao p~! and
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it follows that Ln defines an isomorphism from V' onto F, because A : V. — F' is an isomorphism.

We need to justify the last statement, namely that A restricted to V is injective. We recall
that A is a mapping from O} into R, which defines a group homomorphism when restricted
to Uk, the group of units in K. The kernel of X is W, the set of roots of unity in K. Also Uk
is the direct product of W and a subgroup V generated by a set of fundamental units. If x € V
and A\(z) = 0, then € W NV, which implies that 2 = 1. It follows that A is injective.

T S
— .
We now set u=(1,...,1,2,...,2). Asu ¢ H, we may write

R'"* = H® Ru

To simplify the notation, let us set v; = A(e;), for i = 1,..., ¢, where {e1, ..., €} is a fundamental
system of units of V. We recall that the v; form a basis of the hyperplane H (see Theorem 14.6).

We now set
t

H:{wGRH'S:w:Zaivi:OSai<1}.
i=1

Then II @ Ru is a set of coset representatives Z of the subgroup F in R"%. Using Lemma 20.1
again, if we set Y = Ln~*(Z), then Y is a set of coset representatives of V’ in R*" x C**,

We need to justify that IT & Ru is in fact a set of coset representatives of the subgroup F' in
R, If x € R""*, then

t
X = E a;v; + au,
i=1

with a;,a € R. We may write a; = |a;| + a;, where 0 < a; < 1. Then

t t
X = Z a;v; +au + ZLaiJvi.
i=1 i=1

As the last term in the expression belongs to F', the elements of IT ® Ru form a set of coset
representatives of F' in R"%, as claimed.

We now observe that Y is homogeneous, i.e., if a € R*, then aY = Y. To see this, let
y=(x1,...,&p,21,...,25) €Y and a € R*. Then

Ln(ay) = (nlazi),...,Injaz.|,2In]az],...,21nlazs|)

= Inlaju+ (In|z1],...,Injz.|,21n|z1],...,21n|z4]),

which clearly lies in Z. So aY C Y. On the other hand, if y € Y, then %y € Y, which implies
that y = a - éy € aY. Hence Y C aY and it follows that aY = Y, as claimed. For a > 0, we
define

Yo={yeY:[S@y)| <a}.

Using the homogeneity of Y, we easily obtain the equality

Y, = ¥/aY;.
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If Y7 is bounded and has a Lipschitz boundary, then we may apply Lemma 20.2 to deduce

that
VOl Y1||J|| 1—1 VOl Y1 1—1
Ayn A/dJY| = ————d d W) = d di—n
A0 ATV = S+ 0 (W) F ) = Eerd + 0 ),
because ||J|| = d(f;/k’ (cf. end of Section 14.1). Our aim is to estimate the cardinal of the set

T={yeY:yeA,;|S{y)| <d|J|} Now
T=AnN{yeY Syl <d|J|} =A,n {d|J]|Y1,

therefore, under the conditions on Y7, we obtain

vol Y; 1
7| = Ay 0 /T[] = 5 pd + O ™).

Thus L
ic(d) = kd 4+ O(d'~=),

vol Y7

where k = Aot R

In the next section we will show that Y7 is in fact bounded and has a Lipschitz boundary.

20.4 Properties of the set Y;

We now show that Y7 has the desired properties, namely that Y7 is bounded and has a Lipschitz
boundary. First we find a useful representation of Y;. By definition, Y7 consists of those elements
y=(21,...,&p,21,...,25) € R x C** such that

Ln(y) = (Inz1],...,In|z][,2In|z1],...,21n|z|) € II ® Ru,
with |2y -+ 2,27 --- 22| < 1. The last condition is equivalent to saying that
In|zi|+ -+ Injz,| +2In|z1| + -+ 2In|zs] <0.
1) (r+s)

Writing v; ’,...,v;" ' for the coordinates of v;, we have the system of equations
In |1‘1| = a1v§1) o 4a (1) + b
Infa,| = ale) +aw” +b
2In|z| = aw§r+1) +oo a1 52
21n|zs| = a 1)Y+s) +...+atvt(7"+3) +b2,

where the a; and b are elements of R. Since the v; belong to H, the sum of their coefficients has
the value 0 and it follows that b is bounded above by 0 if and only if the sum of the coefficients
of Lu(y) is bounded above by 0. From this we deduce Y7 is composed of those y € R*" x C**
such that Ln(y) € I & (—oo, 0]u.

We now may show that Y7 is a bounded set. For j = 1,--- ,r, the sum 25:1 aivi(j) is bounded,

because | 30_, aivgj)| <>t \vgj)|. As b <0, In|z;| is bounded above, which implies that |x;| is
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bounded above. In he same way, for j = 1,--- , s, |2;| is bounded above, so the set Y; is bounded.

‘We note Yf“ the subset of Y7 whose real coordinates x1, ..., z, are positive. We claim that Y;
has a Lipschitz boundary, if Y1+ has a Lipschitz boundary. To prove this, we need a preliminary
result.

Lemma 20.3 If Ay,..., A, are subsets of a topological space T, then 9(A; U ---U A,,) C
0A1 U---UOJA,,, where 0X denotes the boundary of a set X.

PROOF We use a proof by induction. For m = 2 we have

(A1 UAy) = A1 UAsNc(41UA)
= AjUAsNcA;NcAs
= (A UZA)NeArNedy
= (A1 NecArNcdz) U (A NcAr Nedy)
C 0A;UO0As.

In the third line we used the fact that if A and B are subsets of a topological space, then
AUB = AU B. Here is a proof. First, A C AU B implies that A C AU B. In the same way,
Bc AUB,so AUB c AUB. Now, AU B contains A and B, therefore AUB C AU B; as
AUB is closed, AUB C AUB.

Suppose now that the result is true up to m and consider the case m + 1. We have

AL U UApUApp) C O(AL U UAp)U0An i
C OA U UDA, UDAnm 1.

Hence the result is true up to m + 1, so, by induction, the result is true for all m > 2. O
Lemma 20.4 If Y1+ has a Lipschitz boundary, then Y1 also has a Lipschitz boundary.

PROOF Suppose that Yl+ has a Lipschitz boundary. The real coordinates of the elements of Y;
may be positive or negative. We divide Y7 into subsets having the same signs on the z;, for
example, 1 < 0,22 > 0,...,2, >0o0r x; > 0,22 > 0,23 < 0,24 > 0,..., 2, > 0. With x; > 0,
for all ¢, we have Y1+. There are 2" such subsets. If S is one of these subsets, then there is a
linear automorphism L of R” x C* taking Y1+ onto S. The isomorphism L maps the boundary of
Y," onto that of S. If f is a Lipschitz function covering part of the boundary of Y;", then Lo f
is a Lipschitz function covering the corresponding part of the boundary of S. It follows that S
has a Lipschitz boundary. From Lemma 20.3, the boundary of Y; is contained in the union of
the boundaries of the subsets S and hence is Lipschitz. O

We now concentrate our attention on the set Y;t.
Proposition 20.1 The set Y1+ has a Lipschitz boundary.

PROOF We recall that we set v; = A(e;), where {e1,...,e:} is a system of fundamental units

in Og. As above, for each v;, we write vgl),...,vgﬂrs) for its coordinates. A point y =
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(w1,...,@r, 21,...,25) € Y] is characterized by the equations

¢

In(z,) = Zaivgl)—f—b
i=1
o

In(z,) = Zaivy)—&—b
i=1
¢

2ln|z| = Zaiv§7'+1)+26
i=1
¢

2In|zs| = Zaiv§r+s)+2b,
i=1

where the z; are positive, the z; are nonzero, the a; belong to the interval [0,1) and b is an
element of (—o0,0].

Now we set a,1s = e’ and write z;, = pkew’“. Then we have the relations

t

Tj = Gpis€xp (Z aivz(j)) (20.3)
i=1
1
Pk = Qpis€Xp (5 Z aingJrk)) (20.4)
i=1
ek = 27Tar+5+k, (205)

with a,45 € (0,1], because b € (—o0,0], and all the other a; € [0,1). We define the "polar
coordinate" transformation 3 by

10 10 s
/B(:Ch"wx?"aplf" 7p87017"'708) = ('1:17"'7x7"7plel la"'vpsel )

and set f = 8o «a, where

t

t
a(ala sy an) = (ar—i-s exp (Z aivlgl))a <oy Qrgs €XP (Z aivgr))a
=1

=1
1 ¢ Z 1 t
Qr 45 €XP (5 Z awz(wl))? ey Qpgs €XP (5 Z aivngrS)),
=1 i=1

2T Ay gstls-- - 27TCLT+QS>.

Letting the a; vary, we obtain a continuous injective mapping f from C = [0,1)x (0, 1] x[0,1)*
onto Y1+. Before continuing we recall a generalization of the mean value theorem:

Let E and F be normed vector spaces, O an open subset of E and h : O — F' differentiable
on O. If the segment [a,b] is contained in O, then
[1(b) = h(a)|| < sup [dh.l[[lb— al.

xz€(a,b
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If O is not only open but also convex and the norm of the differential is bounded on O, then
h is Lipschitz on O. (The convexity ensures that any two points a,b € O can be joined by a
segment in O.)

The function f which we defined above may be extended to R™ and has continuous partial
deriviatives, so is of class C1, i.e., the differential is defined and continuous on R™. Let ¢ > 0
and O = (—¢,1+¢)". Then O is a convex open subset in R”. On the set O = [—¢,1 + €], the
closure of O, the norm of the differential is bounded, because O is compact, hence the norm of
the differential is bounded on O and so f is Lipschitz on O. It follows that f is Lipschitz on
[0,1]™, being a subset of O.

We claim that f([0,1]™) is YT*' To see this, we notice first that, as [0,1]" is compact and
f continuous, f([0,1]") is compact and therefore closed. Given that Y C f([0,1]™), we have
YT C £([0,1]") = f(C). However, Y;* = f(C) implies that Y;" = f(C), so Y;" = £([0,1]"), as
claimed.

We are now in a position to show that the boundary of Yfr is Lipschitz. The closure Yl+ is
the disjoint union of the interior on and the boundary 9Y;". We will show that f maps the
interior of the n-cube [0, 1]" into the interior Y;™°, which implies that the boundary of the n-cube
[0,1]" is mapped onto a set containing the boundary dY;". Since the boundary of [0, 1]™ may be
considered as composed of 2n (n — 1)-cubes, namely the sides of the n-cube [0, 1]™, the boundary
OY[" is covered by the images of 2n Lipschitz mappings defined on [0, 1]"~! (the restrictions of
f to the sides of [0,1]™) and so is Lipschitz. It remains to show that the interior (0,1)™ of [0, 1]™
is in fact mapped into the interior Y1+0.

The mapping f restricted to (0,1)™ is the composition of the following four mappings:

£ (0,1)" — R™, (tr, o tn) — (1o I0(Erss), - ),

fo:R" — R" (ug, ... un) — (U1, ..., up)M,
where
NURES
: 0
M= vt(l) . Ut(Hs) ’
1 2
0 I
f3:R"— R" (a1,...,a,) — (e™,... ,e%‘”“,. ey 2T A5 g1y - - 2TA),

and

fa:R"x(0,00)° x R® — R" x C?,
(xh'"7xT7p17"'7p87917"'708) — (mly-'-7-,17T7p1€i917"'7psei03)-

(The first r coordinates in the line 1...2 of the matrix M have the value 1 and the remaining s
coordinates the value 2.) Of course, the mapping fy is just the "polar coordinate" transformation
defined above.
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We claim that the four mappings are open and so their composition f is also open. As the
matrix M is invertible, f; is an automorphism, hence open. To show that the other three map-
pings are open, we recall another result from analysis, namely the inverse mapping theorem:

Let E and F be Banach spaces, O an open subset of E and h : O — F of class C*. If x € O
and the differential dh, is invertible, then there is an open neighbourhood O’ of x contained in O
such that hjor is a Cl-diffeomorphism onto its image. This implies that h(O') is an open subset
of F.

If the differential dh, is invertible at every point « € O, then for every point € O there is

an open neighbourhood O such that h(O) is an open subset of F' and we have

0= UxEOO; = h(O) - h(UxEOO;) = UIEOh(O;)'
As the last set is a union of open subsets in F', h(O) is open in F.

To see that the mappings f1, f3 and f; are open, it is sufficient to show that the differential
dfix is invertible on each point x of the domain of f;. (The functions f; have continuous partial
derivatives and so are of class C1.) To determine whether df;, is invertible, we may consider the
invertibility of the jacobian matrix Jy, (x). This is the case for all four mappings. For example,
the jacobian matrix of f; has the form

L, 0 0
Jp(ti,oota) =1 0t 0 |,
0 0 I,

which is clearly invertible. We leave the calculation of the determinant of the jacobian matrix of
f3 and f, to the reader. (In the case of f4, we consider p;e%s as the pair (p; cosf;, p;sin;).)

We have shown that the four mappings fi, fo, f3 and f; are open, hence f restricted to
(0,1)™ is an open mapping. It follows that the image of f restricted (0,1)" is an open subset
of Y;© and thus is contained in Y1+0, as asserted. Hence the boundary of Y1+ is Lipschitz, as
required. O

To sum up, we have

Theorem 20.1 The boundary of Y1+ 1s Lipschitz and hence that of Y1 is Lipschitz.

20.5 The constant &

There is a point we have glossed over. We saw above that k = Jcélei/}x However, vol Y; could

depend on the system of fundamental units which we choose. We aim to show that this choice
in fact has no effect on vol Y7 and hence no effect on k. We will calculate explicitly vol Y7 in
passing by vol Yl+ (vol Y7 = 2"vol Yﬁ) and show that this is independant of the choice of the
set of fundamental units.

To calculate the volume vol Y;© we aim to use the "change of variables" formula:
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Let O be an open subset of R™ and f : O — R™ an injective, continuously differentiable
mapping such that Jp(x) # 0, for allz € O. If g: f(O) — R is integrable, then

A(O)gdx=[)<gof>|Jf|dx.

A proof may be found, for example, in [24].

Applying this result, with O = (0,1)", f as defined above and g the characteristic function
of Y;*, we obtain

V01Y1+:/ |Jf| de,
(0,)n
so we need to determine the Jacobian matrix of f.

We recall that f is the composition of two mappings S and «, defined in the previous section,
ie., f = foa. The Jacobian matrix of f is the product of the Jacobian matrices of 5 and
a, e, Jy = JgoJ,. (We draw attention to the fact that we consider pjeiej as the pair
(pjcosf;, p;sinf;) € R%) The Jacobian matrix Jg is easy to determine and we obtain | det Jg| =
p1---ps. To find the Jacobian matrix J, we calculate the partial derivatives of z;, p; and 0,
with respect to the a;, using the relations (21.3), (21.4) and (21.5). We obtain

acjv(]) fl<i<r+s

)

Oz;

B % ifi=r+s
' 0 ifr+s<i<n,
%pjvl(rﬂ) fl1<i<r+s
Opi _ ) “oi ifi=r+s
da; | er+s h
0 ifr+s<i<n

and

90; J2r ifi=r+s+j
8ai_

0 otherwise .

Writing this in matrix form, we have

vil)xl . vgl)xl 7{1:23
vgr):cr .. vt(r):cr ﬁ 0
+1 +1
+ + .
sor Ve g0 g
0 21l
and so .
x DRI l‘ ... 7""
det J, = LT PLUPST qog (g,

ar+s
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where M is the matrix defined in the previous section. Hence

... 2... 2 S
|det Jy| = 22 TP TIPS et M| = | det M|nta™
f a 4 r+s*
TS

(The last equality needs an explanation. From the equations (21.3), (21.4) and (21.5) we have

t
1
S R a;aseXp(zaw; >>p< S <>

(1) 4+ v(rJrs)) exp at ) it ’r‘+s))

a’r+s GXp( 1(
+sexp(0) - eXP( ) = Gy

because the vectors v; belong to the hyperplane H.)

Therefore

vol Y[ = /(Ol)n|Jf(a1,...,an)|da1~~dan

| det M |x® /(0 b alytday - day,

| det M |x®
n

and it follows that vol Y7 = 2”%.

The matrix M may vary according to the choice of the fundamental system of units. We
claim that this does not affect the absolute value of the determinant. Suppose that {e,..., €}
and {€},..., €} are fundamental systems of units. Then each €, may be written

Nt

;o ng 1
6 =Ge e
a where (; is a root of unity and n; 1,...,n,; € Z. Thus

’U; = /\(E;) = ni,l)\(el) + -+ Tli,t)\(ét) =MN;101 + -+ Ty tUt.

If we note M and M’ the matrices corresponding respectively to {e1,..., e} and {€],..., €},
then we have
nia ... Nig
M = : : 0 | M=PM
ng1 o oo Nt
0 Is+1

In the same way, there exists a matrix () with integer coefficients such that M = QM’. Therefore
P is invertible, with inverse ). As the determinants of P and @ are integers, we must have
det P = 41 and det Q = £1. It follows that

|det M'| = | det M]||det P| = | det M]|.

Therefore vol Y7 is independant of the fundamental system of units and so is the constant k. We
call the expression |M| the regulator of Ok (or K) and we note it reg(Og). Then

vol Y} 2'mreg(Og)  2"*71°reg(Ok)

Cwdet A w2-5,/[disc(Og)|  w+/|disc(Ox)|
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It is interesting to determine the value of &k when K is a quadratic number field. First we
consider the case where K = Q(y/m) is imaginary. As we saw in Section 14.4, the units are the
roots of unity, so we may replace w by |[Uk|. We also saw in Section 14.4 that s =1 and r = 0,
sot=r+s—1=0. Setting reg(Ox) = 1, we have

2T

|UK‘\/ IdiSC(OK|'

Now we consider a real quadratic number field K = Q(y/m). We have two cases to consider,
namely m = 2,3 (mod 4) and m =1 (mod 4).

Case 1: m = 2,3 (mod 4) The algebraic integers are of the form = = a + by/m, with a,b € Z.
The units are those whose norm is +1, i.e., a> — b>m = £1. There are two embeddings of K into

R:
oi(a+bym)=a+bym and  oz(a+bym)=a—by/m.

Let u > 0 be a fundamental unit, with « = a’ 4+ b’y/m. Then o1(u) = v and o2(u) = o’ — b'/m.
However,

(@' +b'v/m)(d —Vv/m) =a"? —b?*m = +1,

because u is a unit. Hence o2(u) = +u~! and it follows that In|os(u)| = Inu~

Therefore
Inu —Ilnu
u= (),

therefore det M = 2Inw and so reg(Ok) = Inw.

I'= —Inu.

Case 2: m = 1 (mod 4) The algebraic integers are of the form 2 = 1 (a-+by/m), where a,b € Z and

have the same parity. Since the norm of x is %( 2 —mb?), z is a unit if and only if a® —mb? = +4,

with @ and b both odd or both even. There are two embeddings of K into R:

gl(%(ﬁb\/a))zé(ﬁbm) and 02(%(a+b\/%)):%(a—b\/a).

Let u > 0 be a fundamental unit, with « = %(a’ + ¥'y/m). Then o1(u) = u and os(u) =
1(a’ —b'\/m). However,

%(a/ + b’\/ﬁ)%(a/ —Vy/m) = i(a’2 —V?m) = +1,

because u is a unit. Hence oa(u) = +u~! and it follows that In|oa(u)| = Inu™ = —Inw.

Therefore again we have
Inu —lnu
().

hence det M = 2Inu and so reg(Ok) = Inw.

The roots of unity are £1, so w = 2, therefore in both cases we have

22lnu 2Inu

- 2+/|disc(Ok)| \/|diSC(OK)|.

As a fundamental unit and the discriminant disc(Og) can be determined without difficulty, we
may easily find k.
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20.6 Dedekind’s ¢ function

In this section we introduce the Dedekind ¢ function, which generalizes the Riemann ¢ function.

We consider the Dirichlet series

S(s) =Y 2,

n>1

where the a,, are fixed complex numbers and s a complex variable. As usual n® = ¢**”. Then
we have

Lemma 20.5 If Y _, a, is O(t"), for some r > 0, then the series S(s) converges for all s =
x + iy, with x > r, and is analytic in the half-plane H, = {s =z + iy : x > r}.

PROOF [t is sufficient to show that S(s) converges uniformly on every compact subset of H,.

Setting Ay, = Zk

For each s € H, we estimate the sum Z el

— ng. an, we have

a Z@_iAn_l_AM_Am_1+J‘§A Lot
ns ns  Ms ms = "ns (n4+1)s"

n=m n=m n=m

M

From the O(t") condition there exists a constant C such that |A4,| < Cn", for all n. Hence

M M—1

an, MT (m—=1)" 1 1

In) o (S
P <|MS|+ TR i <n+1>8'>

n=m
Now
1 1t dt
TS S
hence
n+1 n+1 dt |S|
ol <l —1s | <
ns (TL+ 1 ts+1 n tm—i—l n:v—i—l
and

M-1
| Z | <C (MT‘”” +m 7" + s Z nrm1> .
We also notice that

M-—1 _
Z n'rfxfl < /OO t'rfxfldt _ (m — ]-)T 17
n=m

m—1 Tr—T

for any m > 1. Therefore, letting m and M go to infinity, we find that the sum Zn o
converges to 0, for any s € H,., and it follows that the series S(s) is convergent.

If A is a compact subset of H,, then there is a constant C” such |s| < C’, for s € A. In
addition, x — r > € for some € > 0. Hence, for s € A, we have

| Z <o <m +C'(m61)6) .
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We set

m 0o
Qnp Gnp

Jm(s) = - and f(s) = pp
n=1 n n=1 n

The functions f,, are analytic and from what we have just seen they converge uniformly to f on
A. Tt follows that f is analytic on H,. a

If we set a,, = 1, for all n, then Y _,a, = [t]. Thus > _, a, is O(t*). From Lemma 20.5
the series S(s) converges for all s in the half-plane H; and the function

)=

ns
n=1

is analytic on this half-plane. This is the Riemann ¢ function.

Suppose now that K is a number field with number ring Ok . From Theorem 13.5, there is a
finite number of ideals with a given norm, and a countable union of finite sets is countable, so
the set of ideals in Ok is countable. If we let j, be the number of ideals I in Ok with ||| = n,
then from the ideal counting equation (20.2), we see that >, jn is O(t), so the series S(s) in
this case also is convergent and the function -

(k(s) =) %
n=1

is analytic on the half-plane H;. The function (x is referred to as the Dedekind { function of
the number field K .

Since the ideals in O form a countable set, we may index them by numbers in N*. Let us
fix such an indexation. Then we may write

=1
@)= 2 o

Indeed, the series > >, ﬁ is absolutely convergent for s € Hi: If s = x + iy, then

m

1 1 [e'e} 1 [e'e) 1 . . .
|W\ = 7,77 and so Y1 ! = dor1 M= Which is convergent for = > 1. This
implies that we may rearrange the terms of series as we like, always obtaining a convergent series
with the same sum. We may also introduce parentheses where we like. With an appropriate

rearrangement and using parentheses, we obtain the expression defining (x(s).

Example At the beginning of this section we stated that the Dedekind ¢ function generalizes
the Riemann ¢ function. If K = Q, then Oxg = Z. The ring Z is a PID and the nonzero
ideals have the form I = (k), with k¥ € N*. The cosets of (k) are (k),1+ (k),...,k — 1+ (k),
so ||(k)|| = k. It follows that for every k € N* there is a unique ideal I with norm k. Thus {q = (.

We aim to extend (x to a meromorphic function on the half-plane H;_[k.q-1, having a
unique simple pole. We first extend ¢ to a meromorphic function on Hy. Let

302



Then |, ., an| <1 =19 so, from Lemma 20.5, the series converges for all s € Hy and the
function Sy is analytic on Hy. Again using Lemma 20.5, we obtain the absolute convergence of
So, for s € Hy. We claim that, for s € Hy,

So(s) = (1 = 2'7*)¢(s).

We show that we have the same terms in the two expressions and so, by the absolute convergence
of Sy, we have equality. Indeed,
2 2 2 21—8 21—5 21—5

() =Sols)+ s+ p+g T =%+ + 5+ 5 + o= So(s) +2'75¢(s),

thus the two expressions So(s) and (1 — 217%)((s) have the same terms, hence the claim. It
follows that
So(s)

1_91-s =((s),

and we may extend ( to a meromorphic function on the half-plane H(, which has possible poles

at points where 217 =1, ie., s =1+ 21517;‘, with k € Z. We set s, =1+ 21’;7; We claim that

the only pole is at sg = 1. For so = 1 we have

1 1 1
N=1-=4=-—-4...=In2
So(1) st3- 1+ n2#0,

so so is a pole. This pole is in fact simple, because h(s) = 1 — 2!7% has a simple root at sg.
(R (s) = —In2.2'"% = n/(1) = —In2#£0.)

We now consider s, where k # 0. Let us look at the series

1 2 i 1 2
25 3s ' 4s ' 5s @

Then |}, <, an| <2 = 2(t%), so from Lemma 20.5, the series converges for all s € Hy and the
function S; is analytic on Hy. A calculation similar to that for Sy(s) shows that

Si(s) = (1= 377)¢(s),

and so S1(s)

1S

1_31-— C(s),

for s € Hy, and we have a second possible extension of { to Hy, with possible poles at points
where 317 =1,ie,s=1+ Qk ’” ,with ' € Z. We set spr = 1+ 2’“ 7” The points s; and sk/
are situated on the stralght hne x = 1. In the former case the y- coordlnate is the element 1n2
multiplied by an integer and in the latter case the y-coordinate is the element 27; multiplied by
an integer. In fact, the points s, and s/ are distinct, when either k or k’ is nonzero. Without

loss of generality, suppose that &’ # 0. Then

2 2 k In2
k(=T F_me
mwe) =P 3) = e Ty

Sk = S/ —> k(
which is impossible, because £ 17 is rational and 1n2 irrational.

For any k # 0, if s € Hy, with s # s, then

So(s)
12—

51(5)

=) = Ty
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This implies that the limit of 2(1 )S as s converges to si from the right is finite. Consequently
1S°2(15 ~. Also, we have seen that 1 is a simple pole of this expression. In

the following we will refer to the extension 1502(15,)5 as the extension of ¢ to Hy. This extension is

meromorphic on Hy and has a unique pole at 1, which is simple.

sp cannot be a pole of

We now extend (. We have

=y z%‘ 5 hackc(s),
n=1 n=1

where hg is the number of ideal classes in Ok and k the constant in the ideal counting equation.
The Dirichlet series with coefficients 2= n}iK k converges on the half-plane H,, with r =1 — [K :
Q] !, because

S (n — hick) = O(t'=7) = O(t"),

n<t

from the ideal counting equation. This combined with the meromorphic extension of { gives us
a meromorphic extention of (x defined on H,, with r = 1 — [K : Q]~!, which has a unique pole
at s = 1. Moreover, this pole is simple.

20.7 The product form of the Dedekind ( function

As the set of prime ideals in O is a subset of the set of ideals, this set is countable, so we may
index the prime ideals in Ok by numbers in N*. In this section we aim to show that, for s € Hy,
we may write (k(s) in a particular product form, namely

=11 (1)

n>1

where {P,},,>1 is the set of prime ideals in Og-.

To begin with, we will show that the given product is convergent. (For the reader not familiar
with infinite products, we have included an appendix on the subject.) We fix s = x + iy € H;.
Now,

-2 AR > P (20.6)

is absolutely convergent. To

which is convergent, because s € Hy. It follows that > -, ﬁ
simplify the notation we will write a,, for ﬁ; then ) -, a, is absolutely convergent, which
implies that ) -, (—ay,) is absolutely convergent. From Lemma I.2 we deduce that [ ], -, (1—ay)
is absolutely convergent. Now, applying Theorem 1.1, we obtain that the product ], -,(1—ay)
converges to a nonzero number ~y, which is independant of the indexation of the prime ideals. It
follows that [,~,(1 — a,)~" converges (to %), independently of the arrangement of the prime

ideals, so we may affirm without ambiguity that [, -, (1— ﬁ)_l is convergent. Therefore we

may write
-1
II (1 P1 )
PeSpec(Ok),P#(0) ” ”S
ec(Ok),
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for this product. We aim to show that the product has the value (x(s), for s € Hy. First we
notice that
(I—an) '=14an+a;+--,

hence
(1—a1)'(1—ax) ' =1+ (a1 +as) + (a3 +ajag +a3) +--- =1+ Za?agz,

where ;1 and r9 range over N and are not simultaneously 0. Now, using the multiplicativity of
the norm of an ideal (Theorem 13.2), we have

1 11
[Pl [Pl [P Pyl

T T2
ap ag

For distinct values of 71 and rs, the ideals P/* P32 are distinct, so the expression Y a7'as? is just

the sum of the values of W, where the sum is taken over all ideals whose decomposition is a
product of powers of the ideals P; and P,. We set Ay =1+ > al’as?.

In the same way, for the product of (1 —a;)~!, (1 —az)~! and (1 — a3) ™!, we obtain

(1—a) "1 —a) 1 —a3) ™t =1+ Za?agza?,

where 71, 73 and r3 range over N and are not simultaneously 0. The expression ) aj'a5’a5® is

just the sum of the values of W7 where the sum is taken over all ideals whose decomposition is
a product of powers of the ideals Py, P, and Ps;. Let us set A3 =1+ Y aj*as?as®.

Continuing in the same way, for any n € N* we obtain

l—a) ' (l—a,) =1+ ay---arn
( 1) ( n) 1 n o

where r1, ...r, range over N and are not simultaneously 0. The expression ) aj' ---aj" is the

sum of the values of W, where the sum is taken over all ideals whose decomposition is a product
of powers of the ideals Pi,...,P,. Weset Ag=1,and forn>1, A, =1+ ai*---al".

We are now in a position to prove the result referred to above.

Theorem 20.2 If s € Hy, then

o= I ()

PeSpec(Ok),P#(0)

where Spec(Ok) denotes the collection of prime ideals in Ok.

PROOF As the series (x(s) = > ~_; m, with s € Hj, is absolutely convergent, any rear-
rangement of the terms gives us another series converging to (x(s). We now construct a useful
rearrangement.

Let Ty be composed of the single ideal Og. We give Ok some index, say 0. Every nontrivial
ideal I in O which is not equal to Ok can be written in a unique way as a product of prime

ideals: I = P[*--- P where at least one r; is nonzero. We index the ideals in Ok in the
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following way: First we index the set 77 composed of the powers of P; with indices not equal to
0. (We could use the powers of P; as indices.)

Next we consider the set 75 composed of products of P; and P, which do not belong to
To UT;. We index these elements with indices which we have not already used.

Now we consider the set T3 composed of products of powers of Py, P, and P3, which do not
belong to Ty UT7; UT5. We index the elements of T3 once again with indices which we have not
previously used.

Continuing in the same way we obtain an indexation of all nontrivial ideals. From this in-
dexation we obtain a rearrangement of the terms in the series for (x(s).

We recall that
=1
wO= 2 T
m=1

where the I,,, are the ideals in Ok, indexed in some arbitrary way. As the series is absolutely
convergent, we may group the terms into ’packets’, choosing a permutation allowing us to sum
the ’packets’ in the order we desire. Thus

1
-2 (5 1)
n>0 \I€T,

If
1

B, = =,
! I111l°

IeTyU---UT,

-1
then lim,_,oo B, = (x(s). However, B, = A, and lim,_,o A,, = [[;2, (1 S ) . Hence

we have the equality
1 \!
o= I (i)

PeSpec(Ok),P#(0)

as claimed. O
Corollary 20.1 For s € Hy, we have (i (s) # 0.

PROOF Since the expression of (x(s) as a product is nonzero, we have the result. O
Remark From what we have just seen, we may find a multiplicative expression for the Riemann
¢ function. Setting K = Q, for s € H; we obtain
1o
((s) = Cals) = [J(1 - ];) ;

where the product is taken over all prime numbers in N*.

20.8 The class number formula
In this section we bring together the ideal counting equation and the Dedekind ¢ function to

obtain a relation involving the class number of a number ring. This is known as the class number
formula. We begin with a preliminary result concerning the Riemann ¢ function.
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Proposition 20.2 For the Riemann ( function, we have

lim (s —1){(s) = 1.

s—1+

PROOF We have seen that the series
(o]
(71)77,71
Sols) = — —
n=1
is convergent and holomorphic on the open half-plane Hy; also, for s in the half-plane Hy,

(o) = 720

As Sy is continuous at 1, lim_,14 Sp(s) = In2. On the other hand, we have
2175 _ 1= (=In2)2""% (s — 1),

where s € (1,s). It follows that

2:1% = (-m2)2'" = Sgr{l+ 21;5_7_11 =—In2.
Hence
i (s = 1)¢(s) = 1,
as required. O

This result may be written in the form: lim,_,14(s — 1){q(s) = 1. We now replace Q by any
number field K and consider the limit lim,_14 (s — 1){x (s). We set b; = j; — hk, where hx is
the class number of Ok (or of K) and k the constant whose value is given by

2" roreg(Ok)
— wy/|disc(Og)]

where reg(Of) is the regulator of O as defined above, r (resp. s) the number of real (resp.
complex) embeddings of K in C and w the number of roots of unity in O. We have seen above
that the Dirichlet series Sa(s) with coefficients ;’fl converges and is analytic on the half-plane H,,
with r =1 — [K : Q™. In particular, S3(1) is finite. Now,

S2(s) = Cx(s) = hik((s) = lim (s —1)S2(s) = lim (s — 1)Cx(s) — huck lim (s —1)¢(s)

and, from Proposition 20.2, it follows that

lim (s — 1)Cxe(s) = 2r+srreg(O)

1t wy/[disc(O)]

This expression is referred to the class number formula.

Remark It should be noticed that in general the class number hg is difficult to determine,
hence the expression lims_, 14 (s — 1)(x () is difficult to evaluate from the formula. On the other
hand, using the formula to calculate the class number is also difficult, because the expression
limg 14 (s — 1)k (s) is not easy to determine directly.
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Appendix A

Formal power series, polynomials
and polynomial functions

In this appendix we summarize the main results on polynomials which we use in the text. We
make a clear distinction between polynomials and polynomial functions, something which is often
neglected. Also, we present polynomials in the context of formal power series, which seems to
us quite natural. We do not give any proofs. These can be found elsewhere in standard algebra
texts, for example [1] or [14].

Formal power series

Let R be a commutative ring with identity. A sequence A = (a;)$2,, of elements of R is called
a formal power series over R. We will write Si for the set of all such power series. We define an
addition @ pointwise on Sg: If A = (a;) and B = (b;), then we set A @® B = (a; +b;). With this
operation Sg is a group, with identity O = (0;), where o; = 0 for all i. The inverse of A = (a;)
is —A = (—a;).

We also define a multiplication ® on Sg: for A, B € Sg, we set C' = (¢;) € Sg, where
c; = ZkH:i arb;. We write C = A® B. With this operation and the addition, Sg is a ring with
identity U = (u;), where ug = 1 and u; = 0 for ¢ # 0. An element A is invertible (for the multi-
plication) if and only if ag is invertible in R. An element X € Sg plays a special role. We define
X = (z;) by z1 = 1 and z; = 0 for i # 1. Then it easy to check that, if X* = (y;), then y = 1
and y; = 0 for i # k. If we set X° = U, then we can write the power series A = Y 72 a; - X".
By convention we usually write R[[X]] for Sk and call the ring we have just defined the ring of
formal power series over R.

We also define a scalar multiplication - on Sg: for A € R, A (a;) = (Aa;). With the addition,
Sk is an R-module (an R-vector space, if R is a field) and with the three operations an algebra.

We make certain simplifications in the notation: we write A + B for A@® B, AB for AQ B
and AA for A - A.

Polynomials

It may be so that a power series has only a finite number of nonzero coordinates. We call
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such power series polynomials over R. We note the set of polynomials R[X], which is a subring
of R[[X]], when R[[X]] is considered as a ring, and a submodule (resp. vector subspace), when
R[[X]] is considered as an R-module (resp. R-vector space).

If A€ R[X]and A # O, then we define the degree of A, written deg A, to be max{i : a; # 0}.
The coefficient a;, where ¢ = deg A is called the leading coefficient of A. If the leading coefficient
has the value 1, then we say that the polynomial is monic. We define the degree of the zero
polynomial O to be —co. If A = (a;) is a nonzero polynomial and deg A = n, then we may write
A=3%" ,a;X"The degree has the following properties:

o deg(—A) = deg A4;
o deg(A+ B) < max{deg A, deg B};
e deg AB = deg A + deg B, if R is an integral domain.

From the third property we easily derive that, if R is an integral domain, then R[X] is an integral
domain and the set of invertible elements R[X]* is composed of the constant polynomials A = a,
where a € R*.

We may consider division of one polynomial by another. We have the following result:

Theorem A.1 Let B be a nonzero polynomial in R[X]|, with leading coefficient invertible in R.
For any A € R[X], there exist unique polynomials Q,S € R[X] such that

A=QB+ S,
where deg S < deg B.

The polynomial @ (resp. R) is called the quotient (resp. remainder) of A divided by B.
Clearly, if R is a field, then the polynomial B can be any nonzero polynomial. The polynomial
B divides A if and only if S = O.

Polynomial functions

For a commutative ring R with identity, we note F(R) the collection of functions from R into
itself. We define three operations on F(R):

(fog)(z)=flx)+g(z) (FOI(@)=flx)g(x)  (z-f)(x)==2f(z),

for all z,z € R and f,g € F(R). With the first two operations F(R) is a ring with identity, and
with the first and third operations F(R) is an R-module. We may define a mapping

®: R[X] — F(R),Ar— A

in the following way. Let 2 € R and A € R[X]. If A # O and A = Y ja;X", then we set
A(z) =31 a;z’ and if A = O, then we set O(z) = 0. The mapping @ is a ring homomorphism
and also an R-module homomorphism. The image of ®, which we will write P(R), is a subring of
F(R) and also an R-submodule. The image A of A is called the polynomial function associated
to A. We should notice that there is a clear distinction between polynomials and polynomial

functions. When there is no confusion possible, we often write A for A.

If « € R and A(a) = 0, then we say that « is a root of A. The following result is fundamental.
It is an easy consequence of Theorem A.1.
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Proposition A.1 Let A € R[X]. Then a € R is a root of A if and only if —a+ X divides A.

It may be so that a power of —a + X greater than 1 divides A. If (—a + X)* divides A, but
(—a+ X)**1 does not, then we say that the root o has multiplicity k. We will write v(a) for the
multiplicity of the root . Roots with multiplicity 1 are said to be simple; on the other hand,
roots with multiplicity k£ > 1 are called multiple roots. We must be careful with the number of
roots: in general, this number is bounded, however there are polynomials with an infinite number
of roots. In the case where A is an integral domain we have the following important result.

Theorem A.2 Let R be an integral domain and A a nonzero polynomial in R[X]. Then the
number of roots of A, counted with multiplicity, is bounded by the degree of A. If R is an
algebraically closed field, then we have equality.

If R is an infinite integral domain and A is a nonzero polynomial in R[X], then, from the

theorem, A # 0 and so the mapping ® defined above is injective. This means that R[X] is
isomorphic as a ring, or as an R-module, to P(R).

Remark If R is not an integral domain, then Theorem A.2 may not be true. For example, if
f € Zg[X], with f(X) =4X, then deg f = 1, but f has four roots, namely 0, 2,4, 6.

Differentiation of polynomials

Let A € R[X] of degree n. We define the derivative A’ € R[X] of A in the following way. If
deg A <0, i.e., if A is a constant polynomial, then A = O; if degA > 1 and A = > a; X",
then

n n—1
A = Z’L'aiXiil = Z(Z + 1)ai+1Xi.
=1 1=0

Clearly deg A’ < deg A — 1; however, the inequality may be strict. The following result is not
difficult to prove.

Theorem A.3 If A,B € R[X] and z € R, then

e (A+B)Y=A"+DB;

o (zA) =zA';

e (AB) = AB'+ A'B.
Corollary A.1 The mapping

D:R[X]— RX],Ar— A

ts a an R-module homomorphism.

The derivative is useful in finding multiple roots:

Proposition A.2 If o € R and A € R[X], then « is a multiple root of A if and only if « is a
root of both A an A’.

310



Remark We may extend the notion of root in the following way. If R is an integral domain and
A € R[X], then any « in an extension of the field of fractions of R is called a root of A if A(a) = 0.

Irreducible polynomials

We recall that an element a in a ring R is irreducible if it is neither 0 nor invertible and, if
there are elements b, ¢ € R such that a = be, then either b or ¢ is invertible. Also, two elements
a and b are associates, if there exists an invertible element ¢ such that a = ¢b. If R is an integral
domain and every element a € R, which is neither 0 nor invertible can be written as a product
of a unit and irreducible elements and, given two complete factorizations of a

a=1uby---b. =vey -y,

where u and v are units and the b; and c; are irreducible, then we have r=s and the b; can be
renumbered so that each c; is associated to b;, then we say that R is a unique factorization do-
main (UFD). A basic property of UFDs is that any two elements a and b have a highest common
factor (HCF) d and a lowest common multiple (LCM) m. In addition, dm is an associate of ab
(see [5]).

If R is a unique factorization domain and A € R[X], with A # 0, then the content of A,
which we write ¢(A), is the HCF of the coefficients of A. We say that a polynomial is primitive
if its content is 1. Clearly, we may write A = ¢(A)B, where ¢(B) = 1. The following result is
known as Gauss’s lemma.

Theorem A.4 If R is a UFD and A, B € R[X] are nonzero, then ¢(AB) = c¢(A)e(B), up to
association. Thus the product of two primitive polynomials is primitive.

This apparently simple result enables us to prove several other important results. Proofs may
be found, for example, in [1].

Theorem A.5 Let R be a unique factorization domain, with quotient field F', and A € R[X].
Then, if A is nonconstant and irreducible in R[X], then A is irreducible in F[X]. On the other
hand, if A is primitive and irreducible in F[X], then A is irreducible in R[X].

Theorem A.6 If R is a UFD, then so is R[X].

Theorem A.7 (Eisenstein’s irreducibility criterion) Let R be a UFD, with quotient field F', and
A € R[X], with deg A = n > 1. If there is an irreducible element p € R such that p divides a;,
fori=0,...,n—1, p does not divide a,, and p> does not divide ag, then A is irreducible in F[X].
If, in addition, A is primitive, then A is irreducible in R[X].

Multivariate polynomials

We may define polynomials in an alternative way. We let X be a symbol and define R[X ] to
be the collection of expressions of the form

m
A= ZaiXi,
i=0

where the a; € R, m € N, X% = 1. We call the terms a;X* monomials. For A, B € R[X],
we define their sum A & B by adding the coefficients of terms having the same power of X. If
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A=aX"and B = bX7, then we define A ® B = abX't/. We may extend this multiplication: if
A=%",a;X"and B = Z?:o a; X7, then we multiply pairs of elements (aX? bX7) and then
add resulting monomials having the same power; this gives us A ® B. Finally, we define a scalar
multiplication: if A € R and A = " ja; X" then we set A- A = Y"" ) Aa;X’. With the three
operations so defined R[X] is an R-algebra isomorphic to R[X]. As above, we write A + B for
A® B, AB for A® B and A\ for \- A and we identify R[X] and R[X].

The alternative way of defining polynomials enables us to extend the definition to polynomials
in several variables over a commutative ring R with identity. We let X3, ..., X,, be n commuting
symbols, often referred to as variables or indeterminates, and we define R[X;, ..., X,] to be the
collection of expressions of the form

— S1 S
Ai z asl,...,SnXl "'Xnnv

where as, .. s, € R and the sum is finite. Each term as, . s, Xi'--- X " is said to be a monomial.
We call the elements of R[X1,...,X,] polynomials in n variables or indeterminates. We define
an addition @ on elements of R[X1,...,X,] by adding like monomials in the expressions of
polynomials and scalar multiplication - by an element A € R by multiplying the coefficients of all
the monomials by A\. We define a multiplication ® first on monomials. If A = aX7* --- X*» and
B =0bX{"---x; , then we set A® B = abXj'"" .. X3+t We extend this multiplication to
any pair of polynomials A and B by first multiplying all pairs of monomials (ma,mpg), with m 4
a monomial of A and mp a monomial of B, and then adding the monomials obtained with the
same powers of each X;. With the three operations so defined R[X7,...,X,] is an R-algebra.
As above, we write A+ B for A® B, AB for A® B and AA for A - A. We call the maximum
value of s; 4+ - -+ + s, the total degree of the polynomial A, which we note deg A.

Exercise A.1 Show that R[X1,...,X,] is an integral domain if and only if R is an integral
domain.

If F'is a field and f € F[X] has an infinite number of roots, then f is the zero polynomial. The
situation with multivariate polynomials is not the same. For example, if f(X,Y) = -X +Y? ¢
R[X,Y], then f has an infinite number of roots, but f is not the zero polynomial. However, if
the infinite set on which f vanishes has a certain form, then we can assert that f is the zero
polynomial.

Theorem A.8 Let F be a field and As,..., A, infinite subsets of F. If f € F[Xy,...,X,]
vanishes on the cartesian product Ay X --- X A,, then [ is the zero polynomial.

PROOF We use an induction on n, the number of indeterminates. If n = 1, then there is nothing
to prove. Suppose now that n > 1 and the result is true up to n — 1. Let f € F[Xq,...,X,] and
Ay, ..., A, infinite subsets of F' such that f vanishes on A; x---x A,. Fixing a € A,,, we obtain
a polynomial g, (X1,...,X,-1) = f(X1,... X,—1,a) in n — 1 indeterminates. By the induction
hypothesis, g, has the value 0 on all members of F"~!. We may consider f as an element of
F(Xy,...,X,-1)[X,], which has the value 0 on all values of A,,. As this is a polynomial in one
indeterminate, it vanishes on F'. We have shown that f is the zero polynomial on F". This
completes the induction step and hence the proof. O

Partial fraction decomposition

Let K be a field and K[X] the integral domain of polynomials with coefficients in K. We
note K (X) the field of fractions of K[X]. The following theorem generalizes a well-known result
of elementary analysis.
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Theorem A.9 Let K be a field and ¢y, ..., ¢; distinct polynomials in K[X] with positive degrees
di,...,d;. We suppose that ny,...,n; are fized positive integers and define g = H;Zl ¢p* and
set N = degg. Then the following conditions are equivalent:

e a. The polynomials ¢1,...,¢; are pairwise coprime.

e b. For every f € K[X] with deg f < N, there exist unique polynomials {pr;} 1<k<i n
1<j<ng

K[X], with degpr; < di — 1 such that % may be written in the form

e c. Statement b. without the uniqueness condition.

PROOF see [2] m|

We refer to this result as the partial fraction decomposition theorem.
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Appendix B

Symmetric polynomials

If A is a polynomial in n indeterminates, then we obtain another polynomial o A if we permutate
the indeterminates X; by the permutation o: the monomial aX; - - - X;, becomes a X4 (1) -+ X5 (n)-
The polynomial A € R[Xq,...,X,] is symmetric if, for all permutations ¢ € S,, cA = A.
We write R[X1,...,X,]° for the collection of symmetric polynomials over R. These form a
subalgebra of R[X,...,X,].

We define the polynomials ¥4, ..., 3, as follows:

Zl:iXi, 22=ZXin,...,Ek: Z Xi o Xigsoo 0y B = X1 Xph.
i=1

i<j 1<iy < <ip<n
These polynomials are symmetric and are called the elementary symmetric polynomials in
R[Xy,...,X,]. Each X is the sum of (2) monomials of degree k. We will sometimes write

E,(:’), instead of X, to indicate the number of indeterminates. A symmetric polynomial can be
expressed in terms of these polynomials, as we will soon see. First we need to generalize the
notion of degree in a particular way.

We have seen the notion of total degree, which generalizes that of degree for a polynomial in
one variable. However, we may generalize the notion of degree in another way. First we define
an order < on N™: if I = (i1,...,4,) and J = (J1,...,Jn) and there exists k such that a; = b;,
for i < k, and ay < by, then we write I < J. Clearly < defines a total order on N", said to be a
lexicographic order. It is easy to see that, if I, J, K € N", then

I<J=I+K<J+K.

We now consider a polynomial

—_ . . il DY l ¢
A= E all,m,lnXl Xnnv

Ul yeesin

which we often abbreviate to >, arXT. We notice that X' X7 = XI+7 For a nonzero polyno-
mial A we call the multidegree of A

mdeg A = max{[ : a; # 0}.

If mdeg A = I, then we call a; X! the leading term of A and a; the leading coefficient of A, which
we note lead A. For the elementary symmetric polynomials we have

mdeg ¥ = (1,0, ...,0),mdeg X9 = (1,1,0,...,0),...,mdeg 3, = (1,1,...,1).

The multidegree has properties similar to those of the degree.
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Proposition B.1 If A,B € R[X},...,X,] are nonzero, then
e mdeg AB = mdeg A+ mdeg B, if R is an integral domain;
e mdeg (A + B) < max(mdeg a, mdeg B);
e mdeg (A + B) = mdeg B, if mdeg A < mdeg B.

PROOF Let
A=Y X" +agX® and  B=> byX7+b X"
I<K J<L
Then AB has the nonzero term axbr, X% and the other terms have multidegrees stricly less

than K + L. Hence
mdeg AB = mdeg A + mdeg B.

The multidegrees of the monomials of A + B are those of A and B, with the exception of
those eliminated when the coefficients of a monomial in A and a monomial in B have opposite
signs. It follows that

mdeg (A + B) < max(mdeg a, mdeg B).

If mdeg A < mdeg B, then the leading term of A 4+ B is that of B, hence
mdeg (A + B) = mdeg B.

This ends the proof. ]

We now prove a fundamental result relating symmetric and elementary symmetric polynomi-
als.

Theorem B.1 Let R be a commutative ring with identity. If A € R[X1,...,X,]°", then there
exists a unique polynomial S € R[X4,...,X,] such that

A=52,...,5,),
where S(X1,...,%,) is the polynomial S with X; replaced by %;.

PROOF Existence If A is the zero polynomial, then there is nothing to prove, so let us suppose that
this is not the case. We use an argument by induction on the multidegree. If mdeg A = (0,...,0),
then A is constant and we may take S = A.

Now suppose that mdeg A = K = (k1,...,k,), with K # (0,...,0). We have

A= Z (l]XI +aKXK,
I<K

with ax # 0. We claim that k; > ko--- > k. As (k1,...,ky) is the multidegree of a nonzero
monomial in A and A is symmetric, all permutations of the k; appear as multidegrees of mono-
mials of A and K is greater than any of these permutations. If, for some i, k; < k;11, then
the sequence obtained by permutation of k; and k; 11 is greater than K and so mdeg A # K, a
contradiction, thus k; > k;11, for all i. We now set

ay =k — kg, ag = ko — k3, ... an_1 =kn_1 — kn,an = ky.
As k; > kiq1, for all 4, the elements a; are all positive and B = axX{* --- X% is a polynomial.

Since the elementary symmetric polynomials are monic, we have
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mdeg B = aijmdeg X1 4+ asmdeg Yo + -+ - + a2,
= (a1,0,...,0) 4 (a2,a2,0,...,0) 4+ ...(an,-..,an)
= (am14as+...+ap, a0+ ...+ an,...,a,)
= (k1,ko,...,k,) = mdeg A.
It follows that A and B have the same leading term, namely ax X%. If A = B, then we are

done. If this is not the case and we set C'= A — B, then mdeg C' < K. As C' is symmetric, there
is a polynomial S’ € R[X7,...,X,] such that C = S'[%4,...,%,] and

A=B+C=agX{' - X+ 5[5,...,8,] =9"[Z1,..., 5]
This finishes the induction step.

Uniqueness In order to prove the uniqueness of the polynomial S, we will prove, by induction
on n, the number of variables, that, if Q@ € R[X1,...,X,] and Q[X4,...,%,] = 0, then Q@ = 0.
First, if n = 1, then X7 = X and the only possibility is clearly @ = 0. Suppose now that n > 2.
We may write

N
Q=> QuXf,
k=0
where Qi € R[X1,...,X,-1]. If Q # 0, then there is a Q; # 0. We set p = min{i : Q; # 0}.
Then
N
0=Q(Z1,....Sn) =8> Qr(S1,..., Sn_1)Sh 7.
k=p

Using the fact that ¥ is monic, we obtain

Qp(Z1,- -, Tn1) + Qpi1(Z1s -, B )0 + Qpr2(Bn, -+, B 1)E0 + - = 0.

We define a mapping from R[X4,..., X,] into R[X1,..., X,_1] by setting X,, = 0. (We discard
all monomials with a power of X,,.) The mapping v is a surjective ring homomorphism and

Kery ={A € R[X1,...,X,]: A=aX",a € R}.
Then )
Y@, 2 =@V, ) and p(30Y) =0,

hence )
Q=" . xmhy— o,

From the induction hypothesis, @, = 0, a contradiction. It follows that ¢ = 0, which is what
we set out to prove. O

Corollary B.1 Let R and S be commutative rings with identity such that R C S. We suppose
that f € R[X], with leading term invertible and roots aq,...,an in S. If A € R[X1,...,X,] is
symmetric, then A(aq,...,a,) € R.
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PROOF As A is symmetric, there exists a polynomial T € R[X1, ..., X,] such that A(Xy,...,X,) =
T(31,...,%,). Fori = 1,... ;n, let us note s; = Yilag,...,ap). Thus A(aq,...,an) =
T(s1,...,8,). If f(X) =" a; X", then
Ui = an(—1)" (a1, ..., an) = an(—1)'s; = 5, = (=1)'a;  an_;
Therefore
Alar, ... an) =T(—a, an_1,a; an_a,...,(=1)"ag) € R,

as required. O

Exercise B.1 Let f be a monic polynomial in Z[X|, with roots a, . ..,a, € C. We take e € N*
and let g be the monic polynomial in C[X| with roots af, ..., af. Show that g has its coefficients
in Z.
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Appendix C

Semidirect products

In this appendix we introduce the notion of the semidirect product of two groups, which general-
izes that of the direct product. This is not usually handled in depth in elementary algebra courses.

If H is a normal subgroup of a group G, then K is said to be a complement of H if
G=HK and HnNK = {e}.

It is easy to see that any g € G has a unique representation as a product hk, with h € H and
k € K. Also, G = KH and so g has a unique representation k'h/, with ¥’ € K and b’ € H. (It
is not necessarily the case that A’ = h or k¥’ = k.) If K is a proper normal subgroup of the group
G and H has a complement H, then we say that G is the semidirect product of H and K (the
order is important).

Proposition C.1 If G is the semidirect product of H and K, then K is isomorphic to the
quotient group G/H.

PROOF The kernel of the quotient mapping ¢ : G — G/H restricted to K is H N K = {e}, so
@k is injective. To see that ¢ is surjective, we take any element gH € G/H. As g = kh, we
have

gH = khH = kH = ¢ (k),

hence ¢|x is surjective. O

If G is the semidirect product of H and K, then there is a natural bijection from the cartesian
product H x K into G, namely
Y(h, k) = hk,

for all (h,k) € H x K. However, this mapping is not necessarily a group homomorphism. If 1)
is a homomorphism, then we say that the indirect product is an internal direct product.

Proposition C.2 The mapping ¥ is a homomorphism if and only if the elements of H commute
with those of K.

PROOF If ¢ is a homomorphism, then, for h € H and k € K,

P((e,k)(h,e)) = (e, k)(h,e), ie., hk = kh,

so elements of H commute with elements of K.
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Now suppose that the elements of H commute with those of K and let (h, k), (h', k') € Hx K.
Then
U((h, k)W, k) = hh'kE" = hkW'E' = 4 (h, k)Y (R'E),

so 1 is a homomorphism. 0O
Corollary C.1 The mapping ¥ is a homomorphism if and only if K is a normal subgroup of G.
PROOF If 1) is a homomorphism and k¥ € K and g = k'h’ € G, then

gkg™t = (K'PHYk(E'R) ™ = K'(Wkh "D~ = k'™ € K,

so K <G.

Now let us suppose that K <1 G and let h € H and k € K. We set z = hkh~'k™!, the
commutator of h and k. As K <G, z = (hkh™1)k~! € K. In the same way, 2 € H. However,
HN K = {e}, which implies that z = e and hence that h and k& commute. As elements of H and
K commute, 1 is a homomorphism. O

Examples - If G = Zg, then there exist subgroups H and K, isomorphic respectively to Zs and
Z,, which satisfy the conditions, so we may say that G is the semidirect product of H and K.
- Now let us consider S3, with H = A3, which is a normal subgroup of Ss, and K = {e, (1 2)}.
This subgroup is not normal: for example,

(123)(12)(132)=(23) ¢ H.

However,

HNK={e¢ HK=0G.

So Ss is the semidirect product of H and K (and H ~ Z3, K ~ Z,).

- The dihedral group Ds,, n > 3 is generated by elements a and b such that o(a) = n,
o(b) = 2 and bab = a~!. Using the relation bab = a~!, we see that, if H = (a) and K = (b), then
Dy, = HK. If a®* = b, with 1 < s < n, then a?* = e and n|2s. As 2s < n, we have n = 2s. This

is clearly impossible if n is odd. If n is even, then s = % and

n
2

bab=a%aa®* =a=a"' = n=2,

a contradiction. Hence H N K = {e}. We have shown that Dy, is the semidirect product of H
and K.

The first two examples show clearly that groups G; and G5 may be nonisomorphic, but at the
same time the semidirect product of pairs of subgroups (Hy, K1) (resp. (Hz, K»)), with Hy ~ H,
and K; ~ Ks.

Exercise C.1 Let H be the subgroup V4 of Ay, i.e.,
Vi={e, (12)(34),(13)(24),(14)(23)}.

Show that H is normal in S4 and hence in A4 and then that A4 is the semidirect product of H
and the subgroup K generated by the 3-cycle (12 3). Is Ay a direct product of H and K ?

If G is the semidirect product of H and K, then any g € G may be written in a unique form
as g = hk, with h € H and k € K. We may write the product of two elements g and ¢’ as follows

g9’ = (hk)(W'K') = hkW' k™ Kk = how (kK
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where ¢y is the automorphism of H defined by &, i.e.,
or(h) = khk™*,

forall h € H. (As H <G, ¢r(h) € H, so ¢, is a mapping from H into H; checking that ¢ is an
automorphism is easy.) This means that the bijection ¢ from H x K into G defined above is a
homomorphism, if we define the product on H x K by

(h,k)(h', k") = (hor(h), kK").
Exercise C.2 Show that the mapping
¢: K — Aut(H), k — ¢
is a group homomorphism, where Aut(H) is the group of automorphisms defined on H.

A natural question now arises. Given groups H and K, together with a homomorphism
¢ K — Aut(H), can we construct a semidirect product based on this information? The
answer is affirmative and is based on our previous analysis of the semidirect product.

Theorem C.1 If H and K are groups and G = H x K, their cartesian product, then from
a homomorphism ¢ : K — Aut(H), we may define a multiplication on G such that G is the
semidirect product of H and K. (We identify H with H' = Hx{ex} and K with K' = {eg}xK).

PROOF We define a multiplication on G by
(h, k) k') = (hw(R'), kE').

We need to show first that GG, with this multiplication, is indeed a group. The associativity is
the most difficult part. We have

((h, k)W, K) (", K") = (hew(h'), kK ) (R, k")
(hops (W) s (R, kE'E")
(how(h)prrs (W), kE'E")
= (ou(P)u(f(h")), kE'k")
(hgf)k(h (R, kk’k”)
(h, (h ¢>k h” kK k”)
(s R) (R, KD (R "))

For (em,ex) we write (e, e). Then

(h’ ]4})(6, 6) = (h¢>k(€)7 ]{16) = (h7 k)
and
(hy k) (@11 (B71),k71) = (h(p—1 (W), k™) = (Wh™H kETY) = (e, ),
hence G is a group.
We must now show that G is the desired semidirect product of H and K (or of H' and K’).

Clearly, HN K = {(e,e)} and HK = G, so we only need to show that H is a normal subgroup
of G. First, we consider an element of H conjugated with an element of K:

(e, k)(h,e)(e, k)~ (h,e)(dp-1(e™1), k")

(h,e)(e, 71)

), k) (e, )

)¢k() 1) = (¢x(h),e) € H.

(e, k)

(e, k)
= (¢
= (¢

h

(
(h
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Now, for the general case, we have:

(h, k)W e)(h, k)™ = (h,e)(e k)(h, e)(e, k) (h,e)™!
= (he)(dn(l), e)(h,e)”!
= (hae)((bk(h) e)(¢e-1 (A7), e7)
(héw(h')h™t,e) € H.

Therefore H is normal in G and G is the semidirect product of H and K. O

We write H x4 K for this semidirect product of H and K, or simply H »x K. We often refer
to it as an external semidirect product.

It is natural to ask under what circumstances an external semidirect product is a direct
product. We give a simple criterion.

Proposition C.3 An external semidirect product is direct if and only if ¢ is trivial, i.e., ¢p =
idy, for allk € K.

PROOF We must show that K is normal in G if and only if ¢ is trivial. If ¢ is trivial, then

(h,e)(e,k)(h,e)_l = (hvk)(¢e—1(h_1)ﬂe_1) = (h,k)(h_l,e) = (h¢k(h_1)vk) = (67/€) €K,

because ¢ = idy. Therefore K is normal in G.
On the other hand, if ¢ is not trivial, then there exist h and k such that ¢ (h) # h and

(hve)(e’ k)(h76)71 = (hvk)((be*l(hil)veil) = (hv k)(hilve) = (hgbk(hil)?k) ¢ K,

because
hd)k(h_l)k‘ == hgﬁk(h)_l =—e=— h= (bk(h),

a contradiction. It follows that K is not normal in G. O

In general, external semidirect products are not abelian. In fact, this is always so if mapping
¢ is nontrivial. In this case there exist h and k such that ¢ (h) # h and

(h,e)(e, k) = (h, k) # (or(h), k) = (e, k) (h,e).

Consequently, if the external semidirect product is abelian, then it is a direct product. This
enables us to construct a large variety of nonabelian groups.

Remarks
e If the external semidirect product is abelian, then it is a direct product.

e Not all groups can be written as semidirect products. For example, for n > 5, A,, is simple,
i.e., it has no nontrivial proper normal subgroup, and so cannot be written as a semidirect
product.

Application: Groups of order pq, with p, ¢ prime and ¢ < p

We first consider the case where ¢ = 2.
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Proposition C.4 If G is a group of order 2p, with p > 2 prime, the G is cyclic or dihedral.

PROOF From Cauchy’s theorem there exist a,b € G such that o(a) = p and o(b) = 2. Let us set
H = (a) and K = (b). As H has index 2, H is normal in G, hence

bab =bab™ ' = a"

)

for 1 <r < p. (r =0 is impossible, because in this case we would have a = e.) If a® = b, with
1 < s < p, then a?* = e, then p|2s. However, s < p, we have p = 2s, which implies that p is
even, a contradiction. It follows that H N K = {e} and |HK| = 2p. This in turn implies that
HK =G and so G = {(a,b).

In addition,
2

a” =ba"b=0b(bab)b =a = a” = = plr? —1.

This implies that p|r — 1 or p|r + 1.
Case 1: p|r — 1: Here r = 1, because

1<r<p=0<r—-1<p—-1=r=1= ab=ba.

Therefore G is abelian and the order of ab is 2p. It follows that G is cyclic.
Case 2: p|r + 1: Here r = p — 1, because

I<r<p=2<r+l<ptl=r+l=p=r=p-1

This implies that
G = (a,b) a? =b?=e bab = a~ !,

ce qui implique que G ~ Dy,. O
We now consider the general case. We need a preliminary result.

Lemma C.1 Suppose that the group G is generated by the elements a and b, whose orders are
respectively m and n. We also assume that bab=* = a”, for some r € Z. Then, fori,j k,1 € N,

(@'b")(a?b!) = oI pR L (C.1)

Therefore, every element g € G can be written g = a®bt, with 0 < s <m and 0 < t < n. This
expression is unique if (a) N (b) = {e}.
PROOF We first prove by induction that, for all £k € N,

k

Vrab™F =a, (C.2)

For k = 0,1, this is evident. Suppose now that the property is true for k — 1, for some k > 2.
Then

k—1 -1

BEabF = b(bFtab~* D)t = b(a” )bt = (bab™h)"

From this last expression we obtain

_ k—1 k—1 k
bEab™F = (@) =d" =ad".

This finishes the induction.
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Now, using this relation, we have
Balb™F = (BFabF) = " = bral = a?"" b

and
(aibk)(ajbl) — @i BN = @i R

Using the orders of the elements a and b, we obtain the expressions that, for all g € G, g = a®l?,
with 0 <s<mand 0 <t <n.

If (a) N (b) = {e}, then, for 0 <, <m and 0 <k, <mn,
I—k

dbtF =ddt = d T =t =e=mli—jn|l-k=i—-j=k—-1=0.

Therefore the expression g = a®b* is unique, if 0 < s <m and 0 <t < n. O

We will now establish an elementary result, which is useful here (and elsewhere).

Lemma C.2 Ifn > 2, then

Aut(Z,) ~Z).
PROOF If r € Z, then the mapping ¢, : © — rz is an automorphism of Z,,, so there are at
least ¢(n) automorphisms of Z,,. Notice that r is in fact ¢, (1), so we have ¢, (z) = x¢,(1), where
¢r(1) is inversible.

On the other hand, if ¢ is an automorphism of Z,,, then ¢(z) = z¢(1), for all z € Z,,. If ¢(1)
is not inversible, then ¢(1) = 0 or ¢(1) is a zero divisor. The first alternative is false, because
this would imply that the mapping ¢ takes every x € Z,, to 0. In the second case, there exists
v # 0 in Z,, such that v¢(1) = 0. This implies that ¢(v) = 0 and, as ¢(0) = 0, ¢ is not injective.
It follows that ¢(1) is inversible and the result now follows. O

Proposition C.5 Let p and q be prime numbers with ¢ < p. There exists a nonabelian group of
order pq if and only if p = 1(mod q).

PROOF Let us first suppose that p = 1(mod ¢). From Lemma C.2, we know that |Aut(Z,)| = p—1.
Given that ¢|p — 1, from Cauchy’s theorem, there exists o € Aut(Z,) with order g. We may now
define a homomorphism ¢ : Z, — Aut(Z,) by associating 1 € Z, to a. The homomorphism ¢
is not trivial, because « is not the identity on Z,. Therefore, from Proposition C.3, the external
semidirect product Z, x4 Z, is not direct, hence not abelian; its order is clearly pq.

Now let us suppose that p # 1(mod ¢) and that G is a group of order pq. Let P (resp. Q)
be a Sylow p-subgroup (resp. g¢-subgroup) of G. We note s, (resp. s,) the number of such
subgroups. From the Sylow theorems we know that s,|¢ and s, = 1(mod p). As ¢ < p, we must
have s, = 1. As every conjugate gPg~', for g € G, is a Sylow p-subgroup, gPg~' = P, hence
P is a normal subgroup of G. Also, s4|p and s, = 1(mod ¢). From the first property s, =1 or
sq = p. However, if s, = p, then, from the second property, g|p — 1, which is false by hypothesis.
Hence, s = 1 and it follows, as in the case of P, that ) is normal in G. This means that G is
the direct product of the cyclic subgroups P and @ and so is abelian. O

There is a natural question which now arises: Can there be nonisomorphic nonabelian groups
of order pq? In fact, this is not possible, as we will now see.

Proposition C.6 If p, q are prime numbers with ¢ < p and G, G’ are nonabelian groups of
order pq, then G is isomorphic to G'.

323



PROOF Let P (resp. @) a Sylow p-subgroup (resp. g-subgroup) of G and P’, Q' the corresponding
subgroups of G’. These four subgroups are cyclic, so we may write

P=() Q=@ FP=() Q=)

The relation (a) N (b) = {e} implies that the cardinal of (a)(b) is pq. Consequently G = (a)(b).
In the same way, G' = (a)(3).

From the proof of Proposition C.5 we have P <1G (resp. P’ <1G’) and there exists r € Z such
that bab~! = a” (resp. s € Z such that 3aB~! = a®). Now, using Lemma C.1, we have

W=e=0blab "=0a" = a=0a" = e=0a"""! = r? = 1(mod p).

An analogous calculation shows that s = 1(mod p). The order of s (mod p) cannot be 1, because
G’ are not abelian. It follows that the order of s is ¢. (A similar argument shows that the order
of r (mod p) is ¢. Now let us consider the equation

X?=1 (mod p). (C.3)

The solutions are of the form s/, with j = 1,...,¢ — 1. (If s* = s' (mod p), with k < I, then
s'=% =1 (mod p), which implies that k —I = 0, so the solutions are distinctes.) As r is a solution
of the equation (C.3), there is a j € {1,...,q — 1} such that r = s* (mod p). We notice that
j # 1, because G is not abelian. We have

i j
Flag™ =a = a,

because of = e. If :_ﬁj, then B_is a generator of @’. Finally, we have G = (a,b), with
bab=! = a" and G’ = (a, B), with faf~! = a”. We define a mapping ¢ from G into G’ by

o) =a and  o(b) =7

and extending it in a natural way to G. Using Lemma C.1, we see that ¢ is an isomorphism. O

We can now summarize the preceding work:

Theorem C.2 If p and q are prime numbers, with ¢ < p, and G is a group of order pq, then
either

e p#£1 (modq) and G is cyclic, or

e p=1 (modq) and G is either cyclic or nonabelian and isomorphic to the semidirect product
Z,, x4 Zy defined in Proposition C.5.

PROOF From Proposition C.5, if p # 1 (mod ¢), then G is abelian and it follows that G has an
element of order pq and so is cyclic. On the other hand, if p = 1 (mod ¢), then G may be abelian
or nonabelian. In the first case G has an element of order pg and so is cyclic. In the second case,
from Proposition C.5, we know that there exists a nonabelian group of order pg. However, from
Proposition C.6, all groups of order pg are isomorphic, hence G is isomorphic to the semidirect
product Z, x4 Z, defined in Proposition C.5. m|

Remark Given that all nonabelian groups of order pq, with ¢ < p, are isomorphic, we often
write Zy, X Zg4 for Z,, x4 Z,,.
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Appendix D

Nonabelian groups of order 8

We aim to identify the nonabelian groups with order 8. If GG is such a group and has an element x
of order 8, then G is cyclic, so abelian. On the other hand, if all elements other than the identity
e have order 2, then x=! = z, for all x € G and it follows that G is abelian. Now suppose that
G has an element x with order 4 and let

H = (z) = {e,z, 2% 2%}.

We take y ¢ H. Then Hy # H and G = H U Hy. Suppose that there is an element y' € G\ H
with o(y’) = 2. To simplify the notation, let us write y for y/. We claim that yz # x%y. If so,
then

yrly = yaay = 22yzy = 222%yy = 2ty® = ee = e,

then
w:exzyzx:yyx:yxzy:e,

which is impossible. Hence yz # 22y, as claimed. There are two other possibilities, namely
yx = 2y or yr = x>y. In the first case G is abelian, so let us consider the second. Then we have
G = (z,y), o(x) =4, o(y) = 2 and

Yyry = x?’yy =z3 =271
Therefore G is isomorphic to Dg (and nonabelian).

Now let us suppose that every element of G\ H has order 4 and let y € G\ H. As o(y) = 4,
we have o(y?) = 2 and so y? € H. The only element of order 2 in H is 22, so y? = x2. We claim

that yx # xy. If this is the case, then

(23y)? = adyady = 252 = 2%y = 2%2? = 2% = ¢,

which implies that o(x3y) # 4, because z3y ¢ H. This is a contradiction and the claim is
established.
If yoz = 22y, then
yo = ayy’y =y’ = v =y,
which is impossible, because o(x) = 4 and o(y?) = 2. The remaining possibility is yzr = 23y:

yr =23y = yry ' =% =27 h
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Thus G is isomorphic to the quatornian group @Jg. To this more clearly, if we set
i=z j=y k=uy,

then we obtain
iP=j =K.

Writing —1 for this common value and then abbreviating (—1)u to —u, then we have
ij=—ji=k jk=-kj=i ki = —ik =j.

We have a nonabelian group of 8 elements with the required relations. This is called the quator-
nian group and we note it Qg.

Dg as a Galois group

Let
f(X)=-2+X"e Z[X].

Using the Eisenstein criterion it is easy to see that f is irreducible over Q. The roots of f in C
are £v/2, +i+v/2 and the splitting field of f in C may be written £ = Q(i, v/2). As [E: Q] =8,
the cardinal of the Galois group of f is 8. Consider the automorphism p € G = Gal(E/Q)
such that p(i) = i and p(+v/2) = iv/2. The existence of such an automorphism is assured by
Proposition 2.3 and Theorem 2.2. Now p(i)? = i and

PA(V2) = p(iV/2) = i(iV/2) = — V2,

therefore p*(v/2) = v/2. Hence o(p) = 4.
Now let 0 € G be complex conjugation. Then

cop(V2) =o(i¥/2) = —i¥2  and  poo(V2) = p(V2) = iV2,

so p and o do not commute. Thus G is not abelian. As o(p?) = 2, G has at least two elements
with order 2. This means that G is not isomorphic to Qg, which has a unique element of order
2. Hence G is isomorphic to Dg.
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Appendix E

Free abelian groups and free
modules

Free abelian groups

In this appendix, as is usual for abelian groups, we will use the additive notation. A group
G is a free abelian group if G = {0} or G is isomorphic to a direct sum, not necessarily finite, of
additive groups Z, i.e.,
G~ @icrl.

(We recall that @;c;Z is the collection of sets (n;);er, with n; € Z, and only a finite number of
n; NONZero. )

If G is a nontrivial abelian group, i.e., G # {0}, then we say that a subset B of G is a basis, if

e 3 generates G, i.e., any element x € G can be written x = nyxy + ... + ngxi, where the
r; € B and the n; € Z;

e if, for x1,...,2r, € Band ny,...,n, € Z, we have niz1 + ... +ngxr =0, then ny = --- =
nkZO.

(We often refer to a basis as an integral basis ).

Free abelian groups are precisely those abelian groups having a basis. More precisely, we
have:

Theorem E.1 A nontrivial abelian group G has a basis if and only if G is a free abelian group.

PROOF Suppose that G has a basis B. Then the mapping

[ ®eeBZ — G, (nyg)zen — Z NgT
z€EB

is an isomorphism.
Now suppose that we have an isomorphism f : ®;c;Z — G. For j € I, let us set §; =

(ni)ier € ®ic1Z, where
1 ifi=j,
n; = .
0 otherwise.

327



Then {f(0;)};er is a basis of G. O

We now consider bases of free abelian groups in more detail. We begin with an elementary
lemma.

Lemma E.1 Let {G;}icr be a collection of abelian groups and H; a subgroup of G;, for each
i€1. Then
©ierGi/ Gier Hi ~ ©ier(Gi/H;).

PROOF For x = (xi)ieI + BiciH;, let us set
f(@) = (zi + Hi)ier-
Then f(z) € ®;e1(G;/H;) and f is an isomorphism. O

In order to prove the next theorem we will need the following elementary result from set
theory.

Proposition E.1 If X is an infinite set and Pyin(X) the collection of finite sets in X, then the
cardinal of X and that of Py (X) are equal.

Theorem E.2 [IfG is a nontrivial free abelian group, then all bases of G have the same cardinal.
PROOF Let B and B’ be two bases of the free abelian group G. Then we have isomorphisms
f:G— DyepZ and f:G— ®yenZ.
Let us consider 2G = {2a : a € G}. 2G is a subgroup of G. From Lemma E.1,
G/2G ~ (yeBZ)/2(DrepZ) ~ GrepZ/2Z.

In the same way
G/2G ~ Gyep Z/2Z,

so we have the relation
@IGBZ/QZ =~ @yGB/Z/2Z. (E].)

Case 1: |B|=m < oo, |B'|=n < oco.
Using equation (E.1), we have

2" = | ®ue L/2Z| = | ®yep Z/2Z] = 2",
therefore m = n.
Case 2 : |B| < o0, |B'| = 0.

As in the first case, we have
@TGBZ/2Z >~ ®IEB’Z/2Z,

which is impossible, because ®,cpZ/2Z is finite and ®,cpZ/2Z infinite.

Case 3: |B| = o0, |B'| = 0.
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The mapping ¢ of Py (B) into @,epZ/2Z, where ¢(S) = (ny)zen, with n, = 1 if and only if
x € S, is a bijection. We define a bijection ¢’ of Py;,(B’) onto @yep Z/2Z in the same way.
From equation (E.1), we obtain a bijection v from Py, (B) onto Py (B'), so these two sets have
the same cardinality. Applying Proposition E.1, we obtain |B| = |B’|. a

If G is a nontrivial free abelian group, then the rank of G is the cardinal of a basis of G; if
G = {0}, then the rank is 0. For this rank we write rk G.

We now consider subgroups of free abelian groups. We need to some preliminary work.

Lemma E.2 If G and H are groups and f : G — H, g : H — G homomorphisms such that
fg =idg, then
G~ H® Kerf.

PROOF Let G’ = g(H). If g(z1) = g(x2), then fg(x1) = fg(xs), which implies that z; = o,
because fg = idy. Hence H is isomorphic to G’. Suppose now that y € G’ NKer f. There exists
x € H such that g(z) = y, because y € G'. As y € Ker f, f(y) = en, the identity of H, hence
fo(z) =en. As fg =idy, © = ey and it follows that y = g(ey) = eq, the identity of G. Thus
G'NKer f = eg. We now show that G = G’ 4+ Ker f. Let y € G and set y' = gf(y). Then

FW ) = W) fy) = fafw) " fly) =en

and so y' "'y € Ker f. Thus y is the product of an element in G’ and an element in Ker f. We

have
G~G @Kerf~HaKer f,

as stated. O

Proposition E.2 IfG and H are abelian groups, with H free, and f : G — H an epimorphism,
then
G~ H® Kerf.

PROOF We take a basis B of H. As f is surjective, for every x € B, there exists an element
Yz € G such that f(y,) = . We define a homomorphism g : H — G by setting g(z) = ys, for
all z € B. Then fg(x) =z, for all x € B and so fg = idy. From Lemma E.2, G ~ H®Ker f. O

Now we are in a position to prove an important result concerning subgroups of free abelian
groups of finite rank.

Theorem E.3 Let G be a free abelian group of finite rank n and H a subgroup of G. Then H
is a free abelian group and
rkH < rkG.

We may suppose that G = Z"™. We will prove the result by induction on n. If n=1and H C Z,
then H = kZ, for some k € N. Therefore H =0 or H >~ Z, so the statement is true for n = 1.
Now suppose that the result is true for n and let H C Z™+!. The mapping

1
FZ" = Z (my, .. M) Mg
is a homomorphism and

Ker f = {(m1,...,mp,0):m; € Z} ~Z".
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Clearly f restricted to H is an epimorphism onto its image. As Im f},, C Z, from what we have
seen for n =1, Im f|,, is a free abelian group, therefore, from Proposition E.2,

H ~Tm f,, ®Ker f,,.

We notice that Ker f|,, is a subgroup of Ker f and recall that Ker f ~ Z", hence, from the
induction hypothesis, Ker f|,, is a free abelian group and rk < n. It follows that H is a free
abelian group and rk H < 1+ n. By induction the result is true for all n € N. O

Exercise E.1 Show that a free abelian group G may have a subgroup H strictly included in G
with the same rank.

If G is a nontrivial free abelian group and H a nontrivial subgroup, then G and H have bases.
We may find bases of G and H, which have a special relation to each other.

Theorem E.4 If H is a nontrivial subgroup of rank r of a free abelian group G of rank n, then
G has a basis (ey,...,e,) for which there exist integers dy,...,d, € N* such that d;|d;y1, for
1<i<r, and (die,...,dre.) is a basis of H.

PROOF We will prove the result by an induction on n. For n = 1, the statement is evident. Now
take n > 1 and suppose that the result is true for m < n. If (u;)?; is a basis of G, then the
elements u € H are expressions of the form Z?:l n;u;, with the n; € Z. If we consider all such
expressions, then there is a coefficient of minimal value in N*. For different bases this minimal
value could be different. We take a basis (v;)}—; for which this minimal value is a minimum.
We may suppose that this is the coefficient of v; in some expression and we write I; for this
coefficient. We fix v € H with

n
V= llvl -+ Zai'l}i.
i=2
We now divide each a; by I; to obtain
a; = qily +r;, 0<r <l
We have

n n
v=1I(v + Z(Iﬂ)z’) + Zﬁ'vio
i=2 i=2

There is no difficulty in seeing that (v1 + Y ;5 q;vi, V2, . .., vy) is a basis of G. As [; is minimal,
r; = 0, for all . Noting wi; = v + Z?:z qivi, we have v = lyw, € H.

Now let us note Hy the collection of elements of H whose coefficient of w; in the basis
(w1, va,...,v,) 18 0. Hy is a subgroup of H and HyNZv = {0}. In fact, H = Ho & Zv. To show
this it remains to prove that H = Hy + Zv. Let h = bywy + E?:z b;v; € H. Dividing by by [y,
we obtain

by =mily +51, 0<s1<ly,

and
h—mv = (b1w1 + Zbivi) - (m1l1w1)
i=2
= (b1 —mily)ws + Z biv;
i=2

n
= 51w1+2bwi € H.

=2
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As [; is minimal, s; = 0, which implies that h — myv € Hy. It follows that H = Hy + Zv. We
have shown that H = Hy @ Zv.

Now, Hy is included in the subgroup Gy = ®},Zv; of G. From the induction hypothesis, Gg
has a basis (ws, ..., w,) and there are integers do, ...,d, € N* such that d;|d;1, for 2 <i < r
and (dowa, . ..,d,w,) is a basis of Hy. It is clear that (lywy, dows,...,d,w,) is a basis of H and
(wy,...,wy) a basis of G. . To finish, we only need to show that l1|ds. We divide dy by I;:

d2:all+t, 0<t <y,

and

liwy + dowy = ll(wl + awg) +twy € H.
As (w1 + awa,wa, ..., wy,) is a basis of G, from the minimality of I;, we must have ¢t = 0, which
implies that Iy |ds. O

Free modules

Although we have already seen free modules, we first recall the definition. We define free
modules over rings in much the same way as we define free groups. Indeed, a free group may be
considered as a free Z-module.

Let R be a commutative ring and M an R-module. We say that a module M over R is free
if it has a basis, i.e., a subset U with the following properties:

e U is a generating set: every element m € M can be expressed in the form
m=T7riul + -+ T,
with r; € R and u; € U,
e U is an independant set:

T1U1+"'+r5us:O:>r’i:0 V1.

Theorem E.5 Any two bases of a free module M over a commutative ring R have the same
cardinality.

PROOF Let M be a free module over the ring R and I a maximal ideal of R. Then F = R/I
is a field. We note IM the collection of all finite sums of the form Zzl a;x;, with a; € I and
xz; € M. IM is a submodule of M. We now set V = M/IM and define an addition on V' by

(a+IM)+ (b+IM)=(a+b)+IM.
We also define a scalar multiplication by
(r+D(a+IM)=ra+IM.

Both these operations are well-defined and it is easy to check that V', with these operations, is
a vector space over F.

Suppose that B = {z;} is a basis of M and let us note B = {z;}, where z; = x; + IM.
We claim that B is a basis of V. As B is a generating set of M, B is a generating set of V.
If 7 a;z; = 0, with @, = a; + I and a; € R, then Y " a;x; € IM. Hence there exist
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bi,...,b, € I such that Y ;" a;x; = > bjz;. As B is a basis of M, for each 4, there is a b;
with a; = bj, so a; € I and it follows that a; = 0 in F. We have shown that the z; form an
independant set and therefore a basis of V' over F. As all bases of a vector space have the same
cardinality, all bases of the free module M have the same cardinality. O

The common cardinality of bases of a free R-module M is referred to as to as its rank .

Remark It is well-known that all bases of a finite-dimensional vector space have the same
cardinality. This is also the case for an infinite-dimensional vector space. Let B = {u;};c; and
B' = {v,},cs be bases of the infinite-dimensional vector space V over the field F. Each z; lies
in the span of a finite set {y;},cs, of B'. We claim that J = Uj;crJ;. Clearly UjerJ; C J. If
UierJs # J, then the span of the z; is contained in the span of the y; such that j is contained in
at least one J;. However, the span of the x; is V, so a subset of B’ spans V, which is impossible,
because B’ is a basis of V' and hence a minimal spanning set. It follows that J = U;erJ;, as
claimed. Therefore
] = | Uier B < 311 < 1IN = 1],
iel

because the product of a pair of cardinals is equal to their maximum, if one of them is infinite.
To show that |I| < |.J|, we use an analogous argument. Hence all bases of an infinite-dimensional
vector space have the same cardinality.

We know that if V' is a vector space over a field F' and the dimension of V' is n < oo, then
there can be no independant subset of V' with more than n elements. We have an analogous
result for free modules.

Theorem E.6 If M is a free module of rank n < oo over a commutative ring R, then any
independant subset of M is composed of at most n elements.

PROOF Let {by,...,by,} be an independant subset of M. The mapping
¢:R™ — M,(r1,...,7m) —> Zmbi
i=1

is a monomorphism of R-modules. Hence there exists a monomorphism of R-modules ¢ from
R™ into R™. Now let I be a maximal ideal of R and IR"™ the collection of sums of the form
Zle a;x;, with a; € I and z; € R™. The set IR" is a submodule of R". We define IR™ in an
analogous fashion. The mapping

v:R™/(IR") — R"/(IR"),x + IR™ — ¢(z) + IR"
is a well-defined monomorphism of R-modules. In addition, the mapping
I: (R/I)m —)Rm/(IRm)’(’/‘l —|—I,...,’/‘m—|—I) — (Tl""7rm)+1Rm

is a well-defined isomorphism of R-modules. In the same way, (R/I)™ is isomorphic, as an R-
module, to R"/(IR"™). Therefore we have an R-module monomorphism « from (R/I)™ into
(R/I)". However, (R/I)™ and (R/I)™ are vector spaces over the field R/I. We claim that « is
an R/I-linear mapping. We notice that, for € (R/I)™ (or z € (R/I)"), (r + I)z = rz and so
a((r+ I)x) is defined. Then

a((r+1z) =alrz) =ra(z) = (r + Ia(z)

and it follows that « is R/I-linear. As « is a linear monomorphism, we have m < n. i
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Exercise E.2 In the proof of Theorem E.6 we stated that the mapping ¥ is a monomorphism.
Show that this is indeed the case.

We may extend this result to R-modules of infinite rank.

Theorem E.7 If M is a free module, with infinite basis B, over a commutative ring R, and A
an independant subset of M, then |A| < |B|.

PROOF The elements of A are finite linear combinations of elements of B. For z € A, we let f(x)
be the finite subset of B composed of the elements of B in the linear combination of z. We thus
obtain a mapping of A into Py, (B), the collection of finite subsets of B. If E € Py;,(B) has n
elements and (F) be the R-module generated by E, then, from Theorem E.6, any independant
subset of (E) has at most n elements. As f~1(E) C (E) and is a set composed of independant
elements, we have |f~(E)| < n. Thus

A= S 1wl < s,

n>0 E€Py;y, (B) n>0
|El=n

because the cardinal of the collection of finite subsets of a given infinite set is the cardinal of the
set itself. We obtain
Al <|B] Y n=|B|IN"|,
n>0
where we have again used the result concerning finite subsets of a given infinite set. To finish,
we observe that, for two infinite cardinals X and Y, we have

[ X[Y| = max(] X[, [Y])

and so we obtain
Al < (8],

as required. O

We may use Theorem E.6 to prove another result concerning free modules.

Theorem E.8 Let R C S be integral domains, with respective fraction fields K and L. If S is
a free R-module of rank n < oo, then [K : L] = n.

PROOF Let X = {z1,...,2,,} be an independant subset of the K-vector space L. Each z; can be
written in the form %4, with (u;,v;) € S x S*. If we set v = vy - - - vyy,, then the set {sz1,...,57,,}
is independant in the R-module S. From Theorem E.6, we have m < n. It follows that L is a
finite extension of K and [K : L] < n.

Now let B be a basis of the R-module S. Clearly B is an independant subset of the K-vector
space L, so n < [K : L]. Therefore [K : L] = n. O

Corollary E.1 Under the conditions of Theorem E.8, if B is a basis of the free R-module S,
then B is a basis of the K-vector space L.

PROOF If B is a basis of the free R-module S, then B is an independant subset of the K-vector
space L. From Theorem E.8, we have rk S = [K : L], so B is a basis of L. O

Torsion and free modules
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Our aim here is to prove a result giving us a condition for a module to be free. However,
before turning to modules, we will recall the Smith normal form of a matrix. For a ring R we
will write M,,, ,(R) for the collection of m x n matrices with coefficients in R. If m = n, i.e., in
the case where the matrices are square matrices, we will use the notation M,,(R). We have the
following result:

If R is a principal ideal domain and A € M,, ,(R), then there exist invertible matrices
P e M,,(R) and Q € M, (R) such that

D X
pag=n-[0 %]
where D = diag (dy,...,d,) is a diagonal matrix, with nonzero entries d; such that d;|d;11, for
t=1,...,r—1, and X, Y and Z are matrices of zeros of respective dimensions r x (n — r),

(m—r)xrand r x (n—r). The d; are unique up to multiplication by an invertible element of
R. Such a matrix B is called a Smith normal form of the matrix A. (A good introduction to the
Smith normal form may be found in [5].)

We say that a module M over a ring R is finitely generated if there are mq,...,ms € M such
that every element m € M can be expressed in at least one way as

m=7rimi+---+7rsMg,
with the r; € R. The module M is free if it has a basis, i.e., a set U which has the properties:

e U is a generating set: every element m € M can be expressed as
m=riu; + -+ rsus,
with the u; € U and the r; € R;

e U is an independant set:

rur+ ... +rsus =0=1r; =0, for alli.

We now consider modules over integral domains. If R is an integral domain and M an R-
module, then an element u € M is a torsion element if there exists r € R* such that ru = 0.
The torsion elements form a submodule of M, which we note tM. If tM = 0, then we say that
M is torsion-free. The following result relates finitely generated, torsion-free and free modules.

Proposition E.3 Let R be principal ideal domain and M a finitely generated R-module. Then
M has a finite basis if and only if M is torsion-free.

PROOF Suppose that M has a finite basis U = (u1,...,us). If m =rjus + -+ 4+ ryus # 0, then
there is at least one r; which is nonzero. If d € R* and dm = 0, then

(dri)uy + -+ (drj)u; + -+ (drs)us=0=dry=---=dr; =---=drs =0,

because U is a basis. As R is an integral domain and r; # 0, d = 0, which is a contradiction.
Hence, M is torsion-free.

We now begin with the hypothesis that M is torsion-free. Let U = (uq, ..., us) be a generating
set of M. We use an induction on s to show that M is free. If s =1, then M = Ru, so {u} is a
generating set. If ru = 0 and r # 0, then u € tM. As M is torsion-free, this si impossible, hence
U = (u) is a basis. Now suppose that s > 1 and that the result is true for up to s — 1 elements
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in a generating set. Let r1,...,rs € R, not all 0, be such that Zle riu; = 0. Let C be the 1 x s
matrix [r;]. From our discussion of the Smith normal form, we know that there are invertible
matrices, P € M;(R) and Q € M (R), such that

Plry...1)Q =[d0...0].
If P = [p], then p is invertible and we obtain
[r1...75)Q =[d" 0...0],
where d’ = p~td. If we set V = Q7 1U, then V = (v1,...,vs) clearly generates M. Also,
O=[ri...7sJU=[r1...75]QV =[d' 0...0]V = d'v; = 0.

As d’ # 0 and M is torsion-free, v1 = 0. Hence, the set (vy,...,vs) generates M. By the
induction hypothesis, M has a finite basis. This finishes the proof. O
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Appendix F

The Chinese remainder theorem

We give two versions of the Chinese remainder theorem, one as a corollary of the other. We
recall that two ideals I and J in a commutative ring R are said to be coprime if I + J = R.

Theorem F.1 Let Iy,..., I, be ideals in a commutative ring A which are coprime in pairs, i.e.,
ILi+1; =Rifi#j. Ifa,...,an € R, then there exists a solution o € R to the system of
congruences

x = a1 (modIy)

xr = an (modl,).
Any two solutions are congruent modulo Iy N---NI,.

PROOF We fix ¢ and take j # i. As I; +I; = R, there exist b; € I;, ¢; € I; such that b; +c¢; = 1.
Then

H(bj +¢)=1.

J#i
We now expand the left hand side of the equation to obtain x; + y; = 1, where z; is the sum of
the terms containing a b; and y; = Hj# ¢j. Then

yi =1 (mod ;) and y; =0 (mod I), j # i.

We now set
o= a1y1 + a2y2 + -+ apyn.

Clearly a has the required properties.

If 8 is another solution to the system of congruences, then 8 = a;(mod I;), for all 4. This is
equivalent to saying that 8 —a = 0(mod I;), for all 4, which in turn is equivalent to the statement
B—aeni I,ie., f=a(mod N, I;). O

Corollary F.1 Under the conditions of the theorem

R/(ﬂf:lfl) ~ R/Il X oo X R/In
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PROOF We define a mapping ¢ from R into []}_, R/I; by setting
ox)=(x+11,...,x+ I,).

It is not difficult to see that ¢ is a ring homomorphism. From Theorem F.1, we know that, if
(a1,...,an) € R™, then there exists an a € R such that a = a;(mod I;), for all 7. It follows that
the mapping ¢ is surjective. As Ker ¢ = Nj,I;, we have

R/(ﬁ?zllz) ~ R/Il X X R/In,

from the first isomorphism theorem for rings. m|

337



Appendix G

Lattices in euclidian space

A subgroup A of the additive group of R"™ is said to be discrete if there exists an open ball of
radius € > 0, centered on the origin, B(0,¢), such that B(0,¢) N A = {0}. If, in addition, the
span of A is R"™, then we say that A is a lattice in R™, or, more briefly, a lattice.

Example If V = {v,...,v,} is an independant set in R™, then the set
A:{UGR":v:Zawi,aiEZ} (G.1)
i=1

is a lattice. In the case where v; = e;, where (e;)"_; is the standard basis of R™, then we call
this lattice the standard integer lattice in R™ .

Bases of lattices

If {v1,..., vk} is an independant set in R™ such that the lattice A can be written
n
A={veR":v= Zaivi,ai €7},
i=1

then we say that (v;)7 is a basis of A. Our first task is to show that all lattices have a basis,
hence they are of the form (G.1).

Lemma G.1 Let A C R"™ be a lattice and by, ..., b, with k < n, be linearly independant. We
set L = span(by,...,b;). Then there exists a point v € A\ L which minimizes the distance to L.

PROOF Let A be the closed parallelepiped generated by b, ..., bg:

k
A:{ueanu:Zaibi,Ogaigl}.
i=1

A is a compact subset of R™. We claim that there there is a point v € A\ L which minimizes
the distance to A. To see this, we first choose a € A\ L and set p = dist (a, A). We note

A, ={u e R" : dist (u, A) < p}.
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As A, is closed and bounded, it is compact. If A, N A is infinite, then it contains a convergent
subsequence (x,) composed of distinct elements. By hypothesis, there is an open ball B(0,€)
such B(0,e)NA = {0}. As A is a subgroup of the additive group of R", x, —z; € A, when s # t,
S0 ||xs — x¢|| > e. This implies that the sequence (x;,) is not convergent and it follows that the
set A, N A is finite. Also, as a € A, N A, there are points in this set which are not in L. Hence
A,NA\ L # 0 and this set is finite. We may thus choose v € A, N A\ L which minimizes the
distance to A. Clearly, v minimizes the distance from A\ L to A, which establishes the claim.
Let w e A\ L and y € L. Then
k
y= Z Yibi,
i=1

with 7; € R. If we set

then z € A, hence w —z € A. Also, w—2¢ L. Ifw—2€ L,thenw=(w—2)+2€ L, a
contradiction.) Therefore w — z € A\ L. In addition,

k
y—z=Y (% [%l)bi € A,
i=1
therefore
dist (w,y) = dist (w — z,y — z) > dist (w — 2z, A) > dist (v, A) = dist (v, L)
and so v minimizes the distance from A\ L to L. a

We need another preliminary result.

Lemma G.2 Let A C R™ be a lattice and by,...,b, € A independant. We set Lo = {0} and
Ly, = span(by,...,by), fork=1,...,n. Then , fork =1,...,n, there exists uy, € (LyNA)\ Lip_1
which minimizes the distance from (Ly N A)\ Lg—1 to L_1.

PROOF Let ¢ be the linear isomorphism from Lj onto R* defined by
¢(O[1b1 + -4 Olkbk) = (al, ey Oék).

It is not difficult to see that ¢(Ly NA) is a lattice in R¥. From Lemma G.1 we know that there
is a point u € ¢(Lk NA) \ ¢(Lg—1) which minimizes the distance to ¢(Li_1). It follows that
¢~ (u) minimizes the distance from (Ly NA)\ Lg_1 to Lg_1. 0

We may now show that every lattice has a basis. We remark that any lattice A in R™, from
the definition of a lattice, must contain a set of n independant vectors. We may see this in the
following way: Each vector e; of the standard basis is a linear combination of a finite number
of elements of A. Taking all the elements of A in these linear combinations, we obtain a finite
generating set of R", from which we may extract a minimum generating set of R", i.e., a basis.

Notation We will write {«} for the fractional part of the number z € R, i.e., {z} =z — |z].

Theorem G.1 Let A C R"™ be a lattice and by, ..., b, C A independant. We define Lo, L1, ..., Ly,
an in Lemma G.2. From the same lemma, we know that there exists ug, € (L NA)\ Lg—1 mini-
mizing the distance to Li_1. Then the vecteurs uq, ..., u, form a basis of the lattice A.
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PROOF Let us set Ay, = AN L. We will show by induction that the set {uq,...,ux} is a Z-basis
of Ay, i.e., an independant set such that

k
Ay ={ve R”:v:Zaiui, a; € Z}.
i=1
As A = A, this will be sufficient to prove the theorem.
For k = 1 we have

up = aqby,
for some a1 # 0 in R. If v € Ay, then
v = Bbla
for some 5 € R. We claim that yu = O% is an integer. If not, then 0 < {u} < 1. Setting

u) = v — |p]uy, we have, since v = puq,

uy = pur — [pfur = {ptur.
However, u} € Ay \ {0} and is closer to the origin than wu;, a contradiction. Thus O% € Z. It now
follows that

v = ﬂbl = ;1“1,

with o% € Z. So {u1} is a Z-basis of A;.
We now suppose that the result is true for £ — 1 and consider the case k. If

k
T = Z%‘bi € Ly,

i=1
then, since Lj_; is a vector space,
dist (z, Ly—1) = dist (yxbg, Lr—1) = |yx|dist (by, Lk, )-

Also,
k

up =Y aibi,

i=1
with aq,...,a; € R and ag # 0. If v € Ay, then

K
v="> Bibi,
=1

with 31,..., B € R. We claim that ;1 = (% is an integer. If this is not the case, then 0 < {u} < 1.
We set uj, = v — |p]ug. Then

u, = v — pug+ {ptuy
k ,B k—1 k—1
= Zﬂibz‘ + Brbr, — ai (Z a;b; + Oékbk> +{un} (Z a;b; + akbk)
i—1 kE\i=1 i—1
k-1 k—1
= ) Bibi— [p] > aibi + {u}obs
=1 =1
k-1
= > (B — L) ai)bi + {p}anby.
=1
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The element u) belongs to Ay \ Ly—1 and the distance from w) to Ly_; is that of {u}aubs.
However, the distance of {u}agby to Li_1 is that of {u}uy, which is strictly less than that of
uy, a contradiction. Hence p = Be ¢ 7, as claimed. Therefore v — pug € Ag_1. Applyinging the

(&2

induction hypothesis we obtain that v — puy is an integer linear combination of uy,...,ux—1 and
it follows that v is an integer linear combination of wq,...,ux. This finishes the induction step
and hence the proof. a

Corollary G.1 A lattice in R™ is a free abelian group of rank n.

Parallelepipeds

If A C R” is a lattice and u = (u;)]—; a basis of A, then the set

Hu:{v:Zaiui:()gai<1,}

i=1
is called the fundamental parallelepiped of the basis u. If the basis u is understood, then we

usually write II in place of II,,.

Proposition G.1 IfII is a fundamental parallelepiped of the lattice A, then, for each element
x € R™, there exist unique elements y € A and z € Il such that © =y + z.

PROOF Let us consider the fundamental parallelepiped IT = I1,, of the basis u. As u is a basis of
R"™, we can write x = Z?Zl a;uq, with a; € R. If we set

n

y= ZLO(,JU, and z= Z{ai}ui,

i=1
theny e A, zelland x =y + 2.
Suppose now that there two decompositions: x = y; + 21 = y2 + z2. Then

n

n
21 = E Q;u; and 29 = E Biug,
i=1

i=1

with 0 < a; < 1and 0 < gB; <1, for all o, ;. We obtain
n
N—-Yy2=2-2= Z%‘uu
i=1
with v; = 8; — ;. Clearly, || < 1. As y1 — y2 € A, we must have v; = 0, for all ~;, which

implies that y; = yo and z; = z5. O

Corollary G.2 Let A C R"™ be a lattice and I1 a fundamental parallelepiped of A. Then the
translates {y + I : y € A} cover R™ without overlapping.

PROOF From Proposition G.1, if x € R", then x = y + 2z, with y € A and z € II; hence = belongs
to the translate y + II. Therefore the translates cover R™. If z € (y; + II) N (y2 + II), then
T =1y + 21 = Y2 + 22, with z1, z5 € II. From the uniqueness of the decomposition of x, we have
y1 = Y2 (and z; = 23), so there can be no overlapping of translates. |
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We recall that the volume of a Lebesgue measurable set A in R"™ is defined by

vol A :/ xa(x)dz,

where x4 is the characteristic function of A. The next elementary result is important for what
follows.

Proposition G.2 Let A be a Lebesgue measurable set in R™ and T a linear automorphism of
R"™. Then
vol T(A) = | det T'|vol A.

PROOF Using the "change of variable" formula (see for example [20]), we have

/ Xa(x)de = / XaoT(x)|det T|dx = | det T X7-1(4)(7)dz.
R

Hence
vol A = |det T|vol T~*(A) = vol T(A) = | det T'|vol A,

as required. 0O
Corollary G.3 If X C R" is Lebesgue measurable and r > 0, then
vol rX = r"vol X.
We now introduce a result which will enable us to define an important invariant of a lattice.

Theorem G.2 Let u = (u;)!; and v = (v;)}_; be bases of the lattice A C R™ and I1,,, II,, the
corresponding fundamental parallelepipeds. Then

vol II,, = vol I1,,.
PROOF Let T be the linear automorphism of R™ defined by
T(ul) = U4,

for i = 1,...,n. The matrix of T in the basis u is the matrix representation A of the basis v
in terms of the basis u. The coefficients are integers, since each v; € A and w is a basis of A.
Similarly, the matrix representation B of the basis u in terms of the basis v has only integer
coefficients. As AB = BA = I,,, we have |det T| = 1. Therefore, from Proposition G.2,

vol T(11,,) = vol IL,.

As T(11,) = I1,,, we have the result. O

The volume of a fundamental parallelepiped of a lattice is called the determinant of the lattice.
For the determinant of the lattice A, we write det A. If u = (u;)}, is a basis of A, e = (e;)7;
the standard basis of R™ and T the linear automorphism defined by

T(e;) = uy,
for ¢ =1,...,n, then from Proposition G.2 we have

vol IT,, = vol T(IL.) = | det T'|vol IL.
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As vol II, = 1 and detT is the determinant of the matrix U whose columns are the vectors
UL,y ..., Uy, We have
det A = |det U].

This justifies the use of the term det A for the volume of a fundamental parallelepiped II,,.

Minkowski’s convex body theorem

In order to prove Minkowski’s theorem we will prove another result, namely Blichfeldt’s
theorem.

Theorem G.3 (Blichfeldt) Let A be a lattice in R™ and X a Lebesgue measurable set in R™
such that vol X > det A. Then there are distinct points x1,x2 € X such that x1 — xo € A.

PROOF Let II be a fundamental parallelepiped of A. For each y € A, we set
Xy =(I+y)nX)-
Then X, +y = (Il +y) N X. From Corollary G.2 these sets form a partition of X. Therefore

Zvol (Xy+y)=vol X >det A =vol Il
yeA

We now set

=) xx, (@)

yEA
for all z € R™. Then

Z/XX iz = 3 vol (X, N1 = 3 vol (X, AT+ ),
yEA yeEA yEA
by the invariance of Lebesgue measure with repect to translation. Consequently,
/f da:—Zvol H—I—y Zvol v +y) > volIL
yeEA yeEA
From this we deduce that

/H(f(x) —1)dz >0

and so f(x) > 1 for some z € II. As f(z) € N U {+o0}, we must have f(z) > 2, which implies
that there exist distinct values elements yi1,y2 € A such that X,, N X,, # 0. Let z € X, N X,,
Then

z+ypy =21 € X and Z24+ys =x9 € X,

which implies that z1 — xo = y1 —y2 € A. O
We may now prove Minkowski’s convex body theorem.

Theorem G.4 (Minkowski) Let A C R™ be a lattice and A a convex subset of R™, with vol A >
2" det A. In addition suppose that A is centrally symmetric. Then A contains a nonzero lattice
point. If A is compact, then it is sufficient to suppose that vol A > 2™ det A.
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PROOF We set X = %A. From Corollary G.3,

1
vol X = 2—nvol A > det A.

By Theorem G.4 there exist distinct elements z1,z2 € X such that x = 1 — 2 € A. Now,
2x1,2x9 € A and, as A is symmetric about the origin, —2z5 € A. Since A is convex, we have
1 1
T=x1 — Ty = 5(21‘1) + 5(—2:@) €A
Now we consider the case where A is compact and vol A = 2" det A. Let p > 1. Then, by
Corollary G.3,
vol pA = p"vol A > 2™ det A,

so there is a nonzero lattice point z, in pA. Now let (p,) be a sequence in (1, 400) converging to
1. Then ( ”) is a sequence in A. As A is compact, the sequence has a convergent subsequence
(%2 L m), If z = lim p"’" then z = limx, . For m,n sufficiently large, x,  —x,, =0, because A is
a discrete group. This implies that z = z,,, for some m, hence x € A. Also, as x,,, # 0, z # 0.
O

Sublattices

If A,Ag C R"™ are lattices and Ay C A, then we say that Ay is a sublattice of A. As Ag is a
subgroup of A, we may consider the index of Ag in A.

Proposition G.3 The index of Ay in A, [A: Ag], is finite.

PROOF We fix the fundamental parallelepipeds IT and IIy of A and Ag respectively. Let x + Ag
be a coset in the quotient group A/Ag. From Proposition G.1 there is a unique decomposition
r=1y+z withy € Ag and z € TIj. As z,y € A, we have z € A. It follows that z is a
representative of the coset x + Ag: each coset has a representative in A N1ly. As A is a discrete
group and Il a compact set, the set ANl is finite, there can only be a finite number of cosets.O

In fact, we can determine [A : Ag] from the determinants of the two lattices. We claim that,
if x1 + Ay = xzo + Ag, with x1,29 € A NIly, then 1 = z5. First we notice that x1 — z9 € A,
because both z1,29 € A. If v = (v1,...,v,) is a basis of Ag, then the coefficients of z; and x4
in this basis have values in the interval [0, 1), which implies that the coefficients of 1 — x5 have
values in the interval (—1,1). Since z1 — 22 € Ay, these coefficients are integers, hence the only
possible value is 0 and so z1 = z9, as claimed. It follows that there are exactly |A N IIy| cosets

in A/AO
The lattice A is a free abelian group of rank n and the sublattice Aq is also a free abelian
group of the same rank. From Theorem E.4, there exists a basis (u1, ..., u,) of A for which there

exist integers dy,...,d, € N* such that (dyuq,...,d,uy) is a basis of Ag. If z € AN Ty, then
T =aiur + -+ aply = bidiug + -+ bpdpug,

where a; € Z and 0 < b; < 1. As ai,d- € Z, we have b; = 9- € Q. Given that 0 < b; < 1,
we have d; possibilities for b;, namely 0, + FTERRRE d'dfl. It follows that 0,1,...,d; — 1 are the only
possibilities for a;. Therefore for a there are dy - - - d,, possibilities, i.e., |A/Ag| = dy - - - d.

We now consider the automorphism 7" of R™ defined by

T(u;) = du;,
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for i = 1,...,n. We now suppose that II is the fundamental parallalepiped of A corresponding
to the basis (u;) and IIy that of Ay corresponding to the basis (d;ju;). As |detT| = dy -+ dn,
from Proposition G.2 we have

vol HO = d1 cee ngOI II.

We have shown that

Theorem G.5
det Ao
det A~
We defined a lattice in R™ at the beginning of this appendix as a discrete subgroup whose
span is R™. We now consider the case where we do not have a condition on the span.

[A: Ao =

Theorem G.6 If H is a discrete, nontrivial subgroup of R™, then H is isomorphic to a lattice
in R", where r is the dimension of the vector subspace generated by H.

PROOF Let e1, ..., e, € H be a maximal linearly independant subset in H and T" the fundamental
domain defined by the e;, i.e.,

T:{IERnSI:Zai€i7O§ai<1}'

i=1
The closure of T is

”
T:{mGR":x:Zaiei, 0<a; <1}
i=1

If z € H, then x = Y __, bie;, with b; € R. For an integer j we set z; = jo — > ._, |jb;e;.
We claim that x; € HNT. Asz; = > ., (jbi — [jbi])e; and 0 < jb; — [jb;| < 1, we have z; € T.
Also, H is a subgroup of R", so |jb;]e; € H, for all 4, and so their sum is also in H. Clearly
jx € H, hence z; € H. This proves the claim.

If we take j = 1, then we have 1 =z — ;| [b;le; € HNT. As H is discrete HN T is a
finite set, because T is compact. It follows that H N T is also finite, so there exist only a finite
number of choices for z; and it follows that H is generated by the distinct values of the x; and
the e;. (Any element y € H is the translation of an element x € H N'T by a sum of the form
w=Y._,a;e; with a; € Z, which belongs to H.)

Our next step is to show that the b; are rational. As there are only a finite number of distinct
elements in H N1 and all the z; belong to this set, there must be x; = z, with j # k. Then,
using the linear independance of the e;, we obtain

(j — k)b = [jbi] — |kbi],

for all 7, and it follows that the b; are rational.

Since the distinct values of x; are linear combinations of the e; with rational coefficients, H
is generated by a finite number of linear combinations of the e; with rational coefficients. If d is
the lcm of the denominators of these coefficients, then d # 0 and dH C Y., Ze;. Thus dH is a
subgroup of a free abelian group of rank r, hence is free of rank at most r. Given that dH ~ H,
H is free, and since H D Y_._, Ze;, the rank of H is at least r, and hence exactly r. Since H is
a free abelian group of rank r, it is isomorphic to the standard integer lattice Z" of R".

To conclude we need to show that r is equal to the dimension of the vector subspace generated
by H. Let us write S for this subspace and A for the subspace generated by the e;. It is sufficient
to show that S = A. In the previous part of the proof we showed that H is generated by a finite
number of linear combinations of the e; with rational coeflicients, thus S C A. However, S must
contain all linear combinations of the e;, hence A C S. Therefore S = A, as required. O
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Appendix H

Kronecker products of matrices

Let A be an m X n matrix and B a p X ¢ matrix over a commutative ring R. The Kronecker (or
tensor) product of A and B, written A ® B, is the mp X ng matrix defined as follows:
a11B e alnB
A@B=| : :
amiB ... amnB

In general, A® B # B ® A, because we do not have mp = nq. However, even if this is the case,
for example when both A and B are square matrices of the same dimension, it is not in general

true that A® B = B ® A. For example,

102 0
1 2] [1 0] |23 4 6
{3 4}‘8[2 3]3040
6 9 8 12
and
120 0
1 o] 1 2] 340 0
{2 3]@’[3 4}_2436
6 8 9 12

We are particularly interested in the case where R is a field F and A and B square matrices.
Then A ® B is an mn X mn matrix, with coefficients in F'.

It is interesting to notice what happens when A = I,,,. We have
I, ® B=diag(B...B),

i.e., I, ® B is a matrix with m blocks B on the diagonal and 0 elsewhere. We leave it to the
reader to determine the form of the matrix A ® I,,.

Let us write ¢;; for the column vector

t
(aliblj . alibnj agibij PN agibnj ce amiblj ce amiblj e amibnj) .
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We notice that the pairs of indices (k,1) in ax;b;; follow the order
(1,1),(1,2),...,(1,n),(2,1),...,(2,n),...,(m,1),..., (m,n).
We define a mapping
B:F™x F* — F™ (uw) — u®v,

where
UV = (UIV, -+, UTVpy URVT, « + 5 UDUpyy + « oy U V15« -« 3 Uy U )

The mapping B is clearly bilinear. Also, if (e;);2; (resp. (f;)}—;) is the standard basis of F'™
(resp. F™), then the products e; ® fj, for 1 <i<mand 1< j < n, form the standard basis of
F™™ Tt is not difficult to see that

(A® B)(e; ® f;) = c;j = Ae; @ Bfj.
Using the bilinearity of B we obtain
(A® B)(u®v) = Au ® Bw,
for every pair (u,v) € F™ x F™.

We have seen that in general A ® B # B ® A. However, if the matrices A and B are square
matrices, then A ® B and B ® A are conjugate, i.e., there exists an invertible mn x mn matrix
P such that

P(A® B)P"'=B® A.

To see this, let ¢ be the linear endomorphism defined on F™" by the matrix A ® B and the
ordered basis

Bl:(81®f[7~-~7el®fn7~-~7€m®fl>---;em®fn)-

The coordinates of ¢(e; ® f;) in this basis are the elements of the column vector ¢;j. Suppose
now that we order the basis elements differently to obtain the new ordered basis

B2 = (61®f17-~-aem®f1761®f27-"7em®f27--~761®fn7~-wem®fn)-
Then the coordinate vector of ¢(e; ® f;) in this ordered basis is
(ah—blj agiblj N amiblj aubgj e amiij . aubnj . amibm—)t

However, this is the column c’ij of the matrix B ® A. Hence the representation of the linear en-

domorphism ¢ in the bases By and Bs is B® A and it follows that A® B and B® A are conjugate.
We can now prove the main result of this appendix.
Theorem H.1 Let A € M, (F) and B € M, (F). Then
tr(A® B) = tr(A)tr(B) and det(A® B) =det(A)" det(B)™.

PROOF For the trace we have

tr (A & B) = Z Zaiibjj =
i=1 j—1 i

m n

Qi Z bjj =1tr (A)tr (B)
1 =1
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The determinant is more subtle. We claim that
AR B=(A®1,)(I, ® B).
In fact, for u € F™ and v € F™,
(AR L)In®B)(uv)=(A®I,)(u® Bv)=Au® Bv = (A® B)(u®v),
which proves the claim. Now, using the fact that A ® I,, and I,, ® A are conjugate, we obtain
det(A® B) = det(A ® I,,) det(I,, ® B) = det(I, @ A)det(I,, ® B) = det(A)" det(B)™,
as given in the statement of the theorem.

Corollary H.1 A ® B is invertible if and only if both A and B are invertible.
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Appendix 1

Infinite products

Let a1,as,... be an infinite sequence of nonzero complex numbers. We say that the infinite
product [], <, an converges if there is a number ~ such that the sequence ([];_, a;) converges to
~. An infinite product may converge to 0, even if all the elements a,, are nonzero. For example, it
is sufficient to take a,, = %7 for all n. However, we are interested in the case where 7y is nonzero.

Lemma I.1 The infinite product [], ~, an converges to a nonzero element v if and only if, for
all € > 0, there is an n(e) such that

|@nani1 - anyr — 1] <€
for alln > n(e) and k > 0.

PROOF Suppose that [], ., a, converges to v # 0 and let ¢ > 0. Choose a positive number

d < || such that Wz‘fé < €. There exists ny with the property

\a1~~~aif’y| <5,
for all 4 > ny. In particular,
lay - arqivk — a1 a1g| <layarpie — Y+ [y — a1 anga] <26,

for all : > ny and k¥’ > 1. Also,

a1 artipw — a1 iy = larcarl|arpier o @i — 1

= lar---a11i =y +|arvirr - @1pipr — 1
(vl = lar - ar4i —vDlar1+ivr -+ aripr — 1]
> (Il = d)lag+i - arpivwr — 1],

Y

and so, setting n =2 +4 and k = kK’ — 1, we obtain

|an"'an+k*1| < <€,

26
[ =0

for all n > 2 +mny; =n(e) and k > 0.
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We now consider the converse. Taking € = 3, we see that there exists n(3) > 1 such that

3 1
5 Z |aTL"'an+k| Z 57 (Il)
for alln > n(%) and k > 0. To simplify the notation, we set n(%) = ny. We consider the sequence

of partial products
no+n—1

Pn = H a;
i:’ﬂ,z

and let € > 0. Let n be sufficiently large so that ny +n > n(%). Then we have

|pn - pn-‘rk‘ = |an2 ot lOpg4n—1 T Gnpg vt an2+n+k—l|

3 2
= |an2 e ang—&-n—lHl — Qpotn " an2+n+k'—1| < 5 : 3 =€
where we have used the inequality (I.1). Thus the p, form a Cauchy sequence and hence con-
verge. The condition (I.1) shows that the limit is nonzero. i

Remark By Lemma I.1, if we take ¢ > 0 and n is sufficiently large, then |a,, — 1| < e. Hence if
the infinite product converges to a nonzero element, then lima, = 1. Therefore, if the infinite
product [],~;(1+ ay) converges, then we have lima,, = 0.

Definition The infinite product [], -, (1 + ay) is said to be absolutely convergent if the product
[1,>,(1+ |ay]) converges (necessarily to a nonzero element).

Lemma 1.2 The infinite product [ ], -, (1+ay) is absolutely convergent if and only if the infinite
sum Y. < an is absolutely convergent.

PROOF First we notice that the function f(z) = e®* — 2 — 1 is nonnegative for z > 0: f(0) =0
and f'(z) =e* —1> 0, for z > 0. Then

lar| + - +lan] < (1+]ar]) - (14 |an|)
< elatl ... glanl
plasl++lan|

Therefore the sums Y, |a;| are bounded if and only if the products [, (1+|a;|) are bounded
and the result follows. |

We conclude this appendix with a fundamental theorem.

Theorem 1.1 Suppose that the infinite product Hn21(1 + an) is absolutely convergent. Then
e a. the infinite product anl(l + ay) converges to a nonzero element;
e b. the infinite product Hn21(1 + ay) is convergent after any rearrangement of the terms;
e c. all such rearrangements yield the same limit.

PROOF a. From Lemma 1.2 the absolute convergence of the sum ) -, a, is equivalent to the
absolute convergence of the product [], <, (1+ay). Let € > 0. By Lemma I.1, for all n sufficiently
large and all k¥ > 0, we have B

[T+ fanl) - (L4 lantr]) = 1] <e.
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But

[(T+an) - (Lt aner) =1 < (1 |an]) - (14 [angr]) =1
[T+ fan]) - (1 + |angr]) = 1] <

and so, from Lemma I.1, the product [],-,(1+ a,) converges to a nonzero element.

(The first inequality merits an explanation. The expression (14 ay,) -+ (1 + an4x) — 1 is a sum
of monomials in ay, ..., a,1k, whose absolute value is bounded by the sum of the corresponding
monomials in |ay|,. .., |@n+k|, the value of which is (1 + |an|) -+ (1 + |antk]) — 1.)

b. Let 0 : N — N be a bijection, which is not the identity. The convergence of >~ -, |ay|
implies that of Y -, [ac(y)| s0, by Lemma 1.2, [],,~;(1 + |ag(n)|) is convergent. From part a.
we deduce that [], -, (14 ag(,)) is convergent. B

c. Forn>1wesetp, =(14a1) - (1+4+a,) and p,, = (1 +o0(a1))---(1+ o(ay)). Let
k1 < .-+ < ky, denote the elements of {1,...,n}\ {0o(1),...,0(n)} and &} < --- < k] the
elements of {o(1),...,0(n)}\ {1,...,n}. Then

pn _ (Itag) - (1+ag,)

o (Itag) - (IT+ap)

Considering the numerator we have

(1 +ag,)--- (1 +ax,,) = 1] (T +faw, ) - (1 +fag,, |) =1

exp(fag, | + -+ +lak,,|) =1

()

i=k1

INIA

N

As n — oo, we have k; — o0, so, from Lemma 1.2, we have )~ |a;| — 0. This shows that
the numerator tends to 1 as m — co. An analogous argument shows that this is also the case for
the denominator. This proves part c. ]
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Dirichlet series, 301
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free abelian group, 327
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fundamental theorem of algebra, 52
fundamental unit, 214
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ideal class group, 139
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ideal lying over another, 166
inertia field, 180
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internal direct product, 318 ramified prime ideals, 178
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Kronecker product, 346 rank of a free module, 332

reduction modulo p, 61, 71
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resultant, 75, 96

Riemman ¢ function, 302
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lattice, 338
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lexicographic order, 314
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total degree of a polynomial, 312
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perfect field, 31 transcendental extension, 11
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