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Preface

Our aim in writing this book is to present a clear introduction to algebraic number theory at
the upper undergraduate/graduate level. The first chapters are devoted to elementary Galois
theory, which plays a fundamental role in algebraic number theory. Usually the Galois theory
needed in algebraic number theory is confined to a reference or a brief appendix. We feel it is
useful to have a good traitment of this material at hand. Naturally, there are important parts of
Galois theory, for example radical extensions and inverse Galois theory, which we do not handle,
as they do not concern the main subject of this text.

After this preliminary work we turn to the study of algebraic number fields, i.e., finite
field extensions of the rationals, presenting basic results such as the Kronecker-Weber theo-
rem, Dedekind’s different theorem, Dirichlet’s unit theorem, Hermite’s theorem and Dedekind’s
factorization theorem. We also introduce and study the class group of a number ring and estab-
lish the class number formula. In general, our proofs are detailed and we do not leave important
parts of proofs to the reader. This avoids tedious reading and frustration when faced with gaps
which the reader is often unable to fill in.

As for required reading, we assume a good background in elementary algebra: semigroups,
groups, rings and modules over rings; in particular, the basic isomorphism theorems for groups,
rings and modules. We also assume a basic knowledge of Lebesgue integration and complex
analysis. Finally, we suppose that the reader is acquainted with fundamental number theory, for
example the rings of integers Zn and the finite fields Fp. All this material is generally covered
in the first years of a mathematics program. Of course, where necessary, we give reminders;
however, as our aim is to reach a relatively high level in a moderately short text, we do not
spend too much time on elementary notions.

Unless otherwise mentioned, we will suppose that all rings are commutative with identity,
although we will often recall these assumptions.
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Chapter 1

Field Extensions

If E and F are rings, in particular fields, then we say that E is an extension of F , or F is included
in E, if there is a an injective ring homomorphism φ, or monomorphism, from F into E. The
following result justifies these terms.

Theorem 1.1 Let φ be a monomorphism of the ring A into the ring B. Then there is an
extension Ā of A and of φ to an isomorphism of Ā onto B.

proof If φ : A −→ B is an isomorphism, then there is nothing to prove, so we can suppose that
this is not the case. We set Ā = A ∪B \ φ(A) and then define ψ : B −→ Ā by

ψ(y) =

{
φ−1(y) if y ∈ φ(A),

y if y /∈ φ(A).

φ is clearly a bijection. We define an addition +̄ and a multiplication ·̄ on Ā by

x1+̄x2 = ψ(ψ−1(x1) + ψ−1(x2)) and x1̄·x2 = ψ(ψ−1(x1) · ψ−1(x2)).

It is easy to check that

ψ(y1 + y2) = ψ(y1)+̄ψ(y2) and ψ(y1 · y2) = ψ(y1)̄·ψ(y2).

In addition ψ(1) = 1. Thus Ā with the operations just defined is a ring which is isomorphic to B.
What remains to be shown is that the operations +̄ and ·̄ restricted to A are the ring operators
+ and · of A. If φ(x1) = y1 and φ(x2) = y2, then

x1+̄x2 = ψ(y1 + y2) = ψ(φ(x1) + φ(x2)) = ψ(φ(x1) + φ(x2)) = x1 + x2.

A similar calcuation gives x1̄·x2 = x1 · x2. Hence Ā is an extension of A and φ̄ = ψ−1 is an
isomorphism from Ā onto B. 2

When the ring B is an extension of the ring A as defined above we will often write B/A.

We recall that, if F is a field, then the ring F [X] of polynomials with coefficients in F is a
PID (principal ideal domain). For f ∈ F [X] we write (f) for the ideal generated by f , i.e.,

(f) = {gf : g ∈ F [X]},
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and Rf for the quotient ring F [X]/(f). The zero element of the quotient ring is (f). Using
the euclidean algorithm we see that, if f 6= 0, then every coset has a unique element r with
deg r < deg f . A nonconstant polynomial f is irreducible if there is no pair of nonconstant
polynomials g and h such that f = gh; if such a pair exists, then we say that f is reducible.

Proposition 1.1 The following statements are equivalent:

• a. Rf is a field;

• b. Rf is an integral domain;

• c. f is irreducible.

proof a. =⇒ b. It is sufficient to observe that a field has no zero divisors.
b. =⇒ c. Suppose that f is reducible. If f = gh, then (f) = (g + (f))(h + (f)). As neither
(g + (f)) = (f) nor (h+ (f)) = (f) we have a pair of zero divisors, a contradiction. Therefore f
is irreducible.
c. =⇒ a. If g + (f) 6= (f), then g /∈ (f) and, from what we have said above, we may suppose
that deg g < deg f . If gcd(g, f) 6= 1, then 1 ≤ deg gcd(g, f) < deg f , a contradiction to the irre-
ducibility of f . Hence gcd(g, f) = 1 and so there are polynomials s and t such that sg + tf = 1.
It follows that (s+ (f))(g + (f)) = 1 + (f), i.e., g + (f) is invertible. 2

If E is an extension of F , then we may consider E as a vector space over F . The dimension
of E over F , which we write [E : F ], is called the degree of the extension. If [E : F ] <∞, then
we say that the extension is finite, otherwise we say that it is infinite.

Exercise 1.1 If f : F −→ E is a ring homomorphism, with F and E fields, then show that f is
a monomorphism.

The next result is fundamental.

Theorem 1.2 If f ∈ F [X], with deg f ≥ 1, then there is an extension E of F which contains a
root of f .

proof Let g be an irreducible factor of f . From the previous proposition we know that E = Rg
is a field. As the mapping φ : F −→ Rg, a 7−→ a+ (g) is a monomorphism, E is an extension of
F . If g =

∑s
k=0 akX

k and α = X + (g), then in E

g(α) =

s∑
k=0

(ak + (g))αk = g + (g) = 0.

As g(α) = 0 in E and g divides f , f(α) = 0 in E. 2

Exercise 1.2 Let f, g ∈ F [X]. Show that gcd(f, g) = 1 if and only if f and g have no common
root in an extension of F . Deduce that if f 6= g are nonconstant polynomials in F [X], which are
monic and irreducible, then f and g have no common root in an extension of F .

If E is an extension of F and α ∈ E, then we write F (α) for the smallest subfield of E
containing F and α, i.e., the intersection of all subfields of E containing F and α. In fact, F (α)

is the collection of all fractions of the form f(α)
g(α) , where f, g ∈ F [X] and g(α) 6= 0. We also say

that F (α) is the subfield of E generated by F and α.
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1.1 Prime fields
In this section we will show that every field can be considered as an extension of the rational
numbers Q or of a field Fp, for a certain prime number p. We begin with a preliminary result.

Proposition 1.2 Let R be a subring of a field F and K the intersection of all the subfields of
F which contain R. Then K = Frac(R), the field of fractions of R.

proof As R is is a subring of F , R is an integral domain and so Frac(R) is a field. We can
define a monomorphism φ from Frac(R) into F in the following way:

φ(a) = a ∀a ∈ R and φ
(a
b

)
= φ(a)φ(b)−1.

We set L = Imφ. Then L is a subfield of F containing R, hence K ⊂ L. In addition, if G is
a subfield of F which contains R, then G contains any element of the form φ(a)φ(b)−1, with
b 6= 0, because G is a field and φ(R) = R. Therefore L ⊂ G. It follows that L ⊂ K. Thus
K = L ≡ Frac(R). 2

The intersection of all the subfields of a given field F is itself a subfield of F , called the prime
field of F . Clearly F is an extension of its prime subfield.

Theorem 1.3 The prime subfield of a field F is isomorphic to Q or to Fp for some prime
number p.

proof Let φ be the mapping of Z into F defined by φ(n) = n.1, where 1 is the identity for
the multiplication in F . It is easy to see that φ is a ring homomorphism. We write I = Kerφ.
Then I is an ideal of Z and the factor ring Z/I is isomorphic to a subring of F , therefore Z/I
is an integral domain, which implies that I is a prime ideal in Z. As φ is not the zero mapping,
I = (0) or I = (p), where p is a prime number.

In the first case φ is injective and the subring φ(Z) of F is included in P , the prime field of
F . From Proposition 1.2 above, P is isomorphic to Frac(φ(Z)), which is clearly isomorphic to
Q.

If I = (p), then φ(Z) is isomorphic to Z/(p), which is Fp. However, φ(Z) is included in
every subfield of F and so φ(Z) ⊂ P ; but φ(Z) is a subfield of F , hence P ⊂ φ(Z). Thus P is
isomorphic to Fp. 2

This theorem has an important corollary, namely

Corollary 1.1 If F is a finite field, then the cardinal of F is pk, where p is a prime number
and k a positive integer.

proof The prime subfield P of F must be finite, hence of the form Fp, for some prime number
p. If [F : Fp] = k, then |F | = pk. 2

Some final remarks before closing this section. It should be clear that, if one field is an
extension of another, then they both have the same prime field. Also, if Q is the prime field of a
given field F , then the characteristic of F is 0. On the other hand, if the prime field is Fp, then
the characteristic of F is p.
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1.2 Algebraic extensions
If E is an extension of F and α ∈ E is a root of a nonconstant polynomial f ∈ F [X], then we
say that α is algebraic over F . If α is not algebraic, then we say it is transcendental. If every
element of E is algebraic, then we say that E is an algebraic extension. An extension which is
not algebraic is said to be a transcendental extension.

Proposition 1.3 If [E : F ] <∞, then E is an algebraic extension of F .

proof Let α ∈ E and [E : F ] = n. The vectors 1, α, . . . , αn are dependant and so we can find
a0, a1, . . . , an ∈ F not all equal to 0 such that

∑n
i=0 aiα

i = 0. Hence α is a root of the polynomial
f(X) =

∑n
i=0 aiX

i. 2

Corollary 1.2 If an extension is not algebraic, then it is infinite-dimensional.

proof Let E/F be an extension which is not algebraic. By hypothesis, there exists α ∈ E which
is not algebraic over F . If [E : F ] < ∞, then, from Proposition 1.3, E is an algebraic exten-
sion of F , so α is algebraic over F , a contradicition. It follows that E/F is infinite-dimensional. 2

Remark We will see below that the converse of Proposition 1.3 is false (example after Corollary
1.5).

If E is an extension of F and α ∈ E is algebraic over F , then the collection of polynomials
f ∈ F [X] such that f(α) = 0 form an ideal I in F [X]. The unique monic generator of I, which
we note m(α, F ), or simply m if the field F is understood, is called the minimal polynomial of α
over F. A minimal polynomial is clearly irreducible. It should also be noticed that if K/F , E/K
and α ∈ E is algebraic over F , then α is also algebraic over K, since m(α, F ) ∈ K[X].

Proposition 1.4 If E is an extension of F , α ∈ E and degm(α, F ) = n, then [F (α) : F ] = n.

proof We will first show that Fn−1[α], the set of polynomials in α of degree strictly less than n
is a field and thus is equal to F (α). If f ∈ F [X] then we may find g, r ∈ F [X], with deg r < n
such that

f(X) = g(X)m(X) + r(X) =⇒ f(α) = g(α)m(α) + r(α) = r(α).

Now if f1, f2 ∈ F [X] and we set f = f1f2, then we may find r ∈ Fn−1[X] such that f(α) = r(α);
therefore Fn−1[α] is closed under multiplication. Clearly Fn−1[α] is closed under addition. It
follows that Fn−1[α] is a subring of F (α). To show that it is a field we only need to find an
inverse for every nonzero element. If f ∈ Fn−1(X) and f 6= 0, then deg f < degm. As m is
irreducible we may find g, h ∈ F [X] such that

f(X)g(X) +m(X)h(X) = 1 =⇒ f(α)g(α) = 1.

However, we have seen that there is s ∈ Fn−1[X] such that s(α) = g(α), hence f(α) has an
inverse. We have shown that Fn−1[α] = F (α). As the vectors 1, α, . . . , αn−1 are independant
and αn is a linear combination of smaller powers of α, these vectors form a basis of Fn−1[α]; it
follows that [F (α) : F ] = n. 2

Corollary 1.3 If α is algebraic over F , then F (α) is an algebraic extension of F .

11



Remark In the course of the proof of Proposition 1.4 we have shown that, if α is algebraic, then
F (α) = F [α].

As examples of algebraic extensions we will consider quadratic number fields. We say that a
finite extension E of Q in C is a number field. It is quadratic if the degree of the extension is 2.
Suppose that d ∈ Z is not a square and let α be a square root of d. If d > 0, then we usually
suppose that α is the positive root and, if d < 0, then α is the product of i and the positive root
of −d. In both cases we write

√
d for α. If

√
d = a

b ∈ Q, then b2d = a2, which is impossible
because d is not a square. It follows that degm(

√
d,Q) > 1. As

√
d is a root of the polynomial

P (X) = −d+X2, we have P (X) = m(
√
d,Q). It follows that [Q(

√
d) : Q] = 2 and that (1,

√
d)

is a basis of Q(
√
d) over Q.

If d is a square, then
√
d ∈ Z and so Q(

√
d) = Q, so we exclude this case. On the other

hand, if d = u2v, where v is square-free, then Q(
√
d) = Q(

√
v), so we can limit our attention to

square-free integers d. The following result is a little unexpected.

Theorem 1.4 If m and n are square-free integers and m 6= n then Q(
√
m) is not isomorphic

to Q(
√
n).

proof Suppose that there is un isomorphism φ from Q(
√
m) onto Q(

√
n). As φ(1) = 1, φ must

fix all elements of Q. Let φ(
√
m) = a + b

√
n. If b = 0, we have a φ(a) = a = φ(

√
m), which

contadicts the fact that φ is injective, so b 6= 0. Also

m = φ(m) = φ((
√
m)2) = (φ

√
m)2 = (a+ b

√
n)2 = a2 + 2ab

√
n+ b2n.

If a 6= 0, then
√
n = m−a2−b2n

2ab ∈ Q, a contradiction. Hence a = 0 and m = b2n. If b = e
f , with

(e, f) = 1, then we have e2m = f2n, which is only possible if e2 = f2, because m and n are
square-free. It follows that b2 = 1 and so m = n. 2

A little later we will see that all quadratic number fields are of the form we have seen here.

Suppose that F , K and E are fields with K an extension of F and E an extension of K. We
now consider the relation between the degrees of the extensions. We recall that any vector space
over a field has a basis which may be infinite.

Proposition 1.5 If (βj)j∈J is a basis of K over F and (αi)i∈I a basis of E over K, then
(αiβj)i∈I,j∈J is a basis of E over F .

proof If γ ∈ E, then γ is a linear combination of αi, with coefficients ai ∈ K. As each ai
is a linear combination of βj , with coefficients bj ∈ F , γ is a linear combination of αiβj , with
coefficients in F . Thus the set (αiβj)i∈I,j∈J generates E. To show that it is a basis of E over
F , we must show that it is independant. To do so, let us consider a (finite) linear combination∑
λijαiβj , with λij ∈ F , whose value is 0. Adding some terms λijαiβj , with λij = 0 if necessary,

we may write

0 =
∑
i,j

λijαiβj =
∑
i

∑
j

λijβj

αi.

As the αi are independant,
∑
j λijβj = 0 for every i. However, the βj are independant and so

λij = 0, for each pair (i, j). Hence the elements αiβj form an independant collection. We have
shown that (αiβj)i∈I,j∈J is a basis of E over F . 2

This leads to the following statement, often referred to as the multiplicativity of the degree:
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Corollary 1.4 If K/F and E/K, then

[E : F ] = [E : K][K : F ].

Suppose now that E is an extension of F and that α1, . . . , αn ∈ E. We denote F (α1, . . . , αn)
the subfield of E generated by F and the αi, i.e., the smallest subfield of E containing F and
the αi. (We have already seen this notion when there is only one αi.) In fact, this field is the
collection of all fractions of the form f(α1,...,αn)

g(αi,...,αn) , where f, g ∈ F [X1, . . . , Xn] and the denominator
is nonzero. We may generalize Corollary 1.3.

Corollary 1.5 If α1, . . . , αn are algebraic over F , then F (α1, . . . , αn) is a finite extension of F ,
hence an algebraic extension of F . Moreover, F (α1, . . . , αn) = F [α1, . . . , αn].

proof Let us set

E0 = F,E1 = F (α1), E2 = F (α1, α2), . . . , En = F (α1, α2, . . . , αn).

Then Ek = Ek−1(αk) and αk is algebraic over Ek−1. Now [Ek : Ek−1] = degm(αk, Ek−1) and

[En : F ] =
n−1∏
k=0

[Ek+1 : Ek] <∞,

the result we were looking for.
To prove the second statement we use a simple induction argument. We have aleady seen

that it is true for n = 1. (See the remark after Corollary 1.3). If we suppose that the statement
is true up to n− 1, then we have

F (α1, . . . , αn) = F (α1, . . . , αn−1)(αn)

= F [α1, . . . , αn−1](αn)

= F [α1, . . . , αn−1][αn]

= F [α1, . . . , αn−1, αn],

which concludes the induction step and hence the proof. 2

Example Consider the extension E = Q( n
√

2 : n ∈ N∗) of Q. Any element α ∈ E is algebraic
overQ, because α ∈ Q( n

√
2 : n = 1, . . . , N), for some N ∈ N∗, and n

√
2 is algebraic overQ. Hence

E is an algebraic extension of Q. For any n ∈ N∗, by the Eisenstein criterion, fn(X) = −2 +Xn

is irreducible and hence the minimal polynomial of n
√

2. However, En ⊂ E, where En = Q( n
√

2),
and, from Proposition 1.4, [En : Q] = n. This implies that [E : Q] ≥ n, for all n ∈ N∗. Thus we
have found an algebraic extension of Q, which is not finite.

We will see later that we may partially rectify this situation by imposing conditions on the
algebraic extension.

If E is an extension of F then we will write A(E/F ) (or simply A when the fields E and F
are understood) for the collection of elements of E which are algebraic over F .

Proposition 1.6 A(E/F ) is a subfield of E.

13



proof It is sufficient to show that if α, β ∈ A, then α, −α, α + β, αβ and β−1, with β 6= 0,
belong to A. However, F (α, β) is an algebraic extension of F , therefore F (α, β) ⊂ A. As
α,−α, α+ β, αβ, β−1 ∈ F (α, β), these elements belong to A. 2

Remark Proposition 1.6 ensures that A(C/Q) is an algebraic extension of Q. It contains all
the algebraic extensions of Q and is an infinite extension, after the example following Corollary
1.5.

Exercise 1.3 We have seen that if α and β are algebraic, then α + β and αβ are algebraic.
Prove the converse, namely, if α+ β and αβ are algebraic, then α and β are algebraic.

We may define a relation R on the collection of fields by FRE if E is an algebraic extension
of F . This relation is in fact a partial order. Clearly R is reflexive and antisymmetric, so we
only need to show that it is transitive. To do so we need the following preliminary result.

Proposition 1.7 If K is an algebraic extension of F , E/K and α ∈ E is algebraic over K,
then α is algebraic over F .

proof Let m(α,K) =
∑n
k=0 aiX

i, with ai ∈ K, for i = 0, . . . , n, and an = 1. As the ai, for
i = 0, . . . , n, are algebraic over F , A = F (a0, a1, . . . , an−1) is a finite extension of F , by Corollary
1.5. Now, α is algebraic over A, therefore A(α) is a finite extension of A, by Proposition 1.4.
Corollary 1.4 ensures that A(α) is a finite extension of F . Proposition 1.3 now implies that α is
algebraic over F . 2

Corollary 1.6 The relation R is transitive, hence a partial order.

Exercise 1.4 Suppose that E is an algebraic extension of F and that R is a ring containing F
and included in E, i.e., F ⊂ R ⊂ E. Show that R is a field.

1.3 Algebraic numbers
An element α ∈ C which is algebraic over Q is said to be an algebraic number. This is equivalent
to saying that there is a polynomial f ∈ Z[X] such that f(α) = 0. If α ∈ C is not algebraic then
we call α a transcendental number. We aim to show that A(C/Q) is countable.

Proposition 1.8 Let (En)n∈N be a countable collection of countable subsets of a set E. Then
the union S = ∪n∈NEn is countable.

proof We set F0 = E0 and Fn = En \ (E0 ∪ E1 ∪ · · · ∪ En−1), for n > 0. Then S = ∪n∈NFn
and, if m 6= n, then Fm ∩ Fn = ∅. Let fn : En −→ N be an injection and let us set, for x ∈ Fn,
f(x) = (n, fn(x)). It is not difficult to see that f is an injection from S into N2. As N2 is
countable, S is countable. 2

Corollary 1.7 The collection of polynomials Z[X] is countable.

proof We note Pd the subset of Z[X] composed of polynomials whose degree is d ≥ 0. We
obtain a bijection of Pd into Zd+1 by associating to each polynomial f its sequence of coeffi-
cients (a0, a1, . . . , ad). As Zd+1 is countable, Pd is also countable. From the previous proposition
∪d∈NPd is countable. If we now add the polynomial 0, we obtain the result. 2

We may now prove the result mentioned in the first paragraph.
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Theorem 1.5 A(C/Q) is countable.

proof From the previous corollary we know that Z[X] is countable. The subset of Z[X]
composed of nonconstant polynomials is also countable: we may number these polynomials
f0, f1, . . .. For each k ∈ N, let Rk be the (finite) set of roots of fk. Then, from Proposition 1.8,
A(C \Q) = ∪Rk is countable. 2

Corollary 1.8 The collection of transcendental numbers is not countable.

As A(C/Q) is a field, it is easy to construct algebraic numbers. For example,
√

2 and
√

3
are algebraic numbers, hence their sum,

√
2 +
√

3, is also an algebraic number. Although the
transcendental numbers form a much larger set, it is not easy to find explicit examples. We know
that e and π are transcental, however the proofs are not easy, in particular for π. It is an open
question whether the following numbers are transcendental or not: π + e, π − e, πe, e

π , π
π, ee

and πe.

Exercise 1.5 Show that, if α and β are both transcendental, then either α + β or αβ is tran-
scendental.
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Chapter 2

Splitting fields

Let E be an extension of the field F and f ∈ F [X]. We say that f splits in E, if we can write

f(X) = λ(X − α1) · · · (X − αn),

with λ ∈ F and α1, . . . , αn ∈ E. Such a field always exists: it is sufficient to apply Theorem 1.2
an appropriate number of times. We say that an extension E of F is a splitting field of f ∈ F [X]
if f splits in E and does not do so in any proper subfield of E.

Proposition 2.1 Let E be an extension of F such that f ∈ F [X] splits in E:

f(X) = λ(X − α1) · · · (X − αn).

Then E is a splitting field of f if and only if E = F (α1, . . . , αn).

proof Suppose first that E is a splitting field of f . Then E contains F and the elements
α1, . . . αn, therefore F (α1, . . . , αn) ⊂ E. As f does not split in any proper subfield of E, we must
have equality.

Now suppose that E = F (α1, . . . , αn) and let G be a subfield of E such that f splits in G.
Then G contains F and the elements α1, . . . , αn, hence F (α1, . . . , αn) ∈ G. It follows that E ⊂ G
and so E = G. Thus E is a splitting field of f . 2

Corollary 2.1 If f ∈ F [X] splits in an extension E of F , then E contains a unique splitting
field of f , namely F (α1, . . . , αn).

We can obtain an explicit presentation of a splitting field.

Proposition 2.2 The splitting field S of f ∈ F [X] in an extension E of F can be written

S = F (α1, . . . , αn) = F [α1, . . . , αn],

i.e., S is composed of the polynomials in the roots αi, with coefficients in F .

proof The splitting field S of f clearly has the form F (α1, . . . , αn). As for the second equality, we
only need to notice that the roots α1, . . . , αn are algebraic over F and then apply Corollary 1.5.2

If E is a splitting field of f ∈ F [X], then we can say something about order of the extension.
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Theorem 2.1 If f ∈ F [X] and deg f = n, then there is a splitting field E of f such that
[E : F ] ≤ n!.

proof If deg f = 0, then f is constant and we can take E = F . Now let us suppose that
deg f = n ≥ 1. From Proposition 1.2 we know that there is an extension E′ of F which contains
a root α of f . The minimal polynomial m = m(α, F ) divides f , so degm ≤ deg f . Now, from
Proposition 1.4, [F (α) : F ] = degm, so there exists an extension E1 of F which contains a root
α1 of f and is such that with [E1 : F ] ≤ n. In E1 we can write f(Y ) = (Y − α1)r1g(Y ), where
r1 ≥ 1 and g(α1 6= 0. If g is not constant, then we can find an extension E2 of E1 which contains
a root α2 of g (and hence of f) and is such that [E2 : E1] ≤ n− 1. E2 is an extension of F which
contains α1 and α2 and [E2 : F ] = [E2 : E1][E1 : F ] ≤ (n− 1)n. Continuing in the same way we
obtain an extension E of F in which f splits and such that [E : F ] ≤ n!. To finish it is sufficient
to notice that E contains a splitting field of f . 2

We have seen that every polynomial has a splitting field. We now aim to show that all such
fields are isomorphic. We will begin with two preliminary results.

Lemma 2.1 Let f ∈ F [X] be irreducible and E an extension of F which contains a root α of f .
Then there is an isomorphism

Φ : F [X]/(f) −→ F (α)

which fixes F , i.e., for g constant, Φ(g + (f)) = g, and such that Φ(X + (f)) = α.

proof The mapping φ : F [X] −→ E defined by φ(g) = g(α) is a ring homomorphism. As f is
irreducible and f ∈ Kerφ, we have Kerφ = (f). It follows that the mapping

Φ : F [X]/(f) −→ Imφ, g + (f) 7−→ φ(g)

is a ring isomorphism which fixes F . In addition,

ImΦ = Imφ = {g(α) : g ∈ F [X]} ⊂ F (α). (2.1)

As f is irreducible, (f) is maximal and so F [X]/(f) is a field. Thus ImΦ a field. However, F and
α belong to ImΦ, which implies that F (α) ⊂ ImΦ. From the equation (2.1) we obtain equality.
2

Lemma 2.2 Let R and S be rings, I is an ideal of R and J an ideal of S. If φ : R −→ S is an
isomorphism such that φ(I) = J , then the mapping

φ̄ : R/I 7−→ S/J, x+ I 7−→ φ(x) + J

is well-defined and is an isomorphism.

proof Left to the reader. 2

If F and F ′ are fields and σ : F −→ F ′ is an isomorphism, then by setting

σ∗(
∑

aiX
i) =

∑
σ(ai)X

i

we obtain an isomorphism from the ring F [X] onto the ring F ′[X]. We will say that σ∗ corre-
sponds to σ. We will often write f∗ for σ∗(f).
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Proposition 2.3 Let σ : F −→ F ′ be an isomorphism and f ∈ F [X] irreducible. If E (resp.
E′) is an extension of F (resp. F ′) and α (resp. α′) a root of f (resp. f∗) in E (resp. E′), then
there is an isomorphism σ̂ : F (α) −→ F ′(α′) extending σ, with σ̂(α) = α′. This isomorphism is
unique.

proof First we notice that σ∗(f) = (f∗); from the preceding lemma the mapping

σ̄∗ : F [X]/(f) −→ F ′[X]/(f∗), g + (f) 7−→ σ∗(g) + (f∗)

is an isomorphism. We now set σ̂ as the composition

F (α)
Φ−1

−→ F [X]/(f)
σ̄∗−→ F ′[X]/(f∗)

Φ′−→ F ′(α′).

σ̂ is an isomorphism extending σ and σ̂(α) = α′. The uniqueness is clear. 2

We are now in a position to prove the result referred to above, namely that splitting fields
are isomorphic. We will in fact prove a more general result and derive that on splitting fields as
a corollary.

Theorem 2.2 Let F and F ′ be fields, σ : F −→ F ′ an isomorphism, f ∈ F [X] and f∗ ∈ F ′[X]
the polynomial corresponding to f . If E is a splitting field of f and E′ a splitting field of f∗,
then there is an isomorphism σ̃ : E −→ E′ extending σ.

proof We will prove this result by recurrence on n = [E : F ]. First, if n = 1, then E = F and
f ∈ F [X] and f is a product of linear factors (polynomials of degree 1) and it follows that f∗ is
also a product of such factors, so E′ = F ′ and we can define σ̃ = σ.

Now let us suppose that n > 1 and that the result is true up to n−1. Let g be an irreducible
factor of f with deg g ≥ 2 and α a root of g in E (α ∈ E because α is a root of f). Let g∗ be
the polynomial in F ′[X] corresponding to g and α′ a root of g∗ (α′ ∈ E′ because α′ is a root of
f∗). From Proposition 2.3 there is a unique isomorphism σ̂ : F (α) −→ F ′(α′) which extends σ
and is such that σ̂(α) = α′. Now, E is a splitting field of f over F (α) and E′ a splitting field of
f∗ over F ′(α′). As

[E : F ] = [E : F (α)][F (α) : F ]

and [F (α) : F ] ≥ 2, we have [E : F (α)] < n. By the induction hypothesis there is an isomorphism
σ̃ : E −→ E′, which extends σ̂, and hence σ. 2

Corollary 2.2 If f ∈ F [X] and E and E′ are splitting fields of f over F , then E and E′ are
isomorphic.

proof It is sufficient to take F ′ = F and σ = idF in the previous theorem. 2

Example Let f(X) = −2+X3 ∈ Q[X]. The roots of f inC are α1 = 3
√

2 ∈ R, α2 = α1(− 1
2 +
√

2
2 )

and α1(− 1
2 −

√
2

2 ). As none of the roots belong to Q, f is irreducible. As f is also monic f is the
minimal polynomial of α1 and so [Q(α1) : Q] = 3. The field Q(α1) cannot be the splitting field
in C of f , because Q(α1) ⊂ R and α2 /∈ R. The field K = Q(α1,

√
3i) ⊂ Q(α1, α2, α3); as α1,

α2, α3 belong to Q lie in K, we have K = Q(α1, α2, α3), i.e., K is the splitting field of f in C.
We only need to find the degree of the extension. From Theorem 2.1 we know that it cannot

be greater than 3! = 6. It also must be a multiple of 3, because

[K : Q] = [K : Q(α1)][Q(α1) : Q] = [K : Q(α1)]3.

If [K : Q] = 3, then [K : Q(α1)] = 1 and K = Q(α1), which is false; hence [K : Q] = 6.
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Exercise 2.1 Find the splitting field K of f(X) = 4 − 2X + X2 ∈ Q[X] in C and determine
the degree of the extension of K over Q.

Exercise 2.2 Let C be a family of polynomials in F [X] and K an extension of F such that
every f in C splits over K; if, for every proper subfield K ′ of K, at least one member of C does
not split over K ′, then we say that K is a splitting field of C. Show that, C is finite and K is a
splitting field of C, then there is a polynomial f ∈ F [X] for which K is a splitting field.

2.1 Existence of finite fields
We recall that we previously saw that the cardinal of a finite field must be pk, where p is a
prime number and k a positive integer. In this section we show that, for any such pk, there is a
finite field F whose cardinal is precisely pk, and that, in addition, there is essentially only one
such finite field. We will use our knowledge of splitting fields in the proofs. We begin with a
preliminary result, but for this we need a lemma.

Lemma 2.3 Let f, g ∈ F[X] be nonconstant. Then f and g are relatively prime if and only if
they do not have a root in any extension field of F.

proof Assume that f and g are relatively prime in F[X]. Then there exist u, v ∈ F[X] such
that

f(X)u(X) + g(X)v(X) = 1.

If α is a common root of f and g in some field extension of F, then substituting α for X we
obtain 0 on the left-hand side and 1 on the right-hand side of the equation, a contradiction.
Hence f and g have no common root in an extension field of F.

Now suppose that f and g are not relatively prime. Then f and g have a common factor h,
which is not a constant. There is a field extension of F in which h has a root α. Clearly, α is a
common root of f and g. 2

Proposition 2.4 If f ∈ F [X], then f has a multiple root in a splitting field if and only if
gcd(f, f ′) 6= 1.

proof Suppose that f has a multiple root α in a splitting field. Then f(X) = (X − α)sg(X),
where s ≥ 2 and g(α) 6= 0. Hence,

f ′(X) = s(X − α)s−1g(X) + (X − α)sg′(X)

and so f ′(α) = 0. From the previous lemma f and f ′ are not relatively prime, i.e., gcd(f, f ′) 6= 1.
Now suppose that gcd(f, f ′) 6= 1. From the previous lemma, f and f ′ have a common root

α in an extension field of F. We may write

f(X) = (X − α)sg(X),

with s ≥ 1 and g(α) 6= 0. Then again

f ′(X) = s(X − α)s−1g(X) + (X − α)sg′(X).

If s = 1, then f ′(α) = g(α) 6= 0, a contradiction, hence s ≥ 2 and α is a multiple root. 2

Theorem 2.3 If p is a prime number and k a positive integer, then there is a field F whose
cardinal is pk.
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proof To simplify the notation we set q = pk. For k = 1, we may take Fp. We now suppose
that k > 1. We set f(X) = −X + Xq ∈ Fp[X]. As f ′(X) = −1 + qXq−1 = −1, because q is a
multiple of p, gcd(f, f ′) = 1 and so the roots of f in a splitting field are distinct, i.e., there are
q roots (Proposition 2.4). Let E be an extension of Fp which contains the roots of f and F the
set of roots. We claim that F is a field. First, if a ∈ F , then

0 = f(a) = −a+ aq ⇐⇒ x = xq.

We take x, y ∈ F . Then

(xy)q = xqyq = xy =⇒ f(xy) = 0 and (x+ y)q = xq + yq = x+ y =⇒ f(x+ y) = 0.

If p 6= 2, then
(−x)q = (−1)qxq = −x

and, if p = 2, then
(−x)q = (−1)qxq = xq = x = −x,

because the characteristic of E is 2. In both cases we have f(−x) = −x. It follows that F is a
subring of of E. In addition, if x 6= 0, then, using the fact that F is an integral domain, we have

−x+ xq = 0 =⇒ −1 + xq = 0 =⇒ xxq−2 = 1,

hence x has an inverse for the multiplication. Thus F is a field. We have constructed a field
with q = pk elements. 2

We now turn to the uniqueness of finite fields. We should notice that the field F constructed
in the proof of preceding theorem is a splitting field for the polynomial f . Any proper subfield of
F will lack certain elements of F . As these are all roots of f , f cannot split over such a subfield.

Theorem 2.4 If F and F ′ are two finite fields with the same cardinality, then F is isomorphic
to F ′.

proof If F is a finite field with cardinality q = pk, then F has the prime field Fp. There q − 1
elements in F ∗ so, if x ∈ F ∗, then xq−1 = 1 and it follows that −x+ xq = 0, for all x ∈ F . Thus
the roots of the polynomial f(X) = −X +Xq ∈ Fp[X] are the elements of F and it follows that
F is a splitting field of f . As all splitting fields of a given polynomial are isomorphic, if F ′ is
another field with cardinality q, then F ′ is isomorphic to F . 2

Notation We often write Fq for a finite field with q elements.

2.2 Algebraic closures
We have seen that if f ∈ F [X] then there is an extension E of F over which f splits. It is natural
to ask if there exists an extension C of F such that every f ∈ F [X] splits over this extension.
(It is well-known that C is such an extension of R; however, we will give a proof of this later on
in the text.) In this section we aim to study this question. We will begin with an elementary
result.

Proposition 2.5 For a field C the following conditions are equivalent

• a. Every nonconstant polynomial f ∈ C[X] has a root α ∈ C;
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• b. Every nonconstant polynomial f ∈ C[X] splits over C;

• c. Every irreducible polynomial f ∈ C[X] is of degree 1;

• d. C has no proper algebraic extension.

proof a. =⇒ b. If f is nonconstant, then the condition a. implies that we can write f(X) =
(X − α)g(X). If g is not constant, then we can write g(X) = (X − β)h(X). Continuing the
process if necessary we finally obtain a splitting of f .
b. =⇒ c. If f is irreducible, then f is not constant. From the condition b. f splits over C:

f(X) = λ(X − α1) · · · (X − αn).

As f is irreducible, f has a unique nonconstant facteur, i.e., n = 1.
c. =⇒ d. Let E be an algebraic extension of C and α ∈ E. If f = m(α,C), then f is irreducible
and so of degree 1: f(X) = X − α. Hence α ∈ C. Thus E = C.
d. =⇒ a. Let f ∈ C[X] nonconstant. We can find an extension E of C which contains a root
α of f . We may suppose that this extension is finite and so algebraic. From the condition d.,
E = C and so α ∈ C. 2

A field satisfying the conditions of the above proposition is said to be algebraically closed. An
extension C of a field F is an algebraic closure of F if C is algebraic over F and algebraically
closed.

Remark An algebraically closed field is infinite. To see this, suppose that F is algebraically
closed and finite, with elements a1, . . . , an. However, the polynomial f(X) = 1 +

∏n
i=1(−ai+X)

has no root in F , contradicting the fact that F is algebraically closed.

Exercise 2.3 If E is an algebraic extension of F and C an algebraic closure of E, show that C
is an algebraic closure of F .

Remark If C is an algebraic closure of F and E is an extension of F which is strictly included
in C, then E is not algebraically closed. To see this, let α ∈ C \ E. As α is algebraic over F ,
α is algebraic over E. Now, α /∈ E, hence degm(α,E) > 1; from the condition c. of the above
proposition, E is not algebraically closed.

Proposition 2.6 Let C be an algebraic extension of F . Then C is an algebraic closure of F if
every nonconstant polynomial g ∈ F [X] splits over C. (We do not need to consider polynomials
f ∈ C[X] \ F [X]).

proof Let f ∈ F [X] and α be a root of f in an extension E of C. The field C(α) is an algebraic
extension of F and C is algebraic over F by hypothesis, therefore C(α) is algebraic F . Thus
α is the root of a polynomial g ∈ F [X]. As g splits over C, all the roots of g belong to C, in
particular α ∈ C. Thus f has a root in C. 2

If E and E′ are extensions of F and σ : E −→ E′ is a homomorphism fixing F (i.e., σ(x) = x,
for all x ∈ F ), then we call σ an F − homomorphism. The following proposition is well-known
if E is a finite extension of F . However, we may relax the conditions:

Proposition 2.7 Let E be an algebraic extension of F and σ : E −→ E an F -homomorphism.
If σ is injective, then it is also surjective.

21



proof Let α ∈ E. We have to show that there exists β ∈ E such that α = σ(β). Letm = m(α, F )
and L be the subfield of E generated by F and the roots of m which are in E. These roots are
algebraic over F , therefore L is a finite extension of F (see Corollary 1.5). If α′ is a root of m
in E, then σ(α′) is also a root of m in E, because σ is an F -homomorphism and so σ(L) ⊂ L.
However, σ is a linear mapping from the F -vector space L into itself, because F is fixed by σ. As
L is finite-dimensional over F and σ injective, σ|L : L −→ L is also surjective. Moreover, α ∈ L,
thus there exists β ∈ L ⊂ E such that α = σ(β). 2

We now prove the most difficult step in showing that a field always has an algebraic closure.

Theorem 2.5 Every field F has an extension E which is algebraically closed.

proof We note S the collection of nonconstant polynomials of F [X]. To each f ∈ S we associate
a variable Xf . Now we let T be the family of these variables and F [T ] the ring of polynomials
in these variables. (The elements of F [T ] are finite sums of monomials of the form aXf1 · · ·Xfs ,
with a ∈ F .) Finally we define I to be the ideal generated by the elements of the form f(Xf ),
with f ∈ S. (If f(X) =

∑n
i=0 aiX

i, then f(Xf ) =
∑n
i=0 aiX

i
f .). In fact, I is a proper ideal of

F [T ] as we will now see. If this is not the case, then we can find elements gi ∈ F [T ] and fi ∈ I
such that

s∑
i=1

gifi = 1.

Let us write Xi for the variable associated with fi. There is a finite number of variables
X1, . . . , Xm with m ≥ s, which are variables of the gi. Hence we have

s∑
i=1

gi(X1, . . . , Xm)fi(Xi) = 1.

(Even if a certain variable Xk does appear explicitly in a certain gi we can still include it.)
Suppose now that E is an extension of F which contains all the roots of the fi. Then E contains
a root αi of each fi. If we set Xi = αi for 1 ≤ i ≤ s and Xi = 0 for s < i ≤ m, then we obtain
0 = 1, a contradiction. It follows that I is a proper ideal of F [T ].

As I is a proper ideal, I is included in a maximal ideal M . The factor ring E1 = F [T ]/M is
a field, because M is maximal. The canonical homomorphism

φ : F −→ E1, a 7−→ a+M

is injective: If φ(a) = 0 and a 6= 0, then a+M = M and

(a−1 +M)(a+M) ⊂M =⇒ 1 ∈M,

a contradiction. Hence we can write F ⊂ E1. If f ∈ F [X] is nonconstant, then Xf ∈ E1 and

f(Xf +M) = f(Xf ) +M = 0,

because f(Xf ) ∈ I ⊂M . Therefore f has a root in E1.
We can now replace F by E1 and repeat the whole argument to obtain an extension E2 of

E1 such that every nonconstant polynomial g ∈ E1[X] has a root in E2. Continuing in the same
way we obtain a chain of extensions

F ⊂ E1 ⊂ E2 ⊂ · · ·
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such that a nonconstant polynomial h ∈ En[X] has a root in En+1. We now let E be the union
of the fields in the chain and we define an addition ⊕ and a multiplication � on E as follows: If
x ∈ Em and y ∈ En, with m ≤ n, then x⊕ y = x+n y and x� y = x ·n y. These operations are
well-defined (x⊕ y and x� y do not depend on the choice of n ≥ m) and a simple check shows
that (E,⊕,�) is a field.

Now let f be a nonconstant polynomial in E[X]. All the coefficients of f belong to a certain
En and so f has a root in En+1 ⊂ E . Thus we have an extension of F which is algebraically
closed. 2

We may now prove the principal result of this section.

Theorem 2.6 Every field F has an algebraic closure.

proof From the previous theorem, F has an extension E which is algebraically closed. Let
G = A(E/F ), i.e., the collection of elements of E which are algebraic over F . Proposition 1.6
ensures us that G is a subfield of E. Let us take f ∈ G[X] nonconstant. As f ∈ E[X], f has a
root α ∈ E. As f ∈ G[X], α is algebraic over G. Now, G is an algebraic extension of F and α is
algebraic over G, therefore α is algebraic over F , by Proposition 1.7. It follows that α ∈ G. We
have shown that G is algebraically closed. 2

Remark The previous proof shows that the field of algebraic numbers A(C/Q) is an algebraic
closure of Q. Moreover, the remark after Proposition 1.6 and Theorem 1.5 ensures that A(C/Q)
is a countable infinite extension of Q.

Exercise 2.4 Show that C is an algebraic closure of R.

We have shown that a field always has an algebraic closure. Our next task is to show that
any two such closures are isomorphic.

Lemma 2.4 Let σ be a monomorphism from a field F into an algebraically closed field C. If E
is an extension of F , α ∈ E algebraic over F , then σ can be extended to a monomorphism from
F (α) into C.

proof Let F ′ = σ(F ) and f = m(α, F ). If f∗ is the polynomial corresponding to f in F ′[X],
then f∗ has a root α′ ∈ C. Applying Proposition 2.3 we see that there is an isomorphism σ̂ from
F (α) onto F ′(α′). As F ′(α′) ⊂ C we have a monomorphism from F (α) into C extending σ. 2

Theorem 2.7 If σ : F −→ C is a monomorphism, with C algebraically closed, and E an
algebraic extension of F , then σ may be extended to a monomorphism σ̂ : E −→ C.

proof Let G be the collection of all pairs (K,µ), where K/F , E/K and µ is a monomorphic
extension of σ to K. (From the previous lemma, such pairs exist.) We now order these pairs:
(K1, µ1) ≤ (K2, µ2) if and only if K1 ⊂ K2 and µ2 restricted to K1 is equal to µ1. If the pairs
(Ki, µi) form a chain Q, then Q has a maximum (K,µ), with K = ∪Ki and µ(x) = µi(x), if
x ∈ Ki. From Zorn’s lemma, G has a maximal element (K0, µ0). We claim that K0 = E. If
K0 6= E and α ∈ E \ K0, then from the previous lemma, we may extend µ0 to a monomor-
phism from K0(α) into C. However, this contredicts the maximality of the pair (K0, µ0). Hence
K0 = E; This finishes the proof. 2

If we add some conditions we obtain the important following corollary:
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Corollary 2.3 If, in the above theorem, E is algebraically closed and C algebraic over σ(F ),
then σ̂ is an isomorphism.

proof We only need to show that σ̂(E) = C. As C is algebraic over σ(F ), C is algebraic over
σ̂(E), because σ(F ) is a subset of σ̂(E). Now, σ̂(E) is algebraically closed, because E is alge-
braically closed, hence C is an algebraic extension of the algebraically closed field σ̂(E). From
Proposition 2.5 d., C cannot be a proper extension and so σ̂(E) = C. 2

We can now prove that the following theorem holds:

Theorem 2.8 If C1 and C2 are algebraic closures of the field F , then C1 and C2 are F -
isomorphic.

proof F is a subfield of C1 and C2. If σ : F −→ C2 is the inclusion mapping, then, from the
previous corollary, we may extend σ to an isomorphism σ̂ : C1 −→ C2. This clearly fixes F . 2

Exercise 2.5 Let F be any field. Show that there is an infinite number of irreducible elements
in the polynomial ring F [X]. Deduce that if F is algebraically closed, then F is infinite.
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Chapter 3

Separability

In this chapter we aim to look at two related topics, namely separable polynomials and separable
extensions. We will begin with the first subject.

3.1 Separable polynomials
Let f ∈ F [X] be nonconstant with the factorization into irreducible elements

f(X) = λg1(X) · · · gn(X).

If each gi has no multiple root in a splitting field, then we say that f is separable. We will say
that a polynomial is strongly separable, if it has no multiple roots. Clearly, a strongly separable
polynomial is separable, but a separable polynomial is not necessarily strongly separable. For
example, f(X) = (X2 + 1)2 ∈ Q[X] is separable, but not strongly separable. However, for an
irreducible polynomial these notions are equivalent: If f ∈ F [X] is irreducible, then f is separa-
ble if and only if f is strongly separable.

Proposition 2.4 is useful in determining whether a polynomial is separable or not. Consider
a polynomial f ∈ F [X]. If gcd(f, f ′) = 1, then f has no multiple root and so this is the case
for any factor; it follows that f is strongly separable and hence separable. On the other hand, if
gcd(f, f ′) 6= 1, then f is not strongly separable; however, f may be separable or not. We must
consider the irreducible factors of f .

Corollary 3.1 If the characteristic of the field F is 0, then every polynomial f ∈ F [X] is
separable.

proof Let g be an irreducible factor of f . As the characteristic of F is 0, g′ 6= 0. If h = gcd(g, g′),
then deg h < deg g, because deg g′ < deg g. As g is irreducible, h = 1. From the preceding propo-
sition, g has no multiple root. 2

Now we consider finite fields. If F is such a field, then its characteristic is a prime number
p. Let f ∈ F [X]. If, for every irreducible factor g of f , g′ 6= 0, then, using the argument of the
corollary we have just proved, f is separable. We claim that this is always the case. Suppose
that this is not the case and let g be an irreducible factor of f with g′ = 0. Then g ∈ F [Xp].
The mapping

φ : F −→ F : x 7−→ xp
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is a homomorphism: φ(1) = 1 and

φ(xy) = (xy)p = xpyp = φ(x)φ(y)

φ(x+ y) = (x+ y)p =

p∑
i=0

(
p

i

)
xiyp−i = xp + yp = φ(x) + φ(y).

(We have used the fact that p divides
(
p
i

)
if 1 ≤ i ≤ p− 1.) As F is a field and Kerφ is an ideal

Kerφ = {0} or Kerφ = F . As φ(1) = 1, the second alternative is not possible, so Kerφ = {0},
which implies that φ is injective. Given that F is finite, φ must also be surjective. Now let us
return to g. We may write g(X) =

∑k
i=0 aiX

pi. As φ is bijective, for each ai, there exists bi
such that ai = bpi . We have

g(X) =

k∑
i=0

bpiX
ip =

(
k∑
i=0

biX
i

)p
,

a contradiction to the irreducibility of g. Hence g′ 6= 0 and we have proven

Proposition 3.1 If F is a finite field, then every polynomial f ∈ F [X] is separable.

Remark Corollary 3.1 and Proposition 3.1 imply that if char F = 0 or F is finite, then an
irreducible polynomial f ∈ F [X] is strongly separable.

Although polynomials which are not separable are relatively rare, such polynomials exist.
Here we will give an example. We recall Eisenstein’s criterion:

Let R be a unique factorization domain, with quotient field F , and f(X) =
∑n
i=0 aiX

i ∈
R[X], with deg f ≥ 1. If q is prime in R and q divides ai, for 0 ≤ i < n, q does not divide an
and q2 does not divide a0, then f is irreducible in R[X].

Consider Fp(t), the field of rational fractions over the field Fp, for any given prime p. The
characteristic of Fp(t) is p. We note f(X) = Xp − t ∈ Fp[t][X]. If q(t) is prime in Fp[t], then
deg q2 ≥ 2 and so q2 does not divide t; it follows from Eisenstein’s criterion that f is irreducible.
We claim that f has a multiple root in a splitting field. Let α be a root of f in a splitting field
and suppose that

f(X) = (X − α)mg(X),

where deg g ≥ 1 and g(α) 6= 0. Then

0 = f ′(X) = m(X − α)m−1g(X) + (X − α)mg′(X).

This implies that mg(X) = −(X − α)g′(X) and so mg(α) = 0. However, this is impossible,
because m < p and g(α) 6= 0. Therefore, f(X) = (X − α)p and f is not separable.

In Theorem 2.2 we showed that an isomorphism σ from the field F onto the field F ′ may be
extended to an isomorphism σ̃ : E −→ E′, where E is a splitting field of f ∈ F [X] and E′ a
splitting field of f∗, the polynomial in F ′[X] corresponding to f . If f is separable, then we can
say a little more.

Theorem 3.1 If f is separable, then σ can be extended to E in exactly [E : F ] distinct ways.
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proof We prove this result by induction on n = [E : F ]. First, if n = 1, then there is a unique
extension of σ, namely σ̃ = σ. Suppose now that n > 1 and that the result is true up to n− 1.
The polynomial f has an irreducible factor g with deg g = d > 1. We may write f = gh. Let
α de a root of g. If σ̃ is an extension of σ, then α′ = σ̃(α) is a root of g∗, the polynomial in
F ′[X] corresponding to g. As f is separable, so is f∗, which implies that g∗ has d distinct roots
α′. From Proposition 2.2 there are precisely d isomorphisms σ̂ : F (α) −→ F ′(α′) extending σ,
one for each root α′. Also, E is a splitting field of f over F (α) and E′ a splitting field of f∗ over
F ′(α′) (for each α′). We have

[E : F ] = [E : F (α)][F (α) : F ].

Because g is irreducible, [F (α) : F ] = d, which imlies that [E : F (α)] = n
d < n. Applying the

induction hypothesis, we see that each σ̂ has exactly n
d from E onto E′, hence we have precisely

n extensions σ̃ of σ. 2

We now turn to our second topic.

3.2 Separable extensions
If E is an extension of F and α ∈ E, then α is a separable element over F , if α is algebraic
over F and the minimal polynomial m(α, F ) is separable. If every element α ∈ E is separa-
ble, then we say that E is a separable extension of F . From Corollary 3.1 and Proposition 3.1
we know that every algebraic extension of a field of characteristic 0 or of a finite field is separable.

We have seen in Theorem 2.7 that if σ : F −→ C is a monomorphism, with C algebraically
closed, and E an algebraic extension of F , then σ may be extended to a monomorphism σ̂ :
E −→ C. If E is a finite separable extension of F then we can say a little more.

Theorem 3.2 Let E be a finite separable extension of F , with [E : F ] = n, and σ a monomor-
phism from F into C, which is algebraically closed. Then there are exactly n monomorphic
extensions σ̃ : E −→ C of σ.

proof We will prove this result by induction on n. If n = 1 then E = F and there is nothing
to prove. Suppose now that n > 1 and that the result is correct up to n − 1. Let α ∈ E \ F ,
m = m(α, F ) and m∗ be the polynomial in K[X] corresponding to m, where K = σ(F ). As m
is separable, so is m∗. Given that C is algebraically closed, m∗ has a root α′ ∈ C and there is a
unique isomorphism σ̂ : F (α) −→ K(α′) extending σ and such that σ̂(α) = α′ (Proposition 2.3).
If degm = d, then

[F (α) : F ] = d =⇒ [E : F (α)] =
n

d
< n.

Also degm∗ = d, so m∗ has d distinct roots in C, because it is separable. Thus we have d choices
for α′, and thus for σ̂, and, by the induction hypothesis, each mapping σ̂ : F (α) −→ K(α′) can be
extended to a monomorphism from E into C in n

d ways. We thus obtain n
d d = n monomorphisms

σ̃ from E into C extending σ.
It is not difficult to see that there can be no more than n such extensions. If τ is such an

extension, then α′ = τ(α) is a root of m∗ and τ restricted to F (α) is an isomorphism onto F (α′).
The mapping τ is then a monomorphic extension of this restriction and so is one of the mappings
we have already considered. 2

Corollary 3.2 If E is a finite separable extension of F , with [E : F ] = n, and C an algebraically
closed extension of F , then there are exactly n F -monomorphisms of E into C.
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proof It is sufficient to take σ = idF in the preceeding theorem. 2

Finite separable extensions have a useful property which Theorem 3.2 enables us to prove.
We will also need an elementary result on finite fields, which is interesting in itself, namely that
the multiplicative group of nonzero elements of a finite field is cyclic. We will prove a more
general result. We recall that Euler’s totient function φ is defined on N∗ as follows: φ(n) is
the number of elements in the set {d : 1 ≤ d ≤ n, (d, n) = 1}. We have the following identity∑
d|n φ(d) = n.

Theorem 3.3 If F is a field and G a finite subgroup of the multiplicative group F ∗, then G is
cyclic.

proof We set |G| = n. If x ∈ G, then o(x)|n, where o(x) is the order of the element x. For each
divisor d of n, let us write ψ(d) for the number of elements in G whose order is d. If ψ(d) 6= 0,
then there is an element x ∈ G whose order is d. If y ∈ H, the group generated by x, then
yd = 1, hence y is a root of the polynomial f(X) = −1 +Xd ∈ F [X]. As f has at most d roots
and H has d elements, all the roots of f are in H, in particular, any element of order d is in
H. Also, the elements of order d in H are the generators of this group and there are φ(d) such
generators, hence we have ψ(d) = φ(d). If ψ(d) = 0, for a certain divisor d of n, then we have

n =
∑
d|n

ψ(d) <
∑
d|n

φ(d) = n,

a contradiction. It follows that ψ(d) = φ(d) for every divisor d of n. In particular, ψ(n) = φ(n) ≥
1 and so G is cyclic. 2

Corollary 3.3 If F is a finite field, then its group of nonzero elements is cyclic.

We may now prove the interesting result we referred to above.

Theorem 3.4 (primitive element theorem) If E is a finite separable extension of F , then there
exists an element α ∈ E, such that E = F (α).

proof If F is finite, then so is E, being a finite extension. If α is a generator of the cyclic group
E∗, then E = F (α).

Now let us consider the case where F is not finite. We will use an argument by induction on
[E : F ] = n. If n = 1, then E = F and we can take any element α ∈ F . Now let us suppose
that n > 1 and that the result is true up to n − 1. We take α ∈ E \ F . We claim that E is a
separable extension of F (α). To see this, notice that, if γ ∈ E, then γ is algebraic over F , hence
algebraic over F (α); in addition, m(γ, F (α)) | m(γ, F ), thus, if m(γ, F (α)) has a multiple root,
then so does m(γ, F ), a contradiction. This proves the claim.

By hypothesis there is a β ∈ E such that E = F (α, β). We will now show that there is an
element c ∈ F such that E = F (α + cβ). From Corollary 3.2 we know that there are exactly
n F -monomorphisms of E into an algebraic closure C of F . For any c ∈ F , each one of these
mappings restricted to F (α + cβ) is clearly an F -monomorphism into C. If F (α + cβ) 6= E,
then [F (α+ cβ : F ] < n and so there are distinct F -monomorphisms σ and τ of E into C which
coincident on F (α+ cβ). We have

σ(α) + cσ(β) = τ(α) + cτ(β).
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If σ(β) = τ(β), then also σ(α) = τ(α), which implies that σ = τ , because E = F (α, β). This is
a contradiction and so σ(β) 6= τ(β) and we can write

c =
σ(α)− τ(α)

τ(β)− σ(β)
.

However, a little reflexion shows that there is only a finite number of values c which can be
expressed in this form; therefore we can find an element c ∈ F such that E = F (α+ cβ), which
finishes the proof. 2

If E is an extension of F and α ∈ E is such that E = F (α), then we say that α is a primitive
element, hence the name of the theorem which we have just proved. The primitive element
theorem has an interesting application to quadratic number fields, namely

Theorem 3.5 If E is a quadratic number field, then there is a square-free integer d such that
E = Q(

√
d).

proof Let E be a quadratic number field, i.e., an extension of Q in C of degree 2. As this
extension is finite and separable, there is a primitive element α ∈ E\Q, with minimal polynomial

f(X) = a+ bX +X2

and a, b ∈ Q. As α is a root of f , we have

α =
−b±

√
b2 − 4a

2
=⇒ (2α+ b)2 = b2 − 4a ∈ Q.

It is clear that β = 2α+ b does not belong to Q and so [Q(β) : Q] > 1. As [E : Q] = 2, we must
have E = Q(β).

The number β may not be a square-free integer. If b2 − 4a = p
q , then

q2(b2 − 4a) = p =⇒ (q(2α+ b))2 ∈ Z.

Setting γ = q(2α + b), we have E = Q(γ) and γ2 ∈ Z. To finish it is sufficient to observe, as
previously, that if d = u2v, where v is square-free, then Q(

√
d) = Q(

√
v). 2

Here is another application of the primitive element theorem.

Theorem 3.6 Let E be a finite separable extension of a field F of degree n. Then the field of
fractions E(X) is a finite extension of degree n of the field of fractions F (X).

proof From the primitive element theorem (Theorem 3.4), there exists α ∈ E such that

E = F (α) = Fn−1[α],

where Fn−1[α] is the set of polynomials of degree less than n in α with coefficients in F . We set
A = {1, α, α2, . . . , αn−1}. This set is a basis of E over F . We will show that A is also a basis of
E(X) over F (X). First we notice that F , the collection of expressions of the form

c0(X)

d0(X)
+
c1(X)

d1(X)
α+ · · ·+ cn−1(X)

dn−1(X)
αn−1,
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where ci(X)
di(X) ∈ F (X), is a subfield of E(X). We now show that E(X) ⊂ F . If f ∈ E[X], then

f(X) = p0(α) + p1(α)X + · · ·+ ps(α)Xs,

where pi(α) ∈ Fn−1[α], for i = 0, 1 . . . , s. Regrouping terms having the same power of α, we
obtain the expression

f(X) = u0(X) + u1(X)α+ · · ·+ un−1(X)αn−1,

where uj ∈ F [X], for all j. Hence any polynomial in E[X] lies in F . Now, if f ∈ E[X] and
f 6= 0, then there exists

g(X) =
c0(X)

d0(X)
+
c1(X)

d1(X)
α+ · · ·+ cn−1(X)

dn−1(X)
αn−1 ∈ F ,

such that fg = 1, because F is a field. As the inverse of f in E(X) is unique, g is its inverse
in E(X). It now follows that E(X) = F , because every element of E(X) is the product of an
element of E[X] and the inverse of a nonzero element of E[X]. Hence A is a generating set of
E(X) over F (X).

To finish we show that the elements of A form an independant subset of E(X) over F (X).
Suppose that

c0(X)

d0(X)
+
c1(X)

d1(X)
α+ · · ·+ cn−1(X)

dn−1(X)
αn−1 = 0,

where ci(X)
di(X) ∈ F (X), for all i. Multiplying by the product d0(X)d1(X) · · · dn−1(X) we obtain

n−1∑
i=0

c1(X)

∏
j 6=i

dj(X)

αi = 0.

As the elements of A form an independant set over F , they form an independant set over F [X].
Because the products

∏
j 6=i dj(X) are nonzero, we have

c0(X) = c1(X) = · · · = cn−1(X) = 0,

and it follows that A is an independant set over F (X). 2

Exercise 3.1 In the proof of Theorem 3.6 we stated that the independance of the set A over F
implied its independance over F [X]. Why is this so?

We have seen that an algebraic extension E of a field F may not be finite. However, in the
case where E/F is separable and satisfies a certain condition, then this is the case.

Proposition 3.2 Let F be a field and E a separable algebraic extension of F . Then E is a finite
extension of F if there exists n ∈ N∗ such that

sup
α∈E

[F (α) : F ] ≤ n.

Moreover, [E : F ] ≤ n.
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proof Let E be a separable algebraic extension of the field F such that

sup
α∈E

[F (α) : F ] ≤ n.

Let r > n and α1, . . . , αr elements in E. Then G = F (α1, . . . , αr) ⊂ E is a finite extension of F .
As the αi are algebraic and separable, G is a separable extension of F (Theorem 3.8). From the
primitive element theorem, there exists α ∈ G such that G = F (α). As α ∈ E,

[G : F ] = [F (α) : F ] ≤ n.

However, α1, . . . , αr ∈ G, so these elements form a dependant set. It follows that [E : F ] ≤ n. 2
It may turn out that every polynomial over a given field is separable. In this case we say that

the field is perfect. As we have seen, fields of characteristic 0 and finite fields are perfect. As
an example of a non-perfect field, we may take the field Fp(t), discussed in the previous section.
We will now give two criteria for a field to be perfect.

Proposition 3.3 A field F is perfect if and only if every algebraic extension E of F is separable.

proof Suppose first that the field F is perfect and that E is an algebraic extension of F . If
α ∈ E, then m(α, F ) ∈ F[X] and so this polynomial is separable. It follows that E is separable.

We now turn to the converse. We suppose that every algebraic extension E of F is separable.
Let f = λg1 · · · gn ∈ F [X], with λ ∈ F and gi ∈ F [X] irreducible for all i. Let E be a finite (hence
algebraic) extension of F containing the roots α1, . . . , αs of f . The roots of any gi are roots of
f . For a given root αk of gi we have m(αk, F )|gi. As gi is irreducible, we have gi = λm(αk, F ),
for some λ ∈ F . However, the roots of m(αk, F ) are simple, hence those of gi (the same) are also
simple. Therefore f is separable. It follows that F is perfect. 2

We now turn to our second criterion.

Proposition 3.4 Let F be a field of characteristic p > 0. Then F is perfect if and only if, for
every a ∈ F , there exists b ∈ F such that a = bp (or, alternatively F = F p).

proof First let us suppose that for every a ∈ F we can find b ∈ F such that a = bp. Let
f ∈ F [X] be irreducible. If f(X) = a0 + a1X

p + a2X
2p + · · ·+ anX

np, then

(b0 + b1X + · · ·+Xn)p = bp0 + bp1X
p + · · ·+ bpnX

np = a0 + a1X
p + · · ·+ anX

np,

hence f is reducible, a contradiction. It follows that at least one nonzero monomial in f has a
power which is not a multiple of p. This means that the derivative f ′ is nonzero and so f does
not have a multiple root. It now follows that F is perfect.

Now the converse. Suppose that F is perfect and let a ∈ F . We set f(X) = −a + Xp and
let α be a root of f . Then a = αp and f(X) = (−α + X)p. There is an r ∈ N∗ such that
m(α, F ) = (−α+X)r, because m(α, F )|f(X). As f is separable, r = 1 and so α ∈ F . Thus we
have found a b ∈ F , namely α, with a = bp. 2

3.3 Transitivity of separability
Before looking at the principle theme of this section we will prove a result which is often useful.

Proposition 3.5 Let F , K and E be fields with K/F and E/K. If E is separable over F , then
K is separable over F and E is separable over K.
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proof Suppose that the conditions on the fields F , K and E are satisfied. First, as K is a
subfield of E, K is separable over F . We now show that E is separable over K. If α ∈ E,
then m(α,K)|m(α, F ). As m(α, F ) has no multiple roots, m(α,K) also has no multiple roots,
because m(α, F ) has no multiple roots. Therefore E is separable over K. 2

We have seen that we may define a partial order R on the collection of fields by FRE if E is
an algebraic extension of F . In a similar way, we may define a partial order R′ by FR′E if E is
a finite separable extension of F . As before the relation R′ is clearly reflexive and antisymetric,
so we only need to prove the transitivity. Here however the proof is more difficult than in the
former case. Clearly the difficulty arises only with infinite fields of characteristic p > 0. We will
begin with some preliminary results.

Lemma 3.1 Let f be a field of characteristic p > 0, E an algebraic extension of F and α ∈ E.
We set m(X) = m(α, F (αp)). Then m splits in E and α is the unique root of m. If α is separable
over F (αp), then α ∈ F (αp).

proof We set f(X) = −αp+Xp ∈ F (αp). Then f(α) = 0 and so m|f . Now, f(X) = (−α+X)p

and so m(X) = (−α+X)r, for some r ≥ 1, thus m splits in E and has α as unique root.
If α is separable over F (αp), then m is irreducible and so m′ 6= 0. Therefore m(X) = −α+X

and α ∈ F (αp). 2

Lemma 3.2 Let E be a finite extension of F , where F is of characteristic p > 0. We note
K = F (Ep), the subfield of E generated by F and the pth powers of elements of E. Then K is
composed of all the linear combinations of elements of Ep with coefficients in F .

proof Let (α1, . . . , αn) be a basis of E over F . It is clear that F (αp1, . . . , α
p
n) ⊂ K and, if e ∈ E,

then
e = λ1α1 + · · ·+ λnαn =⇒ ep = λp1α

p
1 + · · ·+ λpnα

p
n =⇒ K ⊂ F (αp1, . . . , α

p
n).

Thus K = F (αp1, . . . , α
p
n).

As E is algebraic over F the elements of F (αp1) may be expressed as as polynomials in αp1
with coefficients in F (see the proof of Proposition 1.4). Now, αp2 is algebraic over F , hence over
F (αp1). This means that every element of F (αp1, α

p
2) may be expressed as a polynomial in αp2

with coefficients in F (αp1). Simplifying such expressions, we see that every element of F (αp1, α
p
2)

may be expressed as a polynomial in αp1 and αp2 with coefficients in F . Continuing in the same
way we find that every element of F (αp1, . . . , α

p
n) may be expressed as a polynomial in αp1, . . . , α

p
n

with coefficients in F . This implies that the elements of F (αp1, . . . , α
p
n) are linear combinations of

elements of Ep, with coefficients in F . Of course, linear combinations of elements of Ep belong
to F (αp1, . . . , α

p
n) and the result follows. 2

We now consider the case where F (Ep) is not a proper subset of E, i.e., E = F (Ep).

Lemma 3.3 We suppose that E be a finite extension of F , where F is of characteristic p > 0
and that E = F (Ep). If (α1, . . . , αn) is a basis of E over F , then so is (αp1, . . . , α

p
n).

proof In the previous lemma we saw that all elements of F (Ep) are linear combinations of
pth powers of members of E. At the beginning of the proof we also saw that a pth power of a
member of E can be expressed as a linear combination of pth powers of a basis, so it follows that
(αp1, . . . , α

p
n) is a generating set of F (Ep) = E. As [E : F ] = n, this set must also be a basis of

E. 2

The following proposition is interesting in its own right.
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Proposition 3.6 Let E be a finite extension of F , where F is of characteristic p > 0. Then E
is a separable extension of F if and only if E = F (Ep).

proof We suppose first that E is a separable extension of F and take α ∈ E. The minimal
polynomial m(α, F ) has no multiple roots and so this is the case for the minimal polynomial
m(α, F (αp)), because m(α, F (αp))|m(α, F ). Hence α is separable over F (αp) and, from 3.1,
α ∈ F (αp) ⊂ F (Ep). We have E ⊂ F (Ep) ⊂ E, which implies that E = F (Ep).

We now turn to the converse. Suppose that E = F (Ep). If E is not a separable extension
of F , then we can find α ∈ E such that m(X) = m(α, F ) is not separable. We have m′(X) = 0
and so m(X) = m(Xp):

m(X) = b0 + b1X
p + · · ·+ bs−1X

(s−1)p +Xsp.

As m(α) = 0, the elements 1, αp, . . . , αsp are dependant over F . However, m(X) is a minimal
polynomial, so the elements 1, αp, . . . , αsp−1 are independant over F . Also, sp− 1 ≥ 2s− 1 ≥ s,
hence 1, α, . . . , αs are independant over F . If necessary we may add vectors to obtain the basis
(1, α, . . . , αs, u1, . . . , ut) of E over F . From the previous lemma, we know that the pth powers of
the elements of this basis form a basis and hence that 1, αp, . . . , αsp form an independant set, a
contradiction. Therefore m is separable and so E is a separable extension of F . 2

We are now in a position to establish the transitivity of finite separable extensions.

Theorem 3.7 Let F , K and E be fields, with K/F , E/K and [E : F ] < ∞. If E is separable
over K and K separable over F , then E is separable over F .

proof From Corollary 3.1 and Proposition 3.1 it is sufficient to consider the case where F
is infinite and has a characteristic p > 0. From the previous proposition E = K(Ep) and
K = F (Kp). Hence

E = K(Ep) = F (Kp)(Ep) = F (Kp, Ep) = F (Ep),

because K ⊂ E. From the previous proposition again, E is separable over F . 2

The result which we have just proved enables us to prove another, which seems quite natural.

Theorem 3.8 Let E be an extension of F and α1, . . . , αn elements of E which are algebraic and
separable over F . If E = F (α1, . . . , αn), then E is separable over F .

proof We only have to consider the case where F is infinite and of characteristic p > 0. We
note Ei = F (α1, . . . , αi). Thus Ei+1 = Ei(αi). We claim that Ei+1 = Ei(E

p
i+1). To begin with

Ei, Ei+1 ⊂ Ei+1 =⇒ Ei(E
p
i+1) ⊂ Ei+1.

To prove the equality we only need to show that αi+1 ∈ Ei(Epi+1). Now, αi+1 is separable over F ,
hence over Ei(α

p
i+1), because m(αi+1, Ei(α

p
i+1))|m(αi+1, F ). From Lemma 3.1 αi+1 ∈ Ei(αpi+1)

and so Ei+1 = Ei(E
p
i+1).

Now we can complete the proof. From Proposition 3.6, for each i, Ei+1 is separable over
Ei. Applying successively Theorem 3.7 we obtain that E is separable over En−2, then that E is
separable over En−3 and so on. Finally we obtain that E is separable over F . 2

Corollary 3.4 If E is the splitting field of a separable polynomial f ∈ F [X], then E is a separable
extension of F .
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Chapter 4

Properties of finite fields

In the Chapter ?? we introduced finite fields and in Corollary 3.3 we showed that the multiplica-
tive group of such fields is cyclic. We now examen more closely such fields.

Proposition 4.1 If Fq is a finite field, with q elements, then the roots of the polynomial A(X) =
−X +Xq ∈ Fq[X] are the elements of Fq.

proof From Corollary 3.3 we know that αq−1 = 1, for all α ∈ Fq, which implies that f(α) = 0.
This is also the case for α = 0, so the elements of Fq are all roots of A. Since A can have at
most q roots, the elements of Fq form a complete set of roots of A. 2

Determining subfields is not difficult.

Theorem 4.1 Let Fq be a finite field, with q = pn elements, where p is a prime number and n
a positive integer. Then a subfield of Fq has pm elements, for some m dividing n. On the other
hand, if m divides n, then there is a subfield of Fq with pm elements, and this subfield is unique.

proof Clearly a subfield K of Fq must have pm elements, for some m ≤ n. Let [Fq : K] = s and
B = {b1, . . . , bs} be a basis of Fq overK. The elements x ∈ Fq can be written x = k1b1+· · ·+ksbs,
with ki ∈ K. Since each ki can take on pm values, Fq must have exactly (pm)s elements. Thus
ms = n and so m divides n.

Conversely, if m divides n, then pm−1 divides pn−1, so f(X) = −1+Xpm−1 divides g(X) =
−1 +Xpn−1 in Fq[X]. Hence every root of B(X) = −X +Xpm is a root of A(X) = −X +Xpn

and so belongs to Fq. Considering B as a polynomial over the field Fpm , we see that Fq must
contain a splitting field of B, which has order pm, because B has pm distinct roots.

If there were two distinct subfields of order pm in Fq, then the polynomial B, which has
degree pm, would have more than pm roots in Fq, which is impossible. Therefore, there is a
unique subfield of Fq of order pm, where m divides n, which considts precisely of the roots of B
in Fq. 2

We now consider irreducible polynomials over finite fields. In the first result we use the
primitive element theorem.

Proposition 4.2 For any finite field Fq and positive integer n, there exists an irreducible poly-
nomial f ∈ Fq[X] of degree n.
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proof There is a finite extension E of Fq with qn elements and so [E : Fq] = n. From the
primitive element theorem, there exists α ∈ E such that E = Fq(α). The minimal polynomial
m(α,Fq) has degree [Fq(α) : F ] = n, because E = F (α). 2

Remark Since there is only q possibilities for each coefficient, there can only be a finite number
of polynomials, a fortiori of irreducible polynomials, of degree n over any Fq.

To continue we need two preliminary results.

Lemma 4.1 Let q = pn and f ∈ Fq[X] irreducible. If α is a root of f in an extension of Fq
and h ∈ Fq[X], then h(α) = 0 if and only if f divides h.

proof It is sufficient to notice that the minimal polynomial of α is a−1f , where a is the leading
coefficient of f . 2

Lemma 4.2 Let f ∈ Fq[X] be irreducible of degree m. Then f divides A(X) = −X + Xqn if
and only if m divides n.

proof First suppose that f divides A. Let α be a root of f in a splitting of f over Fq. Then
−α+ αq

n

= 0, so α ∈ Fqn . Thus Fq(α) is a subfield of Fqn . Since [Fq(α) : Fq] = m, we have

n = [Fqn : Fq(α)][Fq(α) : Fq] = [Fqn : Fq(α)]m =⇒ m|n.

Conversely, suppose that m divides n. Suppose that q = pk; then mk divides nk and so, by
Theorem 4.2, Fpnk contains Fpmk as a subfield, i.e., Fqn contains Fqm as a subfield. Let α be a
root of f in a splitting field of f over Fq. Then [Fq(α) : Fq] = m and so we have

m = [Fqm : Fq] = [Fqm : Fq(α)][Fq(α) : Fq] = [Fqm : Fq(α)]m =⇒ [Fqm : Fq(α)] = 1.

It follows that Fqm = Fq(α) and so α ∈ Fqm ⊂ Fqn . This implies that α is a root of A(X) =
−X +Xpn ∈ Fq[X]. Therefore f divides A, by Lemma 4.1. 2

Corollary 4.1 Let E be an algebraic extension of a finite field Fq. Then, for any element
α ∈ E∗, there exists a positive integer n such that αn = 1.

proof Let f = min(α,Fq). If the degree of f is m, then, using Lemma 4.2 (with m = n), we
obtain that f divides the polynomial B(X) = −X + Xqm . Hence −α + αq

m

= 0. Multiplying
by α−1, we obtain αq

m−1 = 1. 2

In the next result we show that the roots of an irreducible polynomial may be expressed as
powers of a given root. This will enable us to find an explicit form of a spltting field.

Theorem 4.2 If f ∈ Fq[X] is of degree m, then f has a root α in Fqm . Moreover, all the roots
of f are simple and are powers of α.

proof Let α be a root of f in a splitting field of f over Fq. A splitting field of f over Fq has
the form Fqs , with s ≥ 1, and Fq(α) ⊂ Fqs . If Fq(α) strictly contains Fqm , then

m = [Fq(α) : Fqm ][Fqm : Fq] = [Fq(α) : Fqm ]m > m,

a contradiction. Hence Fq(α) ⊂ Fqm , which implies that α ∈ Fqm .
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If β is a root of f in Fqs , then βq is also a root: If f(X) =
∑m
i=0 aiX

i, with ai ∈ Fq, then

f(βq) = a0 + a1β
q + · · ·+ amβ

qm

= aq0 + aq1β
q + · · ·+ aqmβ

qm

= (a0 + a1β + · · ·+ amβ
m)q = f(β)q,

so βq is a root of f , as claimed. It follows that the elements α, αq, . . . , αq
m−1

are roots of f .
These roots are distincts: Suppose, on the contrary, that αq

j

= αq
k

, with 0 ≤ j < k ≤ m − 1.
Then, multiplying by αm−k, we obtain

αq
m−k+j

= αq
m

= α.

From Lemma 4.1, f divides the polynomial A(X) = −X + Xqm−k+j . However, from Lemma
4.2, we have m divides m − k + j, which is impossible, because 0 < k − j ≤ k − 1 implies that
0 < m− k + j < m. Hence the m roots of f in Fqm are α, αq, . . . , αq

m−1

. 2

Corollary 4.2 If f is an irreducible polynomial in Fq[X] of degree m, then Fqm is a splitting
field of f over Fq.

proof In Theorem 4.2 we established that Fqm = Fq(α), where α is a root of f in a splitting
field of f over Fq. However, Fq(α) = Fq(α, α

q, . . . , αq
m−1

), which is a splitting field of f over
Fq. Therefore Fqm is a splitting field of f over Fq. 2

Using Lemma 4.2 we may deduce a factorization of the polynomial A[X] = −X +Xqn .

Theorem 4.3 For a finite field Fq and n ∈ N∗, the product of all the monic irreducible polyno-
mials over Fq whose degree divides n is equal to A[X] = −X +Xqn .

proof From Lemma 4.2, the monic irreducible polynomials in Fq[X] which occur in the factor-
ization of A[X] are precisely those whose degree divides n. Since A′(X) = −1 + qnXqn−1 = −1,
A has no multiple roots in a splitting field over Fq. Thus each monic irreducible polynomial
occurring in the factorization of A occurs exactly once. 2

Example The monic irreducible polynomials in F2[X] are f1(X) = X, f2(X) = 1 + X and
f3(X) = 1+X+X2. A simple calculation shows that the product of the fi is A(X) = −X+X4,
which is not surprising, because 4 = 22 and the divisors of 2 are 1 and 2.

Exercise 4.1 Let Nq(d) be the number of monic irreducible polynomials of degree d in Fq[X].
Show that

qn =
∑
d|n

dNq(d).
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Chapter 5

Normal extensions

In this short chapter we will consider another type of extension. Let E be an algebraic extension
of F such that any irreducible polynomial f ∈ F [X] having a root α ∈ E splits over E. In this
case we say that E is a normal extension of F .

Proposition 5.1 The algebraic extension E is normal over F if and only if, for each α ∈ E,
the minimal polynomial m(α, F ) splits over E

proof Let E be a normal extension of F and α ∈ E. The polynomial m = m(α, F ) is irreducible
and has a root, namely α, in E. Therefore m splits over E.

Now let us suppose that E is an algebraic extension of F and that, for each α ∈ E, the
minimal polynomial m(α, F ) splits over E. Let f be an irreducible polynomial in F [X] and β a
root of f in E. As m = m(β, F ) and f are irreducible and m|f , i.e., f = cm, where c ∈ F . As
m splits over E, so does f . Thus E is a normal extension of F . 2

Example The number field Q( 3
√

2) is not a normal extension of Q. The minimal polynomial
m( 3
√

2,Q) = 2−X3 and the complex roots of this polynomial do not belong to Q( 3
√

2).

We have other equivalent conditions particularly when E is a finite extension of F . We need
a definition. If F = {fi}i∈I is a collection of polynomials in F [X], E an extension of F such that
E is generated by F and the roots of the fi, then we say that E is a splitting field of F .

Proposition 5.2 The following conditions are equivalent for an algebraic extension E of F :

• a. E is a normal extension of F ;

• b. E is the splitting field of a collection of polynomials in F [X];

• c. If C is an algebraic closure of F , with E/F and C/E, and σ : E −→ C is an F -
monomorphism, then σ(E) = E.

proof a. =⇒ b. Let F = {m(α, F ) : α ∈ E} and A the family of roots of the polynomials in
F . If α ∈ E, then α ∈ A and so E ⊂ F (A), the subfield of E generated by F and A. To see that
F (A) ⊂ E it is sufficient to notice that F ⊂ E, because E is an extension of F and that A ⊂ E,
because the extension E is normal. (If α ∈ E, then all the roots of m(α, F ) are in E).

b. =⇒ c. By hypothesis there is a collection of polynomials F ⊂ F [X] such that E = F (A),
where A is the family of roots of members of F . Let C be an algebraic closure of F containing
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E and σ : E −→ C a monomorphism. We claim that σ(A) = A. Indeed, if a ∈ A, then a is a
root of a polynomial f ∈ F ; this implies that σ(a) is also a root of f . Thus σ(A) ⊂ A and σ
induces an injection from the set of roots of f into itself. As f has a finite number of roots, this
injection is also a surjection and it follows that σ(A) = A. Then

σ(E) = σ(F (A)) = F (σ(A)) = F (A) = E.

c. =⇒ a. Suppose that the condition c. is satisfied and that the extension E is not normal.
Then there exists an irreducible polynomial f ∈ F [X] which has roots α and β, with α ∈ E
and β ∈ C \ E. Let σ be the F -homomorphism of F (α) into C such that σ(α) = β. σ is an
F -monomorphism because m(α, F ) = m(β, F ). As E is an algebraic extension of F (α), from
Theorem 2.7, σ may be extended to a monomorphism τ of E into C. However,

τ(α) = σ(α) = β /∈ E,

and so we have a contradiction to the condition c. It follows that c. =⇒ a. 2

We have seen that there is a transitivity property for algebraic extensions and for finite sep-
arable extensions. However, such a property does not exist for normal extensions. It may be
so that K is a normal extension of F and E a normal extension of K, without E being a nor-
mal extension of F . Here is an example. We set F = Q, K = F (α), where α is the positive
square root of 2 and E = F (β), where β is the positive 4th root of 2. K is a splitting field of
the polynomial f(X) = −2 + X2 ∈ F [X] and so K is a normal extension of F . Also, E is a
splitting field of the polynomial g(X) = −α+X2 ∈ K[X], so E is a normal extension of K. Let
h(X) = −2 + X2 ∈ F [X]. Then h has a root in E (in fact, two roots); however, the roots ±iβ
are not in E. Therefore, E is not a normal extension of F .

Although we do not have transitivity, we can say something when we have three fields related
by inclusion.

Proposition 5.3 Suppose that K/F and E/K, with E normal over F . Then E is normal over
K.

proof As E is normal over F , by Proposition 5.2 a. =⇒ b., there is a collection of polynomials
F ⊂ F [X] such that E = F (A), where A is the family of roots of the polynomials in F . Now,
F ⊂ K implies that F ⊂ K[X], hence, by Proposition 5.2 b. =⇒ a., E is normal over K. 2

For finite extensions we have a particularly simple characterization of normality:

Theorem 5.1 The finite extension E of F is normal if and only if E is the splitting field of a
polynomial f ∈ F [X].

proof Suppose that E is normal over F . Let α1, . . . , αn be a basis of E over F and mi =
m(αi, F ), for i = 1, . . . , n. As αi ∈ E and E is normal, mi splits over E. It follows that
f = m1 · · ·mn splits over E. If K/F and E/K and f splits over K, then α1, . . . , αn ∈ K. As
the αi form a basis of E, we must have K = E. Therefore E is a splitting field of f .

For the converse it is sufficient to apply Proposition 5.2 (b. =⇒ a.). 2

Corollary 5.1 A finite extension of a finite field is normal.
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proof Let F be a finite field and E a finite extension of F , with [E : F ] = n. As F is finite we
know that there is a prime number p and a positive integer k such that |F | = pk. It follows that
|E| = pkn. Every element a ∈ E is a root of the polynomial f(X) = −X + Xpkn ∈ F [X]. As
deg f = pkn, f splits in E. If K is a proper subfield of E, then f cannot split in K, because at
least one element of E, i.e., a root of f , is missing. Therefore E is a splitting field of f and so,
from Theorem 5.1, E is a normal extension of F . 2

We finish this section with another criterion for an extension to be normal.

Proposition 5.4 Let F be a field and α1, . . . , αn algebraic over F such that the roots of the
minimal polynomials m(αi, F ) lie in F (α1, . . . , αn). Then the field F (α1, . . . , αn) is a normal
extension of F .

proof Let f be the highest common factor of the minimal polynomialsm(αi, F ). Then f ∈ F [X]
and f divides the product of the minimal polynomials. Thus every root of f is a root of one of the
minimal polynomials and so, by hypothesis, lies in F (α1, . . . , αn). It follows that F (α1, . . . , αn)
contains a splitting field of f . However, for each i, αi is a root of one of the factors of m(αi, F )
and so is a root of f . This means that each αi must belong to a splitting field of f and so
F (α1, . . . , αn) lies in such a field. We have shown that F (α1, . . . , αn) is a splitting field of f and
so , by Theorem 5.1, is a normal extension of F . 2

5.1 Normal closures
Let E be an algebraic extension of F and N an algebraic extension of E such that N is normal
over F . If N is minimal with this property, i.e., there is no proper subfield of N with the same
property, then we say that N is a normal closure of E over F .

Let E be finite extension of F . Then, from Proposition 1.3, E is algebraic over F and
there exist α1, . . . , αn ∈ E such that E = F (α1, . . . , αn). We note mi(X) = m(αi, F ) and
m(X) = m1(X) · · ·mn(X) and let N be a splitting field of m. N is a finite extension of F
containing E. As N is a finite extension of E, N is algebraic over E. From Theorem 5.1, N is
a normal extension of F . We claim that N is a normal closure of E over F . To see this, let K
be a subfield of N containing E, which is also normal over F . From Proposition 5.1, each mi

splits over K, hence so does m. It follows that K = N and so N is a normal closure of E over
F . Therefore, at least in the case of finite extensions, normal closures exist. In fact, this is also
true for transcendental extensions.

Lemma 5.1 Let F be a field and E an algebraic extension of F . If {Ei}i∈I is a collection of
subfields of E normal over F , then the intersection K of the Ei is normal over F .

proof The intersection K is clearly a field. If α ∈ K, then α ∈ Ei, for each i ∈ I. This implies
that the minimal polynomial m(α, F ) splits over Ei, for each i ∈ I, and hence over K. It follows
that K is normal over F . 2

Theorem 5.2 If E is an algebraic extension of F , then there is a normal closure of E over F .

proof Let C be an algebraic closure of E. Then C is an algebraic extension of E, hence of
F . C is also a normal over F . Thus the collection of normal extensions of F containing E is
non-empty. Using the lemma, we see that the intersection N of all such extensions of F is normal
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and contains E and so is a normal closure of E over F . 2

We will now see that normal closures are unique up to isomorphism.

Theorem 5.3 If N and N ′ are normal closures of E over F , then N and N ′ are F -isomorphic.

proof Let C be an algebraic closure of F and σ : E −→ C a F -monomorphism. (From
Theorem 2.7 such a monomorphism exists.) From Theorem 2.7 again, we can extend σ to a
monomorphism τ (resp. τ ′) from N (resp. N ′) into C. Then τ(N) and τ ′(N ′) are both normal
closures of σ(E) over σ(F ). From Lemma 5.1, τ(N) ∩ τ ′(N ′) is normal over σ(F ) and contains
σ(E). By minimality, τ(N) = τ(N) ∩ τ ′(N ′) = τ ′(N ′). If we set φ = τ ′ ◦ τ , then φ is an
isomorphism from N onto N ′. 2

Exercise 5.1 Let E be finite separable extension of F and N a normal closure of E over F .
Show that N is a finite separable extension of F .

An extension E of F is a Galois extension if it is both separable and normal. In the case of
fields of characteristic 0 or of finite fields such extensions are very common: the extension E only
needs to be a splitting field of a polynomial in F [X]. From what we have seen, a finite extension
of a finite field is a Galois extension.
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Chapter 6

The Galois group

If E is an extension of F , then the collection of automorphisms of E fixing F , together with the
composition of mappings ◦, form a group called the Galois group of the extension E of F . We
note this group Gal(E/F ). We begin with some basic properties of this group.

Proposition 6.1 If E is a finite extension of F , then the Galois group Gal(E/F ) is finite.

proof Let (αi)
n
i=1 be a basis of E over F and let us note mi = m(αi, F ). If σ ∈ Gal(E/F ),

then, for any αi, σ(αi) is a root of mi, hence there is a finite number of choices for σ(αi). As σ
is determined by the values of the σ(αi) and those of F , which are left unchanged by σ, there is
a finite number of automorphisms. 2

Let us look at some examples of Galois groups.

Example 1. G = Gal(Q(
√

2),Q). An element σ ∈ G is determined by its value on
√

2. Since√
2 is a root of the polynomial f(X) = −2 +X2, so is σ(

√
2), which implies that σ(

√
2) = ±

√
2.

This leads to two distinct automorphisms, namely the identity and the automorphism τ defined
by τ(a+ b

√
2) = a−

√
2, hence G = {idQ(

√
2), τ} ' Z2.

Example 2. G = Gal(Q( 3
√

2),Q). An element σ ∈ G is determined by its value on 3
√

2. Since
3
√

2 is a root of the polynomial f(X) = −2 + X3, so is σ( 3
√

2). However, σ( 3
√

2) ∈ Q( 3
√

2) ⊂ R,
so σ( 3

√
2) = 3

√
2, which implies that σ is the identity. Thus G = {idQ( 3√2)}.

It is interesting to notice that apparently similar extensions may have quite different Galois
groups. It is quite easy to see that the Galois group of C over R has just two elements, namely
the identity and complex conjugation and so is isomorphic to Z2. But what can we say of the
Galois group of R over Q.

Example 3. G = Gal(R/Q). Let σ ∈ G and suppose that a < b. Then b − a = y2, for some
y 6= 0, and

σ(b)− σ(a) = σ(b− a) = σ(y2) = σ(y)2 > 0 =⇒ σ(a) < σ(b).

If σ 6= idR, then there exists x such that σ(x) 6= x. If σ(x) > x, then there exists a rational
number r such that x < r < σ(x). and σ(x) < σ(r) < σ2(x). However, σ(r) = r, because r ∈ Q,
so we have a contradiction, hence σ(x) 6> x. A similar argument shows that σ(x) 6< x and it
follows thar σ is the identity on R. Therefore G = {idR}.
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If the extension E of F is Galois, then we can be more precise.

Theorem 6.1 If E is a finite Galois extension of F , then we have |Gal(E/F )| = [E : F ].

proof As E is a finite normal extension of F , E is the splitting field of a polynomial f ∈ F [X],
which is a product of minimal polynomials (see Theorem 5.1 and its proof). However, the ex-
tension E is also separable, hence the minimal polynomials in the product are separable and it
follows that E is a splitting field of a separable polynomial. Now applying Theorem 3.1 with
E′ = E, F ′ = F and σ the identity, we obtain the result. 2

Remark From Theorem 6.1, the extension Q( 3
√

2) is not Galois.

6.1 Fundamental theorem of Galois theory
In this section we consider the relation between extensions of a field F included in a given
extension E and subgroups of the Galois group Gal(E/F ). We begin with two definitions. For
H, a subgroup of Gal(E/F ), we write

F(H) = {x ∈ E : σ(x) = x, ∀σ ∈ H}.

We often write EH for F(H). It is easy to check that EH is a field and that F ⊂ F(H) ⊂ E.
EH is called the fixed field of H in E. For an intermediate field K, i.e., K/F and E/K, we set

G(K) = Gal(E/K) = {σ ∈ Gal(E/F ) : σ(x) = x, ∀x ∈ K}.

It is not difficult to show that G(K) is a subgroup of Gal(E/F ).
We will note S(Gal(E/F )), or just S(G), the set of subgroups of Gal(E/F ) and T(E/F ), or

just T, the set of intermediate fields between F and E. With inclusion both of these sets are
partially ordered.

We recall that, if (A,≤a) and (B,≤b) are partially ordered sets and φ is a mapping from A
into B such that, for x, y ∈ A,

x ≤a y =⇒ φ(x) ≤b φ(y),

then φ is said to order-preserving. On the other-hand, if

x ≤a y =⇒ φ(y) ≤b φ(x),

then φ is said to order-reversing. It is not difficult to see that the mappings F and G are
order-reversing.

Theorem 6.2 Suppose that E is a finite extension of F . Then E is Galois extension if and only
if F(G) = F , where G = Gal(E/F ).

proof Let us first suppose that E is a Galois extension of F . We set F0 = F(G). As F ⊂ F0,
every F0-automorphism is an F -automorphism. If there is an F -automorphism σ which is not
an F0-automorphism, then we can find an element y ∈ F0 \ F such that σ(y) 6= y. However, by
definition of F0, this is not possible, and so every F -automorphism is an F0-automorphism. As
E is separable over F and F0 is an intermediate field, E is separable over F0 (Proposition 3.5).
Therefore, using Theorem 6.1, we have

[E : F ] = |Gal(E/F )| = |Gal(E/F0)| = [E : F0]
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and it follows that F0 = F .
We now turn to the converse. We suppose that F(G) = F . From Proposition 6.1 we know

that the Galois group G = Gal(E/F ) is finite. Let G = {σ1, . . . , σn}, with σ1 the identité. We
need to show that the extension E is both normal and separable. We will first show that it is
normal. We consider an irreducible polynomial f ∈ F [X] with a root α in E. Applying the
automorphisms σi to α, we obtain r distinct images:

α = α1 = σ1(α), α2 = σ2(α), . . . , αr = σr(α),

where we have supposed that the first r automorphisms give the distinct images. Let us write

e1 =

r∑
i=1

αi, e2 =
∑
i<j

αiαj , e3 =
∑
i<j<k

αiαjαk, . . . , er =

r∏
i=1

αi.

(These expressions are just the evaluations at (α1, . . . , αr) of the elementary polynomials in
E(X1, . . . , Xr).)

Any σ ∈ G permutes the αi and so, for each i, we have σ(ei) = ei. Therefore the ei belong
to F(G) = F . We now consider the polynomial

g(X) = (−α1 +X) · · · (−αr +X) = (−1)rer + · · ·+ e2X
r−2 − e1X

r−1 +Xr ∈ F [X].

We claim that g = m(α, F ). Let h(X) =
∑m
i=0 biX

i, with h(α) = 0. Then, for every i,

0 = σi(h(α)) = h(σi(α)) = h(αi).

As the roots of g are roots of h, g divides h and so g = m(α, F ) as claimed.
We now return to the polynomial f . As f is irreducible and has α as a root, there is a

constant c ∈ F such that f = cg. As the αi ∈ E, g splits over E, and so does f . We have shown
that E is a normal extension.

We now show that the extension E is also separable. We take α ∈ E. The polynomial g
which we defined above is the minimal polynomial m(α, F ) and this has distinct roots. Hence α
is a separable element and it follows that the extension E is separable over F . 2

In the last result we saw that, in the case of a finite Galois extension, F(G) = F . It is natural
to ask whether there is a subgroup H of G such that F(H) = F . In the next theorem, we will
see that the answer is negative.

Theorem 6.3 If E is a finite Galois extension of F and H a proper subgroup of the Galois
group G = Gal(E/F ), then F is properly contained in F(H).

proof We will give a proof by contradiction. Suppose that H is a proper subgroup of G and that
F(H) = F . As E is a finite separable extension of F we may apply the primitive element theorem
(Theorem 3.3): there exists α ∈ E such that E = F (α). We define a polynomial f ∈ E[X] by

f(X) =
∏
σ∈H

(−σ(α) +X).

For τ ∈ H, we define the polynomial τf by applying τ to the coefficients of f . It is easy to see
that

τf(X) =
∏
σ∈H

(−τσ(α) +X) = f(X).

43



Therefore the coefficients of F are fixed by τ , which implies that f ∈ F [X], because F(H) = F .
Now we notice that α is a root of f . (It is sufficient to take σ = id). Thus

deg f = |H| < |G| = [E : F ] = [F (α) : F ] = degm(α, F ) ≤ deg f,

a contradiction. This establishes the result. 2

We now turn to the fundamental theorem of Galois theory. The theorem has three parts,
which we will handle separately.

Theorem 6.4 Let E be a finite Galois extension of a field F , with Galois group G. As above
we write S the set of subgroups of G and T for the set of intermediate fields between F and E.
Then the mappings F : S −→ T and G : T −→ S are bijections, each one being the inverse of
the other.

proof First, let us consider the mapping GF . We take a subgroup H of G. Then

σ ∈ H =⇒ σ(x) = x ∀x ∈ F(H) =⇒ σ ∈ Gal(E/F(H)) = GF(H).

Therefore H ⊂ GF(H). Suppose that we do not have equality. Using Propositions 3.5 and 5.3
we see that E is a finite Galois extension of F(H). As H is a proper subgroup of GF(H) =
Gal(E/F(H)), from Theorem 6.3, with F(H) as F , then F(H) is properly contained in itself, a
contradiction. It follows that we have H = GF(H).

We now consider the mapping FG. Let K be a field intermediate between F and E. Using
Propositions 3.5 and 5.3 we see that E is a finite Galois extension of K. Then, from Theorem
6.2, F(Gal(E/K)) = K, i.e., FG(K) = K. This finishes the proof. 2

Up to now we have seen that, in the case of finite Galois extensions, the mappings F and
G are order-reversing bijections. We will now see that these mappings have other properties,
namely they associate certain types of subgroups with particuler sorts of intermediate fields.

We need a definition. If K is a subfield of a field E and σ an automorphism of E, then σ(K)
is a subfield of E. Such a subfield is called a conjugate subfield of K.

Theorem 6.5 Let E be a finite Galois extension of F and G the associated Galois group. If
H is a subgroup of G, σ ∈ G and K = F(H), then F(σHσ−1) = σ(K), i.e., F associates a
conjugate subgroup to a corresponding conjugate subfield.

proof We have

F(σHσ−1) = {x ∈ E : στσ−1(x) = x ∀τ ∈ H}
= {x ∈ E : τ(σ−1(x)) = σ−1(x) ∀τ ∈ H}
= {x ∈ E : σ−1(x) ∈ F(H)} = σ(K).

This ends the proof. 2

We now consider normal subgroups of the Galois group. We notice first that, if K is an
intermediate field, then E is always a normal extension of K (Proposition 5.3); however, K may
not be a normal extension of F .
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Theorem 6.6 Suppose that E is a finite Galois extension of F and G the associated Galois
group. Then K is a normal extension of F if and only if H = Gal(E/K) is a normal subgroup
of G. In this case the Galois group Gal(K/F ) is isomorphic to the quotient group G/H.

In addition, for any subgroup H (not necessarily normal),

[K : F ] = [G : H] and [E : K] = |H|.

proof Let K be an intermediate field which is a normal extension of F and C an algebraic
closure of F , with C/E. (From Exercise 2.3 such an algebraic closure exists.) Suppose that σ
is an F -monomorphism from K into E, thus into C. As K is separable over E, we may extend
σ to an F -monomorphism σ̃ : E −→ C (Theorem 3.2). As E is a normal extension of F , from
Proposition 5.2, σ̃ is an F -automorphism of E. Hence, every F -monomorphism σ of K into E
is a restriction of an F -automorphism σ̃ of E. In addition, clearly every F -automorphism of E
restricted to K is an F -monomorphism of K into E. Thus the F -monomorphisms from K into
E are the restrictions to K of F -automorphisms of E, i.e., of elements of τ ∈ G. As K is a
normal extension of F , using Proposition 5.2 again, we see that τ is an F -automorphism of K.
If K = F(H), then with Theorem 6.5 we have

F(H) = K = τ(K) = F(τHτ−1) =⇒ H = τHτ−1,

and so H is a normal subgroup of G.
Now we suppose that H is a normal subgroup of G. For any σ ∈ G, we have H = σHσ−1.

Then, for K = F(H),
σ(K) = F(σHσ−1) = F(H) = K.

Let f ∈ F [X] be irreducible with a root α ∈ K. Because K ⊂ E and E is a normal extension of
F , all the roots of f lie in E, so E contains a splitting field S of f , which is an extension of K. If
α′ is another root of f , then using Proposition 2.2 with σ = id, we may find an F -isomorphism
σ : F (α) −→ F (α′), which is such that σ(α) = α′. Now, applying Theorem 2.2, we can extend
σ to an F -automorphism σ′ of E′. We would like to extend σ′ to an F -automorphism of E. We
take an algebraic closure C of E′, which is an extension of E. Then we may consider σ′ as a
monomorphism of E′ into C, which we can extend to σ̂ : E −→ C. However, E is a normal
extension of E′, because E is such an extension of F and so, from Proposition 5.2, σ̂(E) = E.
Thus, σ̂ is an F -automorphism of E, such that σ̂(α) = α′. As σ̂(K) = K and α ∈ K, α′ ∈ K. It
follows that K is a normal extension of F .

We have proved the hardest part of the theorem. Now we turn to the remaining parts. First,
we show that Gal(K/F ) ' G/H, if H �G. Consider the mapping

φ : Gal(E/F ) −→ Gal(K/F ), σ 7−→ σ|K .

In the first part of the proof we saw that the elements of the Galois group Gal(K/F ) are the
restrictions to K of the elements of the Galois group Gal(E/F ). Hence, the mapping φ is an
epimorphism. Also,

Kerφ = {σ ∈ Gal(E/F ) : σ|K = id|K} = Gal(E/K) = H.

It follows that
Gal(E/F )/H ' Gal(K/F ).

To conclude, we notice that

|G| = [E : F ] = [E : K][K : F ] = |H|[K : F ] =⇒ [K : F ] =
|G|
|H|

= [G : H]
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and
[E : K] =

[E : F ]

[K : F ]
=

|G|
|G|/|H|

= |H|.

This ends the proof 2

Remark We may sum up the results of Theorem 6.6 in the following way. If H is a subgroup of
the Galois group G = Gal(E/F ) and K the corresponding intermediate field between F and E
(K = F(H)), then

[E : K] = |H| = |Gal(E/K)|

and
[K : F ] = [G : H].

If, in addition, H is a normal subgroup of G, then K is a normal extension of F and we may
extend the second line to obtain

[K : F ] = [G : H] = |G/H| = |Gal(K/F )|.

The Theorems 6.4, 6.5 and 6.6 which we have just proved are usually handled together under
the name of the fundamental theorem of Galois theory. As two of the parts are rather long, it
seems to us preferable to divide the theorem into parts.

We have seen that a finite extension E of a field F gives rise to a finite group of automor-
phisms of E, namely the Galois group Gal(E/F ). Suppose now that we have a finite group of
automorphisms G of a field E. It is natural to ask whether there exists a subfield F of E such
that G is the Galois group Gal(E/F ). This is in fact the case as we will now see.

Let E be a field and G a finite subgroup of the group of automorphisms of E. We suppose
that |G| = n and set

F = EG = {x ∈ E : g(x) = x, ∀g ∈ G}.

F is clearly a subfield of E; it is called the fixed field of G in E.

Theorem 6.7 (Artin) The field E is a finite Galois extension of F and

Gal(E/F ) = G.

proof We define an action Φ of the group G on E :

Φ : G× E −→ E, (g, x) 7−→ g(x).

Let us take α ∈ E and note Oα the orbit of α:

Oα = {g(α) : g ∈ G} = {α1, . . . , αs},

with α1 = α and s ≤ n. We set

f(X) =

s∏
k=1

(−αk +X).

An element of G permutes the αi; given that the coefficients of the polynomial f are symmetric
polynomials in the αi, these coefficients are fixed by G and so f ∈ F [X]. Hence every element
α ∈ E is the root of a f ∈ F [X], with deg f ≤ n. As the roots of f are distinct, E is a separable
extension of F . From Proposition 3.2, E is a finite extension of F and [E : F ] ≤ n.
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We need to show that E is a normal extension of F . From the primitive element theorem,
there exists α ∈ E such that E = F (α). As the roots of the minimal polynomial m(α, F ) lie in
the orbit of α, which is contained in E, E is a splitting field of m(α, F ); it follows from Theorem
5.1 that E is a normal extension of F . We have shown that E is a Galois extension of F .

To conclude, we show that G is the Galois group Gal(E/F ). By definition of F , every element
of G fixes the elements of F , so G ⊂ Gal(E/F ). In addition, from Theorem 6.1, we know that
|Gal(E/F )| = [E : F ] ≤ n, hence

n = |G| ≤ |Gal(E/F )| ≤ n

and it follows that
G = Gal(E/F ).

This ends the proof. 2

The theorem which we have just proved has an interesting application. We recall a definition.
If F is a field and F [X1, . . . , Xn] is the ring of polynomials in n variables with coefficients in
F , then we write F (X1, . . . , Xn) for the field of fractions of F [X1, . . . , Xn]. This field is called
the field of rational functions in n variables over F . The rational fractions of the symmetric
polynomials form a subfield of F (X1, . . . , Xn), which we will note FS(X1, . . . , Xn). We are inter-
ested in finding the degree of the extension F (X1, . . . , Xn)/FS(X1, . . . , Xn) and its Galois group.

If σ ∈ Sn, then the mapping defined by Xi 7−→ Xσ(i) induces an automorphism σ̄ of the
field F (X1, . . . , Xn). The mapping σ 7−→ σ̄ is a group monomorphism, so Sn may be considered
to be a subgroup of the group of automorphisms of F (X1, . . . , Xn). The fixed field of Sn is
clearly FS(X1, . . . , Xn). From Artin’s theorem (Theorem 6.7) we deduce that F (X1, . . . , Xn) is
a finite Galois extension of FS(X1, . . . , Xn), with Galois group Sn. It folows that the dimension
of F (X1, . . . , Xn) over FS(X1, . . . , Xn) is n!.

Conjugates in Galois extensions

If E is a finite field extension of a field F and α ∈ E, then we say that any root of the
minimal polynomial m(α, F ) is an (F -)conjugate of α. It is clear that, for all σ ∈ Gal(E/F ),
σ(α) is an F -conjugate of α. However, in general, not all conjugates of α are of this form. For
example, the Q-conjugates of 3

√
2 are 3

√
2, j 3
√

2 and j2 3
√

2, where j is a primitive 3rd root of
unity. If σ ∈ Gal(Q( 3

√
2),Q), then Im (σ) ⊂ R, so there is no σ ∈ Gal(Q( 3

√
2),Q) such that

σ( 3
√

2) = j 3
√

2. The following result ensures that, if E/F is a finite normal extension, then all
F -conjugates of an element α ∈ E are images of α by an element in the Galois group.

Proposition 6.2 If E is a finite normal extension of F and α ∈ E then the set

A = {σ(α) : σ ∈ Gal(E/F )}

is the set of conjugates of α.

proof If β is a conjugate of α, then, from Proposition 2.3, there is an F -isomorphism φ :
F (α) −→ F (β) such that φ(α) = β, since m(α, F ) ∈ F [X] is irreducible. Both F (α) and F (β)
are subfields of E. (As E is a normal extension of F , we may suppose that all the conjugates
of α lie in E.) From Theorem 5.1 there exists a polynomial g ∈ F [X] whose splitting field is E.
Now, g ∈ F (α)[X] and, in the notation of Theorem 2.2, with φ = σ, we have g∗ = g. It follows
that there exists σ′ ∈ Gal(E/F ) such that σ′(α) = β. 2
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We have shown, at least in the case where E is a normal extension of F , that the set of
conjugates of the element α ∈ F is composed of elements of the form σ(α), where σ ∈ Gal(E/F ).
However, it may be so that there are members σ, τ ∈ Gal(E/F ) such that σ(α) = τ(α). We
are interested in knowing the number of automorphisms σ ∈ Gal(E/F ) which give us the same
conjugate.

Proposition 6.3 Let E be a finite Galois extension of F , α ∈ E and β a conjugate of α ∈ L.
Then the number of σ ∈ Gal(E/F ) such that σ(α) = β is equal to the dimension [E : F (α)].

proof Let β be a conjugate of α. There exists σ′ ∈ Gal(E/F ) such that σ′(α) = β. We have

{σ ∈ Gal(E/F ) : σ(α) = β} = {σ ∈ Gal(E/F ) : σ(α) = σ′(α)}
= {σ ∈ Gal(E/F ) : σ′−1σ(α) = α}.

Thus we have a bijection between the automorphisms σ ∈ Gal(E/F ) such that σ(α) = β and
the automorphisms σ ∈ Gal(E/F ) such that σ(α) = α. However, σ ∈ Gal(E/F ) fixes α if and
only if σ ∈ Gal(E/F (α)). From Theorem 6.6 we have

|Gal(E/F (α))| = [E : EGal(E/F (α))],

where EGal(E/F (α)) is the fixed field of Gal(E/F (α)). Moreover, by Propositions 3.5 and 5.3 E
is a Galois extension of F (α). Using Theorem 6.2 we obtain

EGal(E/F (α)) = F (α)

and so
[E : EGal(E/F (α))] = [E : F (α)].

This ends the proof. 2

Remark If E is a Galois extension of F and the conjugates of an element α ∈ E are distinct,
then it is natural to ask whether these elements form a basis of E over F . (If E is a Galois
extension of F , then |Gal(E/F )| = [E : F ].) This is not in general the case. However, the
normal basis theorem ensures that for some α ∈ E this is the case. (For a proof, see for example
[23]).

6.2 Composita
In this section we will be primarily interested in intersections of subgroups of the Galois group.
We begin with a definition. If K and L are subfields of a field E, then the intersection of all
subfields of E containing these fields, which we note KL, is called the compositum of K and L.
Clearly KL is the smallest subfield of E containing K and L. Of course we may easily generalize
this definition to more than two subfields, even to an infinite number of subfields.

The subset R of E defined by

R =
{∑
i∈I

kili : ki ∈ K, li ∈ L, |I| <∞
}

is the smallest subring of E containing bothK and L. The ring of fractions ofR is the compositum
KL in E.
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Theorem 6.8 Let K and L be extensions of F in E, where K is a finite Galois extension of F .
Then

• a. KL is a finite Galois extension of L;

• b. If σ ∈ Gal(KL/L), then the restriction of σ to K belongs to Gal(K/F ) and the mapping

φ : Gal(KL/L) −→ Gal(K/F ), σ 7−→ σ|K

is a monomorphism;

• c. K is a Galois extension of K ∩ L and the image of φ is Gal(K/K ∩ L); φ is an
isomorphism if and only if K ∩ L = F .

proof a. From the primitive element theorem there is an element α ∈ K such that K = F (α),
hence

KL = LF (α) = L(α).

As α is algebraic over F , therefore over L, L(α) is a finite extension of L. As K is a separable
extension of F , α is separable over F , hence over L, and it follows that L(α) is separable over
L. We have shown that KL is separable over L.

We now need to show that KL is a normal extension of L. Let f = m(α, F ) and g = m(α,L).
Then g|f . As f has a root α ∈ K and K is a normal extension of F , all the roots of f are in
K. It follows that all the roots of g are in K ⊂ KL = L(α) and so L(α) is a splitting field of g.
Thus KL is a normal extension of L.

b. Let σ ∈ Gal(KL/L). We need to show that σ(K) = K and σ|K fixes F . For any α ∈ K,
σ(α) is a root of the minimal polynomial m(α, F ). As K is a normal extension of F , σ(α) ∈ K.
Thus σ(K) ⊂ K. In the same way, σ−1(K) ⊂ K and so σ(K) = K. In addition, the fact that
F ⊂ L implies that σ fixes F and so σ|K fixes F . Therefore σ|K ∈ Gal(K/F ). If τ ∈ Gal(KL/L)
and α ∈ K, then

(σ ◦ τ)|K(α) = (σ ◦ τ)(α) = σ (τ(α)) = σ|K ◦ τ|K(α),

therefore φ is a homomorphism.
We now need to show that φ is injective. If σ|K fixes each element of K, then σ fixes each

element of K and each element of L and so fixes each element of KL. This establishes the
injectivity of φ. Hence φ is a monomorphism.

c. First we show that K is a Galois extension of K ∩ L. As F ⊂ K ∩ L ⊂ K and K is a
Galois extension of F , from Propositions 3.5 and 5.3, K is a Galois extension of K ∩ L.

We set A = Imφ. A is a subgroup of the Galois group Gal(K/F ), thus, by Theorem 6.4,
A = Gal(K/KA). Moreover,

KA = {x ∈ K : σ(x) = x ∀σ ∈ Gal(KL/L)},

since the elements of A are restrictions of elements of Gal(KL/L) to K. Theorem 6.2 ensures
that any element of KL fixed by all elements of Gal(KL/L) lies in L. Hence

KA = K ∩ L

and A = Gal(K/K ∩ L), i.e. Imφ = Gal(K/K ∩ L), as claimed.
Now, φ is an isomorphism if and only if Gal(K/K ∩L) = Gal(K/F ). However, Theorem 6.2

ensures that KGal(K/K∩L) = K ∩ L and KGal(K/F ) = F . Finally, φ is an isomorphism if and
only if K ∩ L = F . This finishes the proof. 2

The theorem we have just proved has an interesting corollary linking the degrees of the
extensions over F .
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Corollary 6.1 Under the conditions of Theorem 6.8 , we have

[KL : F ] =
[K : F ][L : F ]

[K ∩ L : F ]
.

proof We have
[KL : F ] = [KL : L][L : F ] =⇒ [KL : F ]

[L : F ]
= [KL : L]

and
[K : F ] = [K : K ∩ L][K ∩ L : F ] =⇒ [K : F ]

[K ∩ L : F ]
= [K : K ∩ L].

From the previous theorem, KL is a Galois extension of L and there is no difficulty in seeing
that this is also the case for K over K ∩ L. Hence,

[KL : L] = |Gal(KL/L)| = |Gal(K/K ∩ L)| = [K : K ∩ L].

The second equality holds, because in the proof of Theorem 6.8 we showed that the Galois groups
Gal(KL/L) and Gal(K/K ∩ L) are isomorphic. The result now follows. 2

Exercise 6.1 Show that [KL : L] divides [K : F ].

We may now consider the image under F of the intersection of two subgroups of the Galois
group and of the group generated by two subgroups.

Theorem 6.9 Let E be a finite Galois extension of F and H1, H2 subgroups of the Galois group
G = Gal(E/F ). We note K1 = F(H1) and K2 = F(H2). Then F(H1 ∩H2) = K1K2 and, if H
is the subgroup generated by H1 ∪H2, then F(H) = K1 ∩K2.

proof If σ fixes each element of K1K2, then σ fixes each element of K1 and each element of K2,
hence σ ∈ H1 ∩H2. On the other hand, suppose that σ ∈ H1 ∩H2. Then σ restricted to K1 or
to K2 is the identity mapping. Therefore a polynomial in elements of K1 and K2 is fixed by σ
and, more generally, K1K2 is fixed by σ. Thus

H1 ∩H2 = G(K1K2) =⇒ F(H1 ∩H2) = K1K2.

If σ ∈ H1 ∪H2, then σ fixes K1 or σ fixes K2. As K1 ∩K2 ⊂ K1, and K1 ∩K2 ⊂ K2, σ fixes
K1 ∩K2. Hence H ⊂ G(K1 ∩K2). If H 6= G(K1 ∩K2), then K1 ∩K2 is properly contained in
F(H), hence there exists x ∈ F(H) \K1 ∩K2. If x /∈ K1, then we can find σ ∈ H1 ⊂ H such
that σ(x) 6= x, hence x /∈ F(H), a contradiction. We have the same situation if x /∈ K2 and so
H = G(K1 ∩K2), which implies that F(H) = K1 ∩K2. 2

Remark There is no difficulty in extending the above result to n subgroups and n subfields for
any n > 2.

We now return briefly to Corollary 6.1. It is easy to deduce that

[KL : F ] ≤ [K : F ][L : F ].

However, we do not need the condition on K.

Proposition 6.4 Let E be a finite extension of F . In addition, let K and L be extensions of F
in E. Then

[KL : F ] ≤ [K : F ][L : F ],

with equality if [K : F ] and [L : F ] are coprime.
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proof Let (αi)
m
i=1 and (βj)

n
j=1 be respective bases of K over F and L over F . Then

K = F (α1, . . . , αm), L = F (β1, . . . , βn) =⇒ KL = F (α1, . . . , αm, β1, . . . , βn).

As KL = L(α1, . . . , αm), we have

[KL : L] ≤ m =⇒ [KL : F ] = [KL : L][L : F ] ≤ mn.

Now suppose that (m,n) = 1. As m|[KL : F ] and n|[KL : F ], mn|[KL : F ] and hence the
equality. 2

We say that K and L are linearly disjoint over F if [K : F ] and [L : F ] are coprime. If this
is not the case, then we may have a strict inequality in the equation of the proposition. For
example, if K 6= F and K = L, then

[KL : F ] = [K : F ] < [K : F ][L : F ].

If K, L are linearly disjoint over F and (α1, . . . , αm), (β1, . . . , βn) respective bases of K and L,
then a basis of KL may be found by taking the products αiβj . Indeed, from Corollary 1.5,

KL = F (α1, . . . αm, β1, . . . , βn) = F [α1, . . . αm, β1, . . . , βn],

so the elements of KL are polynomials in the αi and βj . However, an expression of the form
αs11 · · ·αsmm belongs to K, so we may it write it as a linear combination (with coefficients in
F ) of the αi. In the same way, we may write an expression of the form βt11 · · ·βtnn as a linear
combination of the βj . As a consequence, the elements αiβj form a generating set of KL (as
a vector space over F ). Given that there are mn such elements and that the dimension of KL
over F is mn, the αiβj form a basis of KL.

In Theorem 6.8 we considered the compositum of two extensions of a field, one of which was
Galois. We now suppose that K and L are both Galois extensions of the field F contained in a
field E. We claim that the compositum KL is a Galois extension of F . As KL is a separable
extension of L and L a separable extension of F , from Theorem 3.7, KL is a separable extension
of F . Proving that KL is a normal extension of F is a little more difficult. First we notice that
K and L are splitting fields of respectively polynomials f and g of F [X]. We have

K = F (α1, . . . , αm) and L = F (β1, . . . , βn),

where α1, . . . , αm (resp. β1, . . . , βn) are the roots of f (resp g) in E. If γ1, . . . , γs are the distinct
elements in the set {α1, . . . , αm, β1, . . . , βn}, then KL = F (γ1, . . . , γs). The polynomial fg splits
in KL. Let U ⊂ KL be a splitting field of fg. As γ1 . . . γs ∈ U , F (γ1, . . . , γs) ⊂ U , i.e., KL ⊂ U .
It follows that KL is a splitting field of fg and so a normal extension of F . We have shown that
KL is a Galois extension of F , as claimed.

If σ ∈ Gal(KL/F ), then σ|K ∈ Gal(K/F ) and σ|L ∈ Gal(L/F ), because K/F and L/F are
both normal.

Theorem 6.10 Let us suppose that K/F and L/F are both normal. The mapping

ψ : Gal(KL/F ) −→ Gal(K/F )×Gal(L/F ), σ 7−→ (σ|K , σ|L),

is a monomorphism and ψ is an isomorphism if and only if K ∩ L = F .
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proof The mapping ψ is clearly a homomorphism and, if σ ∈ Gal(KL/F ) fixes each element of
K and each element of L, then σ fixex each element of KL. Cosequntly, ψ is a monomorphism.

The mapping ψ is an isomorphism if and only if [KL : F ] = [K : F ][L : F ], which applies
only under the condition [KL : L] = [K : F ]. This is the case if and only if the mapping

φ : Gal(KL/L) −→ Gal(K/F ), σ 7−→ σ|K

is an isomorphism. From Theorem 6.8, a necessary and sufficient condition for this isK∩L = F .2

Remark We have seen that if K and L are both Galois extensions of F , then KL is Galois
extension of F and we may consider that the Galois group of KL over F is a subgroup of the
direct product of the Galois groups of K and L over F . In particular, if the Galois groups
Gal(K/F ) and Gal(L/F ) are both abelian, then so is the Galois group Gal(KL/F ).

6.3 The fundamental theorem of algebra
It is a well-known that any nonconstant complex polynomial has a complex root. This is the
fundamental theorem of algebra. In this section we will give a proof based on the field theory we
have developped.

Proposition 6.5 The field of complex numbers C has no extension of degree 2.

proof Suppose tht C has an extension E of degree 2. If α ∈ E \ C, then degm(α, F ) = 2.
However, every polynomial f ∈ C[X] of degree 2 has a complex root, hence m(α, F ) is reducible,
a contradiction. Hence the result. 2

Now we consider extensions of the field of real numbers R.

Proposition 6.6 R has no extension of odd degree strictly greater than 1.

proof Suppose that R has an extension E with odd degree strictly greater than 1. Let α ∈
E \R. If degm(α,R) is odd, then the polynomial m(α,R) has a real root and so is reducible,
a contradiction. It follows from Proposition 1.4 that [R(α) : R] is even. As

[E : R] = [E : R(α)][R(α) : R],

[E : R] is even. 2

We are now in a position to prove the fundamental theorem of algebra.

Theorem 6.11 If f ∈ C[X] is nonconstant, then f has a root in C.

proof We will first prove the result for a nonconstant polynomial f ∈ R[X]. We note g(X) =
(1+X2)f(X) ∈ R[X] and let E be a splitting field of g. The complex numbers ±i and R belong
to E so C is contained in E. As the characteristic of R is 0, g is separable and so E is separable
(see Theorem 3.8). Therefore E is a Galois extension of R. We now set G = Gal(E/R), i.e., G
is the Galois group of g. If |G| = 2sm, with m odd, then G has a (Sylow-)subgroup H of order
2s. We set K = F(H). Then, from Theorem 6.6,

[K : R] = [G : H] = m.
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As m is odd and R has no extension of odd degree strictly greater than 1, m = 1. Thus G is a
2-group.

We now set H ′ = Gal(E/C) (the Galois group of g considered as a member of C[X]). As
H ′ is a subgroup of G, H ′ is a 2-group. If |H ′| = 2t, with t ≥ 1, then H ′ has a subgroup H ′′ of
index 2. If K ′′ = F(H ′′), then

[K ′′ : C] = [H ′ : H ′′] = 2,

which contredicts Proposition 6.5. It follows that H ′ = {id} and E = C and so all the roots of
g, and hence of f , lie in C.

We now consider polynomials f ∈ C[X] \R[X]. If we set g = f̄f , where f̄ is the polynomial
whose coefficients are the complex conjugates of those of f , then g ∈ R[X]. If α is a root of g,
then α is a root of f̄ or of f . This implies that α or ᾱ is a root of f . Hence f has a root in C.
This ends the proof. 2

6.4 Normal closures
In this short section we give a useful characterization of the normal closure N of E over F in
the case where E is a finite extension of F . In Section 5.1 we saw that, if E = F (α1, . . . , αn)
and mi(X) = m(αi, F ), then a splitting field of m(X) = m1(X) · · ·mn(X) is a normal closure
N of E over F . We recall that if L1 and L2 are subfields of a field E, then L1L2 is the smallest
subfield of E containg both L1 and L2. More generally, if L1, . . . , Ls are subfields of E, then
L1L2 . . . Ls is the smallest subfield of E containing the Li.

Theorem 6.12 Let E be a finite extension of F and N the normal closure of E over F in an
algebraic closure C of E. Then

N =
∏

σ∈Gal(N/F )

σ(E).

proof We use the description of N as the splitting field of m = m1 · · ·mn seen above. If
σ ∈ Gal(N/F ), then σ(F ) = F and σ(αi) ∈ N , for all i, because the σ(αi) are roots of m. Hence
σ(E) ⊂ N , for all σ ∈ Gal(N/F ) and so ∏

σ∈Gal(N/F )

σ(E) ⊂ N.

If α ∈ N is a root of m, then α is a root of mi, for some i. From Proposition 2.3, we know
that there is an F - isomorphism τ : F (αi) −→ F (α), with τ(αi) = α. Using Theorem 2.7, we
may extend τ to a monomorphism σ from N into C. As N is a normal extension, we know from
Proposition 5.2 that σ is an automorphism of N , i.e., σ ∈ Gal(N/F ). Given that αi ∈ E and
σ(αi) = α, we have α ∈ σ(E). It follows that

α ∈
∏

σ∈Gal(N/F )

σ(E) =⇒ N ⊂
∏

σ∈Gal(N/F )

σ(E).

This ends the proof. 2
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Chapter 7

The Galois group of a polynomial

In this chapter we continue our study of the Galois group. If f is a polynomial with coefficients
in the field F and E a splitting field of f , then we call Gal(E/F ) a Galois group of the polynomial
f . As splitting fields of a polynomial are isomorphic, any two Galois groups of a polynomial are
isomorphic, so we often, with an abuse of language, speak of the Galois group of a polynomial.

Proposition 7.1 If E is a splitting field of a separable polynomial f ∈ F [X], then E is a Galois
extension of F .

proof From Theorem 2.1 we know that the extension E is finite. Being a splitting field of a
polynomial, we also know that it is normal, so we only need to show that E is separable. Now,
E = F (α1, . . . , αn), where the αi are the roots of f . Each minimal polynomial mi = m(αi, F )
divides an irreducible factor of f . As the irreducible factors of f do not have multiple roots,
no mi has a multiple root. Thus each αi is separable. From Theorem 3.8, F (α1, . . . , αn) is
separable. 2

Corollary 7.1 If G = Gal(E/F ) is the Galois group of a separable polynomial, then
|G| = [E : F ].

proof It is sufficient to apply Theorem 6.1. 2

Different polynomials over the same field may have the same Galois group. This may be
useful in determining the Galois group of a given polynomial. For example, if f ∈ F [X] has
the splitting field E and a ∈ F , then E is also the splitting field of g(X) = f(−a + X) : if
α1, . . . , αn are the roots of f inE, then a+α1, . . . , a+αn are the roots of g in E. The following
result is useful, because certain methods of determining the Galois group only apply to monic
polynomials with integer coefficients.

Proposition 7.2 If f ∈ Q[X], then there is a strongly separable monic polynomial g ∈ Z[X]
with the same Galois group over Q as f .

proof Let E be the splitting field of f ∈ Q[X] in C. If we set f1 = f
hcf(f,f ′) , then f1 has the

same roots as f and these roots are simple. Therefore f1 is strongly separable and has the same
splitting field as f .

Now let u be the lcm of the denomoinators of the coefficients of f1. If we set f2 = uf1, then
f2 ∈ Z[X] and has the same roots as f1.
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Finally, if f2(X) =
∑n
i=0 aiX

i, then we set

g(Y ) =

n−1∑
k=0

ak(an)n−k−1Y k + Y n ∈ Z[X].

As
g(anX) = a−1

n f2(X),

g has the same roots as f up to multiplication by the contant an and so has the same splitting
field as f2. Thus we have found a monic strongly separable polynomial in Z[X] with splitting
field E. 2

By Cayley’s theorem, any finite group of cardinal k can be identified with a subgroup of
Sk, the group of permutations of the set Nk = {1, . . . , k}. In general, a Galois group G of a
polynomial can be identified with a subgroup of a group of permutations Sn, where n is much
smaller that the cardinal of the group.

Proposition 7.3 If f ∈ F [X] has n distinct roots in a splitting field, then the Galois group of
f is isomorphic to a subgroup of Sn.

proof We set A = {α1, . . . , αn} the set of roots of f in a splitting field E. If σ ∈ Gal(E/F ),
then σ permutes the roots of f , so we may define a mapping

φ : Gal(E/F ) −→ SA, σ 7−→ σ|A,

where SA denotes the group of permutations on A. The mapping φ is clearly a group homomor-
phism. The F -automorphism σ is determined by its effect on the roots of f , so φ is injective.
Thus Gal(E/F ) is isomorphic to a subgroup of SA. As SA is isomorphic to Sn, Gal(E/F ) is
isomorphic to a subgroup G of Sn. 2

We have assumed a certain order on the roots of the polynomial. It is natural to ask what
happens when we change the order. Suppose that we choose a different ordering of the roots:

A = {α′1, . . . , α′n}.

We obtain an isomorphism φ′ of the Galois group Gal(E/F ) onto another subgroup G′ of Sn. If
σ ∈ Gal(E/F ), φ(σ) = s and φ′(σ) = s′, then

σ(αi) = αs(i) and σ(α′i) = α′s′(i),

for i = 1, . . . , n. There is a unique permutation r ∈ Sn such that α′i = αr(i), for all i, hence we
can write

αsr(i) = σ(αr(i)) = σ(α′i) = α′s′(i) = αrs′(i).

Therefore, for all i,
sr(i) = rs′(i) =⇒ r−1sr = s′ =⇒ G′ = r−1Gr,

i.e., G′ is a conjugate of G.

The general polynomial

The general polynomial of degree n over a field F is

f(Y ) = Y n −X1Y
n−1 +X2Y

n−2 − · · ·+ (−1)n−1Xn−1 + (−1)nXn ∈ F (X1, . . . , Xn)[Y ],

where F (X1, . . . , Xn) is the rational function field over the field F in n variables. It is not difficult
to determine the Galois group of f .
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Theorem 7.1 The Galois group of the general polynomial f is the symmetric group Sn.

proof Let L = F (X1, . . . , Xn). Then f ∈ L[Y ]. Now let Z1, . . . , Zn be the roots of f in some
extension of L. Then Xi = si(Z1, . . . , Zn), where si is the ith elementary symmetric polynomial.
Hence L = F (s1(Z1, . . . , Zn), . . . , sn(Z1, . . . , Zn)) and a splitting field of f is given by

L(Z1, . . . , Zn) = F (s1(Z1, . . . , Zn), . . . , sn(Z1, . . . , Zn), Z1, . . . , Zn) = F (Z1, . . . Zn).

Therefore

GalL(f) ' Gal(F (Z1, . . . , Zn)/F (s1, . . . , sn)) ' Gal(F (Z1, . . . , Zn)/FS(Z1, . . . , Zn)) = Sn,

according to the discussion after Theorem 6.7. 2

7.1 Irreducible polynomials
Before studying the particular properties of Galois groups of irreducible polynomials, we will
revise the notion of the action of a group on a set. We recall that a group G, with identity e,
acts on a set X if there is a mapping Φ : G × X −→ X, called an action and usually written
Φ(g, x) = g.x, such that

• e.x = x, for all x ∈ X;

• (gh).x = g.(h.x), for all g, h ∈ G and x ∈ X.

(We sometimes refer to the action we have just defined as a left action to distinguish it from a
right action, where we replace the second condition by the following:

(gh).x = h.(g.x),

for all g, h ∈ G and x ∈ X. Of course, if the group G is abelian, then there is no distinction
between left and right actions.)

The orbit of an element x ∈ X, written Ox, is the collection of y ∈ X for which there exists
g ∈ G with y = g.x. We define a relation R on X by xRy if y ∈ Ox. Then R is an equivalence
relation on X and the distinct orbits are its equivalence classes. We say that the action is tran-
sitive if there is a unique orbit, i.e., for any x, y ∈ X, there is a g ∈ G, with g.x = y. The action
is free if g.x = x implies that g is the identity of G.

If x ∈ X, then the stabilizer of x, which we write Gx, is the set of elements of G which leave
x unchanged:

Gx = {g ∈ G : g.x = x}.

Clearly Gx is a subgroup of G. The following result is known as the orbit-stabilizer theorem.

Theorem 7.2 If G is finite and x ∈ X, then

|Ox| = [G : Gx] =
|G|
|Gx|

.
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proof We define a mapping
φ : G −→ Ox, g 7−→ g.x.

φ is clearly surjective. As Gx is a subgroup of G,

φ(g) = φ(h)⇐⇒ g.x = h.x⇐⇒ g−1h ∈ Gx.

Therefore we have a well-defined bijection φ̄ : G/Gx −→ Ox defined by

φ̄(gGx) = φ(g).

It follows that
|Ox| = [G : Gx] =

|G|
|Gx|

.

This ends the proof. 2

If f ∈ F [X] is separable, A = {α1, . . . , αn} the roots of f in a splitting field E and G =
Gal(E/F ), then the mapping

Φ : G×A, (σ, αi) 7−→ σ(αi)

defines an action of G on A. (As the Galois group G of a polynomial of degree n is isomorphic to
a subgroup H of Sn, we may consider that G acts on Nn.) For irreducible, separable polynomials
we can say more.

Theorem 7.3 Let f be a separable polynomial in F [X] of degree n with Galois group G =
Gal(E/F ). If f is irreducible, then

• a. n divides the order of G;

• b. the action of G on A is transitive.

proof a. Let α ∈ E be a root of f . From Proposition 1.4 we have [F (α) : F ] = n. Now
[F (α) : F ]|[E : F ]. In addition, E is a Galois extension of F and so, from Corollary 7.1,
[E : F ] = |G|. Therefore n divides |G|.

b. Let f ∈ F [X] be irreducible and α, α′ two roots of f in E. From Proposition 2.3, with
F ′ = F and σ = idF , we obtain an isomorphism σ̂ from F (α) onto F (α′) extending idF such
that σ̂(α) = α′. We now apply Theorem 2.2 to obtain σ ∈ Gal(E/F ) taking α to α′. This
implies that the action of the Galois group on A is transitive. 2

Remark We recall that a group of permutations G on a set X is said to be transitive if for any
pair (x, y) ∈ X2, there exists π ∈ G such that π(x) = y. Thus, if f is irreducible, then G|A is a
transitive permutation group.

The second part of the theorem which we have just proved has a partial converse.

Proposition 7.4 Let f ∈ F [X], with deg f ≥ 2, and G be its Galois group. If f has two distinct
irreducible factors, then the action of G on A is not transitive.

proof Let α1, α2 be roots of f and g1, g2 be distinct irreducible factors of f , with g1(α1) =
g2(α2) = 0. If σ ∈ G and σ(α1) = α2, then

g1(α2) = g1(σ(α1)) = σ(g1(α1)) = 0.
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We may suppose that g1 and g2 are monic polynomials. Then both g1 and g2 are minimal poly-
nomials of α2, which is impossible. Therefore the action of G on A is not transitive. 2

Remark If f = λgm, where λ ∈ F , g ∈ F [X] is irreducible and m ≥ 2, then the action of G on
A is transitive. It is sufficient to notice that a splitting field of g is a splitting field of f and then
apply the second part of Theorem 7.3.

7.2 Cyclotomic extensions
We consider the polynomial f(X) = −1 +Xn ∈ F [X]. The roots of this equation in a splitting
field are called nth roots of unity. If char F = 0 or char F = p > 0, with (p, n) = 1, then f is
separable:

f ′(X) = nXn−1 =⇒ gcd(f, f ′) = 1.

In this case, f has n distinct roots in a splitting field E. The set of these roots, which we will
note µn, form a subgroup of the multiplicative group of E. As µn is finite, by Theorem 3.3, µn
is cyclic. A generator ζ of this group is said to be a primitive nth root of unity. An extension
E = F (ζ), where ζ is a primitive nth root of unity is called a cyclotomic extension of F . In
fact, E is a splitting field of the polynomial f(X) = −1 + Xn, so we have E = F (µn) and it
follows that E is a Galois extension of F . Clearly, if ζ ′ is another primitive nth root of unity,
then E = F (ζ ′). We write µ∗n for the subset of µn composed of primitive nth roots of unity. The
cardinal of µ∗n is φ(n), where φ is Euler’s totient function.

Exercise 7.1 Show that, if char F = p > 0 and (p, n) 6= 1, then there is no primitive nth root
of unity.

Up to now we have assumed that char F = 0, or char F = p > 0 with (p, n) = 1. In this
section we will continue to do so. We consider the Galois group of the cyclotomic extension
F (µn).

Proposition 7.5 If σ ∈ Gal(F (µn)/F ), then there is an integer a = a(σ), with (a, n) = 1, such
that σ(x) = xa, for all x ∈ µn.

proof Let ζ be a generator of µn. Then

σ(ζ)n = σ(ζn) = σ(1) = 1

and, for j = 1, . . . , n− 1,
σ(ζ)j = σ(ζj) 6= 1,

because ζj 6= 1 and σ is injective. Hence σ(ζ) is also a generator of µn. This implies that
σ(ζ) = ζa, where (a, n) = 1. Now take any x ∈ µn. There exists an integer k such that x = ζk,
so

σ(x) = σ(ζk) = σ(ζ)k = (ζa)k = (ζk)a = xa,

which is what we set out to prove. 2

We may define a mapping φ from Gal(F (µn)/F ) into Z×n , the group of units of Zn, by setting
φ(σ) = [a(σ)], where [u] denotes the congruence class modulo n of u.

Theorem 7.4 The mapping φ is a monomorphism.
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proof Let σ and τ be elements of Gal(F (µn)/F ) and ζ a primitive nth root of unity. Then

(στ)(ζ) = σ(τ(ζ)) = σ(ζa(τ)) = σ(ζ)a(τ) = (ζa(σ))a(τ) = ζa(σ)a(τ).

In addition, (στ)(ζ) = ζa(στ) and it follows that a(στ) ≡ a(σ)a(τ)( mod n). Therefore

[a(στ)] = [a(σ)][a(τ)] =⇒ φ(στ) = φ(σ)φ(τ).

We have shown that φ is a homomorphism. It remains to establish the injectivity. If σ is in the
kernel of φ, then a(σ) = 1 and so σ(ζ) = ζ. As σ fixes all the elements of F , σ is the identity on
F (µn), i.e., φ is injective. 2

Corollary 7.2 If E is a cyclotomic extension of F , then the Galois group G = Gal(E/F ) is
abelian.

proof As G is isomorphic to a subgroup of Z×n , which is abelian, G is abelian. 2

Remark The Galois group of a cyclotomic extension may be cyclic. This is so if n = 2k, with
k = 1, 2, or n = pk, where p is an odd prime and k ∈ N∗, because in these cases the group Z×n
is cyclic (see [21], for example).

Exercise 7.2 Let n = 5 or n > 6. Show that the injection of Gal(R(µn)/R) in Z×n is not
surjective.

It is interesting to consider composita of cyclotomic extensions. To do so we will need a little
elementary group theory.

Theorem 7.5 Let G be a group, with identity e, and x, y elements of G which commute. If
o(x) = m, o(y) = n and (m,n) = 1, i.e., m and n are coprime, then o(xy) = mn.

proof We first notice that 〈x〉 ∩ 〈y〉 = {e}. By Lagrange’s theorem, |〈x〉 ∩ 〈y〉| divides both m
and n. As (m,n) = 1, we have 〈x〉 ∩ 〈y〉 = {e}. Now,

(xy)mn = (xm)n(yn)m = ee = e.

On the other hand, if (xy)k = e, then xk = y−k and so xk ∈ 〈x〉 ∩ 〈y〉. Hence, xk = e, which
implies that m|k. In the same way, we have n|k. It follows that mn|k, because (m,n) = 1 and
so o(xy) = mn. 2

It would be natural to assume that if x and y commute then o(xy) = [m,n]. However, this is
not true. We only need to consider the case where y = x−1 and x 6= e; then o(xy) = o(e) = 1 and
[m,n] = [m,m] > 1. On the other hand, we have a result which is quite close to the statement
we have just considered. It follows from the theorem.

Corollary 7.3 Let G be a group, with identity e, and x, y elements of G which commute. If
o(x) = m, o(y) = n, then there are powers a of x and b of y such that o(xayb) = [m,n].

proof If p1, . . . , ps are the primes in the decomposition of m and n and m =
∏s
i=1 p

αi
i and

n =
∏s
i=1 p

βi
i , then [m,n] =

∏s
i=1 p

mi
i , where mi = max(αi, βi). We divide the indices i into two

distinct classes, I being composed of those i for which αi = mi and J of those indices for which
βi = mi > αi. We set

m′ =
∏
i∈I

pmi and n′ =
∏
i∈J

pmi .
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Clearly [m′, n′] = [m,n]. We also notice that m′|m, n′|n and

o(x
m
m′ ) = m′, o(y

n
n′ ) = n′ and (m′, n′) = 1,

hence, by Theorem 7.5,
o(x

m
m′ y

n
n′ ) = m′n′ = [m,n],

which completes the proof. 2

We now consider the compositum of two cyclotomic fields.

Proposition 7.6 The compositum of the fields F (µm) and F (µn) is F (µ[m,n]).

proof Because [m,n] is a multiple of m and n, both the fields F (µm) and F (µn) are included
in F (µ[m,n]), hence the compositum of these two fields is also included in F (µ[m,n]). Now let ζm
(resp. ζn) be an mth (resp. nth) primitive root of unity. From Corollary 7.3, there are powers
a of ζm and b of ζn such that o(ζamζnn ) = [m,n], which implies that a primitive [m,n]th root of
unity lies in the compositum F (µm)F (µn). Therefore F (µ[m,n]) ⊂ F (µm)F (µn). We thus have
the equality we were looking for. 2

Remark We might be tempted to think that F (µm)∩F (µn) = F (µ(m,n)). As m and n are both
multiples of (m,n), we certainly have F (µ(m,n)) ⊂ F (µm) ∩ F (µn), however the other inclusion
may not be true. Here is an example. We set F = Q(

√
3) and we consider F (µ3) and F (µ4). As

(3, 4) = 1, F (µ(3,4)) = F (1) = F . On the other hand,

F (µ4) = Q(
√

3, i) = F (µ3) =⇒ F (µ3) ∩ F (µ4) = Q(
√

3, i) 6= F.

With more knowledge of the field F we can say more about cyclotomic extensions. We will first
consider the case where F = Q. To do so we will introduce cyclotomic polynomials.

Exercise 7.3 Let F be field and ξ1 (resp. ξ2) an mth (resp. nth) root of unity. Show that the
compositum F (ξ1)F (ξ2) is included in the cyclotomic field F (µ[m,n]).

7.3 Cyclotomic polynomials
In this section we will be concerned with a class of polynomials with coefficients in Q. The nth
cyclotomic polynomial Φn ∈ C[X] is defined by

Φn(X) =
∏
ζ∈µ∗n

(−ζ +X).

The degree of Φn is φ(n), because |µ∗n| = φ(n).
If z ∈ µn, then o(z)|n, hence z ∈ ∪d|nµ∗d. On the other hand, if d|n and z ∈ µ∗d, then z ∈ µn.

Thus µn = ∪d|nµ∗d. As µ∗d ∩ µ′∗d = ∅, if d 6= d′, the sets µ∗d, with d|n, form a partition of µn and

−1 +Xn =
∏
d|n

∏
z∈µ∗d

(−z +X)

 =
∏
d|n

Φd.

In fact, all the coefficients of Φn are integers.
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Proposition 7.7 The polynomial Φn belongs to Z[X] and is monic; in addition, its first coeffi-
cient is 1, if n ≥ 2.

proof From the definition of Φn, it is clearly monic. We now prove by induction that Φn ∈ Z[X]
and also that the constant term of the polynomial is 1, if n ≥ 2. As Φ1(X) = −1 + X and
Φ2(X) = 1 +X, the claim is true for n = 1 and n = 2. Suppose now that it is true up to n− 1,
with n > 2, and consider the case n. We have

−1 +Xn =

 ∏
d|n,d<n

Φd

Φn = AΦn.

If A(X) =
∑s
i=0 aiX

i and Φn(X) =
∑t
j=0 bjX

j , then ai ∈ Z, for all i and a0 = −1. As
a0b0 = −1, we have b0 = 1. Also,

a0b1 + a1b0 = −b1 + a1 = 0 =⇒ b1 = a1 ∈ Z.

In addition, as

a0b2 + a1b1 + a2b0 = −b2 + a1b1 + a2 = 0 =⇒ b2 = a1b1 + a2 ∈ Z.

Continuing in the same way, we see that bj ∈ Z, for all j. 2

Exercise 7.4 Show that, if p is a prime number and r ∈ N∗, then Φpr (X) = Φp(X
pr−1

).

We have seen that the coefficients of a cyclotomic polynomial are integers. We can say more.
In particular, any integer figures as a coefficient of at least one cyclotomic polynomial. A proof
of this may be found in [17]. For n ≥ 3, the degree is even so there is a middle coefficient. If n
is a power of 2, then this coefficient is 0; otherwise it is an odd number. This is proved in [7].

We may thus consider the polynomials Φn as members of Z[X]. We will now show that they
are irreducible over Q. However, we need some preliminary results.

If f is a polynomial in Z[X] and p a prime number, then we may define f̄ ∈ Fp[X] by replacing
the coefficients of f by their congruence classes modulo p. The polynomial f̄ so obtained is called
the reduction modulo p of f . Clearly, if f = AB, then f̄ = ĀB̄. The next result needs a proof.

Lemma 7.1 Let F be a field and A,B ∈ F [X], with A irreducible. If A and B have a common
root, then A divides B.

proof Let α be a common root of A and B. If A does not divise B, then A and B are coprime
and so there exist S, T ∈ F [X] such that

SA+ TB = 1 =⇒ S(α)A(α) + T (α)B(α) = 1,

which is a contradiction, because α is a root of A and B. Hence A divides B. 2

Lemma 7.2 If p is a prime number and A1, . . . , An ∈ Fp[X], then (
∑n
i=1Ai)

p =
∑n
i=1A

p
i .

Also, if A(X) ∈ Fp[X], then A(X)p = A(Xp).
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proof As char Fp[X] = p and p|
(
p
i

)
, for i = 1, . . . , p − 1, we have (A1 + A2)p = Ap1 + Ap2. An

induction argument allows us to obtain the result for any n.
If A(X) =

∑m
i=0 aiX

i, then from the first part of the proof,

A(X)p =

m∑
i=0

(aiX
i)p =

m∑
i=0

apiX
ip =

m∑
i=0

apiX
pi = A(Xp).

This ends the proof. 2

Before turning to the proof of the irreducibility of cyclotomic polynomials, we recall the fol-
lowing result, which follows from Gauss’s lemma:

If A ∈ Z[X] and A = BC, with B,C ∈ Q[X] and monic, then B,C ∈ Z[X].

Theorem 7.6 For all n ∈ N∗, the polynomial Φn is irreducible over Q.

proof Let A be a monic, irreducible polynomial in Q[X], which divides Φn. If α ∈ C is a root
of A, then α is also a root of Φn and so a primitive nth root of unity.

As A divides Φn and Φn divides f(X) = −1 +Xn, there exists B ∈ Q[X] such that AB = f .
As A is monic, so is B. Now using the result cited before the statement of the theorem, we see
that A,B ∈ Z[X]. In addition, A and B are coprime. (If this were not the case, then A and B
would have a common root and their product at most n− 1 distinct roots, a contradiction.)

Let p be a prime number such that p < n and p 6 |n. We will show that αp is a root of A.
If this is not the case, then αp is a root of B. (As α is a root of f , any power of α is also a
root of f , hence of A or B.) It follows that α is a root of B(Xp). From Lemma 7.1, we have
A(X)|B(Xp). Taking reductions modulo p, we obtain Ā(X)|B̄(Xp). If C ∈ Fp[X] is irreducible,
then, using Lemma 7.2,

C(X)|Ā(X) =⇒ C(X)|B̄(Xp) =⇒ C(X)B̄(X)p =⇒ C(X)|B̄(X).

Hence Ā and B̄ are not coprime in Zp[X]. However, A and B are coprime, so we have a
contradiction. It follows that αp is a root of A, and also a primitive nth root of unity.

If 1 < s < n) is coprime with n and has the prime factorization s = p1 · · · pk, then all the pi
are coprime with n. From what we have just seen, αp1 is a root of A, and also a primitive nth
root of unity. Replacing α by αp1 we obtain that αp1p2 is a root of A and also a primitive nth
root of unity. continuing in the same way, we see that αs is a root of A and also a primitive nth
root of unity. It follows that all the primitive nth roots of unity are roots of A and therefore
A = Φn, i.e., Φn is irreducible. 2

Corollary 7.4 The cyclotomic polynomial Φn is the minimal polynomial over Q of each primi-
tive nth root ζ of unity, i.e., m(ζ,Q) = Φn.

Exercise 7.5 Show that the polynomial

Pn(X) = 1 +X + · · ·+Xn ∈ Q[X]

is irreducible if and only if n+ 1 is a prime number.
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7.4 Cyclotomic extensions of the rationals
We now consider the Galois group of certain polynomials in Q[X], namely the cyclotomic poly-
nomials.

Theorem 7.7 The Galois group G = Gal(Q(µn)/Q) is isomorphic to Z×n .

proof From Theorem 7.4 we know that G is isomorphic to a subgroup of Z×n . However, if ζ is
a primitive nth root of unity, then

|G| = [Q(ζ) : Q] = deg Φn = φ(n).

The second equality comes from Corollary 7.4. As |Z×n | = φ(n) and Q(µn) = Q(ζ), G is isomor-
phic to Z×n . 2

In the remark after Proposition 7.6 we observed that F (µ(m,n)) ⊂ F (µm) ∩ F (µn) and then
gave an example to show that equality is generally not the case. However, using the theorem we
have just proved, we may show that, in the case where the field F is Q, then we do indeed have
equality.

Corollary 7.5 The property

Q(µ(m,n)) = Q(µm) ∩Q(µn)

is true for all m,n ∈ N∗.

proof As Q(µ(m,n)) ⊂ Q(µm) ∩Q(µn), we only need to prove that

[Q(µ(m,n)) : Q] = [Q(µm) ∩Q(µn) : Q].

From Proposition 7.6 we know that Q(µm)Q(µn) = Q(µ[m,n]). Now, using Corollary 6.1, we
obtain

[Q(µ[m,n]) : Q] =
[Q(µm) : Q][Q(µn) : Q]

[Q(µm) ∩Q(µn) : Q]
.

Now, using the theorem, we have

φ([m,n]) =
φ(m)φ(n)

[Q(µm) ∩Q(µn) : Q]
.

However,

φ([m,n])φ((m,n)) = φ(m)φ(n) =⇒ [Q(µm) ∩Q(µn) : Q] = φ((m,n)) = [Q(µ(m,n)) : Q].

This finishes the proof. 2

There are other interesting questions concerning cyclotomic extensions of the rational num-
bers. We will now consider two of these, namely the number of roots of unity in a cyclotomic
extension and the coincidence of two such extensions. We will begin with two results concerning
Euler’s totient function φ.

Proposition 7.8 For any given positive integer N , there are at most finitely many integers n
such that φ(n) = N .
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proof Let N be a positive integer and p the least prime number greater than N + 1. Suppose
that n is an integer such that φ(n) = N . If q ≥ p is a prime divisor of n, then n = qkm, for some
k,m ∈ N∗, with (q,m) = 1. We have

φ(n) = φ(qk)φ(m) ≥ q − 1 ≥ p− 1 > N,

a contradiction. Therefore no prime divisor of n is greater than N +1. In particular, the distinct
prime divisors of n belong to a finite set. Let us note these primes p1, . . . , ps. Then

n = pa11 · · · pass =⇒ φ(n) =

s∏
i=1

pai−1
i (pi − 1).

For each prime pi we have
φ(n) ≥ pai−1

i (pi − 1).

If ai sufficiently large, the expression on the right hand side of the equality is greater than N ,
hence there is a finite number of choices for the exponents. Therefore the set of all n such that
φ(n) = N is finite. 2

Remark If N is not 1 or an even number, then there are no integers n such that φ(n) = N .
It has been shown that, for any integer k ≥ 2, there is an integer N such that there are just k
solutions to the equation φ(n) = N [8]. For the case k = 1, the question is open.

Corollary 7.6 We have
lim
n→∞

φ(n) =∞.

proof If limn→∞ φ(n) 6=∞, then there is an integer N > 0 and an infinite sequence of integers
(ni) such that φ(ni) ≤ N , for all ni. For the values of the φ(ni) let us write N1, . . . , Ns. There
is a finite number of such values and Ni ≤ N , for all i. However, from Proposition 7.8, there
can only be a finite number of elements of the sequence whose image is equal to one of Ni. If
we take an element ni larger than all these elements, then we must have φ(ni) > maxNj , a
contradiction. This implies that limn→∞ φ(n) =∞. 2

We need another elementary result.

Proposition 7.9 If a and b are positive integers, then

φ(ab) =
φ(a)φ(b)(a, b)

φ((a, b))
.

proof If a = 1 or b = 1, then the result is trivial, so suppose that this is not the case. Let
p1, . . . , ps be the prime divisors of a which are not divisors of b and q1, . . . , qt the prime divisors
of b which are not divisors of a. Finally let u1, . . . , ur be the prime divisors of both a and b.
Then

φ(ab) = ab

s∏
i=1

(1− 1

pi
)

r∏
j=1

(1− 1

uj
)

t∏
k=1

(1− 1

qk
)

=
a
∏s
i=1(1− 1

pi
)
∏r
j=1(1− 1

uj
)b
∏t
k=1(1− 1

qk
)
∏r
j=1(1− 1

uj
)∏r

j=1(1− 1
uj

)

=
φ(a)φ(b)(a, b)

(a, b)
∏r
j=1(1− 1

uj
)

=
φ(a)φ(b)(a, b)

φ((a, b))
.
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This ends the proof. 2

We may now handle the questions referred to before Proposition 7.8. We will say that a root
of unity is an nth root of unity for some n ∈ N∗. By definition, the set Q(µm) contains the mth
roots of unity in C. There are m such roots of unity. The following result shows that if, if m
is even, then Q(µm) contains no other roots of unity and, if m is odd, then Q(µm) contains the
mth roots of unity and m other roots roots of unity.

Theorem 7.8 If m is a positive integer, then the number of roots of unity in Q(µm) is [2,m].

proof In this proof ζ denotes a primitive mth root of unity; then −ζ ∈ Q(µm) and, by Theorem
7.5, it has order 2m, if m is odd. This implies that the set µ[2,m] ⊂ Q(µm). We have shown that
Q(µm) contains µ[2,m]. Let us show that Q(µm) contains no other roots of unity.

We claim that there is a largest r, which we note r̄, for which Q(µm) contains a primitive rth
root of unity. If Q(µm) contains a primitive rth root of unity, then µr ⊂ Q(µm), which implies
that Q(µr) ⊂ Q(µm) and

[Q(µm) : Q] = [Q(µm) : Q(mur)]Q(µr)][Q(µr : Q] =⇒ φ(m) ≥ φ(r).

Now, using Corollary 7.6, we see that there is a largest r for which Q(µm) contains a primitive
rth root of unity.

Suppose now that x is a nth root of unity belonging to Q(µm) and y a primitive r̄th root of
unity. From Corollary 7.3, there is a power a of x such that o(xay) = [m, r̄]. Since xay ∈ Q(µm),
the definition of r̄ implies that [n, r̄] ≤ r̄. It follows that [n, r̄] = r̄ and n|r̄. Finally, every root
of unity belongs to µr̄.

Let us now show that r̄ = [2,m]. As ζ is an mth root of unity, from what we have just seen,
m divides r̄. Let r̄ = ms. Using Proposition 7.9, we have

φ(r̄) = φ(ms) =
φ(m)φ(s)(m, s)

φ((m, s))
≥ φ(m)φ(s).

Now, as m|r̄, we must have Q(µm) ⊂ Q(µr̄). Given that Q(µm) contains a primitive r̄th root of
unity, we also have Q(µr̄) ⊂ Q(µm) and so Q(µm) = Q(µr̄). This implies that

φ(m) = φ(r̄) =⇒ 1 ≥ φ(s) =⇒ φ(s) = 1 =⇒ s = 1 or s = 2,

and so r̄ = m or r̄ = 2m. If m is even, then φ(2m) = 2φ(m) > φ(m), so r̄ = m; on the other
hand, if m is odd, then −ζ has order 2m, so r̄ ≥ 2m, and so r̄ = 2m. We have shown that
r̄ = [2,m].

To conclude, we have shown that the set of roots of unity belonging to Q(µm) contains µ[2,m]

and is contained in µ[2,m]. This implies that this set is µ[2,m]. 2

Corollary 7.7 If m 6= n, then Q(µm) = Q(µn) if and only if n is odd and m = 2n, or m is odd
and n = 2m.

proof If m is even, then Q(µm) has m roots of unity. If Q(µm) = Q(µn), then Q(µn) also has
m roots of unity. If n is even, then Q(µn) has n roots of unity, so m = n, a contradiction. It
follows that n is odd and Q(µn) has 2n roots of unity. Thus we have m = 2n.

If m is odd, then Q(µm) has 2m roots of unity. If Q(µm) = Q(µn), then Q(µn) also has
2m roots of unity. If n is odd, then Q(µn) has 2n roots of unity, so m = n, a contradiction. It
follows that n is even and has n roots of unity. Thus we have 2m = n. 2
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7.5 Cyclotomic extensions of finite fields
We have looked in some detail at cyclotomic extensions of Q. We will now consider cyclotomic
extensions of finite fields. Being finite extensions of finite fields such extensions are Galois
extensions (Proposition 3.1, Corollary 5.1). We will begin with a preliminary result, which is
interesting in its own right. We recall that the cardinal of a finite field has the form pk, where p
is a prime number and k a positive integer.

Theorem 7.9 Let F be a finite field, with |F | = pk, and E a finite extension of F of degree n.
Then the Galois group G = Gal(E/F ) is cyclic and generated by the Frobenius automorphism
Fr : x 7−→ xp

k

.

proof To simplify the notation, let us write q for pk. First we show that the mapping Fr is
indeed an automorphism. Fr is clearly linear. If xq = 0, then x = 0, because xq = x, for all
x ∈ F , so Fr is injective. An endomorphism of a finite-dimensional vector space is also surjective,
so Fr is a bijective endomorphism of E. Finally, (xy)q = xqyq, so Fr is an automorphism of E.
As xq = x, for all x ∈ F , Fr ∈ G.

If x ∈ E, then xq
n

= x, which implies that o(Fr) ≤ n. However, if x̄ is a generator of E∗,
then x̄s 6= x̄, for any s < qn, and so o(Fr) = n. Now, |G| = [E : F ] = n, therefore G is cyclic
with generator Fr. 2

Now we turn to cyclotomic extensions of Fp. (As usual we suppose that p and n are coprime.)
From the previous theorem the Galois group of a cyclotomic extension Fp(µn) of Fp must be
cyclic. We are interested in finding a generator of this group in Z×n . As the Frobenius mapping
Fr defined on E maps every element x of Fp(µn) to xp, we have φ(Fr) = [p], where φ is the
mapping defined in Theorem 7.4. Hence we have

Proposition 7.10 The image of the Galois group G = Gal(Fp(µn)/Fp) in Z×n under the map-
ping φ is generated by the congruence class [p], so the cardinal of G is the order of [p] in Z×n .

Exercise 7.6 Find the value of the following degrees :

[F3(µ7) : F3] [F5(µ4) : F5] [F7(µ10) : F7].

7.6 Quadratic and cyclotomic extensions
An easy calculation shows that

(e
2πi
5 − e 4πi

5 − e 6πi
5 + e

8πi
5 )2 = 5,

which implies that the expression between the brackets is a square root of 5. As this expression
is an element of the cyclotomic field Q(µ5) the quadratic extension Q(

√
5) of the rationals is

contained in the cyclotomic field Q(µ5). The goal of this section is to generalize this by showing
that any quadratic extension of the rationals is included in some cyclotomic field. In fact, we
may say more. A quadratic extension E of Q is abelian, i.e., the Galois group Gal(E/Q) is
abelian, since its cardinal is 2 (see Theorems 3.5, 5.1 and 6.1). The Kronecker-Weber Theorem,
which we will prove further on, states that any finite abelian extension of Q is included in some
cyclotomic field.
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We begin with Gauss sums. Let ζ be a primitive pth root of unity, where p is an odd prime
number. We define the Gauss sum by

τp =

p−1∑
k=1

(
k

p

)
ζk,

where
(
.
.

)
denotes the Legendre symbol. Then

Proposition 7.11 We have
τ2
p = (−1)

p−1
2 p.

proof First

τ2
p =

p−1∑
k,l=1

(
k

p

)(
l

p

)
ζk+l.

If we fix k ∈ {1, . . . , p− 1}, then the set {k · 1, k · 2, . . . , k · (p− 1)} is a set of representatives of
the nonzero congruence classes of Zp, hence we can write

τ2
p =

p−1∑
k=1

p−1∑
m=1

(
k

p

)(
km

p

)
ζk+km

=

p−1∑
k=1

p−1∑
m=1

(
k2

p

)
ζk+km

(
m

p

)

=

p−1∑
k=1

p−1∑
m=1

(
m

p

)
ζk+km,

because
(
k2

p

)
= 1. Rearranging the terms, we obtain

τ2
p =

p−1∑
m=1

(
p−1∑
k=1

ζk(1+m)

)(
m

p

)
.

If m 6= p− 1, then the sequence ζ1+m, ζ2(1+m), . . . , ζ(p−1)(1+m) runs through all the pth roots of
unity with the exception of 1, hence their sum has the value −1. On the other hand, if m = p−1,
then the sum of the members of the sequence has the value p− 1. Therefore

τ2
p = −

p−2∑
m=1

(
m

p

)
+ (p− 1)

(
p− 1

p

)
=

p−2∑
m=1

(
m

p

)
+ p

(
−1

p

)
= p

(
−1

p

)
,

because the number of nonzero squares in Zp is the same as that of the nonsquares. The result
follows from the fact that

(
−1
p

)
= (−1)

p−1
2 . 2

Corollary 7.8 We have √
(−1)

p−1
2 p ∈ Q(µp).

proof τp is a square root of τ2
p = (−1)

p−1
2 p and τp ∈ Q(ζ) = Q(µp). 2

We now consider the relation between quadratic and cyclotomic extensions of Q.
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Proposition 7.12 Let p be an odd prime number. Then the field Q(µp) contains a unique
quadratic extension of Q, namely

Q

(√
(−1)

p−1
2 p

)
.

(If p ≡ 1(mod 4), then (−1)
p−1
2 p = p and if p ≡ 3(mod 4), then (−1)

p−1
2 p = −p.)

proof Theorem 7.7 ensures that G = Gal(Q(µp)/Q) is cyclic of order p − 1, hence contains a
unique subgroup H of order p−1

2 . Let K be a field intermediate between Q and Q(µp) such that
[K : Q] = 2. By Theorem 5.1, Q(µp) is a Galois extension of Q. Consequently, Proposition 5.3
ensures that Q(µp) is a Galois extension of K. Thus, Theorem 6.1 entails that Gal(Q(µp)/K) is
a subgroup of G of order p−1

2 . From the unicity of H, we have H = Gal(Q(µp)/K). Theorem 6.4
now implies that K = F(H). We have shown that Q(µp) contains a unique quadratic extension.

To conclude the proof it suffices to notice that Q

(√
(−1)

p−1
2 p

)
is a quadratic extension of Q

contained in Q(µp), by Corollary 7.8. 2

For the moment we have only seen that quadratic extensions of a certain form are included in a
cyclotomic extension of Q. This is not difficult to extend. First let us suppose that p ≡ 1(mod 4)
and consider −p. We may write

√
−p = i

√
p. Then, using Proposition 7.6, we obtain

Q(
√
−p) = Q(i

√
p) ⊂ Q(i)Q(

√
p) ⊂ Q(µ4)Q(µp) = Q(µ[4,p]) = Q(µ4p).

If p ≡ 3(mod 4), then

Q(
√
p) = Q(i

√
−p) ⊂ Q(i)Q(µp) = Q(µ4p).

We have considered odd primes. What can we say about the prime 2? We claim that Q(
√

2)
and Q(

√
−2) are included in Q(µ8). First we notice that ζ = eiπ is a primitive 8th root of unity.

Also, ζ7 = ζ−1. Hence, ζ + ζ−1 is an element of Q(µ8). However, this sum has the value
√

2. It
follows that Q(

√
2) ⊂ Q(µ8).

Now,
√
−2 = i

√
2 and i,

√
2 ∈ Q(µ8), therefore

√
−2 ∈ Q(µ8) and it follows that Q(

√
−2) ⊂

Q(µ8).

Theorem 7.10 Every quadratic extension of the rationals is included in some cyclotomic ex-
tension.

proof We have seen that, if E is a quadratic extension of the rationals, then there is a square-
free integer d such that E = Q(

√
d) (Theorem 3.5). If d = ±p1 · · · pk, where the pi are distinct

primes, then

Q(
√
d) = Q

(√
±p1
√
p2 · · ·

√
pk
)
⊂ Q(

√
±p1)Q(

√
p2) · · ·Q(

√
pk).

However, we have just seen that, if p is a prime number, there is an integer n ≥ 2 such that
Q(
√
p) ⊂ Q(µn) and the same applies for −p. Hence, there are integers ni ≥ 2 such that

Q(
√
d) ⊂ Q(µn1

)Q(µn2
) · · ·Q(µnk) = Q(µ[n1,n2,...,nk]).

This ends the proof. 2

Exercise 7.7 Find a condition on d which ensures that Q(
√
d) ⊂ Q(µd).
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Remark We have seen that the square root of an integer lies in some cyclotomic extension of Q.
A natural question arises, namely, if p is an odd prime, does a pth root of an integer necessarily lie
in some cyclotomic extension of Q. In fact, this is not in general true. Let α = p

√
2, where p is an

odd prime and ζ a primitive nth root of unity for some n. The Galois group G = Gal(Q(ζ)/Q) is
abelian. If α ∈ Q(ζ), then Q(α) is a subfield of Q(ζ) and the Galois group G′ = Gal(Q(ζ)/Q(α))
is normal in G, because G′ is a subgroup of the abelian group G. This implies that Q(α) is a
normal extension of Q. However, this is not so, because lies in Q(α), but the other roots of
f(X) = −2 +Xp do not. It follows that α /∈ Q(ζ).

7.7 Orbites of the Galois group action
In Section 7.1 we introduced the action of a Galois group of a separable polynomial f on its
roots. In this section we aim to look more closely at this. In particular, we will show that there
is an interesting relation between the orbits of the action and the decomposition into irreducible
polynomials of the polynomial f . We consider a separable polynomial f ∈ F [X], with set of
roots A = {α1, . . . , αn} in a splitting field E and we note Φ the action of the Galois group
G = Gal(E/F ) on A. We write O1, . . . , Or for the orbits of Φ and set ni = |Oi|.

Proposition 7.13 Let S be a subset of A and the polynomial fS ∈ E[X] be defined by

fS(X) =
∏
αi∈S

(−αi +X).

If SG is the subset of S fixed by G, i.e., the subset of elements x ∈ A for which σ(x) = x for all
σ ∈ G, then fS ∈ F [X] if and only if SG = S.

proof Suppose that fS ∈ F [X] and take σ ∈ G. Let

f̃S(X) =
∏
αi∈S

(−σ(αi) +X).

The coefficients bk of this polynomial are expressions, i.e., sums of products, of the σ(αi). As σ
is an automorphim, a coefficient bk is the image under σ of the corresponding sum of products
of the αi, i.e., bk = σ(ak). As σ fixes the elements of F , ak = bk, for all k and so f̃S = fS . This
implies that σ fixes S. As this is so for all σ ∈ G, we have SG = S.

Now suppose that SG = S and let σ be an element of G. As σ fixes S, f̃S = fS . However,
this is so for all σ ∈ G, so the coefficients of fS belong to the set of elements of E fixed by G,
i.e., the field F (see Theorem 6.2). Hence fS ∈ F [X]. 2

Remark Let g be a monic, irreducible factor of the polynomial f . Then there is a subset S of
A such that g = fS . As g ∈ F [X], by the previous proposition, we have SG = S, which implies
that S is a union of orbits of the action Φ.

Proposition 7.14 Suppose that the polynomial fS defined above is in F [X]. Then fS is irre-
ducible if and only if S is a minimal set fixed by G.

proof Suppose that fS is irreducible. If S′ is strictly included in S and S′ is fixed by G, then
fS′ ∈ F [X] and fS′ |f , with deg fS′ < deg fS . This is a contradiction to the irreducibility of fS .
Hence S must be minimal.

Now suppose that S is a minimal set fixed by G. If fS is not irreducible, then there exists
g ∈ F [X] which is monic, divides fS and is such that deg g < deg fS . There exists S′ strictly
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included in S such that g = fS′ and so S is not minimal, a contradiction. It follows that fS is
irreducible. 2

We may now prove the main result of this section.

Theorem 7.11 If the separable polynomial f ∈ F [X] has the decomposition into irreducible
factors

f = λf1 · · · fr,

where λ ∈ F and the fi are monic, then the action Φ has r orbits O1, . . . , Or, with deg fi = |Oi|.

proof The minimal sets fixed by G are the orbits of Φ, therefore the monic irreducible factors
of f are in one-to-one correspondence with the orbits and we have

f = λfO1 · · · fOr ,

where λ ∈ F and the polynomials fOi are monic, irreducible. The degree of fOi is ni = |Oi|. 2

It is interesting to consider the case where F = Fp. From Theorem 7.4 we know that, if E
is a finite Galois extension of Fp, then the Galois group G = Gal(E/Fp) is cyclic and generated
by the Frobenius automorphism Fr : x 7−→ xp. If we suppose that E is a splitting field of a
separable polynomial f ∈ Fp[X], then the orbits of the action Φ defined above are of the form
Oi = {Frs(αj)}s∈N, for some αj . If s′ is the smallest index s ≥ 1 such that Frs(αj) = αj , then
s′ = ni − 1 and Oi = {αj ,Fr(αj), . . . ,Frni−1(αj)}, i.e., Oi is a cycle of Fr of length ni = deg fi.
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Chapter 8

Dedekind’s reduction theorem

We recall that, if f is a polynomial in Z[X] and p a prime number, then we may define f̄ ∈ Fp[X]
by replacing the coefficients of f by their congruence classes modulo p. The polynomial f̄ so
obtained is called the reduction modulo p of f . We will sometimes refer to f̄ as a reduced
polynomial. In this chapter we aim to establish an important relation between the Galois groups
of f over Q and f̄ over Fp, which will enable us to find useful information about the former
Galois group. We will need some preliminaries.

8.1 A basic result in module theory
We say that a module M over a ring R is finitely generated if there are m1, . . . ,ms ∈ M such
that every element m ∈M can be expressed in at least one way as

m = r1m1 + · · ·+ rsms,

with the ri ∈ R. The module M is free if it has a basis, i.e., a set U which has the properties:

• U is a generating set: every element m ∈M can be expressed as

m = r1u1 + · · ·+ rsus,

with the ui ∈ U and the ri ∈ R;

• U is an independant set:

r1u1 + . . .+ rsus = 0 =⇒ ri = 0, for all i.

Let M be a module over an integral domain R. If x ∈ M and there exists r ∈ R∗ such that
rx = 0, then we say that x is a torsion element. The set of torsion elements form a submodule of
M , which we write tM . (Clearly tM is closed under scalar multiplication; if rx = 0 and sx = 0,
then rs(x+ y) = 0, so tM is closed under addition.) We say that M is torsion-free if tM = {0}
and torsion if tM = M . We now bring these ideas together.

Proposition 8.1 Let R be principal ideal domain and M a finitely generated R-module. Then
M has a finite basis if and only if M is torsion-free.

We will give a proof of this result in Appendix E.

Exercise 8.1 Show that a free module over an integral domain is torsion-free.
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8.2 Dedekind’s lemma
In this section we present an important result due to Dedekind, which we will need further on
in this chapter. Let G be a (multiplicative) semi-group and F a field. A character of G into
F is a mapping from G into F which preserves multiplication and is not identically zero. We
will write Char(G,F ) for the set of characters from G into F . The set of all mappings from G
into F , which we note FG, can be given a vector space structure over F with the vector space
operations defined pointwise. The following result is referred to as Dedekind’s lemma.

Theorem 8.1 The set of characters Char(G,F ) is a linearly independant subset of FG.

proof Let n ≥ 1 and χ1, . . . , χn be distinct elements of Char(G,F ). Suppose that

a1χ1 + · · ·+ anχn = 0, (8.1)

where a1, . . . , an ∈ F . We will show by induction that a1 = · · · = an = 0.
For n = 1, let x ∈ G be such that χ1(x) 6= 0. Then a1χ1(x) = 0 implies that a1 = 0. Now

suppose that n > 1 and that the result is true up to n − 1. Since χ1 6= χn, there exists y ∈ G
such that χ1(y) 6= χn(y). Evaluating equation (8.1) at x and yx, where x is an arbitrary member
of G, we obtain

a1χ1(x) + · · ·+ anχn(x) = 0 (8.2)

and
a1χ1(y)χ1(x) + · · ·+ anχn(y)χn(x) = 0. (8.3)

We now multiply equality (8.2) by χn(y) and subtract it from equality (8.3). Bearing in mind
that the element x was chosen arbitrarily, we obtain

a1(χ1(y)− χn(y))χ1 + · · ·+ an−1(χn−1(y)− χn(y))χn−1 = 0.

From the induction hypothesis we deduce that all the coefficients of the linear combination on
the left hand side of the equality have the value 0. In particular, a1(χ1(y) − χn(y)) = 0. As
χ1(y)−χn(y) 6= 0, we must have a1 = 0. However, now equation (8.1) is reduced to n− 1 terms
and so, using the induction hypothesis again, we obtain a2 = · · · = an = 0. 2

Remark A character is not required to have only nonzero values; it is sufficient that it has at
least one nonzero value. However, if G is a monoïd, then the image of an invertible element is
nonzero. In particular, if G is a group, then the image of G under a character is a subgroup of
the multiplicative subgroup F ∗ of F .

Corollary 8.1 A set of distinct automorphisms S = {σ1, . . . , σn} on a field F is independant.

proof An automorphism σ of a field F , when restricted to the multiplicative group F ∗ becomes
a group automorphism, hence σ is a character of the group F ∗ into the field F . 2

8.3 Splitting fields of polynomials in Z[X]

In this section (and the following sections) we aim to consider certain properties of splitting fields
of monic polynomials belonging to Z[X]. Let f ∈ Z[X] be monic, A = {α1, . . . , αn} the set of
roots of f in C and E a splitting field of f contained in C. We may consider f as a polynomial
in Q[X]. Then, from Proposition 2.2, we have

E = Q[α1, . . . , αn],
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i.e., E is composed of the polynomials in the αi with coefficients in Q. We set

D = Z[α1, . . . , αn].

Then D is a subring of E and also a Z-module.

Proposition 8.2 The Z-module D is finitely generated and torsion-free, therefore has a finite
basis U = (u1, . . . , ur).

proof If f(X) =
∑n
i=0 aiX

i and α ∈ A, then αn = −
∑n−1
i=0 aiα

i, therefore D is generated by
the elements αe11 α

e2
2 · · ·αenn , with 0 ≤ ei ≤ n− 1. Thus D is finitely generated.

If am = 0, with a 6= 0, then considering D ⊂ E, we have

a−1(am) = (a−1a)m = 0 =⇒ m = 0.

Thus D is torsion-free.
As Z is a P.I.D. and D is finitely generated and torsion-free, we may apply Proposition 8.1

to obtain the existence of a finite basis U = (u1, . . . , ur). 2

A natural question now arises: Can we find a natural basis of the Q-vector space E? In fact,
this is the case.

Proposition 8.3 The basis U = (u1, . . . , ur) of D is a basis of the Q-vector space E = Q[α1, . . . , αn].

proof E is the fraction field of D, so, by Corollary E.1, U is a basis of the Q-vector space E.2

8.4 Splitting fields of reduced polynomials
Our aim in this section is to find a splitting field of a reduced polynomial.

Proposition 8.4 Let p be a prime number and M a maximal ideal of D which contains the
proper ideal Dp. If f ∈ Z[X] and is monic, then K = D/M is a splitting field of f̄ , the reduction
modulo p of f .

proof It is clear that the characteristic of K is p, hence K is an extension of Fp. Let us write
π for the standard projection of D on K. If U = (ur) is the basis found in the preceding section
and

x = a1u1 + · · ·+ arur, with ai ∈ Z,

then
π(x) = π(a1)π(u1) + · · ·+ π(ar)π(ur).

We may identify the image of π restricted to Z with Fp, because the kernel of this mapping is
Z∩M = Zp. Thus we may consider the π(ai) belonging to Fp. Therefore {π(ui)} is a generating
set of K over Fp and K is a finite extension of Fp. We next notice that f̄ splits over K:

f̄(X) = π̃(f(X)) = π̃(

n∏
i=1

(−αi +X)) =

n∏
i=1

(−π(αi) +X),

where π̃ is the mapping of Z[X] into Fp[X] which corresponds to π and the αi are the roots of
f . In addition,

K = π(D) = π(Z[α1, . . . , αn]) = Fp[π(α1), . . . , π(αn)] = Fp(π(α1), . . . , π(αn)),
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because Fp[π(α1), . . . , π(αn)] is a field. It follows that K is a splitting field of f̄ . 2

The mapping π : D −→ K is a surjective ring homomorphism and the roots of f̄ are the
images of the roots of f . In fact, we may generalize this.

Proposition 8.5 If φ : D −→ K is a ring homomorphism, then φ restricted to Z is the same
for all φ ∈ Hom(D,K). Also, φ is surjective and the images of the roots of f are roots of f̄ .

proof That φ restricted to Z is the same for all φ ∈ Hom(D,K) follows from the fact that
φ(1) = 1 +M .

Now we observe that

φ̃(f(X)) = φ̃

(
n∏
i=1

(−αi +X)

)
=

n∏
i=1

(−φ(αi) +X),

hence the φ(αi) are the roots of f̄ .
Finally let us consider the surjectivity. We have

φ(D) = φ(Z[α1, . . . , αn]) = Fp[φ(α1), . . . , φn(αn)].

Also, Fp[φ(α1), . . . , φ(αn)] is a subset of K and also a splitting field of f̄ (Proposition 2.2), there-
fore Fp[φ(α1), . . . , φ(αn)] is isomorphic to K. It follows that φ(D) = K. 2

Remark This generalization, which is interesting in its own right, will be used in a proof a little
further on, namely that of Proposition 8.7.

8.5 Resultants and discriminants
In the following we will use the discriminant of a polynomial, which is useful in determining
whether an extension is separable. However, in order to study this concept it is useful to intro-
duce another concept, namely the resultant of two polynomials.There is an important relation
between the discriminant of a polynomial and the resultant of a polynomial and its derivative.
Here we will only introduce the subject. Further on we will handle it in more detail.

Resultants

We fix m,n ∈ N∗. Let F be a field, f ∈ Fm[X], with coefficients a0, . . . , am and g ∈ Fn[X], with
coefficients b0, . . . , bn. We define the square n+m Sylvester matrix Sm,n(f, g) (or S(f, g)), if m
and n are understood) as follows:

Sm,n(f, g) =



am am−1 am−2 . . . 0 0 0
0 am am−1 . . . 0 0 0
...

...
...

0 0 0 . . . a1 a0 0
0 0 0 . . . a2 a1 a0

bn bn−1 bn−2 . . . 0 0 0
0 bn bn−1 . . . 0 0 0
...

...
...

0 0 0 . . . b1 b0 0
0 0 0 . . . b2 b1 b0


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We obtain Sm,n(f, g) by shifting the line vector of the coefficients of f successively to the right
by 0, 1, . . . , n − 1 steps and the vector line of the coefficients of g successively to the right by
0, 1, . . . ,m− 1 steps and then filling in the remaining places with 0.

Remark If 0 ≤ deg f = k < m, then we have am = am−1 = · · · = ak+1 = 0 and if f = 0, then
ai = 0, for all i. We have an analogous situation if deg g 6= n.

Here is an example. With m = 3 an n = 2, we have

Sm,n(f, g) =


a3 a2 a1 a0 0
0 a3 a2 a1 a0

b2 b1 b0 0 0
0 b2 b1 b0 0
0 0 b2 b1 b0


The resultant of f and g, which we note Rm,n(f, g), (or R(f, g), if m and n are understood) is
the determinant |Sm,n(f, g)|. Clearly,

Rn,m(g, f) = (−1)mnRm,n(f, g).

Remark We may consider the ai and bj as variables. In this way we obtain a mapping from
Fm+1 × Fn+1 into F , which is mn-homogeneous.

Discriminants

Let f(X) =
∑m
i=0 aiX

i a polynomial with coefficients in a field F . We suppose that the degree
m of f is greater than 1 and that f has the roots ξ1, . . . , ξm in some splitting field E. The
discriminant of f is defined by

∆(f) = a2m−2
m

∏
1≤i<j≤m

(ξi − ξj)2.

From the theorem which follows this definition is unambiguous: it does not depend on the split-
ting field chosen.

It is useful to notice that ∆(f) belongs to F . Indeed, the multivariate polynomial
A = a2m−2

m

∏
1≤i<j≤m(Xi − Xj)

2 is a symmetric polynomial in F [X1, . . . , Xn]. Consequently,
from Corollary B.1, ∆(f) ∈ F . Using the same corollary, we may also say that, if f ∈ R[X],
where R is an integral domain, then ∆(f) ∈ R.

The following result links the resultant and the discriminant.

Theorem 8.2 If char F = 0 or char F = p > 0 and p 6 |m, where deg f = m, then

∆(f) = (−1)m(m−1)/2a−1
m Rm,m−1(f, f ′).

Remark The polynomial f has a multiple root if and only if ∆(f) = 0. From the above formula,
we see that we are able to determine the existence of a multiple root only taking into account
the coefficients of f . We should also notice that the formulas show that the discriminant belongs
to the field F .
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8.6 The Galois group of a polynomial and of its reduction
In this section we aim to show that the Galois group of the reduction of a monic polynomial
f ∈ Z[X] may be considered as a subgroup of the Galois group of f . This will give us information
about the Galois group of f . We begin with a simple proposition, which we can prove using
discriminants, thus justifying their introduction in the last section.

Proposition 8.6 Let f ∈ Z[X] be a monic polynomial, p a prime number and f̄ ∈ Fp[X] the
reduction modulo p of f . Then, if f̄ is strongly separable, then so is f .

proof If M = (mij) ∈Mn(Z) and M̄ = (m̄ij) ∈Mn(Fp), where m̄ij is the congruence class of
mij modulo p, then the detM = det M̄ . Hence, if deg f = n, then

Rn,n−1(f, f ′) = 0 =⇒ Rn,n−1(f̄ , f̄ ′) = 0

and it follows that, if f̄ is strongly separable, then so if f . 2

We suppose from here on that f̄ is strongly separable and that E, D and K are defined as
in Sections 7.3 and 7.4. We define a right action Ψ of G = Gal(E/Q) on Hom(D,K), the set of
ring homomorphisms of D into K, by

Ψ(σ, φ) = σ.φ = φ ◦ σ|D,

for all σ ∈ G and φ ∈ Hom(D,K). (The action is defined, because σ(D) ⊂ D. )

Proposition 8.7 The action Ψ is free and transitive.

proof Let A be the set of roots of f . If φ ◦σ restricted to D is equal to φ, then (φ ◦σ)|A = φ|A.
In addition, σ(A) ⊂ A, so we may write

φ|A = (φ ◦ σ)|A = φ|A ◦ σ|A.

From Proposition 8.5, φ|A is surjective from A into Ā, the set of roots of f̄ . As f̄ is strongly
separable, so is f (Proposition 8.6), hence

|A| = deg f = deg f̄ = |Ā|.

It follows that φ|A is a bijection of A on Ā and so invertible. We deduce that σ|A is the identity
on A, which implies that σ is the identity of the Galois group of f . We have established that Ψ
is free.

We now consider the transitivity. Let us fix φ ∈ Hom(D,K) and note N the cardinal of the
Galois group G = Gal(E/Q), where E is a fixed splitting field of f . We write O for the orbit of
φ:

O = {σ.φ : σ ∈ G}.

As the action Ψ is free, we have |O| = N . We aim to show that O = Hom(D,K). Let us
write φ1, . . . , φN for the homomorphisms in O. If O 6= Hom(D,K), then there exists φN+1 ∈
Hom(D,K) \O. We may consider the homomorphisms as characters of the monoïde (D, ·) into
K. We have

N = |Gal(E/Q)| = [E : Q] = rkD.
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(For the last equality see Proposition 8.3.) Hence there is a basis (ui) of D whose cardinal is N .
The system

x1φ1(u1) + · · ·+ xN+1φN+1(u1) = 0

...
...

...
...

...
x1φ1(uN ) + · · ·+ xN+1φN+1(uN ) = 0

is composed of N equations and N+1 unknowns, therefore has a nonzero solution (λ1, . . . , λN+1).
If a ∈ D and a =

∑N
j=1 ajuj , then

N+1∑
i=1

λiφi(a) =

N+1∑
i=1

λiφi

 N∑
j=1

ajuj


=

N+1∑
i=1

λi

N∑
j=1

ajφi(uj)

=

N∑
j=1

aj

N+1∑
i=1

λiφi(uj) = 0.

Therefore
∑N+1
i=1 λiφi(a) = 0, for all a ∈ D, which contredicts Dedekind’s lemma (Theorem 8.1).

It follows that O = Hom(D,K) and therefore that the action Ψ is transitive. 2

We may now prove the principal result of this section. This is particularly important, in that
it often gives us important information concerning the Galois group of certain polynomials. It is
often referred to as Dedekind’s Theorem.

Theorem 8.3 Let f ∈ Z[X] be monic and p a prime number. If f̄ , the reduction of f modulo
p, is strongly separable, then there is an injective group homomorphism g of the Galois group of
f̄ , Ḡ = Gal(K/Fp), into the Galois group of f , G = Gal(E/Q).

proof As in Section 7.4, we note π the standard projection ofD onK. Then σ̄◦π ∈ Hom(D,K),
for all σ̄ in the Galois group Ḡ. As the action Ψ of the previous proposition is free and transitive,
there exists a unique τ ∈ G such that

σ̄ ◦ π = τ.π = π ◦ τ.

We define g(σ̄) = τ and so obtain a mapping from Ḡ into G. In fact, g is an injective group
homomorphism, as we now see. First,

π ◦ g(σ̄1 ◦ σ̄2) = (σ̄1 ◦ σ̄2) ◦ π = σ̄1 ◦ (σ̄2 ◦ π)

= σ̄1 ◦ (π ◦ g(σ̄2)) = (σ̄1 ◦ π) ◦ g(σ̄2)

= (π ◦ g(σ̄1)) ◦ g(σ̄2) = π ◦ (g(σ̄1) ◦ g(σ̄2)).

As the action Ψ is free,
g(σ̄1 ◦ σ̄2) = g(σ̄1) ◦ g(σ̄2),

i.e., g is a homomorphism. In addition,

g(σ̄) = idG =⇒ σ̄ ◦ π = π.
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Let x ∈ K. As π is surjective, there exists y ∈ D such that π(y) = x, so σ̄ ◦ π(y) = π(y), i.e.,
π(x) = x. Hence, σ̄ = idḠ. It follows that g is injective. 2

Remark We have fixed the splitting field of f over Q (resp. f̄ over Fp) to obtain a given Galois
group of f (resp. f̄). Changing the splitting fields and thus the Galois groups does not of course
affect the result above, because all Galois groups of a given polynomial over a certain field are
isomorphic.

From the theorem which we have just proved, for a root α of f , we obtain the relation

γ(g(σ̄)(α)) = σ̄(γ(α)),

where γ is the mapping π restricted to A. γ is an invertible function from A into Ā, since f̄ is
strongly separable. Indeed, as a function from A into Ā, γ is surjective and the fact that f̄ is
strongly separable ensures that A and Ā have the same cardinality. Thus on A we have

γ ◦ g(σ̄) = σ̄ ◦ γ =⇒ g(σ̄) = γ−1 ◦ σ̄ ◦ γ.

From Section 7.7 we know that the Galois group Ḡ = Gal(K/Fp) is generated by the Frobenius
automorphism Fr : x 7−→ xp and is composed of cycles whose length correspond to the degrees of
the irreducible polynomials in the decomposition of the reduced polynomial f̄ . From the relation
g(σ̄) = γ−1 ◦ σ̄ ◦ γ, we obtain a permutation in the Galois group of G = Gal(E/Q) with the
same cycle structure. By varying the value of the prime p we may find sufficient permutations
to characterize the Galois group of f .

Example If f(X) = 3 +X +X4 +X6, then the factorizations of the reductions of f modulo 2
and 3 are

f̄(X) = (1 +X)(1 +X +X2)(1 +X +X3) and f̄(X) = X(2 +X)(2 + 2X + 2X2 +X3 +X4).

The reductions have no multiple roots and so are strongly separable. Applying the theorem, we
see that G has elements σ and τ such that σ|A is a permutation with the cycle structure (1, 2, 3)
(a product of a 2-cycle and a 3-cycle) and τ|A a permutation with the cycle structure (1, 1, 4) (a
4-cycle). Going a little further, we find that the reduction modulo 5 has the form

f̄(X) = (3 +X)2(2 +X + 3X2 + 4X3 +X4)

This has a factor which is a square and hence a multiple root, so we cannot apply the theorem.
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Chapter 9

Determination of the Galois group

In general, it is difficult to determine the Galois group of a polynomial. However, we can often
find certain properties of the group. In some cases this may be enough to determine the group.
We will mostly consider irreducible rational polynomials.

9.1 Inclusion in an alternating group An

We have seen that a Galois group G of a polynomial having n distinct roots may be considered
as a subgroup of the permutation group Sn. It is natural to ask whether permutations of this
group are even, i.e., if G ⊂ An. We will begin with a criterion applying to this question.

Proposition 9.1 Let F be a field whose characteristic is not 2 and f ∈ F [X] strongly separable
of degree n. Then the Galois group G of f is isomorphic to a subgroup of An, the alternating
group of order n, if and only if the discriminant of f , ∆(f), is a square in F .

proof Let A = {α1, . . . , αn} be the set of roots of f in a splitting field E of f and δ(f) =∏
1≤i<j≤n(αi − αj). As f is strongly separable, δ(f) 6= 0. Also, δ(f) ∈ F (α1, . . . , αn) and

δ(f)2 = ∆(f) ∈ F . To shorten the notation let us write δ for δ(f) and ∆ for ∆(f). Clearly, ∆
is a square in F if and only if δ ∈ F .

We now take σ ∈ Gal(F (α1, . . . , αn)/F ). If εσ = ±1 is the sign of the permutation σ = σ|A
of A, then

σ(δ) =
∏

1≤i<j≤n

(ασ(i) − ασ(j)) = εσ
∏

1≤i<j≤n

(αi − αj) = εσδ,

hence σ(δ) = ±δ. As char F 6= 2, we have δ 6= −δ and so σ(δ) = δ if and only if the permutation
σ is even, or, identifying A with Nn = {1, . . . , n}, if and only if σ ∈ An. We thus obtain that
the Galois group G fixes δ if and only if G ⊂ An, or equivalently, by Theorem 6.2, δ ∈ F if and
only G ⊂ An. As ∆ is a square in F if and only if δ ∈ F , this finishes the proof. 2

Example Let f ∈ F [X] be separable, irreducible and of degree 3. From Theorem 7.2, 3 divides
the cardinal of the Galois group G of f over Q. If we now suppose that ∆ is a square, then,
identifying G with a subgroup of Sn, we have G ⊂ A3. However, as |A3| = 3, we have G iso-
morphic to A3. If, on the other hand, ∆(f) is not a square in F , then G 6⊂ A3. The only other
subgroup of S3 divisible by 3 is S3 itself, so in this case G is isomorphic to S3.
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We will now consider another criterion which enables us to determine the nature of the Galois
group, but this time only over Q.

9.2 A criterion for rational polynomials
In the last section we considered a criterion which was generally applicable. Often criteria can
only be used for certain types of field. This is the case with the criterion which we now consider.
We will first need to do a little preliminary work on permutations.

Lemma 9.1 If p is a prime number, then every element of Sp of order p is a p-cycle.

proof Let π ∈ Sp be of order p. We may write

π = π1 · · ·πr,

where the πi are nontrivial disjoint cycles. We have

p = o(π) = [o(π1), . . . , o(πr)].

Hence, o(πi)|p, for all i. As o(πi) > 1, we must have o(πi) = p. This implies that all the πi are
p-cycles and so π is a product of p-cycles. However, we cannot have more than one such cycle,
because the permutation is on p elements. Therefore, π is a p-cycle. 2

It is well-known that the transposition (1 2) and the n-cycle (1 . . . n) generate Sn. This is
not in general true for any transposition and n-cycle. For example, the cycles (1 3) and (1 2 3 4)
in S4 generate a subgroup G isomorphic to D8. To see this, it is sufficient to notice that G is
a nonabelian group of cardinal 8, with an element of order 4 and an element of order 2 (see
Appendix B). However, if n is prime, then any transposition and n-cycle generate Sn. We will
prove a related result and then establish this as a corollary.

Proposition 9.2 For 1 ≤ a < b ≤ n, the transposition (a b) and the n-cycle (1 2 . . . n) generate
Sn if and only if (b− a, n) = 1.

proof Let d = (b− a, n). We claim that if π ∈ 〈(a b), (1 2 . . . )〉, then

i ≡ j (mod d) =⇒ π(i) ≡ π(j) (mod d).

To prove this, it is sufficient to consider the cases where π = (a b) and π = (1 2 . . . n). We have

• for i 6= a, b, (a b)(i) = i;

• for i = a, (a b)(i) = b;

• for i = b, (a b)(i) = a.

From these equalities, we see that, if π = (a b), then

d|(j − i) =⇒ d|(π(i)− π(j)),

i.e., the assertion is true for π = (a b). Now let us consider the case where π = (1 2 . . . n). We
have

π(i) = i+ 1 (mod n) =⇒ π(i) = i+ 1 (mod d),
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because d|n. As
i ≡ j (mod d) =⇒ i+ 1 ≡ j + 1 (mod d),

the assertion is true for π = (1 2 . . . n). We have proved the claim.
Now suppose that d > 1 and consider the transposition (1 2). We have

(1 2)(1) = 2 and (1 2) = 1 + d.

However, 1 ≡ 1 + d (mod d), but 2 6≡ 1 + d (mod d). Hence, (1 2) /∈ 〈(a b), (1 2 . . . )〉. Therefore
Sn is not generated by (a b) and (1 2 . . . n).

We now prove the converse. Let σ = (1 2 . . . n); then σi(a) ≡ a+ i (mod n). Hence

σb−a(a) ≡ b (mod n).

As 1 ≤ σb−a(a), b ≤ n, we have σb−a(a) = b. Next we notice that there exist s and t such that
s(b− a) + tn = 1, because b− a and n are coprime. This implies that

σ = σ(b−a)sσnt = σ(b−a)s =⇒ 〈(a b), σ〉 = 〈(a b), σb−a〉.

Now σb−a is an n-cycle. If this is not the case, then σb−a can be written as a product of
disjoint cycles of length less than n. However,

σα(b−a)(1) ≡ 1 + α(b− a) ≡ 1 (mod n) =⇒ n|α(b− a) =⇒ n|α,

because (b − a, n) = 1. If 1 ≤ α < n, then this is not possible, so σα(b−a)(1) 6= 1. This means
that 1 belongs to no cycle of length smaller than n and so σb−a is an n-cycle.

There exists a permutation π ∈ Sn such that π(1 2 . . . n)π−1 = σb−a and π(1) = a, π(2) = b.
Then

Sn = πSnπ
−1 = π〈(1 2), (1 2 . . . n)〉π−1

= 〈π(1 2)π−1, π(1 2 . . . n)π−1〉
= 〈(a b), σb−a〉
= 〈(a b), σ〉.

This finishes the proof. 2

Lemma 9.2 Let p be a prime number. If τ is a transposition and σ a p-cycle in Sp, then
H = 〈τ, σ〉, the subgroup of Sp generated by τ and σ, is the whole group Sp.

proof Let τ = (a b). There is a permutation π ∈ Sp such that π(1 2 . . . p)π−1 = σ. Let
τ = (a b) and π(a′) = a, π(b′) = b. Then we have

Sp = π〈(a′ b′), (1 2 . . . p)〉π−1,

because (b′ − a′, p) = 1 (Proposition 9.2). Now

π〈(a′ b′), (1 2 . . . p)〉π−1 = 〈π(a′ b′)π−1, π(1 2 . . . p)π−1〉
= 〈(a b), σ〉 = 〈τ, σ〉.

We have proved what we set out to establish. 2

We now turn to a result which enables us to determine the Galois group of a rational poly-
nomial under certain conditions.
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Theorem 9.1 Let f ∈ Q[X] be irreducible and of prime degree p. If f has only two complex
roots, α and ᾱ, then the Galois group G of f over Q is isomorphic to Sp.

proof From Lemma 9.2, it is sufficient to show that G has a transposition and a p-cycle. The
mapping conjugate conjugation restricted to the set of roots of f is a transposition. Also, from
Theorem 7.2, p||G|, so G has an element of order p. From Lemma 9.1, this must be a p-cycle.
This finishes the proof. 2

Example The polynomial f(X) = −1 +X +X3 is irreducible over Q: If f is reducible over Q,
then f is also reducible over Z and, in this case, f̄ , the reduction of f modulo 2, has a root in
Z2. However, this is not the case, and so f is irreducible over Q. Also, f ′(X) = 1 + 3X2, which
does not vanish in R, so f has a unique root in R. This means that f has a pair of complex
roots and we may apply the theorem: the Galois group of f is isomorphic to S3.

Example The polynomial f(X) = −1−4X+X5 is irreducible over Q. To see this it is sufficient
to show that f̄ , the reduction of f modulo 2, is irreducible. This is so, because f̄ has no root in
Z2 and no polynôme of degree 2 in Z2[X] divides f̄ . The derivative of f is f ′(X) = −4 + 5X4.
As a function defined on R, f is positive for x4 ≥ 4

5 and negative for x4 ≤ 4
5 . As f(0) = −1,

f(−1) = 2 and limx 7→±∞ f(x) = ±∞, f has precisely three real roots. Applying the theorem,
we see that the Galois group of f is isomorphic to S5.

We will now look at a more general polynomial. Let p be a prime number, with p ≥ 7, and
m,n1, . . . , np−2 positive even integers such that ni < ni+1 and

∑p−2
i=1 n

2
i − 2m < 0. We define

the polynomial g ∈ Z[X] by

g(X) = (m+X2)(−n1 + x)(−n2 +X) · · · (−np−2 +X).

The polynomial g has the roots n1, . . . , np−2. On an interval (ni, ni+1) ⊂ R the sign of the
polynomial function g does not change, because there is no real root in such an interval. Also,
as g′(ni) 6= 0, the signs of g on adjacent intervals are opposites. Thus g has p−3

2 positive relative
maxima and p−3

2 negative relative maxima. If k is an odd integer, then it is not difficult to see
that |g(k)| > 2, hence the relative maxima have a value strictly superior to 2.

We now set f(X) = g(X)− 2. From what we have seen, there exist x1, . . . , xp−2 ∈ (n1, np−2)
such that for the polynomial fuction f we have f(xi)f(xi+1) < 0, for i = 1, . . . , p− 4. Therefore
f has a root in each interval (xi, xi+1). As f(ni) = −2, and f(x1) and f(xp−3) have opposite
signs, there must exist a root of f in (n1, x1) or in (xp−3, np−2). In addition, as f(np−2) = −2
and limx 7→±∞ f(x) = +∞, we have another root of f in the interval (np−2,∞). We have shown
that f has at least p− 2 real roots.

We will now show that f has two roots in C \R. We have

f(X) = (X + i
√
m)(X − i

√
m)(−n1 +X)(−n2 +X) · · · (−np−2 +X)− 2

and the constant term is not divisible by 4 and

f(X) =

p∏
i=1

(−αi +X),

where the αi are the complex roots of f . If we compare the coefficients of Xp−1 and Xp−2 in
the two expressions for f , then we obtain

p∑
i=1

αi =

p−2∑
i=1

ni and
∑
i<j

αiαj =
∑
i<j

ninj +m.
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Hence

p∑
i=1

α2
i =

(
p∑
i=1

αi

)2

− 2
∑
i<j

αiαj =

(
p−2∑
i=1

ni

)2

− 2

∑
i<j

ninj +m

 =

p−2∑
i=1

n2
i − 2m.

As
∑p−2
i=1 n

2
i − 2m < 0, we have

∑p
i=1 α

2
i < 0, so at least one αi ∈ C \R. However, as f is a real

polynomial, the complex conjugate of αi is also a root of f . We have shown that f has only real
roots except for a pair of complex conjugates.

To complete the discussion we show that f is irreducible over Q. Now, all the coefficients of
f , except the leading coefficient, are divisible by 2 and the constant term is not divisible by 4
(4|mn1 · · ·np−2 =⇒ 4 6 |(mn1 · · ·np−2− 2)). From Eisenstein’s critrerion, f is irreducible over Q.
We may now apply Theorem 9.1 to see that for the class of polynomials under consideration the
Galois group is Sp. It is worth noticing that there is an infinite number of polynomials in this
class.

9.3 Possible forms of the Galois group
As we have seen, the Galois group of a polynomial f of degree n may be considered as a sub-
group of Sn. However, not all subgroups of Sn are possible. If we suppose that f is separable
and irreducible, then the Galois group of f must be transitive and its cardinal a multiple of n
(Theorem 7.2). Therefore, if we are considering such polynomials, then we know that the Galois
group must belong to a certain finite subclass of subgroups of Sn. For example, if f ∈ Q[X]
is irreducible and of degree 5 and G is its Galois group, then 5||G|. If we also know that the
discriminant of f is a square in Q, then we can say that G is a subgroup of An (Proposition 9.1).
This limits considerably the possibilities.

Now we aim to consider the Galois group G of a an irreducible rational polynomial of degree
n. If n = 2 and |Sn| = 2, in this case there can only be one possibility for the Galois group,
namely S2. Let us now consider the case where n = 3. We have already seen (in the first
section of this chapter) that there are two possibilities, namely Sn and An, the first when the
discriminant of the polynomial is not a square in Q and the other when it is. We now turn to
the case where n = 4. This is more instructive and we will need some elementary group theory.
We recall that the only subgroup of Sn of index 2 is An.

Transitive subgroups of S4 divisible by 4

Now let us consider the possible Galois groups for irreducible rational polynomials of degree
4. We must find the subgroups of S4 which are transitive and whose cardinal is divisible by 4.
The possible orders for such subgroups are 4, 8, 12 and 24. The only subgroup of order 24 is S4

and the only subgroup of order 12 is A4. Therefore we are left with subgroups of order 4 and 8.
If G is a subgroup of order 8, then Gmust be a Sylow 2-subgroup of S4. All such subgroups are

conjugate and hence isomorphic. Thus, up to isomorphism, there is only one possible subgroup
of order 8. If we set

ρ = (1 2 3 4) and σ = (1 3),

then we find that
σρσ−1 = (1 4 3 2) = σ−1

and that the set
S = {e, ρ, ρ2, ρ3, σ, ρσ, ρ2σ, ρ3σ}
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is a group (generated by ρ and σ). This group is thus isomorphic to the dihedral group D8.
Finally we turn to the case where the subgroupG is of order 4. Clearly the subgroup generated

by a 4-cycle is a transitive subgroup of S4 of order 4 and all such subgroups are isomorphic. The
other subgroups of S4 of order 4 are isomorphic to the Klein subgroup, i.e., Z2×Z2. In addition
to the identity, such a group has elements of order 2 of cycle types (2, 1, 1) or (2, 2). There are
three possibilities:

• All the σi are transpositions: then we must have (1 2), (1 3) and (2 3) and the product of
the first two is the 3-cycle (1 3 2), a contradiction.

• One of the σi is of type (2, 2) and the other two are transpositions: in this case, the two
transpositions must be disjoint, otherwise their product is a 3-cycle and the group has the
form

{e, (1 2), (3 4), (1 2)(3 4)},

which is not transitive.

• Two of the σi are of type (2, 2), which implies that the third is also of this type and the
group has the form

{e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)},

which we note V4. This subgroup is clearly transitive.

We are now going to consider transitive subgroups of S5. However, before doing so, we need
to introduce a little group theory.

We recall that a group is simple if it has no proper normal subgroup other than {e}. For
n ≥ 5, An is simple. (A proof of this may be found, for example, in [19].)

Exercise 9.1 Show that A4 is not simple. What can we say about A2 and A3?

Exercise 9.2 Show that, for n ≥ 5, An is the unique nontrivial normal subgroup of Sn.

We need a technical result, which is not standard.

Proposition 9.3 If G is a finite group and H a nontrivial subgroup such that |G| does not divide
[G : H]!, then H contains a nontrivial normal subgroup of G.

proof Let n = [G : H]. Each g ∈ G induces a permutation πg on the quotient set G/H:

πg(xH) = gxH.

As [G : H] = n, we may identify πg with an element of Sn. The mapping φ : g 7−→ πg is a
homomorphism:

πgh(xH) = ghxH = πg(hxH) = πg ◦ πh(xH).

Now kerφ is a normal subgroup of G contained in H:

gxH = H =⇒ xH = g−1H.

As this is true for all x ∈ G, it is true for the identity element, so we obtain

eH = g−1H =⇒ g−1 ∈ H =⇒ g ∈ H,
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and it follows that kerφ ⊂ H.
Also

G/ kerφ ' Imφ =⇒ |G/ kerφ||n! =⇒ |G||| kerφ|n!

If |G| does not divide n!, then | kerφ| 6= 1 and so kerφ is not trivial. 2

The knowledge of semidirect products needed in the next part of our exposition can be found
in Appendix B.

Transitive subgroups of S5 divisible by 5

Now let us consider the possible Galois groups for irreducible rational polynomials of degree
5. The orders of such groups must be multiples of 5 and divisors of 120. In fact, the transitivity
does not enter into the question.

Proposition 9.4 Let G be a subgroup of S5 whose order is divisible by 5. Then G is transitive.

proof By Cauchy’s Theorem G contains an element of order 5, i.e., a 5-cycle σ = (x1, . . . , x5).
It is not difficult to see there is a power k of σ which sends xi to xj , for any pair of numbers xi
and xj . Therefore G is transitive. 2

Remark We can generalize this result to Sp, for any prime p: If p is a prime number and G a
subgroup of Sp such that p||G|, then G is transitive.

Taking into account what we have seen, the possible orders of subgroups of S5 which interest
us are 5, 10, 15, 20, 30, 40, 60 and 120.

Let us first consider the possible cyclic subgroups. In S5 the highest possible order of an
element is 6; this results from the decomposition of a permutation into distinct cycles. It follows
that the only cyclic groups of S5 whose order is divisible by 5 are those generated by a 5-cycle.

Now we consider subgroups of order 10. If G is such a subgroup, then it is cyclic or isomorphic
to D10 (Proposition C.4). The first possibility has already been ruled out, so there only remains
the second. This occurs: If we set σ = (1 2 3 4 5) and τ = (1 3)(4 5) and then G ' 〈σ, τ〉. If we
set H = 〈σ〉 and K = 〈τ〉, then it is easy to check that G is isomorphic to the semidirect product
of H and K, which is not direct.

Suppose that G is a subgroup of S5 of order 15. From Theorem C.2, G is cyclic, which is
impossible, so there is no subgroup of order 15 in S5.

We now turn to the case where |G| = 20. This is a little more interesting. G has a Sylow
5-subgroup P and a Sylow 2-subgroup Q, with |P | = 5 and |Q| = 4. Writing s5 for the number of
Sylow 5-subgroups, we have s5|4 and so s5 can take the values 1, 2 or 4. However, s5 ≡ 1 (mod 5),
so the only possibility is s5 = 1. This implies that P is normal in G. As the order of elements
in P and Q are coprime P ∩Q = {e} and so PQ = G. If Q is normal in P , then G is the direct
product of P and Q and so abelian. However, in this case G has an element of order 10, which
we have excluded, so G is a semidirect product of P and Q, which is not abelian.

We would like to know a little more about the subgroup Q. We consider the mapping

φ : Q −→ Aut(P ), y 7−→ φy,

where
φy(x) = yxy−1,
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for all x ∈ P . If a is a generator of P and y ∈ kerφ, then

yay−1 = a =⇒ ya = ay.

As y and a commute, we have o(ya) = o(y)o(a), since the orders of y and a are coprime. If
o(y) = 2, then o(ya) = 10, and if o(y) = 4, then o(ya) = 20, both of which are impossible.
Therefore o(y) = 1, which implies that y = e. Thus φ is injective. As Aut(P ) ' Z4, Q ' Z4 and
Q is cyclic. It is a simple matter to check the subgroup of S5 generated by the cycles (1 2 3 4 5)
and (2 3 5 4) is a subgroup of order 20 of the required type.

What about subgroups G of order 30. The index [S5 : G] of such a subgroup is 4 and 120,
the cardinal of S5 does not divide 24 = 4!, so, from Proposition 9.3, G contains a nontrivial
normal subgroup N of S5. However, the only nontrivial normal subgroup of S5 is A5 (Exercise
9.2). Thus N = A5, which is impossible, because |N | < |A5|. So there is no subgroup of order
30. We may use an analogous argument to show that there is no subgroup of order 40.

Finally we come to subgroups of order 60 or 120. In the first case there is only A5 and in the
second S5 itself.

The following theorem sums up our work on the transitive subgroups of S4 and S5:

Theorem 9.2 For S4 and S5 we have

• The transitive subgroups of S4 of order divisible by 4 are S4, A4, D8, subgroups generated
by a 4-cycle and V4.

• The (transitive) subgroups of S5 of order divisible by 5 are S5, A5, D10, subgroups generated
by a 5-cycle and subgroups isomorphic to the nonabelian semidirect product of Z5 and Z4.

The examples of S4 and S5 show the difficulty in determining those subgroups of Sn which
can be Galois groups of irreducible rational polynomials of degree n. Determining whether such
subgroups are actually Galois groups of an irreducible rational polynomial of degree n is another
problem. We will come back to this question presently.

In the cases we have considered, the absence of abelian groups has probably been observed.
This is not an accident, as we will soon see. We recall that if the group G acts on the set X,
then the stabiliser Gx of x ∈ X is defined as

Gx = {g ∈ G : g.x = x}

and the orbit Ox of x as
Ox = {g.x : g ∈ G}.

The orbit-stabilizer theorem asserts, that if G is finite, then

|Ox| =
|G|
|Gx|

.

We say that the action is transitive, if for any pair x, y ∈ X, there is a g ∈ G such that g.x = y.
If G is a group of permutations on a set X, then there is a natural action of G on X defined

by
g.x = g(x),

for all g ∈ G and x ∈ X. We will be interested here in the case where G ⊂ Sn and X = Nn =
{1, . . . , n}.
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Proposition 9.5 If G ⊂ Sn is transitive and abelian, then |G| = n.

proof From the orbit-stabilizer theorem we have

|Ox| =
|G|
|Gx|

.

As G is transitive, the action of G on Nn is transitive and so, for any x ∈ Nn,

|Ox| = n =⇒ |G| = n|Gx|.

We claim that |Gx| = 1. Let g ∈ Gx and take a ∈ Nn. As G is transitive, there exists h ∈ G
such that h.x = a. Hence, using the fact that G is abelian,

g.a = g.(h.x) = h.(g.x) = h.x = a.

As this equality is true for any a ∈ Nn, g = e, which proves our claim. We obtain |G| = n. 2

Corollary 9.1 If p is a prime number, and G is a transitive abelian subgroup of Sp, then G is
generated by a p-cycle.

proof This is a consequence of Proposition 9.5 and Lemma 9.1. 2

We now return to the question of the existence of an irreducible rational polynomial of degree
n whose Galois group is isomorphic to a given transitive subgroup of Sn. For Sn itself the answer
is always positive.

We now consider the case where n = 4.

• If f(X) = −2 +X4, then the Galois group of f is D8. We give a proof of this in Appendix
D.

• From Theorem 7.7 we know that the Galois group G = Gal(Q(µ5)/Q) is isomorphic to
Z×5 , which is in turn isomorphic to C4. However, Q(µ5) is a splitting field of Φ5(X) =
1 +X +X2 +X3 +X4, which is irreducible. Thus the Galois group of Φ5 is isomorphic to
C4 and so must be generated by a 4-cycle.

• For V4 we have the following argument. The splitting field of g(X) = 1 +X4 is Q(i,
√

2),
which is also the splitting field of h(X) = (1 +X2)(−2 +X2). However, the Galois group
of h is isomorphic to C2×C2 (see Example 1 in the next section), so this must be the case
for g. Given that V4 is the only transitive subgroup of S4 isomorphic to C2 × C2, V4 must
be isomorphic to the Galois group of g.

• Finally we consider A4. We will show that this group is isomorphic to the Galois group
of k(X) = 12 + 8X + X4. First we notice that the discriminant ∆(k) = 21234, a square,
so the Galois group G of k is a subgroup of A4, by Proposition 9.1. As 4||G|, |G| = 4 or
|G| = 12. Now we use Dedekind’s Theorem. Factorizing k modulo 5, we find

k(X) = (1 +X)(2 +X + 4X2 +X3),

hence the Galois group of k has a permutation of the form (1, 3), i.e., an element of order
3. This means that 3||G| and it follows that |G| = 12. Thus the Galois group of k is
isomorphic to A4.

It is also the case that, for n = 5, n = 6 and n = 7, all transitive subgroups of Sn are
isomorphic to the Galois group of an irreducible polynomial in Q[X] (see [22]); however, for
n > 7, the question is open.
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9.4 Reducible polynomials
In the previous section we were concerned with irreducible polynomials. Here we aim to con-
sider reducible polynomials, in particular, products of two polynomials whose Galois groups are
known. We will begin with some examples.

Example 1 Let f(X) = (1 +X2)(−2 +X2) ∈ Q[X]. The splitting field of g(X) = 1 +X2 in C
is Q(i). As Q(i) is a Galois extension of Q, we have

|Gal(Q(i)/Q)| = [Q(i) : Q] = 2

and it follows that the Galois group of g is isomorphic to the cyclic group C2. A similar argument
shows that the Galois group of h(X) = −2 +X2 is also isomorphic to C2. We now consider the
Galois group of f . The splitting field of f in C is Q(i,

√
2) and

[Q(i,
√

2) : Q] = [Q(i,
√

2) : Q(
√

2)][Q(
√

2) : Q] = 2.2 = 4.

Using Corollary 7.1, we see that the cardinal of the Galois group G of f is 4, which implies that
G is isomorphic to C4 or C2 × C2. If σ ∈ G, then

σ(i)2 = σ(i2) = σ(−1) = −1 =⇒ σ(i) = ±i.

In the same way
σ(
√

2)2 = σ(
√

2
2
) = σ(2) = 2 =⇒ σ(

√
2) = ±

√
2.

Hence σ2(i) = i and σ2(
√

2) =
√

2 and it follows that σ2 = idG. This means that all elements of
G have order 1 or 2 and so G is isomorphic to C2 × C2.

Example 2 We consider the polynomial f(X) = (1 +X +X2)(3 +X2) ∈ Q[X]. The splitting
field of g(X) = 1 + X + X2 is Q(j), where j = exp( 2πi

3 ). Hence Q(j) is a Galois extension of
Q. It follows that the cardinal of the Galois group of g is 2 and so this group is isomorphic to
C2. There is no difficulty in seeing that the Galois group of h(X) = 3 + X2 is also C2. What
can we say about the Galois group of f? First, the splitting field of f is Q(j, i

√
3). However,

j = −1+i
√

3
2 , and so Q(j, i

√
3) = Q(j) = Q(

√
3), therefore the Galois group of f is isomorphic

to C2.

Example 3 This time we take the polynomial f(X) = (−2 + X3)(−5 + X3) ∈ Q[X]. From
Theorem 9.1, the Galois groups of g(X) = −2 + X3 and h(X) = −5 + X3 are both isomorphic
to S3. The splitting field of f is

Q(
3
√

2, j
3
√

2, j2 3
√

2,
3
√

5, j
3
√

5, j2 3
√

5) = Q(
3
√

2, j
3
√

2,
3
√

5, j
3
√

5) = Q(
3
√

2, j,
3
√

5).

Clearly [Q( 3
√

2, j, 3
√

5] : Q] ≤ 27 so the Galois group of f cannot be isomorphic to S3 × S3.

In the first example the Galois group of the product of the two polynomials is the product
of their Galois groups. In the second and third examples this is not the case. The essential
difference is that in the first example the intersection of the splitting fields is Q, while in the
other two examples, this is not the case. In the next result we formalize this. (Beforehand it
may be useful to briefly look at Appendix A, where semidirect and direct products are handled.)
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Theorem 9.3 Let f ∈ F [X] be separable. Suppose that f = gh, with g, h ∈ F [X] irreducible, E
is a splitting field of f and K (resp. L) a splitting field of g (resp. h) in E. Then

Gal(E/F ) ' Gal(K/F )×Gal(L/F )

if and only if K ∩ L = F .

proof First it should be noticed that the separability of f , together with Theorem 3.8, ensures
that E is a separable extension of F . Let us write G = Gal(E/F ), GK = Gal(E/K) and
GL = Gal(E/L). The extensions K and L are normal, so the Galois groups GK and GL are
normal subgroups of G.

As K and L are included in E, KL is included in E. On the other hand, if α is a root of f ,
then α is a root of g or h and so f splits over KL, hence E ⊂ KL. We have shown that E = KL.
Using Corollary 6.1, we may write

[E : F ] = [KL : F ] =
[K : F ][L : F ]

[K ∩ L : F ]
.

If we now suppose that the Galois group of f is the direct product of the Galois groups of g and
h, then

[E : F ] = [K : F ][L : F ] =⇒ [K ∩ L : F ] = 1 =⇒ K ∩ L = F.

We now consider the converse. Setting G̃ for the subgroup of G generated by GK and GL,
we have, from Theorem 6.9,

F(G̃) = K ∩ L = F =⇒ G̃ = G.

From Theorem 6.9 we know that F(GK ∩ GL) = KL = E. This implies that GK ∩ GL = idE .
Since GK and GL are normal subgroups of G, the elements of GK commute with those of GL
and it follows that G = G̃ = GKGL. Thus G = GK ×GL and it follows that GK (resp. GL) is
isomorphic to G/GL (resp. G/GK). We have shown that

G ' G/GL ×G/GK ' Gal(L/F )×Gal(K/F ),

from Theorem 6.6. This ends the proof. 2

Remark This result may be easily extended to the case where f is a product of more than two
polynomials.
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Chapter 10

Norm, trace and discriminant

In this chapter we introduce some important notions which will be used later on in the text, in
particular, when we come to study in more detail number fields.

10.1 Norm and trace
Let E be a finite extension of a field F . For x ∈ E, we define a linear endomorphism mx of E by

mx(y) = xy,

for all y ∈ E. We define the norm and the trace of x, relative to the extension E of F , by

NE/F (x) = detmx and TE/F (x) = trmx.

We also define the characteristic polynomial of x. This is just the characteristic polynomial of
the endomorphism mx and we write char E/F (x) for this polynomial. To simplify the notation,
when the fields E and F are understood, we often omit the symbol E/F . From the definitions,
if n = [E : F ], then,

char E/F (x) = (−1)nN(x) + · · · − T (x)Xn−1 +Xn.

As the coefficients of a matrix of mx belong to F , the coefficients of char E/F (x) belong to F .
In particular, if E is a number field and x ∈ K, then NE/Q(x) and TE/Q(x) are rational numbers.

Example Let n be a squarefree integer and E = Q(
√
n). Then [K : Q] = 2 and (1,

√
n) is a

basis of E over Q. If x = a+ b
√
n, then

mx(1) = a+ b
√
n and mx(

√
n) = a

√
n+ bn,

therefore the matrix of mx in the basis (1,
√
n) is

M =

(
a bn
b a

)
.

Hence
NE/Q(x) = a2 − b2n and TE/Q(x) = 2a.
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If n is negative and a, b ∈ Z, then NE/Q(x) ∈ N and TE/Q(x) ∈ N.

If x ∈ F , then the matrix of mx in any basis is just xIn and so

N(x) = xn, T (x) = nx and char (x) = (−x+X)n.

Exercise 10.1 Show that the norm is multiplicative, i.e.,

N(x1x2) = N(x1)N(x2),

for all x1, x2 ∈ E, and that the trace is F -linear. Also, show that the mapping

B : E × E −→ F : (x1, x2) 7−→ T (x1x2)

is bilinear.

If x ∈ F , then m(x, F ) = −x + X, so char (x) = m(x, F )n. In the next proposition we
generalize this fact.

Proposition 10.1 If r = [E : F (x)], then

char E/F (x) = m(x, F )r.

proof First let us consider the case r = 1. Then E = F (x). From the Cayley-Hamilton
Theorem, we know that char (mx) = 0, hence

(−1)nN(x)y + · · · − T (x)xn−1y + xny = 0,

for all y ∈ E. If we set y = 1, then we see that x is a root of char (x). Hence m(x, f)|char (x).
Now,

n = [E : F ] = [F (x) : F ] = degm(x, F )

and so m(x, F ) = char (x), hence the result for r = 1.
Now let us consider the general case. Let y1, . . . , ys be a basis of F (x) over F and z1, . . . , zr

a basis of E over F (x). The elements yizj , with ≤ i ≤ s and 1 ≤ j ≤ r, form a basis of E over
F . Let A = (akl) be the matrix representing mx, in the basis (yi), for the extension F (x) of F .
(Notice that A ∈Ms(F ).) Then

xyi =

s∑
k=1

akiyk =⇒ x(yizj) =

s∑
k=1

aki(ykzj).

Now we order the basis (yizj) as follows:

y1z1, y2z1, . . . , ysz1, y1z2, . . . , ysz2, . . . , yszr.

The matrix representing mx, in the basis (yizj), for the extension E of F is

B = diag (A, . . . , A).

(There are r blocks A.) Thus

char E/F (x) = (det(−A+XIs))
r

= m(x, F )r,

where we have used the case r = 1 in the second equality. 2

The following result provides an expression for NE/F (x) in terms of the conjugates of x over
F .
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Corollary 10.1 Let E be a splitting field of the minimal polynomial m(x, F ). If n = [E : F ],
[F (x) : F ] = d and x1, . . . , xd are the roots of m(x, F ) in E (with repetition of roots possible),
then

NE/F (x) =

(
d∏
i=1

xi

)n
d

, TE/F (x) =
n

d

d∑
i=1

xi

and

char E/F (x) =

(
d∏
i=1

(−xi +X)

)n
d

.

proof We have
[E : F ] = [E : F (x)][F (x) : F ],

hence [E : F (x)] = n
d . From Proposition 10.1,

char E/F (x) = m(x, F )
n
d =

(
d∏
i=1

(−xi +X)

)n
d

.

If
m(x, F ) = a0 + a1X + · · ·+ ad−1X

d−1 +Xd,

then
m(x, F )

n
d = a

n
d
0 + · · ·+ n

d
ad−1X

n−1 +Xn.

It is clear that the constant term is a
n
d
0 ; however, the coefficient of Xn−1 needs an explanation.

From the multinomial theorem, with ad = 1, we have

(a0 + a1X + · · ·+ ad−1X
d−1 +Xd)

n
d =

∑
k0+k1+···+kd=n

d

( n
d

k0, k1, . . . , kd

) ∏
0≤i≤d

(aiX
i)ki .

To obtain the coefficient of Xn−1, first we notice that

k0 + k1 + · · ·+ kd =
n

d
(10.1)

and
0k0 + 1k1 + 2k2 + · · ·+ dkd = n− 1. (10.2)

Multiplying equation (10.1) by d we obtain

dk0 + dk1 + · · ·+ dkd = n. (10.3)

We now subtract equation (10.2) from equation (10.3). This gives us

dk0 + (d− 1)k1 + (d− 2)k2 + · · ·+ (d− (d− 1)) kd−1 = 1,

from which we deduce that ki = 0, for 0 ≤ i < d− 1, and kd−1 = 1. To find kd it is sufficient to
use equation (10.3):

d+ dkd = n =⇒ kd =
n

d
− 1.

Hence, for the term with Xn−1 we have( n
d

0, . . . 0, 1, nd − 1

)(
ad−1X

d−1
)1 (

Xd
)n
d−1

=
n

d
ad−1X

n−1.
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We may now continue the proof. Since a0 = (−1)d
∏d
i=1 xi and (−1)nN(x) = a

n
d
0 , we have

N(x) =
(∏d

i=1 xi

)n
d

. In a similar way, ad−1 = −
∑d
i=1 xi and −T (x) = n

d ad−1 imply that

T (x) = n
d

∑d
i=1 xi. 2

Separable extensions

Suppose now that E is a finite separable extension of the field F . If [E : F ] = n and C is
an algebraic closure of F , then there are n F -monomorphisms σ1, . . . , σn of E into C (Corollary
3.2). (If E is a number field, then it is natural to take C = A(C/Q), the field of algebraic
numbers, from the remark after Theorem 2.6.)

Proposition 10.2 Suppose that E is a finite separable extension of F . Then, for all x ∈ E,

NE/F (x) =

n∏
i=1

σi(x), TE/F (x) =

n∑
i=1

σi(x)

and

char E/F (x) =

n∏
i=1

(−σi(x) +X).

proof We have
[E : F ] = [E : F (x)][F (x) : F ].

If [F (x) : F ] = d, then [E : F (x)] = n
d . From Corollary 3.2, we know that there are d F -

monomorphisms τ1, . . . , τd of F (x) into C and each one of these F -monomorphisms sends x to a
distinct associate xi. From Theorem 3.2, each τi can be extended to an F (x)-monomorphism σj
from E into C. An F (x)-monomorphism is an F -monomorphism, thus we obtain n (= n

d ×d) F -
monomorphisms σj from E into C. As [E : F ] = n, these F -monomorphisms form the complete
set of F -monomorphisms from E into C. Now we have

n∏
i=1

σi(x) =

(
d∏
i=1

τi(x)

)n
d

=

(
d∏
i=1

xi

)n
d

= NE/F (x)

and
n∑
i=1

σi(x) =
n

d

d∑
i=1

τi(x) =
n

d

d∑
i=1

xi = TE/F (x).

For the characteristic function we have

n∏
i=1

(−σi(x) +X) =

(
d∏
i=1

(−τi(x) +X)

)n
d

=

(
d∏
i=1

(−xi +X)

)n
d

= char E/F (x).

This finishes the proof. 2

The proposition which we have just proved has an important corollary. If we have a tower
of fields F ⊂ K ⊂ E, where E is a finite extension of F , then it makes sense to speak of the
compositions NK/F ◦ NE/K and TK/F ◦ TE/K , because NE/K(x) and TE/K(x) are elements of
K, for any x ∈ E.
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Corollary 10.2 (transitivity of norm and trace) If K/F and E/K, where E is a finite separable
extension of F , then

NE/F = NK/F ◦NE/K and TE/F = TK/F ◦ TE/K .

proof Let n = [K : F ] and m = [E : K]. From Proposition 3.5, K is separable over F and
E separable over K. Let N be a normal closure of E over F . We saw in Section 5.1 that N
may be considered as the splitting field of a polynomial f ∈ F [X] which is a product of minimal
polynomials m(α, F ), with α ∈ E. As E is a separable extension of F , the polynomials m(α, F )
are separable, and so f is separable. Therefore, from Corollary 3.4, N is a separable extension
of F . We have shown that N is a finite Galois extension of F .

Let C be an algebraic closure of N . From Corollary 3.2, there are n F -monomorphisms
σ1, . . . , σn of K into C and m K-monomorphisms from τ1, . . . , τm from E into C. Each one of
the monomorphisms σi and τj may be extended to a monomorphism σ̂i or τ̂j from N into C
(Theorem 3.2). Proposition 5.3 ensures that N is normal over K, since N is normal over F .
Applying Proposition 5.2, we see that, for each i and each j, σ̂i(N) = N and τ̂j(N) = N , hence
σ̂i and τ̂j are automorphisms of N , for each i and j. Hence we can compose the mappings σ̂i
and τ̂j .

We now use Proposition 10.2. If x ∈ E, then

TK/F
(
TE/K(x)

)
=

n∑
i=1

σi

 m∑
j=1

τj(x)

 =

n∑
i=1

σ̂i

 m∑
j=1

τ̂j(x)

 =

n∑
i=1

m∑
j=1

σ̂iτ̂j(x).

Each mapping σ̂iτ̂j|E is an F -monomorphism of E into C and there are mn such mappings. We
claim that for distinct pairs (i, j) these mappings are distinct. Suppose that σ̂iτ̂j = σ̂lτ̂k on
E. Then, as K ⊂ E, this is also true on K. Given that τ̂j|K = τ̂k|K = idK , and σ̂i|K = σi
and σ̂l|K = σl, we have σi = σl, i.e., i = l. Also, σ̂i = σ̂l and σ̂i is a monomorphism, hence
τ̂j(x) = τ̂k(x), and this is so for any x ∈ E. It follows that τj = τk, and thus that j = k. We
have shown that the F -monomorphisms σ̂iτ̂j , restricted to E, are distinct and so form the set of
F -monomorphisms from E into C. Hence, using Proposition 10.2 again, we have

TE/F (x) =

n∑
i=1

m∑
j=1

σ̂iτ̂j(x) = TK/F (TE/K(x)),

for all x ∈ E.
For the norm we proceed in an analogous way:

NE/F (x) =

n∏
i=1

m∏
j=1

σ̂iτ̂j(x) =

n∏
i=1

σ̂i

 m∏
j=1

τ̂j(x)

 = NK/F
(
NE/K(x)

)
.

This ends the proof. 2

Remark Corollary 10.1 supposes that E is a splitting field of the minimal polynomial of x over
F . Using Corollary 10.2 we may show that Corollary 10.1 is true if the field E only contains
a splitting field K of the minimal polynomial (providing that E is a separable extension of F ).
Indeed, we have the tower of fields F ⊂ K ⊂ E and NE/F (x) = NK/F ◦NE/K(x). As x ∈ K, we
have NE/K(x) = x[E:K]. Thus

NE/F (x) =
(
NK/F (x)

)[E:K]
=

(
d∏
i=1

xi

) [K:F ]
d [E:K]

=

(
d∏
i=1

xi

) [E:F ]
d

.
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For the trace the calculation is analogous.

We now suppose that E/F is not only separable but also normal, i.e., E is a Galois extension
of F .

Corollary 10.3 If E is a finite Galois extension of the field F , then for all x ∈ E

NE/F (x) =
∏

σ∈Gal(E/F )

σ(x) and TE/F (x) =
∑

σ∈Gal(E/F )

σ(x).

proof As E is a finite separable extension F , there are n = [E : F ] F -monomorphisms σ1, . . . , σn
of E into an algebraic closure C of F . However, E is a normal extension of F and C an alge-
braic closure of F , with C/E, therefore σi(E) = E, for i = 1, . . . , n (Proposition 5.2) and so
σ1, . . . , σn ∈ Gal(E/F ). As the cardinality of Gal(E/F ) is n, the σi form the Galois group. The
result now follows from Proposition 10.2. 2

We conclude this section with a result concerning the bilinear form B defined in Exercise
10.1:

B : E × E −→ F : (x1, x2) 7−→ TE/F (x1x2).

Corollary 10.4 If E is a finite separable extension of F , then the bilinear form B is nondegen-
erate.

proof Suppose that B is degenerate, then there exists a nonzero x1 ∈ E such that T (x1x2) = 0,
for all x2 ∈ E. If x ∈ E, then there exists x2 ∈ E such that x1x2 = x, so T (x) = 0, for all x ∈ E.
However, this means that

∑n
i=1 σi(x) = 0, for all x ∈ E, which contradicts Dedekind’s lemma

(Theorem 8.1). Therefore B is nondegenerate. 2

10.2 Discriminant of a polynomial
In Section 8.5 we introduced the discriminant of a polynomial. Also, we defined the resultant of
two polynomials and stated an important relation between these two concepts. Our aim in this
section is to study these concepts in more detail. In order to make the reading easier, we regive
the definitions.

Resultants

We fix m,n ∈ N∗. Let F be a field, f ∈ Fm[X], with coefficients a0, . . . , am and g ∈ Fn[X], with
coefficients b0, . . . , bn. We define the square n+m Sylvester matrix Sm,n(f, g) (or S(f, g)), if m
and n are understood) as follows:

Sm,n(f, g) =



am am−1 am−2 . . . 0 0 0
0 am am−1 . . . 0 0 0
...

...
...

0 0 0 . . . a1 a0 0
0 0 0 . . . a2 a1 a0

bn bn−1 bn−2 . . . 0 0 0
0 bn bn−1 . . . 0 0 0
...

...
...

0 0 0 . . . b1 b0 0
0 0 0 . . . b2 b1 b0


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We obtain Sm,n(f, g) by shifting the line vector of the coefficients of f successively to the right
by 0, 1, . . . , n − 1 steps and the vector line of the coefficients of g successively to the right by
0, 1, . . . ,m− 1 steps and then filling in the remaining places with 0.

Remark If 0 ≤ deg f = k < m, then we have am = am−1 = · · · = ak+1 = 0 and if f = 0, then
ai = 0, for all i. We have an analogous situation if deg g 6= n.

Here is an example. With m = 3 an n = 2, we have

Sm,n(f, g) =


a3 a2 a1 a0 0
0 a3 a2 a1 a0

b2 b1 b0 0 0
0 b2 b1 b0 0
0 0 b2 b1 b0


The resultant of f and g, which we note Rm,n(f, g), (or R(f, g), if m and n are understood) is
the determinant |Sm,n(f, g)|. Clearly,

Rn,m(g, f) = (−1)mnRm,n(f, g). (10.4)

Remark We may consider the ai and bj as variables. In this way we obtain a mapping from
Fm+1 × Fn+1 into F , which is mn-homogeneous.

Proposition 10.3 Let f ∈ Fm[X] et g ∈ Fn[X]. If m ≥ n and h ∈ Fm−n[X], then

R(f + hg, g) = R(f, g).

In the same way, if m ≤ n and h ∈ Fn−m[X], then

R(f, g + hf) = R(f, g).

proof Let us begin with the case m ≥ n. If h(X) = c is a constant polynomial, then the
coefficients of f + hg are

am, am−1, . . . , an + cbn, an−1 + cbn−1, . . . , a0 + cb0, 0, . . . , 0.

From this, we see that the first line of S(f + hg, g) is the first line of S(f, g) plus c multiplied
by a line in the bloc of the bj . This also applies to the lines 2, . . . n, so in this case we have
R(f + hg, g) = R(f, g).

Now suppose that h = cX. Then the coefficients of f + hg are

am, am−1, . . . , an+1 + cbn, an + cbn−1, . . . , a1 + cb0, a0, 0 . . . , 0.

Again the first line S(f +hg, g) is the first line of S(f, g) plus c multiplied by a line in the bloc of
the bj . This also applies to the lines 2, . . . n, so in this case too we have R(f + hg, g) = R(f, g).

If h = c0 + c1X, then

R(f + hg, g) = R(f + (c0 + c1X)g, g) = R((f + c0g) + c1Xg, g) = R(f + c0g, g) = R(f, g).

Continuing in the same way, we obtain the first result. The second result is obtained in an
analogous way. 2

In the next proposition we consider the case where deg g < n or deg f < m. This result is
useful in proving the fundamental theorem which follows.
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Proposition 10.4 Let f ∈ Fm[X] and g ∈ Fn[X]. If 0 ≤ deg g = k ≤ m = deg f , then

Rm,n(f, g) = an−km Rm,k(f, g). (10.5)

If, on the other hand, 0 ≤ deg f = k ≤ n = deg g, then

Rm,n(f, g) = (−1)(m−k)nbm−kn Rk,n(f, g). (10.6)

proof Let us look at the first equation. If k = n, then there is nothing to prove, so let us
suppose that k < n. Then bn = 0 and the only nonzero element in the first column of the matrix
Sm,n(f, g) is am. The submatrix obtained by eliminating the first line and the first column
Sm,n(f, g) is Sm,n−1(f, g). If we continue the process, then we finally obtain the first formula.

Now we look at the second formula. Using the formulas (10.4) and (10.5) we have

Rm,n(f, g) = (−1)mnRm,n(g, f)

= (−1)mnbm−kn Rn,k(g, f)

= (−1)mnbm−kn (−1)nkRk,n(f, g)

= (−1)(m−k)nbm−kn Rk,n(f, g).

This ends the proof. 2

We now turn to one of the most important results of this section. We will see that there is a
relation between the roots of the polynomials f and g in a splitting field and the resultant.

Theorem 10.1 Let f ∈ Fm[X] and g ∈ Fn[X]. If deg f = m, then

Rm,n(f, g) = anm

m∏
i=1

g(ξi),

where the ξi are the roots of f in some splitting field of f . On the other hand, if deg g = n, then

Rm,n(f, g) = (−1)mnbmn

n∏
j=1

f(ηj),

where the ηi are the roots of g in some splitting field of g.

proof We begin with the first formula and suppose that n ≥ m and that f has the roots
ξ1, . . . , ξm in some splitting field. We will use an induction on s = deg g. If s = 0, then the
matrix Sm,n(f, g) is upper triangular and on the diagonal we have am n times and b0 m times,
therefore

Rm,n(f, g) = anmb
n
0 = anm

m∏
i=1

g(ξi),

so the result is true for s = 0.
Now suppose that 0 < s ≤ n and the result is true up to s− 1. Dividing g by f we obtain

g = fq + r,

with deg r < deg f = m. Then

deg q = deg fq − deg f = deg(g − r)−m ≤ n−m.
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From Proposition 10.3 we have

Rm,n(f, g) = Rm,n(f, g − fq) = Rm,n(f, r).

We set deg r = k < s and use Proposition 10.4 and the induction hypothesis.

Case 1: r 6= 0

Rm,n(f, r) = an−km Rm,k(f, r)

= an−km akm

m∏
i=1

r(ξi)

= anm

m∏
i=1

g(ξi),

and so the result is true for s.

Case 2: r = 0

In this case the last m lines of the matrix Sm,n(f, r) are composed of zeros, hence Rm,n(f, r) = 0.
In addition, for any root ξi of f , we have g(ξi) = q(ξi)f(ξi) = 0, which implies that ξi is also
a root of g. This implies that the expression

∏m
i=1 g(ξi) vanishes, so in this case also we have

equality. Thus the result is true for s.

In both cases, the result is true for s, so by induction, the result is true for all s ≤ n.

Now let us suppose that m > n. Then g ∈ Fm[X] and, using Proposition 10.4, we have

Rm,m(f, g) = am−nm Rm,n(f, g).

In addition, from what we have seen above,

Rm,m(f, g) = amm

m∏
i=1

g(ξi).

Therefore,

am−nm Rm,n(f, g) = amm

m∏
i=1

g(ξi) =⇒ Rm,n(f, g) = anm

m∏
i=1

g(ξi).

Hence, for m > n also the formula holds.

We now consider the second part of the theorem. We suppose that g has the roots η1, . . . , ηn
in some splitting field. Then,

Rm,n(f, g) = (−1)mnRn,m(g, f)

= (−1)mnbmn

n∏
j=1

f(ηj),

where we have used the first part of the theorem. 2
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Corollary 10.5 If deg f = m, deg g = n and, in a splitting field of f and g, the roots of f (resp.
g) are ξ1, . . . ξm (resp. η1, . . . , ηn), then

Rm,n(f, g) = anmb
m
n

m∏
i=1

n∏
j=1

(ξi − ηj).

proof It is sufficient to notice that

g(X) = bn(X − η1) · · · (X − ηn)

and then apply the first part of the theorem. 2

Discriminants

Let f(X) =
∑m
i=0 aiX

i a polynomial with coefficients in a field F . We suppose that the degree
m of f is greater than 1 and that f has the roots ξ1, . . . , ξm in some splitting field E. The
discriminant of f is defined by

∆(f) = a2m−2
m

∏
1≤i<j≤m

(ξi − ξj)2.

We will see in the theorem which follows that this definition is unambiguous: it does not depend
on the splitting field chosen.

It is useful to notice that ∆(f) belongs to F . Indeed, the multivariate polynomial
A = a2m−2

m

∏
1≤i<j≤m(Xi − Xj)

2 is a symmetric polynomial in F [X1, . . . , Xn]. Consequently,
from Corollary B.1, ∆(f) ∈ F . Using the same corollary, we may also say that, if f ∈ R[X],
where R is an integral domain, then ∆(f) ∈ R.

In Section 8.5 we stated the following result linking the discriminant of a polynomial and the
resultant of the polynomial and its derivative. Here we prove this result. it.

Theorem 10.2 If char F = 0 or char F = p > 0 and p 6 |m, where deg f = m, then

∆(f) = (−1)m(m−1)/2a−1
m Rm,m−1(f, f ′).

proof We have

f(X) = am

m∏
i=1

(X − ξi) =⇒ f ′(ξi) = am
∏
j 6=i

(ξi − ξj).

Hence,

Rm,m−1(f, f ′) = am−1
m

m∏
i=1

f ′(ξi)

= a2m−1
m

m∏
i=1

∏
j 6=i

(ξi − ξj)

= a2m−1
m

∏
1≤i<j≤m

(ξi − ξj)(ξj − ξi)

= a2m−1
m (−1)m(m−1)/2

∏
1≤i<j≤m

(ξi − ξj)2

= (−1)m(m−1)/2am∆(f)
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and the result follows. 2

If char F = p > 0 and p|m, then deg f ′ = k < m− 1. In this case, if k 6= −∞, then

Rm,m−1(f, f ′) = am−1−k
m Rm,k(f, f ′)

and
∆(f) = (−1)m(m−1)/2am−k−2

m Rm,k(f, f ′).

Remark The polynomial f has a multiple root if and only if ∆(f) = 0. From the formulas here,
we see that we are able to determine the existence of a multiple root only taking into account
the coefficients of f . We should also notice that the formulas show that the discriminant belongs
to the field F .

Example 1: ∆(b+ aX +Xn)

Our aim in this section is to determine a formula for the discriminant of the polynomial f(X) =
a+ bX +Xn ∈ F [X]. We will suppose that E is a field containing F and the roots of f .

Lemma 10.1 If f ∈ F [X] is monic and α0 ∈ E, then

∆
(
(−α0 +X)f(X)

)
= f(α0)2∆(f(X)).

proof Let α1, . . . , αn be the roots of f in C. Then the roots of (−α0+X)f(X) are α0, α1, . . . , αn
and

∆
(
(−α0 +X)f(X)

)
=

∏
0≤i<j≤n

(αi − αj)2

=
∏

1≤j≤n

(α0 − αj)2
∏

1≤i<j≤n

(αi − αj)2

= f(α0)2∆(f(X)).

This ends the proof. 2

We need a second preliminary result.

Lemma 10.2 If f(X) = c+Xn ∈ F [X], then

∆(f) = (−1)
n(n−1)

2 nncn−1.

proof Let α1, . . . , αn be the roots of f in E. Then

α1 · · ·αn = (−1)nc. (10.7)

Also,

f(X) =

n∏
i=1

(−αi +X) =⇒ f ′(X) =

n∑
i=1

∏
j 6=i

(−αj +X) =⇒ f ′(αi) =
∏
j 6=i

(−αj + αi).

It now follows that

(−1)
n(n−1)

2 ∆(f) =

n∏
i=1

f ′(αi) =

n∏
i=1

nαn−1
i
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and, using the identity (10.7), we obtain

(−1)
n(n−1)

2 ∆(f) = nn(α1 · · ·αn)n−1 = nn(−1)n(n−1)cn−1 = nncn−1,

hence the result. 2

We are now in a position to consider the polynomial f(X) = b + aX + Xn ∈ F [X]. The
following theorem provides a formula for the discriminant of f involving only its coefficients.

Theorem 10.3 For the polynomial f(X) = b + aX + Xn ∈ F [X], with n ≥ 2, we have the
formula

∆(f) = (−1)
(n−1)(n−2)

2 (n− 1)n−1an + (−1)
n(n−1)

2 nnbn−1.

proof For the the case where a = 0 we may use Lemma 10.2, so we may suppose that a 6= 0.
We begin with the case where b = 0. Then, using Lemmas 10.1 and 10.2, we have

∆(f) = ∆X(a+Xn−1)

= a2∆(a+Xn−1)

= a2(−1)
(n−1)(n−2)

2 (n− 1)n−1an−2

= (−1)
(n−1)(n−2)

2 (n− 1)n−1an

= (−1)
(n−1)(n−2)

2 (n− 1)n−1an + (−1)
n(n−1)

2 nnbn,

because b = 0.
Now we turn to the case where b 6= 0. The calculations are much longer. If α1, . . . , αn are

the roots of f , then, for all i,

b+ aαi + αni = 0 and α1 · · ·αn = (−1)nb. (10.8)

As b 6= 0, none of the roots αi vanish. Now, proceeding as in the proof of Lemma 10.2, and
setting A = (−1)

n(n−1)
2 ∆(f), we have

A =

n∏
i=1

f ′(αi) =

n∏
i=1

(a+ nαn−1
i ) =

n∏
i=1

aαi + nαni
αi

.
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Using the expressions (10.8), we continue:

A =
(−1)n

b

n∏
i=1

(aαi + nαni )

=
(−1)n

b

n∏
i=1

(aαi + n(−b− aαi))

=
(−1)n

b

n∏
i=1

(−bn− a(n− 1)αi)

=
(−1)n

b

n∏
i=1

(
(− bn

a(n− 1)
− αi)a(n− 1)

)

=
(−1)n

b
an(n− 1)n

n∏
i=1

(
− bn

a(n− 1)
− αi

)
=

(−1)n

b
an(n− 1)nf(− bn

a(n− 1)
)

=
(−1)n

b
an(n− 1)n

(
b+ a

(
− bn

a(n− 1)

)
+

(
− bn

a(n− 1)

)n)
We now simplify the expression on the right-hand side:

A =
(−1)n

b

(
(−1)nbnnn − anbn(n− 1)(n−1) + anb(n− 1)n

)
= (−1)n

(
(−1)nbn−1nn − ann(n− 1)n−1 + an(n− 1)n

)
= (−1)n

(
(−1)nbn−1nn − an(n− 1)n−1

)
= bn−1nn − (−1)n(n− 1)n−1an

= (−1)n−1(n− 1)n−1an + nnbn−1

= (−1)1−n(n− 1)n−1an + nnbn−1

Multiplying through by (−1)
n(n−1)

2 , we obtain the desired result. 2

Applications We have

• for n = 2, ∆(f) = a2 − 4b;

• for n = 3, ∆(f) = −4a3 − 27b2;

• for n = 4, ∆(f) = −27a4 + 256b3.

Example 2: ∆(Φp)

Proposition 10.5 If p is an odd prime, then

∆(Φp) = (−1)
p−1
2 pp−2.

proof Let ζ be a primitive pth root of unity. Then

−1 +Xp = (−1 +X)Φp(X) =⇒ pXp−1 = Φp(X) + (−1 +X)Φ′p(X).

102



Substituting ζi for X, since Φp(ζ
i) = 0, we obtain

p−1∏
i=1

Φ′p(ζ
i) =

p−1∏
i=1

pζi(p−1)

(−1 + ζi)

=
pp−1∏p−1

i=1 (−1 + ζi)

=
pp−1

(−1)p−1Φp(1)
= pp−2.

(The second equality follows from the relations
∑p−1
i=1 i = p(p−1)

2 and ζp = 1 and the third from
the identity Φp(X) = 1 +X + · · ·+Xp−1.)
Also,

Φp(X) =

p−1∏
i=1

(−ζi +X) =⇒ Φ′p(X) =

p−1∑
i=1

∏
j 6=i

(−ζj +X)

=⇒ Φ′p(ζ
i) =

∏
j 6=i

(−ζj + ζi)

=⇒
p−1∏
i=1

Φ′p(ζ
i) =

p−1∏
i=1

∏
j 6=i

(−ζj + ζi) =
∏
j 6=i

(−ζj + ζi).

Therefore,

∆(Φp) =
∏
j<i

(ζj − ζi)2 = (−1)
(p−2)(p−1)

2

∏
j 6=i

(ζj − ζi) = (−1)
p−1
2 pp−2.

This ends the proof. 2

10.3 General discriminants
We have seen the notion of the discriminant of a polynomial. Here we extend this notion, al-
though at first it will not be clear how the new concept is actually an extension of the previous
one. This we will see later.

Let E be a finite separable extension of degree n of a field F . We note σ1, . . . , σn the n
F -monomorphisms of E into an algebraic closure C of E and we take n elements α1, . . . , αn in
E. We define the discriminant of the set α1, . . . , αn by

discE/F (α1, . . . , αn) = |σi(αj)|2,

i.e., the square of the determinant of the matrix S = (σi(αj)). As we take the square of the
determinant, the order of the σi and αj do not have an effect on the value of the discriminant.
We will also see that the discriminant does not depend on the algebraic closure we use, hence
we are justified in speaking of the discriminant.

Exercise 10.2 Show that
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• discE/F (xα1, . . . , αn) = x2discE/F (α1, . . . , αn), for any x ∈ F ;

• If β is a linear combination of α2, . . . , αn, with coefficients in F , then
discE/F (α1 + β, α2, . . . , αn) = discE/F (α1, . . . , αn).

The next result is useful as we will see later on.

Proposition 10.6 Suppose that U = {u1, . . . , un} and V = {v1, . . . , vn} are sets of vectors in
E such that ui =

∑n
j=1 aijvj, with aij ∈ F . Then

discE/F (u1, . . . , un) = (det(aij))
2discE/F (v1, . . . , vn).

proof By definition
discE/F (u1, . . . , un) = (det(σi(uj)))

2
,

where the σi are the n F -monomorphisms of E into an algebraic closure of E. Now

σi(uj) = σi(

n∑
k=1

ajkvk) =

n∑
k=1

ajkσi(vk).

We define the matrices X = (σi(uj)), A = (aij) and Y = (σi(vj)). Then X = Y At and so
(det(X))2 = (det(Y At))2, i.e.,

discE/F (u1, . . . , un) = (det(aij))
2discE/F (v1, . . . , vn),

as required. 2

The next result will enable us to show that the discriminant is indeed independant of the
algebraic closure of E chosen.

Proposition 10.7 We have

discE/F (α1, . . . , αn) = |TE/F (αiαj)|,

where |TE/F (αiαj)| is the determinant of the matrix T = (TE/F (αiαj)).

proof As above let us set S = (σi(αj)). Then

StS =

(
n∑
k=1

σk(αiαj)

)
=
(
TE/F (αiαj)

)
,

hence
|S|2 = |TE/F (αiαj)|.

This ends the proof. 2

Remark From the proposition we see that discE/F (α1, . . . , αn) is independant of the algebraic
closure chosen. Also, as TE/F (αiαj) ∈ F , for 1 ≤ i, j ≤ n, we have discE/F (α1, . . . , αn) ∈ F .

The discriminant can help us to determine whether n elements in an extension of degree n
form a basis of the extension.
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Proposition 10.8 The elements α1, . . . , αn form a basis of E over F if only if their discriminant
does not vanish.

proof Let
∑n
j=1 cjαj = 0, where the cj ∈ F and at least one cj 6= 0. Then, for 1 ≤ i ≤ n,∑n

j=1 cjσi(αj) = 0. This implies that the columns of the matrix S = (σi(αj)) are dependant. It
follows that discE/F (α1, . . . , αn) = 0.

Now suppose that the αi are independant and so form a basis of E over F . If
discE/F (α1, . . . , αn) = 0, then the rows of the matrix S are dependant, hence there exist elements
c1, . . . , cn ∈ F , with at least one cj 6= 0, such that

∑n
i=1 ciσi(αj) = 0, for 1 ≤ j ≤ n. As the αj

form a basis of E over F , we have
∑n
i=1 ciσi(u) = 0, for all u ∈ E; therefore the monomorphisms

σi are dependant. However, this contradicts Corollary 8.1. Hence discE/F (α1, . . . , αn) 6= 0. 2

In Section 8.5 we defined the discriminant of a polynomial. There is a relation between this
notion and the notion of discriminant which we have defined here.

Proposition 10.9 Let E be a finite separable extension of a field F ; then there exists α ∈ E
such that E = F (α) (Proposition 3.4). If m = m(α, F ) and degm = n, then the elements
1, α, . . . , αn−1 form a basis of E over F . We have

discE/F (1, α, . . . , αn−1) = ∆(m) = (−1)
n(n−1)

2 NE/F
(
m′(α)

)
.

proof Let C be an algebraic closure of E and σ1, . . . , σn the n F -monomorphisms from E into
C. Since E = F (α), each σi is determined σi(α). Moreover, α is a root of m ∈ F [X], so σi(α) is
also a root of m. If α = α1, α2, . . . , αn are the roots of m, then we may suppose, without loss of
generality, that σi(α) = αi. Consequently, σi(αj) = αji and discE/F (1, α, . . . , αn−1) is the square
of the determinant of the matrix

S =


1 α1 α2

1 . . . αn−1
1

1 α2 α2
2 . . . αn−1

2
...

...
...

...
1 αn α2

n . . . αn−1
n


However, S is a Vandermonde matrix, therefore

|S|2 =
∏
i<j

(αi − αj)2 = ∆(m).

Moreover, ∏
i<j

(αi − αj)2 = (−1)
n(n−1)

2

∏
i 6=j

(αi − αj)

and, from Proposition 10.2,

NE/F
(
m′(α)

)
=

n∏
i=1

σi
(
m′(α)

)
.

Now, σi
(
m′(α)

)
= m′

(
σi(α)

)
, because m ∈ F [X], thus

NE/F
(
m′(α)

)
=

n∏
i=1

m′
(
σi(α)

)
=

n∏
i=1

m′(αi).

105



Finally, as m(X) =
∏n
i=1(−αi +X), we have

m′(αi) =
∏
j 6=i

(−αj + αi)

and so

NE/F
(
m′(α)

)
=

n∏
i=1

∏
j 6=i

(−αj + αi)

=
∏
j 6=i

(−αj + αi)

= (−1)
n(n−1)

2

∏
i<j

(αi − αj)2,

which implies that
∆(m) = (−1)

n(n−1)
2 NE/F

(
m′(α)

)
.

This ends the proof. 2

Remark From Proposition 10.9 and the calculation of the discriminant of the pth cyclotomic
polynomial Φp for p an odd prime (Proposition 10.5), we obtain

discQ(ζ)/Q(1, ζ, . . . , ζp−2) = (−1)
p−1
2 pp−2,

where ζ is a primitive pth root of unity, because Φp is the minimal polynomial of ζ over Q.

We now use the previous proposition and the notion of norm and trace to calculate the
discriminant of the prth cyclotomic polynomial, where r ∈ N∗.

Corollary 10.6 We have
∆(Φpr ) = (−1)cpp

r−1(r(p−1)−1),

where c = φ(pr)
2 , if p is odd or r > 1, and c = 0 otherwise. (φ is the Euler function.)

proof Let ζ be a primitive prth root of unity. Setting n = φ(pr) = pr−1(p−1), from Proposition
10.9

∆(Φpr ) = discQ(ζ)/Q(1, ζ, . . . , ζn−1) = (−1)
n(n−1)

2 NQ(ζ)/Q

(
Φ′pr (ζ)

)
.

We now calculate the norm. First, using Exercise 7.4, we have

Φpr (X) = Φp(X
pr−1

) =
Xpr − 1

Xpr−1 − 1
=⇒ Φ′pr (ζ) =

prζp
r−1(ζp

r−1 − 1)

(ζpr−1 − 1)2
,

because ζp
r − 1 = 0. Hence,

Φ′pr (ζ) =
prζp

r−1

ζpr−1 − 1
.

To calculate NQ(ζ)/Q

(
Φ′pr (ζ)

)
we use the multipliplicity of the norm. To begin, we determine

NQ(ζ)/Q(ζp
r−1). This norm is the product of all the primitive prth roots of unity (Corollary
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10.1), i.e., (−1)n times the constant term of Φpr . However, Φpr (X) = Φp(X
pr−1

) (Exercise 7.4)
and Φp(X) = 1 + · · ·+Xp−1, hence

NQ(ζ)/Q(ζp
r−1) = (−1)n.

Let us now calculate NQ(ζ)/Q(ζp
r−1−1). To do so we initially notice that ζp

r−1

is a primitive
pth root of unity. (ζp

r−1

is clearly a pth root of unity; if (ζp
r−1

)k = 1, with k < p, then there is
a power u of ζ less that pr such that pu = 1, which is impossible, so ζp

r−1

is a primitive pth root
of unity.) Let ξ be a primitive pth root of unity. We apply Corollary 10.3 to the tower of fields
Q ⊂ Q(ξ) ⊂ Q(ζ) to obtain

NQ(ζ)/Q(ζp
r−1

− 1) = NQ(ξ)/Q ◦NQ(ζ)/Q(ξ)(ζ
pr−1

− 1).

Moreover,
NQ(ζ)/Q(ξ)(ζ

pr−1

− 1) = (ζp
r−1

− 1)p
r−1

,

since ζp
r−1 − 1 ∈ Q(ξ) and

[Q(ζ) : Q(ξ)] =
[Q(ζ) : Q]

[Q(ξ) : Q]
=
φ(pr)

φ(p)
= pr−1.

Hence, we have to consider

NQ(ξ)/Q

(
(ζp

r−1

− 1)p
r−1)

=
(
NQ(ξ)/Q(ζp

r−1

− 1)
)pr−1

.

Since ζp
r−1

is a primitive pth root of unity, its minimal polynomial over Q is Φp. The minimal
polynomial of ζp

r−1 − 1 over Q is Φp(1−X), which has the splitting field Q(ξ). Therefore, from
Corollary 10.1,

NQ(ξ)/Q(ζp
r−1

− 1) =

p−1∏
i=1

(ξi − 1) = (−1)p−1Φp(1) = (−1)p−1p

and
NQ(ζ)/Q(ζp

r−1

− 1) =
(
(−1)p−1p

)pp−1

= (−1)(p−1)pr−1

pp
r−1

.

To conclude

NQ(ζ)/Q

(
Φ′pr (ζ)

)
=
prnNQ(ζ)/Q(ζp

r−1)

NQ(ζ)/Q(ζpr−1 − 1)
=

prn(−1)n

(−1)nppr−1 = pp
r−1(r(p−1)−1).

If p is odd or r > 1, then n = φ(pr) is even and the parity of n(n−1)
2 is that of n2 . On the other

hand, if p is even and r = 1, then n = φ(2) = 1, so (−1)
n(n−1)

2 = 1. This finishes the proof. 2

Further on we will generalize this result, i.e., we will determine ∆(Φn), for any n ∈ N∗.
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Algebraic Number Theory
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Chapter 11

Number fields

In our previous work we have already seen number fields, namely finite extensions of the rational
numbers Q. In this chapter we will look into these fields in more detail. In particular, we will
study a natural subring occurring in such fields, namely that composed of algebraic integers.

11.1 Algebraic integers
We recall that an algebraic number is an element α ∈ C for which there is a polynomial f ∈ Z[X],
such that f(α) = 0. The algebraic numbers form an extension of the field Q. We say that α ∈ C
is an algebraic integer if there is a monic polynomial f ∈ Z[X], such that f(α) = 0. An algebraic
integer is an algebraic number, but the converse is not necessarily true; for example, as we will
soon see, a rational number is an algebraic integer only if it is an integer.

Lemma 11.1 Let f ∈ Z[X] and f = gh, with g, h ∈ Q[X]. If f and g are monic, then
g, h ∈ Z[X].

proof Let m (resp. n) be the smallest positive integer such that mg (resp. nh) belongs to Z[X].
Since g and h are monic, we claim that the contents c(mg) and c(nh) have both the value 1.
(We recall that the content of a polynomial in Z[X] is the hcf of its coefficients.) If c(mg) 6= 1,
then the coefficients of mg have a common divisor d > 1, such that d|m, since g is monic. If we
set m′ = m

d < m, then m′g ∈ Z[X], a contradiction, since m′ is a positive integer. A similar
argument applies to c(nh). We claim that this in turn implies that m = n = 1: If m > 1 or
n > 1, then mn > 1; for p a prime divisor of mn, we have

mnf = (mg)(nh) =⇒ 0̄ = m̄gn̄h,

where the bars indicate the reductions modulo p. As Zp[X] is an integral domain, because Zp is
a field, m̄g = 0̄ or n̄h = 0̄, which implies that p divides the coefficients of mg or the coefficients of
nh. However, this is impossible, because c(mg) = c(nh) = 1. Therefore m = n = 1, as claimed.
This implies that g, h ∈ Z[X]. 2

Theorem 11.1 If α ∈ C is an algebraic integer, then there is a monic polynomial f ∈ Z[X]
such that f(α) = 0. If f is of minimal degree, then f is irreducible in Q[X].

proof If f is reducible in Q[X], then there are nonconstant polynomials g, h ∈ Q[X] such that
f = gh. We may suppose that g and h are monic. From Lemma 11.1, we have g, h ∈ Z[X]. In
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addition, g(α) = 0 or h(α) = 0. However, deg g < deg f and deg h < deg f and so we have a
contradiction to the minimality of f . Thus f is irreducible. 2

From this result we obtain an important corollary.

Corollary 11.1 If α ∈ C is an algebraic integer, then the polynomial m = m(α,Q) lies in Z[X].

proof Let f be a monic polynomial in Z[X] of minimal degree such that f(α) = 0. Then f is
irreducible in Q[X] and m|f . It follows that m = f . 2

Exercise 11.1 Show that if E is a number field and x ∈ E is an algebraic integer, then NE/Q(x)
and TE/Q(x) are integers.

We now consider the algebraic integers in Q.

Theorem 11.2 The number α ∈ Q is an algebraic integer if and only if α is an integer.

proof If α ∈ Z, then f(X) = −α + X ∈ Z[X] and f is monic. Clearly f(α) = 0, so α is an
algebraic integer. Now suppose that α ∈ Q is algebraic. If m = m(α,Q), then m ∈ Z[X] and
m(α) = 0. As α is a root of m, g(X) = −α+X divides m. Now, m is irreducible and so g = m;
it follows that m ∈ Z[X], which implies that α ∈ Z. 2

We will now establish criteria permitting us to decide whether a complex number is an
algebraic integer. This will enable us to show that the collection of algebraic integers, which we
will note O, is a subring of the field of algebraic numbers.

Theorem 11.3 The following conditions are equivalent:

• a. α is an algebraic integer;

• b. The additive group of the ring Z[α] is finitely generated;

• c. α belongs to a subring R of C whose additive group is finitely generated;

• d. There is a finitely generated subgroup G 6= {0} of the additive group of C such that
αG ⊂ G.

proof a. =⇒ b. If α is a root of a monic polynomial f ∈ Z[X] and deg f = n, then the additive
group of Z[α] is generated by the elements 1, α, . . . , αn−1.

b. =⇒ c. =⇒ d. These implications are elementary.
d. =⇒ a. Suppose that a1, . . . , an generate G. Then each term αai can be expressed as a

linear combination of the ai with coefficients in Z. Therefore there is a matrix M ∈Mn(Z) such
that  αa1

...
αan

 = M

 a1

...
an

 =⇒ (αIn −M)

 a1

...
an

 = 0.

As all the ai are nonzero, det(αI −M) = 0. However, this determinant can be written :

αn + cn−1α
n−1 + · · ·+ c1α+ c0 = 0,

with c1 ∈ Z. Hence we have a monic polynomial f ∈ Z[X] such that f(α) = 0. 2

We may now show that the subset O of C composed of algebraic integers is a ring.

110



Corollary 11.2 The subset O of C is a ring.

proof It is sufficient to show that α + β and αβ are in O, when α and β are in O. Let m, n
be the degrees of the minimal polynomials of α, β. Then 1, α, . . . , αm−1 is a generating set of
the additive group of Z[α] and 1, β, . . . , βn−1 a generating set of the additive group of Z[β]. The
elements αiβj , for 0 ≤ i ≤ m and 0 ≤ j ≤ n, form a generating set of the additive group of
the ring Z[α, β]. As Z[α + β] is a subring of Z[α, β], from 11.3 c., α + β is algebraic. A similar
argument shows that αβ is also algebraic. 2

We may generalize the notion of algebraic integer. If R is a commutative ring and S a subring,
then we say that α ∈ R is integral over S if there is a monic polynomial f ∈ S[X] such that
f(α) = 0. With Theorem 11.3 as model we may establish criteria allowing us to decide whether
an element of R is integral over S.

Theorem 11.4 If S is a subring of the commutative ring R, then the following conditions are
equivalent for an element α ∈ R:

• a. α is integral;

• b. The S-module S[α] is finitely generated;

• c. α belongs to a subring U of R containing S which is a finitely generated S-module;

• d. There is a nonzero finitely generated S-module N in R such that αN ⊂ N .

proof a. =⇒ b. If α is a root of a monic polynomial f ∈ S[X] and deg f = n, then αn and
all higher powers of α can be expressed as linear combinations (with coefficients in S) of lower
powers of α. Hence S[α] is generated by the elements 1, α, . . . , αn−1.

b. =⇒ c. =⇒ d. These implications are elementary.
d. =⇒ a. Suppose that a1, . . . , an generate N . Then each term αai can be expressed as a

linear combination of the ai with coefficients in S. Therefore there is a matrix M ∈Mn(S) such
that  αa1

...
αan

 = M

 a1

...
an

 =⇒ (αIn −M)

 a1

...
an

 = 0.

As all the ai are nonzero, det(αI −M) = 0. However, this determinant can be written:

αn + cn−1α
n−1 + · · ·+ c1α+ c0 = 0,

with c1 ∈ S. Hence we have a monic polynomial f ∈ S[X] such that f(α) = 0. 2

Using arguments analogous to those employed in the proof of Corollary 11.2 we see that the
collection of elements in R which are integral over S form a subring of R. We call this subring
the integral closure of S in R. If the integral closure is S itself, then we say that S is integrally
closed in R. If S is an integral domain and integrally closed in its field of fractions, then we say
that S is integrally closed. Above we saw that Z is integrally closed in Q, its field of fractions,
so Z is integrally closed.

If S is a subring of the ring R such that every element of R is integral over S, then we say
that R is integral over S.

The integral closure of S in R is naturally an S-module. We will now explore some of its
properties. We first consider minimal polynomials over integrally closed domains.

111



Proposition 11.1 Let R be an integrally closed domain, with field of fractions K, and L an
extension of K. If x ∈ L is integral over R and L̄ is a splitting field of the minimal polynomial
m = m(x,K), then all the K-conjugates of x belong to L̄ and are also integral over R. It follows
that m ∈ R[X]. If S is the integral closure of R in L, then S ∩K = R.

proof Let us write R̄ for the integral closure of R in L̄. Then R ⊂ R̄ ∩K ⊂ R, because R is
integrally closed. Thus R̄ ∩K = R.

If x ∈ L is integral over R, then there exists a monic polynomial f ∈ R[X] such that f(x) = 0.
The minimal polynomial m = m(x,K) divides f . It follows that the K-conjugates of x (which
are in L̄) are also roots of f , hence integral over R and so belong to R̄.

The coefficients ofm are, up to sign, defined by the elementary symmetric functions evaluated
at the K-conjugates of x and so belong to R̄ ∩K = R, i.e., m ∈ R[X].

To finish, we consider the integral closure S of R in L. If x ∈ S ∩K, then x ∈ R, because R
is integrally closed, so S ∩K ⊂ R. Clearly R ⊂ S ∩K, so we have S ∩K = R. 2

The next result concerns the field of fractions of an integral closure of an integral domain.

Proposition 11.2 Let R be an integral domain and K its field of fractions. If L is an algebraic
extension of K and S the integral closure of R in L, then the field of fractions F of S is L.

proof Clearly R ⊂ S ⊂ F ⊂ L. As F ⊂ L, we only need to show that L ⊂ F . Let x ∈ L. If x =
0, then there is nothing to prove, so let us suppose that this is not the case. As L is an algebraic
extension of K, x is algebraic over K: there exists a polynomial f(X) =

∑m
i=0 aiX

i ∈ K[X]
such that f(x) = 0. Then

∑m
i=0

ai
aim

(amx)i = 0. Setting bi = ai
aim

, we obtain a monic polynomial
g ∈ K[X] such that g(amx) = 0. Hence s = amx ∈ S. As K is the field of fractions of R, there
exist r1, r2 ∈ R such that am = r1

r2
, so x = sr2

r1
∈ F , because r1, r2 ∈ S. Hence L ⊂ F . 2

Corollary 11.3 If R, K, L and S are as in Proposition 11.2, then every element of x of L has
the form s

r , where s ∈ S and r ∈ R∗.

proof For x = 0 there is nothing to prove, so we suppose that this is not the case. In the proof
of Proposition 11.2 we showed that, if x ∈ L, then x = sr2

r1
, where r1, r2 ∈ R and s ∈ S. As

R ⊂ S, we have sr2 ∈ S, hence the result. 2

Exercise 11.2 Show that there exists a basis of L over K composed of elements in S.

We now introduce an interesting result, which we will use further on.

Theorem 11.5 Let R be an integrally closed domain, K its field of fractions and L a separable
extension of degree n of K. Suppose that S is the integral closure of R in L. Then there exist
free R-modules M and M ′, of rank n, such that M ′ ⊂ S ⊂M .

proof Let t be a primitive element of L over K, i.e., L = K(t). From Lemma 11.1, we may write
t = s

r , with s ∈ S and r ∈ R∗. Thus L = K(s). Since L is an extension of degree n of K, , the
degree of the minimal polynomial m(s,K) is also n. Consequently, the elements 1, s, . . . , sn−1

are K-independant. These elements are also R-independant elements of the R-module S. The
R-submodule of S generated by 1, s, . . . , sn−1 is

M ′ = R⊕Rs⊕ · · · ⊕Rsn−1,

which is a free module of rank n.
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It is a little more difficult to show that S is contained in some free R-module. Let d =
discL/K(1, s, . . . , sn−1). As the elements 1, s, . . . , sn−1 are K-linearly independant, Proposition
10.8 ensures that d 6= 0. Then 1

d ,
s
d , . . . ,

sn−1

d are R-linearly independant elements of the R-
module L. The R-module generated by these elements is

M = R(
1

d
)⊕R(

s

d
)⊕ · · · ⊕R(

sn−1

d
).

M is a free R-module of rank n. We aim to show that S ⊂ M . As the set {1, s, . . . , sn−1} is a
basis of L over K, any y ∈ S can be written

y =

n−1∑
j=0

cjs
j =

n−1∑
j=0

dcj

(
sj

d

)
,

where the cj ∈ K. We need to show that dcj ∈ R. Since dcj ∈ K and R is an integrally closed
domain, it is sufficient to prove that the dcj are integral over R.

Since L is separable extension of K of degee n, Corollary 3.2 ensures that there are n distinct
K-monomorphisms σ1, . . . , σn from L into an algebraic closure C of K. As L = K(s), each σi is
entirely determined by σi(s), hence the elements σ1(s), . . . , σn(s) are distincts. In addition, for
i = 1, . . . , n, σi(s) is a K-conjugate of s and so the set {σ1(s), . . . , σn(s)} is equal to the set of
K-conjugates {s1, . . . , sn} of s. Without loss of generality, we may suppose that σi(s) = si, for
all i. Applying σi to the equality y =

∑n−1
j=0 cjs

j we obtain, for all i,

σi(y) =

n−1∑
j=0

cj (σi(s))
j

=

n−1∑
j=0

cjs
j
i .

We may express this in matrix form: σ1(y)
...

σn(y)

 =

 1 s1 . . . sn−1
1

...
...

...
1 sn . . . sn−1

n


 c0

...
cn−1


The matrix V = (sji ) is a Vandermonde matrix with all si distinct, so its determinant δ does
not vanish. Using Cramer’s rule, we obtain expressions for the cj , namely cj =

γj
δ , where γj is

the determinant of the matrix Vj obtained from V by replacing the column j + 1 by the column
(σ1(y), . . . , σn(y))

t.
Now, from Proposition 10.9, d = discL/K(1, s, . . . , sn−1) is the discriminant of the minimal

polynomial m(s,K); hence, using the formula for the determinant of a Vandermonde matrix, we
obtain

d =
∏

1≤i<j≤n

(si − sj)2 = δ2 =⇒ dcj = δγj ,

for j = 0, . . . , n− 1. As δ and γj are determinants of matrices with coefficients in S, because y
and s belong to S. Therefore the dcj are integral over R, as required. 2

11.2 Number rings
Let K be a number field and let us note OK the collection of algebraic integers in K. Clearly
OK = O ∩ K and so, being the intersection of two subrings of C, OK is a subring of C. We
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say that OK is the number ring associated to K or the ring of integers of K. We will see that
this ring has many interesting properties. However, let us first consider a "simple" case, namely
that of number rings associated to quadratic number fields. We know that, if K is a quadratic
number field, then there is squarefree integer d such that K = Q(

√
d ) (Theorem 3.5). It would

be natural to think that associated number ring has the form Z[
√
d ]. The next theorem shows

that OQ(
√
d ) always contains Z[

√
d ], but inclusion can be strict.

Theorem 11.6 Let d be a squarefree integer. Then

OQ(
√
d ) =

{
Z[
√
d ] if d ≡ 2, 3 (mod 4)

Z[−1+
√
d

2 ] if d ≡ 1 (mod 4).

proof Case 1: d = 2, 3 (mod 4). We take α = r + s
√
d ∈ OQ[

√
d ]. If s = 0, then α ∈ Q, hence,

from Theorem 11.2 α ∈ Z, and so α ∈ Z[
√
d ]. Now suppose that s 6= 0. We note

f(X) = (r2 − ds2)− 2rX +X2 ∈ Q[X].

Then ∆(f) = 4ds2. As d is squarefree, ∆(f) is not a square in Q, hence f is irreducible. Now,
f(α) = 0, therefore f = m(α,Q). From Corollary 11.1, f ∈ Z[X] and so r2 − ds2, 2r ∈ Z. This
implies that 4ds2 ∈ Z. Using the fact that d is squarefree, we obtain 2s ∈ Z. Let us note m = 2r
and n = 2s. Then

r2 − ds2 =
1

4
(m2 − dn2) ∈ Z

and so 4|(m2 − dn2). Then

d ≡ 2 (mod 4) =⇒ m2 − dn2 ≡ m2 + 2n2 (mod 4)

and
d ≡ 3 (mod 4) =⇒ m2 − dn2 ≡ m2 + n2 (mod 4).

As m2 − dn2 ≡ 0 (mod 4), in both cases m and n are even, which implies that r, s ∈ Z. Thus
α ∈ Z[

√
d].

Suppose now that α = r + s
√
d, with r, s ∈ Z. If s = 0, then α ∈ Z ⊂ OQ(

√
d). If s 6= 0, then

r2 − ds2, 2r ∈ Z and so f ∈ Z[X]; as f(α) = 0, it follows that α ∈ OQ(
√
d).

We have proved the result for the case d ≡ 2, 3 (mod 4).

Case 2: d = 1 (mod 4). We take α = r + s
√
d ∈ OQ(

√
d ). If s = 0, then α ∈ Q, hence, from

Theorem 11.2, α ∈ Z and so α ∈ Z[−1+
√
d

2 ]. To handle the case where s 6= 0, we define f ∈ Q[X]
as above and proceed as in Case 1 to find 4|(m2 − dn2), where m = 2r and n = 2s.

d ≡ 1 (mod 4) =⇒ m2 − dn2 ≡ m2 − n2 (mod 4).

Thus we have 4|(m2 − dn2) and 4|(m2 − n2), which implies that m and n have the same parity.
Now,

α =
m+ n

√
d

2
=
m+ n

2
+ n

(
−1 +

√
d

2

)
∈ Z[

−1 +
√
d

2
].

Now suppose that α = r + s−1+
√
d

2 , with r, s ∈ Z. If s = 0, then α ∈ Z ⊂ OQ(
√
d). For the

case where s 6= 0 we have 2r, r2−ds2 ∈ Z, so f ∈ Z[X]; as f(α) = 0, it follows that α ∈ OQ(
√
d ).

This proves the result for d ≡ 1 (mod 4). 2

Examples
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• OQ(i) = Z[i], because −1 ≡ 3 (mod 4);

• OQ(
√

3) = Z[
√

3], because 3 ≡ 3 (mod 4);

• OQ(
√

5) = Z[−1+
√

5
2 ], because 5 ≡ 1 (mod 4);

• OQ(
√

6) = Z[
√

6], because 6 ≡ 2 (mod 4).

We now consider certain basis properties of number rings. In particular, we will show that
the additive group of such a ring is a free abelian group. We begin with a characterization of
invertible elements.

Proposition 11.3 If K is a number field and α ∈ OK , then α ∈ O×K if and only if
NK/Q(α) = ±1.

proof If α ∈ O×K , then α−1 ∈ O×K and

1 = NK/Q(1) = NK/Q(α)NK/Q(α−1).

As α and α−1 are algebraic, NK/Q(α) and NK/Q(α−1) are integers, hence NK/Q(α) = ±1.
Now suppose that NK/Q(α) = ±1. Since α ∈ OK , Proposition 10.1 and Corollary 11.1 ensure

that char K/Q(α) belongs to Z[X]. Thus we have

char K/Q(α) = ±1 + a1X + · · ·+ an−1X
n−1 +Xn,

with ai ∈ Z, for 1 ≤ i ≤ n − 1. From the Cayley-Hamiltonian Theorem, we know that α is a
root of char K/Q(α).

Now α−1 is a root of the reciprocal polynomial

f(X) = 1 + an1
X + · · ·+ a1X

n−1 ±Xn.

Since f ∈ Z[X], α−1 is algebraic and it follows that α ∈ O×K . 2

Exercise 11.3 Show that, if K = Q(
√
−2), then O×K is finite. Considering the positive powers

of 1 +
√

2, show that the diophantine equation a2 − 2b2 = 1 has an infinite number of solutions
and deduce that, if K = Q(

√
2), then O×K is infinite.

As OK is an integral domain, it has a field of fractions (in C). It is natural to try to determine
this field. This we will now do.

Lemma 11.2 If α ∈ C is algebraic over Q, then there is an integer k ∈ N∗ such that kα is an
algebraic integer.

proof If α = 0, then there is nothing to prove, so let us suppose that this is not the case.
Let m(X) =

∑d−1
i=0 aiX

i + Xd be the minimal polynomial of α over Q. If k is the lcm of the
denominators of the coefficients ai, then kai = bi ∈ Z, for 0 ≤ i ≤ d− 1. We have

kd−1b0 + kd−2b1(kα) + · · ·+ kbd−2(kα)d−2 + bd−1(kα)d−1 + (kα)d = kdm(α) = 0.

As the coefficients kd−1b0, . . . , kbd−2, bd−1 are integers, kα is an algebraic integer. 2
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Theorem 11.7 The field of fractions of OK is the number field K.

proof Let us write L for the field of fractions of OK . The clearly OK ⊂ K. If L 6= K, then
there exists α ∈ K \ L. As K is a finite extension of Q, K is algebraic over Q. In particular, α
is algebraic over Q. From Lemma 11.2, there exists k ∈ N∗ such that kα is an algebraic integer,
hence kα ∈ OK ⊂ L. As k ∈ OK , α = kα

k ∈ L, a contradiction. 2

We now consider bases of the vector space K over Q. It turns out that there is a basis
composed entirely of elements in OK .

Proposition 11.4 If K is a number field, and [K : Q] = n, then K has a basis α1, . . . , αn
composed of elements in OK .

proof From Lemma 11.2, we know that, if α is nonzero and algebraic over Q, then there in an
integer k ∈ N∗ such that kα is an algebraic integer. Let (β1, . . . , βn) be a basis of K over Q.
As K is a finite extension of Q, K is algebraic over Q and so each βi is algebraic over Q. For
each βi, we may find ki ∈ N∗ such that kiβi is an algebraic integer. If αi = kiβi, then clearly
(α1, . . . , αn) is a basis of K over Q. 2

We now turn to the result referred to above concerning the nature of the additive group of
OK . To understand the proof it is necessary to have a knowledge of free abelian groups. We
have included an appendix on the subject.

Theorem 11.8 The additive group of OK is a free abelian group of rank n.

proof Let (α1, . . . , αn) be a basis of K over Q composed of elements of OK and A = Zα1 ⊕
· · ·⊕Zαn. (The sum is direct because the αi are independant over Q.) If we can show that there
exists d ∈ Z∗ such that dOK ⊂ A, then the theorem is proved. Indeed, in this case, OK ⊂ 1

dA,
where 1

dA is a free abelian group. Thus, by Theorem E.3, OK is a free abelian group of rank r,
with r ≤ n. Moreover, A is subgroup of OK and so, using Theorem E.3 again, the rank of r of
OK is is larger than n. Finally, OK is a free abelian group of rank n.

Let us now show that this d exists. For any α ∈ OK , there exist x1, . . . , xn ∈ Q such that
α =

∑n
i=1 xiαi. We set d = discK/Q(α1, . . . , αn); then d is nonzero by Proposition 10.8. Using

Proposition 10.7 and Exercise 11.1 we see that d is an integer, since the algebraic integers form
a ring.

We now show that dxi ∈ Z, for 1 ≤ i ≤ n, which implies that dα ∈ A. We note σ1, . . . , σn
the Q-monomorphisms of K into C. We have, for 1 ≤ i ≤ n,

σi(α) = x1σi(α1) + · · ·+ xnσi(αn).

This is a system of n equations in n unknowns (the xj). Applying Cramer’s rule we obtain

xj =
νj
δ
,

where δ is the determinant |σi(αj)| and νj is the determinant of the matrix obtained from the
matrix (σi(αj)) by replacing the jth column by the column composed of the elements σi(α).
Now, δ2 = d, so δ is an algebraic integer. In the same way, we may show that νj is an algebraic
integer, since

ν2
j = discK/Q(α1, . . . , αj−1, α, αj+1, . . . , αn),
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and α ∈ OK . To finish, we notice that

dxj = δ2 νj
δ

= δνj

which implies that dxj is an algebraic integer, since both δ and νj are algebraic integers. More-
over, dxj ∈ Q. As an algebraic integer in Q is an integer, dxj is an integer. This concludes the
proof. 2

Discriminant of a number ring

Let K be a number field with number ring OK . As OK is a free abelian group, OK has a
basis (α1, . . . , αn), where n is the dimension of the vector space K over Q:

OK = Zα1 ⊕ · · · ⊕ Zαn.

We call such a basis an integral basis. There may be many bases; however, they are related
through their discriminants.

Proposition 11.5 If (α1, . . . , αn) and (β1, . . . , βn) are integral bases of OK , then

discK/Q(α1, . . . , αn) = discK/Q(β1, . . . , βn).

proof First we notice that there is a matrix M = (mij) ∈Mn(Z) such that α1

...
αn

 = M

 β1

...
βn


Let σ1, . . . , σn be the Q-monomorphisms of K into C. Then

αi =

n∑
k=1

mikβk =⇒ σj(αi) =

n∑
k=1

mikσj(βk),

for 1 ≤ i, j ≤ n. In terms of matrices,

(σj(αi)) = M (σj(βk)) ,

which implies that
discK/Q(α1, . . . , αn) = |M |2discK/Q(β1, . . . , βn).

As the αi and βj are algebraic integers, from Proposition 10.7, the discriminants in the above
equations are integers. Given that M ∈Mn(Z), the determinant |M | is an integer and it follows
that discK/Q(β1, . . . , βn) divides discK/Q(α1, . . . , αn). In the same way, discK/Q(α1, . . . , αn) di-
vides discK/Q(β1, . . . , βn). As the discriminants clearly have the same sign, they are equal. 2

We call the common value of the discriminant in the foregoing theorem the discriminant of the
number ring OK and we write disc(OK) for this. We emphasize that disc(OK) ∈ Z.

Example Let K = Q(
√
d), where d is a squarefree integer. The Galois group Gal(K/Q) =

(σ1, σ2), where σ1 is the identity and σ2 permutes
√
d and −

√
d. If d ≡ 2, 3 (mod 4), then

OK = Z[
√
d] and (1,

√
d) is an integral basis of OK . It follows that

disc(OK) = discK/Q(1,
√
d) = 4d.
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Exercise 11.4 Show that, if d ≡ 1 (mod 4), then disc(OK) = d.

We may extend the notion of the discriminant of a number ring. Let K be a number field
with ring of integers OK . An order in K is a subring R of OK such that the index of R in OK
(as additive groups) is finite. The order is said to be maximal if R = OK .

If R is a subring of OK , from Theorem E.3 we know that R is a free group with rank at most
that of OK .

Proposition 11.6 A subring R of OK is an order if and only if R has the same rank as that of
OK .

proof Let n be the rank of OK and r that of R. From Theorem E.4, OK has a basis {e1, . . . , en}
for which there exist integers d1, . . . , dr ∈ N∗, such that {d1e1, . . . , drer} is a basis of R. If r = n,
then the cosets of R in OK can be written

si1e1 + · · ·+ sinen +R, with 0 ≤ si1 ≤ d1 − 1, . . . , 0 ≤ sin ≤ dn − 1.

Thus there are d1 · · · dn cosets, i.e., [OK : R] < ∞ and R is an order. If r < n, then the cosets
of R in OK may be written

si1e1 + · · ·+ sirer + xr+1er+1 + · · ·+ xnen +R,

with 0 ≤ si1 ≤ d1− 1, . . . , 0 ≤ sir ≤ dr − 1 and xr+1, . . . , xn ∈ Z. In this case there is an infinite
number of cosets, so [OK : R] =∞ and R is not an order. 2

If R ⊂ OK is an order, then we may define the discriminant of R in the same way as we did for
OK . If (α1, . . . , αn) and (β1, . . . , βn) are integral bases of R, then the argument of Proposition
11.5 shows that

discK/Q(α1, . . . , αn) = discK/Q(β1, . . . , βn).

and that the common value is an integer. We call this the discriminant of R and note it disc(R).

Example Suppose that K = Q(α), where α ∈ OK . Then rkOK = [Q(α);Q]. However,
degm(α,Q) = n = [Q(α) : Q], so the set {1, α, . . . , αn−1} is a basis of Z[α]. Thus Z[α] and OK
have the same rank: Z[α] is an order in K.

We will return to orders further on.

We say that an integral domain D is a normal domain if the integral closure of D in its field of
fractions is D itself. It is worth noticing (although we will not prove it here) that the polynomial
ring D[X] is a normal domain if D is normal. We aim to show that a number ring is a normal
domain. We will first prove a preliminary result, which is interesting in its own right.

Lemma 11.3 A subgroup of a finitely generated abelian group is finitely generated.

proof We will use an induction on the number of generators. Let G be a finitely generated
abelian group: G = 〈a1, . . . , an〉. If n = 1, then G is cyclic. As a subgroup of a cyclic group is
cyclic, the result is true in the case n = 1.

Nos suppose that we have proved the result up to n and G = 〈a1, . . . , an, an+1〉. Let H be
a subgroup of G and π : G −→ G/〈an+1〉 the canonical quotient mapping. As G is abelian, the
quotient Ḡ = G/〈an+1〉 has a natural group structure and Ḡ = 〈π(a1), . . . , π(an)〉. From the

118



induction hypothesis, the subgroup H̄ = π(H) of Ḡ is finitely generated: H̄ = 〈h̄1, . . . , h̄m〉, with
h̄i = π(hi) for some hi ∈ H.

We now notice that H ∩ 〈an+1〉 is a subgroup of 〈an+1〉, hence cyclic: H ∩ 〈an+1〉 = 〈hm+1〉,
with hm+1 ∈ H. We claim that H = 〈h1, . . . , hm, hm+1〉. If h ∈ H, then there exists g ∈
〈a1, . . . , hm〉 such that π(g) = π(h). Therefore h = g + k, with k ∈ Kerπ = 〈an+1〉. In addition,
k = h− g ∈ H, so k = shm+1, for some s ∈ Z. To conclude,

h = g + shm+1 ∈ 〈h1, . . . , hm+1〉.

We have shown that H = 〈h1, . . . , hm+1〉. 2

Remark The abelian hypothesis in the previous lemma is important. Here is a counter-example.
Theorems 11.2 and 11.3 ensure that the additive group of the ring Z[ 1

2 ] is not finitely generated.
Consequently the group of matrices

G0 = {
(

1 x
0 1

)
∈M2(Q), x ∈ Z[

1

2
]}

is not finitely generated. However, the elements of Z[ 1
2 ] are of the form p

2q , with p ∈ Z and
q ∈ N, and (

1 p
2q

0 1

)
=

(
2 0
0 1

)−q (
1 1
0 1

)m1
(

2 0
0 1

)q (
1 1
0 1

)m2

,

where m2 and m1 are respectively the quotient and remainder after division of p by 2q. Hence
G0 is a subgroup of G, the subgroup ofM2(Q) generated by the matrices

S =

(
2 0
0 1

)
and T =

(
1 1
0 1

)
.

Thus we have a subgroup of a finitely generated group which is not finitely generated.

Exercise 11.5 Find an explicit description of the matrices in G.

Proposition 11.7 A number ring OK is a normal domain.

proof We have seen that OK has a finite basis. Let α ∈ K be integral over OK : there exists a
poynomial f(X) =

∑n−1
i=0 aiX

i +Xn, with ai ∈ OK , such that f(α) = 0. This implies that

αn = −an−1α
n−1 − · · · − a1α− a0.

It follows that the additive group of the ring OK [α] is finitely generated. As Z[α] ⊂ OK [α], the
additive subgroup of the ring Z[α] is also finitely generated (Lemma 11.3). From Theorem 11.3,
α is an algebraic integer and so α ∈ OK . 2

Stickelberger’s criterion

We may say a little more about the discriminant of a number ring. Let K be a number field
of degree n over Q and B = {β1, . . . , βn} an integral basis of the number ring OK . There exist
n Q-embeddings σ1, . . . , σn of K in C. By definition,

disc(OK) = det(σi(βj))
2.
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The determinant is the sum of expressions of the form

sgn(π)σπ(1)(β1) · · ·σπ(n)(βn),

where π is a permutation of the set {1, . . . , n}, i.e., π ∈ Sn, and sgn(π) is the sign of π. To
simplify the notation, let us set X = An and Y = Sn \An. Then

det(σi(βj)) =
∑
π∈Sn

n∏
i=1

sgn(π)σπ(i)(βi) =
∑
π∈X

n∏
i=1

σπ(i)(βi)−
∑
π∈Y

n∏
i=1

σπ(i)(βi) = P −N.

Thus
disc(OK) = (P −N)2 = (P +N)2 − 4PN.

Now let L be a normal closure of K over Q. By Exercise 5.1, L is a finite Galois extension
of Q. We aim to show that φ(P + N) = P + N and φ(PN) = PN , for all φ ∈ Gal(L/Q), the
Galois group of L over Q. First, we extend every embedding σi to an embedding σ̄i of L into
C. (This is possible by Theorem 2.7.) From the normality of the extension L/Q we deduce that
σ̄i(L) = L. (The image of σ̄i is included in the set A(C/Q), which is an algebraic closure of Q,
by the remark after Theorem 2.6; therefore, from Proposition 5.2), σ̄i(L) = L.) It follows that
σi(K) ⊂ L. Hence, for every σi, the mapping φ ◦ σi is defined and is a Q-embedding of K into
C.

We now notice that the mapping σi 7−→ φ◦σi is a bijection on the set S = {σ1, . . . , σn}, so we
can find a permutation τ ∈ Sn such that φ ◦ σi = στ(i), for every i ∈ {1, . . . , n}. We distinguish
two cases:

Case 1: τ even
Here we have τX = X and

φ

(∑
π∈X

n∏
i=1

σπ(i)(βi)

)
=

∑
π∈X

n∏
i=1

φ ◦ σπ(i)(βi)

=
∑
π∈X

n∏
i=1

στπ(i)(βi)

=
∑
π∈τX

n∏
i=1

σπ(i)(βi)

=
∑
π∈X

n∏
i=1

σπ(i)(βi).

Hence φ(P ) = P . In a similar way, using the fact that τY = Y , we may show that φ(N) = N .

Case 2: τ odd
Now we have τX = Y and τY = X and so φ(P ) = N and φ(N) = P .

From what we have seen, in both cases we have φ(P + N) = P + N and φ(PN) = PN .
This applies for any φ ∈ Gal(L/Q), so P + N and PN belong to the fixed field of Gal(K/Q),
i.e., Q. Now the βi are algebraic integers; since the elements σπ(i)(βi) are roots of the minimal
polynomial m(βi,Q), these elements are also algebraic integers. This means that P and N are
algebraic integers in Q, i.e., integers. From the formula

disc(OK) = (P +N)2 − 4PN,
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we may deduce the following: If P and N have the same parity, then P + N ≡ 0 (mod 2) =⇒
(P + N)2 ≡ 0 (mod 4); if P and N have different parities, then P + N ≡ 1 (mod 2) =⇒
(P +N)2 ≡ 1 (mod 4). Thus we have:

Theorem 11.9 (Stickelberger’s criterion) If K is a number field, with number ring OK , then

disc(OK) ≡ 0 (mod 4) or disc(OK) ≡ 1 (mod 4).

Remark In a certain sense Stickelberger’s theorem generalizes Exercise 11.4 and the remark
preceding it.

11.3 Roots of unity in number fields
In any commutative ring with identity, the roots of unity form a multiplicative group. In a
number field, as we will soon see, this group is cyclic. If K is a number field and x is a root of
unity, then −1 + xn = 0, for some n ∈ N∗, so x lies in the number ring OK .

Proposition 11.8 Let K be a number field and c ∈ R∗+. Then there are only a finite number
of elements x ∈ OK such that |x(i)| ≤ c, for all conjugates x(i) of x.

proof Let [K : Q] = n and Σ1, . . . ,Σn be the elementary symmetric polynomials in n variables.
We set

c′ = max{nc,
(
n

2

)
c2, . . . ,

(
n

k

)
ck, . . . , cn}.

Let S be the set of monic polynomials of degree at most n, whose coefficients are integers a such
that |a| ≤ c′. Then S is finite. Now let T be the set of elements of K which are roots of some
polynomial belonging to S; T is also a finite set. If |x(i)| ≤ c, for all conjugates of x in K, then
|Σk(x(1), . . . , x(n))| ≤ c′, for k = 1, . . . , n. Since x is an algebraic integer, Σk(x(1), . . . , x(n)) ∈ Z
and so the polynomial f(X) =

∏n
i=1(−x(i) +X) belongs to S. As x is a root of f , x belongs to

T . 2

We may now prove a fundamental result.

Theorem 11.10 The group W of roots of unity of a number field K is a finite multiplicative
cyclic group.

proof It is sufficient to notice that W is a finite subgroup of the multiplicative group of K and
apply Theorem 3.3. 2

The next result gives us a criterion for determining roots of unity.

Proposition 11.9 If f ∈ Z[X] is monic and is such that all its roots in C have absolute value
1. Then these roots are all roots of unity.

proof Let z1, . . . , zk be the roots of f in C repeated according to their multiplicities. For every
l ∈ N∗ we set

fl(X) = (−zl1 +X) · · · (−zlk +X).

From Exercise B.1, fl ∈ Z[X] for all l. If

fl(X) = a0 + a1X + · · · ak−1X
k−1 +Xk,
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then, taking into account the fact that |zi| = 1 for all i, we find that

|aj | ≤
(
k

j

)
for j = 0, 1, . . . , k − 1. There are only a finite number of monic polynomials g ∈ Z[X] with
deg g = k and jth coefficient bounded by

(
k
j

)
for j = 0, 1, . . . , k− 1, hence there exist l < m such

that fl = fm. It follows that the roots of these two polynomials are the same. If zl1, . . . , zlr are
the distinct roots of fl and zm1 , . . . , zmr the distinct roots of fm, then there exists a permutation
σ ∈ Σr such that zli = zmσ(i), for i = 1, . . . , r. We claim that zl

k

i = zmσk(i), for k ∈ N∗. For this we
give a proof by induction. For k = 1, there is nothing to prove. Suppose now that the result is
true for k and consider the case k + 1. We have

zmσk+1(i) = zmσ(σk(i)) = (zlσk(i))
m = (zmσk(i))

l = (zl
k

i )l = zl
k+1

i ,

so the result is true for k+1 and, by induction, for all k ∈ N∗. In particular, it is true for k = r!,
the cardinal of the symmetric group Σr and hence zl

r!

i = zmi . From this we deduce that zi is
root of unity. 2

Corollary 11.4 x is a root of unity in a number field K if and only if x ∈ OK and |x(i)| = 1,
for every conjugate of x.

proof Let x be a root of unity. We have already seen that a root of unity must lie in OK . There
exists a positive integer m such that xm = 1. As the conjugates x(i) of x are also roots of the
polynomial f(X) = −1 +Xm, we must have |x(i)|m = 1, which implies that |x(i)| = 1.

Now suppose that x ∈ OK and |x(i)| = 1, for all conjugates x(i) of x. The conjugates are
the roots of the minimal polynomial m(x,Q), so by Proposition 11.9 they are roots of unity; in
particular, x is a root of unity. 2

Exercise 11.6 Let K be a number field, x ∈ K and m ∈ N∗. Show that the conjugates of xm
are mth powers of the conjugates of x.

If p is an odd prime, ζ = e
2πi
p and K = Q(ζ), then we can be more precise with respect to

the roots of unity of K.

Theorem 11.11 If p is an odd prime and ζ = e
2πi
p , then the roots of unity in K = Q(ζ) are of

the form ±ζj, with 1 ≤ j ≤ p.

proof From Theorem 11.10 we know that the roots of unity form a finite cyclic group C. If
|C| = m, then there is a generator z = e

2πit
m of C. (It is sufficient to take t coprime to m.) If

x ∈ C, then −x ∈ C, because xk = 1 implies that (−x)2k = 1, hence −ζ ∈ C and so there exists
s ∈ N∗ such that zs = −ζ, i.e., e 2πis

m = e
2πi
p +πi. From this we deduce that there exists k ∈ Z

such that
2πis

m
=

2πi

p
+ πi+ 2kπi =⇒ 2sp = m(2 + p(2k + 1)) =⇒ 2p|m,

because neither 2 nor p divide 2 + p(2k + 1).
As z is a generator of C, ζ is a power of z and so Q(ζ) ⊂ Q(z). However, z ∈ Q(ζ) and so

we also have Q(z) ⊂ Q(ζ) and it follows that Q(ζ) = Q(z). This being the case, we have

φ(m) = [Q(z) : Q] = [Q(ζ) : Q] = φ(p) = p− 1,
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where φ is Euler’s totient function. We may write m = 2αpβm′, with α ≥ 1, β ≥ 1 and 2 6 |m′,
p 6 |m′, and

p− 1 = φ(m) = 2α−1pβ−1(p− 1)φ(m′) =⇒ 1 = 2α−1pβ−1φ(m′).

Therefore α = β = φ(m′) = 1. As m′ 6= 2, we have m′ = 1 and so m = 2p. Thus the cardinal
of C is 2p. Since the elements ±ζi, with 1 ≤ i ≤ p, belong to C and are distinct, these are the
roots of unity in K. 2

Exercise 11.7 Show that a number field of odd degree has just two roots of unity.

11.4 Composita of number fields
We recall that, if K and L are subfields of a field E, then the compositum of K and L in E,
which we write KL, is the smallest subfield of E containing both K and L. In this section we
consider the case where K and L are number fields (considered as subfields of C.) We will be
particularly interested in the number ring OKL of KL.

Let K and L be number fields and OK , OL the associated number rings. From Proposition
6.4 we know that

[KL : Q] ≤ [K : Q][L : Q],

with equality when [K : Q] and [L : Q] are coprime, or said otherwise, when K and L are linearly
disjoint. We set R = OK , S = OL and

RS =
{∑
i∈I

risi : ri ∈ R, si ∈ S, |I| <∞
}

RS is clearly a subring of OKL. The following result provides a sufficient condition for equality.

Theorem 11.12 Let K and L be linearly disjoint number fields and d = gcd(disc(R), disc(S)).
Then OKL ⊂ 1

dRS. Thus, if d = 1, then OKL = RS.

proof Let m = [K : Q], n = [L : Q] and {α1, . . . , αm}, {β1, . . . , βn} integral bases respectively
of R and S. These bases are bases over Q of respectively K and L. As K and L are linearly
disjoint over Q, the set

A = {αiβj : 1 ≤ i ≤ m, 1 ≤ j ≤ n}

is a basis of KL over Q. (See the discussion on linear disjointness after Proposition 6.4.) Hence,
if x ∈ OKL, then there exist rational numbers qij , for 1 ≤ i ≤ m and 1 ≤ j ≤ n, such that

x =
∑
i,j

qijαiβj .

We aim to show that dqij ∈ Z,for all i and j. If this is the case, then we may write

x =
1

d

∑
i,j

(dqij)αiβj ∈
1

d
RS

and it follows that OKL ⊂ 1
dRS. To establish that dqij ∈ Z it is sufficient to show that

disc(R)qij ∈ Z. If we can do this, then with an analogous argument we may show that
disc(S)qij ∈ Z. As there exist u, v ∈ Z such that d = udisc(R) + vdisc(S), dqij ∈ Z.
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From Corollary 3.2 we know that there are exactly [K : Q] Q-monomorphisms of K into
C. Let σ be such a monomorphism. Theorem 3.2 ensures that there are exactly [KL : K]
monomorphic extensions σ̃ of σ into C. Restricting the σ̃ to L, we obtain [KL : K] distinct
monomorphisms σ′ from L into C. (If two such restrictions σ′1 and σ′2 are equal, then the
corresponding mappings σ̃1 and σ̃2 are equal on K and L and consequently on KL, contradicting
the fact that σ̃1 and σ̃2 are distinct.) As K and L are linearly disjoint [KL : K] = [L : Q],
therefore the considered restrictions are the Q-monomorphisms from L into C. In particular,
one such restriction is the identity on L. Consequently, for the corresponding σ̃, we have

σ̃(x) =

m∑
i=1

n∑
j=1

σ̃(qij)σ̃(αi)σ̃(βj) =

m∑
i=1

xiσ(αi),

where xi =
∑n
j=1 qijβj . We may use the same procedure for each of the [K : Q] Q-monomorphisms

σ1, . . . , σm from K into C and obtain the corresponding extensions σ̃1, . . . , σ̃m. In this way we
obtain a system of m equations in m unknowns, the xi:

σ̃1(x) = σ1(α1)x1 + · · ·+ σ1(αm)xm

σ̃2(x) = σ2(α1)x1 + · · ·+ σ2(αm)xm
...

...
...

...
σ̃m(x) = σm(α1)x1 + · · ·+ σm(αm)xm.

Applying Cramer’s rule we find the expression for the xi:

xi =
νi
δ
,

where δ is the determinant of the matrix
(
σi(αj)

)
and νi the determinant of the matrix obtained

from the previous matrix by replacing the ith column by that composed of the elements σ̃i(x).
(As the αj are independant , δ 6= 0, from Proposition 10.8.) As x ∈ OKL, x is an algebraic integer
and so σ̃i(x) is an algebraic integer; also, the αj belong to R and so are algebraic integers, which
implies that the σi(αj) are algebraic integers. It follows that δ and the νi are algebraic integers.
Now, we have

δ2xi = δνi = ui ∈ OKL.

However, δ2 = disc(R) ∈ Z, so

ui = disc(R)xi =

m∑
i=1

disc(R)qijβj .

Hence, ui is an algebraic integer in R and its coefficients in the basis (βj) are disc(R)qij . It
follows that the elements disc(R)qij are integers. This finishes the proof. 2

We now consider the relation between the discriminants of the number rings R and S and
the discriminant of OKL.

Theorem 11.13 Let K and L be linearly disjoint number fields whose number rings have co-
prime discriminants. Then

disc(OKL) = disc(R)[L:Q]disc(S)[K:Q].
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proof Let m = [K : Q], n = [L : Q], and (a1, . . . , am), (b1, . . . , bn) be integral bases of
respectively R, S. As the ai and bj are algebraic integers, so are the products aibj , hence
aibj ∈ OKL, for all i and j. From the previous theorem, the aibj generate OKL over Z. Moreover,
as K and L are linearly disjoint, the elements aibj form a basis of KL over Q and hence are
independant over Z. Thus, the aibj form an integral basis of OKL and we can use this basis to
calculate the discriminant of OKL.

From Proposition 10.7 the discriminant of OKL is the determinant of the matrix

M =
(
TKL/Q(aibk · ajbl)

)
.

We now apply Corollary 10.3 to the tower of fields Q ⊂ K ⊂ KL to obtain

TKL/Q(aibk · ajbl) = TK/Q ◦ TKL/K(aibk · ajbl)
= TK/Q

(
TKL/K(aiajbkbl)

)
= TK/Q

(
aiajTKL/K(bkbl)

)
,

because aiaj ∈ K.
We claim that, for l ∈ L, we have TKL/K(l) = TL/Q(l). Let us consider the [KL : K] K-

monomorphisms from KL into C. Restricting these monomorphisms to L we obtain [KL : K]
distinct Q-monomorphisms from L into C. As K and L are linearly disjoint over Q, we have
[KL : K] = [L : Q], hence the restrictions to L of the [KL : K] K-monomorphisms of K into
C are precisely the Q-monomorphisms of L into C. Applying Proposition 10.2 establishes the
claim.

Since bkbl ∈ L, we have
TKL/K(bkbl) = TL/Q(bkbl) ∈ Q

and so
TKL/Q(aibk · ajbl) = TK/Q

(
aiajTL/Q(bkbl)

)
= TL/Q(bkbl)TK/Q(aiaj).

Setting TK/Q(aiaj) = āij and TL/Q(bkbl) = b̄kl, we obtain

detM = det(āij b̄kl) = det
(
(āij)⊗ (b̄kl)

)
.

From Theorem H.1, we have

det
(
(āij)⊗ (b̄kl)

)
= det(āij)

n det(b̄kl)
m,

as required. 2

Application to cyclotomic fields

We now apply the previous theorems to the study of cyclotomic fields, i.e., cyclotomic extensions
of the rationals. We have already studied these fields in Chapter 7. Here we will be particularly
interested in the form of the associated number rings and their discriminants. We begin with
the case Q(ζ), where ζ is a primitive prth root of unity, p being a prime number and r a positive
integer.

Lemma 11.4 If ζ is a primitive nth root of unity, then the set A = {1, ζ, . . . , ζφ(n)−1} is a basis
of Q(ζ) over Q. (φ is the Euler totient function.)
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proof In the proof of Theorem 7.7 we observed that [Q(ζ) : Q] = φ(n). As |A| = φ(n), we only
need to show that the set A is linearly independant over Q. If

λ0 + λ1ζ + · · ·λφ(n)−1ζ
φ(n)−1 = 0,

where the λi are elements of Q, which are not all zero, then ζ is a root of a nonzero polynomial
f ∈ Q[X], whose degree is less than φ(n). However, the minimal polynomial of ζ over Q is Φn,
whose degree is φ(n), so we have a contradiction. Hence A is a basis of Q(ζ) over Q. 2

Proposition 11.10 If p is a prime number, r ∈ N∗ and ζ a primitive prth root of unity, then

OQ(ζ) = Z[ζ].

proof From Lemma 11.4 the set A = {1, ζ, . . . , ζφ(pr)−1} is a basis of Q(ζ) over Q. Also, the
elements of this set belong to OQ(ζ), because ζ is an algebraic integer. The proof of Theorem
11.8 shows that

dOQ(ζ) ⊂ Z⊕ Zζ ⊕ · · · ⊕ Zζφ(pr)−1,

where d = discQ(ζ)/Q(1, ζ, . . . , ζφ(pr)−1). Thus, OQ(ζ) ⊂ 1
dZ[ζ]. Moreover, from Corollary 10.6,

d is a power of p (up to sign). Therefore there exists m ∈ N∗ such that pmOQ(ζ) ⊂ Z[ζ].
If

Z[ζ] ∩ pOQ(ζ) = pZ[ζ], (11.1)

then, as pmOQ(ζ) ⊂ Z[ζ], we have

pmOQ(ζ) ⊂ Z[ζ] ∩ pOQ(ζ) ⊂ pZ[ζ] =⇒ pm−1OQ(ζ) ⊂ Z[ζ].

If m = 1, then we immediately have OQ(ζ) ⊂ Z[ζ]; if not, then it is sufficient to iterate the
process to obtain the same inclusion. As Z[ζ] is clearly contained in OQ(ζ), we only need to
establish the identity (11.1) to finish the proof. This is what we now do.

Our first step is to show that

OQ(ζ)p = OQ(ζ)(−ζ + 1)φ(pr) (11.2)

To begin,

Φpr (X) =
∏

1≤i<pr,(i,p)=1

(−ζi +X) =⇒ Φpr (1) =
∏

1≤i<pr,(i,p)=1

(−ζi + 1).

However, from Exercise 7.4, we know that

Φpr (X) = Φp(X
pr−1

)

so
p = Φpr (1) =

∏
1≤i<pr,(i,p)=1

(−ζi + 1).

Next we observe that the elements −ζ
i+1

−ζ+1 , with 1 ≤ i < pr and (i, p) = 1, are units in OQ(ζ).
We have

−ζi + 1

−ζ + 1
= 1 + ζ + · · ·+ ζi−1 ∈ OQ(ζ).
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As ζi is a primitive prth root of unity, there exists s ∈ N∗ such that ζ = ζis, hence

−ζ + 1

−ζi + 1
=
−ζis + 1

−ζi + 1
= 1 + ζi + · · ·+ ζi(s−1) ∈ OQ(ζ),

so −ζ
i+1

−ζ+1 is a unit in OQ(ζ).
We may write

−ζi + 1 =
−ζi + 1

ζ + 1
· (−ζ + 1) = ui(−ζ + 1),

so
p =

∏
1≤i<pr,(i,p)=1

ui(−ζ + 1) = u(−ζ + 1)φ(pr),

where u is a unit in OQ(ζ). As p and (−ζ + 1)φ(pr) are associates in OQ(ζ), they generate the
same ideal, i.e.,

OQ(ζ)p = OQ(ζ)(−ζ + 1)φ(pr),

as asserted.

Our second step is to show that

OQ(ζ)(−ζ + 1) ∩ Z = Zp. (11.3)

From the identity (11.2) we obtain p ∈ (−ζ + 1)OQ(ζ), and so pZ ⊂ (−ζ + 1)OQ(ζ) ∩Z. Now the
reverse inclusion. If x ∈ (−ζ + 1)OQ(ζ), then x = y(−ζ + 1), with y ∈ OQ(ζ), and

NQ(ζ)/Q(x) = NQ(ζ)/Q(y)NQ(ζ)/Q(−ζ + 1).

As y ∈ OQ(ζ), NQ(ζ)/Q(y) ∈ Z (Exercise 11.1). Also, from Corollary 10.1,

NQ(ζ)/Q(−ζ + 1) =
∏

1≤i<pr,(i,p)=1

(−ζi + 1) = p,

because Q(ζ) is the splitting field of the polynomial Φpr (1−X), whose roots are −ζi + 1, with
1 ≤ i < pr and (i, p) = 1. Finally, as x ∈ Z, NQ(ζ)/Q(x) = xφ(pr), so p|x, i.e., x ∈ pZ. This
concludes the second step. We have

OQ(ζ)(−ζ + 1) ∩ Z = Zp,

as required.

We are now in a position to prove the identity (11.1). There is no difficulty in seeing that

Z[ζ]p ⊂ Z[ζ] ∩OQ(ζ)p.

For the reverse inclusion, let us take x ∈ Z[ζ]∩OQ(ζ)p. Using the fact thatA = {1, ζ, . . . , ζφ(pr)−1}
is a basis of Q(ζ) over Q, we see that the set B = {1,−ζ + 1, . . . , (−ζ + 1)φ(pr)−1} is also a basis
of Q(ζ) over Q. The set B is included in Z[ζ] and is independant over Z, because it is indepen-
dant over Q. As A is a generating set of Z[ζ] and the elements of A can be written as linear
combinations of those of B with coefficients in Z, B is a generating set of Z[ζ]. Thus B is a basis
of the Z-module Z[ζ]. Therefore there exist integers c0, c1, . . . , cφ(pr)−1 such that

x = c0 + c1(−ζ + 1) + · · ·+ cφ(pr)−1(−ζ + 1)φ(pr)−1.
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Moreover, from the identity (11.2), there exists v ∈ OQ(ζ) such that x = (−ζ + 1)φ(pr)v. Thus
c0 ∈ OQ(ζ)(−ζ + 1)∩Z, which from the identity (11.3) is equal to Zp. Therefore c0 ∈ pZ. Using
the identity (11.2) again, we see that p ∈ (−ζ + 1)φ(pr)OQ(ζ), hence x− c0 ∈ (−ζ + 1)φ(pr)OQ(ζ).
We may write x− c0 = (−ζ + 1)x1, where

x1 = c1 + c2(−ζ + 1) · · ·+ cφ(pr)−1(−ζ + 1)φ(pr)−2 ∈ (−ζ + 1)φ(pr)−1OQ(ζ).

As for c0, we find that c1 ∈ Zp. Continuing in the same way, we obtain that ci ∈ Zp, for all i
and so x ∈ Z[ζ]p. This ends the proof. 2

We have shown that OQ(ζ) = Z[ζ] when ζ is a prth root of unity. We now turn to the general
case. Here Theorem 11.12 plays an important role. We will need a preliminary result.

Lemma 11.5 If ζ is a primitive nth root of unity, then the discriminant discQ(ζ)/Q(1, ζ, . . . , ζφ(n)−1)

divides nφ(n).

proof From Proposition 10.9

discQ(ζ)/Q(1, ζ, . . . , ζφ(n)−1) = (−1)
φ(n)(φ(n)−1)

2 NQ(ζ)/Q(Φ′n (ζ)) .

Since Φn is the minimal polynomial of ζ over Q and ζn = 1. there exists g ∈ Q[X] such that

−1 +Xn = Φn(X)g(X).

As Φn is monic, g is also monic and Lemma 11.1 ensures that g ∈ Z[X]. Differentiating both
sides of the previous equation and evaluating at ζ leads to

nζn−1 = Φ′n(ζ)g(ζ) =⇒ n = ζΦ′n(ζ)g(ζ).

Taking the norm on both sides, we obtain

nφ(n) = NQ(ζ)/Q

(
Φ′n(ζ)

)
NQ(ζ)/Q

(
ζg(ζ)

)
.

However, Φ′n(ζ) and ζg(ζ) are elements of Z[ζ], which is included in OQ(ζ). Applying Exercise
11.1 we obtain the result. 2

Theorem 11.14 If ζ is a primitive nth root of unity, then

OQ(ζ) = Z[ζ].

proof We will use an induction on s, the number of prime factors in the decomposition of n.
For s = 1, we have already proved the result, so we consider the induction step. Let us suppose
that the result is true up to s− 1. We now consider the case s. We have

n = pα1
1 pα2

2 · · · pαss = m1m2,

where m1 = pα1
1 and m2 = pα2

2 · · · pαss . As m1 and m2 are coprime, from Proposition 7.6

Q(ζm1
)Q(ζm2

) = Q(ζn),

where ζu is a primitive uth root of unity. From Proposition 11.10 (or the induction hypothesis),

disc(OQ(ζm1 )) = discQ(ζm1 )/Q(1, ζm1 , . . . , ζ
φ(m1)−1
m1

),
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because {1, ζm1
, . . . , ζ

φ(m1)−1
m1 } is an integral basis of OQ(ζm1

). Also, by the induction hypothesis,

disc(OQ(ζm2 )) = discQ(ζm2 )/Q(1, ζm2
, . . . , ζφ(m2)−1

m2
),

because {1, ζm2 , . . . , ζ
φ(m2)−1
m2 } is an integral basis of OQ(ζm2 ). From Lemma 11.5, as mφ(m1)

1

and mφ(m2)
2 are coprime, so are the discriminants disc(OQ(ζm1 )) and disc(OQ(ζm2 )). In addition,

Q(ζm1
) and Q(ζm2

) are linearly disjoint over Q, because φ(m1m2) = φ(m1)φ(m2). Applying
Theorem 11.12 and the induction hypothesis, we obtain

OQ(ζn) = OQ(ζm1
)OQ(ζm2

) = Z[ζm1
]Z[ζm2

].

Given that ζm2
n is a primitive m1th root of unity, ζm1

∈ Z[ζn]. In the same way, ζm2
∈ Z[ζn], so

Z[ζm1
]Z[ζm2

] ⊂ Z[ζn]. Moreover, as m1 and m2 are coprime, there exist integers u and v such
that m1u+m2v = 1. Thus,

ζn = (ζm2
n )v(ζm1

n )u ∈ Z[ζm1
]Z[ζm2

] =⇒ Z[ζn] ⊂ Z[ζm1
]Z[ζm2

],

therefore
Z[ζn] = Z[ζm1

]Z[ζm2
] = OQ(ζn),

as required. 2

We now turn to the discriminant of a cyclotomic number ring OQ(ζ). Proposition 10.9 ensures
that

∆(Φn) = discQ(ζ)/Q(1, ζ, . . . , ζφ(n)−1) = disc(OQ(ζ)),

so, in finding disc(OQ(ζ)), we find ∆(Φn), or vice-versa. In fact, we have already found ∆(Φpr ),
where p is a prime number and r a positive integer (Corollary 10.6). We now generalize this
result. Theorem 11.13 will play an important role.

Theorem 11.15 Let ζ be a primitive nth root of unity. Then

∆(Φn) = disc(OQ(ζ)) =
(−1)cnnφ(n)∏

p|n p
φ(n)
p−1

,

where cn = φ(n)
2 , if n 6= 2 and c2 = 0.

proof We will use an induction on s, the number of prime factors in n. First, if n has a single
prime factor p, the n = pr, for some r ∈ N∗. In Corollary 10.6 we found the expression

∆(Φpr ) = (−1)cpp
r−1(r(p−1)−1),

where c = φ(pr)
2 , if p is odd or r > 1, and c = 0 otherwise. However,

(pr)φ(pr) = (pr)p
r−1(p−1) = pp

r−1r(p−1)

and ∏
p|pr

p
φ(pr)
p−1 =

∏
p|pr

pp
r−1

= pp
r−1

.

Hence, if n = pr, i.e., s = 1, then the expression for ∆(Φn) given in the statement of the theorem
is correct.
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Let us now suppose that s ≥ 2 and that the result is true up to s− 1. We have

n = pα1
1 pα2

2 · · · pαss = m1m2,

where m1 = pα1
1 and m2 = pα2

2 · · · pαss . As in the proof of Theorem 11.14, we find that disc(Om1
)

and disc(Om2
) are coprime. Using the induction hypothesis and Theorem 11.13 we obtain

disc(OQ(ζn)) =

 (−1)cm1m
φ(m1)
1∏

p|m1
p
φ(m1)
p−1

φ(m2)

×

 (−1)cm2m
φ(m2)
2∏

p|m2
p
φ(m2)
p−1

φ(m1)

=
(−1)cm1φ(m2)+cm2φ(m1)nφ(n)∏

p|n p
φ(n)
p−1

.

To finish the induction step we only need to consider the term (−1)cm1φ(m2)+cm2φ(m1). If all the
primes in n are odd, then

cm1
φ(m2) = cm2

φ(m1) =⇒ (−1)cm1
φ(m2)+cm2

φ(m1) = (−1)2
φ(n)

2 = 1.

If p1 = 2 and α1 ≥ 2, then we have an analogous argument. To finish, suppose that p1 = 2 and
α1 = 1. Then

cm1
φ(m2) + cm2

φ(m1) =
φ(m1)φ(m2)

2
=
φ(n)

2
= cn,

because n has at least two factors. This ends the induction step. 2

We have seen in Theorem 11.14 that if α is a primitive nth root of unity, then the number
ring of Q(α) is Z[α]. In Theorem 11.6 we observed a similar phenomenon for the case where
α is the square root of a square-free integer d = 2, 3 (mod 4). In the next proposition we give
another criterion.

Proposition 11.11 If K is a number field, then there is an algebraic integer s such that K =
Q(s). If the discriminant of the minimal polynomial m(s,Q) is a square-free integer, then OK =
Z[s].

proof The primitive element theorem (Theorem 3.4) ensures that for any number field K, there
is an element t ∈ K such that K = Q(t). Since t is an algebraic number, because K is a finite
extension of Q, Lemma 11.2 ensures that t = s

k , where s is an algebraic integer and k a positive
integer. Consequently, K = Q(s), for some algebraic integer s.

As s ∈ OK , we must have Z[s] ⊂ OK . We now aim to show that the condition on the
discriminant of the minimal polynomial m(s,Q) ensures the reverse inclusion. From Theorem
11.8 we obtain that the number ring OK has an integral basis {x0, . . . , xn−1}, where n = [K : Q].
Since s ∈ OK , there is a matrix M ∈Mn(Z) such that

1
s
...

sn−1

 = M


x0

x1

...
xn−1

 ,

Let σ1, . . . , σn be the Q-monomorphisms from K into C. For j = 1 . . . , n, we have
σj(1)
σj(s)
...

σj(s
n−1)

 = M


σj(x0)
σj(x1)

...
σj(xn−1)

 ,
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We may write this expression in matrix form:(
σj(s

i)
)

= M (σj(xi)) .

Taking determinants and squaring we obtain

discK/Q(1, s, . . . , sn−1) = (detM)2discK/Q(x0, x1, . . . , xn−1).

Now Proposition 10.9 ensures that discK/Q(1, s, . . . , sn−1) is the discriminant of the minimal
polynomial m(s,Q), which, by hypothesis, is a square-free integer. In addition, the discriminant
discK/Q(x0, x1, . . . , xn−1) belongs to Z. (Clearly, discK/Q(x0, x1, . . . , xn−1) ∈ Q; it is integral
over Z, because each xi is integral over Z.) Since detM ∈ Z, because M ∈ Mn(Z), we have
detM = ±1, and it follows that the entries of M−1 are integers. As

x0

x1

...
xn−1

 = M−1


1
s
...

sn−1

 ,

and the xi generate OK , the si also generate OK over Z, which proves that OK ⊂ Z[s], as
required, and so OK = Z[s].

As the set {1, s, . . . , sn−1} is independant over Z, it is an integral basis of OK . 2

Example Let K = Q(α), where −1 − α + α3 = 0. The minimal polynomial of α over Q is
f(X) = −1−X +X3, whose discriminant is −23. As −23 is square-free, we have OK = Z[α].

RemarkWe should notice that, if the discriminant of the minimal polynomial of α is not square-
free, then OK may or may not be equal to Z[α]; it is sufficient to consider the case where d is
square-free and α =

√
d.

11.5 Ideals in number rings
In this section we concentrate on the properties of ideals in number rings. Our first result
concerns the factor ring OK/I for an nonzero ideal. We recall that n denotes the dimension of
K over Q.

Proposition 11.12 If I is a nonzero ideal in a number ring OK , then the factor ring OK/I is
finite.

proof Let I be a nonzero ideal in the number ring OK and α a nonzero element of I. We set
m = NK/Q(α). As α ∈ OK , α is an algebraic integer and so m ∈ Z. From the definition of the
norm, m 6= 0. We claim that m ∈ I: From Proposition 10.2, m = αβ, where β is a product
of conjugates of α (in C); as m,α ∈ K, β = m

α ∈ K. As a conjugate of an algebraic integer is
also an algebraic integer, β is an algebraic integer. Thus β ∈ OK and it follows that m ∈ I, as
claimed.

As m ∈ I, the principal ideal (m) is included in I. Since the rank of the free abelian group
OK is n, then it is easy to see that OK/(m) is isomorphic to Znm, hence |OK/(m)| = mn. Also,
(m) ⊂ I implies that the mapping

φ : OK/(m) −→ OK/I, x+ (m) 7−→ x+ I

is a well-defined surjective homomorphism. Therefore OK/I is finite. 2
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Corollary 11.5 If I is a nonzero ideal in a number ring OK , then the rank of I as a free abelian
group is the same as that of OK .

proof If rkOK = n and rk I = r, then r ≤ n (Theorem E.3). There is a basis (e1, . . . , en) of
OK and elements d1, . . . , dr ∈ Z, with di ≤ di+1, such that (d1eI , . . . , drer) is a basis of I. We
define a mapping φ from OK onto Zd1 × · · · × Zdr × Zn−r by

φ(x1e1 + · · ·xnen) = (x1 + d1Z, . . . , xr + drZ, xr+1, . . . , xn).

It is clear that φ is a surjective group homomorphism. Also,

Kerφ = {x1e1 + · · ·+ xnen : x1 ∈ d1Z, . . . , xr ∈ drZ, xr+1 = · · · = xn = 0} = I.

Hence, as groups,
OK/I ' Zd1 × · · · × Zdr × Zn−r.

However, OK/I is finite, so the last term on the right-hand side must be {0}, i.e., r = n. 2

The next property of ideals in number rings is useful.

Proposition 11.13 If I is a nonzero ideal in a number ring OK , then there is a nonzero integer
α in I.

proof Let α be a nonzero element of I. There exists a monic polynomial f ∈ Z[X] such that
f(α) = 0. We may suppose that the constant term of f is nonzero. (If not, we may write
f(X) = Xsg(X), with g(0) 6= 0 and g(α) = 0 and replace f by g.) Then,

α|f(α)− f(0) =⇒ f(α)− f(0) ∈ I.

Now, f(α)− f(0) = −f(0) ∈ Z∗, therefore I has a nonzero integer α. 2

Remark As Z ⊂ OK , the set Zα ⊂ I, so there is an infinite number of nonzero integers in I.

We now consider prime ideals in a number ring.

Theorem 11.16 If I is a nonzero prime ideal in a number ring OK , then I is a maximal ideal.

proof From Proposition 11.12 we know that OK/I is a finite ring. If I is a prime ideal, then
the quotient ring OK/I is an integral domain. However, a finite integral domain is a field. This
implies that I is a maximal ideal. 2

We recall that a ring R is noetherian if every ascending sequence of ideals I0 ⊂ I1 ⊂ · · · is
finally stationary, i.e., there exists an ideal Ik in the sequence such that Ik = Ik+1 = · · · . This
condition is equivalent to showing that every ideal I in R is finitely generated.

Theorem 11.17 A number ring OK is noetherian.

proof We will show that every ideal I in OK is finitely generated. If I = {0}, then there is
nothing to prove, so let us suppose that I is nonzero. I is a free abelian group of rank n, the
rank of OK . Thus I has a finite basis and so is finitely generated. 2

An integral domain D is said to be a Dedekind domain if it has the following properties:
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• D is normal;

• D is noetherian;

• every nonzero prime ideal in D is maximal.

We have shown above that a number ring is a Dedekind domain. As many of the properties
of number rings are derived from their properties as Dedekind domains, for the moment we will
handle the more general case. Later we will return to the more specific case of number rings.
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Chapter 12

Dedekind domains

In the last chapter we defined the notion of a Dedekind domain and we saw that number rings
are examples of such domains. Dedekind domains are not in general UFDs. However, we will see
that the ideals have an interesting factorization similar to that found in UFDs. This statement
will be made more precise in the following. We will begin with some preliminary results.

Exercise 12.1 Show that Z[
√
−5] is a Dedekind domain. Prove that 2 is irreducible in Z[

√
−5],

but not prime, and so deduce that Z[
√
−5] is not a UFD.

12.1 Elementary results
We have seen in the last chapter that number rings are Dedekind domains. There is another
large class of Dedekind domains.

Theorem 12.1 A principal ideal domain is a Dedekind domain.

proof Let R be a PID. As every ideal in R is generated by a unique element, R is noetherian.
Next we show that R is a normal domain. Let x = a

b be an element of the field of fractions of
R. We suppose that a and b are coprime. If x is algebraic over R, then there exists an equation
of the form

a0 + a1

(a
b

)
+ · · ·+ an−1

(a
b

)n−1

+
(a
b

)n
= 0,

where the ai belong to R. Multiplying by bn we obtain an equation

bc+ an = 0

with c ∈ R. Hence bc = −an. As R is a UFD and a and b are coprime, b is a unit and it follows
that b−1 ∈ R. Hence x = a

b ∈ R. Therefore R is a normal domain.
It remains to show that a nonzero prime ideal is maximal. Let (a) be a prime ideal in R. (a)

is included in a maximal ideal (b) and there exists k ∈ R such that a = kb. As a is prime, a is
irreducible, which implies that k is invertible and it follows that (a) = (b). 2

To continue, we need two lemmas, the second depending on the first.

Lemma 12.1 In a Dedekind domain D every nonzero ideal I contains a product of nonzero
prime ideals.
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proof Suppose that the proposition is not true and let C be the collection of nonzero ideals in
D which do not contain a product of nonzero prime ideals. As D is noetherian, C contains a
maximal element M . (If not, then it would be possible to create an infinite chain of distinct
ideals, contradicting the noetherian hypothesis.) As M ∈ C, M is not a prime ideal, hence there
exist x, y ∈ D \M such that xy ∈ M . Clearly, M is strictly contained in the ideals M + (x)
and M + (y), which are not elements of C, because M is maximal. It follows that M + (x) and
M + (y) both contain products of nonzero prime ideals, so the ideal (M + (x))(M + (y)) also
contains a product of nonzero prime ideals. As this ideal is included in M , which is an element
of C, we have a contradiction. 2

The proof of the second lemma is a little longer.

Lemma 12.2 Let D be a Dedekind domain, with fraction field K, and I a proper ideal in D.
Then there exists α ∈ K \D such that αI ⊂ D.

proof If I = {0}, then the result is obvious, so let us suppose that this is not the case. We fix
a 6= 0 in I. From Lemma 12.1, the principal ideal (a) contains a product of nonzero prime ideals.
We take such a product P1 . . . Pr, with r minimal. If r = 1, then we have

P1 ⊂ (a) ⊂ I = P1,

because P1 is maximal, hence I = (a). Since I is a proper ideal in D, we can take b ∈ D \ (a);
then α = b

a /∈ D, because in this case we would have b ∈ (a), a contradiction. If x ∈ I then there
exists s ∈ D, such that x = sa, hence

αx =
b

a
x =

b

a
sa = b ∈ D,

so for r = 1 the statement is true.
Now suppose that r > 1. Since I is a proper ideal in D, Zorn’s lemma ensures that there

exists a maximal ideal M such that I ⊂ M . The ideal M contains at least one of the ideals Pi.
(If not, then, for all i, there exists ai ∈ Pi \M ; however, the product a1 · · · ar ∈ M , which is
prime, implying that a certain aj ∈M , a contradiction.) If Pj is a prime ideal contained in M ,
then Pj = M , because all nonzero prime ideals are maximal. Without loss of generality let us
suppose that j = 1. As r is minimal, there exists b ∈ (P2 · · ·Pr) \ (a). We consider α = b

a . As
above α /∈ D, hence α ∈ K \D. Then

IP2 · · ·Pr ⊂MP2 · · ·Pr = P1P2 · · ·Pr ⊂ (a) =⇒ Ib ⊂ (a).

Hence, if x ∈ I then there exists s ∈ D, such that xb = sa, which implies that

αx =
b

a
x = s ∈ D

and so αI ⊂ D. 2

We may now establish a result which will prove important further on, but is also interesting
in its own right.

Theorem 12.2 If I is an ideal in a Dedekind domain, then there is a nonzero ideal J in D such
that IJ is a principal ideal.
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proof If I = {0}, then we may take any ideal in D for J , because in this case IJ = {0},
which is a principal ideal. So let us now take I nonzero. We choose a ∈ I, with a 6= 0 and set
J = {b ∈ D : bI ⊂ (a)}. Then J is a nonzero ideal and IJ ⊂ (a).

Let us now consider the set A = 1
aIJ . As IJ ⊂ (a), A ⊂ D; also A is an ideal in D. If

A = D, then IJ = (a) and we have the result we are looking for. If this is not the case, then A
is a proper ideal in D and we can apply Lemma 12.2: there exists γ ∈ K \D such that γA ⊂ D.

We now notice that A contains J : as a ∈ I, 1 = 1
aa ∈

1
aI, hence J ⊂

1
aIJ . It follows that

γJ ⊂ γA ⊂ D. This allows us to show that γJ ⊂ J :

γA ⊂ D =⇒ γIJ ⊂ (a) =⇒ (γJ)I ⊂ (a) =⇒ γJ ⊂ J.

As D is noetherian, the ideal J has a finite generating set a1, . . . , am. Using the relation
γJ ⊂ J , we may find a matrice M ∈Mn(D) such that

γ

 a1

...
am

 = M

 a1

...
am

 ,

which implies that

(γIm −M)

 a1

...
am

 =

 0
...
0

 .

As the ai are not all 0, we have det(γIm−M) = 0. Thus γ is the root of a polynomial f ∈ D[X].
However, D is a normal domain, so γ ∈ D, a contradiction. We have shown that IJ = (a), i.e.,
IJ is principal. 2

The result which we have just proved has two immediate consequences. The first of these is
a cancellation rule for ideals in a Dedekind domain.

Corollary 12.1 If A, B and C are ideals in a Dedekind domain D, with A nonzero, then

AB = AC =⇒ B = C.

proof There exists a nonzero ideal J such that AJ is principal: AJ = (a), with a 6= 0, because
A and J are nonzero. Hence,

AB = AC =⇒ AJB = AJC =⇒ (a)B = (a)C =⇒ aB = aC.

Multiplying by a−1, we obtain B = C. 2

In a commutative ring R we may define a division on ideals in a natural way. If I and J are
ideals, then we say that I divides J , and write I|J , if there exists an ideal K such that IK = J .
In Dedekind domains this is equivalent to an inclusion condition.

Corollary 12.2 If A and B are ideals in a Dedekind domain, then

A|B ⇐⇒ A ⊃ B.

proof If A divides B, then there exists an ideal C such that AC = B. If b ∈ B, then there exist
a1, . . . , as ∈ A and c1, . . . , cs ∈ C such that b = a1c1 + · · · + ascs. However, aici ∈ A, for all i,
and so b ∈ A. Therefore B ⊂ A.
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Now suppose that A ⊃ B. If A = {0}, then B = {0} and it is clear that A divides B. Suppose
now that A 6= {0}. There exists a nonzero ideal J and a ∈ D∗ such that AJ = (a). Let us set
C = 1

aJB. Then

B ⊂ A =⇒ 1

a
JB ⊂ 1

a
JA =

1

a
(a) = D.

It is easy to see that C is an ideal in D. We have

AC = A
1

a
JB = DB = B

and so A divides B. 2

12.2 Prime factorization of ideals
We have seen that a nonzero ideal in a Dedekind domain contains a product of nonzero prime
ideals. In fact, we can strengthen this statement.

Theorem 12.3 In a Dedekind domain D, every ideal I 6= {0}, D can be expressed in a unique
way as a product of nonzero prime ideals.

proof Suppose that there exists an ideal I 6= {0}, D which cannot be expressed as a product of
prime ideals. As D is noetherian, the collection of such ideals has a maximal element M . The
ideal proper M is included in a maximal ideal P . As P is a maximal ideal, P is a prime ideal.
However, from Corollary 12.2, P ⊃ M implies that P |M , i.e., there exists an ideal I such that
PI = M . Using Corollary 12.2 again, we obtain I ⊃M . If I = M , then, using Corollary 12.1,

DM = DPI = PDM = PM =⇒ D = P,

a contradiction. Hence we have M $ I and so I is a product of prime ideals. As M = PI, M is
also a product of prime ideals, which is a contradiction. It follows that an any ideal I 6= {0}, D
is a product of prime ideals.

We now consider the uniqueness. Suppose that

P1P2 · · ·Pr = Q1Q2 · · ·Qs,

where the Pi and Qj are nonzero prime ideals (not necessarily distinct). Then

P1|Q1Q2 · · ·Qs =⇒ P1 ⊃ Qi,

for some i (see the proof of Lemma 12.2). Without loss of generality, let us suppose that i = 1.
As Q1 is maximal, P1 = Q1. Using Corollary 12.1 we obtain

P2 · · ·Ps = Q2 · · ·Qr.

Continuing in the same way we obtain the postulated uniqueness. 2

Corollary 12.3 In a Dedekind domain a countable intersection of distinct nonzero prime ideals
is trivial.
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proof Let (Pn)n∈N be a collection of distinct nonzero prime ideals in a Dedekind domain D
and I = ∩n∈NPn. We have

Pn ⊃ I =⇒ Pn|I,

for each n. If I is nontrivial, then I has a unique decomposition into prime ideals and each Pn
must appear in this decomposition. This is impossible, because the decomposition is composed
of a finite number of prime ideals. Hence the result. 2

An integral domain which is principal ideal domain (PID) is always a unique factorization
domain (UFD). For a Dedekind domain the converse is also true. This is a corollary of the
theorem which we have just proved.

Corollary 12.4 A Dedekind domain which is a UFD is a PID.

proof Let D be a Dedekind domain and I an ideal in D. If I = {0} or I = D, then I is
clearly principal, so let us suppose that this is not the case. From Theorem 12.2, I divides a
nonzero principal ideal (a). As D is a UFD, we may write a as a product of irreducible elements:
a = p1 · · · ps. Each principal ideal (pi) is a prime ideal and we have

(a) = (p1) · · · (ps).

As I divides (a), there exists an ideal C such that

IC = (p1) · · · (ps).

By Theorem 12.3 there exist (pi1), . . . , (piu) such that

I = (pi1) · · · (piu) = (pi1 · · · piu).

We have shown that I is a principal ideal. 2

Remark We might be tempted to think that the ideals in a Dedekind domain form a UFD.
However, the ideals in a nontrivial ring do not form an additive group: If I is a nonzero ideal,
then I + I = I, which would not be possible if I had an additive inverse. We can only affirm
that the ideals form a monoid.

12.3 Ideal classes
If R is an integral domain, then we may define a relation R on the nonzero ideals in R as follows:
IRJ if and only if there exist elements α, β ∈ R \ {0} such that αI = βJ . It is easy to see
that R is an equivalence relation, so we will write ∼ for R. We define a multiplication on the
equivalence classes in an obvious way:

[I][J ] = [IJ ].

This multiplication is well-defined, since I ∼ I ′ and J ∼ J ′ implies that IJ ∼ I ′J ′. We will
show that the equivalence classes with this multiplication form a monoid and, in the case of a
Dedekind domain, a group.

Lemma 12.3 If R is an integral domain, I an ideal in R and there exists α 6= 0 such that αI
is principal, then I is principal.
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proof Let αI = (a). Then there exists u ∈ I such that a = αu. If s ∈ I, then we may find
v ∈ R such that αs = va. We have

αs = vαu =⇒ α(s− vu) = 0 =⇒ s = vu.

It follows that I ⊂ (u). As u ∈ I, (u) ⊂ I and so we have I = (u). 2

We now consider a particular equivalence class.

Proposition 12.1 If R is an integral domain, then the nonzero principal ideals form an equiv-
alence class.

proof Let I be a nonzero principal ideal: I = (a). If J is also a nonzero principal ideal and
J = (b), then

b(a) = a(b) =⇒ I ∼ J,

hence J ∈ [I].
Now suppose that J is a nonzero ideal in R and I ∼ J : there exist α, β ∈ R \ {0} such that

αI = βJ . If I = (a), then βJ = α(a) = (αa). From Lemma 12.3, J is principal. Therefore the
class of I is composed of the nonzero principal ideals in R. 2

We will note the set of equivalence classes Cl(R). Clearly, Cl(R) contains a unique element
if and only if R is a PID.

Theorem 12.4 Cl(R) is a monoid. If R is a Dedekind domain, then Cl(R) is a group.

proof It is clear that the multiplication which we have defined is associative. We claim that the
class of nonzero principal ideals, which we note E, is a neutral element. To see this, let (a) be a
nonzero principal ideal and I any nonzero ideal. Then (a)I = aI. As aI = 1aI, I ∼ aI and it
follows that E[I] = [I]. Thus Cl(R) is a monoid.

Now suppose that R is a Dedekind domain and I a nonzero ideal. From Theorem 12.2 we
know that there is a nonzero ideal J such that IJ is principal. Moreover, IJ 6= {0}, since I 6= {0}
and J 6= {0}. Hence the class [I] has an inverse [J ]. Therefore Cl(R) is a group. 2

The group of classes Cl(D) of a Dedekind domain D is called the ideal class group of D.

12.4 hcf and lcm
We have seen above that division of ideals in a Dedekind domain may be characterized by a
simple inclusion condition: I|J ⇐⇒ I ⊃ J . Keeping this in mind, we will now study in more
detail the division of ideals in a Dedekind domain.

We define a highest common factor (hcf) and a lowest common multiple (lcm) of two ideals
in the same way as we do in an integral domain. Let I and J be nontrivial, proper ideals in a
Dedekind domain D. An ideal U is an hcf of I and J if

• U |I, U |J ;

• X|I,X|J =⇒ X|U .

An ideal V is an lcm of I and J if

139



• I|V , J |V ;

• I|Y, J |Y =⇒ V |Y .

Exercise 12.2 Show that the hcf and the lcm are unique; hence we can speak of the hcf and
the lcm of two ideals.

Another point is worth making. We say that two elements in an integral domain are coprime
if they have 1 as an hcf. If R is a PID and x and y are coprime, then there exist a, b ∈ R such
that ax + by = 1. This is equivalent to saying that (x) + (y) = R. This suggests the following
generalization: if I and J are ideals in ring R, then we say that these ideals are coprime, if
I + J = R.

Proposition 12.2 If I and J are nontrivial, proper ideals in a Dedekind domain D, then

hcf(I, J) = I + J and lcm(I, J) = I ∩ J.

proof First the hcf. We have

I + J ⊃ I, J =⇒ I + J |I, I + J |J

and
X|I,X|J =⇒ X ⊃ I,X ⊃ J =⇒ X ⊃ I + J =⇒ X|I + J,

hence hcf(I, J) = I + J .
Now we consider the lcm. We have

I, J ⊃ I ∩ J =⇒ I|I ∩ J, J |I ∩ J

and
I|Y, J |Y =⇒ I ⊃ Y, J ⊃ Y =⇒ I ∩ J ⊃ Y =⇒ I ∩ J |Y,

hence lcm(I, J) = I ∩ J . 2

The following characterizations of the hcf and lcm are not difficult to establish:

Proposition 12.3 Let D be a Dedekind domain and I, J nontrivial, proper ideals in D. We
note P1, . . . Ps the prime ideals appearing in the factorization into products of prime ideals in
either I or J :

I =

s∏
i=1

Pmii and J =

s∏
i=1

Pnii ,

where the mi and the ni are elements of N and, for any given i, mi and ni are not both equal to
0. Then

hcf(I, J) =

s∏
i=1

P
min(mi,ni)
i and lcm(I, J) =

s∏
i=1

P
max(mi,ni)
i .

Corollary 12.5 If I, J are nontrivial, proper ideals in a Dedekind domain D, then

hcf(I, J)lcm(I, J) = IJ.

Remark Propositions 12.2 and 12.3 can be naturally generalized to a finite number of ideals.

The following result is also useful:
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Proposition 12.4 In a commutative ring R, if the ideals I and J are coprime, then I ∩J = IJ .
If R is a Dedekind domain and I, J are nontrivial, proper ideals, then the converse is also true.

proof Let R be a commutative ring with ideals I and J . If I + J = R, then

I ∩ J = (I ∩ J)R = (I ∩ J)(I + J) = (I ∩ J)I + (I ∩ J)J ⊂ JI + IJ = IJ.

Clearly IJ ⊂ I ∩ J , so I ∩ J = IJ .
Now suppose that R is a Dedekind domain. Then

IJ = I ∩ J =⇒ (I + J)(IJ) = (I + J)(I ∩ J) = IJ,

because I + J = hcf(I, J) and I ∩ J = lcm(I, J). If I + J is a nontrivial, proper ideal, then we
have a contradiction to the unique factorization of ideals. On the other hand, clearly I+J 6= {0},
so I + J = D, i.e., I and J are coprime. 2

We may slightly strengthen Theorem 12.2. To do so we need a preliminary result.

Lemma 12.4 Let I be a nonzero ideal in a Dedekind domain D. If P is a prime ideal, then
PI ⊂ I and the inclusion is strict.

proof The inclusion is clear. If I = D, then the strict inclusion is clear. On the other hand, if
I 6= D, if the inclusion is not strict, then we have a contradiction to the unicity of the factorization
of ideals, so the inclusion must be strict. 2

Theorem 12.5 If I and Q are nonzero ideals in a Dedekind domain D, then there exists an
ideal J of D such that IJ is principal and J and Q are coprime.

proof If I = D, then it is sufficient to take J = {0}. On the other hand, if Q = D, then, from
Theorem 12.2, there is a nonzero ideal J such that IJ is principal; as J +D = D, J and D are
coprime. Let us now suppose that I 6= D and Q 6= D.

Let P1, . . . , Ps be the prime ideals which occur in the decomposition into prime ideals of I
and Q. Then

I = Pm1
1 · · ·Pmss ,

withmi ≥ 0,for i = 1, . . . , s. Ifmi = 0, then Pmii = D. From Lemma 12.4, for each i ∈ {1, . . . , s},
we can find yi ∈ Pmii \ Pmi+1

i . Also, if i 6= j, then from Proposition 12.3

hcf(P i+1
i , P j+1

j ) = P 0
i P

0
j = D,

so P i+1
i and P j+1

j are coprime. From the Chinese remainder theorem (Theorem F.1), we see
that there exists x ∈ D such that x ≡ yi mod Pmi+1

i , for each i ∈ {1, . . . , s}. Thus, for all
i ∈ {1, . . . , s},

x ∈ Pmii , x /∈ Pmi+1
i =⇒ Pmii |(x), Pmi+1

i - (x).

This implies that I|(x) and so there exists an ideal J in D such that IJ = (x). J and Q are
coprime, since no prime ideal divides both J and Q. Indeed, any prime ideal dividing both J
and Q is a Pi for some i ∈ {1, . . . , s}. This contradicts the fact that x /∈ Pmi+1

i . 2

Dedekind domains are ’almost principal’, i.e., their ideals are generated by at most two
elements.
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Corollary 12.6 If I is an ideal in a Dedekind domain D, then there exist x, y ∈ I such that
I = (x, y).

proof From Theorem 12.2 we know that there is a nonzero ideal Q inD such that IQ is principal:
there exists y ∈ D such that IQ = (y). In addition, Theorem 12.5 ensures the existence of an
ideal J in D such that IJ is principal and J and Q coprime: IJ = (x), for some x ∈ IJ . We
have

(x, y) = (x) + (y) = IJ + IQ = I(J +Q) = ID = I,

the result we were looking for. 2

We have seen above in Corollary12.4 that a Dedekind domain which is a UFD is a PID. We
can use Theorem 12.5 to obtain another criterion for a Dedekind domain to be a PID.

Corollary 12.7 A Dedekind domain with only a finite number of prime ideals is a PID.

proof Let D be a Dedekind domain with only a finite number of prime ideals. We write Q for
the product of these ideals. If I is a nonzero ideal in D, then from Theorem 12.5 there is an
ideal J such that IJ is a principal ideal (a), with J and Q coprime. As J and Q are coprime,
we must have J = D. Hence

(a) = IJ = ID = I,

therefore I is principal. 2

12.5 Fractional ideals
If R is a commutative ring, then by definition R is an R-module and an ideal of R is an R-
submodule. In an integral domain we may extend the notion of ideal. This proves to be par-
ticularly useful in Dedekind domains. Let R be an integral domain with field of fractions K.
If J is an R-submodule of K such that rJ ⊂ R, for some r ∈ R∗, then we say that J is a
fractional ideal. We call r a denominator of J . Setting r = 1, we see that an ordinary ideal is a
fractional ideal, so the notion of fractional ideal does indeed generalize that of ideal. When han-
dling fractional ideals we sometimes refer to ordinary ideals as integral ideals to distinguish them.

Example 2
3Z is a fractional ideal of Z, but not an integral ideal.

The ring R is a fractional ideal, but in general its field of fractions K is not. If K is a
fractional ideal, then there exists r ∈ R∗ such that rK ⊂ R. As r is inversible in K, we have
K = 1

rR. Now, 1
r2 ∈ K, so 1

r2 = 1
r s, with s ∈ R. This implies that s = 1

r , i.e.,
1
r ∈ R, and so

K = R. We will suppose that K 6= R.

We define the addition and multiplication of fractional ideals in the same way as we do for
ideals, i.e.,

I + J = {x+ y : x ∈ I, y ∈ J} and I · J = {
n∑
i=1

xiyi : n ≥ 1, xi ∈ I, yi ∈ J}.

As in general for multiplication, we write IJ for I · J .

Proposition 12.5 If I and J are fractional ideals with denominators r and s respectively, then
I ∩ J , I + J and IJ are fractional ideals with respective denominators r or s, rs and rs.
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proof There is no difficulty in seeing that I ∩ J , I + J and IJ are R-submodules of K. In
addition,

r(I ∩ J) ⊂ rI ⊂ R, rs(I + J) ⊂ rI + sJ ⊂ R and rs(IJ) = (rI)(sJ) ⊂ R.

This ends the proof. 2

Proposition 12.6 Let R be an integral domain. The nonzero fractional ideals of R are the
expressions of the form J = αI, where I is a nonzero ideal of R and α ∈ K∗.

proof Let J = αI, where I is a nonzero ideal of R and α ∈ K∗. If α = a
b , with a, b ∈ R

∗, then
bJ = aI ⊂ I ⊂ R, therefore J is a nonzero fractional ideal of R.

Now let J be a nonzero fractional ideal of R. There exists r ∈ R∗ such that rJ ⊂ R. More-
over, J = 1

r (rJ) and rJ is an ideal of R. As 1
r ∈ K

∗, J has the required form. 2

Remark An R-submodule is not necessarily a fractional ideal. For example, Z[ 1
2 ] is a Z-

submodule contained in Q, but is not a fractional ideal of Z. (There is no positive integer
n such that nZ[ 1

2 ] ⊂ Z).

Exercise 12.3 Let R be an integral domain. Prove the following statements:

• a. If J is a fractional ideal of R and r a denominator, then rJ is an integral ideal of R.

• b. If a fractional ideal J of a ring R is contained in R, then J is an integral ideal of R.

The next result enables us to characterize fractional ideals in the case where the ring R is
noetherian.

Proposition 12.7 Let R be a noetherian domain. The nonzero fractional ideals of R are the
nonzero finitely generated R-submodules of K, where K is the field of fractions of R.

proof Let J be a nonzero finitely generated R-submodule of K:

J = Rx1 + · · ·+Rxn,

where xi = ai
bi
, with ai ∈ R and bi ∈ R∗. If we set b = b1 · · · bn, then bJ ⊂ R and so J is a

nonzero fractional ideal of R.
Reciprocally, let J be a nonzero fractional ideal of R and r a denominator of J . Then J ⊂ 1

rR.
As an R-module, 1

rR is isomorphic to R, hence 1
rR is a noetherian R-module. Since J is a sub-

module of 1
rR, J is a finitely generated R-module. 2

The product of two nonzero fractional ideals is a nonzero fractional ideal and the multipli-
cation is associative. If J is a fractional ideal, then, using the fact that J is an R-module, we
have

RJ ⊂ J = 1J ⊂ RJ,

and so R is an identity for the multiplication. It follows that the nonzero fractional ideals form
a semigroup. In the case of a Dedekind domain the nonzero fractional ideals form a group, as
we will presently see.

Proposition 12.8 Every nonzero fractional ideal in a Dedekind domain D has an inverse in
the set of fractional ideals. More explicitly, if I is a nonzero fractional ideal of D and J = {x ∈
K,xI ⊂ D}, then J is a fractional ideal and IJ = D.
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proof Let us first suppose that I is a nonzero integral ideal. It is easy to see that J is a nonzero
D-submodule of K, the field of fractions of D. If r is a nonzero element of I (and so of R) and
x ∈ J , then rx ∈ D, so there exists r ∈ D∗ such that rJ ⊂ D. Thus J is a nonzero fractional
ideal.

Let a ∈ I, with a 6= 0, and Ja = {b ∈ D : bI ⊂ (a)}. The proof of Theorem 12.2 shows that
IJa = (a). In addition, 1

aJa = J . Indeed, 1
aJa is clearly included in J and every c ∈ J can be

written c = 1
aca and ca ∈ Ja. Thus

IJ = I
1

a
Ja =

1

a
(a) = D,

therefore J is an inverse of I.
Now let us consider the more general case, i.e, I is a nonzero fractional ideal, which is not

necessarily integral. There exists a nonzero integral ideal A and α ∈ K∗, where K is the field
of fractions of D, such that I = αA (Proposition 12.6). If we set B = α−1A−1, then B is a
fractional ideal and IB = D, so I has an inverse, namely B. It remains to show that B = J =
{x ∈ K,xI ⊂ D}. From the first part of the proof we know that A−1 = {x ∈ K : xA ⊂ D}.
If u ∈ I−1, then u = α−1x, where xA ⊂ D, which implies that uαA ⊂ D and it follows that
u ∈ J . We have shown that I−1 ⊂ J . To complete the proof, we show that J ⊂ I−1. If u ∈ J ,
then uI ⊂ D, i.e., uαA ⊂ D. This implies that uα ∈ A−1 and so u ∈ α−1A−1 = I−1. Therefore
J ⊂ I−1. 2

Corollary 12.8 The nonzero fractional ideals of a Dedekind domain form an abelian group.

In fact, Proposition 12.8 has a converse. If R be an integral domain, then the nonzero
fractional ideals form a monoid, with identity R. The nonzero invertible fractional ideals form
an abelian group. If R is a Dedekind domain, then every nonzero fractional ideal is invertible,
hence the result of Corollary 12.8. However, the converse is also true.

Proposition 12.9 If R is an integral domain such that every nonzero fractional ideal is invert-
ible, then R is a Dedekind domain.

proof We must show that R is noetherian, that prime ideals are maximal and that R is normal.
Let K be the field of fractions of R.

Let I be a nonzero (integral) ideal of R. Then I is invertible and J = {x ∈ K : xI ⊂ R}
is the inverse of I. (We can easily verify that IJ = R and in a monoid, if an element has an
inverse, then this inverse is unique.)

As IJ = R, there exist a1, . . . , an ∈ I and b1, . . . , bn ∈ J such that a1b1 + · · ·+ anbn = 1. If
a ∈ I, then

a = a1(b1a) + · · ·+ an(bna) ∈ (a1, . . . , an),

because bia ∈ R, for i = 1, . . . , n. It follows that I ⊂ (a1, . . . , an). Clearly (a1, . . . , an) ⊂ I, so
we have equality. As every ideal is finitely generated, R is noetherian.

Let P be a prime ideal in R and M a maximal ideal containing P . As M is invertible, there
exists an ideal J such that P = JM . (J = M−1P ⊂ R, because P ⊂ M ; from Exercise 12.6
the fractional ideal J is an integral ideal.) Since P is a prime ideal, we have J ⊂ P or M ⊂ P .
(If J 6⊂ P and M 6⊂ P , then there exist x ∈ J \ P and y ∈ M \ P ; but xy ∈ JM = P , a
contradiction.) If J ⊂ P , then P = JM ⊂ PM ; multiplying by P−1, we obtain R ⊂ M , a
contradiction. Therefore M ⊂ P and it follows that M = P . Hence P is a maximal ideal.
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It remains to show that R is a normal domain. Let x ∈ K be integral over R. Then there
exist elements c0, c1, . . . , cn−1 ∈ R such that xn = c0 + c1x+ · · · cn−1x

n−1. Let

A = {y ∈ K : y =

n−1∑
i=0

uix
i, ui ∈ R}.

A is clearly an R-module. The element x = r
s , with r ∈ R and s ∈ R∗, so sn−1A is a subset

of R. Hence A is a fractional ideal of R. Since xn ∈ A, we have xA ⊂ A. By hypothesis A is
invertible, so multiplying by A−1 we obtain x ∈ R. Therefore R is integrally closed in K, i.e., R
is a normal domain. 2

Remark Propositions 12.8 and 12.9 provide us with a useful characterization of Dedekind do-
mains, which will use further on.

Decomposition of fractional ideals

We have seen that in a Dedekind domain D an ideal I 6= {0}, D can be written in a unique
way as a product of prime ideals. We may extend this result to fractional ideals.

Theorem 12.6 If J is a fractional ideal in a Dedekind domain and J 6= {0}, D, then

J = Pn1
1 · · ·Pnr ,

where the Pi are distinct nonzero prime ideals of D and the ni integers (possibly negative). This
decomposition is unique.

proof We first observe that such a decomposition exists. As J is a fractional ideal there is an
r ∈ D∗ such that rJ ⊂ D. Clearly rJ is a nonzero ideal of D. There are two cases to consider:
1. r is a unit of D, 2. r is not a unit of D.

Case 1. If r is a unit of R, then J is subset of D, hence an ideal of D (Exercise 12.6). By
hypothesis, J 6= D, so we have the required decomposition.

Case 2. If r is not a unit, then rD is a nonzero proper ideal in D and so there exists a
decomposition

rD = Pn1
1 · · ·Pnrn ,

where the Pi are distinct prime ideals and the ni positive integers. From Proposition 12.8 each
Pi has an inverse in the set of fractional ideals. Consequently, rD has an inverse in the set of
fractional ideals:

(rD)−1 = P−n1
1 · · ·P−nrr . (12.1)

As rJ is an integral ideal of D (Exercise 12.6), we have DrJ = rJ , thus

r−1DrJ = J =⇒ (rD)−1rJ = J.

If rJ = D, then (rD)−1 = J and, using Equation (12.1), we obtain a decomposition of J of the
required type. On the other hand, if rJ 6= D, then rJ is a nonzero proper ideal of D and it
follows that J has a decomposition of the required type.
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We now consider the unicity of the decomposition. If

Pm1
1 · · ·Pmrr = Qn1

1 · · ·Qnss

and all the exponents are positive, then there is no difficulty as we have an ideal in D. The Pi
and Qj are the same with the same positive powers. Suppose now that there are negative powers
in the expression. If, for example, ns < 0, then we may multiply both sides of the expression
by Q−n1

s . If we do this for all prime ideals with negative powers, then we obtain an expression
with positive powers of the Pi and the Qj on both sides. If we now have a Qj on the lefthand
side, then we must have a Pi on the righthand side such that Qj = Pi and −nj = −mi, which
implies that nj = mi. If a Qj remains on the righthand side, then there must be a Pi on the
lefthand side such that Qj = Pi and nj = mi. We may use an analagous argument for the Pi
and so obtain the uniqueness of the decomposition. 2

We may distinguish the integral ideals among the fractional ideals in a simple way, as the
next result shows.

Corollary 12.9 A nonzero fractional ideal J of a Dedekind domain D, such that J 6= D, is an
integral ideal if and only if the powers of all the prime ideals in its decomposition are positive.

proof If all the powers are positive, then we have a product of ideals, which is an ideal.
Suppose now that at least one power mi is negative:

J = Pm1
1 · · ·Pmii · · ·P

mr
r ,

with mi < 0. If J is an ideal, then we may write

J = Qn1
1 · · ·Qnss ,

where the Qj are ideals and nj > 0, for all j. Given the uniqueness of the factorization of I, we
must have Pi = Qj for some j, and mi = nj . However, this is impossible, because

Pmii = Q
nj
j =⇒ P

nj−mi
i = D

and nj−mi ≥ 2 and Pi is a proper ideal. Hence, if a power of a prime ideal in the decomposition
is negative, J is not an ideal. 2

Further properties of fractional ideals

Certain properties of ideals may be generalized to fractional ideals. First we consider divis-
ibility. Let I and J be fractional ideals in a Dedekind domain D. We say that I divides J if
there exists an integral ideal H such that IH = J .

Exercise 12.4 Show that division defines an order relation on fractional ideals.

Exercise 12.5 Show that division of fractional ideals is equivalent to inclusion, i.e., if I and J
are fractional ideals of a Dedekind domain D, then I divides J if and only if I contains J .

It is also interesting to notice that inclusion is reversed by inversion:

Exercise 12.6 Let I and J be nonzero (integral) ideals in a Dedekind domain D. Show that if
I ⊂ J then J−1 ⊂ I−1. Deduce that this is also the case for any pair of nonzero fractional ideals.
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If R ⊂ S are commutative rings and I an ideal in R, then we define an ideal SI in S, the
extension of I in S , by letting SI be the collection of finite sums of the form

∑m
i=1 sixi, with

si ∈ S and xi ∈ I. This is the smallest ideal in S containing I (or the ideal in S generated by
I). We may generalize this idea to fractional ideals.

Let C be Dedekind domain and D a commutative ring containing D. We note K the field of
fractions of C. If J ⊂ K is a fractional ideal of D, then we write DJ for the collection of finite
sums of the form

∑m
i=1 dixi, with di ∈ D and xi ∈ J . We claim that, if D is an integral domain,

then DJ is a fractional ideal of D. Indeed, DJ is clearly a D-module of the field of fractions
of D and any denominator of J is a denominator of DJ . This fractional ideal is the smallest
fractional ideal of D containing J .

If R ⊂ S are commutative rings and I an ideal in R, then it is not necessarily the case that
SI ∩ R = I. For example, if R = Z, S = Q and I = (2), then SI = S, because Q is the only
nonzero ideal in Q. As Q∩Z = Z 6= (2), in this case SI ∩R 6= I. This example also shows that,
even if R and S are Dedekind domains, it may not be true that SI ∩R = I. The following result
provides a framework where this property holds.

Theorem 12.7 Let C be Dedekind domain, D a commutative ring containing C and K the field
of fractions of C. In addition, we suppose that C ∩D ⊂ K.

• a. If J is a fractional ideal of C, then DJ ∩K = J ;

• b. If I is an (integral) ideal of C, then DI ∩ C = I.

proof a. To begin with, DJ ∩ K is always a fractional ideal of C. Indeed, it is clearly a C-
submodule of K and any denominator of J is a denominator of DJ ∩K, because D ∩K ⊂ C. If
J = {0}, then the result is evident, so suppose that this is not the case. Proposition 12.8 ensures
that J has an inverse. Then

D = DC = D(JJ−1) = (DJ)(DJ−1),

hence
C ⊃ D ∩K =

(
(DJ)(DJ−1)

)
∩K ⊃ (DJ ∩K)(DJ−1 ∩K).

Since DJ ∩K is a fractional ideal of C, from Proposition 12.8 again, DJ ∩K has an inverse. We
have

C = (DJ ∩K)(DJ ∩K)−1 =⇒ (DJ ∩K)(DJ ∩K)−1 ⊃ (DJ ∩K)(DJ ∩−1 ∩K).

Now, using Exercise 12.5, we obtain

(DJ ∩K)−1 ⊃ DJ−1 ∩K.

Since J ⊂ DJ ∩K, from Exercise 12.6,

D(J−1) ∩K ⊃ J−1 ⊃ (DJ ∩K)−1

and so
(DJ ∩K)−1 = DJ−1 ∩K = J−1 =⇒ DJ ∩K = J,

as required.
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b. Let I be an (integral) ideal in C. Since I is also a fractional ideal, the part a. ensures that

DI ∩K = I.

Taking the intersection with D on both sides leads to

DI ∩ (K ∩D) = I.

Clearly C ⊂ K ∩D and we have seen in part a. that K ∩D ⊂ C, so K ∩D = C and it follows
that DI ∩ C = I. 2

Example If D is integral over C, then D∩K is included in the integral closure of C in K. As C
is a normal domain, its integral closure in K, its field of fractions, is C itself. Thus D ∩K ⊂ C
and so Theorem 12.7 applies.

If R is an integral domain, then we may extend the equivalence relation defined in Section
12.3 to fractional ideals. In the same way as for the nonzero integral ideals, we define a relation
R on the nonzero fractional ideals of R as follows: IRJ if and only if there exist elements
α, β ∈ R \ {0} such that αI = βJ . There is no difficulty in seeing that R is an equivalence
relation and so we write ∼ for R.

Proposition 12.10 If R is a Dedekind domain and I is a nonzero fractional ideal in R, then
there is a nonzero integral ideal J such that I ∼ J .

proof Let I be a nonzero fractional ideal. From the decomposition of fractional ideals we obtain
the existence of integral ideals B and C such that I = B

C , with C nontrivial. We take t ∈ C, with
t 6= 0. Then C ⊃ Rt =⇒ C|Rt. Hence there exists an integral ideal E ⊂ R such that CE = Rt.
Therefore we have

(Rt)I = Rt
B

C
=
CEB

C
= EB =⇒ tI = 1EB,

hence I ∼ EB. 2

Remark From the above proposition, every equivalence class contains an integral ideal.

12.6 Localization in a Dedekind domain
Before studying localization in a Dedekind domain, we will first revise (or introduce, for those
not familiar with localization) the basic notions of localization in a commutative ring.

Let R be a commutative ring. A subset U of R is said to be multiplicative if

• 1 ∈ U ;

• x, y ∈ U =⇒ xy ∈ U .

We define a relation R on R× U by

(r, u)R(r′, u′),

if there exists t ∈ U such that
t(ru′ − r′u) = 0.
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It is easy to show that R is an equivalence relation, so we will write ∼ for R. Also, we write r
u for

the equivalence class of (r, u). In general, we write U−1R for the collection of equivalence classes.

We may give U−1R a ring structure:

r

u
+
r′

u′
=
ru′ + r′u

uu′
and

r

u
· r
′

u′
=
rr′

uu′
.

It is easy to check that these operations are well-defined and that U−1R with these operations is
a commutative ring. (The element 0

1 (resp. 1
1 ) is the identity for the addition (resp. multiplica-

tion).) The ring we have obtained is called the localization of R with respect to U . Clearly, the
procedure we have used generalizes the construction of the rational numbers, with R = Z and
U = Z∗.

Exercise 12.7 Show that U−1R is a zero ring if and only if 0 ∈ U .

From now on we suppose that 0 /∈ U .

Exercise 12.8 Show that, if R is an integral domain and K its field of fractions, then the
mapping

φ : U−1R −→ K,
r

u
7−→ r

u

is an injective ring homomorphism. It follows that, if R is an integral domain, then so is U−1R,

For a commutative ring R, the mapping

π : R −→ U−1R, r 7−→ r

1

is a ring homomorphism. In addition, if u ∈ U , then

u

1
· 1

u
=
u

u
=

1

1
,

so the elements of π(U) are invertible in U−1R.

Exercise 12.9 Show that the mapping π defined above is injective if and only if U has no zero
divisors. It follows that, if R is an integral domain, then π is injective.

If X is a subset of R, then we set

U−1X = {x
u

: x ∈ X,u ∈ U}.

Clearly, if I is an ideal in R, then U−1I is an ideal in U−1R. It is not difficult to see that U−1I
is the collection of all finite sums of the form

∑n
i=1 yiπ(xi), where yi ∈ U−1R and xi ∈ I, which

is the ideal in U−1R generated by π(I). If π is injective, then we may consider I as a subset of
U−1R and we write (U−1R)I for U−1I.

Remark We may extend this idea. Suppose that A and B are commutative rings with identity
and f : A −→ B a homomorphism. If I is an ideal in A, then f(I) is not necessarily an ideal in
B, even if f is injective (for example, the image of the ideal 2Z in Z by inclusion of the ring of
integers Z in the rationals Q is not an ideal in Q.) However, if we let Ie be the collection of all
finite sums of the form

∑n
i=1 yif(xi), where yi ∈ B and xi ∈ I, then Ie is an ideal in B, called

the extension of I (under f) in B. Ie is the ideal in B generated by f(I). If f is an injection,
then we write BI for Ie.
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Lemma 12.5 Let I be an ideal in R. Then U−1I is a proper ideal in U−1R if and only if
I ∩ U = ∅.

proof If u ∈ I ∩ U , then 1
1 = u

u ∈ U
−1I, so U−1I is not a proper ideal. On the other hand, if

U−1I = U−1R, then 1
1 = r

u , for some r ∈ I and u ∈ U , hence there exists t ∈ U such that

t(u− r) = 0 =⇒ tu = tr.

However, tu ∈ U , because t, u ∈ U , and tr ∈ I, because r ∈ I, so I ∩ U 6= ∅. 2

The next result is elementary, but important.

Proposition 12.11 If I and J are ideals in R, then

• a. U−1(I + J) = U−1I + U−1J ;

• b. U−1(I ∩ J) = U−1I ∩ U−1J ;

• c. U−1(IJ) = (U−1I)(U−1J).

proof It is clear that in all three cases the lefthand side is contained in the righthand side, so
we only need to show that the righthand side is included in the lefthand side.

a. If r
u ∈ U

−1I and r′

u′ ∈ U
−1J , then

r

u
+
r′

u′
=
ru′ + r′u

uu′
∈ U−1(I + J),

because ru′ ∈ I and r′u ∈ J . Thus

U−1I + U−1J ⊂ U−1(I + J).

b. If r
u ∈ U

−1I ∩ U−1J , then there exist r1 ∈ I, u1 ∈ U and t1 ∈ U such that

t1(ru1 − r1u) = 0 =⇒ t1ru1 = t1r1u ∈ I

and r2 ∈ J , u2 ∈ U and t2 ∈ U such that

t2(ru2 − r2u) = 0 =⇒ t2ru2 = t2r2u ∈ J.

It follows that
t1t2ru1u2 ∈ I ∩ J.

Thus there exists ū ∈ U such that rū ∈ I ∩ J . Now r
u = rū

uū ∈ U
−1(I ∩ J), so

U−1I ∩ U−1J ⊂ U−1(I ∩ J).

c. Let r1
u1
, . . . , rnun ∈ U

−1I and r′1
u′1
, . . . ,

r′n
u′n
∈ U−1J . Then

r1

u1

r′1
u′1

+ · · ·+ rn
un

r′n
u′n

=
r

u1u′1 · · ·unu′n
,

where r ∈ IJ , so
(U−1I)(U−1J) ⊂ U−1(IJ).

150



This ends the proof. 2

Above we introduced the mapping

π : R −→ U−1R, r 7−→ r

1
.

As π is a ring homomorphism, if J is an ideal in U−1R, then π−1(J) is an ideal in R. Also, we
have seen that, if I is an ideal in R, then U−1I is an ideal in U−1R. It follows that U−1

(
π−1(J)

)
is an ideal in U−1R. In fact, we have a stronger result.

Proposition 12.12 If J is an ideal in U−1R, then

U−1
(
π−1(J)

)
= J.

proof If r
u ∈ U

−1
(
π−1(J)

)
, then there exist r′ ∈ π−1(J), u′ ∈ U and t ∈ U such that

t(ru′ − r′u) = 0 =⇒ tru′ = tur′ ∈ π−1(J) =⇒ tru′

1
∈ J.

Therefore
r

u
=
tru′

tuu′
=
tru′

1
· 1

tuu′
∈ J.

Hence
U−1

(
π−1(J)

)
⊂ J.

To prove the converse, let us take r
u ∈ J . Then

r

1
=
r

u
· u

1
∈ J =⇒ r ∈ π−1(J) =⇒ r

u
∈ U−1

(
π−1(J)

)
.

Thus
J ⊂ U−1

(
π−1(J)

)
.

This completes the proof. 2

Let us write IR (resp. IU−1R) for the collection of ideals in R (resp. U−1R).

Proposition 12.13 The mapping

π−1 : IU−1R −→ IR, J 7−→ π−1(J)

is injective.

proof If π−1(J1) = π−1(J2), then from Proposition 12.12 we have

J1 = U−1
(
π−1(J1)

)
= U−1

(
π−1(J2)

)
= J2

and the injectivity follows. 2

The main object of this section is to show that the localization of a Dedekind domain is a
Dedekind domain. We have already observed that the localization of an integral domain D is
an integral domain (Exercise 12.8). We now show that the noetherian property carries over to a
localization.
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Proposition 12.14 If R is a noetherian ring and U a multiplicative subset of R, then the
localization U−1R is a noetherian ring.

proof Let π : R −→ U−1R be the standard ring homomorphism taking r to r
1 . We take an

ascending sequence of ideals in U−1R:

J0 ⊂ J1 ⊂ J2 ⊂ · · ·

The inverse images under π of these ideals form an ascending chain of ideals in R:

π−1(J0) ⊂ π−1(J1) ⊂ π−1(J2) ⊂ · · ·

As R is noetherian, this chain eventually stabilizes, i.e., there exists k such that

π−1(Jk) = π−1(Jk+1) = · · ·

However, the mapping π−1 is injective (Proposition 12.13), so we have

Jk = Jk+1 = · · ·

and it follows that U−1R is noetherian. 2

Our next step is to show that

Proposition 12.15 If R is a normal domain and 0 /∈ U , then U−1R is a normal domain.

proof Let α be an element of the fraction field of U−1R which is integral over U−1R, i.e., there
exists a polynomial f(X) =

∑k−1
i=0 aiX

i + Xk ∈ U−1R[X] such that f(α) = 0. We take u ∈ U
such that u is a multiple of the denominators of the ai, then ua0, ua1, . . . , uak−1 ∈ R. Setting
f̄(X) =

∑k−1
i=0 u

k−iaiX
i + Xk, we have f̄ ∈ R[X] and f̄(uα) = 0, so uα is integral over R. We

may also choose u such that uα lies in the field of fractions of R. To see this, notice that

α =
r1

u1
/
r2

u2
=⇒ uα = u

r1

u1
/
r2

u2
=
ur1u2

u1
/r2.

If we choose u ∈ U to be a multiple of u1, then uα belongs to the field of fractions of R. As R
is a normal domain, uα ∈ R, which implies that α = uα

u ∈ U
−1R. It follows that U−1R is a

normal domain. 2

To show that U−1D is a Dedekind domain if D is a Dedekind domain we must show that
prime ideals are maximal. To do so, we first consider the mapping π−1 restricted to prime ideals.

Lemma 12.6 If I is an ideal in R, then

I ⊂ π−1(U−1I),

with equality if I is a prime ideal disjoint from U .

proof If r ∈ I, then r
1 ∈ U

−1I, hence r ∈ π−1(U−1I). This proves the first part of the lemma.
Now suppose that I is a prime ideal in R such that I ∩ U = ∅ and let r ∈ π−1(U−1I). Then

π(r) = r
1 ∈ U

−1I, so r
1 = r′

u′ , for some r′ ∈ I and u′ ∈ U . Thus there exists t ∈ U such that

t(ru′ − r′) = 0 =⇒ tru′ = tr′,

with tu′ /∈ I, because U ∩ I = ∅. (If tu′ ∈ I, then t ∈ I or u′ ∈ I, a contradiction.) Since tr′ ∈ I,
also tru′ ∈ I. Given that tu′ /∈ I and I is prime, we must have r ∈ I. Hence π−1(U−1I) ⊂ I. 2

We will write PU−1R for the set of prime ideals in U−1R and PR\U for the set of prime ideals
in R disjoint from U .
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Theorem 12.8 The mapping π−1 restricted to PU−1R defines a bijection onto PR\U .

proof We have already observed that, if J is an ideal in U−1R, then π−1(J) is an ideal in R and
that the mapping π−1 is injective (Proposition 12.13). It is elementary to show that π−1(J) is
prime when J is prime. We must show that π−1(J)∩U = ∅. From Lemma 12.5 and Proposition
12.12

π−1(J) ∩ U = ∅ ⇐⇒ U−1
(
π−1(J)

)
6= U−1R⇐⇒ J 6= U−1R.

Since J is a prime ideal of U−1R, J 6= U−1R, so π−1(J) ∩ U = ∅, as desired. We have shown
that the image of π−1 restricted to PU−1R lies in PR\U .

To finish we only need to show that π−1(PU−1R) = PR\U . Let I ∈ PR\U . From Lemma 12.6
we have

I = π−1(U−1I).

As I is a prime ideal in R and I ∩ U = ∅, U−1I is a prime ideal in U−1R, so π−1 restricted to
PU−1R is surjective. 2

Corollary 12.10 If R is a commutative ring in which every nonzero prime ideal is maximal,
then this is also the case for the localization U−1R.

proof Let J be a nonzero prime ideal in U−1R which is not maximal. Then there exists a nonzero
prime ideal J ′ in U−1R which properly contains J . From the previous theorem, both π−1(J)
and π−1(J ′) are nonzero prime ideals and π−1(J) is properly contained in π−1(J ′). However,
this is a contradiction, because π−1(J) must be maximal. Hence J is maximal. 2

Exercise 12.10 If I is a prime ideal in R and I ∩ U 6= ∅, show that U−1I is not a prime ideal
in U−1R.

We are now in a position to establish the main theorem of this section.

Theorem 12.9 If D is a Dedekind domain and U a multiplicative subset of D not containing
0, then U−1D is a Dedekind domain.

proof We noticed in Exercise 12.11 that if the multiplicative set U has no zero divisors, then
U−1R is an integral domain. Since D is an integral domain, so is U−1D. Next, from Proposition
12.14, U−1D is a noetherian ring. Now, using Proposition 12.18, we see that U−1D is a normal
domain. To finish we only need to show that every nonzero prime ideal in U−1D is maximal.
However, this follows from Corollary 12.10. 2

Suppose now that I is an ideal in D such that I 6= {0}, D and I = P e11 · · ·P err is the
decomposition of I into prime ideals of D. In the Dedekind domain D′ = U−1D the ideal J
generated by I has a decomposition into prime ideals of D′. The following proposition gives us
the form of this decomposition.

Proposition 12.16 Let I be an ideal of the Dedekind domain D, such that I 6= {0}, D, and U
a multiplicative subset of D not containing 0. If I = P e11 · · ·P err is the decomposition of I into
prime ideals of D and J the ideal in D′ = U−1D generated by I, then the decomposition of J
into prime ideals has the form

J =
∏

Pi∩U=∅

(D′Pi)
ei .
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proof First we have

J = D′I = D′

(
r∏
i=1

P eii

)
=

r∏
i=1

(D′Pi)
ei .

If Pi ∩ U 6= ∅ then D′Pi contains a unit, so D′Pi = D′. Thus

J =
∏

Pi∩U=∅

(D′Pi)
ei .

It remains to show thatD′Pi is a prime ideal if Pi∩U = ∅. Let au ,
b
v ∈ D

′ be such that au
b
v ∈ D

′Pi.
Then a

u
b
v = x

w , with x ∈ Pi and w ∈ U . So abw = uvx ∈ Pi, because x ∈ Pi. Given that w /∈ Pi,
because Pi ∩ U = ∅, we have ab ∈ Pi, which implies that a ∈ Pi or b ∈ Pi. Hence a

u ∈ D
′Pi or

b
v ∈ D

′Pi, which shows that D′Pi is a prime ideal. 2

A special case

If a commutative ring has a unique maximal ideal, then we say that it is a local ring. In certain
cases the localization of a commutative ring is a local ring. We will be particularly interested in
the case where the ring is a Dedekind domain. However, we will first present a result giving two
characterizations of local rings.

Proposition 12.17 The following conditions are equivalent for a commutative ring R:

• a. R is a local ring;

• b. There is a proper ideal I of R which contains all the nonunits of R;

• c. The set of nonunits of R is an ideal.

proof a. =⇒ b. If r is a nonunit, then (r) is a proper ideal in R and so is contained in the
unique maximal ideal of R.
b. =⇒ c. Let A be the collection of nonunits in R. If r, r′ ∈ A and x ∈ R, then r+ r′ and xr are
in A. If not, then there exists a ∈ R such that a(r + r′) = 1, or b ∈ R such that b(xr) = 1. In
both cases, 1 ∈ A ⊂ I and so I = R, a contradiction. Hence A is a proper ideal in R.
c. =⇒ a. If I is the ideal of nonunits, then I is maximal. If not, then there is an ideal I ′ 6= R
which properly contains I. As I ′ must contain a unit, I ′ = R. It folllows that I is maximal. If
H is a proper ideal in R, then H cannot contain a unit, so H ⊂ I. Therefore I is the unique
maximal ideal. 2

Exercise 12.11 Show that the unique maximal ideal of a local ring is composed of its nonunits.

If P is a prime ideal in the commutative ring R, then U = R \P is a multiplicative subset of
R and 0 /∈ U . We write RP for the localization (R \ P )−1R. We call RP the localization of R
at P . The expression X ∩ R \ P = ∅, for X ⊂ R, is equivalent to X ⊂ P . We also notice that
R \ P has no zero divisors, so from Exercise 12.11 the mapping π : R −→ RP is injective.

Theorem 12.10 If R is a commutative ring and P a prime ideal in R, then the localization RP
is a local ring, with unique maximal ideal

(R \ P )−1P = {x
u
, x ∈ P, u ∈ R \ P}.
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proof As P ∩ R \ P = ∅, from Lemma 12.5, (R \ P )−1P is a proper ideal in RP . Let J be a
maximal ideal in RP . As J is prime, π−1(J) is a prime ideal in R, which is disjoint from R \ P
by Theorem 12.8. As observed above, π−1(J) ∩ (R \ P ) = ∅ is equivalent to π−1(J) ⊂ P , since
π−1(J) ⊂ R. Then, by Proposition 12.12,

J = (R \ P )−1
(
π−1(J)

)
⊂ (R \ P )−1P.

Since J is a maximal ideal in RP and (R\P )−1P is a proper ideal in RP , we have J = (R\P )−1P .
It follows that (R \ P )−1P is the unique maximal ideal of RP . 2

In accordance with the discussion after Exercise 12.11, for an ideal I in R, (R\P )−1I = RP I,
i.e., (R \ P )−1I is composed of finite sums of the form

x =

n∑
i=1

yiπ(xi),

where yi ∈ RP and xi ∈ I. In particular, the unique maximal ideal of RP can be written RPP .

Now let us now consider the particular case of the localization of a Dedekind domain D at a
prime ideal P .

Theorem 12.11 If D is a Dedekind domain and P a prime ideal in D, then the localization
DP is a PID.

proof From Theorem 12.9, DP is a Dedekind domain. By Theorem 12.10, DP is also a local
ring and so has a unique ideal. However, a Dedekind domain having only a finite number of
prime ideals is a PID (Corollary 12.7), hence the result. 2

We may characterize the nonzero fractional ideals of DP ; however, we need to do some
preliminary work. We recall that in Proposition 12.11 we showed that if U is a multiplicative
subset of the ring R, and I and J ideals, then

U−1(IJ) = (U−1I)(U−1J).

If R is an integral domain, P a prime ideal of R and U = R \ P , then we obtain

RP (IJ) = (RP I)(RPJ). (12.2)

We aim to extend this relation to fractional ideals of R. First we extend the definition RP I to
fractional ideals. For a fractional ideal F of R we let RPF be the subset of the fraction field K
of RP composed of finite sums of the form

x =

n∑
j=1

fjxj ,

where ij ∈ I, xj ∈ RP . (If f ∈ F , then f = r
r′ , with r ∈ R, r

′ ∈ R∗; then fx = rx
r′ ∈ K and it

follows that RPF ⊂ K.) In fact, RPF is a fractional ideal of RP . If F is the zero ideal, then
there is nothing to prove, so let us suppose that this is not the case. Then F = αI, where α ∈ R∗
and I an ideal of R (Proposition 12.6). If f ∈ F and x ∈ RP , then fx = αfsx, where s ∈ I. It
follows that RPF = αRP I. As RP I is an ideal in RP , another application of Proposition 12.6
shows that RPF is a fractional ideal of RP .

We may now extend Equation (12.2) to fractional ideals.
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Proposition 12.18 If R is an integral domain, P a prime ideal in R and F , G fractional ideals,
then

RP (FG) = (RPF )(RPG).

proof An element of RP (FG) can be written in the form x
∑n
i=1 figI , where fi ∈ F , gi ∈ G

and x ∈ RP . Since x = r
u , with r ∈ R and u ∈ R \ P , we have

x

n∑
i=1

figI =

n∑
i=1

(
r

1
fi)(

1

u
gi) ∈ RP (F )RP (G),

Hence RP (FG) ⊂ (RPF )(RPG).
Moreover, any element of (RPF )(RPG) is a finite sum of terms of the form (xf)(yg), where

x, y ∈ RP and f ∈ F , g ∈ G. However, (xf)(yg) = (xy)(fg). Given that xy ∈ RP and fg ∈ FG,
(xf)(yg) ∈ RP (FG) and it follows that (RPF )(RPG) ⊂ RP (FG). 2

We are now are in position to establish a result which will prove essential further on. It pro-
vides us with a characterization of the nonzero fractional ideals of the localization of a Dedekind
domain at a prime ideal.

Theorem 12.12 If D is a Dedekind domain and P a nonzero prime ideal in D, then every
nonzero fractional ideal J of DP is a power of DPP and, for any m ∈ Z, (DPP )m = DPP

m.
In addition, for any m ≥ 0, DP (Pm) ∩D = Pm.

proof Theorem 12.9 ensures that DP is a Dedekind domain and Theorem 12.10 that DP has
a unique prime ideal, namely DPP . Now, using Theorem 12.6, we obtain that every nonzero
fractional ideal J of DP is a power of DPP : J = (DPP )m, for some m ∈ Z. If m = 0, then
J = DP .

Let us now show that (DPP )m = DP (Pm). We will consider three cases, namely, m = 0,
m ≥ 1 and m ≤ −1.

Case 1: m = 0. For m = 0, this amounts to showing that DP = DPD. Clearly, DPD ⊂ DP . If
a
u ∈ DP , then a

u = a
u

1
1 ∈ DPD, so DP ⊂ DPD and we have the desired equality.

Case 2: m =≥ 1. For m ≥ 1 we use an induction argument. For m = 1, there is nothing to
prove. For m ≥ 2, it is sufficient to apply Proposition 12.18.

Case 3: m ≤ −1. From Proposition 12.18 we have

DP = DPD = DP (PP−1) = (DPP )(DPP
−1) =⇒ DPP

−1 = (DPP )−1.

If m ≤ −2, let us set n = −m. Then, using Proposition 12.18 again, we have

DPP
m = DP

(
(P−1)−m

)
= (DPP

−1)−m.

However, DPP
−1 = (DPP )−1, so

(DPP
−1)−m =

(
(DPP )−1

)−m
= (DPP )m.

We now turn to the final part of the theorem. Let m ≥ 1. It is clear that Pm ⊂ DPP
m ∩D.

Suppose now that x
u ∈ DPP

m ∩ D, with x ∈ Pm and u /∈ P . There exists r ∈ D such that
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x
u = r

1 . This implies that there is a t /∈ P such that t(x−ru) = 0. Hence we have tru = tx ∈ Pm,
with tu /∈ P . As tru ∈ Pm, Pm contains the product of the principal ideals Dtu and Dr. This
means that Pm divides DtuDr. As tu /∈ P , P does not divide Dtu. Since P is a prime ideal, Pm
divides Dr, which implies that r ∈ Pm. Thus x

u = r
1 , with r ∈ P

m. Therefore DPP
m∩D ⊂ Pm.

This ends the proof. 2

Quotient rings of localizations

If I is a proper ideal in R, then we have a canonical homomorphism λ of R onto the quotient
ring R̄ = R/I. A multiplicative subset U of R induces in a natural way a multiplicative subset
of R̄ = R/I, namely Ū = λ(U). The following proposition characterizes the localization of R̄
with respect to Ū .

Proposition 12.19 Let U be a multiplicative subset of the ring R and R′ = U−1R. If I is a
proper ideal in R such that

ru ∈ I, r ∈ R, u ∈ U =⇒ r ∈ I,

then the image Ū of U under λ is a multiplicative subset of R̄ with no zero divisors, and Ū−1R̄
is isomorphic to R′/R′I.

proof First we notice that I ∩ U = ∅: If a ∈ I ∩ U , then a1 ∈ I and so, by hypothesis, 1 ∈ I,
which is impossible, because I is a proper ideal of R.

To see that Ū is a multiplicative subset of R̄, first we notice that 1 ∈ U implies that 1̄ ∈ Ū .
Next, if ā, b̄ ∈ Ū , then ā = a+ I, with a ∈ U , and b̄ = b+ I, with b ∈ U , hence āb̄ = ab+ I ∈ Ū ,
because ab ∈ U .

Finally we show that Ū has no zero divisors. Let ā ∈ Ū . If āb̄ = 0̄, with b̄ ∈ R/I, then ab ∈ I.
As a ∈ U , by hypothesis b ∈ I, so b̄ = 0̄. Therefore Ū has no zero divisors.

We now define a mapping ψ from Ū−1R̄ into R̄′ = R′/R′I by

ψ(
r̄

ū
) =

r

u
,

where r
u is the image of r

u under the canonical homomorphism of R′ onto R̄′. We need to show
that ψ is well-defined, i.e.,

r̄

ū
=
r̄1

ū1
=⇒ r

u
=
r1

u′1
.

Indeed, if there exists t̄ ∈ Ū such that

t̄(r̄ū1 − r̄1ū) = 0̄,

then
(ru1 − r1u)t ∈ I =⇒ ru1 − r1u ∈ I =⇒ r

u
− r1

u1
=
ru1 − r1u

uu1
∈ R′I,

where in the first implication we have used the hypothesis on I. Thus r
u = r1

u′1
and the mapping

ψ is well-defined.
Clearly, ψ is a ring homomorphism. If x ∈ R̄′, then x = r

u + R′I, with r ∈ R, u ∈ U . If we
set y = r̄

ū , then r̄ ∈ R̄, ū ∈ Ū and ψ(y) = x. Thus ψ is surjective. If r
u = 0̄, then r

u ∈ R
′I. Then

r
u = r′

u′ , with r′ ∈ I and u′ ∈ U . Hence there exists t ∈ U such that t(ru′ − r′u) = 0 and so
tru′ ∈ I. As tu′ ∈ U , by hypothesis r ∈ I and it follows that r̄

ū = 0 in Ū−1R̄, so ψ is injective.
This ends the proof. 2
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The next result characterizes the residue field of the localization of a commutative ring with
respect to a maximal ideal.

Corollary 12.11 If all the elements of Ū are invertible in R̄, then R̄ is isomorphic to R′/R′I.
If P is a maximal ideal in a commutative ring R, then R/P is isomorphic to RP /RPP .

proof Suppose that all the elements of Ū are invertible in R̄. If r̄ū ∈ Ū
−1R̄ and we set r̄1 = r̄ū−1,

then r̄1
1 = r̄

ū , so the canonical mapping from R̄ into Ū−1R̄ is an isomorphism. Thus we have an
isomorphism from R̄ onto R′/R′I.

Let us set U = R \ P . If ru ∈ P , with r ∈ R and u ∈ U , then r ∈ P , because P is a prime
ideal. Hence we can apply Proposition 12.19 with I = P : Ū−1(R/P ) is isomorphic to RP /RPP .
Because R/P is a field, every element of Ū is invertible. It follows that there is an isomorphism
from R/P onto RP /RPP . 2

Localization and integral closure

If U is a multiplicative subset of a ring R, and S a ring containing R, then U is also a
multiplicative subset of S. We aim to consider the case where L is some field containing R and
S the integral closure of R in L. Thus the set U−1S is defined. However, if R′ = U−1R is also
contained in L, then integral closure of R′ in L also exists.

Proposition 12.20 Let R be an integral domain and L a field containing R. We suppose that
S is the integral closure of R in L and that U is a multiplicative subset of R. Then S′ = U−1S
is the integral closure of R′ = U−1R in L.

proof As R′ ⊂ K, the field of fractions of R, and K ⊂ L, the integral closure of R′ in L exists.
Let x = s

u ∈ S
′. As S is integral over R, there exist r0, r1, . . . , rn−1 ∈ R such that

r0 + r1s+ · · ·+ rn−1s
n−1 + sn = 0 =⇒ 1

un
(r0 + r1s+ · · ·+ rn−1s

n−1 + sn) = 0.

This can be written
r0

un
+

r1

un−1

s

u
+ · · ·+ rn−1

u

sn−1

un−1
+
sn

un
= 0

which implies that s
u is integral over R′.

Now let x ∈ L be integral over S′. There exist r0
u0
, r1u1

, . . . , rn−1

un−1
∈ S′ such that

r0

u0
+
r1

u1
x+ · · ·+ rn−1

un−1
xn−1 + xn = 0.

Setting u = u0u1 · · ·un−1, we may write

un
(
r0

u0
+
r1

u1
x+ · · ·+ rn−1

un−1
xn−1 + xn

)
= 0.

However,
unri
ui

xi =
un−iri
ui

(ux)i with
un−iri
ui

∈ R,

so ux is integral over R. As the integral closure of R in L is S, we have ux ∈ S, which implies
that x = ux

u ∈ U
−1S. 2

Remark We may sum up the proposition by saying that localization of the integral closure
is the same as the integral closure of the localization, i.e., the operations integral closure and
localization commute.
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12.7 Integral closures of Dedekind domains
IfD is a Dedekind domain, then certain extensions ofD are also Dedekind domains. We have seen
that this is in general the case with localizations. In this section we aim to consider another class
of such extensions. The properties of such extensions enable us to establish certain important
results.

Lemma 12.7 Let A ⊂ B ⊂ C be commutative rings. If B is a finitely generated A-module and
C a finitely generated B-module, then C is a finitely generated A-module.

proof Let {b1, . . . , bm} be a generating set for B over A and {c1, . . . , cn} a generating set for C
over B. For x ∈ C, there are β1, . . . , βn ∈ B such that

x =

n∑
i=1

βici.

For any i = 1, . . . , n, there exist αi1, . . . , αim ∈ A such that

βi =

m∑
j=1

αijbj ,

hence

x =

n∑
i=1

 m∑
j=1

αijbj

 ci =

n∑
i=1

m∑
j=1

αij(bjci).

As B ⊂ C, the elements bjci belong to C and it follows that the bjci, for 1 ≤ j ≤ m and
1 ≤ i ≤ n, form a generating set for C over A. 2

Theorem 12.13 (transitivity of integrality) Let A ⊂ B ⊂ C be commutative rings. If B is
integral over A and C integral over B, then C is integral over A.

proof Let x ∈ C. As C is integral over B, there exist b0, b1, . . . , bn−1 ∈ B such that

b0 + b1x+ · · ·+ bn−1x
n−1 + xn = 0. (12.3)

We set D = A[b0, b1, . . . , bn−1] and E = D[x]. From equation (12.3), powers of x higher than
n − 1 can be expressed as a linear sum of powers of x (with coefficients in D) smaller than n.
Hence E is a finitely generated D-module. In the same way, as B is integral over A, for each bi,
there is a positive integer mi such that powers of bi higher than mi − 1 can be expressed as a
linear sum of powers of bi (with coefficients in A) smaller than mi. As D is composed of finite
sums of of expressions of the form

abα0
0 bα1

1 · · · bαss ,

with a ∈ A, D is a finitely generated A-module. From Lemma 12.7, E is a finitely generated A-
module. Thus x belongs to a subring of C containing A, which is a finitely generated A-module.
From Theorem 11.3, x is integral over A. It follows that C is integral over A. 2

Corollary 12.12 Let S ⊂ R be commutative rings and C the integral closure of S in R. Then
C is integrally closed in R.

The intersection of all subrings of R which contain S and integrally closed in R is the integral
closure C of S in R.
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proof Let x ∈ R be integral over C. From Theorem 12.13 we deduce that C[x] is integral over
S. In particular, x is integral over S, so x ∈ C.

Suppose now that S ⊂ T ⊂ R are commutative rings, where T is integrally closed in R. Let
x ∈ C. Then x is a zero of a monic polynomial with coefficients in S. As S ⊂ T , x is also a zero
of a monic polynomial with coefficients in T . Given that T is integrally closed, x ∈ T . Thus
C ⊂ T and the result now follows. 2

We have a second corollary.

Corollary 12.13 If K ⊂ L are number fields, then OL is the integral closure of OK in L.

proof Let A be the integral closure of OK in L. Then we have Z ⊂ OK ⊂ A, with OK integral
over Z and A integral over OK . From Theorem 12.13, A is integral over Z and so A ⊂ OL. On
the other hand, of x ∈ OL, then x is integral over Z. As Z ⊂ OK , x is integral over OK , i.e.,
x ∈ A. Thus OL ⊂ A. 2

We now aim to consider in particular integral closures of noetherian domains.

Lemma 12.8 Let E be a separable extension of F , with [E : F ] = m. If {b1 . . . , bm} is a basis
of E over F , then there is a basis {c1, . . . , cm} such that TE/F (bicj) = δij, where δij is the
Kronecker symbol.

proof The trace TE/F : E −→ F is linear, so TE/F ∈ Hom(E,F ), the dual space of the F -vector
space E. We define τ : E −→ Hom(E,F ) by

τ(b)(x) = B(b, x),

where B is the bilinear form defined by the trace. The mapping τ is clearly linear; it is also
injective, because B is nondegenerate. As E and Hom(E,F ) hve the same dimension, τ is an
isomorphism. Let {φ1, . . . , φm} be the dual basis of {b1 . . . , bm}, so that φi(bj) = δij . As τ is an
isomorphism, there exist c1, . . . , cm ∈ E such that τ(ci) = φi, for i = 1, . . . ,m, therefore

τ(ci)(x) = φi(x) =⇒ τ(ci)(bj) = δij =⇒ TE/F (cibj) = δij ,

which is what we set out to prove. 2

We now consider integral closures of noetherian domains.

Theorem 12.14 Let D be a noetherian integrally closed domain, with field of fractions F . If E
is a finite separable extension of F and B the integral closure of D in E, then B is a noetherian
ring.

proof From Theorem 11.5, B is a submodule of a finitely generated D-module, which we note
M . As D is noetherian and M finitely generated, M is noetherian. However, a submodule of a
noetherian module is noetherian, and so B is a noetherian D-module.

Let I be an ideal in B. Then I is a submodule of the D-module B. As B is a noetherian, I
is finitely generated D-module: there exist x1, . . . , xn ∈ I such that

I = Dx1 + · · ·+Dxn.

Given that D ⊂ B, we may also write

I = Bx1 + · · ·+Bxn
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and so I is a finitely generated B-module. As every ideal in B is finitely generated, B is noethe-
rian. 2

Our next step is to show that every prime ideal in the integral closure B as defined above is
maximal. We need some preliminary results.

Lemma 12.9 Let D be a domain which is integral over the subring R. If J is a nonzero ideal
of D, then J ∩R is a nonzero ideal of R.

proof J ∩R is clearly an ideal. Let x ∈ J , x 6= 0. There exists a monic polynomial

f(X) = a0 + a1X + · · ·+ an−1X
n−1 +Xn ∈ R[X]

such that f(x) = 0. We may take f of minimal degree, which implies that a0 6= 0. (If a0 = 0,
then

a1 + a2x+ · · ·+ an−1x
n−2 + xn−1 = 0,

because x 6= 0 and R is a domain and so f is not of minimal degree, a contradiction.) Hence

a0 = −(a1 + a2x+ · · ·+ an−1x
n−2 + xn−1)x ∈ J ∩R,

so J ∩R 6= {0}. 2

Remark It is easy to see that, if J is a prime ideal, then J ∩R is also a prime ideal.

Before considering the case of maximal ideals we prove another lemma.

Lemma 12.10 Let D be a domain which is integral over the subring R. Then D is a field if
and only if R is a field.

proof Suppose that D is a field and let x be a nonzero element of R. The inverse x−1 of x is
integral over R, hence there exist a1, a1, . . . , an−1 ∈ R such that

a0 + a1x
−1 + · · ·+ an−1(x−1)n−1 + (x−1)n = 0.

Multiplying by xn−1 we obtain

a0x
n−1 + a1x

n−2 + · · ·+ an−1 + x−1 = 0,

hence x−1 ∈ R and so it follows that R is a field.
Now suppose that R is a field and let x be a nonzero element of D. From Lemma 12.9 there

exists a ∈ Dx ∩ R, a 6= 0. We can write a = bx, with b ∈ D. Let a′ be the inverse of a in R.
Then

1 = a′a = a′(bx) = (a′b)x,

and so x is invertible in D and thus D is a field. 2

Proposition 12.21 Let D be a domain which is integral over the subring R and J a prime ideal
in D. Then J is a maximal ideal in D if and only if J ∩R is a maximal ideal in R.
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proof Let J be a prime ideal in D. Then the ring homomorphism

φ : R/(J ∩R) −→ D/J, x+ (J ∩R) 7−→ x+ J

is injective, so we may consider R/(J ∩R) to be a subring of D/J . We claim that D/J is integral
over R/(J ∩ R). To see this let us take x + J ∈ D/J . As D is integral over R, there exists a
monic polynomial

f(X) = a0 + a1X + · · ·+ an−1X
n−1 +Xn ∈ R[X]

such that f(x) = 0. To simplify the notation we set I = J ∩ R. We define a monic polynomial
f̄ ∈ R/I[X] by

f̄(X) = (a0 + I) + (a1 + I)X + . . .+ (an−1 + I)Xn−1 +Xn.

Then
f̄(x+ J) = f(x) + J = J.

As J is the zero element of D/J , x+ J is integral over R/I. This establishes the claim.
If J is a maximal ideal in D, then D/J is a field. From Lemma 12.10 R/(J ∩ R) is a field,

therefore J ∩R is a maximal ideal.
Conversely, if J ∩ R is a maximal ideal in R, then R/(J ∩ R) is a field and so, from Lemma

12.10 again, D/J is a field and thus J is a maximal ideal. 2

We may now establish the principal result of this section.

Theorem 12.15 Let D be a Dedekind domain, with field of fractions F . If E is a finite separable
extension of F and B the integral closure of D in E, then B is a Dedekind domain.

proof As B is contained in E, which is a field, B is an integral domain.
Let C be the integral closure of B in its field of fractions. Then C is integral over B and B

is integral over D, so C is integral over D (Theorem 12.13). Thus, if x ∈ C, then x ∈ B and it
follows that C = B, i.e., B is integrally closed.

To see that B is noetherian, it is sufficient to apply Theorem 12.14.
Finally, we show that every nonzero prime ideal is maximal. Let P be a nonzero prime ideal

in B. Then P = Q∩D is a nonzero prime ideal in D (Lemma 12.9). As D is a Dedekind domain,
P is a maximal ideal in D. From Proposition 12.21, Q is a maximal ideal in B. 2

Remark From Proposition 11.2 the field of fractions of B is E. If F 6= E, then D and B have
different fields of fractions and so are distinct. Thus D is strictly included in B. We have shown
that a Dedekind domain is strictly included in another Dedekind domain.

Let C be a Dedekind domain and D an integral domain containing C. If P is a nonzero prime
ideal in C, then C/P is a field and the mapping

φ : C/P −→ D/DP, a+ P 7−→ a+DP

is a well-defined homomorphism. Hence we may consider that D/DP is a C/P -vector space.
(The scalar multiplication is defined as follows: c̄x̄ = φ(c̄)x̄, for c̄ ∈ C/P and x̄ ∈ D/DP .) There
is a natural question: If K and L are the respective fraction fields of C and D and we know
the dimension [K : L], what can we say about the dimension of the C/P -vector space D/DP?
We aim to give an answer to this question for a particular integral domain D. We will need the
following standard result, for which a proof may be found, for example, in [5].
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Theorem 12.16 If R is a PID and M a free R-module of rank n, then any submodule N of M
is free and has rank at most n.

Theorem 12.17 Let C be a Dedekind domain, K its field of fractions and L a separable exten-
sion of K of degree n. Suppose that D is the integral closure of C in L. If P is a nonzero prime
ideal in C, then the dimension of the C/P -vector space D/DP is n.

proof Let U = C \ P and C ′ = U−1C = CP . From Theorem 12.11, C ′ is a PID. Proposition
12.20 ensures that, as D is the integral closure of C in L, D′ = U−1D is the integral closure of
C ′ in L. Since the fraction field of C ′ is that of C, from Theorem 11.5, D′ is contained in a free
C ′-module M of rank n. As C ′ is a PID and D′ a submodule of M , from Theorem 12.16, D′ is
a free C ′-module of rank at most n. Using Theorem 11.5 again, we see that D′ contains a free
C ′-module of rank n. Thus, using Theorem 12.16 again, we obtain that D′ is a free C ′-module
of rank n.

The extension of P to C ′ is C ′P and its extension to D′ is D′P . As D′P = D′(C ′P ), D′P is
also the extension of C ′P to D′, so the mapping

ψ : C ′/C ′P −→ D′/D′P, c′ + C ′P 7−→ c′ +D′P

is a ring homomorphism. Since C ′P is the maximal ideal of the local ring C ′, the quotient
C ′/C ′P is a field. Thus D′/D′P is a C ′/C ′P -vector space. (The scalar multiplication is defined
by c̄′.x̄′ = ψ(c̄′)x̄′, for c̄′ ∈ C ′/C ′P and x̄′ ∈ D′/D′P .) We now consider the dimension of this
vector space.

We have seen that D′ is a free C ′-module of rank n, so D′ has a basis B′ = {x′1, . . . , x′n}. Let
us write x̄′i for the image of x′i in D′/D′P (under the standard mapping of D′ onto D′/D′P ).
We claim that B̄′ = {x̄′1, . . . , x̄′n} is a basis of D′/D′P . Clearly B̄′ is a generating set of D′/D′P ,
so we only need to consider the independance. Let

∑n
i=1 c̄

′
i.x̄
′
i = 0, where c̄′i ∈ C ′/C ′P . Then

n∑
i=1

c′ix
′
i ∈ D′P = D′(C ′P )

and so we may write
∑n
i=1 c

′
ixi =

∑m
j=1 ĉ

′
jy
′
j , with y′j ∈ D′ and ĉ′j ∈ C ′P . Expressing the y′j in

terms of the x′i, we obtain
∑n
i=1 c

′
ix
′
i =

∑n
i=1 c̃

′
ix
′
i, with c̃′i ∈ C ′P ⊂ C ′. It follows that c′i = c̃′i,

for all i, which implies that c′i ∈ C ′P and so c̄′i = 0, for all i. We have shown that B̄′ is an
independant set and so a basis of D′/D′P : D′/D′P is a C ′/C ′P -vector space of dimension n.

We now consider the mappings

α : C/P −→ C ′/C ′P, c+ P 7−→ c

1
+ C ′P and β : D/DP −→ D′/D′P, d+ P 7−→ d

1
+D′P.

These mappings α and β are clearly well-defined ring homomorphisms. We aim to use Corollary
12.11 to show that they are in fact isomorphisms. For α there is no difficulty, because P is a
prime ideal in a Dedekind domain, hence maximal. We now consider β. Let us set U = C \ P .
Because C/P is a field, for u ∈ U there exists v ∈ U and x ∈ P such that uv = 1 + x. As
P ⊂ DP , every element of U + DP has an inverse in the same set and it follows that β is an
isomorphism.

We now notice that D′/D′P is a C/P -vector space for the scalar multiplication c̄·x̄′ = α(c̄)x̄′,
where c̄ ∈ C/P and x̄′ ∈ D′/D′P . (We distinguish scalar multiplication and ring multiplication
by using a dot in the former case.) It is not difficult to check that B̄′ is a basis of this vector
space, so it too has dimension n. We claim that β is an isomorphism of C/P -vector spaces. We
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only need to verify that the scalar multiplicaion is respected. Let c̄ ∈ C/P and x̄ ∈ D/DP .
Then

β(c̄ · x̄) = β (φ(c̄)x̄) = β (φ(c̄))β(x̄),

with β (φ(c̄)) = c
1 +D′P . Thus

β (φ(c̄))β(x̄) = (
c

1
+ C ′P ) · β(x̄) = α(c+ P ) · β(x̄) = c̄ · β(x̄)

and so
β(c̄ · x̄) = c̄ · β(x̄),

as required. Since D′/D′P is a C/P -vector space of dimension n, so is D/DP . This finishes the
proof. 2

12.8 Norm and trace for ring extensions
We have studied traces and norms in field extensions. We now consider ring extensions. We
suppose that R ⊂ S are commutative rings. In addition we consider that S is a free R-module
whose rank n is finite. Let B = {x1, . . . , xn} be a basis of the R-module S and θ : S −→ S a
linear mapping. We have

θ(xj) =

n∑
i=1

aijxi,

with aij ∈ R. The matrix M(θ) = (aij) is called the matrix of θ with respect to the basis B. If
B′ = {x′1, . . . , x′n} is another basis of the R-module S, then

θ(x′j) =

n∑
i=1

a′ijx
′
i,

with a′ij ∈ R. We note the matrix with respect to this basis M ′(θ). We now look for the relation
between the matrices M(θ) and M ′(θ). If xj =

∑n
i=1 cijx

′
i, then

θ(xj) =

n∑
i=1

aijxi =

n∑
i=1

aij

(
n∑
k=1

ckix
′
k

)
=

n∑
k=1

(
n∑
i=1

ckiaij

)
x′k

and, on the other hand

θ(xj) =

n∑
i=1

cijθ(x
′
i) =

n∑
i=1

cij

(
n∑
k=1

a′kix
′
k

)
=

n∑
k=1

(
n∑
i=1

a′kicij

)
x′k.

Therefore, with C = (cij), we have

M ′(θ)C = CM(θ).

As C is the matrix of a change of basis, C ∈ Gln(R), hence we may write

M ′(θ) = CM(θ)C−1. (12.4)

Also, as
det(C) det(C−1) = det(In) = 1,
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det(C) is a unit in the ring R.

We now consider the special case where θ is defined by multiplication by a nonzero element
of S:

θ(z) = θx(z) = xz.

We define the trace, norm and characteristic polynomial of x as we did for field extensions,
namely

TS/R(x) = Tr(M(θx)) NS/R(x) = detM(θx)

and
char S/R(x) = det (XI −M(θx)) .

(The relation (12.4) ensures that the trace, norm and characteristic polynomial are unaffected
by the choice of basis.) In the same way as for field extensions, the trace is linear and the norm
multiplicative.

We now turn to rings of fractions. Let U be a multiplicative subset of R. As R ⊂ S, U is
also a multiplicative subset S. We set R′ = U−1R and S′ = U−1S. It is not difficult to see that
R′ ⊂ S′, so S′ is an R′-module. Let B = {x1, . . . , xn} be a basis of the R-module S. We claim
that B′ = {x1

1 , . . . ,
xn
1 } is a basis of the R′-module S′, hence S′ is a free R′-module of rank n.

First we show that B′ is a generating set of S′. Let a
u ∈ S

′. Then there exist r1, . . . , rn ∈ R such
that

a

u
=
r1x1 + · · ·+ rnxn

u
=
r1

u

x1

1
+ · · ·+ rn

u

xn
1
,

which implies that B′ is a generating set of S′. Now we show that the set B′ is independant. If
r1

u1

x1

1
+ · · ·+ rn

un

xn
1

= 0,

with ri
ui
∈ R′, then

r1u
′
1x1 + · · ·+ rnu

′
nxn = 0,

where u′i = u1···un
ui

. Hence

r1u
′
1 = · · · = rnu

′
n = 0 =⇒ r1 = · · · = rn = 0,

because u′i = 0, for all i. It follows that ri
ui

= 0, for all i and so B′ is an independant set. We
have shown that B′ is a basis of the R′-module S′.

Let γ be the canonical mapping from S into S′. If x ∈ S, then γ(x) ∈ S′ and we have linear
endomorphisms θx : S −→ S and θ′γ(x) : S′ −→ S′. If the matrix of θx in the basis B is (aij),
then the matrix of θ′γ(x) in the basis B′ is (γ(aij)).

TS′/R′(γ(x)) = γ(TS/R(x)) NS′/R′(γ(x)) = γ(NS/R(x))

and
char S′/R′(γ(x)) = γ∗(char S/R(x)),

where γ∗ is the mapping from R[X] into R′[X] which applies γ to each coefficient of a polynomial
in R[X]. Identifying S with its image under γ, we obtain

TS′/R′(x) = TS/R(x) NS′/R′(x) = NS/R(x)

and
char S′/R′(x) = char S/R(x).
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Chapter 13

Ramification theory

Let K and L be number fields, with K included in L, and R = OK and S = OL the associated
number rings. If I is an ideal in R, then we write SI for the ideal generated by I in S: SI is the
collection of expressions of the form

∑n
i=1 xiyi, with xi ∈ S and yi ∈ I. If I is a principal ideal

(a), then SI = Sa, i.e., the prime ideal generated by a in S. We will be particularly interested
in the case where I is a prime ideal and the relation of such an ideal with prime ideals in S.
For example, I = Z2 is a prime ideal in Z, but J = Z[

√
2]2 is not a prime ideal in Z[

√
2], since

(2 + 3
√

2)2 ∈ J , but 2 + 3
√

2 /∈ J . The way a prime ideal "lifted" to a larger ring is decomposed
is a central topic of algebraic number theory.

Remark The ideal SI is in fact the extension of the ideal I in S with respect to the injection
mapping of R into S.

13.1 First notions
Let P be a prime ideal in R; if Q is a prime ideal in S such that Q ⊃ SP , then we say that Q
lies over P , or P lies under Q.

Remark If K = Q, then R = Z and a prime ideal P 6= {0} is of the form (p) = Zp, where p is
a prime number, so SP = Sp.

Proposition 13.1 Let Q be a proper ideal of S and P a nonzero prime ideal of R. Then Q ⊃ SP
if and only if P = Q ∩R.

proof If Q ⊃ SP , then Q ⊃ P , because 1 ∈ S. This implies that Q ∩R ⊃ P ∩R = P . As P is
a maximal ideal, because P is prime and nonzero, and Q ∩R 6= R, we have Q ∩R = P .

On the other hand, if Q ∩R = P , then Q ⊃ P , which implies that Q = SQ ⊃ SP . 2

Proposition 13.2 If I is a proper ideal in R, then SI is a proper ideal in S.

proof If SI = S, then there exist n ∈ N∗, s1, . . . , sn ∈ S and x1, . . . , xn ∈ I such that

1 =

n∑
i=1

sixi.

Let S′ = R[s1, . . . , sn] be the subring of S generated by R and the elements s1, . . . , sn. The ring
S′ is a finitely generated R-module, since the si are algebraic integers. In addition, as 1 ∈ S′I,
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S′ ⊂ S′I. We now take a set of generators g1, . . . gn of the R-module S′. Because S′ ⊂ S′I, we
may write

gi =

ki∑
j=1

xijsij =

ki∑
j=1

xij

(
n∑
u=1

riju gu

)
=

n∑
u=1

 ki∑
j=1

xijr
ij
u

 gu,

where xij ∈ I, sij ∈ S′ and riju ∈ R. As
∑ki
j=1 xijr

ij
u ∈ I, we have

gi =

n∑
u=1

xugu,

with xu ∈ I. Hence there is a matrix A ∈Mn(I) such that

g = Ag,

where

g =

 g1

...
gn

 .

Therefore, (In − A)g = 0. Multiplying on the left by the adjoint matrix of In − A, we obtain
det(In − A)Ing = 0. Consequently det(In − A)s′ = 0, for any s′ ∈ S′, which implies that
det(In − A) = 0. If we develop the determinant, then we obtain an expression which is 1 plus
a sum of products of elements of I, i.e., of the form 1 + x, with x ∈ I. From this we have
1 = −x ∈ I, which contradicts the fact that I is a proper ideal of R. We have shown that SI is
properly contained in S. 2

Exercise 13.1 In the proof of the theorem we used the fact that the si are algebraic integers.
Why is this important?

Corollary 13.1 Let P be prime ideal in R. Then SP ∩R = P .

proof If P = {0}, then the result is clear, so let us suppose that this is not the case. As P is a
prime ideal of R, P is a proper ideal of R, therefore SP is a proper ideal of S. From Proposition
13.1, with Q = SP , we have SP ∩R = P . 2

Remarks

• a. Corollary 13.1 is in fact a particular case of Theorem 12.7.

• b. If K = Q and P = Zp, where p is prime number, then we obtain

OLp ∩ Z = Zp.

It is natural to ask whether there exists a prime ideal lying over a given prime ideal.

Theorem 13.1 Every nonzero prime ideal Q of S lies over a unique nonzero prime ideal P of
R.
Every prime ideal P of R lies under at least one prime ideal Q of S. If P 6= {0}, then there is a
finite number of prime ideals Q lying over P .
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proof Let Q be a nonzero prime ideal of S. Clearly P = Q ∩ R is a prime ideal of R. Since
Q 6= {0}, there is a nonzero integer x ∈ Q (Proposition 11.13). As x ∈ R, x ∈ Q∩R, so P 6= {0}.
If Q lies over the nonzero prime ideal P ′, then, from Proposition 13.1, P ′ = Q∩R, so Q lies over
a unique prime ideal.

Suppose now that P is a prime ideal of R. If P = {0}, then P lies under {0} ⊂ S. Now
let us suppose that P 6= {0}. We claim that a prime ideal Q of S contains SP if and only if Q
appears in the decomposition of SP into prime ideals: From Corollary 12.2, Q ⊃ SP if and only
if Q|SP ; as SP 6= {0} nor S, from Theorem 12.3, SP has a unique decomposition into nonzero
prime ideals, so Q divides SP if and only if Q is one of the prime ideals in the decomposition of
SP . It follows that P lies under a prime ideal of S, namely any prime ideal in the decomposition
of SP . These are the only ideals which can lie over P , so the number of prime ideals lying over
P is finite. 2

Exercise 13.2 Use Theorem 13.1 to find a proof that a prime ideal P in a number ring OK
contains exactly one prime number p. (This result has already been seen in Proposition 13.6.)

If P is a nonzero prime ideal of R, Q a nonzero prime ideal of S dividing SP and e the highest
power of Q in the decomposition of SP into prime ideals, then we call e the ramification index
of Q over P . We note the ramification index e(Q|P ). In the case where R = Z and P = Zp,
then we write e(Q|p).

Suppose again that P is a nonzero prime ideal of R and Q a nonzero prime ideal of S dividing
SP . As P and Q are maximal ideals, R/P and S/Q are fields, which, from Proposition 11.12,
are finite. The mapping

φ : R −→ S/Q, x 7−→ x+Q

is a well-defined ring homomorphism, with kernel Q ∩ R = P , so we may consider R/P as a
subfield of S/Q. We set f(Q|P ) = [S/Q : R/P ], which is called the inertial degree of Q over P .
In the case where R = Z and P = Zp we write f(Q|p).

We often say that the ramification index and the inertial degree are multiplicative due to the
properties given in the following proposition.

Proposition 13.3 Suppose that P , Q and U are nonzero prime ideals in the number rings
R ⊂ S ⊂ T such that U lies over Q and Q lies over P . Then U lies over P and

e(U |P ) = e(U |Q)e(Q|P ) and f(U |P ) = f(U |Q)f(Q|P ).

proof Q lies over P means that we have

SP = Qe(Q|P )Qe22 · · ·Qess ,

where ei = e(Qi|P ). Since TS = T and Tn = T , for all n ∈ N∗, when we multiply the previous
expression by T we obtain

TP = (TQ)e(Q|P )(TQ2)e2 · · · (TQs)es .

Now, U lies over Q, so we can write

TQ = Ue(U |Q)Ua22 · · ·U
at
t ,

where ai = e(Ui|Q). Hence,

TP = Ue(U |Q)e(Q|P )U
a2e(Q|P )
2 · · ·Uate(Q|P )

t (TQ2)e2 · · · (TQs)es .
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Moreover, U does not divide TQi, for i = 2, . . . , s. Indeed, if U |TQi, then U |TQ and U |TQi,
which implies that

U ⊃ T (Q+Qi) = Thcf(Q,Qi) = TS = T,

which is not possible. Therefore U lies over P and

e(U |P ) = e(U |Q)e(Q|P ).

We now consider the inertial degree. S/Q is a field extension of R/P and T/U is a field extension
of S/Q, so we have

f(U/P ) = [T/U : R/P ] = [T/U : S/Q][S/Q : R/P ] = f(U |Q)f(Q|P ),

as claimed. 2

13.2 Norm of an ideal
In this section we introduce the norm of an ideal in a number ring, which will play an important
role in the following. We have seen above that |OK/I| is finite when I is a nonzero ideal
(Proposition 11.12). We define the norm of I by

‖I‖ = |OK/I|.

The norm has an important multiplication property, namely, if I and J are nonzero ideals,
then

‖IJ‖ = ‖I‖‖J‖.

We will first prove this in the case where the ideals are coprime and then later in the general
case.

Proposition 13.4 If I and J are nonzero coprime ideals in a number ring OK , then

‖IJ‖ = ‖I‖‖J‖.

proof From the Chinese remainder theorem (Appendix F) we have

OK/(I ∩ J) = OK/I ×OK/J.

However, from Proposition 12.4, I ∩ J = IJ , hence the result. 2

We now generalize Proposition 13.4.

Theorem 13.2 If I and Q are nonzero ideals in a number ring OK , then

‖IQ‖ = ‖I‖‖Q‖.

proof From Theorem 12.5, there is an ideal J in OK , coprime with Q, such that IJ is principal.
Let IJ = (x). Then

(x) + IQ = I(J +Q) = I(OK) = I. (13.1)

We now define a mapping φ from OK into I/IQ by

φ(a) = ax+ IQ.
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The mapping φ is an OK-module homomorphism, which, from equation 13.1, is surjective. Also,

Kerφ = {a ∈ OK : ax ∈ IQ}.

We claim that Kerφ = Q. First,

ax ∈ IQ ⇐⇒ (a)(x) ⊂ IQ
⇐⇒ (a)IJ ⊂ IQ
⇐⇒ (a)J ⊂ Q,

thus, for all a ∈ Kerφ,

(a) = (a)OK = (a)(J +Q) = (a)J + (a)Q ⊂ Q+Q = Q.

This implies that Kerφ ⊂ Q. In addition, if a ∈ Q, then ax ∈ IQ, since x ∈ I, and so Q ⊂ Kerφ
and we have Kerφ = Q.

As φ is surjective, from the third isomorphism theorem for groups, we have

OK/Q ' I/IQ =⇒ ‖Q‖ = |I/IQ|

and
‖IQ‖ = |OK/IQ| = |OK/I||I/IQ| = ‖I‖‖Q‖.

This ends the proof. 2

If K is a number field, with [K : Q] = n and I a nonzero ideal in OK , then I is a free abelian
group of rank n (Corollary 11.5). From a basis of I we may obtain an expression for the norm
of I.

Theorem 13.3 If B = {b1, . . . , bn} is a basis of I, then

‖I‖ =

∣∣∣∣discK/Q(B)

disc(OK)

∣∣∣∣
1
2

.

proof From Theorem E.4, there exists a basis E = {e1, . . . , en} of OK and numbers d1, . . . , dn ∈
N∗ such that D = {d1e1, . . . , dnen} is a basis of I. We define a mapping φ of OK onto Zd1 ×
· · · × Zdn in the following way:

if x = x1e1 + · · ·+ xnen, then φ(x) = (x1 + d1Z, . . . , xn + dnZ).

The mapping φ is a ring homomorphism and Kerφ = I, hence

OK/I ' Zd1 × · · · × Zdn =⇒ |OK/I| = d1 · · · dn.

If we set C = diag (d1, . . . , dn), then C is the matrix transforming the basis E into the basis D
and

|OK/I| = detC.

If B = {b1, . . . , b1} is any basis of I, then the bi are linear combinations of the elements of
D with integer coefficients. The matrix M transforming the basis B into the basis D thus has
integer coefficients. This is also the case of the matrix N transforming the basis D into the
basis B. It follows that detM = ±1 (and also that detN = ±1). It follows that the matrix C ′
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expressing the basis B in terms of the elements of the basis E is such that detC ′ = ±detC and
so

|OK/I| = |detC ′| = d1 · · · dn.

However, from Proposition 10.6,

discK/Q(B) = |detC ′|2discK/Q(E) = ‖I‖2disc(OK),

from which we deduce

‖I‖ =

∣∣∣∣discK/Q(B)

disc(OK)

∣∣∣∣
1
2

.

This finishes the proof. 2

If an ideal I of OK is principal and I = (a), then we consider two norms, namely the norm
of the generator a and the norm of the ideal. In fact, we have

Theorem 13.4 If a ∈ OK \ {0}, then

|NK/Q(a)| = ‖(a)‖.

proof Let E = {e1, . . . , en} be a basis of OK . Then B = {ae1, . . . , aen} is a basis of (a). Now

discK/Q(B) =
(

det(σi(aej))
)2

=
(

det(σi(a)σi(ej))
)2

=
(
σ1(a) · · ·σn(a) det(σi(ej))

)2
= (σ1(a) · · ·σn(a))2(disc(OK)2.

By Theorem 13.3, we have

‖(a)‖ =

∣∣∣∣discK/Q(B)

disc(OK)

∣∣∣∣
1
2

= |σ1(a) · · ·σn(a)| = |NK/Q(a)|,

as required. 2

We will now investigate further the properties of the norm.

Proposition 13.5 Let K be a number field, OK its associated number ring and I a nonzero
ideal in OK .

• a. If ‖I‖ is prime, then I is a prime ideal.

• b. ‖I‖ ∈ I.

proof a. If I = P1 · · ·Ps, where the Pi are prime ideals, then

‖I‖ = ‖P1‖ · · · ‖Ps‖.

As ‖I‖ is prime, only one Pi, say P1, has a norm different from 1. This means that P2 = · · · =
Ps = OK and so I = P1.
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b. If A = {α1, . . . , α‖I‖} is a complete set of residues modulo I; we claim that the set
B = {1 + α1, . . . , 1 + α‖I‖} is also a complete set of residues modulo I. If x ∈ OK , then
x− 1 = αj + y, for some 1 ≤ j ≤ ‖I‖ and y ∈ I. From this we obtain x = αj + 1 + y, so the set
B̄ = {(1 + α1) + I, . . . , (1 + α‖I‖) + I} covers OK . In addition, if (1 + αi) − (1 + αj) ∈ I, then
αi − αj ∈ I, which is impossible if i 6= j. This proves the claim. Then

α1 + · · ·+ α‖I‖ = (1 + α1) + · · ·+ (1 + α‖I‖) (mod I),

which implies that ‖I‖1 ≡ 0 (mod I), and it follows that ‖I‖ ∈ I. 2

Before going further we introduce a preliminary result.

Lemma 13.1 A nonzero integer belongs to at most a finite number of ideals in OK .

proof Let a be a positive integer and suppose that I is an ideal containing a. We now let
B = {w1, . . . , wn} be an integral basis of OK . If α ∈ OK , then there exist c1, . . . , cn ∈ Z such
that

α = c1w1 + · · ·+ cnwn.

For each ci we may write ci = aqi + ri, where qi, ri ∈ Z and 0 ≤ ri < a. Then

α = (aq1 + r1)w1 + · · ·+ (aqn + rn)wn = a(q1w1 + · · ·+ qnwn) + (r1w1 + · · ·+ rnwn) = aγ + β.

Clearly γ ∈ OK and β ∈ B, where B is a finite subset of OK . The ideal I is finitely generated,
because OK is noetherian, so there exist α1, . . . , αs ∈ OK , such that

I = (α1, . . . , αs).

As a ∈ I, we may also write
I = (α1, . . . , αs, a)

and then
I = (aγ1 + β1, . . . , aγs + βs, a),

where γ1, . . . , γs ∈ OK and β1, . . . βs ∈ B. It is not difficult to derive the expression

I = (β1, . . . , βs, a).

As there is a finite number of ideals of this form, the result follows for the case a > 0.
If a < 0 and a belongs to an infinite number of ideals, then so does −a, which contradicts

what we have just proved. This finishes the proof. 2

We may now prove an interesting result concerning the number of ideals having a given norm.

Theorem 13.5 There is only a finite number of ideals in OK of a given norm.

proof Suppose that there is an infinite number of ideals having the same norm α. From Propo-
sition 13.5, α belongs to an infinite number of ideals, which contradicts Lemma 13.1. Therefore
there can be only a finite number of ideals with a given norm. 2

We now consider the special case where I is a prime ideal.

Proposition 13.6 If P is a nonzero prime ideal in OK , then P contains exactly one prime
number p and ‖P‖ = pm, for some natural number m ≤ n = [K : Q].
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proof If P is a prime ideal, then P is maximal and so OK/P is a finite field. It follows that
‖P‖ = pm, for some prime number p and positive integerm. The characteristic of the field OK/P
is p, which implies that the number p ∈ P and so the principal ideal (p) = OKp is contained in
P . If q 6= p and q ∈ P , then (q) = OKq is also contained in P . However, (p) + (q) = OK , so
OK ⊂ P , which is impossible; hence there is a unique prime number p in P .

As (p) is a subset of P , P divides (p), hence ‖P‖ divides ‖(p)‖. From Theorem 13.4, ‖(p)‖ =
NK/Q(p) = pn, therefore ‖P‖ = pm, with m ≤ n. 2

13.3 Principal theorem of ramification
Our goal in this section is to prove an important result connecting ramification indices and
inertial degrees. We will refer to this as the principal theorem of ramification. We begin with a
special case of this result and then generalize it.

Proposition 13.7 Let p be a prime number and L an extension of K = Q, with number field
S. If n = [L : Q] and

Sp = Q
e(Q1|p)
1 · · ·Qe(Qs|p)s

is the decomposition of Sp into nonzero prime ideals, then

n =

s∑
i=1

f(Qi|p)e(Qi|p).

proof To simplify the notation, let us write ei for e(Qi|p) and fi for f(Qi|p). From Theorem
13.2 we have

‖Sp‖ = ‖Q1‖e1 · · · ‖Qs‖es .

Also,
fi = [S/Qi : Z/pZ] =⇒ ‖Qi‖ = pfi ,

therefore
‖Sp‖ = pf1e1 · · · pf1e1 .

However, from Theorem 13.4 and Section 10.1

‖Sp‖ = |NL/Q(p)| = pn,

so we have

n =

s∑
i=1

f(Qi|p)e(Qi|p),

as announced. 2

We aim now to generalize this proposition to the case where K is not necessarily Q. We will
begin with a preliminary result.

Lemma 13.2 Let I, J be nonzero ideals in a Dedekind domain D, with J ⊂ I 6= D, and K the
field of fractions of D. Then there exists γ ∈ K such that γJ ⊂ D and γJ 6⊂ I.
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proof From Theorem 12.2 we know that there is a nonzero ideal C in D such that JC is
principal: JC = (a). Then JC 6⊂ aI, because

JC ⊂ aI =⇒ 1

a
JC ⊂ I =⇒ 1 ∈ I =⇒ I = D,

a contradiction. We now take b ∈ C such that bJ 6⊂ aI and set γ = b
a . Then

γJ =
b

a
J ⊂ 1

a
JC =

1

a
(a) = D.

If γJ ⊂ I, then bJ ⊂ aI, a contradiction, so γJ 6⊂ I. 2

We now establish another preliminary result. This is a little longer to prove.

Proposition 13.8 Let K ⊂ L be number fields, with corresponding number rings R ⊂ S, and I
a nonzero ideal in R. Then

‖SI‖ = ‖I‖n,

where n = [L : K].

proof It is sufficient to prove the result for a prime ideal: If this is the case and I = P1 · · ·Pr
is the decomposition of the ideal I into prime ideals, then

‖SI‖ = ‖P1 · · ·PrS‖
= ‖P1S · · ·PrS‖
= ‖P1S‖ · · · ‖PrS‖
= ‖P1‖n · · · ‖Pr‖n

= ‖P1 · · ·Pr‖n = ‖I‖n.

So let us now establish the result for a nonzero prime ideal P .
To begin with, we notice that S/SP is a vector space over the field R/P . (The scalar

multiplication is defined by
(x+ P )(y + PS) = xy + SP.

There is no difficulty in seeing that this scalar multiplication is well-defined.) We claim that the
dimension of the vector space we have defined is n. First we show that the dimension is at most
n. Let a1, . . . , an+1 ∈ S and consider the corresponding cosets of S/SP . The ai are linearly
dependant over K, because they are elements of L and n = [L : K]. As K is the field of fractions
of R, the ai are linearly dependant over R. Hence we have

β1a1 + · · ·+ βn+1an+1 = 0,

with βi ∈ R and at least one βi nonzero. We need to show that we can find β′1, . . . , β′n+1 ∈ R
such that

β′1a1 + · · ·+ β′n+1an+1 = 0,

and at least one β′i /∈ P . If one of the βi /∈ P , then we have nothing to do, so let us suppose that
all the βi belong to P . If J is the ideal generated by the βi, then J ⊂ P 6= R. Applying Lemma
13.2 we obtain an element γ ∈ K such that γJ ⊂ R and γJ 6⊂ P . If we replace βi by β′i = γβi,
then the set of β′i so obtained has the properties we were looking for. Thus we have shown that
S/SP is at most n-dimensional over R/P .
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Now we establish the equality. As P ∩ Z is a nonzero ideal of Z, there is a prime number
p ∈ Z such that P ∩ Z = Zp. We consider the prime ideals P1, . . . , Pr of R lying over Zp. From
Proposition 13.1 P is one of the ideals Pi. From what we have just seen S/SPi is a vector space
over R/Pi of dimension ni ≤ n. Also, from Proposition 13.7 we have

m =

r∑
i=1

f(Pi|p)e(Pi|p) =

r∑
i=1

fiei,

where m = [K : Q]. Then

Rp =

r∏
i=1

P eii =⇒ Sp = RSp =

(
r∏
i=1

P eii

)
S =

r∏
i=1

(PiS)ei ,

therefore

‖Sp‖ =

r∏
i=1

‖SPi‖ei =

r∏
i=1

‖Pi‖niei =

r∏
i=1

(pfi)niei .

(The second equality follows from the fact that S/SPi is a vector space over R/Pi of dimension
ni ≤ n.)

On the other hand, we have

‖Sp‖ = |NL/Q(p)| = pnm,

because
[L : Q] = [L : K][K : Q] = nm.

If there exists ni < n, then
r∑
i=1

finiei < n

(
r∑
i=1

fiei

)
= nm,

a contradiction. Hence ni = n, for all Pi, in particular, for P . We have shown that the dimension
of S/SP over R/P is n. If V is a vector space of dimension u over a finite field of s elements,
then V has su elements. As S/SP has ‖SP‖ elements and the dimension of S/SP over R/P is
n, S/SP has ‖P‖n elements, i.e., ‖SP‖ = ‖P‖n. This finishes the proof. 2

We now prove the main theorem of this section, which we refer to as the principal theorem
of ramification.

Theorem 13.6 Let K ⊂ L be number fields, with [L : K] = n, and R, S the corresponding
number rings. We suppose that Q1, . . . , Qs are the nonzero prime ideals in S lying over the
prime ideal P of R and we denote by e1, . . . , es and f1, . . . , fs the corresponding ramification
indices and inertial degrees. Then

s∑
i=1

eifi = n.

proof We have

SP =

s∏
i=1

Qeii =⇒ ‖SP‖ =

s∏
i=1

‖Qi‖ei =

s∏
i=1

‖P‖fiei .

Also,
‖SP‖ = ‖P‖n,
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therefore
s∑
i=1

eifi = n.

This ends the proof. 2

Example If L is a quadratique extension of Q, with number field S, and p is a prime number,
then there are three possible decompositions of pS into prime ideals:

Sp =


Q2, f(Q|p) = 1,

Q, f(Q|p) = 2,

Q1Q2, f(Q1|p) = f(Q2|p) = 1.

13.4 Normal extensions
Let us now suppose that K and L are number fields, with L a normal extension of K. As
char Q = 0, L is separable over Q. Using Proposition 3.5 we obtain that L is separable over
K. Hence L is a Galois extension of K. As usual we set R = OK and S = OL. If x ∈ S, then
there exists a monic polynomial f ∈ Z[X] such that f(x) = 0. However, Z ⊂ R ⊂ K, so the
coefficients of f are fixed by any automorphism σ ∈ Gal(L/K), which implies that σ(x) is an
algebraic number. Thus σ(x) ∈ OL = S and so σ(S) ⊂ S. In the same way, σ−1(S) ⊂ S, which
implies that S ⊂ σ(S), hence σ(S) = S.

We now consider ideals in S. Let Q be an ideal in S. If x, y ∈ Q, a ∈ S and σ ∈ Gal(L/K),
then

σ(x)− σ(y) = σ(x− y) ∈ σ(Q)

and
aσ(x) = σ(a′)σ(x) = σ(a′x) ∈ σ(Q),

where a′ = σ−1(a) ∈ S. Therefore σ(Q) is an ideal of S.
Suppose now that Q is a prime ideal in S. If x, y ∈ S and xy ∈ σ(Q), then

σ−1(xy) ∈ Q =⇒ σ−1(x)σ−1(y) ∈ Q
=⇒ σ−1(x) ∈ Q or σ−1(y) ∈ Q
=⇒ x ∈ σ(Q) or y ∈ σ(Q).

As σ(Q) 6= S, σ(Q) is a prime ideal.
If Q is a prime ideal in S lying over the prime ideal P in R, then

Q ⊃ SP =⇒ σ(Q) ⊃ σ(SP ) = σ(S)σ(P ) = Sσ(P ).

Since P ⊂ R ⊂ K, σ(P ) = P , so σ(Q) lies over P . Thus we obtain an action φ of the group
Gal(L/K) on the set Q of nonzero prime ideals Q lying over the prime ideal P :

φ : Gal(L/K)×Q : (σ,Q) 7−→ σ(Q).

In fact, due to the normality of the extension L/K, this action is transitive:

Theorem 13.7 If Q and Q′ are nonzero prime ideals in S lying over the prime ideal P in R,
then there exists σ ∈ Gal(L/K) such that σ(Q) = Q′.
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proof If this is not the case, then σ(Q) 6= Q′, for all σ ∈ G = Gal(L/K). Let us suppose
that σ1(Q), . . . , σs(Q) are the distinct images of Q under G = Gal(L/K). (We may assume that
σ1 = idL, so Q = σ1(Q).) The prime ideals Q′, σ1(Q), . . . , σs(Q) are coprime in pairs. By the
Chinese remainder theorem (Theorem F.1), there is a solution a ∈ S of the system of congruences

x ≡ 0 (mod Q′)
x ≡ 1 (mod σ1(Q))

...
...

...
x ≡ 1 (mod σs(Q)).

Let us now consider NL/K(a). Corollary 10.3 ensures that

NL/K(a) =
∏
σ∈G

σ−1(a).

Since idL ∈ G and σ−1(a) ∈ S, we have

NL/K(a) ∈ K ∩Q′ = Q′ ∩R.

As Q′ lies over P , NL/K(a) ∈ P .
On the other hand, σ−1(a) /∈ Q, for every σ ∈ G. Given that Q is a prime ideal, NL/K(a) /∈ Q,

which is a contradiction, because P ⊂ SP ⊂ Q 2

Corollary 13.2 Let K and L be number fields with corresponding number rings R and S. If L
is a normal extension of K, P a nonzero prime ideal in R and Q, Q′ nonzero prime ideals in S
lying over P , then

e(Q|P ) = e(Q′|P ) and f(Q|P ) = f(Q′|P ).

proof We may write
SP = Qe1Q′e2Qe33 · · ·Qess ,

where e1 = e(Q|P ), e2 = e(Q′|P ), Q3, . . . , Qs are the other prime ideals lying over P and
ei = e(Qi|p), for i = 3, . . . , s. There exists σ ∈ Gal(L/K) such that σ(Q) = Q′. We have

SP = σ(PS) = σ(Q)e1σ(Q′)e2σ(Q3)e3 · · ·σ(Qs)
es = Q′e1σ(Q′)e2σ(Q3)e3 · · ·σ(Qs)

es .

However, we also have
SP = Qe1Q′e2Qe33 · · ·Qes

As Q is the only prime ideal whose image under σ is Q′ and the decomposition of SP into prime
ideals is unique, we must have

Q′e2 = Q′e1 =⇒ e2 = e1.

Now we show that f(Q|P ) = f(Q′|P ). There exists σ ∈ Gal(L/K) such that σ(Q) = Q′. The
mapping σ restricted to S is a ring automorphism. We set φ = π ◦σ|S , where π is the projection
of S onto S/Q′. Then

Kerφ = {x ∈ S : σ(x) ∈ Q′} = Q.

Hence
S/Q ' S/Q′.

and
[S/Q′ : R/P ] = [S/Q′ : S/Q][S/Q : R/P ] = [S/Q : R/P ],
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i.e.,
f(Q′|P ) = f(Q|P ),

as announced. 2

Remark From Corollary 13.2 , if L is a normal extension of K and P is a nonzero prime ideal
in R, then

SP = (Q1 . . . Qs)
e,

where e is the common ramification index of the prime ideals in S lying over P .

Example The cyclotomic field Q(µn) is a normal extension of Q, because Q(µn) is the splitting
field of the minimal polynomial m(µn,Q). If p is a prime number and Q1, . . . , Qs are the prime
ideals in S = OQ(µn) which lie over p, then Sp = (Q1, · · ·Qs)e, where e is the common ramifica-
tion index of the ideals Qi.

13.5 Ramified prime ideals
Let R ⊂ S be number rings, with respective number fields K and L. We say that a prime ideal
P in R is ramified in S, if e(Q|P ) > 1 for some prime ideal Q in S lying over P . This amounts
to saying that SP is not squarefree. If p is a prime number, then we say that p is ramified in
S, if e(Q|p) > 1, for some prime ideal Q lying over (p). A prime ideal (resp. prime number) is
unramified in S, if it is not ramified in S. It may occur that e(Q|P ) = n (resp. e(Q|p) = n),
where [L : K] = n; in this case we say that P (resp. p) is totally ramified in S.

We recall that all integral bases of a number ring R have the same discriminant, which we
note disc(R). We have seen that disc(R) ∈ Z. The discriminant of a number ring R helps us to
determine whether a prime number p is ramified in R.

Theorem 13.8 Let L be an extension of Q of degree n. If S = OL and p ∈ Z a prime ramified
in S, then p|disc(S).

proof Let Q be a prime ideal in S lying over p such that e(Q|p) > 1. Then

Sp = QI,

where I is an ideal of S divisible by all prime ideals lying over p. We note σ1, . . . , σn the
Q-monomorphisms of L into an algebraic closure C of Q. (We may take the set of algebraic
numbers A(C/Q) for C.) From Section 5.1 we know that there is a finite extension N of L which
is normal over Q. Now, using Theorem 3.2, we extend each σi to a monomorphism σ̄i from N
into C. As N is a normal extension of Q, from Proposition 5.2 we have σ̄i(N) = N and so σ̄i is
an automorphism of N .

Let α1, . . . , αn be an integral basis of S and take α ∈ I \ Sp; α belongs to every prime ideal
of S lying over p. We may write

α = m1α1 + · · ·+mnαn,

with mi ∈ Z. If p|mi, for all i, then α ∈ pS, a contradiction, so there exists an mi such that
p 6 |mi. Without loss of generality, let us suppose that i = 1; then p 6 |m1. We set

d = disc(S) = discL/Q(α1, . . . , αn).
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Then, using Exercise 10.2 we see that

discL/Q(α, α2, . . . , αn) = m2
1d.

As p 6 |m1, to show that p|d it is sufficient to prove that p|disc(α, α2, . . . , αn). This we will now
do.

As α belongs to every prime ideal in S lying over p, α must lie in every prime ideal in T = ON
lying over p: If Q̃ is such a prime ideal, then Q̃ ⊃ Tp and so p ∈ Q̃; if we set Q = Q̃∩S, then Q is a
prime ideal in S lying over p, so α ∈ Q ⊂ Q̃. We now fix a prime ideal Q̃ in T lying over p; we claim
σ̄(α) ∈ Q̃ for every Q-automorphism σ̄ of N . We notice first that σ̄−1(Q̃) is a prime ideal in T
lying over p, hence α ∈ σ̄−1(Q̃). It follows that σ̄i(α) ∈ Q̃, for i = 1, . . . , n. Since C is an algebraic
closure of L, from the definition of the discriminant we see that discL/Q(α, α2, . . . , αn) ∈ Q̃.
However, the discriminant is an integer, so discL/Q(α, α2, . . . , αn) ∈ Q̃ ∩ Z = Zp. Therefore
p|discL/Q(α, α2, . . . , αn). 2

Exercise 13.3 Consider the quadratic number field K = Q(
√
d), where d is squarefree. Show

that if an odd prime number p is ramified in the number ring OK , then p divides d.

Corollary 13.3 Only finitely many primes in Z are ramified in a given number ring S.

proof The discriminant of S has only a finite number of prime divisors. 2

We may extend this result.

Corollary 13.4 Let R and S be number rings, with R ⊂ S. Then only a finite number of prime
ideals in R are ramified in S.

proof Let P be a prime ideal in R which is ramified in S. Then there exists a prime ideal Q in
S which lies over P and is such that e(Q|P ) > 1. However, the prime ideal P lies over a unique
prime number p ∈ Z (Theorem 13.1). From Proposition 13.3, we have

e(Q|p) = e(Q|P )e(P |p) > 1.

Corollary 13.3 states that there is only a finite number of such primes p. Now, each such prime
lies under a finite number of prime ideals in R (Theorem 13.1) and the result follows. 2

13.6 Decomposition and inertia groups
Let K and L be number fields, with L normal over K. As L is a Galois extension of K, we
have n = [L : K] = |Gal(L/K)|. Let R and S be the number rings of K and L respectively, i.e.,
R = OK and S = OL, and P a prime ideal in R. All the prime ideals Q lying over P have the
same ramification index e and inertia degree f . If there are r such prime ideals, then n = ref .
For each prime ideal Q lying over P we define two subgroups of G = Gal(L/K):

• the decomposition group
D = D(Q|P ) = {σ ∈ G : σ(Q) = Q}

• the inertia group
E = E(Q|P ) = {σ ∈ G : σ(α) ≡ α(mod Q), ∀α ∈ S}
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It is clear that D and E are subgroups of G. Also, E is a subgroup of D: for all σ ∈ E, we have

σ(α) ≡ α(mod Q), ∀α ∈ S =⇒ σ(α) ≡ α(mod Q), ∀α ∈ Q =⇒ σ(Q) ⊂ Q.

As E is a subgroup of G, σ−1 ∈ E, so we also have

σ−1(Q) ⊂ Q =⇒ Q ⊂ σ(Q).

Therefore
σ(Q) = Q.

The members σ of D induce elements σ̄ of the Galois group Ḡ = Gal(S/Q
/
R/P ) in a natural

way. If we restrict σ ∈ G to S, then we obtain an automorphism σ|S of S. We now set φ = π◦σ|S ,
where π is the projection of S onto S/Q. As

Kerφ = {α ∈ S : σ(α) ∈ Q} = Q,

the mapping
σ̄ : S/Q −→ S/Q,α+Q 7−→ σ(α) +Q

is an automorphism. In addition, σ̄ fixes R/P , so σ̄ ∈ Ḡ = Gal(S/Q,R/P ).

It is not difficult to see that the mapping

ψ : D −→ Ḡ, σ 7−→ σ̄

is a group homomorphism, whose kernel is E. It follows that E is a normal subgroup of D
and D/E is isomorphic to a subgroup of Ḡ. However, from Proposition 13.10 proved below,
[LE : LD] = f = [S/Q,R/P ] and [S/Q,R/P ] = |Ḡ|, because S/Q is a Galois extension of R/P ,
being a finite extension of a finite field, hence [LE : LD] = |Ḡ|. In addition, [LE : LD] = |D/E|,
so |D/E| = |Ḡ| and it follows that the groups D/E and Ḡ are isomorphic. From Theorem 7.9
the group Ḡ is cyclic (and generated by the Frobenius automorphism Fr : x̄ 7−→ x̄q, where
q = |R/P |), which implies that D/E is also cyclic.

Exercise 13.4 If P ⊂ R is a prime ideal, then there is a finite number of ideals Q1, . . . , Qr ⊂ S
lying over P . Corresponding to each Qi is a decomposition group Di and an inertia group Ei.
Show that the decomposition (resp. inertia) groups are conjugate in the Galois group Gal(L/K),
if L is a normal extension of K. Deduce that, if the Galois group is abelian, then there is only
one decomposition (resp. inertia) group.

We now consider the fixed fields LD and LE , called respectively the decomposition field and
inertia field. We have the relations

K ⊂ LD ⊂ LE ⊂ L

and
R = OK ⊂ SD ⊂ SE ⊂ S,

where SD = OLD and SE = OLE . We also introduce two other prime ideals, namely QD and
QE , where QD (resp. QE) is the unique prime ideal in SD (resp. SE) lying under Q. Then

P ⊂ QD ⊂ QE ⊂ Q.

We aim now to consider the relation between the fields K, L, LD and LE , in particular, to
determine [LD : K], [LE : LD] and [L : LD].
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Proposition 13.9 We have
[LD : K] = r.

proof We define a mapping φ from the set of left cosets of D into the set of prime ideals over
P in S by

φ(σD) = σ(Q).

We have
σ(Q) = τ(Q)⇐⇒ τ−1σ(Q) = Q⇐⇒ τ−1σ ∈ D ⇐⇒ σD = τD,

therefore φ is well-defined and injective. From Theorem 13.7 φ is also surjective, so φ is a bi-
jection. There are r prime ideals lying over P , so [G : D] = r. However, from Theorem 6.6
[LD : K] = [G : D], hence [LD : K] = r. 2

Using the multiplicativity of the degree, we obtain

Corollary 13.5 The degree
[L : LD] = ef.

Our next task is to show that [LE : LD] = f . To do so we need some preliminary results.

Lemma 13.3 We have
f(Q|QE) = 1.

proof Since S/Q is a Galois extension of the finite field SE/QE , it is sufficient to prove that the
Galois group Ḡ = Gal(S/Q

/
SE/QE) is reduced to the identity. We take θ ∈ S/Q and consider

the polynomial
f(X) = (−θ +X)m ∈ S/Q [X],

where m = |E|. We claim that the coefficients of f belong to the subring of S/Q

S1 = {a+Q : a ∈ SE}.

To see this, first we notice that there exists α ∈ S such that θ = α+Q. We set

g(X) =
∏
σ∈E

(−σ(α) +X) ∈ L[X].

In fact, g ∈ SE [X]: The coefficients of g are fixed by any element σ ∈ E, so they belong to LE ;
in addition, as α ∈ S, σ(α) ∈ S, for all σ ∈ E, hence the coefficients of g belong to S; it follows
that the coefficients of g belong to LE ∩S = SE . If we now consider the coefficients of g modulo
Q, then we obtain a polynomial ḡ with coefficients in S1. However, this polynomial is precisely
f , hence the coefficients of f belong to S1, as claimed.

Now we consider the ring homomorphism

ψ : SE −→ S1, x 7−→ x+Q.

The kernel of this mapping is SE ∩Q = QE , hence SE/QE ' SE/Q. Therefore we may consider
that the coeffiients of f belong to SE/Q. If σ ∈ Ḡ, then σ fixes the coefficients of f , so σ(θ) is
a root of f . As f has the unique root θ, we must have σ(θ) = θ. We have shown that the only
element in Ḡ is the identity, as required. 2

The prime ideal Q lies over QD. This is the unique prime ideal in S with this property:
Theorem 6.7 ensures that L is a finite Galois extension of LD. If Q′ lies over QD, then there
exists σ ∈ Gal(L/LD), such that σ(Q) ⊂ Q′ (Theorem 13.7). However, Theorem 6.7 also ensures
that Gal(L/LD) = D, so Q = σ(Q) ⊂ Q′, which implies that Q = Q′. We will use this
observation to obtain our second preliminary result.
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Lemma 13.4 We have
e(QD|P ) = f(QD|P ) = 1.

proof First we notice that

ef = [L : LD] = e(Q|QD)f(Q|QD),

because Q is the unique ideal in S lying over QD. Also,

e = e(Q|P ) = e(Q|QD)e(QD|P ) =⇒ e(Q|QD) ≤ e.

In the same way,
f(Q|QD) ≤ f.

Hence
e(Q|QD) = e and f(Q|QD) = f

and it follows that
e(QD|P ) = f(QD|P ) = 1,

as claimed. 2

The third preliminary result is the following:

Corollary 13.6 For QE and QD we have

f(QE |QD) = f.

proof Using the multiplicativity of the inertial degree, we obtain

f(Q|P ) = f(Q|QE)f(QE |QD)f(QD|P ) =⇒ f = 1f(QE |QD)1 = f(QE |QD).

The result now follows from Lemma 13.3 and Lemma 13.4. 2

Now we are in a position to consider [LE : LD]

Proposition 13.10 We have
[LE : LD] = f.

proof As QE lies over QD, from Theorem 13.6 we have

[LE : LD] ≥ e(QE |QD)f(QE |QD).

and then, using Corollary 13.6, we obtain

[LE : LD] ≥ f.

We have seen that L is a Galois extension of LD, with D = Gal(L/LD), and that E is a normal
subgroup of D, with D/E embedded in Ḡ = Gal(S/Q,R/P ). Then Theorem 6.4 ensures that
E = Gal(L/LE); in addition, from Theorem 6.6 we obtain that LE is a Galois extension of LD
and D/E is isomorphic to Gal(LE/LD). From this we deduce

[LE : LD] = |Gal(LE/LD)| = |D/E| ≤ |Ḡ|.

Moreover, |Ḡ| = f , because S/Q is a finite extension of the finite field R/P and thus a Galois
extension. This finishes the proof. 2

We can now easily obtain [L : LE ]. In fact,
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Proposition 13.11
[L : LE ] = e.

proof We have
ef = [L : LD] = [L : LE ][LE : LD] = [L : LE ]f

and the result follows. 2

13.7 Optimal properties of LD and LE

Let K and L be number fields with L normal over K. The prime ideal Q lies over QD. This is
the unique such prime ideal in S with this property: If Q′ is such a prime ideal, then there exists
σ ∈ Gal(LD) such that σ(Q) = Q′. However, we have seen that Gal(L/LD) = D, so Q′ = Q.
This suggests the following question: If K ′ is a field intermediate between K and L, is there a
prime ideal Q′ ⊂ R′ = OK′ such that Q is the unique prime ideal of S lying over Q′? We claim
that any such field must contain LD, or, in other words, LD is the smallest intermediate field
with this property.

Theorem 13.9 Let L be a normal extension of K. If K ′ is a field intermediate between K and
L and there is a prime ideal Q′ ⊂ R′ such that Q is the unique prime ideal of S lying over Q′,
then LD ⊂ K ′.

proof If K ′ is an intermediate field between K and L, then there is a subgroup H of Gal(L/K)
such that K ′ = LH . Suppose that Q is the unique prime ideal lying over Q′. Every element
σ ∈ H sends Q to a prime ideal lying over Q′. As there is only one such prime ideal, H ⊂ D,
which implies that LD ⊂ LH = K ′. 2

We are going to consider another property of LD, but, before doing so, we must do some
preliminary work. We suppose that K ′ is an intermediate field between K and L. From Propo-
sition 5.3, L is a normal (hence Galois) extension of K ′. We now set R′ = OK′ and Q′ = Q∩R′.
Then Q′ is the unique prime ideal in R′ lying under Q. Also, Q′ lies over P . We aim to replace
K by K ′. We set

D′ = D(Q|Q′) and E′ = E(Q|Q′).

There is a subgroup H of the Galois group Gal(L/K) such that K ′ = LH . We have

D′ = {σ ∈ Gal(L/LH) : σ(Q) = Q} = {σ ∈ H : σ(Q) = Q} = D ∩H

and

E′ = {σ ∈ Gal(L/LH) : σ(α) = α(mod Q), ∀α ∈ S}
= {σ ∈ H : σ(α) = α(mod Q), ∀α ∈ S}
= E ∩H.

Now, from Theorem 6.9, LD
′

= LDK ′ and LE
′

= LEK ′.

We now consider the property of LD referred to above. We restate Lemma 13.4 as a propo-
sition:

Proposition 13.12
e(QD|P ) = f(QD|P ) = 1.
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This proposition suggests the following question: If K ′ is a field intermediate between K and
L and there is a prime ideal Q′ ⊂ R′ = OK′ such that

e(Q′|P ) = f(Q′|P ) = 1,

what can we say about the relation between K ′ and LD? We claim that LD must contain such
a field, or, in other words, LD is the largest intermediate field with this property.

Theorem 13.10 Let K and L be number fields with L normal over K. If K ′ is a field in-
termediate between K and L such that the prime ideal Q′ in R′ = OK′ lying under Q has the
property

e(Q′|P ) = f(Q′|P ) = 1,

then K ′ ⊂ LD.

proof Since Q lies over Q′ and Q′ over P , we notice that

e = e(Q|Q′)e(Q′|P ) = e(Q|Q′) and f = f(Q|Q′)f(Q′|P ) = f(Q|Q′).

Therefore, since L is a normal extension of K ′ (Proposition 5.3), from Corollary 13.5,

[L : LD
′
] = e(Q|Q′)f(Q|Q′) = ef = [L : LD].

However, LD ⊂ LD
′
, which implies that LD = LD

′
= LDK ′ and so K ′ ⊂ LD. This ends the

proof. 2

We now turn to a property of LE .

Proposition 13.13 We have
e(QE |P ) = 1.

proof We notice that

e(Q|P ) = e(QE |QD)e(QD|P ) = e(QE |QD),

from Proposition 13.12. It remains to show that e(QE |QD) = 1. This can be derived from
Corollary 13.6 and Proposition 13.10. We have

f = [LE : LD] = e(QE |QD)f(QE |QD) = e(QE |QD)f

hence e(QE |QD) = 1. 2

This property suggests the following question: If K ′ is a field intermediate between K and L
and there a prime ideal Q′ ⊂ R′ = OK′ such that

e(Q′|P ) = 1,

what can we say about the relation between K ′ and LE? We have seen that K ′ ⊂ LD. We claim
that LE must contain any intermediate field containing K ′, or, in other words, LE is the largest
intermediate field with this property.

Theorem 13.11 Let K and L be number fields with L normal over K. If K ′ is a field interme-
diate between K and L and the prime ideal Q′ of R′ = OK′ lying under Q is such that

e(Q′|P ) = 1,

then K ′ ⊂ LE.
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proof We will use a procedure analogous to that used in the proof of Theorem 13.10. As in the
proof of this theorem, we obtain e(P ′|P ) = 1 and e = e(Q|Q′), where P ′ = Q ∩ R′. However,
since L is a normal extension of K ′ (Proposition 5.3), using Proposition 13.11 we obtain

[L : LE
′
] = e(Q|Q′) = e = [L : LE ].

Because LE ⊂ LE
′
, we have the equality LE = LE

′
= LEK ′, thus K ′ ⊂ LE . This ends the

proof. 2

Remark It is interesting to compare Theorems 13.10 and 13.11. In the first case we obtain
K ′ ⊂ LD, which is stronger than K ′ ⊂ LE , the result obtained in the second case, because
LD ⊂ LE .

Non-ramification and complete splitting in composita

Let K, L be number fields, with L an extension (not necessarily normal) of K, and R and S
the corresponding number rings. If P is a nonzero prime ideal in R, then we say that P splits
completely in S, if PS can be written as a product of n = [K : L] distinct prime ideals in S.
From Theorem 13.6 we have

n∑
i=1

eifi = n =⇒ ei = fi = 1.

Clearly, if ei = fi = 1, for all i, then P splits completely in S.
We can compare this notion with that of non-ramification. If the ideal P splits completely

in S, then P is unramified in S. However, the converse is false: We may have

SP = Q1 · · ·Qs,

with s < n and certain fi > 1. Non-ramification is thus weaker than complete splitting. In the
following, if F and G are number fields, with F ⊂ G, and Q is an ideal in OG, then we will write
QF for Q ∩ OF , the unique prime ideal of OF lying under Q. If Q is a prime ideal, then so is
QF . (It should be noticed that QD = QLD and QE = QLE .)

Theorem 13.12 Let K, L and M be number fields, with L and M extensions of K, and P a
nonzero prime ideal in OK which is unramified (resp. splits completely) in OL and OM . Then
P is unramified (resp. splits completely) in OLM .

proof We first consider the non-ramification. Suppose that P is a nonzero prime ideal which
is unramified in OL and OM and Q′ a prime ideal in OLM lying over P . We must show that
e(Q′|P ) = 1. As LM is a finite extension of K, there exists a finite normal extension N of K
containing LM (see Section 5.1). Let Q be a prime ideal in ON lying over Q′. Proposition 13.3
ensures that Q also lies over P . We note E the inertia group E(Q|P ), i.e.,

E(Q|P ) = {σ ∈ Gal(N/K) : σ(α) ≡ α(mod Q), ∀α ∈ ON}.

As QL ∩ OK = P and QM ∩ OK = P , QL and QM lie over P . Given that QL and PL are
unramified over P , we have

e(QL|P ) = e(QM |P ) = 1.

From Theorem 13.11 NE contains both L and M and hence LM . As Q is a prime ideal, so is
QNE . Then, using Proposition 13.14, we have

1 = e(QNE |P ) = e(QNE |QLM )e(QLM |P ).
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This implies that e(QLM |P ) = 1, i.e., e(Q′|P ) = 1.
We now consider the complete splitting. As we have seen, the nonzero prime ideal P in OK

splits completely in OLM if and only if , for every prime ideal Q′ in OLM lying over P , we have
e(Q′|P ) = f(Q′|P ) = 1. As above we take a prime ideal Q′ in OLM , let N be a finite normal
extension of K containing LM and Q be a prime ideal in N lying over Q′. Once again, Q also
lies over P . We note D the decomposition group D(Q|P ), i.e.,

D(Q|P ) = {σ ∈ Gal(N/K) : σ(Q) = Q}.

We define QL and QM as above and so QL and QM lie over P . As P splits completely in OL
and OM , we have

e(QL|P ) = f(QL|P ) = 1 and e(QM |P ) = f(QM |P ) = 1.

From Theorem 13.10, ND contains both L and M , hence LM . Then, by Proposition 13.12

1 = e(QND |P ) = e(QND |QLM )e(QLM |P ) and 1 = f(QND |P ) = f(QND |QLM )f(QLM |P ),

and so
e(QLM |P ) = f(QLM |P ) = 1, i.e., e(Q′|P ) = f(Q′|P ) = 1.

This finishes the proof. 2

Exercise 13.5 In the preceeding proof, we take the normal closure N of K over LM . What is
the reason for doing so?

Corollary 13.7 Let K and L be number fields, with K ⊂ L, and P a nonzero prime ideal in
OK . If P is unramified or splits completely in OL, then the same is true in a normal closure N
of L over K.

proof Let P be a nonzero prime ideal in OK . We first suppose that P is unramified in OL.
We must show that, if Q is a nonzero prime ideal in ON lying over P , then e(Q|P ) = 1. If
σ ∈ Gal(N/K), then we have

OLP = Q′1 · · ·Q′s =⇒ Pσ(OL) = σ(Q′1) · · ·σ(Q′s),

which means that P is unramified in Oσ(L). However, from Theorem 6.12, we know that

N =
∏

σ∈Gal(N/K)

σ(L).

Applying Theorem 13.12 successively we obtain that P is unramified in ON .
We use an analogous argument to show that, if P splits completely in L, then P splits com-

pletely in ON . 2

A criterion for complete splitting

We begin with a preliminary result.

Proposition 13.14 Let K, L be number fields, with L a normal extension of K. We suppose
that P is a prime ideal in OK and Q a prime ideal in OL lying over P . In addition, we assume
that the decomposition group D = D(Q|P ) is normal in G = Gal(L/K). If r is the number of
distinct prime ideals in the splitting of P in OL, then P splits into r prime ideals in OLD .
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proof Since D is normal in G, the corresponding field LD is a normal extension of K. From
Lemma 13.4 we have

e(QD|P ) = f(QD|P ) = 1.

Thus, using Corollary 13.2, for every prime ideal P̄ in OLD lying over P

e(P̄ |P ) = f(P̄ |P ) = 1.

If r̄ is the number of distinct prime ideals P̄i in the splitting of P in OLD , then

r̄∑
i=1

e(P̄i|P )f(P̄i|P ) = [LD : K],

i.e., r̄ = [LD : K]. However, from Proposition 13.9 we know that [LD : K] = r, so r̄ = r as
claimed. 2

Theorem 13.13 Let Q be any ideal in OL lying over the prime ideal P of OK . Let us assume
the conditions of Proposition 13.14 and let K ′ be an intermediate field between K and L. Then
P splits completely in OK′ if and only if K ′ ⊂ LD(Q|P ).

proof If P splits completely in OK′ , then

e(Q′|P ) = f(Q′|P ) = 1, (13.2)

where Q′ is the unique ideal of OK′ lying under Q. (Q′ lies over P and the relation (13.2) follows
directly from the definition of complete splitting.) By Theorem 13.10 we have K ′ ⊂ LD.

Now suppose that K ′ ⊂ LD(Q|P ). As in the proof of Proposition 13.14, Lemma 13.4 and
Corollary 13.2 ensure that P splits completely in OLD′ . If P

′ is a prime ideal in OK′ lying over
P , then P ′ lies under some prime ideal P̄ in OLD lying over P . We have

e(P̄ |P ) = f(P̄ |P ) = 1 =⇒ e(P ′|P ) = f(P ′|P ) = 1,

Hence P splits completely in OK′ . 2

13.8 Existence of ramified prime numbers
In this section our goal is to establish a necessary and sufficient condition for the existence of
a ramified prime number in a given number ring. We have already seen that, if p is a prime
number which is ramified in a number ring R = OK , then p divides disc(R) (Theorem 13.8). We
aim to show that this condition is also sufficient.

Theorem 13.14 Let K be a number field and R = OK . Then the prime number p is ramified
in R if and only if p divides the discriminant of R.

proof We have already shown that if p is ramified in R, then p|disc(R), so we only need to prove
the converse. Let us suppose that p|disc(R). We fix an integral basis α1, . . . , αn of R. Then,
from Proposition 10.7,

disc(R) = |TK/Q(αiαj)|,

where |TK/Q(αiαj)| is the determinant of the matrix T =
(
TK/Q(αiαj)

)
. From the definition of

the trace in Section 10.1 the elements TK/Q(αiαj) ∈ Q. However, αiαj ∈ OK , so TK/Q(αiαj) ∈ Z
(Exercise 11.1). Working modulo p, i.e., considering these elements lying in Fp and, knowing
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that disc(R) = 0 in Fp, we see that the rows of the matrix T are linearly dependant, i.e., there
exist m1, . . . ,mn ∈ Fp, not all 0, such that

m1

(
TK/Q(α1α1) . . . TK/Q(α1αn)

)
+ · · ·+mn

(
TK/Q(αnα1) . . . TK/Q(αnαn)

)
= (0, . . . , 0).

We may express this by saying that there exist integers m1, . . . ,mn, not all divisible by p, such
that

n∑
i=1

TK/Q(αiαj)mi

is divisible by p, for j = 1, . . . , n. If we set α =
∑n
i=1miαi, then

p|TK/Q(ααj),

for j = 1, . . . , n, and it follows that p|TK/Q(αβ), for any β ∈ R, i.e., TK/Q(Rα) ⊂ Zp. Moreover,
α ∈ R\pR, since the integers m1, . . . ,mn are not all divisible by p and (α1, . . . , αn) is an integral
basis of R.

Let Q1, . . . , Qs be the prime ideals in R involved in the decomposition of the ideal Rp.
Propositions 12.2 and 12.3 ensure that ∩si=1Qi = Q1 · · ·Qs. If p is unramified in R, then Rp =
Q1 · · ·Qs; thus, as α /∈ Rp, there exists Qi such that α /∈ Qi.

We now consider a normal closure N of K over Q. From Corollary 13.7, p is unramified in
ON = S. Let Q′ be a nonzero prime ideal in S lying over Qi. If α ∈ Q′, then α ∈ Q′ ∩R = Qi,
a contradiction, thus α /∈ Q′. We claim that TN/Q(Sα) ⊂ Zp. To see this, we apply Corollary
10.3:

TN/Q(Sα) = TK/Q ◦ TN/K(Sα) = TK/Q
(
TN/K(S)α

)
⊂ TK/Q(Rα) ⊂ Zp.

As Q′ lies over Qi and Qi lies over p, Q′ lies over p. We take the complete set Q′, Q′2, . . . , Q′t
of nonzero prime ideals in S which lie over p. From the Chinese remainder theorem (Theorem
F.1), there is a solution β ∈ S of the system of equivalences

x ≡ 1 (mod Q′)
x ≡ 0 (mod Q′2)

...
...

...
x ≡ 0 (mod Q′t).

The element β lies in Q′i, for i = 2, . . . , t, but not in Q′. We claim that

• TN/Q(αβγ) ∈ Q′, for γ ∈ S;

• σ(αβγ) ∈ Q′, for γ ∈ S and σ ∈ G \D,

where G = Gal(N/Q) and D = D(Q′|p). The first assertion is easy to prove. We only need
to observe that βγ ∈ S and TN/Q(Sα) ⊂ Zp ⊂ Q′. The second assertion requires a little more
work. First we notice that σ ∈ G \ D implies that σ(Q′) 6= Q′, or equivalently Q′ 6= σ−1(Q′).
As σ−1(Q′) lies over p, β ∈ σ−1(Q′), which implies that σ(β) ∈ Q′, which in turn implies that
σ(αβγ) ∈ Q′.

We now claim that ∑
σ∈D

σ(αβγ) ∈ Q′

for all γ ∈ S. To see this, we first remark that from Corollary 10.3

TN/Q(αβγ) =
∑
σ∈G

σ(αβγ).
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Then ∑
σ∈D

σ(αβγ) = TN/Q(αβγ)−
∑

σ∈G\D

σ(αβγ),

i.e., the difference of two elements in Q′.
We may now finish the proof. The members σ of the subgroup D of G induce automorphisms

σ̄ of S/Q′:
σ̄(x+Q′) = σ(x) +Q′.

Reducing α, β and γ modulo Q′, we obtain∑
σ∈D

σ̄(ᾱβ̄γ̄) = 0,

for all γ ∈ S. We have seen above that α, β /∈ Q′, so ᾱβ̄ is a nonzero member of the field S/Q′.
As γ runs through all the elements of S, γ̄ runs through all the elements of S/Q′. It follows that∑

σ∈D
σ̄(x̄) = 0,

for all x̄ ∈ S/Q′. Hence the automorphisms σ̄, with σ ∈ D, are not independant, which contra-
dicts the corollary to Dedekind’s lemma (Corollary 8.1). The supposition that p is unramified
led us to this contradiction, hence p must be ramified. 2

Remark We will show in the next chapter that, if K 6= Q, then |disc(R)| > 1. Thus, in this case
there exists a prime number p which divides disc(R). Consequently, Theorem 13.14 ensures the
existence of a ramified prime number. More generally, if K ⊂ L are number fields, then there
exists a prime ideal in OK which ramifies in OL. To see this, it suffices to consider any prime
ideal in OK in the decomposition of OKp, where p|disc(OL).

13.9 Prime decomposition in cyclotomic number rings

Let p be a prime number, s a positive integer and ζ = e
2πi
ps . We will be interested in the

decomposition of a prime q in the number ring of the cyclotomic field K = Q(ζ). As K is normal
over Q we may write

OKq = (Q1 · · ·Qr)e,

where the Qi are prime ideals in OK .

We will first consider the case where q = p. In the proof of Proposition 11.10 we saw that

OKp = OK(1− ζ)φ(ps) = (OK(1− ζ))φ(ps) (13.3)

and
NK/Q(1− ζ) = p.

From Theorem 13.4
NK/Q(1− ζ) = ‖OK(1− ζ)‖,

hence ‖OK(1−ζ)‖ = p. However, from Proposition 13.4, the principal ideal OK(1−ζ) is a prime
ideal, therefore the expression (13.3) is the decomposition of OKp into prime ideals.
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We now turn to the case where q 6= p. This is more difficult. From Theorem 11.15 the
discriminant of OK is a power of p. As q 6= p, q does not divide the discriminant, so, by Theorem
13.14, q is not ramified in OK . This implies that the decomposition has the form

OKq = Q1 · · ·Qr,

where the Qi are prime ideals in OK . We now aim to determine the value of r.
We recall that OK = Z[ζ]. For i = 1, . . . , r, since Qi|OKq, we have Qi ⊃ OKq = Z[ζ]q and it

follows that Qi lies over Zq. From Corollary 13.2, the inertial degrees f(Qi|q) all have the same
value. If f is the common value of the inertial degrees, then we can write

rf = φ(ps) = ps−1(p− 1), (13.4)

where φ denotes the Euler totient function. We claim that f is the order of q in the multiplicative
group Z×ps .

Let Q be one of the Qi. Then Z[ζ]/Q is isomorphic to Fqf , with subfield Fq. (This is obtained
from the mapping φ defined just before Proposition 13.3.) We may identify the elements of Fqf
with the cosets of Q, which we will write in the usual way, i.e., ā = a+Q. If a ∈ Z, then ā ∈ Fq
and from this it follows that Fqf = Fq(ζ̄). This implies that an element of the Galois group
Ḡ = Gal(Fqf /Fq) is determined by its value at ζ̄.

Moreover, from Theorem 7.9, Ḡ is cyclic and generated by the Frobenius automorphism
Fr : x 7−→ xq. Since Fqf = Fq(ζ̄), the Frobenius automorphism, is determined by its value at ζ̄.
Let f ′ be the order of q in in Z×ps . Then

Frf
′
(ζ̄) = ζ̄q

f′

= ζqf
′

= ζ1+kqs , (13.5)

for some k ∈ N∗. Therefore Frf
′
(ζ̄) = ζ̄, which implies that f |f ′.

We now show that f ′|f . If qf ≡ 1(mod ps), then f ′|f , so this is what we will show. We set

qf ≡ a(mod ps),

with a ∈ {1, . . . , ps − 1}. Suppose that a > 1. Then

ζq
f

= ζa =⇒ ζ̄q
f

= ζ̄a.

However, from equation 13.5),
ζ̄q
f

= ζ̄,

hence
ζ̄a = ζ̄ =⇒ ζ̄a−1 = 1̄ =⇒ 1− ζa−1 ∈ Q.

On the other hand we have

−1 +Xps =

ps−1∏
i=0

(−ζi +X) =⇒
ps−1∏
i=1

(−ζi +X) =
−1 +Xps

−1 +X
= 1 +X + · · ·+Xps−1.

Noting g(X) the last expression on the right-hand side, we obtain

ps−1∏
i=1

(−ζi + 1) = g(1) = ps.
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Since one of the factors in the expression on the left-hand side of the equation is 1 − ζa−1 and
all the factors are in OK , we see that ps ∈ Q. This means that Q contains both ps and q, which
are coprime. Hence 1 ∈ Q, a contradiction. Therefore a = 1 and it follows that

qf ≡ 1(mod ps),

as required. To conclude, we have shown that f is the order of q in Z×ps , as claimed.
To conclude, from (13.3) we obtain

r =
ps−1(p− 1)

f
,

where f is the order of q in Z×ps .

Remark Further on, in Chapter 18, we will reconsider the question of the decomposition of a
prime number in a number ring, but in a more general context.

13.10 Higher ramification groups
Let K and L be number fields, with L a finite normal extension of K. We set R = OK , S = OL
and let P ⊂ R, Q ⊂ S be prime ideals with Q lying over P . We recall the definition of the inertia
group:

E = E(Q|P ) = {σ ∈ G : σ(α) ≡ α(mod Q) ∀α ∈ S},

where G = Gal(L/K). We now extend this definition. For m ∈ N, we set

Vm = {σ ∈ G : σ(α) ≡ α(mod Qm+1) ∀α ∈ S}.

Thus V0 = E. The Vm form a descending chain of subgroups of the decomposition group
D = D(Q|P ) and are called ramification groups .

We recall the Krull Intersection Theorem:

Theorem 13.15 If R is a commutative noetherian domain and I a proper ideal in R, then
∩∞m=1I

m = {0}.

Proposition 13.15 The groups Vm are normal subgroups of D and their intersection is the
identity.

proof Let σ ∈ Vm and τ ∈ D. Then, for α ∈ S, we have

στ(α) = τ(α) + x

with x ∈ Qm+1. This implies that

τ−1στ(α) = α+ τ−1(x).

Since τ−1Q = Q and x ∈ Qm+1, τ−1(x) ∈ Qm+1, thus

τ−1στ(α) ≡ α(mod Qm+1),

and it follows that Vm is normal in D.
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As S is a noetherian domain, from Theorem 13.15, ∩∞m=1Q
m = {0}. If σ ∈ ∩∞m=0Vm and

α ∈ S, then
σ(α)− α ∈ ∩∞m=1Q

m = {0} =⇒ σ(α) = α.

Therefore σ is the identity on S and consequently on L, because L is the field of fractions of S.
2

Corollary 13.8 There exists n ≥ 0 such that Vm is reduced to the identity for m ≥ n.

proof As D is finite, so are the subgroups Vm and the chain must be stationary after a certain
point, i.e., there exists n such that Vm = Vn, for m ≥ n. If Vm is not reduced to the identity for
m ≥ n, then the intersection of the groups Vm must contain elements other than the identity,
which is a contradiction. Therefore, for m ≥ n, Vm is reduced to the identity. 2

We recall that SE is the number ring of LE , i.e., SE = OLE , and that QE is the unique
prime ideal in SE lying under Q. We now consider the localizations SQ and SEQE . These rings
are both Dedekind domains, being localizations of Dedekind domains (Theorem 12.9). They are
also local rings with respective unique maximal ideals SQQ and SEQEQ

E (Theorem 12.10). From
Theorem 12.11 these localizations are PIDs.

If su ∈ S
E
QE , then s ∈ S, because S

E ⊂ S. In addition, u /∈ Q (If u ∈ Q, then ∈ SE ∩Q = QE ,
a contradiction.) Hence SEQE ⊂ SQ, and we may consider SQ to be a SEQE -module. Let t be a
generator of the principal ideal SQQ. We may suppose that t ∈ S: if t′ = t

u is a generator, then
so is t.

Theorem 13.16 The module SQ is a free module over SEQE , with basis B = {1, t, . . . , te−1},
where e = [L : LE ].

proof Our first step is to show that if a is a nonzero element of LE , then there exists s ∈ Z
such that SQa = SQQ

se. Let us write LQ for the fraction field of SQ and LQE for that of SEQE .
Then LE ⊂ L ⊂ LQ and so any nonzero element a of LE generates a nonzero fractional ideal of
SQ, which we may write SQa. We aim to study the decomposition of SQa into prime ideals in
SQ. Since LE ⊂ LQE , a also generates a fractional ideal of SEQE , namely SEQEa. From Theorem
12.11 there exists s ∈ Z such that

SEQEa = (SEQEQ
E)s = SEQEQ

Es,

and so, using the fact that SEQE is contained in SQ, we obtain

SQa = SQS
E
QEa = SQ(SEQEQ

Es) = SQQ
Es.

Now, using the inclusion of S in SQ, we have

SQQ
Es = SQS(QEs) = SQ(SQE)s.

Since QE lies over QD and Q is the unique prime ideal of S lying over QD (see Section 13.7), Q is
the unique prime ideal of S lying over QE : SQE is a power of Q. Taking into account Theorem
13.6, with K = LE , and then Lemma 13.3 and Proposition 13.11, we obtain SQE = Qe. Finally,
we have shown that, for any nonzero element a in LE , there exists s ∈ Z such that SQa = SQQ

se.
Our next step is to show that the elements 1, t, . . . , te−1 form a basis of L over LE . As

[L : LE ] = e, it is sufficient to prove that these elements are linearly independant over LE .
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Suppose that x =
∑e−1
j=0 ajt

j , with aj ∈ LE and some aj 6= 0. If 0 ≤ k, l ≤ e− 1, with k 6= l, and
ak 6= 0, al 6= 0, then we claim that ske+ k 6= sle+ l, where

SQak = SQQ
esk and SQal = SQQ

esl .

If not, then
0 6= k − l = e(sl − sk),

which is impossible, because |k − l| < e. We now set

m = min{esj + j : aj 6= 0, SQaj = SQQ
esj}.

Let i be such that m = esi + i; then, if 0 ≤ j < e and aj 6= 0, there exists αj ∈ SQ such that
aj = αjt

sje. Therefore there exists β ∈ SQ such that

x =
∑
j,aj 6=0

αjt
sje+j = tm(αi + tβ).

If αi ∈ SQQ, then ai = tsieut, with u ∈ SQ. This implies that

(SQQ)sie = SQai ⊂ (SQQ)sie+1,

which is not possible. Hence αi /∈ SQQ and it follows that αi + tβ /∈ SQQ. Thus αi + tβ 6= 0 and
so x 6= 0. We have shown that the set {1, t, . . . , te−1} is independant.

At this point we should also notice that SQx = SQQ
m. Indeed, as SQ is a local ring, its

maximal ideal SQQ is composed of its nonunits. Hence αi + tβ is a unit and so

SQx = SQt
m = SQQ

m.

The final step is to show that B is also a basis of the SEQE -module SQ. Suppose that there
exist b0, b1, . . . , be−1 ∈ SEQE such that

∑e−1
j=0 bjt

j = 0. As SEQE is included in LE and we have
shown that B is an independant set over LE , the bj all have the value 0, so B is an independant
set over SEQE .

We must now show that B a generating set of the SEQE -module SQ. Let x be a nonzero
element of SQ. As SQ is included in L, we may write x =

∑e−1
j=0 ajt

j , where aj ∈ LE , for all j,
and at least one aj is nonzero. We claim that each aj belongs to SEQE . Looking at the beginning
of the proof, we notice that, if aj 6= 0, then there is an integer sj such that the fractional ideal
SEQEaj = (SEQEQ

E)sj . This is the decomposition of this fractional ideal into prime ideals of SEQE .
In addition, we have shown that SQx = (SQQ)m is the decomposition into prime ideals of SQ
of the fractional ideal SQx. As x ∈ SQ, SQx is an integral ideal of SQ and so m ≥ 0 (Corollary
12.9). However,

m = min{esj + j : aj 6= 0, SQaj = SQQ
esj},

so, if aj 6= 0, then esj + j ≥ 0, which implies that sj ≥ − je > −1. Therefore sj ≥ 0, because
sj is an integer. It follows that SEQEaj is an ideal of SEQE , because S

E
QEaj = (SEQEQ

E)sj , and so
aj ∈ SEQE . We have shown that B is a generating set of SQ as a SEQE -module. This finishes the
proof. 2

We continue our study of the ramification groups using a generator t ∈ S of the principal
ideal SQQ. We notice that t ∈ S ⊂ L, so it makes sense to write σ(t) for any automorphism
σ ∈ Gal(L/K).
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Proposition 13.16 For i = 0, 1, 2, . . .,

Vi = {σ ∈ E : σ(t)− t ∈ SQQi+1}.

proof If σ ∈ Vi, then σ ∈ E and σ(t)− t ∈ Qi+1, since t ∈ S. However, Qi+1 ⊂ SQ(Qi+1), thus
σ(t)− t ∈ SQQi+1.

Now suppose that σ ∈ E and σ(t)− t ∈ SQQi+1. If x ∈ S, then we may consider that x ∈ SQ
and so we can write x =

∑e−1
j=0 ajt

j , with aj ∈ SEQE (Theorem 13.15), hence

σ(x)− x =

e−1∑
j=0

aj
(
σ(t)j − tj

)
,

because the aj are fixed by the automorphisms of E. (Indeed, aj ∈ SEQE and SEQE ⊂ S
E ⊂ LE .)

Also, σ(t)− t|σ(t)j − tj in S, i.e., σ(t)j − tj = sj(σ(t)− t), for some sj ∈ S. As both SEQE and S
are included in SQ,

e−1∑
j=0

aj
(
σ(t)j − tj

)
∈ SQQi+1

Given that x ∈ S, we now have

σ(x)− x ∈ SQQi+1 ∩ S = Qi+1,

where we have used Theorem 12.12 for the equality. This ends the proof. 2

We have seen that the ramification groups Vi form a sequence of normal subgroups of the
inertial group E. As Vi+1 ⊂ Vi, we have a sequence

E = V0 � V1 � V2 � · · ·

We also know that after a certain point Vi+1 = Vi, so we may consider the sequence to be finite.
We are now interested in the factor groups Vi/Vi+1.

Theorem 13.17 There exists a group monomorphism from E/V1 into S/Q×. Thus E/V1 is a
cyclic group whose order is coprime to p, where Q ∩ Z = Zp.

proof Let t ∈ S be a generator of the principal ideal SQQ, so t ∈ S∩SQQ = Q(Theorem 12.12).
If σ ∈ E, then σ ∈ D, which implies that σ(t) ∈ Q, because t ∈ Q. As Q ⊂ SQQ, there exists
xσ ∈ SQ such that

σ(t) = xσt.

From Exercise 12.8 we may suppose that SQ as a subset of L, i.e., we consider x = r
u ∈ SQ

as an element of l. This permits us to induce a mapping σ′ on SQ from σ ∈ E by setting
σ′(x) = σ(r)

σ(u) ∈ L. Clearly, σ(r), σ(u) ∈ S. It is elementary to check that σ′ is an automorphism
of SQ. We should also notice that, since σ ∈ E, for all x ∈ SQ,

σ′(x) ≡ x(mod SQQ).

Indeed, there exists q ∈ Q such that σ(r) = r + q and so

σ′(x) =
σ(r)

σ(u)
=

r + q

u+ q′
=
r

u
− rq′ − uq
u(u+ q′)

= x+ q1,
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with q1 ∈ SQQ.
To simplify the notation, from here on we will write σ for σ′. Our next step is to show that

xσ /∈ SQQ. As σ−1 ∈ E, there exists xσ−1 ∈ SQ such that

σ−1(t) = xσ−1t.

Then
t = σ

(
σ−1(t)

)
= σ(xσ−1t) = σ(xσ−1)σ(t) = σ(xσ−1)xσt.

As SQ is an integral domain, we have

1 = σ(xσ−1)xσ,

so xσ is invertible in SQ, which implies that xσ /∈ SQQ, because SQQ is a proper ideal of SQ.
From Corollary 12.10, there is an isomorphism φ from SQ/SQQ onto S/Q. Noting x̄σ the

image φ(xσ + SQQ), we have x̄σ 6= 0, because xσ /∈ SQQ. We now define a mapping
θ : E −→ S/Q× by

θ(σ) = x̄σ.

We consider the properties of θ. First we notice that θ is a group homomorphism: If σ, τ ∈ E,
σ(t) = xσt and τ(t) = xτ t, then

στ(t) = σ(xτ t) = σ(xτ )σ(t) = (xτ + vt)xσt = (xτxσ + vxσt)t,

where v ∈ SQ, therefore

θ(στ) = xτxσ + vxσt = x̄τ x̄σ = θ(xτ )θ(xσ),

so θ is a homomorphism. We claim that the kernel of θ is V1. To establish this we use Proposition
13.16. If σ ∈ V1, then

σ(t)− t ∈ SQQ2 =⇒ σ(t) = t+ vt2 = (1 + vt)t =⇒ θ(σ) = 1 + vt = 1̄,

where v ∈ SQ. Hence σ ∈ Ker θ. On the other hand, if σ ∈ Ker θ, then θ(σ) = 1̄ and we have

x̄σ = 1̄ =⇒ σ(t)− t = xσt− t = (1 + vt)t− t = vt2,

where v ∈ SQ. It follows that σ ∈ V1. We have shown that V1 = Ker θ.
As V1 is the kernel of θ, the quotient group E/V1 is isomorphic to a subgroup of S/Q×, which

is the group of nonzero elements of the finite field S/Q. From Corollary 3.3 ,S/Q× is cyclic and
so E/V1 is cyclic, being isomorphic to a subgroup of a cyclic group.

There exists a unique prime number p such that Q ∩ Z = pZ. As pZ ⊂ Q, we have p ∈ Q,
so the characteristic of S/Q is p. This implies that the prime field of S/Q is Fp and it follows
that |S/Q| = pn, for some positive integer n. Hence |S/Q×| = pn − 1. As |E/V1| divides pn − 1,
|E/V1| must be coprime to p. 2

Remark In the proof of the theorem we chose a particular generator t ∈ S of SQQ. In fact, we
obtain the same mapping θ if we choose another such generator t′. First we notice that t′ = at,
where a ∈ S×Q . This implies that a /∈ SQQ. Then we have

σ(t′) = x′σt
′ = x′σat.
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As we saw in the proof of Theorem 13.17, if x ∈ SQ and σ ∈ E, then σ(x) ≡ x(mod SQQ), so
there exists q ∈ SQQ such that σ(a) = a+ q = a+ vt, with v ∈ SQ. Hence

x′σat = σ(at) = σ(a)σ(t) = (a+ vt)xσt

=⇒ x′σa = (a+ vt)xσ

=⇒ āx̄σ = āx̄′σ =⇒ x̄′σ = x̄σ,

because SQ/SQQ is a field and ā 6= 0. Therefore the value of θ(σ) is unaltered by choosing
another generator in S of SQQ.

We now consider the quotient groups Vi/Vi+1, with i ≥ 1.

Theorem 13.18 There exists a group monomorphism from Vi/Vi+1 into the additive group of
the field S/Q. Hence Vi/Vi+1 is an abelian p-group, where Q ∩ Z = Zp.

proof As in the proof of Theorem 13.17, we let t ∈ S be a generator of the principal ideal SQQ
and so t ∈ S ∩ SQQ. If σ ∈ Vi, then σ(t) = t + xσt

i+1, where xσ ∈ SQ (Proposition 13.16).
From Corollary 12.10, there is an isomorphism φ from SQ/SQQ onto S/Q. Noting x̄σ the image
φ(xσ + SQQ), we obtain a mapping θi from Vi into S/Q defined by

θi(σ) = x̄σ.

We claim that θi is a homomorphism into the additive group of S/Q. If σ, τ ∈ Vi, then

στ(t) = σ(t+ xτ t
i+1) = σ(t) + σ(xτ )σ(ti+1).

If x = r
u ∈ SQ and σ ∈ Vi, then there exist q, q′ ∈ Qi+1 such that

σ(x) =
σ(r)

σ(u)
=

r + q

u+ q′
=
r

u
− rq′ − uq
u(u+ q′)

= x+ q1,

with q1 ∈ SQQi+1. Thus

στ(t) = t+ xσt
i+1 + (xτ + vti+1)(t+ xσt

i+1)i+1.

However,

(t+ xσt
i+1)i+1 = ti+1 + xσ(i+ 1)t2i+1 + expressions in higher powers of t,

with 2i+ 1 > i+ 1, because i ≥ 1. Hence

στ(t) = t+ (xσ + xτ + v′t)ti+1,

where v, v′ ∈ SQ. It follows that

θi(στ) = xσ + xτ + v′t = xσ + xτ = x̄σ + x̄τ = θi(σ) + θi(τ).

We have shown that θi is a homomorphism from Vi into the additive group of S/Q.
Our next task is to consider the kernel of θi. If σ ∈ Vi+1, then, for some v ∈ SQ,

σ(t)− t ∈ SQQi+2 =⇒ σ(t) = t+ vti+2 = t+ (vt)ti+1

and so
θi(σ) = vt = 0̄.
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So we have Vi+1 ⊂ Ker θi. Now suppose that θi(σ) = 0̄. Then x̄σ = 0̄, which implies that

σ(t) = t+ (vt)ti+1 = t+ vti+2,

with v ∈ SQ. Therefore σ ∈ Vi+1 and it follows that Ker θi = Vi+1. Therefore the quotient group
Vi/Vi+1 is isomorphic to a subgroup of the additive group of S/Q. We have seen in the proof of
Theorem 13.17 that |S/Q| = pn, where Q∩Z = Zp and n is a positive integer, so |Vi/Vi+1| = pm,
where m ≤ n. Therefore the order of an element in Vi/Vi+1 is a power of p. 2

Exercise 13.6 In the proof of the preceding theorem we have used a particuler generator t ∈ S of
the principal ideal SQQ to construct the homomorphism θi, which in turn gives us a monomor-
phism θ̄i of Vi/Vi+1 into S/Q. Suppose that we take another generator t′ ∈ S of SQQ and
so obtain another monomorphism of θ̄′i of Vi/Vi+1 into S/Q. What can we say of the relation
between θ̄i and θ̄′i?

We recall the definition of a solvable group. A normal series of a finite group G, with identity
e, is a chain of subgroups

G = G0 ⊃ G1 ⊃ · · · ⊃ Gn = {e},

where the subgroup Gi+1 is normal in Gi, for all i. If a finite group G has such a series and all
the quotient groups Gi/Gi+1 are abelian, then we say that G is a solvable group.

Proposition 13.17 The inertia and decomposition groups are solvable.

proof The series
D ⊃ E ⊃ V1 ⊃ · · · ⊃ Vm = {idD}

is a normal series, because E, V1, . . . , Vm are normal in D. In Section 13.6 we saw that D/E is
cyclic and from Theorems 13.17 and 13.18 above, for i ≥ 0, Vi/Vi+1 is a subgroup of an abelian
group, hence abelian. It follows that E and D are solvable groups. 2

Here are two further results concerning the first ramification group V1.

Proposition 13.18 We have

• a. The cardinal of V1 is a power of p, hence V1 is a p-group: |V1| = pk, where k ≥ 0;

• b. If e is the ramification index e(Q|P ), then e = mpk, where p 6 |m and m = |E/V1|.

proof a. As Vm is reduced to the identity, we may write

|V1| = |V1/Vm| = |V1/V2||V2/V3| · · · |Vm−1/Vm|.

As all the factors on the right hand side are powers of p, so is |V1|.
b. From Proposition 13.11, e = [L : LE ]. In addition, from Theorem 6.6, [L : LE ] = |E|, which
in turn is equal to |V1||E/V1|. Using part a. we obtain e = pkm, and p 6 |m, by Theorem 13.17.2

We have seen that V1 and E are normal subgroups of D. As E is contained in D, V1 is also
normal subgroup of E and so the cosets of V1 in E form a group, the quotient group E/V1. We
may define an action of D on E/V1 by conjugation: for σ ∈ D and τV1 ∈ E/V1, we set

σ · τV1 = σ(τV1)σ−1 = (στσ−1)V1.

197



(It is simple to check that this action is well-defined, i.e., if τ ′V1 = τV1, then σ · τ ′V1 = σ · τV1.)
From the group action we obtain, for each σ ∈ D, a bijection σ̂ of E/V1 defined by

σ̂(τV1) = σ · τV1 = σ(τV1)σ−1.

We may also define an action of D on S/Q: for σ ∈ D and s+Q ∈ S/Q, we set

σ · (s+Q) = σ(s) +Q.

(There is no difficulty in seeing that this action also is well-defined.)
From this second group action we obtain, for each σ ∈ D, a bijection σ̃ of S/Q defined as follows:

σ̃(s+Q) = σ · (s+Q) = σ(s) +Q.

In Section 13.6 we saw that the the bijections σ̃ belong to the Galois group Gal(S/Q,R/P ) =
Ḡ and that the corresponding mapping ψ : σ 7−→ σ̃ is an epimorphism. Moreover, Ḡ is a cyclic
group generated by the Frobenius automorphism: Fr : x̄ 7−→ x̄q, where q = |R/P |. The following
result links the bijections σ̂ and σ̃.

Proposition 13.19 If σ ∈ D is such that ψ(σ) = σ̃ is the Frobenius automorphism, then

σ̂(τV1) = τ qV1,

for all cosets τV1 ∈ E/V1.

proof First we fix a generator t of the ideal SQQ, i.e., SQQ = SQt. As σ̂(τV1) = στσ−1, we
have

σ̂(τV1) = τ qV1 ⇐⇒ στ−1σ−1τ q ∈ V1 ⇐⇒ στ−1σ−1τ q(t) ≡ t (mod SQQ2).

We now sum up some basic facts which we will need further on in the proof:

• For all σ ∈ D, there exists xσ ∈ SQ such that σ(t) = xσt and

σ(xσ−1)xσ = 1.

(This result is established in the proof of Theorem 13.17.)

• If σ ∈ D and x ∈ SQ, then
σ(x) ∈ SQ.

Indeed, x = r
s ∈ SQ can be considered an element of L, thus σ(x) = σ(r)

σ(u) , because
σ( ru )σ(u) = σ( ruu) = σ(r). If σ(u) ∈ Q, then u = σ−1(σ(u)) ∈ σ−1(Q) = Q, because
σ−1 ∈ D, a contradiction. Therefore σ(u) /∈ Q and so σ(r)

σ(u) ∈ SQ.

• If τ ∈ E and x ∈ SQ, then
τ(x) ≡ x (mod SQQ).

Since τ : L −→ L satisfies the condition τ(α) ≡ α (mod Q), for all α ∈ S, we have
τ(x) ≡ x (mod SQQ), for all x ∈ SQ, because

x =
r

u
∈ SQ ⊂ L =⇒ τ(x) =

τ(r)

τ(u)
=

r + q

u+ q′
=
r

u
− rq′ − uq
u(u+ q′)

= x+ q1,

with q1 ∈ SQQ.
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With these rules in mind we aim to show that

στ−1σ−1τ q(t) ≡ t (mod SQQ2).

To begin with, we establish that for 1 ≤ i ≤ q we have

τ i(t) ≡ xiτ t (mod SQQ2).

For i = 1, the result is clear, because τ(t) = xτ t. Next we consider the case i = 2. First,

τ(t) = xτ t =⇒ τ2(t) = τ(xτ )τ(t) = τ(xτ )xτ t.

As τ ∈ E, there exists v ∈ SQ such that τ(xτ ) = xτ + vt, hence

τ2(t) = (xτ + vt)xτ t = x2
τ t+ vxτ t

2 = x2
τ t+ v1t

2.

As v1 ∈ SQ, we have
τ2(t) ≡ x2

τ t (mod SQQ2).

Our next step is to consider the case i = 3. We have

τ3(t) = τ(τ2(t)) = τ(x2
τ t+ v1t)

= τ(x2
ττ(t) + τ(v1)τ(t)2

= (xτ + vt)2xτ t+ τ(v1)(xτ t)
2

= x3
τ t+ v2t

2,

where v2 ∈ SQ. Hence
τ3(t) ≡ x3

τ t (mod SQQ2).

Continuing in the same way we obtain

τ i(t) ≡ xiτ t (mod SQQ2),

for 1 ≤ i ≤ q and, in particular for i = q. Therefore there exists w ∈ SQ such that

τ q(t) = xqτ t+ wt2.

We now consider the expression στ−1σ−1τ q. First,

σ−1(τ q(t)) = σ−1(xqτ t+ wt2)

= σ−1(xqτ )xσ−1t+ σ−1(w)σ−1(t)2

= σ−1(xqτ )xσ−1t+ σ−1(w)x2
σ−1t2

= σ−1(xqτ )xσ−1t+ w1t
2,

where w1 ∈ SQ. Thus
σ−1(τ q(t)) ≡ σ−1(xqτ )xσ−1t (mod SQQ2)

and so

τ−1σ−1τ q(t) ≡ τ−1(σ−1(xqτ )xσ−1)xτ−1t (mod SQQ2)

≡ σ−1(xqτ )xσ−1xτ−1t (mod SQQ2),
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because τ−1 ∈ E implies that

τ−1(σ−1(xqτ )xσ−1) ≡ σ−1(xqτ )xσ−1 (mod SQQ).

Thus

στ−1σ−1τ q(t) ≡ xqτσ(xσ−1)σ(xτ−1)xσt (mod SQQ2)

≡ xqτσ(xτ−1)t (mod SQQ2),

because σ(xσ−1)xσ = 1.
Our next step is to find useful expressions for xqτ and σ(xτ−1). Firstly, as τ−1 ∈ E, we have

xτ ≡ τ−1(xτ ) (mod SQQ) =⇒ xqτ ≡ τ−1(xτ )q (mod SQQ).

Secondly, we consider σ(xτ−1). Since σ(α) ≡ αq (mod Q), for all α ∈ S, because σ̃ is the
Frobenius automorphim, we have σ(x) ≡ xq (mod SQQ), for all x ∈ SQQ: For x = r

u ∈ SQ ⊂ L,
we have

σ(x) =
σ(r)

σ(u)
=
rq + q1

uq + q2
=
rq

uq
− rqq2 − uqq1

uq(uq + q2)
≡ rq

uq
(mod SQQ).

Hence
σ(xτ−1) ≡ xqτ−1 (mod SQQ).

Using these two expressions, we have

στ−1σ−1τ q(t) ≡ xqτσ(xτ−1)t ≡ τ−1(xτ )qxqτ−1t (mod SQQ2).

As τ−1(xτ )xτ−1 = 1, we finally obtain

στ−1σ−1τ q(t) ≡ t (mod SQQ2),

and the result follows. 2

Corollary 13.9 If the decomposition group D is abelian, then then |E/V1| divides q − 1.

proof If D is abelian, then the action of D on E/V1 is trivial, i.e., σ · τV1 = τV1, for all σ ∈ D
and cosets τV1 ∈ E/V1. It follows that σ̂ is the identity for every σ ∈ D. If σ is such that
its image under the mapping ψ is the Frobenius automorphism, then from Proposition 13.19
σ̂(τV1) = τ qV1. Thus we have τV1 = τ qV1, or τ q−1(τV1) = τV1. Hence the order of τV1 divides
q − 1. However, E/V1 is cyclic, so if τV1 is a generator of E/V1, then its order is the cardinal of
the group, hence the result. 2

Remark In the proof of Theorem 13.17 we showed that |E/V1| divides q′− 1, where q′ = |S/Q|.
On the other hand, in Corollary 13.9 we show that |E/V1| divides q − 1, where q = |R/Q|. As
q − 1 divides q′ − 1, when D is abelian we obtain a stronger result.
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Chapter 14

Number fields and lattices

Before reading this chapter we advise the reader unfamiliar with lattices in euclidian space to
read our appendix on the subject. There we have brought together the basic notions on the
subject and, in particular, we state and prove Minkowski’s convex body theorem.

14.1 Number rings as lattices
We consider a number field K, such that [K : Q] = n, with associated number ring R. There are
n monomorphisms of K into C which fix Q. (If K is a normal extension of Q, then the monomor-
phisms are automorphisms of K and so form the Galois group Gal(K/Q).) Let σ1, . . . , σr be the
monomorphisms with image in R. The others occur as pairs of complex conjugates, which we
write τ1, τ̄1, . . . , τs, τ̄s; clearly, n = r + 2s. We obtain a mapping φ : K −→ Rn by setting

φ(α) = (σ1(α), . . . , σr(α),Re τ1(α), Im τ1(α), . . . ,Re τs(α), Im τs(α)) ,

for all α ∈ K. This mapping is a monomorphism from the additive group of K into the additive
group of Rn. The image of R, which we note ΛR, is a subgroup of the additive group of Rn. We
claim that ΛR is a lattice. To see this, let (α1, . . . , αn) be an integral basis of R. Clearly

ΛR = {v ∈ Rn : v =

n∑
i=1

aiφ(αi), ai ∈ Z}.

In order to show that A = {φ(α1), . . . , φ(αn)} is an independant set in Rn we consider the
determinant D of the matrix having these elements as rows. Applying appropriate column
operations we obtain that D is the product of (−2i)−s and the determinant D′ of the matrix
with rows

σ1(αi) . . . σr(αi) τ1(αi) τ1(αi) . . . τs(αi) τs(αi)

However,
D′2 = disc(R) 6= 0,

since any integral basis of R is a basis of the vector space K over Q and Proposition 10.8 holds.
Thus A is an independant set. It follows that ΛR is a lattice.

We recall that the determinant of a lattice Λ is the volume of a parallelepiped formed by the
vectors of any basis (ui)

n
i=1. This volume is the absolute value of the determinant of the matrix
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U having these vectors as columns. Hence det ΛR = |D|. Now,

D = (−2i)−sD′ =⇒ D2 = (−1)s2−2sD′2,

therefore
det ΛR = |D| = 2−s

√
|disc(R)|.

If I is a nonzero ideal of R, then we claim that ΛI = φ(I) is a sublattice of ΛR. To see this,
we notice that I is a free abelian group of rank n and hence has a basis (β1, . . . , βn). The set
B = {φ(β1), . . . , φ(βn)} generates φ(I) over Z and is independant, hence ΛI is a sublattice of
ΛR. Also, the index of ΛI in ΛR is that of I in R, since the mapping

π : R/I −→ ΛR/ΛI , r + I 7−→ φ(r) + ΛI

is a bijection. Therefore, using Theorem G.5, we have

‖I‖ = |R/I| = det ΛI
det ΛR

=⇒ det ΛI = det ΛR‖I‖ = 2−s
√
|disc(R)|‖I‖.

14.2 Some calculus
In this section we consider a particular subset of Rn, with n ≥ 1, which we will use further on.
We devote a section to the calculation of its volume. We suppose that n = r + 2s and set

A = {x ∈ Rn : |x1|+ · · ·+ |xr|+ 2

(√
x2
r+1 + x2

r+2 + · · ·+
√
x2
n−1 + x2

n

)
≤ n}.

Before considering the volume of the set A, we observe certain of its properties. For
x = (x1, . . . , xr, xr+1, . . . , xr+2s) ∈ Rn, we set

S(x) = x1 · · ·xr(x2
r+1 + x2

r+2) · · · (x2
n−1 + x2

n).

Proposition 14.1 The set A is a convex, compact, centrally symmetric subset of Rn, such that,
for all x ∈ A,

|S(x)| ≤ 1.

proof A is clearly convex, compact and centrally symmetric. The arithmetic mean of the
numbers

|x1|, . . . , |xr|,
√
x2
r+1 + x2

r+2,
√
x2
r+1 + x2

r+2, . . . ,
√
x2
n−1 + x2

n,
√
x2
n−1 + x2

n

is at most 1 and their geometric mean, which is n
√
|S(x)| is bounded above by the arithmetic

mean, therefore |S(x)| ≤ 1. 2

We now turn to the calculation of the volume of A.

Theorem 14.1 We have
vol A =

nn

n!
2r
(π

2

)s
.
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proof We consider the volume vr,s(t) of the subset of Rr+2s

Ar,s(t) = {x ∈ Rn : |x1|+ · · ·+ |xr|+ 2

(√
x2
r+1 + x2

r+2 + · · ·+
√
x2
n−1 + x2

n

)
≤ t}.

As Ar,s(t) = tAr,s(1), we have
vr,s(t) = tr+2svr,s(1). (14.1)

Given that vol A = vr,s(r + 2s), it is sufficient to show that

vr,s(1) =
1

(r + 2s)!
2r
(π

2

)s
. (14.2)

We first consider the case where r = 0; this implies that s ≥ 1, because n 6= 0. For s = 1 we
have

v0,s(1) =

∫ ∫
x2+y2≤ 1

4

1 dxdy =
π

4
.

We now suppose that s > 1 and aim to find a relation between v0,s(1) and v0,s−1(1). To simplify
the notation we let f be the characteristic function of A0,s(1). f is a function in the variables
x1, . . . , x2s. Let us set u = (x1, . . . , x2s−2 and v = (x2s−1, x2s). If fv is the function in u obtained
by fixing v and we set

φ(v) =

∫
fv(u) du,

then, by Fubini’s theorem (see for example [20]), we have∫
φ(v) dv =

∫ ∫
f(u, v) dudv.

However, fv(u) is the characteristic function of the set

Av =
{

(x1, . . . , x2s−2) ∈ R2s−2 : 2

(√
x2

1 + x2
2 + . . .+

√
x2

2s−3 + x2
2s−2

)
≤ 1−2

√
x2

2s−1 + x2
2s

}
.

From equation (14.1), ∫
fv(u)du =

(
1− 2

√
x2

2s−1 + x2
2s

)2s−2

v0,s−1(1)

and so, writing f(u, v) for fv(u),∫
f(u, v) dudv = v0,s(1) =

∫ ∫
x2+y2≤ 1

4

v0,s−1(1)
(

1− 2
√
x2 + y2

)2s−2

dxdy

= v0,s−1(1)

∫ ∫
x2+y2≤ 1

4

(
1− 2

√
x2 + y2

)
dxdy.

Using polar coordinates we obtain∫ ∫
x2+y2≤ 1

4

(
1− 2

√
x2 + y2

)2s−2

dxdy =

∫ 2π

0

∫ 1
2

0

(1− 2ρ)2s−2ρ dρdθ

= 2π

∫ 1
2

0

(1− 2ρ)2s−2ρ dρ

=
π

2

∫ 1

0

u2s−2(1− u) du

=
π

2

(
1

2s− 1
− 1

2s

)
=

π

2

1

2s(2s− 1)
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and hence the recurrence relation

v0,s(1) = v0,s−1(1)
π

2

1

2s(2s− 1)
.

With an induction argument we find that

v0,s(1) =
(π

2

)s 1

(2s)!
.

We now consider the case where r > 0 and s ≥ 1. Let g be the characteristic function of
Ar,s(1). g is a function in the variables x1, . . . , x2s. Let us set u = (x1, . . . , xr−1, xr+1, . . . , x2s

and v = xr. If gv is the function in u obtained by fixing v and we set

ψ(v) =

∫
gv(u) du,

then, by Fubini’s theorem, we have∫
ψ(v) dv =

∫ ∫
g(u, v) dudv.

However, gv(u) is the characteristic function of the set

Bv =
{

(x1, . . . , xr−1, xr+1, . . . , x2s) ∈ Rr−1+2s : |x1|+ · · ·+ |xr−1|

+ 2

(√
x2
r+1 + x2

r+2 + . . .+
√
x2

2s−1 + x2
2s

)
≤ 1− |xr|

}
From equation (14.1), we obtain∫

gv(u) du = (1− |xr|)r−1+2svr−1,s(1)

and so, writing g(u, v) for gv(u),∫
g(u, v) dudv = vr,s(1) =

∫ 1

−1

(1− |x|)r−1+2svr−1,s(1) dx

= 2vr−1,s(1)

∫ 1

0

(1− x)r−1+2sdx

=
2

r + 2s
vr−1,s(1).

Using this recurrence relation and the value of v0,s(1), which we have already determined, we
obtain the expression for vr,s(1) in equation (14.2), namely

vr,s(1) =
1

(r + 2s)!
2r
(π

2

)s
.

There is one case we have not considered, namely that where r > 0 and s = 0. However, this
is not difficult. As above, for r > 1 we may obtain the recurrence relation

vr,0(1) =
2

r
vr−1,0(1).
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This, together with the fact that v1,0(1) = 2, enables us to establish by induction that

vr,0(1) =
2r

r!

and hence
vol A =

nn

n!
2n,

as desired. This finishes the proof. 2

In the next section we will use the results we have considered here to prove certain important
properties of number rings.

14.3 The ideal class group of a number ring
We now return to number rings. As usual, let K be a number field with number ring R. We
recall that in the first section of this chapter we defined a monomorphism φ : K −→ Rn, where
n is the degree of the extension of K over Q, such that the image of R is a lattice ΛR. We begin
with a property of general lattices.

Theorem 14.2 If A is a compact, convex, centrally symmetric subset of Rn, with vol A > 0,
satisfying the property

a ∈ A =⇒ |S(a)| ≤ 1,

then every lattice Λ ⊂ Rn contains a nonzero point x such that

|S(x)| ≤ 2n

vol A
det Λ.

proof We use Minkowski’s convex body theorem (Theorem G.4). First we set B = tA, where
t > 0 and

tn =
2n

vol A
det Λ.

Then
vol B = tnvol A = 2n det Λ.

From Minkowski’s theorem, B contains a nonzero lattice point x. As x
t ∈ A, we have

|S(x)| = tn|S(
x

t
)| ≤ 2n

vol A
det Λ.

This ends the proof. 2

Suppose now that we can write n = r+ 2s and we take A to be the corresponding set defined
in the previous section, then

vol A =
nn

n!
2r
(π

2

)s
and so we obtain

Corollary 14.1 Every lattice Λ ⊂ Rn contains a nonzero point x such that

|S(x)| ≤ n!

nn

(
8

π

)s
det Λ.
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Remark We emphasize that the set A and the application S depend on the values of r and s.

We now return to the number field K.

Lemma 14.1 If α ∈ K, then for x = φ(α), we have

S(x) = NK/Q(α).

proof Since

φ(α) = (σ1(α), . . . , σr(α),Re τ1(α), Im τ1(α), . . .Re τs(α), Im τs(α)) ,

then, by Proposition 10.2,

S (φ(α)) = σ1(α) · · ·σr(α)τ1(α)τ̄1(α) · · · τs(α)τ̄s(α) = NK/Q(α).

This ends the proof. 2

Theorem 14.3 A nonzero ideal I in R, the number ring of K, contains a nonzero element α
such that

|NK/Q(α)| ≤ n!

nn

(
4

π

)s√
|disc(R)| ‖I‖.

proof Corresponding to the ideal I is the lattice ΛI = φ(I). From Lemma 14.1, there exists a
nonzero lattice point x such that

|S(x)| ≤ n!

nn

(
8

π

)s
det ΛI .

There exists α nonzero in I such that x = φ(α) and, from Lemma 14.1, S(x) = NK/Q(α). In
addition, in Section 14.1 it is established that det ΛI = 1

2s

√
|disc(R)|‖I‖, therefore

|NK/Q(α)| ≤ n!

nn

(
4

π

)s√
|disc(R)| ‖I‖,

as required. 2

From this theorem we may deduce two important results, namely

• the number of ideal classes in a number ring is finite;

• for any number field K 6= Q, there is a prime number p which is ramified in the number
ring R of K.

Let us consider the first question. We set λ = n!
nn

(
4
π

)s√|disc(R)|. (The number λ is called
a Minkowski bound.)

Proposition 14.2 Every ideal class of R contains an ideal J such that ‖J‖ ≤ λ.

proof Let C be an ideal class. As the ideal classes form a group, there exists an ideal class
C−1. Let I be an ideal in the class C−1. From Theorem 14.3, there exists a nonzero α ∈ I such
that |NK/Q(α)| ≤ λ‖I‖. I contains the principal ideal (α), which implies that I divides (α), i.e.,
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there exists an ideal J such that IJ = (α). As (α) is an element of identity class, J lies in the
class C. Therefore, using Theorems 13.2 and 13.4, we have

|NK/Q(α)| = ‖(α)‖ = ‖I‖‖J‖,

which implies that

‖J‖ =
|NK/Q(α)|
‖I‖

≤ ‖I‖λ
‖I‖

= λ,

as required. 2

We may now handle the first question.

Theorem 14.4 If R is a number ring, then there is only a finite number of ideal classes in R.

proof We claim that there is only a finite number of nonzero ideals J such that ‖J‖ ≤ λ. Let
J be such an ideal. If the decomposition of J into prime ideals is

J = Pn1
1 · · ·Pnss ,

then, by Theorem 13.2,
‖P1‖n1 · · · ‖Ps‖ns ≤ λ.

Each prime ideal Pi lies over a unique prime number pi and ‖Pi‖ = puii , for some ui ∈ N∗. Hence

‖Pi‖ni = puinii ≤ λ =⇒ pi ≤ λ.

There is only a finite number of prime numbers p such that p ≤ λ, thus in the decomposition of
J there can only be prime ideals lying over a finite number of prime numbers. However, from
Theorem 13.1, we know that there is only a finite number of prime ideals lying over a given prime
number, so in the decomposition of J there can only be members of a certain finite set of prime
ideals. If P is one such prime and Pm is in the decomposition of J , then ‖P‖m ≤ λ, so there
can only be finite number of powers of P in the decomposition of ideals J . It now follows that
there is only a finite number of nonzero ideals J such that ‖J‖ ≤ λ, as claimed.

As any class contains a nonzero ideal J such that ‖J‖ ≤ λ, there can only be a finite number
of ideal classes. 2

Remark To prove Theorem 14.4 we only need to know that there is some constant λ such that
every ideal class of R contains an ideal J satisfying the inequality ‖J‖ ≤ λ. There exists at least
one other such constant, namely

HK =

n∏
i=1

n∑
j=1

|σi(bj)|,

where B = {b1, . . . , bn} is an integral basis of OK and σ1, . . . , σn are the embeddings of K in C
(see [15]). This constant is known as Hurwitz’s constant, hence the notation, although it is not
certain that Hurwitz was the first to find it. It has the disadvantage of being dependant on the
basis chosen and is also in general larger than Minkowski’s constant. We will see further on that
the bounding constant can be used in determining the class group and it is important that this
be as small as possible.

Definition The cardinal of the class group of a number ring OK is referred to as the class number
of K. In general we write h(K) (or just h) for the class number.

We now turn to the second question.
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Theorem 14.5 For any number field K 6= Q, there is a prime number p which is ramified in
the number ring R of K.

proof From Proposition 14.2 we know that there is a nonzero ideal J such that

‖J‖ ≤ λ =
n!

nn

(
4

π

)s√
|disc(R)| =⇒

√
|disc(R)| ≥ nn

n!

(π
4

)n−r
2

,

because n = r + 2s. As π
4 < 1, we have

√
|disc(R)| ≥ nn

n!

(π
4

)n
2

.

For n ≥ 1 the sequence ( nn

2nn! ) is increasing, so√
|disc(R)| ≥ 1

2
π
n
2 > 1,

when n ≥ 2; hence some prime number p divides |disc(R)|. From Theorem 13.14, p is ramified
in R. 2

The Minkowski bound (or equivalent bound) is useful in determining the class number. In
particular, if λ is less than 2, then the class number is 1, because every ideal class contains the
unique ideal with norm 1, namely R.

For example, consider the quadratic number field K = Q(
√

5). From Exercise 11.4 we
know that disc(OK) = 5. Also, there are no complex embeddings of K into C. Therefore
λ = 2!

22 ( 4
π )0
√

5 =
√

5
2 < 2 and the class number is 1.

As a second example, we take the quadratic number field L = Q(
√
−2). From the example

before Exercise 11.4, we know that disc(OL) = −8. As there are two complex embeddings of L
into C, we have λ = 2!

22 ( 4
π )1
√

8 = 4
π

√
2 < 2, so, as in the first example, the class number is 1.

14.4 Dirichlet’s unit theorem
Let K be a number field of degree n over Q. We recall that, if α ∈ OK is a unit, then
NK/Q(α) = ±1 (Proposition 11.3).

We define the monomorphism φ as in Section 14.1 and let UK be the set of units in OK .

As in Section 14.1, we let r be the number of real and 2s the number of complex embeddings of
K into C (n = r+2s). The complex embeddings arise in pairs, namely τi and τ̄i, for i = 1, . . . , s.
For i = 1, . . . , s, let us set σr+i = τi. We define a new mapping λ : O∗K −→ Rr+s, which we will
refer to as the logarithmic mapping, by

λ(α) = (ln |σ1(α)|, . . . , ln |σr(α)|, 2 ln |σr+1(α)|, . . . , 2 ln |σr+s(α)|).

Proposition 14.3 Let Y be a bounded subset of Rr+s and X = {α ∈ O∗K : λ(α) ∈ Y }. Then X
is a finite set.

proof As Y is bounded, all the coordinates of λ(α) are bounded and it follows that the elements
|σi(α)| belong to a bounded interval. Hence the absolute values of the elementary symmetric
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functions of the σi(α) lie in some bounded interval. However, the elementary symmetric func-
tions of the σi(α) are the coefficients of the characteristic polynomial of α (Proposition 10.2),
which is a power of the minimal polynomial m(α,Q) (Proposition 10.1). As this polynomial has
integer coefficients, there is a real bounded interval containing the coefficients of the character-
istic polynomial of α and these are all integers. Therefore there can only be a finite number of
characteristic polynomials of elements α belonging to X. Since α is a root of its characteristic
polynomial, X is a finite set. 2

Corollary 14.2 The kernel G of λ is a finite group.

proof To see that G is finite, it is sufficient to take Y = {0} in Proposition 14.3. We also need
to show that G is a group. If α ∈ G, then |σi(α)| = 1, for all i, From Proposition 10.2,

|NK/Q(α)| =
n∏
i=1

|σi(α)| = 1,

so α is a unit. Therefore G is the kernel of λ restricted to UK , which is a homomorphism. Hence
G is a group. 2

We now examine G in more detail.

Proposition 14.4 The kernel G of λ consists of all the roots of unity of K and is cyclic.

proof As G is a finite subgroup of K∗, by Theorem 3.3, G is cyclic. If n is the order of G and
α ∈ G, then αn = 1, hence all elements of G are roots of unity.

Suppose that α ∈ K and αm = 1, for some m ∈ N∗. Then α ∈ OK and, for every i, with
i = 1, . . . , r + s,

|σi(α)|m = |σi(αm)| = |1| = 1.

Thus, for all i, |σi(α)| = 1, so ln |σi(α)| = 0, which implies that α ∈ G. 2

We now turn to the analysis of the group of units UK . We recall that a subgroup H of a
topological group G is discrete if the topology induced on H is discrete. For example, (Zn,+) is
a discrete subgroup of (Rn,+) with the usual metric topology.

Proposition 14.5 If K is a number field, then its group of units UK is finitely generated and
there exists t ≤ r + s such that UK is isomorphic to the product G× Zt.

proof From Proposition 14.3, every bounded subset of Rr+s contains only a finite number of
elements of λ(UK), hence λ(UK) is a discrete subgroup of Rr+s. From Theorem G.6, there exists
t ≤ r + s such that λ(UK) is a lattice in Rt, hence a free abelian group of rank t (Corollary
G.1). By the first isomorphism theorem λ(UK) is isomorphic to the quotient group UK/G, hence
UK/G is a free abelian group of rank t, which we write multiplicatively. If B = {Gα1, . . . , Gαt}
is a basis of UK/G and Gα belongs to UK/G, then Gα is a finite product of powers of the Gαi:

Gα = Gαk11 · · ·Gα
kt
t = Gαk11 · · ·α

kt
t ,

where the ki are unique. Thus there exists β ∈ G such that α = βαk11 · · ·α
kt
t . Clearly, β is

unique. From Proposition 14.4 , G is cyclic, so UK is finitely generated. We also notice that the
mapping

g : UK −→ G× Zt, α 7−→ (β, k1, . . . , kt)
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is a group isomorphism. 2

We will now aim to make precise the value of t. If α ∈ UK then

±1 = NK/Q(α) =

n∏
i=1

σi(α) =

r∏
i=1

σi(α)

r+s∏
j=r+1

σj(α)σj(α),

which implies that

0 =

r∑
i=1

ln |σi(α)|+
r+s∑
j=r+1

2 ln |σj(α)|.

Thus λ(α) belongs to the hyperplane

H = {(x1, . . . , xr+s) :

r+s∑
i=1

xi = 0},

which has dimension r + s− 1. Hence λ(UK) may be considered a discrete subgroup of Rr+s−1

and it follows that λ(UK) is a lattice in Rt, where t ≤ r + s − 1 (Theorem G.6). Therefore
λ(UK) is a free abelian group of rank t ≤ r + s− 1 (Corollary G.1). This improves our estimate
of t found in the proof of Proposition 14.5, where we only found that the rank t of λ(UK) was
bounded by r + s. It follows that UK is isomorphic to the product G× Zt, with t ≤ r + s− 1.

If r + s = 1, then t = 0 and UK is isomorphic to the group G. In fact, in all cases we have
equality, i.e., t = r + s − 1. This is the content of Dirichlet’s unit theorem, which we will now
prove. The proof is much longer than those of the results we have encountered up to now in this
section.

Theorem 14.6 The group UK of the number field K is isomorphic to the product G×Zt, where
G is the finite cyclic group consisting of all the roots of unity in K and t = r + s− 1.

proof We have already covered the case where r+ s = 1, so we will suppose that r+ s > 1. Let
W be the R-span of λ(UK). Above we defined a certain hyperplane H. Since λ(UK) is contained
in H, W is a subspace of H. We aim to show that W = H. To do so, it is sufficient to prove
that W⊥ ⊂ H⊥, or equivalently that x /∈ H⊥ =⇒ x /∈W⊥. We fix x = (x1, . . . , xr+s) /∈ H⊥ and
define a function f : K∗ −→ R by

f(α) = x1 ln |σ1(α)|+ · · ·+ xr ln |σr(α)|+ xr+12 ln |σr+1(α)|+ xr+s2 ln |σr+s(α)|.

To show that x /∈W⊥ we will find u ∈ UK such that f(u) 6= 0. We will procede by steps.

Step 1: An application of Minkowski’s theorem

Let
A =

√
|disc(OK)|( 2

π
)s ∈ R∗+.

and let us choose c1, . . . , cr+s ∈ R∗+ such that

c1 · · · cr · (cr+1 · · · cr+s)2 = A.
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We define S to be the subset of Rn composed of elements (x1, . . . , xn) such that, for i = 1, . . . , r,
|xi| ≤ ci, and x2

r+1 + x2
r+2 ≤ c2r+1, x2

r+3 + x2
r+4 ≤ c2r+2, . . . ,x2

n−1 + x2
n ≤ c2r+s. We may view S

as a product of r intervals and s discs. We obtain

vol (S) =

r∏
r=1

(2ci)

r+s∏
i=r+1

(πc2i ) = 2rπsA.

We may associate a lattice ΛOK (= φ(OK)) with OK . From Section 14.1 we have

det ΛOK = 2−s
√
|disc(OK)|

and so

2rπsA = 2rπs
√
|disc(OK)|( 2

π
)s

= 2r+s
√
|disc(OK)|

= 2r+s2s det ΛOK
= 2n det ΛOK ,

i.e.,
vol (S) = 2n det ΛOK .

From Minkowski’s theorem (Theorem G.4), S contains a nonzero lattice point, i.e., the set
S∩φ(OK) contains a nonzero element. Therefore there exists β ∈ OK which is nonzero and such
that |σi(β)| ≤ ci, for i = 1, . . . , r + s.

Step 2: Properties of the point β

First we consider the norm of β. To simplify the notation, for i = 1, . . . , s, we set σr+i = τi
and σr+s+i = τi. Then

|NK/Q(β)| = |
r+2s∏
i=1

σi(β)|

=

r∏
i=1

|σi(β)|
r+s∏
i=r+1

|σi(β)|2

≤ c1 · · · cr · (cr+1 · · · cr+s)2 = A.

As β is nonzero we also have |NK/Q(β)| ≥ 1, because the norm of an algebraic integer is an
integer. Thus we have 1 ≤ |NK/Q(β)| ≤ A.

We now use the norm to estimate the values of the elements |σi(β)|. Suppose that for some
i ≤ r we have |σi(β)| < ci

A . Then

1 ≤ |NK/Q(β)| < c1 · · ·
ci
A
· · · cr · (cr+1 · · · cr+s)2 =

A

A
= 1,

a contradiction, so |σi(β)| ≥ ci
A , for i = 1, . . . , r. In the same way, |σi(β)|2 ≥ c2i

A , for i =
r + 1, . . . , r + s. Thus we have
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ci
|σi(β)|

≤ A, i = 1, . . . , r and
(

ci
|σi(β)|

)2

≤ A, i = r + 1, . . . , r + s. (14.3)

From Theorem 13.5, there is only a finite number of ideals in OK of a given norm, therefore
there exists a finite number of nonzero principal ideals (γ1), . . . , (γm) of norm at most A. Since
‖(β)‖ = |NK/Q(β)| ≤ A, we must have (β) = (γk), for some k, so there exists a unit u ∈ OK
such that β = uγk.

Step 3: Showing that f(u) 6= 0

For the point x /∈ H⊥ we define

a = a(c1, . . . , cr+s) = x1 ln c1 + · · ·+ xr+12 ln cr+1 + · · · .

We recall the definition of the function f : K∗ −→ R:

f(α) = x1 ln |σ1(α)|+ · · ·+ xr+12 ln |σr+1(α)|+ · · · .

Then

|f(u)− a| = |f(β)− f(γk)− a|
≤ |f(γk)|+ |a− f(β)|
= |f(γk)|+ |x1(ln c1 − ln |σ1(β)|) + · · ·+ 2xr+1(ln cr+1 − ln |σr+1(β)|) + · · · |

= |f(γk)|+ |x1 ln

(
c1

|σ1(β)|

)
+ . . .+ xr+1 ln

(
cr+1

|σr+1(β)|

)2

+ · · · |

≤ |f(γk)|+ lnA

r+s∑
i=1

|xi|

≤ max |f(γk)|+ lnA

r+s∑
i=1

|xi| = B.

where we have used the equations (14.3). If we can find a, which depends on the ci, such that
|a| > B, then |f(u)− a| ≤ B would imply that |f(u)| > 0. We will now show that it is possible
to find such an element a.

We recall the definition of the hyperplane H:

H = {z = (z1, . . . , zr+s) ∈ Rr+s :

r+s∑
i=1

zi = 0}.

Since H⊥ is the vector subspace generated by the vector

v = (1, . . . , 1) ∈ Rr+s,

x /∈ H⊥ implies that we cannot have x1 = · · · = xr+s. To simplify the notation, we set di = ci,
for i = 1, . . . , r and di = c2i , for i = r + 1, . . . , r + s. Then

a = x1 ln d1 + · · ·+ xr+s ln dr+s
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and
∏r+s
i=1 di = A. As already stated there exist xi 6= xj . Without loss of generality, let us

suppose that i = 1 and j = 2. If we set d3 = · · · = dr+s = 1, then d1d2 = A and

|a| = |
r+s∑
i=1

xi ln di| = |x1 ln d1 + x2 ln d2|

= |x1 ln d1 + x2 ln
A

d1
|

= |(x1 − x2) ln d1 + x2 lnA| −→ ∞,

when d1 −→∞. Hence we can find an element a such that |a| > B and so W = H.

In Proposition 14.5 we saw that there are elements α1, . . . , αt ∈ UK such that for any element
α ∈ UK we have α = βαk11 · · ·α

kt
t , where β is a root of unity. Then

λ(α) = λ(βαk11 · · ·α
kt
t ) = k1λ(α1) + · · ·+ ktλ(αt).

It follows that the set B = {λ(α1), . . . , λ(αt)} is a generating set of W and hence of H. Given
that the dimension of H is r+ s− 1, we have t ≥ r+ s− 1. However, we know that t ≤ r+ s− 1,
so we have t = r + s − 1. We deduce that B is a basis of the vector space H. Also, λ(UK) is a
free abelian group of rank t and the elements of B form an independant generating set, so B is
also a basis of the free abelian group λ(UK). 2

Dirichlet’s unit theorem implies that there are t = r+ s− 1 particular units in OK such that
any unit α ∈ OK can be expressed uniquely in the form

α = βαk11 · · ·α
kt
t ,

with β a root of unity and the ki in Z. The set {α1, . . . , αt}, which is not unique, is called a
fundamental system of units.

As an example, let us consider the cyclotomic field K = Q(ζ), where ζ = e
2πi
p , with p an odd

prime number. The degree of the extension K over Q is p− 1 and so there are p− 1 embeddings
in C. As the applications σj , with σj(ζ) = ζj , for j = 1, . . . , p− 1, are distinct embeddings, all
the embeddings are complex, i.e., r = 0, 2s = p− 1, which implies that t = 0 + p−1

2 − 1 = p−3
2 . If

p = 3, then the only units are the roots of unity. If p ≥ 5, then there is an infinite number of units.

If K = Q(
√
m) is an imaginary quadratic field, then there are no real embeddings and so

2s = n = 2 =⇒ s = 1 =⇒ t = 0, so again the only units are the roots of unity.

Now we consider real quadratic fields, which are more interesting. If K = Q(
√
m) is a real

quadratic field, then there are no imaginary embeddings in C, so s = 0 and r = 2. Thus t = 1
and there is an infinite number of units. There are only two roots of unity, namely ±1, hence
there exists an element x ∈ UK such that the elements u ∈ UK can be written u = ±xn, with
n ∈ Z. If u is a unit, then so are −u, 1

u and − 1
u . This implies that there are units u with u > 1.

Let us set U+
K for the set of such units. The elements of UK can be determined from those of

U+
K : u ∈ UK if and only if there exists v ∈ U+

K such that u = ±v or u = ± 1
v .

Let us look more closely at the set U+
K . If v ∈ U+

K , then v = ±xn, which implies that v = |x|n.
Clearly |x| ∈ UK . If |x| < 1, then we may replace x by 1

x , which ensures that v = |x|n, with
n ∈ N∗. It is clear that |x| is the minimum of U+

K and that the elements of U+
K are the positive
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powers of this minimum, which we call the fundamental unit of K.

We now consider how we might calculate the fundamental unit. There are different ap-
proaches to this question. We will give an elementary method. There are two cases.

Case 1: m ≡ 2, 3 (mod 4) The algebraic integers are of the form x = a+ b
√
m, with a, b ∈ Z (see

the proof of Theorem 11.6). The units are those whose norm is ±1, i.e., a2 − b2m = ±1. We
seek the smallest such element whose value is greater than 1. Here is a simple method to find
it: Compute mb2 for b = 1, 2, 3 . . . until either mb2 + 1 or mb2 − 1 is a square a2, where a > 0.
Then set u = a+ b

√
m. u is the fundamental unit.

Example Let m = 6. Then 6 · 12 ± 1 is not a square. However, 6 · 22 = 24 and 24 + 1 = 52,
hence the fundamental unit is 5 + 2

√
6.

Case 2: m ≡ 1 (mod 4) The algebraic integers are of the form x = 1
2 (a + b

√
m), where a, b ∈ Z

and have the same parity (see the proof of Theorem 11.6). Since the norm of x is 1
4 (a2 −mb2),

x is a unit if and only if a2 −mb2 = ±4, with a and b both odd or even. We seek the smallest
such element whose value is greater than 1. Here is a simple way to find it: Compute mb2 for
b = 1, 2, 3 . . . until eithermb2+4 ormb2−4 is a square a2, where a > 0. Then set u = 1

2 (a+b
√
m).

u is the fundamental unit. (As m is odd, the elements a and b found will have the same parity;
this may be seen by considering the norm of u.)

Example Letm = 17. Then 17·12±4 is not a square. However, 17·22 = 68 and 68−4 = 64 = 82,
hence the fundamental unit is u = 1

2 (8 + 2
√

17) = 4 +
√

17.

Exercise 14.1 Calculate the fundamental unit of Q(
√
m) for m = 7, m = 11 and m = 21.

Exercise 14.2 Let m ≡ 2, 3 (mod 4), K = Q(
√
m) and u = a + b

√
m be an element of UK .

Show that ±a ± b
√
m all belong to UK . Establish a similar result for m ≡ 1 (mod 4) and

u = 1
2 (a+ b

√
m) an element of UK

Remark We have seen here that all the embeddings of the number field K into C may be real.
In this case we say that K is totally real. Then the units in OK are the roots of unity and so UK
is finite. On the other hand, it may be so that no embedding is real. In this case we say that K
is totally imaginary.

Exercise 14.3 Show that a number field K which is a normal extension of Q is either real or
imaginary.

14.5 Hermite’s theorem
In this section we will see another application of Minkowski’s theorem (Theorem G.4). We will
show that for any given positive integer there is only a finite number of number fields whose ring
of integers has a discriminant equal to the positive integer in question. We will begin with a
preliminary result.

Proposition 14.6 Let K be a number field of degree n and r (resp. 2s) the number of real
(resp. complex) embeddings of K into C. If I is a nonzero ideal in OK and c1, . . . , cr+s positive
constants such that

r+s∏
i=1

ci > (
2

π
)s|disc(OK)| 12 ‖I‖,
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then there exists α nonzero in I, with |σi(α)| < ci for 1 ≤ i ≤ r, and |σr+j(α)|2 < cr+j, for
1 ≤ j ≤ s.

proof Consider the region

X(c) = {x = (y, z) ∈ Rn ' Rr ×Cs : |yi| < ci, 1 ≤ i ≤ r; |zj |2 < cr+j , 1 ≤ j ≤ s}.

It is clear that X(c) is convex and centrally symmetric. Also

µ(X(c)) = 2rπs
r+s∏
i=1

ci > 2rπs(
2

π
)s|disc(OK)| 12 ‖I‖

= 2n2−s|disc(OK)| 12 ‖I‖,

where µ denotes Lebesgue measure on Rn. In Section 14.1 we saw that

det ΛI = 2−s|disc(OK)| 12 ‖I‖ =⇒ µ(X(c)) > 2n det ΛI .

From Minkowski’s theorem there exists an α ∈ I such that φ(α) 6= 0 and φ(α) ∈ ΛI ∩X(c). Thus
we have α 6= 0 and |σi(α)| < ci for 1 ≤ i ≤ r, and |σr+j(α)|2 < cr+j , for 1 ≤ j ≤ s, as required.2

We are now in a position to establish Hermite’s theorem.

Theorem 14.7 For a fixed positive integer d there exist only finitely many number rings OK
such that disc(OK) = d.

proof If K is a number field and [K : Q] = n, then there is an ideal I in OK such that

‖I‖ ≤ n!

nn
(

4

π
)s|disc(OK)| 12 =⇒ nn

n!
(
π

4
)s ≤ |disc(OK)| 12 ;

because ‖I‖ ≥ 1. Hence the degree of the extension is bounded and so it is sufficient to prove
that there is only a finite number of number rings with a given discriminant when the degree of
the corresponding number field has a certain value. We consider two cases : (1) K has a real
embedding in C, (2) all embeddings of K in C are complex.

Case 1 In this case r > 0. We choose real numbers ci, for 1 ≤ i ≤ r+ s, such that c1 > 1, ci < 1
for i > 1 and

r+s∏
i=1

ci > (
2

π
)s|disc(OK)| 12 .

From Proposition 14.6 there exists a nonzero α ∈ OK such that |σi(α)| < ci, for 1 ≤ i ≤ r, and
|σr+j(α)|2 < cr+j , for 1 ≤ j ≤ s. Since

1 ≤ |NK/Q(α)| = |σ1(α)|
r∏
i=2

|σi(α)|
s∏
j=1

|σr+j(α)|2,

we have |σ1(α)| > 1 and |σi(α)| < 1, for σi 6= σ1. Hence σ1(α) 6= σi(α), if i 6= 1.

Case 2 We define a centrally symmetric convex region X of Cs as follows:

X = {z ∈ Cs : |<(z1)| < 1

2
, |=(z1)| < c1, |zj |2 < cj =

1

2
, 2 ≤ j ≤ s},
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where c1 is some constant such that µ(X) > 2n2−s|disc(OK)| 12 = 2n det Λ. From Minkowski’s
theorem there exists a nonzero α ∈ OK such that φ(α) ∈ X ∩Λ, where φ is the usual monomor-
phism of K into C. Therefore we have |<(σ1(α))| < 1

2 , |=(σ1(α))| < c1 and |σj(α)|2 < 1
2 , for

2 ≤ j ≤ s. Now

1 ≤ |NK/Q(α)| = |σ1(α)|2
s∏
j=2

|σj(α)|2 =⇒ |σ1(α)|2 > 1.

Therefore, if 2 ≤ j ≤ s, we have σi(α) 6= σ1(α). (As |σ1(α)| > 1 and |<(σ1(α))| < 1
2 , we must

have |=(σ1(α))| >
√

3
2 )

In both cases we have n = [Q(α) : Q]. If this is not the case, then [K : Q(α)] = m ≥ 2 and σ1

restricted to Q(α) may be extended to K in m distinct ways (Theorem 3.2), which implies that
there exists σi 6= σ1 such that σi(α) = σ1(α), a contradiction. It follows that [K : Q(α)] = 1,
i.e., K = Q(α). If f = m(α,Q), then deg f = n and f ∈ Z[X].

From Proposition 10.2 we have

char K/Q(α) =

n∏
i=1

(−σi(α) +X) ∈ Z[X],

because char K/Q(α) is a power of f , by Corollary 10.1. Also, as the ci are bounded, so are
the coefficients of char K/Q(α) and it results that the coefficients of f are all bounded. We now
observe that there can only be a finite number of polynomials in Z[X] with all the coefficients
bounded. Let us write P(c) for the set of such polynomials obtained here. If K is a number field
whose ring of integers OK has discriminant d and [K : Q] = n, then, from what we have seen,
there exists α with minimal polynomial f in P(c) such that K = Q(α). As a polynomial has a
finite number of roots, there can only be a finite number of number fields with K = Q(α) and α
a root of a polynomial in P(c). This finishes the proof. 2
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Chapter 15

Differents

In this chapter we introduce the different, which, as the norm, trace and discriminant, plays an
important role in algebraic number theory. We will define the different and then consider its
properties. As the definition requires quite a lot of preliminary work, we will consecrate a section
to it.

15.1 Definition of the different
Let C be a Dedekind domain and K its field of fractions. Suppose that L is an n-dimensional
separable extension of K and D the integral closure of C in L. From Theorem 12.15, D is also
a Dedekind domain and, from Proposition 11.2, L is the field of fractions of D. We consider
the bilinear form B defined on L × L by (x, y) 7−→ TL/K(xy). This is nondegenerate, because
L is a separable extension of K (see Corollary 10.4). From Lemma 12.8, we know that if
B = {x1, . . . , xn} is a basis of L over K, then B has a dual basis B∗ = {x∗1, . . . , x∗n}, i.e.,
B(xi, x

∗
j ) = δij , where δij is the Kronecker symbol.

Proposition 15.1 Let L be a separable n-dimensional extension of K and B the nondegenerate
bilinear form on L× L defined above. We suppose that {x1, . . . , xn} is a basis of L over K and
{x∗1, . . . , x∗n} its dual basis. Then

discL/K(x1, . . . , xn) · discL/K(x∗1, . . . , x
∗
n) = 1.

proof Let σ1, . . . , σn be the K-monomorphisms of L into an algebraic closure C of K. We set
X = (σi(xj)) and X∗ =

(
σi(x

∗
j )
)
. Then

X∗tx =
(
TL/K(x∗i xj)

)
,

therefore
detX∗ detX = det In = 1.

However,

discL/K(x1, . . . , xn) = (detX)2 and discL/K(x∗1, . . . , x
∗
n) = (detX∗)2,

therefore
discL/K(x1, . . . , xn) · discL/K(x∗1, . . . , x

∗
n) = 1,
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as required. 2

For a subset M of L, we define

M∗ = {x ∈ L : TL/K(xy) ∈ C, ∀y ∈M}.

M∗ is called the complementary subset ofM . In the next proposition we consider some elementary
properties of complementary subsets.

Proposition 15.2 We have

• a. M∗ is a C-module. If DM ⊂M , then M∗ is a D-module.

• b. M1 ⊂M2 =⇒M∗2 ⊂M∗1 .

• c. D ⊂ D∗ and TL/K(D∗) ⊂ C.

• d. If M is a free C-module with basis B = {x1, . . . , xn}, then M∗ is a free C-module with
basis {x∗1, . . . , x∗n} and M∗∗ = M .

(The basis B is also a basis of the vector space L over K, so has a dual basis B∗ = {x∗1, . . . , x∗n}
in L.)

proof a. Let x1, x2 ∈M∗ and y ∈M . Then

TL/K ((x1 + x2)y) = TL/K(x1y) + TL/K(x2y) ∈ C,

so x1 + x2 ∈M∗. If a ∈ C, x ∈M∗ and y ∈M , then

TL/K ((ax)y) = aTL/K(xy) ∈ C,

so ax ∈M∗. We have shown that M∗ is C-module.
Suppose now that DM ⊂M . If b ∈ D, x ∈M∗ and y ∈M , then

TL/K ((bx)y) = TL/K (x(by)) ∈ C,

because by ∈M . Hence bx ∈M∗ and it follows that M∗ is a D-module.

b. The proof of this part is elementary.

c. Let x ∈ D. As x is integral over the integrally closed domain C, from Proposition 11.1
the minimal polynomial m(x,K) has coefficients in C. However, the characteristic polyno-
mial char L/K(x) is a positive power of m(x,K) (Proposition 10.1), therefore the coefficients of
char L/K(x) belong to C, in particular TL/K(x) ∈ C. Thus TL/K(D) ⊂ C. If x, y ∈ D, then
xy ∈ D and so TL/K(xy) ∈ C, which implies that x ∈ D∗ and it follows that D ⊂ D∗.

By definition, if x ∈ D∗, then TL/K(xy) ∈ C, for all y ∈ D. As 1 ∈ D, TL/K(x) ∈ C and so
TL/K(D∗) ⊂ C.

d. We know that B∗ is a basis of L over K. To show that B∗ is a basis of M∗, we first need to
establish the inclusion of B∗ in M∗. If x∗i ∈ B∗, then, for xj ∈ B, we have

TL/K(x∗i xj) = δij ∈ C =⇒ TL/K(x∗i y) ∈ C, ∀y ∈M,

because {x1, . . . , xn} is a C-basis of M . Thus x∗i ∈M∗, for all i.
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As B∗ is independant over K, this is also the case over C, which is a subset of K. To show
that B∗ is a basis of M∗, we need to show that it is a generating set. As B∗ is a basis of L over
K, for x ∈ M∗, we have x =

∑n
i=1 aix

∗
i , with ai ∈ K. It is sufficient to show that the ai ∈ C.

We have

aj = TL/K

((
n∑
i=1

aix
∗
i

)
xj

)
∈ C ∀j =⇒ aj ∈ C,

Thus B∗ is a generating set of M∗.
We now turn to the second part of d. M∗ is composed of those elements x ∈ L which can be

written in the form x =
∑n
i=1 aix

∗
i , with ai ∈ C, for all i. Replacing M by M∗, we see that M∗∗

is composed of those elements x ∈ L which can be written in the form x =
∑n
i=1 aix

∗∗
i , with

ai ∈ C, for all i. As x∗∗i = xi, for all i, we have

M∗∗ = M,

as claimed. 2

We now concentrate our attention on D∗. For the next proposition we will need two standard
results on Noetherian rings. Proofs may be found, for example, in [1].

Lemma 15.1 • a. If M is a finitely generated module over a noetherian ring R, then M is
noetherian.

• b. A submodule of a noetherian module is finitely generated.

Proposition 15.3 D∗ is a fractional ideal of D.

proof As DD ⊂ D, from Proposition 15.2 a., D∗ is a D-module (contained in the field of
fractions of D). It is sufficient to show that D∗ is a finitely generated D-module. (If this is
the case, then the product of the denominators of the elements of a generating set provides a
denominator of D∗.)

Since the extension L/K is finite and separable, from the primitive element theorem there
exists α ∈ L such that L = K(α). As α is algebraic over K, the fraction field of C, there exists
c ∈ C \ {0} such that d = cα is is integral over C; then d belongs to D, the integral closure of
C in L. Moreover, the set D = {1, d, . . . , dn−1} is a basis of L over K, since [L : K] = n and
L = K(d) ensure that the the degree of the minimal polynomial m(d,K) is n. The free module
C-module generated by D is the module C[d].

As C[d] ⊂ D, we have D∗ ⊂ C[d]∗, using Proposition 15.2 b. Also, C is a Dedekind domain,
hence a noetherian domain, and C[d]∗ is finitely generated over C, so C[d]∗ is a noetherian
C-module (Lemma 15.1 a.). Since D∗ is a submodule of the C-module C[d]∗, D∗ is finitely
generated over C (Lemma 15.1 b.). Given that C ⊂ D, this is also the case over D. 2

We are now in a position to define the different. We notice that D∗ is nonzero, because
D ⊂ D∗, so it has an inverse in the set of fractional ideals of D. The fractional ideal (D∗)−1 is
called the different of D over C and is denoted ∆(D|C). In the next section, we will see that the
different is in fact an integral ideal of D.

Remark Suppose that K and L are number fields, where L is a finite extension of K. If we set
C = OK and D = OL, then C and D are Dedekind domains and D is the integral closure of C
in L. In this case we often write ∆L/K for ∆(D|C). If K = Q, then, instead of writing ∆L/Q,
we often use the shorter form ∆L. ∆L is called the absolute different of L.
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15.2 Basic properties of the different
As we said at the end of the preceding section, the different is an integral ideal of D. We will
now prove this.

Proposition 15.4 The different of D over C is an integral ideal of D.

proof As D ⊂ D∗, we have (D∗)−1 ⊂ D−1 = D, so (D∗)−1 is an integral ideal of D. 2

We may generalize the product of two ideals in the following way. If R ⊂ S are commutative
rings and I (resp. J) is an ideal in R (resp. S), then we may define the product JI to be the
collection of all sums of the form

∑n
i=1 xiyi, where xi ∈ I and yi ∈ J . Then clearly JI is an

ideal in S. In the case where R and S are integral domains, we may generalize the product of
fractional ideals in a similar manner.

We recall that C is a Dedekind domain with field of fractions K, L a finite separable extension
of K and D the integral closure of C in L. In addition, let M be finite separable extension of L
and E the integral closure of D in M . Then M is also a finite separable extension of K and E
the integral closure of C in M . The differents ∆(D|C), ∆(E|C) and ∆(E|D) are all defined and
related in the following way:

∆(E|C) = ∆(E|D)∆(D|C).

We say that the different is transitive. To prove this result we need a lemma.

Lemma 15.2 Let C be a Dedekind domain, with field of fractions K, L a finite separable exten-
sion of K and D the integral closure of C in L. Assume that J is a fractional ideal of D. Then
TL/K(J) ⊂ C if and only if J ⊂ D∗.

proof Suppose that TL/K(J) ⊂ C. As J is a D-module, we have J = DJ . If x ∈ J and d ∈ D,
then TL/K(xd) = TL/K(y), with y ∈ J . Thus TL/K(xd) ∈ C and it follows that J ⊂ D∗.

We now consider the converse. Suppose that J ⊂ D∗. If x ∈ J and d ∈ D, then TL/K(xd) ∈ C.
Setting d = 1, we obtain TL/K(x) ∈ C and it follows that TL/K(J) ⊂ C. 2

We may now establish the transitivity of the different referred to above.

Theorem 15.1 We have
∆(E|C) = ∆(E|D)∆(D|C).

proof To simplify matters, we will proceed in steps. However, first of all we recall that

∆(E|D)−1 = {x ∈M : TM/L(xy) ∈ D,∀y ∈ E}

and
∆(E|C)−1 = {x ∈M : TM/K(xy) ∈ C, ∀y ∈ E}.

Also, we will write D∗ for ∆(D|C)−1.

Step 1 If JE is a fractional ideal of E contained in ∆(E|D)−1, then

TM/K (JED
∗) ⊂ TL/K (D∗) .

Indeed, if d ∈ D, d∗ ∈ D∗ and jE ∈ JE , then

TL/K
(
TM/L(jEd

∗)d
)

= TL/K
(
dd∗(TM/L(jE))

)
,
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because d∗ ∈ L. Moreover, jE ∈ ∆(E|D)−1 implies that TM/L(jE) ∈ D. Consequently,
TL/K

(
TM/L(jEd

∗)d
)
⊂ C, since d∗ ∈ D∗. This means that

TM/L(JED
∗) ⊂ D∗ =⇒ TL/K ◦ TM/L(JED

∗) ⊂ TL/K(D∗)

and transitivity of the trace ensures that the statement of Step 1 holds.

Step 2 JE ⊂ ∆(E/C)−1D∗.

From Proposition 15.2 c. and the first step, we have

C ⊃ TL/K(D∗) ⊃ TM/K(JED
∗).

Now, using Lemma 15.2, with L = M , D = E and J = JED
∗, we obtain

JED
∗ ⊂ ∆(E|C)−1 =⇒ JE ⊂ ∆(E|C)−1∆(D|C),

because D∗ = ∆(D/C)−1.

Step 3 ∆(E|C) = ∆(E|D)∆(D|C).

Setting JE = ∆(E|D)−1, we obtain

∆(E|D)−1 ⊂ ∆(E|C)−1∆(D|C).

Since C ⊂ D, we have ∆(E|C)−1 ⊂ ∆(E|D)−1 and so

∆(E|D)−1 ⊂ ∆(E|C)−1∆(D|C) ⊂ ∆(E|D)−1∆(D|C) ⊂ ∆(E|D)−1,

because ∆(E|D)−1 is an E-module and ∆(D|C) ⊂ D. Therefore

∆(E|D)−1 = ∆(E|C)−1∆(D|C) =⇒ ∆(E|C) = ∆(E|D)∆(D|C).

This ends the proof. 2

If we multiply ∆(D|C) on the left by E, we obtain an ideal of E and an analogous expression
to that of Theorem 15.1, but involving a multiplication of ideals in E.

Corollary 15.1 We have
∆(E|C) = ∆(E|D) (E∆(D|C)) .

proof It is sufficient to show that

∆(E|D) (E∆(D|C)) = ∆(E|D)∆(D|C).

As ∆(D|C) ⊂ E∆(D|C), we have

∆(E|D)∆(D|C) ⊂ ∆(E|D) (E∆(D|C)) .

Now let x ∈ ∆(E|D) and y ∈ E∆(D|C). Then y =
∑n
i=1 aibi, with ai ∈ E and bi ∈ ∆(D|C), so

xy = x

n∑
i=1

aibi =

n∑
i=1

(aix)bi ∈ ∆(E|D)∆(DC)),

because ∆(E|D) is an ideal in E. It follows that

∆(E|D) (E∆(D|C)) ⊂ ∆(E|D)∆(D|C),

and hence the required equality. 2
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15.3 Rings of fractions
We now consider rings of fractions. Let C be a Dedekind domain, with field of fractions K, and
L a finite separable extension of K. We suppose that D is the integral closure of C in L and U
a multiplicative subset of C. As C ⊂ D, U is also a multiplicative subset of D. We recall that
D′ = U−1D is the integral closure of C ′ = U−1C in L. (Proposition 12.20).

If P is a prime ideal of C and U = C \P , then we write ∆P (L|K) for ∆(D′|C ′). The different
∆P (L|K) is called the different of L|K over P .

We now consider the special case of number fields. We wish to find a relation between ∆L/K

and ∆(D′|C ′).

Theorem 15.2 Let K ⊂ L be number fields, where L is a finite extension of K and C = OK ,
D = OL the corresponding number rings. If U is a multiplicative subset of C and C ′ = U−1C,
D′ = U−1D, then

D′∆L/K = ∆(D′|C ′).

proof If x ∈ D′∆L/K , then x is a finite sum of products of the form ab, with a ∈ D′ and
b ∈ ∆L/K . However, a = d

u , with d ∈ D and u ∈ U . As ∆L/K is an ideal in D, db ∈ ∆L/K , so
x = y

u , with y ∈ ∆L/K and u ∈ U .
Let z ∈ D′∗; then TL/K(zD′) ⊂ C ′. As D is a finitely generated Z-module, D is a finitely

generated C-module. Let {t1, . . . , tm} be a generating set of D. Then TL/K(zti) = ci
ui
, with

ci ∈ C and ui ∈ U . We set u0 = u1 · · ·um ∈ U . Then

TL/K(zu0ti) = u0TL/K(zti) ∈ C,

for i = 1, . . . ,m. Hence
TL/K(zu0D) ⊂ C =⇒ zu0 ∈ D∗.

Now, ∆(D|C) = D∗−1 and y ∈ ∆(D|C), so, by Proposition 12.8, yzu0 ∈ D. From this we deduce
that

xz =
yzu0

uu0
∈ D′.

Thus, for every z ∈ D′∗, xz ∈ D′. Using Proposition 12.8 again, we obtain that x belongs to the
inverse of D′∗, i.e., x ∈ ∆(D′|C ′). We have shown that D′∆L/K ⊂ ∆(D′|C ′).

We now consider the reverse inclusion. Let x ∈ ∆(D′|C ′). First we recall that D∗ is a
fractional ideal of D (Proposition 15.3), hence D∗ is a finitely generated D-module (Proposition
12.7). Let {z1, . . . , zn} be a generating set of the D-module D∗. Then TL/K(ziD) ⊂ C. If
y
u ∈ D

′, then

TL/K(zi
y

u
) =

1

u
TL/K(ziy) ∈ C ′ =⇒ TL/K(ziD

′) ⊂ C ′,

which implies that zi ∈ D′∗. Using Proposition 12.8, we obtain xzi ∈ C ′ ⊂ D′ = U−1D and so
we may write xzi = di

ui
, with di ∈ D and ui ∈ U . Let u0 = u1 · · ·un ∈ U . Then u0xzi ∈ D, for

i = 1, · · · , n, hence u0xD
∗ ⊂ D, thus

ux∆(D|C)−1 ⊂ D =⇒ ux ∈ D∆(D|C) = ∆(D|C)

and so
x ∈ U−1∆(D|C) ⊂ D′∆(D|C).

Therefore
∆(D′|C ′) ⊂ D′∆(D|C).

This ends the proof. 2
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15.4 Preliminary work for Dedekind’s different theorem
Let K ⊂ L be number fields with respective associated number rings C and D. The different
∆L/K is an ideal in D such that ∆L/K 6= {0}. If ∆L/K 6= D, then there exist nonzero prime
ideals Q1, . . . , Qr in D and positive integers n1, . . . , nr such that

∆L/K = Qn1
1 · · ·Qnrr .

If Q belongs to the set of prime ideals in this decomposition and Q = Qi, then we set sQ =
sQ(L/K) = ni. For any other prime ideal Q in D, we set sQ = 0. In particular, if ∆L/K = D,
then sQ = 0, for all nonzero prime ideals in D. sQ is called the exponent at Q of the different
∆L/K .

If Q is a nonzero prime ideal in D, then P = C ∩Q is a nonzero prime ideal in C (Theorem
13.1). From Proposition 13.1 we have Q|DP . If

DP = Qe11 · · ·Q
et
t ,

then Q = Qi, for some Qi in the decomposition of DP . We call ei the ramification index of Q
and note it eQ. (In fact, eQ = e(Q|P ), where P = C ∩ Q.) Q is said to be ramified if eQ ≥ 2.
There is an important relation between sQ and eQ:

Result For every nonzero prime ideal Q in D, we have sQ ≥ eQ − 1. In addition, sQ = eQ − 1
if and only if the characteristic of the field D/Q does not divide eQ.

The proof of this result is rather long and requires some preliminary work. This we will do in
this section and in the next we will concentrate our attention on the proof of the result.

Lemma 15.3 Let ψ : S −→ S̄ be a surjective ring homomorphism. We suppose that R is a
subring of S such that S is a free R-module with basis B = {x1, . . . , xn}. We note R̄ the image
of R and B̄ = {x̄1, . . . , x̄n} the image of B and we suppose that S̄ is a free R̄-module with basis
B̄. If x ∈ S, then

ψ
(
NS/R(x)

)
= NS̄/R̄(x̄) (15.1)

ψ
(
TS/R(x)

)
= TS̄/R̄(x̄) (15.2)

ψ∗
(
char S/R(x)

)
= char S̄/R̄(x̄), (15.3)

where ψ∗ is the mapping from S[X] into S̄[X] which applies ψ to each coefficient of a polynomial
of S[x].

proof We note θx the mapping from S into itself defined by multiplication by x and M(θx) the
matrix of θx in the basis B. In the same way we note θx̄ the mapping from S̄ into itself defined
by multiplication by x̄ and M(θx̄) the matrix of θx̄ in the basis B̄. If

xxj =

n∑
i=1

rijxi j = 1, . . . , n,

then

x̄x̄j =

n∑
i=1

r̄ij x̄i j = 1, . . . , n.
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Therefore,
M(θx) = (rij) and M(θx̄) = (r̄ij).

If we apply ψ to the coefficients of the characteristic polynomial char S/R(x) = det (XI −M(θx)),
then we obtain det (XI −M(θx̄)) = char S̄/R̄(x̄), i.e., the third relation. The other two relations
follow easily. 2

The next preliminary results are more difficult. Let R be a ring and K a subfield of R.
Then R is a K-vector space. We suppose that dimK R = n < ∞. In addition, let θ : R −→ R
be a K-linear endomorphism and we suppose the existence of K-subspaces Ri of R forming a
decreasing sequence

R = R0 ⊃ R1 ⊃ · · · ⊃ Rk−1 ⊃ Rk = {0}
such that θ(Ri) ⊂ Ri, for i = 1, . . . , k. Then θ induces a K-linear endomorphism θi on Ri−1/Ri
defined by

θi(x+Ri) = θ(x) +Ri.

(If x′ ∈ Ri, then
θ(x+ x′) +Ri = θ(x) + θ(x′) +Ri = θ(x) +Ri,

because θ(x′) ∈ Ri, so θi is well-defined.)

Lemma 15.4 For each index i = 1, . . . , k, let Bi = {xi1, . . . , ximi} be a set of elements of Ri−1

such that {xi1 +Ri, . . . , ximi +Ri} is a basis of Ri−1/Ri. Then, for i = 1, . . . , k, the set

B̃i = Bi ∪ · · · ∪ Bk

is a basis of Ri−1. In particular,

B = B̃1 = B1 ∪ · · · ∪ Bk

is a basis of R.

proof If x ∈ Ri−1, then there exist λi1, . . . , λimi ∈ K and y ∈ Ri such that

x = λi1xi1 + · · ·+ λimiximi + y.

As y ∈ Ri, there exist λi+1,1, . . . , λi+1,mi+1
∈ K and z ∈ Ri+1 such that

y = λi+1,1xi+1,1 + · · ·+ λi+1,mi+1
xi+1,mi+1

+ z.

Continuing in the same way, we see that B̃i is a generating set of Ri−1, since Rk = {0}.
Suppose that

λi1xi1+· · ·+λimiximi+λi+1,1xi+1,1+· · ·+λi+1,mi+1
xi+1,mi+1

+· · ·+λk1xk1+· · ·+λkmkxkmk = 0.

Then
λi+1,1xi+1,1 + · · ·+ λkmkxkmk ∈ Ri =⇒ λi1xi1 + · · ·+ λimiximi ∈ Ri.

As {xi1 + Ri, . . . , ximi + Ri} is a basis of Ri−1, we have λi1 = · · · = λimi = 0 and it follows
that λi+1,1xi+1,1 + · · · + λkmkxkmk = 0. We now repeat the preceding argument to show that
λi+1,1 = · · · = λi+1,mi+1

= 0. Continuing in the same way we find that all the coefficients λij
have the value 0. Hence B̃i is an independant set and so a basis of Ri−1. 2

The basis B enables us to find a factorization of the characteristic polynomial of the K-linear
homomorphism θ defined above.

224



Proposition 15.5 We have

char R/K(θ) =

k∏
i=1

char (Ri−1/Ri)/K(θi).

proof We consider θ with respect to the basis B. As θ(xij) ∈ Ri−1, we may express it in terms
of the basis Bi:

θ(xij) =

mi∑
l=1

λijlxil +

mi+1∑
l=1

λi+1,jlxi+1,l + · · ·+
mk∑
l=1

λkjlxkl,

where the coefficients λabc belong to K. Then

θi(x̄ij) =

mi∑
l=1

λijlx̄il

and so

M(θ) =


M(θ1) 0 . . . 0
M21 M(θ2) . . . 0
...

...
. . .

Mk1 Mk2 . . . M(θk)

 ,

where M(θ) is the matrix of θ in the basis B and, for i = 1, . . . , k, M(θi) is the matrix of θi in
the basis B̄i = {x̄i1, . . . , x̄imi} of Ri−1/Ri; the other blocks Mij are matrices with entries in K.
It now follows easily that

char R/K(θ) =

k∏
i=1

char (Ri−1/Ri)/K(θi).

This ends the proof. 2

Suppose now that we remain in the same context and add the following conditions (C):

• a. Each Ri is an ideal in R;

• b. For each i = 1, . . . , k, there is no ideal I in R such that Ri−1 % I % Ri;

• c. If y ∈ R1 and z ∈ Ri−1, then yz ∈ Ri.

Lemma 15.5 Under the conditions (C), if y, z ∈ R with yz ∈ Ri and y /∈ Ri, then z ∈ R1.

proof From a. and b. R1 is a maximal ideal in R. We claim that R1 is the unique maximal
ideal. Suppose that t ∈ R1; then t ∈ R2−1, so, from c., t2 ∈ R2. Now t ∈ R1 and t2 ∈ R3−1, so
t3 ∈ R3. Continuing in the same way, we find that tk ∈ Rk = {0}, so

(1− t)(1 + t+ · · ·+ tk−1) = 1− tk = 1,

so 1 − t is invertible. If I is a maximal ideal of R such that I is not included in R1, then
R = R1 + I, because I is a maximal ideal in R, so there exist t ∈ R1 and u ∈ I such that
1 = t + u. However, u = 1 − t is invertible, which is impossible, because I is a proper ideal in
R. It follows that any maximal ideal I in R is included in R1 and so R1 is the unique maximal
ideal of R.
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Suppose that z ∈ R \ R1 and z is not invertible. Then z lies in a maximal ideal I. As there
is only one such ideal, namely R1, z ∈ R1, a contradiction, so z is invertible.

Let y, z ∈ R, with yz ∈ Ri. If z /∈ R1, then z is invertible. Since Ri is an ideal, we have
y = z−1yz ∈ Ri. 2

We are now in a position to establish a key result of this section. We will remain in the same
context, with the conditions (C) and suppose that the linear mapping θ = θx (multiplication by
x ∈ R, for some fixed x ∈ R).

Theorem 15.3 For i = 1, . . . , k,

char (Ri−1/Ri)/K(θi) = char (R/R1)/K(θ1),

Hence
char R/K(x) =

(
char (R/R1)/K(θ1)

)k
.

proof We claim that, for i = 1, . . . , k, there exists a linear isomorphism λi : Ri−1/Ri −→ R/R1

such that θ1 ◦ λi = λi ◦ θi. Let u ∈ Ri−1 \Ri. Then Ri ⊂ Ri +Ru ⊂ Ri−1. As Ri is an ideal of
R (condition (C) a.), Ri +Ru is also an ideal of R. In addition, Ri +Ru = Ri−1 (condition (C)
b.) If y +Ri ∈ Ri−1/Ri, then y = y2 + y1u, with y2 ∈ Ri and y1 ∈ R. We set

λi(y +Ri) = y1 +R1.

Suppose that y = z2 + z1u, with z2 ∈ Ri and z1 ∈ R, then

0 = (y2 − z2) + (y1 − z1)u =⇒ (y1 − z1)u ∈ Ri.

Given that u /∈ Ri, from Lemma 15.5 we obtain that y1 − z1 ∈ R1, so y1 +R1 = z1 +R1, i.e., λi
is well-defined. Clearly λi is a surjective R-module homomorphism. Suppose that λi(y + Ri) =
0 ∈ R/R1. If y = y2 + y1u, then y1 ∈ R1 and, from condition (C) c., y1u ∈ Ri and so y ∈ Ri,
i.e., y = 0 ∈ Ri−1/Ri. It follows that λi is injective. We have shown that λi is an isomorphism.

It remains to show that θ1 ◦λi = λi ◦ θi. Let y be an element of Ri−1 such that y = y2 + y1u,
with y2 ∈ Ri and y1 ∈ R. Then xy = xy2 + (xy1)u, with xy2 ∈ Ri and xy1 ∈ R. We have

θ1 (λi(y +Ri)) = θ1(y1 +R1) = θ(y1) +R1 = xy1 +R1,

and then
xy1 +R1 = λi(xy +Ri) = λi (θ(y) +Ri) = λi (θi(y +Ri)) .

Hence θ1 ◦ λi = λi ◦ θi, as claimed.
Let Bi = {x1, . . . , xm} be a K-basis of Ri−1/Ri and B′i = {x′1, . . . , x′m}, where x′k = λi(xk),

for k = 1, . . . ,m. Then B′i is a K-basis of R/R1, because λi is a linear isomorphism. If θi(xj) =∑m
k=1 a

i
kjxk, then

λi (θi(xj)) =

m∑
k=1

aikjλi(xk) =

m∑
k=1

aikx
′
k

and

θ1(x′j) = θ1 (λi(xj)) = λi (θi(xj)) =

m∑
k=1

aikjx
′
k.

Thus the matrix of θi with respect to the basis Bi and the matrix of θ1 with repect to the basis
B′i are the same. It follows that

char (Ri−1/Ri)/K(θi) = char (R/R1)/K(θ1)
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and, using Proposition 15.5, we obtain

char R/K(θ) =
(
char (R/R1)/K(θ1)

)k
,

as required, since θ = θx, the multiplication by x. 2

We now turn to Dedekind domains. Let C be a Dedekind domain, with field of fractions K,
and L a separable extension of degree n of K. We suppose that D is the integral closure of C
in L. (We know from the remark after Theorem 12.15 that D is a Dedekind domain, which is
distinct from C, if n > 1.) We take a nonzero prime ideal P of C. As DP is an ideal in D and
DP 6= {0}, D, we have a decomposition

DP =

r∏
i=1

Qeii ,

where the Qi are prime ideals in D and the ei positive integers. From Theorem 12.16, D/DP is a
vector space over the field C/P = F of dimension n. We now define certain canonical mappings:

ψ : C −→ F, ψ0 : D −→ D/DP and ψi : D −→ D/Qi = Li,

for i = 1, . . . , r. It will be shown during the proof of Theorem 15.4 that Li is a field extension
of F of finite degree. If i 6= j, then Qi and Qj are coprime and this is also the case for Qeii and
Q
ej
j . With

U = C \ P, C ′ = U−1C, D′ = U−1D and P ′ = C ′P,

we define the following canonical mappings:

ψ̃ : C ′ −→ C ′/P ′ = F ′ and ψ̃0 : D′ −→ D′/D′P.

From Corollary 12.11, there is a ring isomomorphism φ from D/DP onto D′/D′P , taking d+DP
to d

1 +D′P . The image of F is F ′.
From Proposition 12.4, we have

∩ri=1Q
ei
i =

r∏
i=1

Qeii = DP,

so, using Corollary F.1, we obtain

D/DP '
r∏
i=1

D/Qeii .

Explicitly the isomorphism is defined by

π(y +DP ) = (y +Qe11 , . . . , y +Qerr ).

For i = 1, . . . , r, we define
πi(y +DP ) = y +Qeii ,

i.e., πi is the projection of D/DP onto D/Qeii .
If A and B are rings and α : A −→ B a ring homomorphism, then we define α∗ to be the

mapping from A[X] into B[X] which applies α to each coefficient of a polynomial in A[X].
With this preliminary work, we may now state (and prove) the second key result of this

section.
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Theorem 15.4 If x ∈ D, then char L/K(x) ∈ C[X] and

• a. ψ∗
(
char L/K(x)

)
=
∏r
j=1 char Lj/F (ψj(x))

ej ;

• b. ψ
(
TL/K(x)

)
=
∑r
j=1 ejTLj/F (ψj(x));

• c. ψ
(
NL/K(x)

)
=
∏r
j=1NLj/F (ψj(x))

ej .

(It is important to show that char L/K(x) ∈ C[X], because the mapping ψ is defined on C.)

proof The proof of this result is rather long, so we have divided it into parts and paragraphs.
Also, to simplify the notation, in general we write x for x

1 .

Part 1

- As x ∈ D, x is integral over C, therefore the minimal polynomial m(x,K) belongs to C[X]
(Proposition 11.1). Given that the characteristic polynomial char L/K(x) is a power of m(x,K)
(Proposition 10.1), it belongs to C[X].

- Using the proof of Theorem 12.17, we note certain properties of C ′ and D′, namely C ′ is
a PID, D′ is the integral closure of C ′ in L and D′ is a free C ′-module of rank n. In addition,
D′/D′P is an F ′-vector space of rank n: if B′ = {x′1, . . . , x′n} is a basis of the free C ′-module D′,
then B̄′ = {x̄′1, . . . , x̄′n} is a basis of the F ′-vector space D′/D′P , where x̄′i is the image x′i under
the canonical mapping ψ̃0 of D′ onto D′/D′P .

- Now let V = C ′ \ {0}. The set V is a multiplicative subset of the integral domain C ′ and
V −1C ′ is the field of fractions of C ′, which is K. Also, D′ is the integral closure of C ′ in L, so,
by Proposition 12.20, V −1D′ is the integral closure of V −1C ′ in L, i.e., the integral closure of K
in L. If γ is the canonical monomorphism from D′ into V −1D′, then from Section 12.8 we have

char V −1D′/V −1C′(γ(x)) = γ∗(char D′/C′(x)).

As γ is the canonical inclusion of D′ in V −1D′, we may identify D′ with its image under γ and
so we obtain

char L/K(x) = char V −1D′/V −1C′(x) = char D′/C′(x).

We aim to study char D′/C′(x). At the beginning of the proof we recalled certain properties of
C ′ and D′, which permit us to apply Lemma 15.3 with ψ̃0 in the place of ψ. We obtain

ψ̃∗0
(
char D′/C′(x)

)
= char (D′/D′P )/F ′

(
ψ̃0(x)

)
,

- From Corollary 12.11, there is a ring isomorphism φ from D/DP onto D′/D′P , taking
d+DP to d+D′P . The image of F is F ′. We now show that

char (D′/D′P )/F ′

(
ψ̃0(x)

)
= φ∗

(
char (D/DP )/F (ψ0(x))

)
.

If B = {d1 + DP, . . . , dn + DP} is a basis of the F -vector space D/DP , then B′ = {d1 +
D′P, . . . , dn+D′P} is a basis of the F ′-vector spaceD′/D′P . Also, if x ∈ D, then ψ0(x) = x+DP
and ψ̃0(x) = x + D′P . We consider the matrices of θψ0(x) and θψ̃0(x) in the respective bases B
and B′. If

ψ0(x)(dk +DP ) =

n∑
i=1

(aik + P )(di +DP ) =

n∑
i=1

(aik +DP )(di +DP ),
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then

φ(ψ0(x))φ(dk +DP ) =

n∑
i=1

φ(aik +DP )φ(di +DP )

=

n∑
i=1

(aik +D′P )(di +D′P )

=

n∑
i=1

(aik + C ′P )(d1 +D′P ).

However,
φ (ψ0(x)) = ψ0(x) +D′P = φ ◦ ψ(x) = ψ̃0(x),

hence

ψ̃0(x)(dk +D′P ) =

n∑
i=1

(aik + C ′P )(di +D′P ).

If (aik) is the matrix of θψ0(x) in the basis B, then the matix of θψ̃0(x) in the basis B′ has the
form (φ(aik)). From this we obtain

char (D′/D′P )/F ′

(
ψ̃0(x)

)
= φ∗

(
char (D/DP )/F (ψ0(x))

)
,

as required.

- To sum up, we have shown that

ψ̃∗0
(
char D′/C′(x)

)
= φ∗

(
char (D/DP )/F (ψ0(x))

)
.

This finishes the first part of the proof.

Part 2

- Our first step in this part is to show that

char (D/DP )/F (ψ0(x)) = char ∏r
i=1(D/Q

ei
i )/F (π(ψ0(x))) .

- The ring isomorphism π : D/DP −→
∏r
i=1D/Q

ei
i enables us to define a scalar multiplica-

tion on
∏r
i=1D/Q

ei
i , making it into an F -vector space:

(c+ P ) · π(D +DP ) = π(c+DP )π(d+DP ) = π(c+DP )(d+DP )).

Then
π((c+ P ) · (D +DP )) = π(c+DP )(d+DP )) = (c+ P ) · π(D +DP ),

and so π is an F -linear isomorphism.

- With the notation already used, we define θψ0(x) to be multiplication by ψ0(x) in D/DP
and θπ(ψ0(x)) to be multiplication by π(ψ0(x)) in

∏r
i=1D/Q

ei . We claim that

π ◦ θψ0(x) ◦ π−1 = θπ(ψ0(x)). (15.4)
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Using the fact that π is a ring homomorphism, we have

π ◦ θψ0(x)(d+DP ) = π(ψ0(x)(d+DP ))

= π(ψ0(x))π(d+DP )

= θπ(ψ0(x)) ◦ π(d+DP ),

hence the claim.

- If B = {x1, . . . , xn} is a basis of D/DP , then B′ = {x′1, . . . , x′n} is a basis of
∏r
i=1D/Q

ei .
For x′k ∈ B′ there exist aik ∈ F , with i = 1, . . . , n, such that

π(ψ0(x))x′k =

n∑
i=1

aikx
′
i =

n∑
i=1

aikπ(xi) = π

n∑
i=1

aikxi,

where we have used the linearity of π. Employing equation (15.4), we obtain

π(ψ0(x))x′k = θπ(ψ0(x))(x
′
k) = π ◦ θψ0(x) ◦ π−1(x′k) = π ◦ θψ0(x)(xk) = π(ψ0(x)xk).

Therefore

π(ψ0(x)xk) = π

n∑
i=1

aik(xi) =⇒ ψ0(x)xk =

n∑
i=1

aikxi.

Thus the matrix of θψ0(x) in the basis B is the same as that of θπ(ψ0(x)) in the basis B′. From
this we conclude that

char (D/DP )/F (ψ0(x)) = char ∏r
i=1(D/Q

ei
i )/F (π(ψ0(x))) ,

as required.

- We now show that

char ∏r
i=1(D/Q

ei
i )/F (π(ψ0(x))) = char ∏r

i=1(D/Q
ei
i )/F (π(ψ0(x))) .

We now use Theorem 15.3. Let

R =

r∏
i=1

D/Qei , R1 =

r∏
i=2

D/Qei , R2 =

r∏
i=3

D/Qei , . . . , Rr = {0}.

Then
R ⊃ R1 ⊃ R2 ⊃ · · · ⊃ Rr = {0},

and the Ri are F -linear subspaces. Considering the explicit form of the mapping π we deduce
that θπ(ψ0(x))(Ri) ⊂ Ri. In addition, we have Ri−1/Ri ' D/Qeii . The linear endomorphism θi
induced on Ri−1/Ri by θπ(ψ0(x)) is the multiplication by πi(ψ0(x)) in D/Qeii . Using Proposition
15.5, we obtain

char ∏r
i=1 (D/Qei )/F (π(ψ0(x)) =

r∏
i=1

char (D/Q
ei
i )/F (πi(ψ0(x))) . (15.5)

This ends the second part of the proof.
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Part 3

- Our aim in this section is to determine the polynomials in the product on the right hand
side of equation (15.5), namely, for i = 1, . . . , r, to show that

char (D/Q
ei
i )/F (πi(ψ0(x))) = char Li/F (ψi(x)) .

We apply Theorem 15.3 for a given j and set k = ej . To apply the theorem, we define

R = D/Qkj and R1 = Qj/Q
k
j , . . . , Rk−1 = Qk−1

j /Qkj , Rk = Qkj /Q
k
j = {0}.

Then R is a ring. We notice that P ⊂ DP ⊂ Qkj , so the mapping

δ : F −→ R, c+ P 7−→ c+Qkj

is a well-defined ring homomorphism. If δ(c+ P ) = 0, then c ∈ C ∩Qkj . However,

P ⊂ C,P ⊂ Qkj =⇒ P ⊂ C ∩Qkj and C ∩Qkj ⊂ C ∩Qj = P,

so C ∩ Qkj = P and it follows that δ is a monomorphism. Hence we may define an F -vector
space structure on R. In fact, R is finite-dimensional. To see this, we notice that D/DP is an
n-dimensional F -vector space and that Qejj /DP is a vector subspace of D/DP . Given that

(D/DP )/(Q
ej
j /DP ) ' D/Qejj = R,

R is finite-dimensional. We also need to show that the Ri are vector subspaces of R. For
i = 1, . . . , k − 1, the set Ri is clearly an additive group. If c ∈ C and x ∈ Qij , then cx ∈ Qij ,
because c ∈ D and Qij is an ideal of D. Therefore we may define a scalar product on Ri by
(c+P )(x+Qij) = cx+Qij . (There is no difficulty in seeing that this scalar product is well-defined.)
Hence the Ri are F -vector spaces. Clearly

R ⊃ R1 ⊃ · · · ⊃ Rk−1 ⊃ Rk = {0},

so the Ri are finite-dimensional subspaces of R.

- In order to apply Theorem 15.3 we need to check that the conditions (C) given before
Lemma 15.3 are satisfied:

• a. If x + Qkj ∈ R and y + Qkj ∈ Ri, then (x + Qkj )(y + Qkj ) = xy + Qkj , with xy ∈ Qik,
because y ∈ Qik, so the Ri are ideals of R.

• b. Suppose that there is an ideal I of R such that Ri−1 ⊃ I ⊃ Ri. Let λ : D −→ D/Qkj be
the standard homomorphism. If J = λ−1(I), then J is an ideal and Qi−1

j ⊃ J ⊃ Qij . As
Qi−1
j ⊃ J , there is an ideal A such that J = Qi−1

j A. If A = D, then J = Qi−1
j . If this is

not the case, then, as J ⊃ Qij , A = Qj and so J = Qij . It follows that Ri−1 = I or I = Ri.

• c. If ȳ = y + Qkj ∈ R1 and z̄ = z + Qkj ∈ Ri−1; then ȳz̄ = yz + Qkj , with yz ∈ Qij , so
ȳz̄ ∈ Ri.

Therefore the conditions (C) are satisfied.
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- We now apply Theorem 15.3. Let x ∈ D and x̄ = x + Qkj ∈ R and consider the mapping
θ = θx̄ defined by multiplication by x̄: for all ȳ ∈ R,

θ(ȳ) = x̄ȳ = xy +Qkj .

Since Rj is an ideal of R, θ(Rj) ⊂ Rj . From Theorem 15.3 we have

char (D/Qkj )/F (πj((ψ0(x))) = char R/F (πj((ψ0(x))) =
(
char (R/R1)/F (θ1)

)k
and for θ1 we have

θ1(ȳ +R1) = x̄ȳ +R1.

- Next we notice that

R/R1 = (D/Qkj )/(Qj/Q
k
j ) ' D/Qj = Lj .

(As R1 is a finite-dimensional subspace of R, R/R1 is finite-dimensional and hence this is the
case for Lj .) The isomorphism of F -vector spaces from R/R1 onto Lj , which we note α, has the
explicit form:

α(ȳ +R1) = y +Qj = ψj(y).

If x ∈ D, then the element ψj(x) belongs to Lj and, in conformity with the notation already
used, we define the mapping θψj(x) to be multiplication by the element ψj(x). Then, for all
y ∈ D,

θψj(x) (α(ȳ +R1)) = (x+Qj)(y +Qj) = xy +Qj

and
α (θ1(ȳ +R1)) = α(x̄ȳ +R1) = xy +Qj ,

thus
θψj(x) ◦ α = α ◦ θ1.

We may now write

char (R/R1)/F (θ1) = char (R/R1)/F

(
α−1 ◦ θψj(x) ◦ α

)
= char α(R/R1)/F

(
θψj(x)

)
= char Lj/F (ψj(x)) .

Therefore we have obtained

char (D/Qkj )/F (πj((ψ0(x))) = char Lj/F (ψj(x))
k

and it follows that
r∏
i=1

char (D/Q
ei
i )/F (πi(ψ0(x))) =

r∏
i=1

char Li/F (ψi(x))
ei .

Part 4

We have now shown that

char (D/DP )/F (ψ0(x)) =

r∏
i=1

char Li/F (ψi(x))
ei .
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and so

ψ̃∗0
(
char D′/C′(x)

)
= φ∗

(
r∏
i=1

char Li/F (ψi(x))
ei

)
.

However,
ψ̃∗0
(
char D′/C′(x)

)
= φ∗ ◦ ψ∗

(
char L/K(x)

)
and it follows that

ψ∗
(
char L/K(x)

)
=

r∏
i=1

char Li/F (ψi(x))
ei ,

which is the first equality in the statement of the theorem.

Part 5

Let us set n = deg char L/K(x) and nj = deg char Lj/F (ψj(x)), for j = 1, . . . , r. The constant
term of ψ∗(char L/K(x)) is the product of the constant terms of the polynomials char L/F (ψj(x)),
each taken respectively to the power ej . However, the constant term of ψ(char L/K(x)) is
(−1)nψ

(
NL/K(x)

)
and the constant term of the product of the polynomials char Lj/F (ψj(x)),

each taken respectively to the power ej , is

(−1)
∑r
j=1 njej

r∏
j=1

NLj/F (ψj(x))
ej .

As n =
∑r
j=1 njej , we obtain the third equality, namely

ψ
(
NL/K(x)

)
=

r∏
j=1

(
NLj/F (ψj(x))

)ej
.

For the second equality we consider the coefficients of Xn−1 in the two sides of the first
equality. The coefficient of Xn−1 on the lefthand side is −ψ

(
TL/K(x)

)
. The coefficient of Xn−1

on the righthand side is the sum of coefficients of the Xnj−1, each multiplied respectively by ej .
As the coefficient of Xnj−1 is −TLj/F (ψj(x)), we have the second equality, i.e.,

ψ
(
TL/K(x)

)
=

r∑
j=1

ejTLj/F (ψj(x)) .

This ends the proof. 2

The theorem we have just proved has an interesting corollary.

Corollary 15.2 Let C be a Dedekind domain with fraction field K, L a finite separable extension
of K and D the integral closure of C in L. If P is a prime ideal of C and DP =

∏r
i=1Q

ei
i , then

[L : K] =

r∑
i=1

eifi,

where fi = [D/Qi : C/P ].
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proof It is sufficient to consider the degrees of the characteristic polynomials in the statement
of Theorem 15.4 a. 2

Remark The corollary which we have just proved is in fact a generalization of Theorem 13.6.

We will need another result, based on the Chinese remainder theorem.

Proposition 15.6 Let D be a Dedekind domain and P1, . . . , Ps distinct nonzero prime ideals in
D. Suppose that x1, . . . , xs ∈ D and e1, . . . , es ∈ N. Then there exists x ∈ D such that

x− xi ∈ P eii and x− xi /∈ P ei+1
i ,

for i = 1, . . . , s.

proof For each i, P ei+1
i is strictly included in P eii , so there exists ai ∈ P eii \ P

ei+1
i . If i 6= j,

then P i+1
i and P j+1

j are coprime. From the Chinese remainder theorem (Theorem F.1) there
exists x ∈ D such that

x ≡ (x1 + a1) (mod P e1+1
1 )

...
...

...
...

x ≡ (xs + as) (mod P es+1
s ).

Then, for all i,
x− (xi + ai) ∈ P ei+1

i =⇒ x− xi ∈ P eii .

If x− xi ∈ P ei+1
i , then

(x− xi)− ai + ai ∈ P ei+1
i =⇒ ai ∈ P ei+1

i ,

a contradiction. This proves the result. 2

15.5 Proof of Dedekind’s different theorem
Having done the preliminary work, we may prove the inequality referred to in the last section.
For the notation, it is sufficient to look at the beginning of the previous section. We only recall
that K ⊂ L are number fields with associated number rings C and D. We set n = [L : K].

Theorem 15.5 For every nonzero prime ideal Q in D, we have sQ ≥ eQ − 1. In addition,
sQ = eQ − 1 if and only if the characteristic of the field D/Q does not divide eQ.

proof As the proof is long, we will break it up into three parts, namely

• a. Proof of the inequality;

• b. The case where the characteristic of D/Q divides eQ;

• c. The case where the characteristic of D/Q does not divide eQ.
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a. Proof of the inequality Let Q be a nonzero prime ideal in D and set P = Q∩C. We now
set U = C \ P , C ′ = U−1C and D′ = U−1D. In the decompositions of ∆L/K and DP appear a
finite set of nonzero prime ideals Q1, . . . , Qm. We have

∆L/K =

m∏
i=1

Qsii and DP =

m∏
i=1

Qeii .

(Certain si or ei may be equal to 0.) From Proposition 12.16,

D′P =

m∏
i=1

D′Qeii

and, having number fields, from Theorem 15.2,

∆(D′|C ′) = D′∆L/K =

m∏
i=1

D′Qsii .

Hence the complementary module D′∗ has the form
∏m
i=1D

′Q−sii . Then the inequalities

si ≥ ei − 1 i = 1, . . . ,m

hold if and only if
∏m
i=1D

′Q1−ei
i ⊂ D′∗. We aim to show that this is the case.

Let x ∈
∏m
i=1D

′Q1−ei
i . From Theorem 12.11 we know that P ′ = C ′P is a principal ideal, so

there exists t ∈ C ′ such that P ′ = C ′t. We may suppose that t ∈ C. However,
m∏
i=1

D′Qeii = D′P = D′C ′P = D′P ′ = D′C ′t = D′t,

so xt ∈
∏m
i=1D

′Qi. We claim that TL/K(xt) ∈ P ′. (As xt ∈ D′, we may consider that xt ∈ L,
so TL/K(xt) is defined.) We notice first that D′ is a free C ′-module of rank n. This has already
been shown in the proof of Theorem 12.17 in a more general framework. We have also seen,
in the proof of Theorem 15.4, that if V = C ′ \ {0}, then V is a multiplicative subset of C ′,
V −1C ′ = K, V −1D′ = L and, for x ∈ D′, we have

char L/K(x) = char V −1D′/V −1C′(x) = char D′/C′(x).

It follows that
TL/K(xt) = TD′/C′(xt),

because xt ∈ D′.

We now consider TD′/C′(xt). In the proof of Theorem 12.17 we saw that, if B′ = {x′1, . . . , x′n}
is a basis of the free C ′-module D′, then B̄′ = {x̄′1, . . . , x̄′n} is a basis of the C ′/C ′P -vector space
D′/D′P , where x̄′i is the image of x′i under the standard mapping of D′ onto D′/D′P . We can
thus apply Lemma 15.3, with ψ this standard mapping, to obtain

TD′/C′(xt) = T(D′/(D′P ))/(C′/P ′)(xt).

We claim that xt is a nilpotent element of the ring D′/D′P . Let r = e1 + · · ·+ em. Then

xt ∈
m∏
i=1

D′Qi =⇒ xt = y1 · · · ym yi ∈ D′Qi,
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where yi = diqi, with di ∈ D′ and qi ∈ Qi. Hence

(xt)r = ye1yr−e1 · · · yemm yr−em = de11 q
e1
1 · · · demm qemm d,

where d ∈ D′. As
∏m
i=1D

′Qeii is an ideal, (xt)r ∈
∏m
i=1D

′Qeii = D′P , which implies that xt
is a nilpotent element of the ring D′/D′P , as claimed. From the fact that xt is a nilpotent
element of the ring D′/D′P we obtain that char (D′/(D′P ))/(C′/P ′)(xt) = Xn, which implies
that T(D′/(D′P ))/(C′/P ′)(xt) = 0; this in turn implies that TD′/C′(xt) = 0, which means that
TD′/C′(xt) ∈ D′P . However, TD′/C′(xt) ∈ C ′, so

TL/K(xt) = TD′/C′(xt) ∈ C ′P = P ′.

Now,
tTL/K(x) = TL/K(xt) ∈ P ′ = C ′t =⇒ TL/K(x) ∈ C ′.

If y ∈ D′, then xy ∈
∏m
i=1D

′Q1−ei
i , so, replacing x by xy, we obtain TL/K(xy) ∈ C ′. Therefore

x ∈ D′∗, which finishes the proof of the first part of the theorem.

b. The case where the characteristic of D/Q divides eQ Suppose that Q is a prime ideal
in D such that the characteristic of the field D/Q divides the ramification index eQ. If P = C∩Q,
then P is a nonzero prime ideal. Supposing that DP = Qe11 · · ·Qemm is the decomposition of DP
into prime ideals, then Q = Qi, for some i. Without loss of generality, let us suppose that
Q = Q1. We set

J = D′Q−e11

m∏
i=2

D′Q−sii .

If J ⊂ D′∗ =
∏m
i=1D

′Q−sii , then

D′Q−s11 |D′Q−e11 =⇒ D′Q−s11 ⊃ D′Q−e11 =⇒ D′Qs11 ⊂ D′Q
e1
1 ,

which implies that s1 ≥ e1. We aim to show that J ⊂ D′∗. Let x ∈ J . We notice that

J ⊂
m∏
i=2

D′Q−sii =⇒ x ∈
m∏
i=2

D′Q−sii .

Since 1 − ei ≥ −si, for i = 2, . . . ,m,
∏m
i=2Q

1−ei
i ⊃

∏m
i=2Q

−si
i , so x ∈

∏m
i=2Q

1−ei
i , and, from

part a., we may write xt ∈
∏m
i=2D

′Qi. Then xt ∈ D′ and TL/K(xt) = TD′/C′(xt) ∈ C ′. We
now use Theorem 15.4, with ψ : C ′ −→ C ′/P ′ and ψi : D′ −→ D′/D′Qi, for i = 1, . . . ,m, the
standard mappings. Then, setting L′i = D′/D′Qi and F ′ = C ′/P ′, we have

ψ
(
TL/K(xt)

)
=

m∑
i=1

eiTL′i/F ′ (ψi(xt)) = eiTL′1/F ′ (ψ1(xt)) ,

because xt ∈
∏m
i=2D

′Qi = ∩mi=2D
′Qi.

In addition, ψ1(xt) is in D′/D′Q1, which is isomorphic to D/Q1, by Corollary 12.11, and
so has a characteristic which is a divisor of e1. Given that the trace TL′1/F ′ (ψ1(xt)) belongs to
D′/D′Q1, we have ψ

(
TL/K(xt)

)
= 0. This implies that TL/K(xt) ∈ P ′, hence

tTL/K(x) = TL/K(xt) ∈ P ′ = C ′t =⇒ TL/K(x) ∈ C ′.
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If y ∈ D′, then xy ∈ J , because J is a D′-module. It follows that TL/K(xy) ∈ C ′, which shows
that x ∈ D′∗, as required. We have shown that

s1 ≥ e1 =⇒ s1 6= e1 − 1.

This finishes the proof of part b.

c. The case where the characteristic of D/Q does not divide eQ We will use the nota-
tion defined in a. and b. For example, we set P = C ∩Q and suppose that DP = Qe11 · · ·Qemm ,
with Q = Q1. Let x ∈ D′ be such that ψ1(x) ∈ D′/D′Q1 has nonzero trace, i.e., TL′1/F ′ (ψ1(x)) 6=
0. (For example, we could take x = 1.) From Proposition 15.6 there exists y ∈ D′ such that
y − x ∈ D′Q1 and y ∈ D′Qeii , for i = 2, . . . ,m. On the one hand, ψ1(y) = ψ1(x) 6= 0, and so
ψ1(y) has nonzero trace; on the other hand, for i = 2, . . . ,m such that ei 6= 0, y ∈ D′Qi, hence
ψi(y) = 0. Applying Theorem 15.4 we obtain

ψ
(
TL/K(y)

)
=

m∑
i=1

eiTL′i/F ′ (ψi(y)) = e1TL′1/F ′ (ψ1(y)) 6= 0,

because the characteristic of D′/D′Q1 (equal to that of D/Q1) does not divide e1. Therefore

TL/K(y) = TD′/C′(y) /∈ P ′ = C ′t =⇒ TL/K(
y

t
) /∈ C ′.

Now,

D′t =

m∏
i=1

D′Qeii =⇒ D′Q−e11 = (D′t)−1
m∏
i=2

D′Qeii .

Also, 1
t ∈ (D′t)−1, because (D′t)−1 = D′ 1t , and, for i = 2, . . . ,m,

y ∈ D′Qeii =⇒ y ∈ ∩mi=2D
′Qeii =

m∏
i=2

D′Qeii ,

because the ideals D′Qeii are pairwise coprime. Therefore

y

t
∈ (D′t)−1

m∏
i=2

D′Qeii = D′Q−e11 .

Given that y
t /∈ D

′∗, it must be so that D′Q−e11 is not included in D′∗.

Suppose now that s1 ≥ e1. Then D′Qe11

∏m
i=2D

′Qsii divides
∏m
i=1D

′Qsii , which implies that
D′Qe11 divides

∏m
i=1D

′Qsii , i.e.,

D′Qe11 ⊃
m∏
i=1

D′Qsii =⇒ D′Q−e11 ⊂ D′∗,

a contradiction. Therefore
e1 > s1 ≥ e1 − 1 =⇒ s1 = e1 − 1,

as required. 2

The theorem which we have just proved has an important consequence.
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Corollary 15.3 A nonzero prime ideal Q in D is ramified in L/K if and only if Q divides the
different ∆L/K . Hence D has only a finite number of ramified prime ideals.

proof If Q is ramified in L/K, then eQ ≥ 2, which implies that sQ ≥ 1 and so Q divides the
different ∆L/K . On the other hand, if Q is not ramified in L/K, then eQ = 1, which implies
that sQ = 0, so Q does not divide the different ∆L/K . 2

15.6 Total ramification
We recall the definition of a totally ramified prime ideal or prime number. Let K ⊂ L be number
fields such that L/K is Galois and [L : K] = n <∞. We set R = OK and S = OL and suppose
that P is a nonzero prime ideal in R. If there is a prime ideal Q in S such that SP = Qn, then
we say that P is totally ramified in S. If K = Q and p ∈ Z is a prime number, then we say that
p is totally ramified in S if the ideal (p) is totally ramified in S.

Example 1 + i is irreducible in Z[i], so prime. Hence (1 + i) is a prime ideal in Z[i]. As
Z[i]2 = (1 + i)2, the prime number 2 is totally ramified in Z[i].

We will presently return to the context of number fields; however, before doing so, we will
establish some results in the more general context of Dedekind domains.

Proposition 15.7 Let C be a Dedekind domain, K its field of fractions, L a finite Galois
extension of K and D the integral closure of C in L. We suppose that P is a prime ideal in C
and assume that there is a unique ideal Q such that C ∩Q = P . Finally we let U = C \ P and
set D′ = U−1D. Then DQ = D′.

proof Let x ∈ D′. As Q ∩ C = P , if x /∈ P , then x /∈ Q, so U ⊂ D \ Q. This implies that
D′ ⊂ DQ. We now must show that DQ ⊂ D′. If every element of DQ is integral over C ′, then
DQ is contained in the integral closure of C ′ in L, which is D′. We aim to show that this is the
case. If x ∈ DQ, then x = d

v , where d ∈ D and v ∈ D \ Q. As d is integral over C, d is also
integral over CP , so it is sufficient to show that 1

v is integral over CP . Let

m(v,K) = a0 + a1X + · · ·+ an−1X
n−1 +Xm ∈ C[X]

be the minimal polynomial of v over K. (From Theorem 11.1, m belongs to C[X], because v
is integral over C.) Since L/K is a Galois extension and Q is the only ideal of D such that
C ∩Q = P , we have σ(Q) = Q, for all σ ∈ Gal(L/K). This implies that no conjugate of v lies in
Q and hence the product of the conjugates of v is not in Q. Hence a0 ∈ C \ P and so 1

v ∈ CP .
However, 1

v is a root of the polynomial

f(X) =
1

a0
+
an−1

a0
X + · · ·+ a1

a0
Xn−1 +Xn ∈ CP [X],

hence 1
v is integral over CP . 2

The next result is technical.

Proposition 15.8 Let C be a Dedekind domain, K its field of fractions, L a finite Galois
extension of K and D the integral closure of C in L. We also suppose that L = K(t), where
t ∈ D and we set f = m(t,K) and n = deg f . Then
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• a. TL/K
(

ti

f ′(t)

)
= 0, for i = 0, 1, · · · , n− 2, and TL/K

(
tn−1

f ′(t)

)
= 1;

• b. C[t]∗ = 1
f ′(t)C[t].

proof a. As L is a Galois extension of K, we may write

f(X) =

n∏
k=1

(−tk +X),

with t = t1 and t1, t2, . . . , tn distinct elements of L. (As L/K is separable, the roots of f are
simple; these roots lie in L because L/K is normal.)

We now consider the rational fraction 1
f . To begin with, the partial fraction decomposition

theorem (Theorem A.9) in L[X] ensures that there exist a1, . . . , an ∈ L such that

1

f(X)
=

1∏n
k=1(−tk +X)

=

n∑
k=1

ak
−tk +X

,

where ak ∈ L. Multiplying by f(X) we obtain

1 =

n∑
k=1

f(X)ak
−tk +X

=

n∑
k=1

ak

∏
i 6=k

(−ti +X)

 .

Setting X = tj , we find

1 =

n∑
k=1

ak

∏
i 6=k

(−ti + tj)

 = aj
∏
i6=j

(−ti + tj),

and so
aj =

1∏
i 6=j(−ti + tj)

=
1

f ′(tj)
.

From this we obtain the expression

1

f(X)
=

n∑
k=1

1

f ′(tk)(−tk +X)
.

To continue we consider the rational fraction 1
f(X) in the ring of formal Laurent series L(( 1

X )),
composed of series of the form

∑m
−∞ aiX

i, with ai ∈ L and m ∈ Z. It is easy to check that, for
k = 1, . . . , n,

(−tk +X)−1 = X−1 + tkX
−2 + t2kX

−3 + · · · ,

hence
1

f(X)
=

n∑
k=1

1

f ′(tk)
(X−1 + tkX

−2 + t2kX
−3 + · · · ).

However, 1
f(X) is also equal to 1∏n

k=1(−tk+X) and so
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1

f(X)
= (X−1 + t1X

−2 + t21X
−3 + · · · ) · · · (X−1 + tnX

−2 + t2nX
−3 + · · · )

= X−n(1 + t1X
−1 + t21X

−2 + · · · ) · · · (1 + tnX
−1 + t2nX

−2 + · · · )
= X−n + b1X

−(n+1) + b2X
−(n+2) + · · ·

Comparing the two formal Laurent series for 1
f(X) we find

n∑
k=1

tik
f ′(tk)

= 0,

for i = 0, 1, · · · , n− 2, and
tn−1
k

f ′(tk)
= 1.

Now, using Corollary 10.3 and the fact that f ′ ∈ K[X], we obtain

TL/K

(
ti

f ′(t)

)
=

∑
σ∈Gal(L/K)

σ

(
ti

f ′(t)

)

=
∑

σ∈Gal(L/K)

σ(t)i

f ′(σ(t)

=

n∑
k=1

tik
f ′(tk)

,

since the sets {t1, . . . , tn} and {σ(t), σ ∈ Gal(L/K)} are both composed of the conjugates of t
(Proposition 6.2). This establishes part a. of the proposition.

b. We first show that 1
f ′(t)C[t] ⊂ C[t]∗. As t is a root of a monic polynomial in C[X] of degree

n, there exist a0, . . . , an−1 ∈ C such that

tn = a0 + a1t+ · · ·+ an−1t
n−1.

Thus, for all s ≥ n, there exist c0, . . . , cn−1 ∈ C such that

ts = c0 + c1t+ · · ·+ cn−1t
n−1.

This implies that the set B = {1, t, . . . , tn−1} (resp. B′ = { 1
f ′(t) ,

t
f ′(t) , . . . ,

tn−1

f ′(t)}) generates the
C-module C[t] (resp. C-module 1

f ′(t)C[t]). As B and B′ are clearly independant sets, they are
bases of the respective C-modules C[t] and 1

f ′(t)C[t].
For 0 ≤ i ≤ n− 1 and 0 ≤ j ≤ n− 1, there exist d0, . . . , dn−1 ∈ C such that

ti+j = d0d1t+ · · ·+ dn−1t
n−1.

(For i + j ≥ n, this is clear; for i + j < n, it is sufficient to take di+j = 1 and dk = 0, for
k 6= i+ j.) Thus

TL/K

(
ti+j

f ′(t)

)
= d0TL/K

(
1

f ′(t)

)
+ d1TL/K

(
t

f ′(t)

)
+ · · ·+ dn−1TL/K

(
tn−1

f ′(t)

)
= dn−1,
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from part a. Hence TL/K
(
ti+j

f ′(t)

)
∈ C.

However,
C[t]∗ = {x ∈ L : TL/K(xz) ∈ C, ∀z ∈ C[t]}

and an element of 1
f ′(t)C[t] (resp. C[t]) has the form

∑n−1
i=1 ai

ti

f ′(t) (resp.
∑n−1
j=1 bjt

j). Hence, for
x ∈ 1

f ′(t)C[t] and z ∈ C[t], we have

TL/K(xz) = TL/K

n−1∑
i=1

ai
ti

f ′(t)

n−1∑
j=1

bjt
j

 =
∑

0≤i,j≤n−1

aibj

(
ti+j

f ′(t)

)
∈ C

and so 1
f ′(t)C[t] ⊂ C[t]∗.

We now consider the reverse inclusion C[t]∗ ⊂ 1
f ′(t)C[t]. An element y of C[t]∗ is in L = K(t).

Thus there exist k0, . . . , kn−1 ∈ K such that

y =
k0

f ′(t)
+

k1t

f ′(t)
+ · · ·+ kn−1t

n−1

f ′(t)
.

(Clearly y =
∑n−1
i=0 k

′
it
i, with k′i ∈ K; setting ki = k′if

′(t), we obtain the required expression for
y.) Moreover,

TK/L(y) = k0TL/K

(
1

f ′(t)

)
+ k1

(
t

f ′(t)

)
+ · · ·+ kn−1

(
tn−1

f ′(t)

)
= kn−1,

from part a. As y ∈ C[t]∗, TK/L(y) = TK/L(y1) ∈ C, i.e., kn−1 ∈ C. Now,

TL/K(yt) = k0TL/K

(
t

f ′(t)

)
+ k1TL/K

(
t2

f ′(t)

)
+ · · ·+ kn−2TL/K

(
tn−1

f ′(t)

)
+ kn−1TL/K

(
tn

f ′(t)

)
= kn−2 + kn−1TL/K

(
tn

f ′(t)

)
.

Since y ∈ C[t]∗ and t ∈ C[t], we have TL/K(yt) ∈ C. Also, we have shown above the existence of
c0, . . . , cn−1 ∈ C such that

tn = c0 + c1t+ · · ·+ cn−1t
n−1 =⇒ TL/K

(
tn

f ′(t)

)
∈ C,

using a. It follows that kn−2 ∈ C. If we replace t by t2, then we find that kn−3 ∈ C. Continuing
the process we finally obtain that all the ki belong to C, which implies that C[t]∗ ⊂ 1

f ′(t)C[t], as
required. 2

Corollary 15.4 Let C be a Dedekind domain, K its field of fractions, L a finite Galois extension
of K and D the integral closure of C in L. We also suppose that L = K(t), where t ∈ D, and
we denote f = m(t,K) ∈ C[X]. Then the different ∆(D|C) = Df ′(t) if and only if D = C[t].

proof If D = C[t], then

D∗ = C[t]∗ =
1

f ′(t)
C[t] =

1

f ′(t)
D =⇒ ∆(D|C) = f ′(t)D = Df ′(t),
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because D−1 = D.
Now suppose that ∆(D|C) = Df ′(t). As C[t] ⊂ D, we have D∗ ⊂ C[t]∗, hence

D = D−1 = f ′(t)D∗ ⊂ f ′(t)C[t]∗ = C[t] =⇒ C[t] = D,

because C[t] ⊂ D. 2

We now return to number rings, with the notation of the first paragraph of this section, i.e.,
K ⊂ L are number fields such that L/K is Galois and [L : K] = n < ∞. We set R = OK
and S = OL and suppose that P is a nonzero prime ideal in R which is totally ramified in S:
SP = Qn, where Q is a prime ideal in S. To simplify the notation, we write ∆Q for ∆(SQ|RP ).
As ∆Q is an ideal in SQ, there exists an integer s ≥ 0 such that ∆Q = SQQ

s. In addition, there
exists t ∈ S such that SQQ = SQt (Theorem 12.12 and remark before Theorem 13.16).

Proposition 15.9 The exponent at Q of ∆(S|R), i.e., the power of Q in the decomposition of
∆(S|R) into prime ideals of S (sQ(L|K)), is equal to s.

proof The decomposition of ∆(S|R) into prime ideals of S has the form

∆(S|R) = QsQ(L|K)
r∏
i=1

Qαii ,

where Q1, . . . , Qr are prime ideals in S. Setting S′ = (R \ P )−1S, from Proposition 12.16 the
decomposition of S′∆(L|K) into prime ideals has the form

S′∆(S|R) = (S′Q)sQ(L|K)
r∏
i=1

S′Qi∩(S\Q)=∅

(S′Q!)
αi .

However, from Proposition 15.7, S′ = SQ, and from Theorem 15.2, ∆Q = SQ∆Q, thus

∆Q = SQQ
sQ(L|K)

r∏
i=1

Qi∩(S\Q)=∅

(SQQ!)
αi

Since the decomposition of ∆Q is unique, we must have sQ(L|K) = s and the product of the
other ideals equal to SQ. 2

There is an important relation between the exponent sQ(L|K) and the ramification groups
Vi of Q in the extension L/K.

Theorem 15.6 If L/K is a finite Galois extension of number fields, P a nonzero prime ideal
of OK totally ramified in OL, Q the unique prime ideal in OL lying over P and

V0 ⊃ V1 ⊃ · · · ⊃ Vr = {id}

are the ramification groups of Q in L/K, then

sQ(L|K) =

r−1∑
i=0

(|Vi| − 1).
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proof We aim to apply Corollary 15.4, with C = RP and D = SQ. However, we need to justify
this.

First we show that L = K(t). (As t ∈ S, we have t ∈ SQ.) Since K ⊂ L and t ∈ S ⊂ L, we
must haveK(t) ⊂ L. For the reverse inclusion, to begin we notice that the set B = {1, t, . . . , tn−1}
is a K-basis of L (Corollary E.1 ). Thus, if y ∈ L, then there exist a0, a1, . . . , an−1 ∈ K such
that y =

∑n−1
i=0 ait

i, hence y ∈ K[t] = K(t). We have shown that L = K(t).
Now we show that SQ is the integral closure of RP in L. From Corollary 12.13, OL is the

integral closure of OK in L. Setting U = R \ P , R′ = U−1R and S′ = U−1S, from Proposition
12.20 we obtain that S′ is the integral closure of R′ in L. However, by definition R′ = RP and,
from Proposition 15.7, SQ = S′. Thus SQ is the integral closure of RP in L.

Our next step is to show that SQ = RP [t]. As σ(Q) = Q, for all automorphisms σ ∈
Gal(L/K), the decomposition group D = D(Q|P ) = Gal(L/K). Thus LD = K. From Corollary
13.5 and the fact that e = n, we obtain f = 1. Now, using Proposition 13.10, we see that
LE = K and so E = Gal(L/K). It follows that

SE = OLE = OK = R and QE = P.

From Theorem 13.16 SQ is a free module over SEP = RP , with basis B = {1, t, . . . , tn−1}, where
t ∈ S is a generator of the principal ideal SQQ. Hence SQ = RP [t] as required.

We have shown that the conditions for applying Corollary 15.4, with C = RP and D = SQ,
are met. Thus ∆Q = SQf

′(t), where f = m(t,K). (This makes sense, because f ∈ R[X] and
R ⊂ RP ⊂ SQ, which implies that f ′(t) ∈ SQ.) To simplify the notation we set G = Gal(L/K).
Then

f(X) =
∏
σ∈G

(−σ(t) +X) =⇒ f ′(t) =
∏
σ∈G
σ 6=id

(−σ(t) + t) .

We may partition the elements of G into disjoint subsets Vm/Vm+1, for m = 0, 1, . . . , r − 1.
If σ ∈ Vm \ Vm+1, then, from Proposition 13.16, σ(t) − t ∈ Qm+1 \Qm+2. As SQ (−σ(t)− t) is
an ideal of SQ, there exists s(σ) ∈ N such that SQ (−σ(t) + t) = SQt

s(σ). With s as defined in
the paragragh before Proposition 15.9, we obtain

SQt
s = ∆Q = SQf

′(t) = SQ
∏
σ∈G
σ 6=id

(−σ(t) + t) =
∏
σ∈G
σ 6=id

SQt
s(σ).

Therefore

s =
∑
σ∈G
σ 6=id

s(σ) =

r−1∑
m=0

∑
σ∈Vm\Vm+1

s(σ).

We need to determine the values s(σ), for σ ∈ Vm \ Vm+1. If σ ∈ Vm \ Vm+1, then

SQt
s(σ) = SQ (−σ(t) + t) = SQQ

m+1 = SQt
m+1,

which implies that s(σ) = m+ 1. As there are |Vm| − |Vm+1| elements in Vm \ Vm+1, we have
r−1∑
m=0

∑
σ∈Vm\Vm+1

s(σ) =

r−1∑
m=0

(|Vm| − |Vm+1|)(m+ 1).

Writing A for the sum on the right hand side, we have

A = (|V0| − |V1)1 + (|V1| − |V2)2 + · · ·+ (|Vr−1| − |Vr|)r = |V0|+ |V1|+ · · ·+ |Vr−1| − r,

because Vr = {id}. Simplifying the right hand side, we find
∑r−1
m=0(|Vm| − 1). However, from

Proposition 15.9, s = sQ(L|K), hence the result. 2
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Chapter 16

The Kronecker-Weber theorem

In this chapter we present and prove one of the principle theorems of algebraic number theory.
The proof is long and needs certain preliminary results, which we handle in detail. The theo-
rem states that any abelian finite normal extension of the rationals is included in a cyclotomic
extension. Our proof follows that given in [18].

16.1 Preliminaries
We begin with a sufficient condition for a prime number to be totally ramified in a number ring.

Proposition 16.1 If L/Q is a finite normal abelian extension such that the discriminant disc(OL)
is a power of a prime p, then p is totally ramified in OL.

proof We need to show that there is a unique prime ideal Q in S lying over p and that its
inertial degree is 1. Let Q be a prime ideal in OL lying over p. To simplify the notation we set
E = E(Q|Zp). As usual we write LE for the fixed field of E. We claim that no prime number
divides the discriminant disc(OLE ). Indeed, if q is such a prime number, then q ramifies in OLE ,
hence in OL. Thus q divides disc(OL), which is a power of p and so q = p. So we need to show
that p does not ramify in OLE .

To see this, let Q1 be a prime ideal in OLE lying over p and Q2 a prime ideal in OL lying over
Q1. Then Q and Q2 are both prime ideals in OL lying over p. As the Galois group G = Gal(L/Q)
is abelian, from Exercise 13.4 we deduce that E(Q2|Zp) = E. Now, Q1 is the unique prime ideal
in OLE lying under Q2, so, from Proposition 13.14, we have e(Q1|Zp) = 1, i.e., p is unramified
in OLE , as required, which implies that p does not divide disc(OLE ).

As no prime number divides disc(OLE ), from Theorem 14.5 we must have LE = Q. Since
Q ⊂ LD ⊂ LE , it is also the case that LD = Q. From Theorem 6.7, we obtain

Gal(L/Q) = Gal(L/LD) = D.

Let Q and Q′ be prime ideals in OL lying over p. Given that L/Q is normal, there exists
σ ∈ Gal(L/Q) such that σ(Q) = Q′. However, Gal(L/Q) = D(Q|Zp), which implies that
Q = Q′ and so there is a unique prime ideal in OL lying over p.

We now consider the inertial degree f(Q|p). Proposition 13.10 assures that [LE : LD] =
f(Q|p). As LE = LD, we have f(Q|p) = 1 and so p is totally ramified in OL. 2
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Example Let ζ be a pr primitive root of unity, where p is an odd prime and r ≥ 1, andK = Q(ζ).
From Theorem 11.15 we know that the discriminant disc(OK) is a power of p, hence p is totally
ramified in OK .

If L is a number field as in Proposition 16.1, i.e., L/Q is a finite normal abelian extension
such that the discriminant disc(OL) is a power of a prime p, and K a number field included in L,
then K/Q is also a finite normal abelian extension. This follows from Theorem 6.6: We can write
K = LH , where H is a subgroup of G = Gal(L/Q), which is normal, because the Galois group
is abelian. It follows that K/Q is a normal extension. Also, the Galois group G′ = Gal(K/Q)
is isomorphic to the quotient group G/H, which is abelian, because G is abelian. To simplify
the notation we write S = OL and R = OK . Let Q be the unique prime ideal of S lying over p
and Q1 the unique prime ideal of R lying under Q. We aim to show that, if [K : Q] = p, then
sQ1(K|Q), the exponent at Q1 of the different ∆(K|Q), is independant of the field K which we
choose.

Proposition 16.2 Let L/Q be a finite normal abelian extension such that the discriminant
disc(OL) is a power of an odd prime p and K a number field included in L whose degree over Q
is p. Then p is totally ramified in R and, if Q1 denotes the unique prime ideal of R lying over
p, then sQ1

(K|Q) = 2(p− 1), where sQ1
(K|Q) is the exponent at Q1 of the different ∆(K|Q).

proof Our first step is to show that p is totally ramified in R. Suppose that Q2 and Q3 are
distinct prime ideals in R lying over p. Then Q2 (resp. Q3) lies under a prime ideal Q′2 (resp.
Q′3) in S. Clearly Q′2 and Q′3 are distinct and lie over p. As p is totally ramified in S, this is
impossible, hence there is a unique prime ideal in R lying over p. We also notice that

1 = f(Q|p) = f(Q|Q1)f(Q1|p) =⇒ f(Q1|p) = 1

and so p is totally ramified in R, or equivalently, Zp is totally ramified in R.

We now apply Theorem 15.6 to obtain

sQ1
(K|Q) =

r−1∑
i=0

(|V ′i | − 1),

where V ′i denotes the ith ramification group of Q1 in the extension K/Q. Now, each V ′i is a
subgroup of Gal(K/Q) and |Gal(K/Q)| = [K : Q] = p, so |V ′i | has the value 1 or p and it follows
that p− 1 divides sQ1

(K|Q).
In the spirit of the discussion before Proposition 15.9, we write ∆Q1

= ∆(RQ1
|ZZp), which

is an ideal in RQ1
. In addition, there exists t ∈ R such that RQ1

Q1 = RQ1
t and an integer s > 0

such that ∆Q1 = RQ1Q
s
1 = RQ1t

s. Proposition 15.9 tells us that sQ1(K|Q) = s. We will use
this relation to determine the precise value of sQ1(K|Q).

We aim to use Corollary 15.4 with C = ZZp and D = RQ1
and respective fields of fractions

Q and K. We need to check that the conditions of the corollary are satisfied. R = OK is the
integral closure of Z in K by definition; Proposition 15.7 then assures us that RQ1

is the integral
closure of ZZp in K. Showing that K = Q(t), with t ∈ RQ1 is a little more difficult.

We claim that RQ1 is a free module over ZZp, with basis B = {1, t, . . . , tp−1}. To establish
this we use Theorem 13.16. We set E = E(Q1|Zp) and D = D(Q1|Zp). From Proposition 13.10,

[KE : KD] = f(Q1|p) = 1 =⇒ KE = KD.

245



For all σ ∈ G = Gal(K/Q), we have σ(Q1) = Q1, because Q1 is the only prime ideal lying over
p. This implies that G ⊂ D and so D = G Thus

KE = KD = KG = Q.

and so
RE = OKE = OQ = Z.

Continuing we have

QE1 = RE ∩Q1 = Z ∩Q1 = Zp =⇒ REQE1
= ZZp.

In addition, e = e(Q1|p) = p. From Theorem 13.16 we obtain that RQ1
is a free module over

ZZp, with basis B = {1, t, . . . , tp−1}, as required.
From Corollary E.1, B is a basis of K over Q, which implies that K = Q[t] = Q(t).

Now we have the conditions for applying Corollary 15.4. Also, we have seen that RQ1
is a

free module over ZZp and so RQ1
= ZZp [t]. It follows that

∆(RQ1
|ZZp) = RQ1

f ′(t),

where f is the minimal polynomial m(t,Q). If

f(X) = a0 + a1X + · · ·+ ap−1X
p−1 +Xp,

then f ∈ Z[X] and

f ′(t) = a1 + 2a2t+ · · ·+ (p− 1)ap−1t
p−2 + ptp−1.

We notice that
Rp = RZp = Qp1,

because Zp is totally ramified in R and Q1 is the unique prime ideal of R lying over Zp. Hence,

RQ1p = RQ1Rp = RQ1Q
p
1 = RQ1t

p,

thus
RQ1

ptp−1 = (RQ1
p)(RQ1

tp−1) = RQ1
t2p−1,

from which we deduce that there exists αp ∈ RQ1 such that ptp−1 = αpt
2p−1. It is important to

notice that t 6 |αp. If t|αp, then ptp−1 = α′pt
2p, with α′p ∈ RQ1

and we obtain

RQ1
t2p−1 ⊂ RQ1

t2p =⇒ RQ1
t2p−1 = RQ1

t2p,

Thus
(RQ1

)2p−1 = (RQ1
)2p,

which is impossible, because RQ1Q1 is a nonzero prime ideal in the Dedekind domain RQ1 .
For i = 0, 1, . . . , p− 1 such that vp(iai) ≥ 0, we can write iai = pvp(ai)bi, where p 6 |bi. Then

RQ1
iait

i−1 = (RQ1
iai)(RQ1

ti−1) = (RQ1
pvp(iai))(RQ1

bi)(RQ1
ti−1).

As p 6 |bi, bi is invertible in RQ1 , we have RQ1bi = RQ1 and thus

RQ1iait
i−1 = RQ1t

pvp(iai)RQ1t
i−1 = RQ1t

pvp(iai)+i−1,
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from which we deduce that there exists αi ∈ RQ1 such that iaiti−1 = αit
pvp(ia1)+i−1. We notice

that t 6 |αi. If t|αi, then iaiti−1 = α′it
pvp(iai)+i, with α′i ∈ RQ1

and so

RQ1
tpvp(ia1)+i−1 ⊂ RQ1

tpvp(iai)+i =⇒ RQ1
tpvp(ia1)+i−1 = RQ1

tpvp(iai)+i,

or
(RQ1

)pvp(ia1)+i−1 = (RQ1
)pvp(ia1)+i,

which is impossible, because RQ1
Q1 is a nonzero prime ideal in the Dedekind domain RQ1

.

We notice that the integers pvp(iai) + i − 1, for i = 0, 1, . . . , p − 1, with iai 6= 0, and 2p − 1
are distinct. If m is the minimum of these integers and αi0 corresponds to the minimum, then

f ′(t) = (αi0 + βt)tm,

where αi0 , β ∈ RQ1
and t 6 |αi0 . Thus,

t 6 |(αi0 + tβ) =⇒ αi0 + βt /∈ RQ1
t = RQ1

Q1,

the unique maximal ideal of RQ1 . From Exercise 12.11, the element αi0 +βt is invertible in RQ1

and hence
RQ1

f ′(t) = RQ1
tm =⇒ sQ1

(K|Q) = m.

We now conclude. By definition of the minimum m, we have sQ1
(K|Q) ≤ 2p− 1. Also, from

Theorem 15.5, sQ1
(K|Q) ≥ p − 1. The characteristic of the field R/Q1 is p, because p ∈ Q1,

hence sQ1(K|Q) 6= p− 1, which implies that sQ1(K|Q) ≥ p. Putting this information together,
we obtain

1 <
p

p− 1
≤ sQ1(K|Q)

p− 1
≤ 2p− 1

p− 1
= 2 +

1

p− 1
< 3,

because p 6= 2. Therefore sQ1
(K|Q)

p−1 = 2, as required. 2

Having developed some preliminary results, we will now turn to the proof of the theorem.
We will proceed by steps.

16.2 Step 1: [L : Q] and disc(OL) are both powers of the
same odd prime.

Let L/Q be a finite normal abelian extension such that the discriminant disc(OL) is a power of
a prime p. Then Proposition 16.1 ensures that p is totally ramified in OL. We have also seen
that

E(Q|p) = D(Q|p) = Gal(L/Q),

where Q is the unique prime ideal of OL lying over p. We now suppose that [L : Q] is a power
of the same prime number p. Then Proposition 13.18 b. ensures that E(Q|Zp) = V1(Q|Zp).
Indeed, as p is totally ramified e(Q|p) = [L : Q], which is a power of p; this in turn implies that
|E/V1| = 1 and it follows that E(Q|Zp) = V1(Q|Zp). We now aim to show that there is a unique
field extension K of Q of degree p contained in L. To do this we will use Proposition 16.2.
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Proposition 16.3 Let L/Q be a finite normal abelian extension such that disc(OL) and [L : Q]
are both powers of the same odd prime p. We suppose that Q is the unique prime ideal of OL
lying over Zp and that Vj(Q|Zp), for j ≥ 0, are the higher ramification groups. In addition, we
let i be the smallest index j such that Vj(Q|Zp) 6= Gal(L/Q). Then i ≥ 2, [LVi(Q|Zp) : Q] = p
and LVi(Q|Zp) is the only field extension of degree p over Q contained in L.

proof From hereon, to simplify the notation, we will write E for E(Q|Zp) and Vj for Vj(Q|Zp).
By definition V0 = E, and in the preamble to the proposition we have seen that E =

Gal(L/Q), which implies that i ≥ 1. However, we have also seen that V1 = Gal(L/Q), hence
i ≥ 2. Now we establish that [LVi : Q] = p. Since Vi−1 = Gal(L/Q), we have

[LVi : Q] = |Gal(L/Q)/Vi)| = |Vi−1/Vi|.

From Theorem 13.18, Vi−1/Vi is isomorphic to a subgroup of the additive group of S/Q, because
i ≥ 2. As p is totally ramified in OL, we have

1 = f(Q|Zp) = [S/Q : Z/Zp],

which implies that S/Q is isomorphic to Fp. It follows that |Vi−1/Vi| = p, because Vi−1 6= Vi.

Now let K be a number field contained in L whose degree over Q is p. We aim to show that
K = LVi . We set R1 = OK and Q1 = R1 ∩Q. Then Q1 is totally ramified in S = OL. There is
a unique ideal in S lying over Q1, namely Q, and

1 = f(Q|Zp) = f(Q|Q1)f(Q1|Zp) =⇒ f(Q|Q1) = 1.

By definition (Section 15.3), we have

∆Q1
(L|K) = ∆((R1 \Q1)−1S|R1

Q1
).

Using Proposition 15.8 we obtain

∆Q1(L|K) = ∆(SQ|R1
Q1

).

To simplify the notation we will write ∆Q(L|K) for ∆Q1
(L|K).

Next we set R2 = OLV1 and Q2 = R2 ∩Q. Then Q2 is totally ramified in S = OL: There is
a unique ideal in S lying over Q2, namely Q, and

1 = f(Q|Zp) = f(Q|Q2)f(Q2|Zp) =⇒ f(Q|Q2) = 1.

By definition (Section 15.3), we have

∆Q2(L|LVi) = ∆((R2 \Q2)−1S|R1
Q1

)

and, using Proposition 15.8 again, we obtain

∆Q1
(L|LVi) = ∆(SQ|R2

Q2
).

We simplify the notation by writing ∆Q(L|LVi) for ∆Q2
(L|LVi).

From Theorem 15.1 we have

∆Q(L|Q) = ∆Q(L|K)SQ∆Q1
(K|Q) (16.1)
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and
∆Q(L|Q) = ∆Q(L|LVi)SQ∆Q2

(LVi |Q). (16.2)

To clarify these equalities, we recall the definitions of the ideals appearing in the equalities:

∆Q(L|Q) = ∆(SQ|ZZp),

∆Q(L|K) = ∆(SQ|R1
Q1

) ∆Q(L|LVi) = ∆(SQ|R2
Q2

)

and
∆Q1

(K|Q) = ∆(R1
Q1
|ZZp) ∆Q2

(LVi |Q) = ∆(R2
Q2
|ZZp).

We now consider ∆Q1
(K|Q) and ∆Q2

(LVi |Q) more closely. From Proposition 16.2 we have

∆Q1
(K|Q) = R1

Q1
Q

2(p−1)
1

and
∆Q2(LVi |Q) = R2

Q2
Q

2(p−1)
1 .

As R1
Q1

is embedded in SQ, we have

SQ∆Q1
(K|Q) = SQQ

2(p−1)
1 .

Now Q1 is totally ramified in S, so SQ1 = Q[L:K] and we have

SQSQ1 = SQQ
[L:K] =⇒ SQQ1 = SQQ

[L:K] =⇒ SQ∆Q1(K|Q) = SQQ
[L:K]2(p−1).

In the same way
SQ∆Q2

(LVi |Q) = SQQ
[L:LVi ]2(p−1).

As [L : K] = [L : LVi ], we have

SQ∆Q1
(K|Q) = SQ∆Q2

(LVi |Q)

and from equations (16.1) and (16.2) we derive

∆Q(L|K) = ∆Q(L|LVi).

We now show that this equality ensures that K = LVi . First we notice that

∆Q(L|K) = (SQQ)sQ(L|K) and ∆Q(L|LVi) = (SQQ)sQ(L|LVi ),

which implies that
sQ(L|K) = sQ(L|LVi).

From Theorem 15.6

sQ(L|K) =

r1−1∑
j=0

(|Vj(Q|Q1)| − 1) ,

where Vj(Q|Q1), for j = 0, 1, . . . , r1 − 1, are the ramification groups of Q in the extension L/K.
(Indeed, L/K is a Galois extension and Q1 is totally ramified in S.) The same theorem ensures
that

sQ(L|LVi) =

r2−1∑
j=0

(|Vj(Q|Q2)| − 1) ,
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where Vj(Q|Q2), for j = 0, 1, . . . , r2−1, are the ramification groups of Q in the extension L/LVi .
(Indeed, L/LVi is a Galois extension and Q2 is totally ramified in S.) We can take r = max(r1, r2)
in both cases.

Now we consider orders of the ramification groups. We notice that

Vj(Q|Q1) = Vj ∩H,

where H = Gal(L/K) and
Vj(Q|Q2) = Vj ∩ Vi,

since Vi = Gal(L|LVi). Therefore, for j = 0, 1, . . . , i− 1, we have

Vj(Q|Q1) = H and Vj(Q|Q2) = Vi.

Then
|H| = |Gal(L/K)| = [L : K] =

[L : Q]

[K : Q]
=

[L : Q]

p

and
p = [LVi : Q] = |Gal(L/Q)/Vi| =⇒ |Vi| =

[L : Q]

p
,

therefore |H| = |Vi|, i.e., |Vj(Q|Q1)| = |Vj(Q|Q2)|. If j ≥ i, then Vj(Q|Q2) = Vj , because Vj ⊂ Vi
and it follows that |Vj(Q|Q1)| ≤ |Vj(Q|Q2)|. As

r−1∑
j=0

(|Vj(Q|Q1)| − 1) =

r−1∑
j=0

(|Vj(Q|Q2)| − 1) ,

we must have
|Vi(Q|Q1) = |Vi(Q|Q2) =⇒ Vi ∩H = Vi =⇒ Vi ⊂ H.

However, this implies that K = LH ⊂ LVi . As K and LVi are subspaces of L of the same
dimension, they must be equal, as required. 2

Our next step is to show that under the conditions we have assumed at the beginning of
the section, i.e., p is an odd prime, L an abelian finite normal extension of Q of degree pm and
disc(OL) = pk, where m, k ∈ N∗, then L is a cyclic extension of Q. We will use an elementary
result from group theory, namely, an abelian group of order pm, where p is a prime, with a unique
subgroup of order pm−1, is cyclic. We need a preliminary result.

Lemma 16.1 Let G be an abelian group of order pm, where p is a prime and m ≥ 1. If G has
a subgroup H of order pk and k < l ≤ m, then there is a subgroup K of G containing H and
having order pl.

proof Suppose first that l = k + 1 ≤ m and let Ḡ = G/H. Then |Ḡ| = pm−k and so, by
Cauchy’s theorem, there exists an element x̄ ∈ G/H of order p. Let K be the subgroup of G
generated by H and x. Since x /∈ H, the group H is properly contained in K. Also,

K = H ∪Hx ∪ · · · ∪Hxp−1 =⇒ |K| = pk+1.

Repeating the argument if necessary, we finally obtain the desired subgroup. 2

where p is an odd prime and m, k ∈ N∗

We may now prove the result concerning the cyclicity of G.
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Proposition 16.4 If G is an abelian group of order pm, where p is a prime, with a unique
subgroup H of order pm−1, then G is cyclic.

proof Let x ∈ G \ H. If x has order less than pm, then, from Lemma 16.1, the cyclic group
〈x〉 is contained in a subgroup K of G of order pm−1. By hypothesis, K must be equal to H, so
x ∈ H, a contradiction. Hence x has order pm and so G is cyclic. 2

We may now show that, under the conditions given above, the extension L/Q is cyclic.

Theorem 16.1 Let p be an odd prime, L a finite normal abelian extension of Q of degree pm,
where m ∈ N∗, and disc(OL) a power of p. Then the extension L/Q is cyclic.

proof By hypothesis the Galois group G = Gal(L/Q) is abelian of order pm. From Proposition
16.3 we know that G has a unique subgroup of order pm−1. Applying Proposition 16.4 we find
that G is cyclic. 2

We are now in a position to prove the Kronecker-Weber theorem in a particular case. Further
on we will extend the theorem to the general case.

Theorem 16.2 If L is a finite normal abelian extension of Q of degree pm, where p is an odd
prime and m ∈ N∗, and disc(OL) is a power of p, then there exists a root of unity ζ such that
L ⊂ Q(ζ).

proof Let K = Q(ζ), where ζ is a primitive pm+1th root of unity. The extension K/Q is a
Galois extension and, writing G = Gal(K/Q), from Theorem 7.7 we have

|G| = [K : Q] = deg Φpm+1 = φ(pm+1) = pm(p− 1).

Also, by Theorem 7.7, G is isomorphic to Z×pm+1 , which is cyclic, because the group of units of
Zn is cyclic, when n is a power of an odd prime (see, for example, [4]).

The cyclic group G has a subgroup H of order p− 1. (If σ is a generator of G, then σp
m

has
order p − 1.) We set K ′ = KH ; then [K ′ : Q] = pm. Since H is a subgroup of G, H is cyclic,
and so, by definition, K ′ is a cyclic extension of Q. We claim that the discriminant disc(OK′)
is a power of p. To see this, notice that a prime q dividing disc(OK′) is ramified in OK′ , hence
also ramified in OK , thus q divides disc(OK), which is a power of p. It follows that q = p. This
proves the claim.

Now we consider the composition field LK ′. As L is a finite Galois extension of Q, so is LK ′
(Theorem 6.8). Both L and K ′ are normal extensions of Q, therefore, from Theorem 6.10, the
Galois group Gal(LK ′/Q) is isomorphic to a subgroup of the product Gal(L/Q)×Gal(K ′/Q),
which is abelian. Hence Gal(LK ′/Q) is abelian.

Now, from the proof of Corollary 6.1, we know that the Galois groups Gal(LK ′/K ′) and
Gal(L/L ∩K ′) are isomorphic, hence

[LK ′ : Q] = [LK ′ : K ′][K ′ : Q] = [L : L ∩K ′][K ′ : Q],

which is a power of p, because [L : L ∩ K ′] divides [L : Q] and [L : Q] = pm. We claim that
the discriminant disc(OLK′) is also a power of p. If q is a prime and q|disc(OLK′), then q is
ramified in OLK′ . From Theorem 13.12, q is ramified in L or in K ′. This means that q|disc(OL)
or q|disc(OK′). In both cases we obtain q = p, so disc(OLK′) is a power of p, as claimed.

We now apply Theorem 16.1 to LK ′: the Galois group Gal(LK ′/Q) is cyclic. Both L and
K ′ are normal extensions of L ∩K ′. With L ∩K ′ = F in Theorem 6.10, we obtain

Gal(LK ′/L ∩K ′) ' Gal(L/L ∩K ′)×Gal(K ′/L ∩K ′).

251



We notice that both Gal(L/L ∩ K ′) and Gal(K ′/L ∩ K ′) have orders a power of p and are
cyclic, because Gal(L/L ∩K ′) is a subgroup of Gal(L/Q) and Gal(K ′/L ∩K ′) a subgroup of
Gal(K ′/Q).

We have seen that Gal(LK ′/Q) is abelian, thus Gal(LK ′/L ∩ K ′)) is also abelian. The
previous isomorphism gives us a primary decomposition of this finite abelian group. Moreover,
Gal(LK ′/L∩K ′) is a cyclic p-group, since Gal(LK ′/Q) is a cyclic p-group. Thus Gal(LK ′/L∩
K ′) is its own primary decomposition. The uniqueness of the primary decomposition ensures
that Gal(L/L ∩K ′) or Gal(K ′/L ∩K ′) is trivial. In the first case,

L = L ∩K ′ =⇒ L ⊂ K ′.

In the second case
K ′ = L ∩K ′ =⇒ K ′ ⊂ L

hence
[L : Q] = [L : K ′][K ′ : Q] =⇒ [L : K ′] = 1,

because [L : Q] = pm = [K ′ : Q]. Therefore L = K ′. In both cases we have found a cyclotomic
extension containing L. This finishes the proof. 2

16.3 Step 2: [L : Q] and disc(OL) are both powers of 2.
Up to here we have considered the case where the order of the Galois group Gal(L/Q) is the
power of an odd prime p and the discriminant disc(OL) a power of the same prime. It should
be clear that certain arguments we have used will not work if the prime p is 2. In this section
we aim to look at this case. We will first consider real fields, i.e., subfields of the field of real
numbers R. To begin we establish a preliminary result analogous to Theorem 16.1.

Proposition 16.5 Let L be a real field which is a finite normal abelian extension of Q of degree
a power of 2 such that the discriminant disc(OL) is also a power of 2. Then the extension L/Q
is cyclic.

proof Let [L : Q] = 2m, with m ∈ N∗. We first consider the case where m = 1, i.e., [L : Q] = 2.
Then L = Q(

√
d), where d is a square-free integer. In this case disc(OL) = d, if d ≡ 1 (mod 4),

and disc(OL) = 4d, if d ≡ 2, 3 (mod 4). As disc(OL) is a power of 2, the only possibility is d = 2
and so L = Q(

√
2) (and disc(OL) = 8). Thus the extension L/Q is cyclic.

Now suppose that m ≥ 2. From Lemma 16.1 we know that the Galois group Gal(L/Q)
contains a subgroup H whose order is 2m−1. For any such subgroup H, from Theorem 6.6,

[LH : Q] = |Gal(L/Q)

H
| = 2.

Moreover, disc(OL) is a power of 2, since any prime q dividing disc(OLH ) ramifies in OLH and so
ramifies in OL. As 2 is the only prime ramifying in OL, q = 2. Thus disc(OLH ) is a power of 2
up to sign. As [LH : Q] = 2, LH = Q(

√
d), where d is a square-free integer, and disc(OLH ) = d

or disc(OLH ) = 4d. It follows that d = ±2. Since LH ⊂ L, d = 2 and so LH = Q(
√

2) and
H = Gal(L/Q(

√
2)). We conclude that the Galois group Gal(L/Q) has a unique subgroup of

order 2m−1. Applying Proposition 16.4 we obtain that Gal(L/Q) is cyclic. 2

We now establish another result concerning real extensions.
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Proposition 16.6 If m ∈ N∗ and ζ a primitive root of order 2m+2, then L = Q(ζ) ∩R is the
unique real finite normal abelian extension K of Q such that [K : Q] = 2m and disc(OK) is a
power of 2. In addition, L ⊂ Q(ζ).

proof We will begin by showing that L satisfies the conditions. L is clearly a real field and
L ⊂ Q(ζ). Any prime q dividing the discriminant disc(OL) ramifies in OL, hence in Q(ζ). This
implies that q divides disc(OQ(ζ)), which is a power of 2, by Theorem 11.15. Thus q = 2 and It
follows that disc(OL) is a power of 2.

Now
[Q(ζ) : Q] = deg Φ2m+2 = φ(2m+2) = 2m+1,

where φ is Euler’s totient function. From the primitive element theorem (Theorem 3.4), there
exists α ∈ Q(ζ) such that Q(ζ) = L(α). If α = a + bi, then α is a root of the polynomial
f(X) = (a2 + b2)− 2aX +X2. Moreover, ᾱ = a− bi ∈ Q(ζ), because ᾱ is a root of the minimal
polynomial m(α,Q) and Q(ζ) is a normal extension of Q. Hence

a =
α+ ᾱ

2
∈ L and b =

α− ᾱ
2i

∈ L,

since i = ζ4 = ζ2m ∈ Q(ζ). It follows that f ∈ L[X] and degm(α,L) is 1 or 2. As α /∈ L, we
have degm(α,L) = 2 and so [Q(ζ) : L] = 2. As

[Q(ζ) : Q] = [Q(ζ) : L][L : Q],

we have [L : Q] = 2m, as required.

It remains to show that L is unique. Let F and K be two fields satisfying the conditions
in the statement of the proposition. We aim to show that F = K. Both F and K satisfy the
assumptions of Proposition 16.5, so the compositum FK also satisfies the assumptions. Indeed,
the extensions F/Q and K/Q are both normal, so FK/Q is normal and the Galois group
Gal(FK/Q) is isomorphic to a subgroup of the product Gal(F/Q) × Gal(K/Q), by Theorem
6.10. Therefore Gal(FK/Q) is abelian of order a power of 2. If a prime q divides the discriminant
disc(OFK), then it is ramified in OFK and hence ramified in OF or in OK (Theorem 13.12). Thus
q divides disc(OF ) or disc(OK), which are both powers of 2. Hence q = 2 and it follows that
disc(OFK) is a power of 2.

Now, from Theorem 6.10,

Gal(FK/F ∩K) ' Gal(F/F ∩K)×Gal(K/F ∩K).

As Gal(FK/F ∩K) is a subgroup of the abelian group Gal(FK/Q), Gal(FK/F ∩K) is abelian.
Both Gal(F/F ∩K) and Gal(K/F ∩K) are cyclic and of order a power of 2, being respectively
subgroups of Gal(F/Q) and Gal(K/Q), which are cyclic by Proposition 16.5. Thus the previous
isomorphism is a primary decomposition of the finite abelian group Gal(FK/F ∩K). However,
Gal(FK/F ∩K) is cyclic of order a power of 2, being a subgroup of Gal(FK/Q), which is cyclic
by Proposition 16.5. The uniqueness of the primary decomposition of a finite abelian group
ensures that Gal(F/F ∩K) or Gal(K/F ∩K) is trivial. Therefore F = F ∩K or K = F ∩K,
which implies in the first case that F ⊂ K and in the second that K ⊂ F . As [F : Q] = [K : Q],
we must have F = K. 2

We have shown in the previous section that when the extension L/Q is abelian of degree a
power of p, with p an odd prime, and disc(OL) a power of p, then there exists a root of unity ζ
such that L ⊂ Q(ζ).We will now establish an an analogous result for the prime 2.
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Theorem 16.3 Let L/Q be a finite normal abelian of degree a power of 2, with disc(OL) a
power of 2. Then there exists a root of unity ζ such that L ⊂ Q(ζ).

proof In Proposition 16.6 we have already proved the theorem in the case where L is a real
field. Our aim is now to generalize this to any field contained in C.

Let K = L(i) ∩ R. Then K is a real extension of Q. As L(i) = Q(i)L and both Q(i)/Q
and L/Q are finite normal abelian extensions, L(i)/Q is also a finite normal abelian extension
(Theorem 6.10). Since K is a subfield of L(i), K is a finite normal abelian extension of Q.

Next we notice that [K : Q] is a power of 2. Indeed,

[L(i) : Q] = [L(i) : L][L : Q].

As m(i, L) divides f(X) = 1 + X2, the degree of m(i, L) is 1 or 2 and so [L(i) : L] is equal to
1 or 2. By hypothesis [L : Q] is a power of 2, so [L(i) : Q] is a power of 2. However, [K : Q]
divides [L(i) : Q], hence [K : Q] is a power of 2.

Our next step is to show that the discriminant disc(OK) is also a power of 2. If q is a
prime number dividing disc(OL(i)), the q ramifies in L(i) = Q(i)L, which implies that q ramifies
in Q(i) or in L (Theorem 13.12), i.e., q divides disc(OQ(i)) or q divides disc(OL). Now, by
hypothesis disc(OL) is a power of 2, and disc(OQ(i)) = −4, because −1 ≡ 3 (mod 4) implies that
disc(OQ(i)) = 4(−1) = −4. It follows that q = 2 and so disc(OL(i)) is a power of 2. As K is a
subfield of L(i), disc(OK) is also a power of 2. Indeed, if q is a prime dividing disc(OK), then q
ramifies in OK and hence in OL(i); thus q divides disc(OL(i)) and so q = 2.

We now apply Proposition 16.6: there exists a root of unity ζ such that K ⊂ Q(ζ). From
the primitive element theorem (Theorem 3.4), there exists α ∈ L(i) such that L(i) = K(α). Let
α = a + ib. As ᾱ = a − ib is a root of the minimal polynomial m(α,K) and L(i) is a normal
extension of K, a = α+ᾱ

2 ∈ K and b = α−ᾱ
2i ∈ K. Also, i = ζ4, so α = a+ ib ∈ Q(ζ4)Q(ζ). Then

L ⊂ L(i) = K(α) ⊂ Q(ζ4)Q(ζ) = Q(ξ),

where ξ is a root of unity, by Exercise 7.3. 2

Exercise 16.1 With K and L as defined in Theorem 16.3, show that L(i) = K(i).

16.4 Step 3: [L : Q] is a power of a prime p.
We have shown that a normal abelian extension L of the rationals of degree a power of a prime
p such that the discriminant disc(OL) is also a power of p can be considered as a subfield of a
cyclotomic extension of the rationals. In this section we aim to show that we may dispense with
the condition on the discriminant. We will begin with a preliminary result.

Proposition 16.7 Suppose that L/Q is a normal abelian extension of degree n and q a prime
dividing disc(OL) but not dividing n. Then there exists a normal abelian extension L′/Q and a
primitive qth root of unity ζ such that

• [L′ : Q] divides n;

• L ⊂ L′(ζ);

• q does not divide disc(OL′);

• any prime q′ dividing disc(OL′) also divides disc(OL).
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proof We consider two cases, namely when L contains a primitive qth root of unity and then
when this is not the case.

Case 1: L contains a primitive qth root of unity ζ.

Suppose that Q is a prime ideal in OL lying above q: Q∩Z = Zq. To simplify the notation we
write e for the ramification index e(Q|q), V1 for the corresponding ramification group V1(Q|Zq)
and E for the corresponding inertia group E(Q|Zq).

The assumption that q does not divide [L : Q] ensures that L = LV1 . Indeed, from Proposition
13.18 we know that V1 is a q-group, i.e., the order of V1 is a power of q, thus Theorem 6.7 ensures
that [L : LV1 ] is a power of q. Moreover, [L : LV1 ] divides [L : Q]. Since q does not divide [L : Q]
we must have [L : LV1 ] = 1, i.e., L = LV1 .

Now we consider LE . As L/Q is normal, by Proposition 13.11 we have [L : LE ] = e. Now,
from Theorem 6.7 we obtain Gal(L/LE) = E and so

e = [LV1 : LE ] = |E/V1|, (16.3)

by Theorem 6.6. SinceGal(L/Q) is abelian, the decomposition groupD(Q|Zq), being a subgroup
ofGal(L/Q), is also abelian. Given that L/Q is normal, Corollary 13.9 ensure that |E/V1| divides
q′ − 1, where

q′ = |OQ/Zq| = |Z/Zq| = q. (16.4)

We now set L′ = LE . As E is a subgroup of Gal(L/Q), [L′ : Q] divides n. Also, L′/Q is a
normal abelian extension, because L′ = LE and E is a normal subgroup of Gal(L/Q), which is
abelian.

By hypothesis there is a primitive qth root of unity ζ in L. We claim that L = L′(ζ). As
Q ⊂ L and ζ ∈ L, we have Q(ζ) ⊂ L. The prime ideal Q in OL lies over a unique prime ideal Q′
in OQ(ζ). To simplify the notation we write e′ for the ramification index e(Q|Q′) and E′ for the
inertia group E(Q|Q′). We notice that E′ = E∩Gal(L/Q(ζ)), the intersection of two subgroups
of Gal(L/Q). Using Theorem 6.9 we have

LE
′

= LELGal(L/Q(ζ))

= LEQ(ζ)

= LE(ζ)

= L′(ζ).

To establish the claim it is sufficient to show that LE
′

= L. By Proposition 5.3 L/Q(ζ) is a
normal extension, so we may use Proposition 13.11 to obtain [L : LE

′
] = e′. Also,

e = e′e(Q′|q). (16.5)

From equations (16.3) and (16.4) we obtain e|q−1. However, we also have q−1|e. From Theorem
11.15, disc(OQ(ζ)) is a power of q, so q is totally ramified in OQ(ζ), by Proposition 16.1, which
implies that e(Q′|q) = q − 1, because [Q(ζ) : Q] = q − 1. Therefore, by equation (16.5), q − 1|e.
It follows that e = q − 1 and so e′ = 1, which implies that [L : LE

′
] = 1. We have shown that

LE
′

= L and hence established the claim.
We now show that the remaining two conditions of the proposition are satisfied. First we

show that q does not divide disc(OL′). Let Q1 be a prime ideal of OL′ lying over q and Q2

a prime ideal in OL lying over Q1. Both Q2 and Q are prime ideals in OL lying over q. As
Gal(L/Q) is abelian, Exercise 13.4 ensures that E(Q2|Zq) = E(Q|Zq). Hence L′ = LE(Q2|Zq).

255



The ideal Q1 is the unique prime ideal in OLE (=OL′) lying under Q2, so, by Proposition 13.14,
e(Q1|Zq) = 1, i.e., q is unramified in OL′ , which implies that q does not divide disc(OL′).

Finally, we show that, if q′ is a prime dividing disc(OL′), then q′ divides disc(OL). If q′ is a
prime dividing disc(OL′), then q′ ramifies in OL′ , which implies that q′ ramifies in OL, because
L′ ⊂ OL; hence q′ divides disc(OL). 2

Case 2: L does not contain a primitive qth root of unity.

We begin by adding a primitive qth root of unity ζ to L. We may apply Case 1 to L(ζ).
Indeed, L(ζ) = LQ(ζ). As both L and Q(ζ) are normal extensions of Q, by Theorem 6.8,
LQ(ζ) is a normal extension of Q. In addition, by Theorem 6.10, Gal(LQ(ζ)/Q) is a subset of
Gal(L/Q)×Gal(Q(ζ)/Q), hence abelian. By construction, L(ζ) contains a primitive qth root of
unity. Moreover, q divides disc(OL(ζ)), because q divides disc(OL) and OL ⊂ OL(ζ), It remains
to show that q does not divide [L(ζ) : Q]. As

[L(ζ) : Q] = [L(ζ) : L][L : Q],

if q|[L(ζ) : Q], then either q|[L(ζ) : L] or q|[L : Q]. By hypothesis, the second alternative is not
possible. Also, by Theorem 7.4, the Galois group Gal(L(ζ)/L) is a subset of Z×q , which implies
that [L(ζ) : L]|q − 1. As q does not divide q − 1, the second alternative is also not possible. We
have shown that q does not divide [L(ζ) : Q].

As all the conditions of Case 1, with L replaced by L(ζ), are satisfied, there exists a finite
normal extension L′ of Q and a primitive qth root of unity ξ such that

• [L′ : Q] divides [L(ζ) : Q];

• L(ζ) ⊂ L′(ξ);

• q does not divide disc(OL′);

• any prime q′ dividing disc(OL′) also divides disc(OL(ζ)).

As L′(ζ) = L′(ξ), we may suppose that ξ = ζ. In the course of proving Case 1 we showed that
e = q− 1, thus by Theorem 13.11 [L : LE ] = q− 1, i.e., [L : L′] = q− 1. Replacing L by L(ζ) we
obtain [L(ζ) : L′] = q − 1. In a similar way, we obtain L′ ⊂ L(ζ).

We maintain that L′ has the required properties of the proposition.

• [L′ : Q] divides n = [L : Q]: Using Corollary 6.1, we have

[L(ζ) : Q] = [LQ(ζ) : Q] =
[L : Q][Q(ζ) : Q]

[L ∩Q(ζ) : Q]
=

[L : Q](q − 1)

[L ∩Q(ζ) : Q]
.

Thus
[L : Q][(q − 1) = [L ∩Q(ζ) : Q][L(ζ) : L′][L′ : Q],

which implies that
[L : Q] = [L ∩Q(ζ) : Q][L′ : Q],

because [L(ζ) : L′] = q − 1. Hence [L′ : Q] divides [L : Q].

• L ⊂ L′(ζ), since L ⊂ L(ζ) ⊂ L′(ζ).

• q does not divide disc(OL′): Here there is nothing to prove.

256



• Any prime q′ dividing disc(OL′) also divides disc(OL): As L′ ⊂ L(ζ), q′|disc(OL′) =⇒
q′|disc(OL(ζ)), which implies that q′ ramifies in OL(ζ). However, L(ζ) = LQ(ζ), so q′

ramifies in OL or in OQ(ζ) (Theorem 13.12). As q does not divide disc(OL′), q′ 6= q, so q′
does not ramify in OQ(ζ), so q′ must ramify in OL, which implies that q′ divides disc(OL).

This finishes the proof. 2

We are now in a position to dispense with the condition on the discriminant in Theorems
16.2 and 16.3.

Theorem 16.4 If L/Q is a normal abelian extension of degree pm, for some prime p, then there
exists a root of unity ζ such that L ⊂ Q(ζ).

proof If the discriminant disc(OL) is also a power of p, then there is nothing to prove, so let us
suppose that this is not the case. Then there is a prime q 6= p dividing the discriminant. From
Proposition 16.7 there is an abelian extension L1/Q and a qth root of unity ζ1 such that

• [L1 : Q] divides pm and so is a power of p;

• L ⊂ L1(ζ1);

• q does not divide disc(OL1
);

• any prime q′ dividing disc(OL1
) also divides disc(OL).

Thus disc(OL1) has fewer prime factors than disc(OL). We can repeat the process and so find a
normal abelian extension L2/Q and a root of unity ζ2 such that L1 ⊂ L2(ζ2), [L2 : Q] is a power
of p and disc(OL2

) has fewer prime factors than disc(OL1
). Continuing in the same way, we

finally obtain a normal abelian extension Lr/Q and a root of unity ζr such that Lr−1 ⊂ Lr(ζr),
[Lr : Q] is a power of p and disc(OLr ) is also a power of p, possibly 1, in which case Lr = Q
(Theorem 14.5). It follows from Theorems 16.2 and 16.3 that there is a root of unity ζr+1 such
that Lr ⊂ Q(ζr+1). To sum up, we have the inclusions

L ⊂ L1(ζ1), L1 ⊂ L2(ζ2), . . . , Lr−1 ⊂ Lr(ζr), Lr ⊂ Q(ζr+1),

which implies that
L ⊂ Q(ζ1, ζ2, . . . , ζr+1) ⊂ Q(ζ),

where ζ is a root of unity (Exercise 7.3). This ends the proof. 2

16.5 Step 4: The general case
We are now in a position to prove the general case of the Kronecker-Weber theorem.

Theorem 16.5 If L/Q is a finite normal abelian extension, then there is a primitive root of
unity ζ such that L ⊂ Q(ζ).

proof AsGal(L/Q) is abelian, there exist prime numbers p1, . . . , ps and pi-subgroupsH1, . . . ,Hs

such that
Gal(L/Q) ' H1 × · · · ×Hs.
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If |Hi| = pαii , then |Gal(L/Q| =
∏s
i=1 p

αi
i . Let Ĥj =

∏
i6=j Hi and Lj = LĤj . Then [Lj : Q] =

p
αj
j . Moreover, since L/Q is assumed normal, Theorem 6.9 ensures that

L∩
s
i=1Ĥi =

s∏
i=1

LĤi =

s∏
i=1

Li.

Since ∩si=1Ĥi = {e}, we obtain
∏s
i=1 Li = L. Also, each subgroup Ĥi is normal in Gal(L/Q),

so, by Theorem 6.6, Li/Q is normal and Gal(Li/Q) ' Gal(L/Q)/Ĥi. Therefore Li/Q is a finite
normal abelian extension, with degree a power of a prime, and so there exists a root of unity ζi
such that Li ⊂ Q(ζi). Thus

L = L1 · · ·Ls ⊂ Q(ζ1) · · ·Q(ζs) ⊂ Q(ζ),

where ζ is a primitive root of unity (Exercise 7.3), i.e., L is included in a cyclotomic extension
of Q. 2

The Kronecker-Weber theorem answers an important question. Earlier we saw that a cy-
clotomic extension of the rationals is normal and abelian; it follows that any subextension of a
cyclotomic extension of the rationals is also normal and abelian. It is natural to ask whether
there are other finite normal abelian extensions of the rationals. The Kronecker-Weber theorem
gives a negative response to this question.
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Chapter 17

Factoring primes in extensions

In a unique factorization domain R any element x which is neither the identity for the addition
nor a unit can be expressed as product of prime factors and a unit : x = upα1

1 · · · pαnn , where
u is a unit and p1, . . . , pn are prime factors, which are not associated. There may be different
such factorizations, but the number n is always the same, as are the powers α1, . . . , αn. If we
take the powers of the primes in increasing order, then we obtain a finite sequence of positive
integers, which we call the form of the decomposition. For example, 12 = 3.22, so the form of
the decomposition of 12 is (1, 2). Similarly, 30 = 2.3.5 has the form (1, 1, 1), 36 = 22.32 the
form (2, 2) and 20 = 5.22 the form (1, 2). We should notice that the factorizations of 12 and
20 have the same form (1, 2); thus different elements may have factorizations with the same form.

If K is a number field and OK its number ring, then any nonzero ideal of OK not equal to
OK has a unique factorization into prime ideals, because OK is a Dedekind domain. For a prime
number p we will be concerned in this chapter with the form of the factorization of the ideal
OKp.

17.1 Preliminary results
Proposition 17.1 Let K be a number field of degree n over Q and R an order of OK . Then

|disc(R)| = [OK : R]2|disc(OK)|,

where [OK : R] is the index of R as an additive subgroup of OK .

proof We argue as in Section 14.1, defining φ in the same way. If B = (β1, . . . , βn) is a basis of
R, then B′ = (φ(β1), . . . , φ(βn)) generates φ(R) over Z and is an independant set, hence φ(R) is
a sublattice of ΛOK , which we note ΛR. We have

[ΛOK : ΛR] =
det ΛR

det ΛOK
=⇒ det ΛOK [ΛOK : ΛR] = det ΛR.

However, from Section 14.1 we have

det ΛOK = 2−s
√
|disc(OK)| and det ΛR = 2−s

√
|disc(R)|,

hence
|disc(R)| = [OK : R]2|disc(OK)|,
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because [ΛOK : ΛR] = [OK : R]. 2

A particular application of this result is when α ∈ OK , K = Q(α) and R = Z[α]. In this case
the elements 1, α, . . . , αn−1 form an integral basis of Z[α]. As we will see presently, it is often
important to know whether a given prime number p does not divide [OK : Z[α]]. In particular,
if the discriminant disc(Z[α]) is square-free, then [OK : Z[α]] = 1 and so Z[α] = OK .

In fact, we may improve the equality of Proposition 17.1.

Lemma 17.1 Let K be a number field such that [K : Q] = n. We suppose that there are r real
embeddings of K in C and 2s complex embeddings. Then the sign of the discriminant of an order
R in K is (−1)s.

proof Let B = {b1, . . . , bn} be an integral basis of R. Then

disc(R) = det(σi(bj))
2,

where σ1, . . . , σr are the real embeddings of K into C and σr+1, . . . , σr+2s the complex embed-
dings of K into C. We have

det(σi(bj)) = (−1)s det(σi(bj)),

because complex conjugation interchanges s rows. If s is even, then det(σi(bj)) is real, so its
square is positive. On the other hand, if s is odd, then det(σi(bj)) is purely imaginary, so its
square is negative. 2

We may now improve Proposition 17.1:

Theorem 17.1 Let K be a number field of degree n over Q and R an order of OK . Then

disc(R) = [OK : R]2disc(OK),

where [OK : R] is the index of R as an additive subgroup of OK .

proof From Lemma 17.1 the discriminants of both R and OK have the sign (−1)s. 2

We also need some elementary results from group theory.

Lemma 17.2 Let G be a finite (additive) abelian group of order n. If p is a prime and p does
not divide n, then the mapping

φ : G −→ G, x 7−→ px

is an automorphism.

proof The mapping φ is clearly a homomorphism. As G is finite, it is sufficient to show that
φ is injective. Suppose that px = 0. If x 6= 0, then 1 < o(x) ≤ p, which implies that o(x) = p.
Then we have p|n, a contradiction. So φ is injective. 2

Proposition 17.2 Let ψ : G′ −→ G be an injective homomorphism of (additive) abelian groups.
If H = ψ(G′) and |GH | is finite and not divisible by the prime p, then the induced mapping

ψ̄ :
G′

pG′
−→ G

pG
: x′ + pG′ 7−→ ψ(x′) + pG

is an isomorphism.
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proof It is clear that ψ̄ is a homomorphism. From Lemma 17.2 the mapping

ψ :
G

H
−→ G

H
,x+H 7−→ px+H

is an automorphism. If x ∈ G, then there exists x1 ∈ G such that

x+H = px1 +H =⇒ x− px1 ∈ H =⇒ x− px1 = ψ(x′),

with x′ ∈ G′. Then

x+ pG = px1 + ψ(x′) + pG = ψ(x′) + pG = ψ̄(x′ + pG′),

so ψ̄ is surjective.
We now show that ψ̄ is injective. Let x′ + pG′ ∈ G′

pG′ be such that ψ̄(x′ + pG′) = 0, i.e.,
ψ(x′) ∈ pG. Then there exists x1 ∈ G such that ψ(x′) = px1. We now set x = ψ(x′) = px1.
Then x ∈ H ∩ pG. Now

p(x1 +H) = px1 +H = x+H = H = 0.

From Lemma 17.2 the mapping ψ is an automorphism, hence x1 + H = H, which implies that
x1 ∈ H. Thus we may write x1 = ψ(x′1), with x′1 ∈ G′. We have

x = ψ(x′) and x = px1 = pψ(x′1) = ψ(px′1),

which implies that x′ = px′1, because ψ is injective. This shows that x′ ∈ pG′ and so x′+pG′ = 0.
It follows that ψ̄ is injective. 2

17.2 Dedekind’s factorization theorem
In the following discussion which will lead to Dedekind’s factorization theorem we will use some
general results from ring theory. Let us begin with these results.

Proposition 17.3 If f : R −→ S is a surjective ring homomorphism, then the inverse image of
a maximal ideal M in S is maximal. If N is a maximal ideal in R, then its image in S is either
S or a maximal ideal.

proof Let M be a maximal ideal in S. If f−1(M) = R, then f(x) ∈ M , for every x ∈ R. As
f is surjective, this is not possible, so f−1(M) is a proper ideal in R. We set h = π ◦ f , where
π is the canonical projection of S onto S

M . Then h is a surjective homomorphism, with kernel
f−1(M). Moreover, S

M is a field, so R
f−1(M) is a field. It follows that f−1(M) is a maximal ideal.

Now let N be a maximal ideal in R and suppose that f(N) is properly contained in S. Let
J be an ideal of S properly containing f(N). Then N ⊂ f−1(f(N)) ⊂ f−1(J). We claim that
N 6= f−1(J). Let x ∈ J \ f(N). As f is surjective, there exists y ∈ R such that f(y) = x, which
implies that y ∈ f−1(J). If y ∈ N , then x = f(y) ∈ f(N), a contradiction. Hence N 6= f−1(J),
as claimed. Since f−1(J) is an ideal in R, the maximality of N ensures that f−1(J) = R and so
f(f−1(J)) = f(R). Using the surjectivity of f , we obtain J = S, and it follows that f(N) is a
maximal ideal. 2

Proposition 17.4 If I and J are coprime ideals in a commutative ring R and m,n ∈ N∗, then
Im and Jn are coprime.
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proof As I + J = R, we have (I + J)m+n = Rm+n = R. Each term in the development of
(I + J)m+n is included in Im or Jn, therefore R is included in Im + Jn. The reverse inclusion
is trivial, so we have Im + Jn = R, i.e., Im and Jn are coprime. 2

Proposition 17.5 Let R be a commutative ring and I an ideal in R. The projection π : R −→ R
I

defines a bijection from the set of ideals containing I onto the set of ideals in R
I . If restricted

to prime (resp. maximal) ideals, then we obtain a bijection of the set of prime (resp. maximal)
ideals containing I onto the set of prime (resp. maximal) ideals in R

I .

proof Let A be the set of ideals in R containing I and B the set of ideals in R
I . Using the fact

that π is a surjective homomorphism, there is no difficulty in seeing that π defines a mapping
from A into B, which we will write π̄. If J ∈ B, then π−1(J) is an ideal in R and π(π−1(J) = J ,
so π̄ is surjective.

Suppose now that there exist ideals I1, I2 containing I such that π̄(I1) = π̄(I2), i.e., I1I = I2
I .

If s ∈ I1, then s+I = t+I, for some t ∈ I2. Hence there exist x1, x2 ∈ I such that s+x1 = t+x2,
which implies that s = t+ x2 − x1 ∈ I2. Thus I1 ⊂ I2. In the same way; I2 ⊂ I1, so I1 = I2 and
π̄ is injective.

Now let us restrict π̄ to prime ideals. If P is a prime ideal, then it is easy to see that π(P )
is a prime ideal in R

I . Suppose that Q is a prime ideal in R
I ; then π

−1(Q) is a prime ideal in R
containing I and π(π−1(Q)) = Q. Thus π̄ as a mapping from the prime ideals containing I into
the prime ideals in R

I is surjective. Since π̄ is injective, the mapping π̄ must be injective when
restricted to prime ideals.

Finally let us consider maximal ideals. Let N be a maximal ideal in R containing I. We
claim that π̄(N) is properly contained in R/I. If π̄(N) = R/I, then, for any r ∈ R, there exists
x ∈ N such that r−x ∈ I. Thus r ∈ N , because N contains I; this implies that R = N , which is
not possible, because N is a maximal ideal in R. Thus π̄(N) 6= R/I. From Proposition 17.3 we
deduce that π̄(N) is a maximal ideal in R/I. Hence π̄ takes maximal ideals to maximal ideals.
If M is a maximal ideal in R/I, then π−1(M) is a maximal ideal in R and π(π−1(M) = M , so π̄
is surjective when restricted to maximal ideals. As π̄ is injective, π̄ is injective when restricted
to maximal ideals. 2

Exercise 17.1 Let I be an ideal in the commutative ring R and π the canonical projection of R
onto R/I. If M is a maximal ideal in R/I, then we know that there is a unique maximal ideal
N of R containing I such that π(N) = M . Show that the field (R/I)/M is isomorphic to the
field R/N .

The principle result which we will establish in this section enables us, in all but a finite number
of cases, to find the form of the factorization into prime ideals of an ideal which is the extension
of a prime number in a number ring. Let K be a number field with associated number ring
OK , α ∈ OK and K = Q(α). We suppose that p is a prime which does not divide [OK : Z[α]].
From Proposition 17.2, the natural ring inclusion ψ of Z[α] into OK induces an additive group
isomorphism

ψ̄ :
Z[α]

Z[α]p
−→ OK

OKp
.

There is no difficulty in seeing that ψ̄ is also a ring isomorphism.

It is worth studying the mapping ψ̄ in more detail. If Ī is an ideal in Z[α]
Z[α]p , then its image is

an ideal in OK
OKp

. However, there is is a minor difficulty. The ideal Ī has the form I
Z[α]p , where I

is an ideal containing Z[α]p in Z[α] and ψ̄(Ī) = I
OKp

is composed of the classes of OK
OKp

having a
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representative in I. At first viewing it is not clear how I
OKp

can be an ideal in OK
OKp

. In particular,
when we multiply an element in I

OKp
by an element in OK

OKp
, how can we be sure that the result

lies in I +OKp? This in fact is the case. We consider the case

(a+OKp)(x+OKp),

where a ∈ OK and x ∈ I. As ψ̄ is bijective, there exists a′ ∈ Z[α] such that a+OKp = a′+OKp.
Hence we may write

(a+OKp)(x+OKp) = (a′ +OKp)(x+OKp) = a′x+OKp ∈
I

OKp
,

which resolves the apparent problem.

The mapping ψ̄ provides us with a bijection from the set of ideals in Z[α]
Z[α]p onto the set of

ideals in OK
OKp

and maps a prime ideal to a prime ideal. We may find an interesting expression

for the image of an ideal in Z[α]
Z[α]p . First ψ̄( I

Z[α]p ) = I
OKp

. As I ⊂ OKI, we have I
OKp

⊂ OKI
OKp

.
Now let u ∈ OKI

OKp
. Then we may write u =

∑s
i=1 aixi + OKp with ai ∈ OK , xi ∈ I. As above,

for each ai, there exists a′i ∈ Z[α] such that ai +OKp = a′i +OKp, thus
s∑
i=1

aixi +OKp =

s∑
i=1

(ai +OKp)(xi +OKp)

=

s∑
i=1

(a′i +OKp)(xi +OKp)

=

s∑
i=1

a′ixi +OKp.

As a′ixi ∈ I, for each i, we see that u ∈ I
OKp

. It follows that OKI
OKp

⊂ I
OKp

. Thus for an ideal I
Z[α]p

in Z[α]
Z[α]p , we have ψ̄( I

Z[α]p ) = OKI
OKp

.

Remark The mapping ψ̄ enables us to define a bijection between prime ideals containing p in
Z[α] and prime ideals in OK containing p. Let π1 be the projection of Z[α] onto Z[α]p and π2 the
projection of OK onto OKp. If P is a prime ideal in Z[α] containing p (or, equivalently Z[α]p),
then, from Proposition 17.5, π1(P ) = P

Z[α]p is a prime ideal in Z[α]
Z[α]p . As ψ̄ is an isomorphism,

ψ̄( P
Z[α]p ) is a prime ideal in OK

OKp
, i.e., OKPOK

is a prime ideal in OK
OKp

. Then OKP = π−1
2 (OKPOK

) is
a prime ideal in OK containing OKp (or, equivalently p). Thus the mapping P 7−→ OKP sends
prime ideals in Z[α] containing p to prime ideals in OK containing p. Since OKP = π−1

2 (ψ̄(π(P )),
this mapping is a bijection. We should also notice that it is multiplicative, i.e., if I, J are ideals
in Z[α] such that p ∈ I, p ∈ J and p ∈ IJ , then OK(IJ) = (OKI)(OKJ).

We now study the quotient ring Z[α]
Z[α]p in more detail. We write ḡ for the polynomial g ∈ Z[X]

reduced modulo p.

Let h be the minimal polynomial m(α,Q). By Corollary 11.1, h belongs to Z[X]. The
mapping eα : Z[X] −→ Z[α] defined by eα(g) = g(α) is a surjective ring homomorphism. As h
is monic and h(α) = 0, the kernel of φ is the ideal (h). It follows that the mapping

ēα : Z[X]/(h) −→ Z[α], g + (h) 7−→ g(α)
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is an isomorphism. We set Ψ = e−1
α . Notice that, for a ∈ Z ⊂ Z[α], we have Ψ(a) = a+ (h).

Proposition 17.6 We have
Z[α]

Z[α]p
' Fp[X]

(h̄)
.

proof First we notice that the image of the ideal Z[α]p under Ψ can be written Z[X]p
(h) , so we

obtain an isomorphism Ψ̄ from Z[α]
Z[α]p onto Z[X]

(h) /
Z[X]p

(h) . We now consider the mapping

δ :
Z[X]

(h)
/
Z[X]p

(h)
−→

Z
Zp [X]

(h̄)
, (g + (h)) +

Z[X]p

(h)
7−→ ḡ + (h̄).

The mapping δ is clearly a surjective ring homomorphism. We need to show that δ is also
injective. If f̄ ∈ (h̄), then there exists ū ∈ Z

Zp [X] such that f̄ = ūh̄ = ūh. Thus f̄ − ūf = 0̄, so
f − uh is a polynomial in Z[X], all of whose coefficients are multiples of p, i.e., f − uh ∈ Z[X]p.
Then

f + (h) = (f − uh) + (h) ∈ Z[X]p

(h)
=⇒ (f + (h)) = 0 in

Z[X]

(h)
/
Z[X]p

(h)
.

Hence δ is injective and so we have the required isomorphism, namely η = δ ◦ Ψ̄. Explicitly η
maps g(α) + Z[α]p to ḡ + (h̄). 2

Remark The image of Z[α]p is (h̄). 2

Corollary 17.1 If p is a prime which does not divide [OK : Z[α]], then the rings OK
OKp

and Fp[X]

(h̄)

are isomorphic.

Now let us turn to Dedekind’s theorem. We first consider the prime ideals in Fp[X]

(h̄)
. From

Proposition 17.5 the prime ideals in Fp[X]

(h̄)
are of the form I

(h̄)
, where I is a prime ideal in Fp[X]

containing (h̄). As Fp[X] is a PID, every ideal I is principal, i.e., I = (f) for some f ∈ Fp[X].
If (f) is an ideal containing (h̄), then f divides h̄. Moreover, if (f) is a prime ideal, then f is a
prime element. Given that a PID is a UFD, f must be an irreducible polynomial. Hence we are
looking for irreducible polynomials in Fp[X] dividing h̄. If h̄ = Ae11 · · ·Aess is the factorization
of h̄ into irreducible polynomials in Fp[X], then the Ai are the irreducible polynomials we are
looking for. Hence the prime ideals in Fp[X]

(h̄)
are of the form J̄i = (Ai)

(h̄)
. As the (Ai) are maximal

ideals, so are the J̄i.
Our next step is to consider prime ideals in Z[α]/Z[α]p. The inverse image of the mapping η

defined in Proposition 17.6 is given by the evaluation at α, namely, if f ∈ Fp[X] and g ∈ Z[X]
is such that ḡ = f , then the preimage of f + (h̄) is g(α) +Z[α]p. (There is no difficulty in seeing
that, if g, g1 ∈ Z[X] and ḡ = ḡ1, then g(α) + Z[α]p = g1(α) + Z[α]p.) In particular, if (f) is
an ideal in Fp[X] containing (h̄), then J̄ = (f)

(h̄)
is an ideal in Fp[X]

(h̄)
and its preimage is (g(α))

Z[α]p .
Clearly, if (f) is a prime ideal, then so is J̄ .

For each Ai, let hi ∈ Z[X] be such that h̄i = Ai. For i = 1, . . . , s, we set P̄i = η−1(J̄i) =
(hi(α))
Z[α]p . The P̄i are the prime ideals in Z[α]

Z[α]p . As the P̄i correspond to maximal ideals in Fp[X]

(h̄)
,

they are also maximal.
Let π be the natural projection of Z[α] onto Z[α]

Z[α]p . Then Pi = π−1(P̄i) is a prime ideal in Z[α]

containing Z[α]p (or, equivalently, containing p). From Proposition 17.5, we know that these are
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the only prime ideals in Z[α] containing Z[α]p. Setting Qi = OKPi, for i = 1, . . . , s, we obtain
the prime ideals in OK containing p. The fact that Qi contains p may be written Qi|OKp. Thus
the decomposition of OKp into prime ideals has the form

OKp = Q
e′1
1 · · ·Q

e′s
1 ,

where e′i is the ramification index of Qi. We aim to show that e′i = ei.
To begin with, we show that e′i ≤ ei. We claim that (π−1(P̄i))

ei ⊂ π−1(P̄ eii ). Let u ∈
(π−1(P̄i))

ei . Then u is a finite sum of products of the form a1 · · · aei such that π(a1), . . . , π(aei) ∈
P̄i. Suppose, for example, that u = a1 . . . aei + b1 . . . bei Then

π(a1) · · ·π(aei) + π(b1) · · ·π(bei) ∈ P̄
ei
i =⇒ π(a1 . . . aei + b1 . . . bei) ∈ P̄

ei
i =⇒ u ∈ π−1(P̄ eii ).

The other cases, with more or less products in the sum, can be handled in an analogous way,
hence (π−1(P̄i))

ei ⊂ π−1(P̄ eii ), as claimed.
We now consider the intersection ∩si=1π

−1(P̄ eii ). Let u ∈ ∩si=1π
−1(P̄ eii ). For i = 1, . . . , s, we

have

π(u) ∈ (heii (α))

Z[α]p
=⇒ η(π(u)) ∈ (h̄eii )

(h̄)
,

and so η(π(u)) = (h̄)

(h̄)
, which in turn implies that π(u) = Z[α]p

Z[α]p . Therefore, u ∈ Z[α]p and it
follows that ∩si=1π

−1(P̄ eii ) ⊂ Z[α]p. From this and the preceding paragraph we obtain

Z[α]p ⊃ ∩si=1π
−1(P̄ eii ) ⊃ ∩si=1(π−1(P̄i))

ei = ∩si=1P
ei
i .

We claim that ∩si=1P
ei
i =

∏s
i=1 P

ei
i . In the light of Proposition 12.4, it is sufficient to show

that the ideals P eii are coprime, when i 6= j. First, π is a surjective homomorphism and, for each
i, the ideal P̄i is maximal, so Pi is a maximal ideal from Lemma 17.3. It follows that Pi and Pj
are coprime, when i 6= j. Now, from Lemma 17.4, P eii and P ejj are coprime and thus we obtain

Z[α]p ⊃
s∏
i=1

P eii .

Therefore

OKp ⊃ OK

(
s∏
i=1

P eii

)
=

s∏
i=1

Qeii ,

This implies that e′i ≤ ei, for i = 1, . . . , s, as OKp =
∏s
i=1Q

e′i
i .

We now show that e′i = ei, for all i. We need to consider the inertial degree fi = f(Qi|p),
i.e., the degree of the extension OK

Qi
over Fp. We notice that the mapping

f :
Z

Zp
−→ OK

Qi
, a+ Zp 7−→ a+Qi

is a monomorphism, so OK
Qi

is a field containing Fp. Now, we have the following chain of additive
group isomorphisms:

OK
Qi
' OK
OKp

/
Qi
OKp

' Z[α]

Z[α]p
/

Pi
Z[α]p

=
Z[α]

Z[α]p
/P̄i '

Fp[X]

(h̄)
/

(Ai)

(h̄)
' Fp[X]

(Ai)
.
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These spaces are also Fp-vector spaces and it is not difficult to see that the additive group
isomorphisms are also Fp-vector space isomorphisms. Therefore the dimension of the field OK

Qi

over Fp is that of Fp[X]
(Ai)

over Fp. This vector space has the dimension di, the degree of the
polynomial Ai: If f ∈ Fp[X], then there exist g, ri ∈ Fp[X] such that : deg (ri) < di and
f = gAi + ri. Then

f + (Ai) = gAi + ri + (Ai) = ri + (Ai)

and it follows that B = {1 + (Ai), X + (Ai), . . . , X
di−1 + (Ai)} is a generating set of Fp[X]

(Ai)
. B is

also an independant set. Let

λ0(1 + (Ai)) + λ1(X + (Ai)) + · · ·+ λdi−1(Xdi−1 + (Ai)) = (Ai),

where the λi ∈ Fp. Then U(X) =
∑di−1
j=0 λjX

j ∈ (Ai). As deg (U) < di, U is the zero polynomial
and it follows that the λi all have the value 0. Therefore B is an independant set and so a basis
of Fp[X]

(Ai)
. We have shown that Fp[X]

(Ai)
has dimension di. It follows that the inertial degree fi is

equal to di.
We now use Proposition 13.7:

n = [K : Q] =

s∑
i=1

e′ifi ≤
s∑
i=1

eidi.

As the degree of the polynomial Aeii is eidi, the product Ae11 · · ·Aess has degree
∑s
i=1 eidi. Given

that this product is h̄, which has degree n, we have
∑s
i=1 eidi = n.

To conclude we have

n = [K : Q] =

s∑
i=1

e′ifi ≤
s∑
i=1

eidi = n.

As di = fi and e′i ≤ ei, we must have e′i = ei, as required.

To sum up, we have proved the following result, known as Dedekind’s factorization theorem:

Theorem 17.2 Let K = Q(α) be a number field, with α ∈ OK , and h = m(α,Q). If p is a
prime number and p 6 | [OK : Z[α]], then the factorization of OKp into prime ideals has the same
form as that of h̄ (=h modulo p) into irreducible polynomials.

Remark In proving Theorem 17.2, we have seen that di = fi. If Qi is the ideal corresponding to
h̄i and Qi lies over the prime p, then ‖Qi‖ = pdi . This follows from the proof of Proposition 13.7.

Theorem 17.2 may be difficult to use in practice, since, in order to know that p does not
divide the index [OK : Z[α]], we have to know this index. The corollary which follows provides
us with a condition which is easier to check.

Corollary 17.2 Let K = Q(α) be a number field, with α ∈ OK , and h = m(α,Q). If p is a
prime number and p 6 |disc(Z[α]), then the factorization of OKp into prime ideals has the same
form as that of h̄ (=h modulo p) into irreducible polynomials.

proof As
disc(Z[α]) = [OK : Z[α]]2disc(OK),

if p 6 | disc(Z[α]), then p 6 | [OK : Z[α]] and Theorem 17.2 applies. 2
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Examples 1. Let K = Q(
√
d), where d is a square-free integer. Then OK = Z[ω], where

ω =
√
d, if d ≡ 2, 3 (mod 4) and ω = 1+

√
d

2 , if d ≡ 1 (mod 4). In both cases [OK : Z[ω]] = 1,
so no prime number p divides [OK : Z[ω]], hence Theorem 17.2 is applicable. In the first case
m(ω,Q) = −d+X2 and in the second case m(ω,Q) = 1−d

4 −X +X2.
For instance, if d = 2 and p = 3, then

m(ω,Q) = −2 +X2 ≡ 1 +X2 (mod 3),

which is irreducible. It follows that OK3 = Q, for some prime ideal Q.
To take another example, if d = 5 and p = 5, then we have

m(ω,Q) = −1−X +X2 ≡ 4 + 4X +X2 = (2 +X)2 (mod 5).

Hence OK5 = Q2, for some prime ideal Q, i.e., 5 is totally ramified in OK .

2. Let K = Q( 3
√

10) An elementary calculation shows that disc(Z[ 3
√

10]) = −2700 = −22.33.53.
From Corollary 17.2, for any prime number p other than 2, 3 or 5, the form of the factorization
of OKp can be determined from that of m( 3

√
10,Q) (mod p).

For instance,
m(

3
√

10,Q) = −10 +X3 ≡ 4 +X3 (mod 7),

which is irreducible, so OK7 = Q, for some prime ideal Q.
We now consider OK3. We look for an element β ∈ OK such that K = Q(β) and 3 6 | [OK :

Z[β]]. (Of course, β 6= α). If β = 1
3 (1 + 3

√
10 + 3

√
100)), then β is a root of the polynomial

f(X) = −3 − 3X − X2 + X3. As f has no rational root, f is irreducible over Q and so
f = m(β,Q). It is not difficult to see that Q(β) ⊂ K, so we have

[K : Q] = [K : Q(β)][Q(β) : Q] =⇒ [K : Q(β)] = 1,

because [K : Q] = [Q(β) : Q] = 3. Hence K = Q(β). As disc(Z[β]) = −300 = −22.3.52, from
the formula

disc(Z[β]) = [OK : Z[β]]2disc(OK),

we see that 3 6 | [OK : Z[β]] and we may apply Theorem 17.2:

m(β,Q) = −3− 3X −X2 +X3 ≡ (−1 +X)X2 (mod 3),

so OK3 = Q1Q
2
2, for prime ideals Q1, Q2.

3. If K = Q(ζ), where ζ is a primitive root of unity, i.e., K is a cyclotomic extension of Q, then
OK = Z[ζ], so in this case [OK : Z[ζ]] = 1 and no prime number p divides [OK : Z[ζ]]. We may
apply Theorem 17.2 for any prime p. Let us consider the case where ζ = e

2πi
pn .Then

m(ζ,Q) = Φpn(X) = Φp(X
pn−1

),

where Φpn is the cyclotomic polynomial of order pn. Now,

Φp(X)(−1 +X) = −1 +Xp ≡ (−1 +X)p (mod p),

so
Φp(X) ≡ (−1 +X)p−1 (mod p) =⇒ Φpn(X) ≡ (−1 +Xpn−1

)p−1 (mod p),

and finally
Φpn(X) ≡ (−1 +X)p

n−1(p−1) (mod p).
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It follows that
OKp = Qp

n−1(p−1),

for some prime ideal Q, i.e., p is totally ramified in OK .
Let us consider the case where p = 5 and n = 1. Then

Φ5(X) = 1 +X +X2 +X3 +X4

and OK5 = Q4, for some prime ideal Q. Now let us consider OKp, where p 6= 5. We have

Φ5(X) ≡ 1 +X +X2 +X3 +X4 (mod 3),

which is irreducible modulo 3. (To check this it is sufficient to observe that the polynomial has
no root in F3 and is not divisible by any irreducible polynomial of degree 2 in F3[X].) Thus
OK3 = Q, where Q is a prime ideal. A similar situation applies for p = 7.

On the other hand,

Φ5(X) ≡ (−3 +X)(−4 +X)(−5 +X)(−9 +X) (mod 11),

so OK11 = Q1Q2Q3Q4, where the Qi are distinct prime ideals.

Remark We could have obtained the results in this example by applying the theory we devel-
opped in Section 13.9.
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Chapter 18

Monogenic fields

A monogenic field is an algebraic number field K for which there exists an element α in the ring
of integers OK such that OK = Z[α]. Such an element α is called a power generator . We have
seen that quadratic fields and cyclotomic fields are monogenic. Also, from Proposition 17.1, if
the discriminant of Z[α] is square-free, then K is monogenic. If K is monogenic, then we may
apply Dedekind’s factorization theorem to find the form of the factorization into prime ideals of
the ideal OKp for any prime p. If K is monogenic and OK = Z[α], then OK has an integral basis
composed of powers of α, called a power basis , and the discriminant disc(OK) may be calculated
using this basis, which is simpler than in the general case. In addition, such fields have other
interesting properties as we will presently see.

Remark If the number field K is monogenic and α is a power generator, then α is not unique.
In fact, for any integer n, α+n is also a power generator. It is interesting to know whether there
are other power generators. This may well be the case. The following result gives us an example.

Proposition 18.1 Let ζ be a primitive pth root of unity, with p an odd prime, and K = Q(ζ).
If η = 1 + ζ2 + ζ4 + · · · + ζp−1 (even powers), then ζ and η do not differ by an integer and
Z[ζ] = Z[η].

proof Let us suppose that there is an integer k such that ζ−η = k. We notice that η = 1
1+ζ , so

1

1 + ζ
− ζ = k =⇒ 1 = (k + ζ)(1 + ζ) =⇒ 0 = (k − 1) + (k + 1)ζ + ζ2.

However,
(k + 1)2 − 4(k − 1) = 5− 2k + k2,

which is positive for all values of k. This implies that ζ is a real number, a contradiction. Hence
ζ and η do not differ by an integer.

Clearly Z[η] ⊂ Z[ζ]. To establish that Z[ζ] ⊂ Z[η], it is sufficient to show that ζ ∈ Z[η]. We
have seen that η is a unit with inverse 1 + ζ. As η is invertible, from Proposition 11.3, the norm
NK/Q(η) has the value ±1 and so the constant term of the minimal polynomial f = m(η,Q) has
the value ±1. Without loss of generality let us suppose that the constant term is positive. Then

f(X) = 1 + a1X + a2X
2 + · · ·+ as−1X

s−1 +Xs,

where the ai are integers. From this we obtain

1 = −a1η − a2η
2 − · · · − as−1η

s−1 − ηs =⇒ 1 + ζ = −a1 − a2η − · · · − as−1η
s−2 − ηs−1,
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and it follows that ζ ∈ Z[η]. 2

Remark It can be shown that a monogenic field can only have a finite number of distinct power
generators, i.e., power generators which do not differ by an integer ([11]).

18.1 Monogenic and non-monogenic fields: examples
Other number fields than those we have already mentioned are monogenic; however, many num-
ber fields are not. Before giving examples of non-monogenic number fields, we will give some
further examples of monogenic fields.

Suppose that p is an odd prime and ζ a primitive pth root of unity in C. Let K = Q(ζ).
We set K0 = Q(ζ + ζ−1). We claim that K0 is monogenic. First, K0 is a real subfield of K and
[K : Q] = [K : K0][K0 : Q]. We set f(x) = 1 − (ζ + ζ−1)X + X2 ∈ K0[X]. Then f(ζ) = 0
and ζ /∈ K0, so f = m(ζ,K0) and it follows that [K : K0] = 2. From this we deduce that
[K0 : Q] = p−1

2 and that K0 is a maximal subfield of K. Now we show that K0 is monogenic,
with ζ + ζ−1 as power generator.

As ζ + ζ−1 is the sum of two algebraic integers, it is an algebraic integer. Clearly, ζ + ζ−1

belongs to K0, thus Z[ζ + ζ−1] ⊂ OK0 . The reverse inclusion requires more work.

Let u ∈ OK0
. Then, by Proposition 11.10, we may write u =

∑p−1
i=1 uiζ

i, with ui ∈ Z. Then

u =

p−1∑
i=1

uiζ
i =

p−1
2∑
i=1

uiζ
i +

p−1∑
i= p+1

2

uiζ
i =

p−1
2∑
i=1

uiζ
i +

p−1
2∑
i=1

up−iζ
p−i.

Because u is real, we have u = ū, hence

u =

p−1∑
i=1

uiζ
i =

p−1∑
i=1

uiζ
−i =

p−1∑
i=1

uiζ
p−i

Hence, for i = 1, . . . , p−1
2 , we have ui = up−i and so

u =

p−1
2∑
i=1

ui(ζ
i + ζ−i).

We claim that each of the elements ζi + ζ−i are linear sums of powers of ζ + ζ−1. We use an
induction on i. For i = 1 there is nothing to prove. Suppose that the result is true up to a given
i and consider the case i+ 1. We have

(ζ + ζ−1)i+1 = ζi+1 + (i+ 1)ζiζ−1 + · · ·+ (i+ 1)ζζ−i + ζ−(i+1),

from which we deduce

(ζ + ζ−1)i+1 − (i+ 1)(ζi−1 + ζ−(i−1)) + · · · = ζi+1 + ζ−(i+1).

Using the induction hypothesis, we obtain that ζi+1 +ζ−(i+1) is a linear sum of powers of ζ+ζ−1.
Thus we have proved the claim. It follows that u belongs to Z[ζ+ζ−1] and we have the inclusion
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OK0 ⊂ Z[ζ + ζ−1], as required. Thus Q(ζ + ζ−1) is a monogenic field.

We now turn to cubic number fields. This case is more complex than that of quadratic
number fields. We will first show that the field Q( 3

√
2) is monogenic. To prove this we need a

preliminary result.

Proposition 18.2 Let K = Q(α), with α ∈ OK , be such that [K : Q] = n and f = m(α,Q). If
p is a prime number and f is Eisenstein at p, then p 6 |[OK : Z[α]].

proof Let
f(X) = a0 + a1X + · · ·+ an−1X

n−1 +Xn,

where p|ai, for i = 0, 1, . . . , n− 1 and p2 6 a0. We have

a0 + a1α+ · · ·+ an−1α
n−1 + αn = 0 =⇒ Z[α] = Z + Zα+ · · ·+ Zαn−1

and αn

p ∈ Z[α]. Also,
NK/Q(α) = (−1)na0 6≡ 0 (mod p2).

Suppose that p|[OK : Z[α]]. Then there is an element of order p in the quotient group
OK/Z[α]. This means that there exists x ∈ OK , but not in Z[α], such that px ∈ Z[α]. Thus

px = b0 + b1α+ · · ·+ bn−1α
n−1,

with bi ∈ Z. As x 6∈ Z[α], there is at least one bi which is is not divisible by p. Let j be the
smallest index with this property. So

y = x−
(
b0
p

+
b1
p
α+ · · ·+ bj−1

p
αj−1

)
=
bj
p
αj +

bj+1

p
αj+1 + · · ·+ bn−1

p
αn−1.

Because both x and b0
p + b1

p α+ · · ·+ bj−1

p αj−1 belong to OK , y belongs to OK and so this is the
case for yαn−j−1. Now

yαn−j−1 =
bj
p
αn−1 +

αn

p

(
bj+1 + bj+2α+ · · ·+ bn−1α

n−j−2
)
.

Since αn

p ∈ Z[α] ⊂ OK , we have bj
p α

n−1 ∈ OK . Also, the norm of an algebraic integer is an
integer, hence

|NK/Q(
bj
p
αn−1)| =

bnj |NK/Q(α)n−1|
pn

=
bnj |a0|n−1

pn
∈ Z.

However,
p 6 |bj and p2 6 |a0,

so |NK/Q(
bj
p α

n−1)| 6∈ Z and we have a contradiction. It follows that p 6 |[OK : Z[α]]. 2

We are now in a position to show that the field K = Q( 3
√

2) is monogenic. From Theorem
17.1 we have

disc(Z[
3
√

2]) = [OK : Z[
3
√

2]]2disc(OK).

The polynomial m( 3
√

2,Q) has the form f(X) = −2+X3 and its discriminant is −108 = −22.33,
so 2 and 3 are the only primes which could divide [OK : Z[ 3

√
2]]. As f is Eisenstein at 2, by

Proposition 18.2, 2 6 |[OK : Z[ 3
√

2]]. The number 1 + 3
√

2 is a root of the polynomial g(X) =
(−1+X)3−2 = −3+3X−3X2 +X3, which is Eisenstein at 3, so 3 6 |[OK : Z[1+ 3

√
2]]. However,

Z[1 + 3
√

2] = Z[ 3
√

2], so 3 6 |[OK : Z[ 3
√

2]]. As both 2 and 3 do not divide [OK : Z[ 3
√

2]], we must
have [OK : Z[ 3

√
2]] = 1, i.e., OK = Z[ 3

√
2] and K is monogenic.
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Exercise 18.1 Show that K = Q( 3
√

5) is monogenic.

Remark We may generalize these results in the following way. If q is a prime such that 3|(1 + q)
and 32 6 |(1 + q), then the field Q( 3

√
q) is monogenic. For example, Q( 3

√
11) and Q( 3

√
23) are

monogenic. In this way we obtain a family of monogenic cubic fields. We may be tempted to
think that all cubic number fields are monogenic. The following example, due to Dedekind, shows
that this is not the case.

Proposition 18.3 (Dedekind) If θ is a root of the polynomial f(X) = −8−2X−X2 +X3, then
K = Q(θ) is non-monogenic.

proof First we calculate the discriminant of OK . As the polynomial f has no root in Q, f is
irreducible over Q. Let η = θ+θ2

2 . Then the set S = {1, θ, η} is independant over Q. (If the set
S is not independant, then θ is the root of rational polynomial of degree 2 and it follows that f
is reducible over Q.) Now A = Z⊕Zθ⊕Zη is a free Z-module of rank 3 contained in OK , with
basis S. To calculate the discriminant of A, we use the formula developped in Proposition 10.7,
i.e., disc(A) = det(X), where

X =

 TK/Q(1) TK/Q(θ) TK/Q(η)
TK/Q(θ) TK/Q(θ2) TK/Q(θη)
TK/Q(η) TK/Q(ηθ) TK/Q(η2)

 .
To determine the elements of this matrix we first find the respective matrices Mθ and Mη of

the applications x 7−→ θx and x 7−→ ηx in the basis B = {1, θ, θ2}:

Mθ =

 0 0 8
1 0 2
0 1 1

 Mη =

 0 4 8
1
2 1 6
1
2 1 2

 .
Multiplying these matrices we find those of the applications x 7−→ θ2x, x 7−→ θηx and

x 7−→ η2x: Mθ2 = M2
θ , Mθη = MθMη and Mη2 = M2

η . We obtain

Mθ2 =

 0 8 8
1 2 10
1 1 3

 Mθη =

 4 8 16
1 6 12
1 2 8

 Mη2 =

 6 12 40
7
2 9 22
3
2 5 14

 .
Therefore

X =

 3 1 3
1 5 18
3 18 29


The determinant of X has the value −503, so the discriminant of A is −503. From Theorem

17.1 we have
disc(A) = [OK : A]2disc(OK).

As 503 is a prime number, we must have [OK : A] = 1, i.e., the free groups OK and A are the
same. Thus any element α ∈ OK can be written a + bθ + cη, with a, b, c ∈ Z. We aim to show
that disc(Z[α]) is even and so OK 6= Z[α]. To begin with, we determine the matrix Mα of the
application x 7−→ αx in the basis B′ = {1, θ, η}:

Mα =

 a 4c 4b
b a− b 2c
c 2b+ 2c a+ 2b+ 3c


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Reducing modulo 2, we obtain

Mα ≡

 a 0 0
b a− b 0
c 0 a+ c

 (mod 2).

Then for the trace of the application x 7−→ αkx we have

trMαk = tr (Mk
α) ≡ ak + (a− b)k + (a+ c)k ≡ a+ (a− b) + (a− c) ≡ a− b+ c (mod 2).

We now set

Y =

 tr (1) tr (α) tr (α2)
tr (α) tr (α2) tr (α3)
tr (α2) tr (α3) tr (α4)

 .
From Proposition 10.7, we have disc(Z[α]) = det(Y). All the elements of Y are equivalent to
a− b+ c (mod 2). If a− b+ c ≡ 0 (mod 2), then the the last column of the matrix Y is composed
of even numbers, hence det(Y) is an even number. On the other hand, if a− b+ c ≡ 1 (mod 2),
then all the elements of the matrix are odd. The determinant is composed of a sum of 3! products
of 3 elements of the matrix, i.e., of a sum of 6 odd numbers, which is an even number. Therefore,
in this case too, det(Y) is an even number. We have shown that disc(Z[α]) is an even number.
As disc(OK) is odd, we cannot have OK = Z[α], i.e., K is not monogenic. 2

Up to here we have only seen one example of a non-monogenic number field. We now turn
to biquadratic number fields . (We recall that a number field is biquadratic if it is obtained by
adjoining to Q the square roots of two square-free integers.) The family of such fields, which we
will present, will provide us of infinite number of non-monogenic fields.

Let d 6= 1 be a square-free integer such that d ≡ 1 (mod 3), then m(
√
d,Q) = −d+X2. Let

us write f for this minimal polynomial. Reducing modulo 3 we obtain f̄(X) = (1 +X)(−1 +X),
so from Dedekind’s factorization theorem we obtain OQ(

√
3)3 = P1P2, where P1, P2 are prime

ideals in OQ(
√

3), i.e., 3 splits completely in OQ(
√

3).
Now let d1, d2 be distinct square-free integers such that di 6= 1 and di ≡ 1 (mod 3), for

i = 1, 2. From Theorem 13.12, the prime 3 splits completely in OK , where K = Q(
√
d1,
√
d2),

i.e.,
OK3 = P1P2P3P4,

where the Pi are prime ideals in OK . Suppose that there exists α ∈ OK such that OK = Z[α];
then 3 6 |[OK : Z[α]]. If we set f = m(α,Q), then from Dedekind’s factorization theorem we
obtain

f̄(X) = (−a1 +X)(−a2 +X)(−a3 +X)(−a4 +X),

where f̄ denotes the reduction of f modulo 3 and a1, a2, a3, a4 ∈ F3. However, F3 contains only
3 distinct elements, a contradiction. It follows that OK 6= Z[α] and so K is not monogenic.

Example The number field Q(
√

7,
√

10) is not monogenic.

More on biquadratic number fields can be found, for example, in the articles [9], [16]).

Remark Proposition 18.2 together with Theorem 17.2 may be used to prove the following result:
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Proposition 18.4 If K = Q(α) and the polynomial minimal h is Eisenstein at p, then h̄ = Xn,
so the factorization of OKp into prime ideals has the form OK = Pn, i.e., p is totally ramified
in OK .

proof We leave the proof as an exercise.

18.2 Properties of orders in a number ring
We recall that an order in a number ring K is a subring R of OK whose index as a subgroup of
OK is finite. We know that OK is a Dedekind domain, but what can we say of an order R which
is a proper subring of OK? It turns out that certain properties of OK carry over to R, but not
all. (Of course, we are primarily interested in orders of the form Z[α], where Z[α] is a proper
subset of OK .)

Proposition 18.5 If R is an order, then R is noetherian.

proof It is sufficient to show that every ideal in R is finitely generated. If I is the zero ideal,
then there is nothing to prove, so let us suppose that this is not the case. Let I be a nonzero
ideal. As I is a subgroup of OK , I is a free group of rank at most that of OK . Hence I has a
finite basis, which implies that it is finitely generated. 2

We now consider the fraction field of R. But first a preliminary result (not without interest).
For an order R, we write QR for the collection of sums of the form

∑k
i=1 qiri, with qi ∈ Q and

ri ∈ R.

Lemma 18.1 Let K be a number field with ring of integers OK . If R is an order in K, then
QOK = QR = K.

proof First we show that QOK = K. Clearly QOK ⊂ K. Suppose now that α ∈ K. As α is
algebraic over Q, from Lemma 11.2 there exists a positive integer k such that kα is an algebraic
integer, i.e., kα ∈ OK . Hence α ∈ QOK and so K ⊂ QOK . As QOK ⊂ K, we have an equality.

Now suppose that R is any order in OK . As R ⊂ OK , we have QR ⊂ QOK = K. We
now consider the reverse inclusion. There exists a basis {e1, . . . , en} of OK and positive integers
d1, . . . , dn such that {d1e1, . . . , dnen} is a basis of R. Let α ∈ K. From Lemma 11.2 there exists
a positive integer k such that kα ∈ OK . Therefore we can find integers k1, . . . , kn such that

kα =

n∑
i=1

kiei =
ki
di
diei ∈ QR =⇒ α ∈ QR.

Therefore K ⊂ QR and it follows that K = QR. 2

We recall that the fraction field of OK is K. It turns out that this is also the case for any
order in OK .

Proposition 18.6 Let R ⊂ OK be an order. Then the fraction field of R is K.

proof Let us write Frac(R) for the fraction field of R. If α ∈ K, then, from Lemma 18.1, there
exist q1, . . . , qk ∈ Q and r1, . . . , rk ∈ R such that α =

∑k
i=1 qiri. We may write qi = ai

bi
, with

ai, bi ∈ Z and bi 6= 0. Then

α =

k∑
i=1

ai
bi
ri =

k∑
i=1

airi
bi
∈ Frac(R),

274



because both airi and bi belong to R. Thus K ⊂ Frac(R). By definition Frac(R) ⊂ K, hence
the equality Frac(R) = K. 2

As OK is a Dedekind domain, every nonzero prime ideal in OK is maximal. This is also the
case for orders.

Proposition 18.7 If R ⊂ OK is an order, then every nonzero prime ideal is maximal.

proof Let P be a nonzero prime ideal in R and a a nonzero element of P . Let f = m(a,Q).
Then f(X) =

∑n−1
i=0 ciX

i +Xm ∈ Z[X]. As f is minimal, c0 6= 0. Given that f(a) = 0, we have

−c0 = c1a+ · · ·+ cn−1a
n−1 + an =⇒ c0 ∈ P.

The quotient R/P is a finitely generated Z-module, such that c0(R/P ) = 0 (c0 ∈ P ). From the
theorem of the decomposition of finitely generated modules over a P.I.D., we know that R/P is
a direct sum of cyclic submodules [5]. As c0(R/P ) = 0, all these submodules must be finite and
so R/P is finite. However, R/P is an integral domain and a finite integral domain is a field. It
follows that P is a maximal ideal. 2

Exercise 18.2 In the proof of the above proposition we have used the fact that a finite integral
domain is a field. Prove this statement.

Up to here the properties of rings of integers have carried over to orders. However, one
important property does not carry over and this prevents orders which are not rings of integers
from being Dedekind domains. We recall that an integral domain R is normal if its integral
closure in its field of fractions is R itself. This is so for rings of integers (Proposition 11.7), but
is not true for other orders.

Theorem 18.1 Let K be a number field, with ring of integers OK . If R is an order in K and
R 6= OK , then R is not a normal domain.

proof Since R 6= OK , there exists β ∈ OK \ R. As OK ⊂ Frac(OK) = Frac(R), β lies in
Frac(R). Moreover, β is an algebraic integer, there exists a monic polynomial f ∈ Z[X] ⊂ R[X]
such that f(β) = 0. Hence β lies in the integral closure of R. However, β /∈ R, so the integral
closure of R in its field of fractions is not R, i.e., R is not normal. 2

Corollary 18.1 An order R in a number field K is a Dedekind domain if and only if R = OK .

An important property of Dedekind domains is the expression of a nonzero fractional ideal
as a unique product of powers of prime ideals, with positive powers for integral ideals. This
property does not carry over to orders which are proper subrings of number rings.

Proposition 18.8 Let K be a number field with ring of integers OK . If the order R is a proper
subset of OK , then the unique factorization of fractional ideals fails.

proof Suppose that R has the factorization property. We will show that this implies that every
prime ideal is invertible. Let P be a prime ideal of R and a a nonzero element of P . By hypothesis

(a) = Q1 · · ·Qs,

where the Qi are prime ideals in R. Then

R = Q1(
1

a
Q2 · · ·Qs),
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so Q1 is invertible. In the same way, the ideals Q2, . . . , Qs are also invertible. If no Qi is
contained in P , then for each i there is an element ci ∈ Qi which does not belong to P . However,
the product c1 · · · cs ∈ P , which is impossible because P is a prime ideal. Therefore, for some i,
we have Qi ⊂ P . As every nonzero prime ideal is maximal, we must have Qi = P and so P is
invertible.

We now consider a nonzero fractional ideal I. By hypothesis we can write

I = P a11 · · ·P ann ,

where the a1, . . . an ∈ Z. Then I is invertible, with

I−1 = P−ann · · ·P−a11 .

Thus every nonzero fractional ideal is invertible.
In the proof of Proposition 12.9 we showed that, if R is an integral domain such that every

nonzero fractional ideal is invertible, then R is integrally closed in its fraction field, i.e., R is
normal. From Theorem 18.1 we see that R = OK , a contradiction. Therefore the factorization
property does not apply to orders which are not maximal. 2

18.3 Different of a number ring
We now return to the different, which we defined in Chapter 15 for a general Dedekind domain.
We will be particularly interested in number rings and will first summarize the discussion of the
different in this context.

The ring of integers Z is a Dedekind domain and Q is its field of fractions. (In the language
of Chapter 15, Z = C and Q = K.) Let L be a number field and OL its ring of integers. OL is
the integral closure of Z in L. (In the language of Chapter 15, OL = D.) We set

O∗L = {x ∈ L : TL/Q(xy) ∈ Z,∀y ∈ OL}.

From Proposition 15.3, O∗L is a fractional ideal of OL. We now set ∆(OL|Z) = O∗−1
L . (To

simplify the notation we will write ∆ for ∆(OL|Z). ∆ is called the different of OL over Z, or
simply the different of OL. From Proposition 15.4 we know that ∆ is an integral ideal of OL.

The bilinear form defined on L × L by (x, y) 7−→ TL/Q(xy) is nondegenerate. If B =
{x1, . . . , xn} is an integral basis of OL, then B is a basis of L over Q. There is a basis
B∗ = {x∗1, . . . , x∗n} of L over Q such that TL/Q(xix

∗
j ) = δij , where δij is the Kronecker sym-

bol. This second basis is called the dual basis of B and, from Proposition 15.2, is a basis of the
free Z-module O∗L.

Different and discriminant

In this subsection our principal aim is to prove a relation between the discriminant and the
different of a number ring OL.

Theorem 18.2 For a number ring OL we have

‖∆(OL|Z)‖ = |disc(OL)|.
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proof As O∗L is a fractional ideal of OL, there exists a nonzero element of α in OL such that
αO∗L is an ideal of OL. We claim that we may choose α ∈ N∗. As L is a finite extension of Q,
each x∗i is algebraic over Q. From Lemma 11.2, there is a positive integer αi such that αix∗i is an
algebraic integer and so belongs to OL. If α = α1 · · ·αn, then αx∗i ∈ OL, for all i, and it follows
that αO∗L ⊂ OL.

Now
αO∗L = Zαx∗1 + · · ·+ Zαx∗n.

Given that αx∗i ∈ OL, we may write

αx∗i =

n∑
j=1

aijxj =⇒ x∗i =

n∑
j=1

aij
α
xj ,

where the aij are rational numbers. Also, for i = 1, . . . , n, we have

xi =

n∑
j=1

bijx
∗
j ,

with the bij rational numbers. Let us set A = (aij), A′ = (
aij
α ) and B = (bij). These matrices

have their components in Q and A′Bt = In, i.e., Bt = A
′−1. Then

TL/Q(xixj) = TL/Q

(
n∑
k=1

bikx
∗
kxj

)
=

n∑
k=1

bikTL/Q(x∗kxj) = bij .

Therefore, by Proposition 10.7,

det(B) = disc(OL). (18.1)

Now αO∗L is an ideal in OL and has the integral basis B′ = {αx∗1, . . . , αx∗n}. Using Theorem
13.3 we obtain

discL/Q(αx∗1, . . . , αx
∗
n) = ‖αO∗L‖2disc(OL).

However, from Proposition 10.6 we also have

discL/Q(αx∗1, . . . , αx
∗
n) = det(A)2disc(OL),

which shows that
|det(A)| = ‖αO∗L‖ =⇒ |det(A′)| = ‖αO

∗
L‖

αn
.

Moreover,

‖αO∗L‖‖O∗−1
L ‖ = ‖αO∗LO∗−1

L ‖ = ‖(α)‖ = αn =⇒ ‖O∗−1
L ‖ =

αn

‖αO∗L‖
.

Since A′ is the inverse of Bt, we have

‖O∗−1
L ‖ = |det(B)| = |disc(OL)|,

where we have used the relation (18.1). 2

Corollary 18.2 If the discriminant of OL is a prime, then ∆ is a prime ideal.
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proof If disc(OL) is equal to a prime number, then so is ‖∆(OL|Z)‖. From Proposition 13.5,
∆ is a prime ideal. 2

Factorizing the different

The different is an ideal and so has a factorization into prime ideals. Here we will be concerned
with this factorization. We will first study some examples where the number field is monogenic
before giving a more general result.

Some examples in the monogenic case

The goal of this paragraph is to provide the decomposition into prime ideals of the differents
of the number rings of the cyclotomic fields Q(ζp) and the quadratic field Q(

√
10), using the

tools which we have previously developped. In particular, we will reconsider Corollary 15.4.
We may interpret this result in the context of number fields. Let L be a number field which
is a normal extension of Q. If L is monogenic, α a power generator and f = min(α,Q), then
∆(OL|Z) = OL(f ′(α)).

We start with cyclotomic fields. Let ζp be a primitive pth root of unity and L = Q(ζp).
We know that L is monogenic and that the minimal polynomial m(ζp,Q) has the form f(X) =
−1+Xp

−1+X = 1 +X + · · ·+Xp−1. Then

f ′(X) =
pXp−1(−1 +X)− (−1 +Xp)

(−1 +X)2
=⇒ f ′(ζp) =

pζp−1
p

−1 + ζp
.

Since ζp−1
p is a unit, we find

∆ = OL
p

−1 + ζp
.

Moreover, in the proof of Proposition 11.10 (equation (11.2)) we saw that OQ(ζp)p = OQ(ζp)(1−
ζp)

p−1, therefore
∆ = OL(1− ζp)p−2. (18.2)

From Section 13.9, OL(1− ζp) is a prime ideal, so the expression (18.2) is the decomposition of
∆ into prime ideals.

Now let us look at quadratic number fields. If L = Q(
√
d), with d ≡ 2, 3 (mod 4), then

OL = Z[
√
d] and the minimal polynomial m(

√
d,Q) has the form f(X) = −d + X2. It follows

that ∆ = OL(2
√
d). On the other hand, if d ≡ 1 (mod 4), then L = Q( 1+

√
d

2 ) and OL = Z[ 1+
√
d

2 ].
In this case the minimal polynomial m( 1+

√
d

2 ,Q) has the form f(X) = 1−d
4 − X + X2 and so

f ′(X) = −1 + 2X. Therefore ∆ = OL
√
d.

Finding the factorization of the different may not be so easy as in the case of the cyclotomic
field above. From Corollary 15.3 a nonzero prime ideal Q in OL divides the different ∆ if
and only if Q lies over a prime which ramifies in OL. Thus we can find the factors in the
decomposition, but not necessarily their powers. Let us consider an example. Let L = Q(

√
10).

Then ∆ = OL(2
√

10). The discriminant of OL has the value 40 = 235, so the primes which
ramify in OL are 2 and 5. As OL = Z[

√
10], from Theorem 17.2, there exist prime ideals Q2 and

Q5 in Z[
√

10] such that

Z[
√

10]2 = Q2
2 and Z[

√
10]5 = Q2

5.
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Therefore Q2 and Q5 are the prime divisors of ∆ and eQ2 = eQ5 = 2. In fact,

Q2 = (2,
√

10) and Q5 = (5,
√

10).

To see this, we notice that

Z[
√

10]

(2,
√

10)
' Z2 and

Z[
√

10]

(5,
√

10)
' Z5,

hence (2,
√

10) and (5,
√

10) are maximal ideals, and therefore prime ideals. There is a unique
prime ideal in Z[

√
10] dividing Z[

√
10]2 and (2,

√
10) is such an ideal. Therefore Q2 = (2,

√
10).

In the same way Q5 = (5,
√

10). In addition, the characteristics of Z[
√

10]
Q2

and Z[
√

10]
Q5

are respec-

tively 2 and 5. From Theorem 15.5, as the characteristic of Z[
√

10]
Q5

(=5) does not divide eQ5
(= 2),

we have sQ5
= eQ5

− 1 = 2− 1 = 1. On the other hand, the characteristic of Z[
√

10]
Q2

(= 2) divides
eQ2(= 2) and so from Theorem 15.5 we can only deduce that sQ2 ≥ eQ2 − 1 = 2− 1 = 1, which
of course we already know.

To determine sQ2
we turn to Theorem 15.6. We recall the definition of the ramification groups

in the context of number rings. We suppose that L is a finite normal extension of Q, p a prime
in Z and Q ⊂ OL a prime ideal lying over p. We set G = Gal(L/Q). Then, for i ∈ N, we define
the ramification groups Vi by

Vi = {σ ∈ G : σ(α) ≡ α (mod Qi+1) ∀α ∈ OL}.

The particular case V0 is called the inertia group. The Vi form a descending sequence and from
Corollary 13.9 there is an index r such that Vr = {id}. From Theorem 15.6, if p is totally ramified
in OL and Q is the unique prime ideal in OL lying over p, then

sQ =

r−1∑
i=1

(|Vi| − 1).

Thus, in order to determine the value of sQ2
we need to find the corresponding ramification

groups Vi, i.e., the Vi with G = Gal(Q(
√

10)/Q) and Q = Q2 = (2,
√

10). The Galois group
G has two elements, namely the identity and the automorphism σ for which σ(

√
10) = −

√
10.

Hence Vi is equal to the Galois group or contains only the identity. The former will be the case
if and only if −

√
10 ≡

√
10 (mod Qi+1

2 ), i.e., when 2
√

10 ∈ Qi+1
2 . This is the case for i = 0, 1, 2,

but not for i = 3, because

(2,
√

10)4 = (Z[
√

10]2)2 = Z[
√

10]4.

Therefore,

|V0| = |V1| = |V2| = 2, |V3| = 1 =⇒ sQ2 = (2− 1) + (2− 1) + (2− 1) = 3.

To conclude
∆(OQ(

√
10)|Z) = (2,

√
10)3(5,

√
10).

The non-monogenic case

If L is a monogenic field, then there exists an algebraic number α ∈ OL such that L = Q(α)
and OL = Z[α]. We have seen that in this case ∆(OL|Z) = OLf

′(α), where f = m(α,Q).
From Proposition 10.1, f is the characteristic polynomial of α, so we may say that ∆ divides the
principal ideal generated by the derivative of the characteristic polynomial of α evaluated at α.
We may generalise this to the case of a field which is not monogenic.
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Proposition 18.9 Let L be a number field which is a normal extension of Q and not monogenic
and α ∈ OL. If g is the characteristic polynomial of α, then ∆(OL|Z) divides OLg′(α).

proof If L 6= Q(α), then [L : Q(α)] = r > 1. From Proposition 10.1, g = fr, where f = m(α,Q).
It follows that g′(α) = 0 and so ∆|OLg′(α).

Now suppose that L = Q(α). Using Proposition 15.8 we have

Z[α] ⊂ OL =⇒ O∗L ⊂ Z[α]∗ =⇒ ∆−1 ⊂ 1

f ′(α)
Z[α] ⊂ 1

f ′(α)
OL.

Taking inverses we obtain
OLf

′(α) ⊂ ∆ =⇒ ∆|OLf ′(α).

From Proposition 15.8, g = f and hence the result. 2
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Chapter 19

Elementary class groups

The determination of class groups is not easy. In this chapter we identify class groups of some
number fields in each case using a particular set of generators. We will certainly not be exhaustive.
In Chapter 14, for a number field K of degree n over Q, we defined the Minkowski bound

λ =
n!

nn

(
4

π

)s√
|disc(OK)|,

where 2s is the number of complex embeddings of K into C. We observed that if λ is less than
2, then the class number must be 1, because every class contains a nonzero ideal J whose norm
is less than λ. This is a sufficient condition, but is not necessary as we will presently show.

Let us look more closely into the structure of the class group. Each class contains a nonzero
ideal J whose norm is bounded by λ. If P is a prime ideal in the decomposition of J , then, by
Proposition 13.6, P contains a unique prime number p and ‖P‖ = pm, for some m ∈ N∗; clearly
p ≤ λ. Therefore the class group is generated by the classes of prime ideals P in OK containing a
prime p ≤ λ. Certain of these classes may contain a principal ideal, in which case they are equal
to the identity e, the class composed of principal ideals and we may eliminate them. Finally, we
are left with the identity e alone, in which case the group is trivial, or a set of generators distinct
from e and we look for relations between them. To understand the procedure we will look at
some examples.

Example 1. K = Q(
√

14)

First we calculate the Minkowski bound:

λ =
2!

22

√
4.14 =

√
14 and 3 <

√
14 < 4,

so we look for prime ideals P containing 2 or 3.
There is a unique prime ideal P containing 3. Indeed, 3 belongs to P implies that P contains

OK3. We set f = m(
√

14,Q). Then f(X) = −14 + X2 and the reduction modulo 3 of f is
f2(X) = 1 +X2, which is irreducible. Then Theorem 17.2 ensures that OK3 is a prime ideal and
so P = OK3. Thus there is a unique prime ideal containg 3, which we will note P3. P3 is clearly
principal.

Now we consider prime ideals containing 2. In fact, there is only one such ideal P . Indeed,
2 belongs to P implies that P contains OK2. By Proposition 18.4 there exists a prime ideal
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P2 in OK such that OK2 = P 2
2 . Hence P = P2. We claim that P2 is principal. Since 2 =

(4 +
√

14)(4−
√

14), we may write

P 2
2 = OK2 = OK(4 +

√
14)OK(4−

√
14) =⇒ P2 = OK(4 +

√
14) = OK(4−

√
14),

using the unique decomposition of ideals. Hence P2 is principal.
As P2 and P3 are principal, the class number is 1, i.e., the class group is reduced to the

identity. This example shows that the Minkowski bound may be greater than 2 and at the same
time the class number 1.

Example 2. K = Q(
√
−5)

We calculate the Minkowski bound:

λ =
2!

22
(

4

π
)1
√

4.5 =
2

π

√
20 =

4

π

√
5 and 2 <

4

π

√
5 < 3.

The only prime we need to consider is 2. We set f = m(
√
−5,Q). Then f(X) = 5 + X2. The

reduction modulo 2 of f is f2(X) = 1 +X2 = (1 +X)2, so there is a prime ideal P2 in OK such
that OK2 = P 2

2 . Thus there is a unique prime ideal lying over 2. This implies that the class
group is cyclic. We now determine its order, which must be 1 (if P2 is principal) or 2.

We claim that P2 is not principal. If P2 is principal, then we can write

P2 = OK(a+ b
√
−5) =⇒ P 2

2 = OK(a+ b
√
−5)2 =⇒ 2 = (a+ b

√
−5)2u,

where u is a unit in OK . Taking norms we obtain

NK/Q(2) = NK/Q(a+ b
√
−5)2NK/Q(u) =⇒ 4 = ±(a2 + 5b2)2,

which is impossible with a, b ∈ Z. Hence P2 is not principal and we have two distinct classes,
i.e., the class group is cyclic of order 2.

If the class number is prime, then we know that the class group is cyclic. On the other hand,
if the class number is greater than 1 and not prime, then we need to find the distinct classes and
study the relation between them.

Example 3. K = Q(
√
−14)

We calculate the Minkowski bound:

λ =
2!

22
(

4

π
)1
√

4.14 =
4

π

√
14 and 4 <

4

π

√
14 < 5.

We need to consider the primes less than 5, namely 2 and 3.
There is a unique prime ideal P containing 2. Let f = m(

√
−14,Q). Then f(X) = 14 +X2.

The polynomial f is Eisenstein at 2, so there is a prime ideal P2 such that OK2 = P 2
2 and it

follows that P = P2.
The situation is different for 2. In fact, there are two prime ideals containing 3. The reduction

of f modulo 3 is f3(X) = −1 +X2 = (−1 +X)(1 +X), therefore there are prime ideals P3 and
P ′3 such that OK3 = P3P

′
3. Thus the class group is generated by the classes [P2], [P3] and [P ′3].

However, the product P3P
′
3 is a principal ideal, hence [P ′3] = [P3]−1 and we may neglect [P ′3]:

the class group is generated by [P2] and [P3].
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We claim that P2 and P3 are not principal. If P2 is principal, then there exist a, b ∈ Z such
that

2 = (a+ b
√
−14)2u

where u is a unit. Taking norms we find

4 = ±(a2 + 14b2)2,

which is impossible, therefore P2 is not principal. Suppose now that P3 is principal, with P3 =
OK(a+ b

√
−14). There must be an element c+ d

√
−14 ∈ P ′3 such that

3 = (a+ b
√
−14)(c+ d

√
−14).

Taking norms we find
9 = (a2 + 14b2)(c2 + 14d2),

which is impossible. So P3 is not principal.
We now investigate the relation between the classes [P2] and [P3]. We consider the principal

ideal I = OK(2 +
√
−14). As ‖I‖ = NK/Q(2 +

√
−14) = 18 = 2.32, there must be a prime

ideal containing 3 which divides I, i.e., P3 divides I or P ′3 divides I. However, P3 and P ′3 cannot
both divide I. If this is the case, then their product OK3 divides I, which implies that 3 is
a multiple of 2 +

√
−14 (in OK), which is not the case. Therefore only P3 or P ′3 can divide

I. Without loss of generality, let us suppose that P3 divides I. We also notice that ‖P3‖ = 3,
because ‖OK3‖ = NK/Q(3) = 9 and ‖OK3‖ = ‖P3‖‖P ′3‖.

Since
[P2][P3]2 = e =⇒ [P3]2 = [P2]−1 = [P2],

the class group is generated by [P3] and is cyclic. Also,

[P3]4 = [P2]2 = e and [P3]2 = [P2] 6= e,

so the order of the group is 4.

Our next example provides a group of order 4 which is not cyclic.

Example 4. K = Q(
√
−30)

We begin by calculating the Minkowski bound:

λ =
2!

22
(

4

π
)1
√

4.30 =
4

π

√
30 and 6 <

4

π

√
30 < 7.

We consider the primes 2, 3 and 5. There are unique prime ideals P2, P3 and P5, containing
respectively 2, 3 and 5.

We set f = m(
√
−30,Q). Then f(X) = 30 +X2. The polynomial f is Eisenstein at each of

the primes 2, 3 and 5, hence there are prime ideals P2, P3 and P5 in OK such that

OK2 = P 2
2 OK3 = P 2

3 OK5 = P 2
5 .

We claim that P2, P3 and P5 are not principal. For example, if P2 is principal, than there
exist a, b ∈ Z such that P2 = OK(a+ b

√
−30) and so

OK(a+ b
√
−30)2 = OK2 =⇒ (a+ b

√
−30)2u = 2,
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where u is a unit. Taking norms we obtain

NK/Q(2) = ±NK/Q((a+ b
√
−30)2) =⇒ 4 = ±(a2 + 30b2)2,

which is impossible. Thus P2 is not principal; we show in an analogous manner that P3 and P5

are not principal. Therefore each of the elements [P2], [P3] and [P5] are of order 2 in the class
group.

Next we notice that

P2|OK2, P3|OK3, P5|OK5 =⇒ P2P3P5|OK30,

hence there exists an ideal Q such that P2P3P5Q = OK30. Taking norms we find

2.3.5‖Q‖ = 30 =⇒ ‖Q‖ = 1 =⇒ P2P3P5 = OK30.

Therefore
[P2][P3][P5] = e =⇒ [P2][P3] = [P5]−1 = [P5],

which implies that the group is generated by [P2] and [P3].
Our next step is to show that [P2] and [P3] are distinct. If [P2] = [P3], then [P5] = [P2]2 = e,

which is false. Hence [P2] 6= [P3] and so the group is generated by two distinct elements of order
2 and thus is isomorphic to a product of two cyclic groups of order 2.

We now consider a cubic number field, for which we will use some new ideas.

Example 5. K = Q( 3
√

2)

We have already seen that the field K is monogenic. As usual we determine the Minkowski
bound. There are three monomorphisms from K into C, namely the identity, which is real, and
a pair of complex embeddings. We have

λ =
3!

33
(

4

π
)1
√

108 =
8

9π

√
4.9.3 =

16

3π

√
3 and 6 <

16

π

√
3 < 7.

Thus we consider the primes 2, 3 and 5. There is a unique prime ideal P2 (resp. P3) containing
2 (resp. 3) and two prime ideals, P5 and P ′5, containg 5.

Let f = m( 3
√

2,Q). Then f(X) = −2 + X3. As f is Eisenstein at 2, there exists a prime
ideal P2 in OK such that OK2 = P 3

2 .
The reduction of f modulo 3 is f3(X) = 1 +X3 = (1 +X)3, so there exists a prime ideal P3

in OK such that OK3 = P 3
3 .

The reduction of f modulo 5 is f5(X) = −2 + X3 = (−3 + X)(−1 + 3X + X2). As
g2(X) = −1 + 3X + X2 has no root in F5, g2 is irreducible, hence there exist prime ideals
P5, P ′5 in OK such that that OK5 = P5P

′
5.

We claim that the prime ideals P2, P3, P5 and P ′5 are all principal. We set α = 3
√

2. Then

8 = ‖OK2‖ = ‖OKα‖3 =⇒ ‖OKα‖ = 2.

From Proposition 13.4 OKα is a prime ideal. Given that P2 is the unique prime ideal in OK
lying over 2, we have P2 = OKα, i.e., P2 is a principal ideal, as asserted.

For P3 we proceed in a similar manner. We have

27 = ‖OK3‖ = ‖OK(1 + α)‖3 =⇒ ‖OK(1 + α)‖ = 3.
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Hence OK(1 + α) is a prime ideal. Given that P3 is the unique prime ideal in OK lying over 3,
we have P3 = OK(1 + α), i.e., P3 is a principal ideal.

Before considering P5 and P ′5 we will establish a preliminary result.

Lemma 19.1 If K = Q(β), f = m(β,Q), deg(f) = d and r ∈ Q, then f(r) = (−1)dNK/Q(β −
r).

proof First we notice that

f(X) = (−β1 +X)(−β2 +X) · · · (−βd +X),

where the βi are the conjugates of β. It follows that

f(X + r) = (−β1 + r +X)(−β2 + r +X) · · · (−βd + r +X).

As f(X + r) = m(β − r,Q), the elements β1 − r, . . . , βd − r are the conjugates of β − r and so,
using Corollary 10.1, we have

f(r) = (−β1 + r)(−β2 + r) · · · (−βd + r) = (−1)dNK/Q(β − r),

as required. 2

Now we turn to P5 and P ′5. We suppose that P5 corresponds to the factor g1(X) = −3 +X
and P ′5 corresponds to g2. Then ‖P5‖ = 5 and ‖P ′5‖ = 25. From Lemma 19.1 we obtain

NK/Q(α+ 2) = NK/Q(α− (−2)) = (−1)3(−2 + (−2)3) = 10 =⇒ OK(2 + α) = P5OKα,

because P5 and OKα are the only prime ideals in OK with respective norms 5 and 2. Therefore

P5 = OK(2 + α)OK(
1

α
) = OK(

2

α
+ 1) = OK(α2 + 1).

We have shown that P5 is principal. Now we consider P ′5. We have

OK5 = OK(1 + α2)P ′5 = (1 + α2)P ′5,

so, from Lemma 12.3, P ′5 is principal.

As P2, P3, P5 and P ′5 are all principal, the class group is trivial.

The following proposition summarizes the previous calculations:

Proposition 19.1 We have:

• The ideal class group of Q(
√

14) is trivial, hence the number ring of Q(
√

14) is a PID;

• The ideal class group of Q(
√
−5) is isomorphic to the cyclic group of order 2 C2;

• The ideal class group of Q(
√
−14) is isomorphic to the cyclic group of order 4 C4;

• The ideal class group of Q(
√
−30) is isomorphic to the product C2 × C2;

• The ideal class group of Q( 3
√

2) is trivial, hence the number ring of Q( 3
√

2) is a PID.

285



There are various problems raised by the class number of a number field, some of which
were originally considered by Gauss. Probably the most well-known of these is the Gauss
Class Number Problem, namely to determine the imaginary quadratic number fields with class
number 1. Gauss supposed that there were only nine such number fields: Q(

√
k), with k =

−1,−2,−3,−7,−11,−19,−43,−67,−163. This was subsequently proved in the 20th century
(long after Gauss). There has also been work on determining the imaginary quadratic number
fields with class number n, for certain other n.

Another question raised by Gauss is known as the Gauss Conjecture, namely h(Q(
√
−d))→

+∞ as d → +∞, where h(Q(
√
−d)) denotes the class number of the number field Q(

√
−d).

This too was only proved in the 20th century. This result shows that there can only be a finite
number of imaginary quadratic number fields with a fixed class number.

Gauss also conjectured that there is an infinite number of real quadratic number fields of
class number 1. This has yet to be proved (or disproved).
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Chapter 20

The distribution of ideals

Let K be a number field of degree n over Q. For each real number d > 0, we note i(d) the
number of nonzero ideals I in OK with ‖I‖ ≤ d, which is finite by Theorem 13.5. For each ideal
class C we write iC(d) for the number of ideals I in C such that ‖I‖ ≤ d. In addition, Theorem
14.4 ensures that there is a finite number of ideal classes and so i(d) =

∑
C iC(d). We aim to

show that there is a constant k, independant of C, such that

iC(d) = kd+O(d1− 1
n ). (20.1)

We will refer to this equation as the ideal counting equation. If hK is the class number, then

i(d) = hKkd+O(d1− 1
n ). (20.2)

Our treatment of the question is inspired from that in [15].

20.1 Transformation of the problem
We consider a class C and fix an ideal J ∈ C−1. Let A be the set of nonzero ideals in C
with ‖I‖ ≤ d. We define an application φ on A by multiplication by J , i.e., for I ∈ A, we set
φ(I) = IJ . From Corollary 12.1 the mapping φ is injective. Let B be the image of φ. We claim
that B is the set of nonzero principal ideals (α) ⊂ J satisfying the inequality ‖(α)‖ ≤ d‖J‖.
There is no difficulty in seeing that IJ is a nonzero ideal included in J and, by the choice of J ,
IJ is principal. If IJ = (α), then

‖(α)‖ = ‖IJ‖ = ‖I‖‖J‖ ≤ d‖J‖.

Finally, suppose that (α) is a nonzero principal ideal included in J with ‖(α)‖ ≤ d‖J‖. Then J
divides (α), so there exists an ideal I such that IJ = (α). In addition,

‖I‖‖J‖ = ‖IJ‖ = ‖(α)‖ ≤ d‖J‖,

from which we deduce that ‖I‖ ≤ d. This concludes the proof of our claim concerning B.

To determine iC(d), the number of elements in A, given that there is a bijection from A onto
B, we may count the number of elements in B. We notice that two nonzero principal ideals (α)
and (β) are the same if and only if β is a multiple of α by a unit.
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Let D be any set of coset representatives of U = UK in O∗K . The cardinal of B is then the
cardinal of the set of elements α in D such that α ∈ J and |NK/Q(α)| ≤ d‖J‖. Instead of using
the set D to determine |B|, we proceed indirectly.

Dirichlet’s unit theorem (Theorem 14.6) ensures that

U = W × V,

where W is the group of roots of unity of K and V a subgroup of U generated by a fundamental
system of t = r + s− 1 units. We set w = |W |. Let D′ be any set of coset representatives of V
in O∗K . Then w|B| is the cardinal of the set of α in D′ such that α ∈ J and |NK/Q(α)| ≤ d‖J‖.
Thus to determine |B| we calculate w|B|.

20.2 Preliminary results
We begin with an elementary group result.

Lemma 20.1 Let G be a commutative semigroup and G′ an abelian group. We suppose that
f : G −→ G′ is multiplicative, i.e., f(xy) = f(x)f(y), for x, y ∈ G, and that S is a group
included in G. Also, we suppose that f restricted to S is an isomorphism onto its image S′
in G′. If D′ is a set of coset representatives of S′ in G′, then D = f−1(D′) is a set of coset
representatives of S in G. If f is injective, then there is a bijection of D′ onto D.

proof Let z ∈ G and consider the coset zS. As f(z)S′ is a coset of S′ in G′, there exists x′ ∈ D′
such that f(z)S′ = x′S′. Thus there exists w′ ∈ S′ such that f(z)w′ = x′. However, there exists
w ∈ S such that f(w) = w′ and so f(z)w′ = f(z)f(w) = f(zw). Hence zw ∈ f−1(D′) = D.
Therefore zS has a representative in D.

Suppose now that there are two elements x, y ∈ D representing the same coset zS. Then
x = zw1 and y = zw2, with w1, w2 ∈ S and we have

f(zw1) = f(z)f(w1) and f(zw2) = f(z)f(w2).

Since f(w1) and f(w2) lie in S′, f(zw1) and f(zw2) represent the same coset of S′ in G′. Let x′
be the representative of this coset in D′. Then

f(zw1) = x′ = f(zw2) =⇒ f(w1) = f(w2).

As f restricted to S is an isomorphism, we have w1 = w2. Thus there is a unique representative
of the coset zS in D.

Suppose now that f is injective and let x′ ∈ D′. If x1, x2 ∈ f−1(x′), then f(x1) = x′ = f(x2).
As f is injective, we have x1 = x2. Thus the mapping φ : D′ −→ D,x′ 7−→ f−1(x′) is well-
defined. There is no difficulty in seeing that φ is bijective. 2

Remark As a group is a semigroup, we may replace semigroup G by group G in the statement
of the lemma.

For the second result we need some definitions. Let [0, 1]n−1 denote the unit cube in Rn−1.
A function

f : [0, 1]n−1 −→ Rn

is said to be Lipschitz if there is a constant κ, referred to as a Lipschitz constant, such that

‖f(x)− f(y)‖ ≤ κ‖x− y‖,
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for all x, y ∈ [0, 1]n−1, where ‖ ·‖ denotes the length in Rn−1 or Rn. If B is a nonempty bounded
region in Rn, then we say that the boundary ∂B of B is (n − 1)-Lipschitz parametrizable,
or Lipschitz, if it can be covered by the images of a finite number of Lipschitz functions f :
[0, 1]n−1 −→ Rn.

Lemma 20.2 Let Λ be a lattice in Rn and B a bounded set in Rn whose boundary is (n − 1)-
Lipschitz parametrizable. Then

|Λ ∩ aB| = vol B

det Λ
an +O(an−1),

for a sufficiently large a.

proof Let us first suppose that Λ = Zn. We will call a translate of the unit cube [0, 1]n whose
centre is a point z of Zn an n-cube. We will write C(z) for such a cube. An n-cube contains a
unique lattice point, namely its centre, and has volume 1. We may divide the n-cubes intersect-
ing aB into two classes, namely those containing no boundary points of aB and those containing
boundary points of aB. We will write X for the set of n-cubes of the first type and Y for the
set of n-cubes of the second type.

Together the sets X and Y form a covering of aB and so we have the the relation

vol aB ≤ |X|+ |Y |.

In addition, a lattice point in aB must lie either in an n-cube in X or in an n-cube in Y . This
implies that

|Zn ∩ aB| ≤ |X|+ |Y |.

Putting these two relations together, we obtain

−|Y | ≤ |X| − vol aB ≤ 0 ≤ |Zn ∩ aB| − |X| ≤ |Y |,

from which we deduce

−|Y | ≤ |Zn ∩ aB| − vol aB ≤ |Y | or ||Zn ∩ aB| − vol aB| ≤ |Y |.

We aim now to estimate |Y |. Unfortunately this is a quite arduous. The boundary of B is
covered by a finite number of sets of the form f([0, 1]n−1), where f is a Lipschitz function. We
may suppose that the functions all have the same Lipschitz constant κ (by taking, for example,
the maximum of the constants). Then the boundary of aB is covered by the sets af([0, 1]n−1).
We suppose that a ≥ 1 and subdivide the cube [0, 1]n−1 into bacn−1 subcubes S. The subcubes
have side length 1

bac . If x = (x1, . . . , xn−1) ∈ [0, 1
bac ]

n−1, then

x2
1 + · · ·+ x2

n−1 ≤
n− 1

bac2
=⇒ ‖x‖ ≤

√
n− 1

bac
,

so the largest distance between two points in f(S) is κ
√
n−1
bac . This is the same for any of the

small cubes S (by translation). It follows that the distance between two points in af(S) is at
most aκ

√
n−1
bac < 2κ

√
n− 1, because

1 ≤ a < bac+ 1 =⇒ a

bac
< 1 +

1

bac
≤ 2.

289



Thus we have a bound on the distance between pairs of points in af(S).

Our next step is to find a bound on the number of n-cubes C(z) intersecting af(S). We
fix a subcube S and take a point x ∈ af(S). To simplify the notation, we set h = 2κ

√
n− 1.

The closed ball of radius h centered on x, which we note B(x, h), contains af(S) and intersects
a number of n-cubes bounded by µ = (2(h +

√
n))n. This last point needs an explanation. If

B(r, y) is a closed ball in Rn, then

vol B(r, y) =
π
n
2 rn

Γ(n2 + 1)
=

(
√
πr)n

Γ(n2 + 1)
,

where Γ denotes Euler’s gamma function. Now

Γ(
n

2
+ 1) =

{
k! if n = 2k,

(2k+2)!
(k+1)!4k+1

√
π if n = 2k + 1.

Thus, for n ≥ 2 we have Γ(n2 + 1) ≥ 1, and so vol B(r, y) ≤ (
√
πr)n. Now let C(z) be an n-cube

intersecting B(x, h). Since the distance between two points in C(z) is at most
√
n, if y ∈ C(z),

then ‖y − x‖ ≤ h+
√
n, which implies that C(z) ⊂ B(x, h+

√
n). As

vol B(x, h+
√
n) ≤ (

√
π(h+

√
n))n < (2(h+

√
n))n,

the number of n-cubes intersecting B(x, h) is bounded by µ = (2(h +
√
n))n, as claimed. Since

af(S) ⊂ B(x, h), the number of n-cubes intersecting af(S) is also bounded by µ.

To conclude, we find a bound on the number of n-cubes intersecting the boundary ∂(aB).
Since there are bacn−1 cubes S, the boundary ∂(aB) intersects at most µbacn−1 n-cubes. Given
that bac ≤ a, the number of n-cubes intersecting ∂(aB) is bounded by µan−1, i.e., |Y | is bounded
by µan−1. Hence we may write

|Zn ∩ aB| − vol aB| ≤ |Y | ≤ µan−1,

where µ is a constant which is independant of a. From this we deduce

|Zn ∩ aB| = vol aB + (|Zn ∩ aB| − vol aB) = vol aB +O(an−1).

Since detZn = 1 and vol aB = anvol B, we have

|Zn ∩ aB| = vol B

detZn
an +O(an−1),

as required.

We now consider the case where Λ is a general lattice in Rn. There exists a linear automor-
phism L sending Λ onto Zn. LetB′ = L(B). We notice that ∂B′ = L(∂B). If f : [0, 1]n−1 −→ Rn

is a Lipschitz mapping with constant κ, then L◦f is also Lipschitz with Lipschitz constant ‖L‖κ.
If ∂B is covered by the images of the Lipschitz mappings f1, . . . , fm, then ∂B′ is covered by the
images of the Lipschitz mappings L ◦ f1, . . . , L ◦ fm. Then,

Zn ∩ aB′ = L(Λ) ∩ aL(B) = L(Λ ∩ aB) =⇒ |Zn ∩ aB′| = |Λ ∩ aB|
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and

|Λ ∩ aB| =
vol B′

detZn
an +O(an−1)

=
vol L(B)

detL(Λ)
an +O(an−1)

=
vol B

det Λ
an +O(an−1),

as required. (To pass from the second line to the third, we have used Proposition G.2.) 2

20.3 Proof of the ideal counting equation: first steps
From Section 20.1 we need to find a set D′ of coset representatives α of V in O∗K and determine
the cardinal of those α ∈ D′ which belong to J and satisfy the norm condition |NK/Q(α)| ≤ d‖J‖.
In fact, we will ’deplace’ the problem to another context.

We define the mapping µ : O∗K −→ R∗r ×C∗s by

µ(α) = (σ1(α), . . . , σr(α), τ1(α), . . . , τs(α)).

Then µ is a semigroup homomorphism, which is also injective. Let V ′ be the image of V in
R∗r × C∗s and Y a set of coset representatives of V ′ = µ(V ) in Rr × Cs. By Lemma 20.1,
X = µ−1(Y ) is a set of coset representatives of V in O∗K . However, we have two conditions on
X to take into account, namely

• 1. the norm condition |NK/Q(α)| ≤ d‖J‖;

• 2. the inclusion of α in J .

From Lemma 14.1, S(y) = NK/Q(α), where y = µ(α), so we may take into account the norm
condition by imposing that |S(y)| ≤ d‖J‖. For the second condition we consider R∗r ×C∗s as
a subset of Rn and impose that y ∈ ΛJ , the lattice corresponding to J in Rn. Moreover, the
set of α ∈ X such that α ∈ J and |NK/Q(α)| ≤ d‖J‖ is in 1 − 1 correspondance with the set
T = {y ∈ Y : y ∈ ΛJ , |S(y)| ≤ d‖J‖} via the mapping α 7−→ µ(α). Thus w|B| is the cardinal of
T .

We now determine an appropriate set of coset representatives Y of V ′. To do so, we define a
mapping Ln : R∗r ×C∗s −→ Rr+s by

Ln(x1, . . . , xr, z1, . . . , zs) = (ln |x1|, . . . , ln |xr|, 2 ln |z1|, . . . , 2 ln |zs|).

We notice that Ln(xy) = Ln(x)+Ln(y), hence Ln defines a group homomorphism into (Rr+s,+).
We also observe that Ln ◦ µ is the mapping λ which we defined in Section 14.4. The image of λ
restricted to UK spans the hyperplane

H = {(x1, . . . , xr+s) ∈ Rr+s :

r+s∑
i=1

xi = 0}.

Since V is a subgroup of UK , F = λ(V ) = Ln(V ′) is also an additive subgroup of H. As µ
defines an isomorphism from V onto V ′, Ln restricted to V ′ can be written Ln = λ ◦ µ−1 and
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it follows that Ln defines an isomorphism from V ′ onto F , because λ : V −→ F is an isomorphism.

We need to justify the last statement, namely that λ restricted to V is injective. We recall
that λ is a mapping from O∗K into Rr+s, which defines a group homomorphism when restricted
to UK , the group of units in K. The kernel of λ is W , the set of roots of unity in K. Also UK
is the direct product of W and a subgroup V generated by a set of fundamental units. If x ∈ V
and λ(x) = 0, then x ∈W ∩ V , which implies that x = 1. It follows that λ is injective.

We now set u = (

r︷ ︸︸ ︷
1, . . . , 1,

s︷ ︸︸ ︷
2, . . . , 2). As u /∈ H, we may write

Rr+s = H ⊕Ru.

To simplify the notation, let us set vi = λ(εi), for i = 1, . . . , t, where {ε1, . . . , εt} is a fundamental
system of units of V . We recall that the vi form a basis of the hyperplane H (see Theorem 14.6).
We now set

Π = {w ∈ Rr+s : w =

t∑
i=1

aivi : 0 ≤ ai < 1}.

Then Π⊕Ru is a set of coset representatives Z of the subgroup F in Rr+s. Using Lemma 20.1
again, if we set Y = Ln−1(Z), then Y is a set of coset representatives of V ′ in R∗r ×C∗s.

We need to justify that Π⊕Ru is in fact a set of coset representatives of the subgroup F in
Rr+s. If x ∈ Rr+s, then

x =

t∑
i=1

ãivi + au,

with ai, a ∈ R. We may write ãi = bãic+ ai, where 0 ≤ ai < 1. Then

x =

t∑
i=1

aivi + au +

t∑
i=1

baicvi.

As the last term in the expression belongs to F , the elements of Π ⊕ Ru form a set of coset
representatives of F in Rr+s, as claimed.

We now observe that Y is homogeneous, i.e., if a ∈ R∗, then aY = Y . To see this, let
y = (x1, . . . , xr, z1, . . . , zs) ∈ Y and a ∈ R∗. Then

Ln(ay) = (ln |ax1|, . . . , ln |axr|, 2 ln |az1|, . . . , 2 ln |azs|)
= ln |a|u + (ln |x1|, . . . , ln |xr|, 2 ln |z1|, . . . , 2 ln |zs|),

which clearly lies in Z. So aY ⊂ Y . On the other hand, if y ∈ Y , then 1
ay ∈ Y , which implies

that y = a · 1
ay ∈ aY . Hence Y ⊂ aY and it follows that aY = Y , as claimed. For a > 0, we

define
Ya = {y ∈ Y : |S(y)| ≤ a}.

Using the homogeneity of Y , we easily obtain the equality

Ya = n
√
aY1.
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If Y1 is bounded and has a Lipschitz boundary, then we may apply Lemma 20.2 to deduce
that

|ΛJ ∩ n
√
d‖J‖Y1| =

vol Y1‖J‖
det ΛJ

d+O
(

(d‖J‖)1− 1
n

)
=

vol Y1

det Λ
d+O(d1− 1

n ),

because ‖J‖ = det ΛJ
det Λ (cf. end of Section 14.1). Our aim is to estimate the cardinal of the set

T = {y ∈ Y : y ∈ ΛJ , |S(y)| ≤ d‖J‖}. Now

T = ΛJ ∩ {y ∈ Y : |S(y)| ≤ d‖J‖} = ΛJ ∩ n
√
d‖J‖Y1,

therefore, under the conditions on Y1, we obtain

|T | = |ΛJ ∩ n
√
d‖J‖Y1| =

vol Y1

det Λ
d+O(d1− 1

n ).

Thus
iC(d) = kd+O(d1− 1

n ),

where k = vol Y1

w det Λ .

In the next section we will show that Y1 is in fact bounded and has a Lipschitz boundary.

20.4 Properties of the set Y1

We now show that Y1 has the desired properties, namely that Y1 is bounded and has a Lipschitz
boundary. First we find a useful representation of Y1. By definition, Y1 consists of those elements
y = (x1, . . . , xr, z1, . . . , zs) ∈ R∗r ×C∗s such that

Ln(y) = (ln |x1|, . . . , ln |xr|, 2 ln |z1|, . . . , 2 ln |zs|) ∈ Π⊕Ru,

with |x1 · · ·xrz2
1 · · · z2

s | ≤ 1. The last condition is equivalent to saying that

ln |x1|+ · · ·+ ln |xr|+ 2 ln |z1|+ · · ·+ 2 ln |zs| ≤ 0.

Writing v(1)
i , . . . , v

(r+s)
i for the coordinates of vi, we have the system of equations

ln |x1| = a1v
(1)
1 + · · ·+ atv

(1)
t + b

... =
...

...
ln |xr| = a1v

(r)
1 + · · ·+ atv

(r)
t + b

2 ln |z1| = a1v
(r+1)
1 + · · ·+ atv

(r+1)
t + b2

... =
...

...
2 ln |zs| = a1v

(r+s)
1 + · · ·+ atv

(r+s)
t + b2,

where the ai and b are elements of R. Since the vi belong to H, the sum of their coefficients has
the value 0 and it follows that b is bounded above by 0 if and only if the sum of the coefficients
of Ln(y) is bounded above by 0. From this we deduce Y1 is composed of those y ∈ R∗r ×C∗s

such that Ln(y) ∈ Π⊕ (−∞, 0]u.

We now may show that Y1 is a bounded set. For j = 1, · · · , r, the sum
∑t
i=1 aiv

(j)
i is bounded,

because |
∑t
i=1 aiv

(j)
i | ≤

∑t
i=1 |v

(j)
i |. As b ≤ 0, ln |xi| is bounded above, which implies that |xi| is
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bounded above. In he same way, for j = 1, · · · , s, |zj | is bounded above, so the set Y1 is bounded.

We note Y +
1 the subset of Y1 whose real coordinates x1, . . . , xr are positive. We claim that Y1

has a Lipschitz boundary, if Y +
1 has a Lipschitz boundary. To prove this, we need a preliminary

result.

Lemma 20.3 If A1, . . . , Am are subsets of a topological space T , then ∂(A1 ∪ · · · ∪ Am) ⊂
∂A1 ∪ · · · ∪ ∂Am, where ∂X denotes the boundary of a set X.

proof We use a proof by induction. For m = 2 we have

∂(A1 ∪A2) = A1 ∪A2 ∩ c(A1 ∪A2)

= A1 ∪A2 ∩ cA1 ∩ cA2

= (A1 ∪A2) ∩ cA1 ∩ cA2

= (A1 ∩ cA1 ∩ cA2) ∪ (A2 ∩ cA1 ∩ cA2)

⊂ ∂A1 ∪ ∂A2.

In the third line we used the fact that if A and B are subsets of a topological space, then
A ∪B = A ∪ B. Here is a proof. First, A ⊂ A ∪ B implies that A ⊂ A ∪B. In the same way,
B ⊂ A ∪B, so A ∪ B ⊂ A ∪B. Now, A ∪ B contains A and B, therefore A ∪ B ⊂ A ∪ B; as
A ∪B is closed, A ∪B ⊂ A ∪B.

Suppose now that the result is true up to m and consider the case m+ 1. We have

∂(A1 ∪ · · · ∪Am ∪Am+1) ⊂ ∂(A1 ∪ · · · ∪Am) ∪ ∂Am+1

⊂ ∂A1 ∪ · · · ∪ ∂Am ∪ ∂Am+1.

Hence the result is true up to m+ 1, so, by induction, the result is true for all m ≥ 2. 2

Lemma 20.4 If Y +
1 has a Lipschitz boundary, then Y1 also has a Lipschitz boundary.

proof Suppose that Y +
1 has a Lipschitz boundary. The real coordinates of the elements of Y1

may be positive or negative. We divide Y1 into subsets having the same signs on the xi, for
example, x1 < 0, x2 > 0, . . . , xr > 0 or x1 > 0, x2 > 0, x3 < 0, x4 > 0, . . . , xr > 0. With xi > 0,
for all i, we have Y +

1 . There are 2r such subsets. If S is one of these subsets, then there is a
linear automorphism L of Rr×Cs taking Y +

1 onto S. The isomorphism L maps the boundary of
Y +

1 onto that of S. If f is a Lipschitz function covering part of the boundary of Y +
1 , then L ◦ f

is a Lipschitz function covering the corresponding part of the boundary of S. It follows that S
has a Lipschitz boundary. From Lemma 20.3, the boundary of Y1 is contained in the union of
the boundaries of the subsets S and hence is Lipschitz. 2

We now concentrate our attention on the set Y +
1 .

Proposition 20.1 The set Y +
1 has a Lipschitz boundary.

proof We recall that we set vi = λ(εi), where {ε1, . . . , εt} is a system of fundamental units
in OK . As above, for each vi, we write v

(1)
i , . . . , v

(r+s)
i for its coordinates. A point y =
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(x1, . . . , xr, z1, . . . , zs) ∈ Y +
1 is characterized by the equations

ln(x1) =

t∑
i=1

aiv
(1)
i + b

...
...

ln(xr) =

t∑
i=1

aiv
(r)
i + b

2 ln |z1| =

t∑
i=1

aiv
(r+1)
i + 2b

...
...

2 ln |zs| =

t∑
i=1

aiv
(r+s)
i + 2b,

where the xj are positive, the zk are nonzero, the ai belong to the interval [0, 1) and b is an
element of (−∞, 0].

Now we set ar+s = eb and write zk = ρke
iθk . Then we have the relations

xj = ar+s exp
( t∑
i=1

aiv
(j)
i

)
(20.3)

ρk = ar+s exp
(1

2

t∑
i=1

aiv
(r+k)
i

)
(20.4)

θk = 2πar+s+k, (20.5)

with ar+s ∈ (0, 1], because b ∈ (−∞, 0], and all the other ai ∈ [0, 1). We define the "polar
coordinate" transformation β by

β(x1, . . . , xr, ρ1, · · · , ρs, θ1, . . . , θs) = (x1, . . . , xr, ρ1e
iθ1 , . . . , ρse

iθs)

and set f = β ◦ α, where

α(a1, . . . , an) =
(
ar+s exp

( t∑
i=1

aiv
(1)
i

)
, . . . , ar+s exp

( t∑
i=1

aiv
(r)
i

)
,

ar+s exp
(1

2

t∑
i=1

aiv
(r+1)
i

)
, . . . , ar+s exp

(1

2

t∑
i=1

aiv
(r+s)
i

)
,

2πar+s+1, . . . , 2πar+2s

)
.

Letting the ai vary, we obtain a continuous injective mapping f from C = [0, 1)t×(0, 1]×[0, 1)s

onto Y +
1 . Before continuing we recall a generalization of the mean value theorem:

Let E and F be normed vector spaces, O an open subset of E and h : O −→ F differentiable
on O. If the segment [a, b] is contained in O, then

‖h(b)− h(a)‖ ≤ sup
x∈(a,b)

‖dhx‖‖b− a‖.
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If O is not only open but also convex and the norm of the differential is bounded on O, then
h is Lipschitz on O. (The convexity ensures that any two points a, b ∈ O can be joined by a
segment in O.)

The function f which we defined above may be extended to Rn and has continuous partial
deriviatives, so is of class C1, i.e., the differential is defined and continuous on Rn. Let ε > 0
and O = (−ε, 1 + ε)n. Then O is a convex open subset in Rn. On the set Ō = [−ε, 1 + ε]n, the
closure of O, the norm of the differential is bounded, because Ō is compact, hence the norm of
the differential is bounded on O and so f is Lipschitz on O. It follows that f is Lipschitz on
[0, 1]n, being a subset of O.

We claim that f([0, 1]n) is Y +
1 . To see this, we notice first that, as [0, 1]n is compact and

f continuous, f([0, 1]n) is compact and therefore closed. Given that Y +
1 ⊂ f([0, 1]n), we have

Y +
1 ⊂ f([0, 1]n) = f(C). However, Y +

1 = f(C) implies that Y +
1 = f(C), so Y +

1 = f([0, 1]n), as
claimed.

We are now in a position to show that the boundary of Y +
1 is Lipschitz. The closure Y +

1 is
the disjoint union of the interior Y +0

1 and the boundary ∂Y +
1 . We will show that f maps the

interior of the n-cube [0, 1]n into the interior Y +0
1 , which implies that the boundary of the n-cube

[0, 1]n is mapped onto a set containing the boundary ∂Y +
1 . Since the boundary of [0, 1]n may be

considered as composed of 2n (n−1)-cubes, namely the sides of the n-cube [0, 1]n, the boundary
∂Y +

1 is covered by the images of 2n Lipschitz mappings defined on [0, 1]n−1 (the restrictions of
f to the sides of [0, 1]n) and so is Lipschitz. It remains to show that the interior (0, 1)n of [0, 1]n

is in fact mapped into the interior Y +0
1 .

The mapping f restricted to (0, 1)n is the composition of the following four mappings:

f1 : (0, 1)n −→ Rn, (t1, . . . , tn) 7−→ (t1, . . . , ln(tr+s), . . . , tn),

f2 : Rn −→ Rn, (u1, . . . , un) 7−→ (u1, . . . , un)M,

where

M =


v

(1)
1 . . . v

(r+s)
1

... 0

v
(1)
t . . . v

(r+s)
t

1 . . . 2
0 Is

 ,

f3 : Rn −→ Rn, (a1, . . . , an) 7−→ (ea1 , . . . , e
1
2ar+1 , . . . , 2πar+s+1, . . . , 2πan),

and

f4 : Rr × (0,∞)s ×Rs −→ Rr ×Cs,

(x1, . . . , xr, ρ1, . . . , ρs, θ1, . . . , θs) 7−→ (x1, . . . , xr, ρ1e
iθ1 , . . . , ρse

iθs).

(The first r coordinates in the line 1 . . . 2 of the matrix M have the value 1 and the remaining s
coordinates the value 2.) Of course, the mapping f4 is just the "polar coordinate" transformation
defined above.

296



We claim that the four mappings are open and so their composition f is also open. As the
matrix M is invertible, f2 is an automorphism, hence open. To show that the other three map-
pings are open, we recall another result from analysis, namely the inverse mapping theorem:

Let E and F be Banach spaces, O an open subset of E and h : O −→ F of class C1. If x ∈ O
and the differential dhx is invertible, then there is an open neighbourhood O′ of x contained in O
such that h|O′ is a C1-diffeomorphism onto its image. This implies that h(O′) is an open subset
of F .

If the differential dhx is invertible at every point x ∈ O, then for every point x ∈ O there is
an open neighbourhood O′x such that h(O′x) is an open subset of F and we have

O = ∪x∈OO′x =⇒ h(O) = h(∪x∈OO′x) = ∪x∈Oh(O′x).

As the last set is a union of open subsets in F , h(O) is open in F .

To see that the mappings f1, f3 and f4 are open, it is sufficient to show that the differential
dfix is invertible on each point x of the domain of fi. (The functions fi have continuous partial
derivatives and so are of class C1.) To determine whether dfix is invertible, we may consider the
invertibility of the jacobian matrix Jfi(x). This is the case for all four mappings. For example,
the jacobian matrix of f1 has the form

Jf1(t1, . . . , tn) =

 It 0 0
0 t−1

r+s 0
0 0 Is

 ,

which is clearly invertible. We leave the calculation of the determinant of the jacobian matrix of
f3 and f4 to the reader. (In the case of f4, we consider ρjeiθj as the pair (ρj cos θj , ρj sin θj).)

We have shown that the four mappings f1, f2, f3 and f4 are open, hence f restricted to
(0, 1)n is an open mapping. It follows that the image of f restricted (0, 1)n is an open subset
of Y +

1 and thus is contained in Y +0
1 , as asserted. Hence the boundary of Y +

1 is Lipschitz, as
required. 2

To sum up, we have

Theorem 20.1 The boundary of Y +
1 is Lipschitz and hence that of Y1 is Lipschitz.

20.5 The constant k
There is a point we have glossed over. We saw above that k = vol Y1

w det Λ . However, vol Y1 could
depend on the system of fundamental units which we choose. We aim to show that this choice
in fact has no effect on vol Y1 and hence no effect on k. We will calculate explicitly vol Y1 in
passing by vol Y +

1 (vol Y1 = 2rvol Y +
1 ) and show that this is independant of the choice of the

set of fundamental units.

To calculate the volume vol Y +
1 we aim to use the "change of variables" formula:

297



Let O be an open subset of Rn and f : O −→ Rn an injective, continuously differentiable
mapping such that Jf (x) 6= 0, for all x ∈ O. If g : f(O) −→ R is integrable, then∫

f(O)

g dx =

∫
O

(g ◦ f)|Jf | dx.

A proof may be found, for example, in [24].

Applying this result, with O = (0, 1)n, f as defined above and g the characteristic function
of Y +

1 , we obtain

vol Y +
1 =

∫
(0,1)n

|Jf | dx,

so we need to determine the Jacobian matrix of f .

We recall that f is the composition of two mappings β and α, defined in the previous section,
i.e., f = β ◦ α. The Jacobian matrix of f is the product of the Jacobian matrices of β and
α, i.e., Jf = Jβ ◦ Jα. (We draw attention to the fact that we consider ρjeiθj as the pair
(ρj cos θj , ρj sin θj) ∈ R2.) The Jacobian matrix Jβ is easy to determine and we obtain |det Jβ | =
ρ1 · · · ρs. To find the Jacobian matrix Jα we calculate the partial derivatives of xj , ρj and θj ,
with respect to the ai, using the relations (21.3), (21.4) and (21.5). We obtain

∂xj
∂ai

=


xjv

(j)
i if 1 ≤ i < r + s

xj
ar+s

if i = r + s

0 if r + s < i ≤ n,

∂ρj
∂ai

=


1
2ρjv

(r+j)
i if 1 ≤ i < r + s

ρj
ar+s

if i = r + s

0 if r + s < i ≤ n

and
∂θj
∂ai

=

{
2π if i = r + s+ j

0 otherwise .

Writing this in matrix form, we have

Jα =



v
(1)
1 x1 . . . v

(1)
t x1

x1

ar+s
...

...
...

...
v

(r)
1 xr . . . v

(r)
t xr

xr
ar+s

0
1
2v

(r+1)
1 ρ1 . . . 1

2v
(r+1)
t ρ1

ρ1
ar+s

...
...

...
...

1
2v

(r+s)
1 ρs . . . 1

2v
(r+s)
t ρs

ρs
ar+s

0 2πIs


and so

det Jα =
x1 · · ·xrρ1 · · · ρsπs

ar+s
det(M t),
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where M is the matrix defined in the previous section. Hence

|det Jf | =
x1 · · ·xrρ2

1 · · · ρ2
sπ
s

ar+s
|detM | = |detM |πsan−1

r+s .

(The last equality needs an explanation. From the equations (21.3), (21.4) and (21.5) we have

x1 · · ·xrρ2
1 · · · ρ2

s = anr+s exp

(
t∑
i=1

aiv
(1)
i

)
· · · exp

(
1

2

t∑
i=1

aiv
(r+1)
i

)2

. . .

= anr+s exp(a1(v
(1)
1 + · · ·+ v

(r+s)
1 ) · · · exp(at(v

(1)
t + · · ·+ v

(r+s)
t )

= anr+s exp(0) · · · exp(0) = anr+s,

because the vectors vi belong to the hyperplane H.)

Therefore

vol Y +
1 =

∫
(0,1)n

|Jf (a1, . . . , an)|da1 · · · dan

= |detM |πs
∫

(0,1)n
an−1
r+s da1 · · · dan

=
|detM |πs

n

and it follows that vol Y1 = 2n | detM |πs
n .

The matrix M may vary according to the choice of the fundamental system of units. We
claim that this does not affect the absolute value of the determinant. Suppose that {ε1, . . . , εt}
and {ε′1, . . . , ε′t} are fundamental systems of units. Then each ε′i may be written

ε′i = ζiε
ni,1
1 · · · εni,tt ,

a where ζi is a root of unity and ni,1, . . . , ni,t ∈ Z. Thus

v′i = λ(ε′i) = ni,1λ(ε1) + · · ·+ ni,tλ(εt) = ni,1v1 + · · ·+ ni,tvt.

If we note M and M ′ the matrices corresponding respectively to {ε1, . . . , εt} and {ε′1, . . . , ε′t},
then we have

M ′ =


n1,1 . . . n1,t

...
... 0

nt,1 . . . nt,t
0 Is+1

M = PM.

In the same way, there exists a matrix Q with integer coefficients such thatM = QM ′. Therefore
P is invertible, with inverse Q. As the determinants of P and Q are integers, we must have
detP = ±1 and detQ = ±1. It follows that

|detM ′| = |detM ||detP | = |detM |.

Therefore vol Y1 is independant of the fundamental system of units and so is the constant k. We
call the expression 1

n |M | the regulator of OK (or K) and we note it reg(OK). Then

k =
vol Y1

w det Λ
=

2rπsreg(OK)

w2−s
√
|disc(OK)|

=
2r+sπsreg(OK)

w
√
|disc(OK)|

.
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It is interesting to determine the value of k when K is a quadratic number field. First we
consider the case where K = Q(

√
m) is imaginary. As we saw in Section 14.4, the units are the

roots of unity, so we may replace w by |UK |. We also saw in Section 14.4 that s = 1 and r = 0,
so t = r + s− 1 = 0. Setting reg(OK) = 1, we have

k =
2π

|UK |
√
|disc(OK |

.

Now we consider a real quadratic number field K = Q(
√
m). We have two cases to consider,

namely m ≡ 2, 3 (mod 4) and m ≡ 1 (mod 4).

Case 1: m ≡ 2, 3 (mod 4) The algebraic integers are of the form x = a + b
√
m, with a, b ∈ Z.

The units are those whose norm is ±1, i.e., a2− b2m = ±1. There are two embeddings of K into
R:

σ1(a+ b
√
m) = a+ b

√
m and σ2(a+ b

√
m) = a− b

√
m.

Let u > 0 be a fundamental unit, with u = a′ + b′
√
m. Then σ1(u) = u and σ2(u) = a′ − b′

√
m.

However,
(a′ + b′

√
m)(a′ − b′

√
m) = a′2 − b′2m = ±1,

because u is a unit. Hence σ2(u) = ±u−1 and it follows that ln |σ2(u)| = lnu−1 = − lnu.
Therefore

M =

(
lnu − lnu
1 1

)
,

therefore detM = 2 lnu and so reg(OK) = lnu.

Case 2: m ≡ 1 (mod 4) The algebraic integers are of the form x = 1
2 (a+b

√
m), where a, b ∈ Z and

have the same parity. Since the norm of x is 1
4 (a2−mb2), x is a unit if and only if a2−mb2 = ±4,

with a and b both odd or both even. There are two embeddings of K into R:

σ1(
1

2
(a+ b

√
m)) =

1

2
(a+ b

√
m) and σ2(

1

2
(a+ b

√
m)) =

1

2
(a− b

√
m).

Let u > 0 be a fundamental unit, with u = 1
2 (a′ + b′

√
m). Then σ1(u) = u and σ2(u) =

1
2 (a′ − b′

√
m). However,

1

2
(a′ + b′

√
m)

1

2
(a′ − b′

√
m) =

1

4
(a′2 − b′2m) = ±1,

because u is a unit. Hence σ2(u) = ±u−1 and it follows that ln |σ2(u)| = lnu−1 = − lnu.
Therefore again we have

M =

(
lnu − lnu
1 1

)
,

hence detM = 2 lnu and so reg(OK) = lnu.

The roots of unity are ±1, so w = 2, therefore in both cases we have

k =
22 lnu

2
√
|disc(OK)|

=
2 lnu√
|disc(OK)|

.

As a fundamental unit and the discriminant disc(OK) can be determined without difficulty, we
may easily find k.
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20.6 Dedekind’s ζ function
In this section we introduce the Dedekind ζ function, which generalizes the Riemann ζ function.

We consider the Dirichlet series
S(s) =

∑
n≥1

an
ns
,

where the an are fixed complex numbers and s a complex variable. As usual ns = es lnn. Then
we have

Lemma 20.5 If
∑
n≤t an is O(tr), for some r ≥ 0, then the series S(s) converges for all s =

x+ iy, with x > r, and is analytic in the half-plane Hr = {s = x+ iy : x > r}.

proof It is sufficient to show that S(s) converges uniformly on every compact subset of Hr.

For each s ∈ Hr we estimate the sum
∑M
n=m

an
ns . Setting Ak =

∑k
n=1 an, we have

M∑
n=m

an
ns

=

M∑
n=m

An
ns
−

M∑
n=m

An−1

ns
=
AM
Ms
− Am−1

ms
+

M−1∑
n=m

An(
1

ns
− 1

(n+ 1)s
).

From the O(tr) condition there exists a constant C such that |An| ≤ Cnr, for all n. Hence

|
M∑
n=m

an
ns
| ≤ C

(
Mr

|Ms|
+

(m− 1)r

|ms|
+

M−1∑
n=m

nr| 1

ns
− 1

(n+ 1)s
|

)
.

Now
1

ns
− 1

(n+ 1)s
= s

∫ n+1

n

dt

ts+1
,

hence

| 1

ns
− 1

(n+ 1)s
| ≤ |s|

∫ n+1

n

dt

ts+1
= |s|

∫ n+1

n

dt

tx+1
≤ |s|
nx+1

and

|
M∑
n=m

an
ns
| ≤ C

(
Mr−x +mr−x + |s|

M−1∑
n=m

nr−x−1

)
.

We also notice that
M−1∑
n=m

nr−x−1 ≤
∫ ∞
m−1

tr−x−1dt =
(m− 1)r−x

x− r
,

for any m > 1. Therefore, letting m and M go to infinity, we find that the sum
∑M
n=m

an
ns

converges to 0, for any s ∈ Hr, and it follows that the series S(s) is convergent.

If A is a compact subset of Hr, then there is a constant C ′ such |s| ≤ C ′, for s ∈ A. In
addition, x− r ≥ ε for some ε > 0. Hence, for s ∈ A, we have

|
∞∑
n=m

an
ns
| ≤ C

(
m−ε + C ′

(m− 1)−ε

ε

)
.
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We set

fm(s) =

m∑
n=1

an
ns

and f(s) =

∞∑
n=1

an
ns
.

The functions fm are analytic and from what we have just seen they converge uniformly to f on
A. It follows that f is analytic on Hr. 2

If we set an = 1, for all n, then
∑
n≤t an = btc. Thus

∑
n≤t an is O(t1). From Lemma 20.5

the series S(s) converges for all s in the half-plane H1 and the function

ζ(s) =

∞∑
n=1

1

ns

is analytic on this half-plane. This is the Riemann ζ function.

Suppose now that K is a number field with number ring OK . From Theorem 13.5, there is a
finite number of ideals with a given norm, and a countable union of finite sets is countable, so
the set of ideals in OK is countable. If we let jn be the number of ideals I in OK with ‖I‖ = n,
then from the ideal counting equation (20.2), we see that

∑
n≤t jn is O(t), so the series S(s) in

this case also is convergent and the function

ζK(s) =

∞∑
n=1

jn
ns

is analytic on the half-plane H1. The function ζK is referred to as the Dedekind ζ function of
the number field K .

Since the ideals in OK form a countable set, we may index them by numbers in N∗. Let us
fix such an indexation. Then we may write

ζK(s) =

∞∑
m=1

1

‖Im‖s
.

Indeed, the series
∑∞
m=1

1
‖Im‖s is absolutely convergent for s ∈ H1: If s = x + iy, then

| 1
‖Im‖s | = 1

‖Im‖x , and so
∑∞
m=1 |

1
‖Im‖s | =

∑∞
m=1

1
‖Im‖x , which is convergent for x > 1. This

implies that we may rearrange the terms of series as we like, always obtaining a convergent series
with the same sum. We may also introduce parentheses where we like. With an appropriate
rearrangement and using parentheses, we obtain the expression defining ζK(s).

Example At the beginning of this section we stated that the Dedekind ζ function generalizes
the Riemann ζ function. If K = Q, then OK = Z. The ring Z is a PID and the nonzero
ideals have the form I = (k), with k ∈ N∗. The cosets of (k) are (k), 1 + (k), . . . , k − 1 + (k),
so ‖(k)‖ = k. It follows that for every k ∈ N∗ there is a unique ideal I with norm k. Thus ζQ = ζ.

We aim to extend ζK to a meromorphic function on the half-plane H1−[K:Q]−1 , having a
unique simple pole. We first extend ζ to a meromorphic function on H0. Let

S0(s) = 1− 1

2s
+

1

3s
− 1

4s
+ · · ·
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Then |
∑
n≤t an| ≤ 1 = t0, so, from Lemma 20.5, the series converges for all s ∈ H0 and the

function S0 is analytic on H0. Again using Lemma 20.5, we obtain the absolute convergence of
S0, for s ∈ H1. We claim that, for s ∈ H1,

S0(s) = (1− 21−s)ζ(s).

We show that we have the same terms in the two expressions and so, by the absolute convergence
of S0, we have equality. Indeed,

ζ(s) = S0(s) +
2

2s
+

2

4s
+

2

6s
+ · · · = S0(s) +

21−s

1s
+

21−s

2s
+

21−s

3s
+ · · · = S0(s) + 21−sζ(s),

thus the two expressions S0(s) and (1 − 21−s)ζ(s) have the same terms, hence the claim. It
follows that

S0(s)

1− 21−s = ζ(s),

and we may extend ζ to a meromorphic function on the half-plane H0, which has possible poles
at points where 21−s = 1, i.e., s = 1 + 2kπi

ln 2 , with k ∈ Z. We set sk = 1 + 2kπi
ln 2 . We claim that

the only pole is at s0 = 1. For s0 = 1 we have

S0(1) = 1− 1

2
+

1

3
− 1

4
+ · · · = ln 2 6= 0,

so s0 is a pole. This pole is in fact simple, because h(s) = 1 − 21−s has a simple root at s0.
(h′(s) = − ln 2.21−s =⇒ h′(1) = − ln 2 6= 0.)

We now consider sk, where k 6= 0. Let us look at the series

S1(s) = 1 +
1

2s
− 2

3s
+

1

4s
+

1

5s
− 2

6s
+ · · ·

Then |
∑
n≤t an| ≤ 2 = 2(t0), so from Lemma 20.5, the series converges for all s ∈ H0 and the

function S1 is analytic on H0. A calculation similar to that for S0(s) shows that

S1(s) = (1− 31−s)ζ(s),

and so
S1(s)

1− 31−s = ζ(s),

for s ∈ H1, and we have a second possible extension of ζ to H0, with possible poles at points
where 31−s = 1, i.e., s = 1 + 2k′πi

ln 3 , with k′ ∈ Z. We set sk′ = 1 + 2k′πi
ln 3 . The points sk and sk′

are situated on the straight line x = 1. In the former case the y-coordinate is the element 2π
ln 2

multiplied by an integer and in the latter case the y-coordinate is the element 2π
ln 3 multiplied by

an integer. In fact, the points sk and sk′ are distinct, when either k or k′ is nonzero. Without
loss of generality, suppose that k′ 6= 0. Then

sk = sk′ =⇒ k(
2π

ln 2
) = k′(

2π

ln 3
) =⇒ k

k′
=

ln 2

ln 3
,

which is impossible, because k
k′ is rational and

ln 2
ln 3 irrational.

For any k 6= 0, if s ∈ H1, with s 6= sk, then

S0(s)

1− 21−s = ζ(s) =
S1(s)

1− 31−s .
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This implies that the limit of S0(s)
1−21−s as s converges to sk from the right is finite. Consequently

sk cannot be a pole of S0(s)
1−21−s . Also, we have seen that 1 is a simple pole of this expression. In

the following we will refer to the extension S0(s)
1−21−s as the extension of ζ to H0. This extension is

meromorphic on H0 and has a unique pole at 1, which is simple.

We now extend ζK . We have

ζK(s) =

∞∑
n=1

jn
ns

=

∞∑
n=1

jn − hKk
ns

+ hKkζ(s),

where hK is the number of ideal classes in OK and k the constant in the ideal counting equation.
The Dirichlet series with coefficients jn−hKk

ns converges on the half-plane Hr, with r = 1 − [K :
Q]−1, because ∑

n≤t

(jn − hKk) = O(t1−
1
n ) = O(tr),

from the ideal counting equation. This combined with the meromorphic extension of ζ gives us
a meromorphic extention of ζK defined on Hr, with r = 1− [K : Q]−1, which has a unique pole
at s = 1. Moreover, this pole is simple.

20.7 The product form of the Dedekind ζ function
As the set of prime ideals in OK is a subset of the set of ideals, this set is countable, so we may
index the prime ideals in OK by numbers in N∗. In this section we aim to show that, for s ∈ H1,
we may write ζK(s) in a particular product form, namely

ζK(s) =
∏
n≥1

(
1− 1

‖Pn‖s

)−1

,

where {Pn}n≥1 is the set of prime ideals in OK .

To begin with, we will show that the given product is convergent. (For the reader not familiar
with infinite products, we have included an appendix on the subject.) We fix s = x + iy ∈ H1.
Now, ∑

n≥1

∣∣∣∣ 1

‖Pn‖s

∣∣∣∣ =
∑
n≥1

1

‖Pn‖x
<
∑
m≥1

1

‖Im‖x
, (20.6)

which is convergent, because s ∈ H1. It follows that
∑
n≥1

1
‖Pn‖s is absolutely convergent. To

simplify the notation we will write an for 1
‖Pn‖s ; then

∑
n≥1 an is absolutely convergent, which

implies that
∑
n≥1(−an) is absolutely convergent. From Lemma I.2 we deduce that

∏
n≥1(1−an)

is absolutely convergent. Now, applying Theorem I.1, we obtain that the product
∏
n≥1(1− an)

converges to a nonzero number γ, which is independant of the indexation of the prime ideals. It
follows that

∏
n≥1(1 − an)−1 converges (to 1

γ ), independently of the arrangement of the prime
ideals, so we may affirm without ambiguity that

∏
n≥1(1− 1

‖Pn‖s )−1 is convergent. Therefore we
may write ∏

P∈Spec(OK),P 6=(0)

(
1− 1

‖P‖s

)−1
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for this product. We aim to show that the product has the value ζK(s), for s ∈ H1. First we
notice that

(1− an)−1 = 1 + an + a2
n + · · · ,

hence

(1− a1)−1(1− a2)−1 = 1 + (a1 + a2) + (a2
1 + a1a2 + a2

2) + · · · = 1 +
∑

ar11 a
r2
2 ,

where r1 and r2 range over N and are not simultaneously 0. Now, using the multiplicativity of
the norm of an ideal (Theorem 13.2), we have

ar11 a
r2
2 =

1

‖P1‖r1s
1

‖P2‖r2s
=

1

‖P r11 P r22 ‖s
.

For distinct values of r1 and r2, the ideals P r11 P r22 are distinct, so the expression
∑
ar11 a

r2
2 is just

the sum of the values of 1
‖I‖s , where the sum is taken over all ideals whose decomposition is a

product of powers of the ideals P1 and P2. We set A2 = 1 +
∑
ar11 a

r2
2 .

In the same way, for the product of (1− a1)−1, (1− a2)−1 and (1− a3)−1, we obtain

(1− a1)−1(1− a2)−1(1− a3)−1 = 1 +
∑

ar11 a
r2
2 a

r3
3 ,

where r1, r2 and r3 range over N and are not simultaneously 0. The expression
∑
ar11 a

r2
2 a

r3
3 is

just the sum of the values of 1
‖I‖s , where the sum is taken over all ideals whose decomposition is

a product of powers of the ideals P1, P2 and P3. Let us set A3 = 1 +
∑
ar11 a

r2
2 a

r3
3 .

Continuing in the same way, for any n ∈ N∗ we obtain

(1− a1)−1 · · · (1− an)−1 = 1 +
∑

ar11 · · · arnn ,

where r1, . . . rn range over N and are not simultaneously 0. The expression
∑
ar11 · · · arnn is the

sum of the values of 1
‖I‖s , where the sum is taken over all ideals whose decomposition is a product

of powers of the ideals P1, . . . , Pn. We set A0 = 1, and for n ≥ 1, An = 1 +
∑
ar11 · · · arnn .

We are now in a position to prove the result referred to above.

Theorem 20.2 If s ∈ H1, then

ζK(s) =
∏

P∈Spec(OK),P 6=(0)

(
1− 1

‖P‖s

)−1

,

where Spec(OK) denotes the collection of prime ideals in OK .

proof As the series ζK(s) =
∑∞
m=1

1
‖Im‖s , with s ∈ H1, is absolutely convergent, any rear-

rangement of the terms gives us another series converging to ζK(s). We now construct a useful
rearrangement.

Let T0 be composed of the single ideal OK . We give OK some index, say 0. Every nontrivial
ideal I in OK which is not equal to OK can be written in a unique way as a product of prime
ideals: I = P r11 · · ·P ruu , where at least one ri is nonzero. We index the ideals in OK in the
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following way: First we index the set T1 composed of the powers of P1 with indices not equal to
0. (We could use the powers of P1 as indices.)

Next we consider the set T2 composed of products of P1 and P2, which do not belong to
T0 ∪ T1. We index these elements with indices which we have not already used.

Now we consider the set T3 composed of products of powers of P1, P2 and P3, which do not
belong to T0 ∪ T1 ∪ T2. We index the elements of T3 once again with indices which we have not
previously used.

Continuing in the same way we obtain an indexation of all nontrivial ideals. From this in-
dexation we obtain a rearrangement of the terms in the series for ζK(s).

We recall that

ζK(s) =

∞∑
m=1

1

‖Im‖s
,

where the Im are the ideals in OK , indexed in some arbitrary way. As the series is absolutely
convergent, we may group the terms into ’packets’, choosing a permutation allowing us to sum
the ’packets’ in the order we desire. Thus

ζK(s) =
∑
n≥0

(∑
I∈Tn

1

‖I‖s

)
.

If
Bn =

∑
I∈T0∪···∪Tn

1

‖I‖s
,

then limn→∞Bn = ζK(s). However, Bn = An and limn→∞An =
∏∞
i=1

(
1− 1

‖Pi‖s

)−1

. Hence
we have the equality

ζK(s) =
∏

P∈Spec(OK),P 6=(0)

(
1− 1

‖P‖s

)−1

,

as claimed. 2

Corollary 20.1 For s ∈ H1, we have ζK(s) 6= 0.

proof Since the expression of ζK(s) as a product is nonzero, we have the result. 2

Remark From what we have just seen, we may find a multiplicative expression for the Riemann
ζ function. Setting K = Q, for s ∈ H1 we obtain

ζ(s) = ζQ(s) =
∏

(1− 1

ps
)−1,

where the product is taken over all prime numbers in N∗.

20.8 The class number formula
In this section we bring together the ideal counting equation and the Dedekind ζ function to
obtain a relation involving the class number of a number ring. This is known as the class number
formula. We begin with a preliminary result concerning the Riemann ζ function.
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Proposition 20.2 For the Riemann ζ function, we have

lim
s→1+

(s− 1)ζ(s) = 1.

proof We have seen that the series

S0(s) =

∞∑
n=1

(−1)n−1

ns
,

is convergent and holomorphic on the open half-plane H0; also, for s in the half-plane H1,

ζ(s) =
S0(s)

1− 21−s .

As S0 is continuous at 1, lims→1+ S0(s) = ln 2. On the other hand, we have

21−s − 1 = (− ln 2)21−s′(s− 1),

where s′ ∈ (1, s). It follows that

21−s − 1

s− 1
= (− ln 2)21−s′ =⇒ lim

s→1+

21−s − 1

s− 1
= − ln 2.

Hence
lim
s→1+

(s− 1)ζ(s) = 1,

as required. 2

This result may be written in the form: lims→1+(s− 1)ζQ(s) = 1. We now replace Q by any
number field K and consider the limit lims→1+(s− 1)ζK(s). We set bl = jl − hKk, where hK is
the class number of OK (or of K) and k the constant whose value is given by

k =
2r+sπsreg(OK)

w
√
|disc(OK)|

,

where reg(OK) is the regulator of OK as defined above, r (resp. s) the number of real (resp.
complex) embeddings of K in C and w the number of roots of unity in OK . We have seen above
that the Dirichlet series S2(s) with coefficients bl

ls converges and is analytic on the half-plane Hr,
with r = 1− [K : Q]−1. In particular, S2(1) is finite. Now,

S2(s) = ζK(s)− hKkζ(s) =⇒ lim
s→1+

(s− 1)S2(s) = lim
s→1+

(s− 1)ζK(s)− hKk lim
s→1+

(s− 1)ζ(s)

and, from Proposition 20.2, it follows that

lim
s→1+

(s− 1)ζK(s) =
2r+sπsreg(OK)

w
√
|disc(OK)|

hK .

This expression is referred to the class number formula.

Remark It should be noticed that in general the class number hK is difficult to determine,
hence the expression lims→1+(s− 1)ζK(s) is difficult to evaluate from the formula. On the other
hand, using the formula to calculate the class number is also difficult, because the expression
lims→1+(s− 1)ζK(s) is not easy to determine directly.
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Appendix A

Formal power series, polynomials
and polynomial functions

In this appendix we summarize the main results on polynomials which we use in the text. We
make a clear distinction between polynomials and polynomial functions, something which is often
neglected. Also, we present polynomials in the context of formal power series, which seems to
us quite natural. We do not give any proofs. These can be found elsewhere in standard algebra
texts, for example [1] or [14].

Formal power series

Let R be a commutative ring with identity. A sequence A = (ai)
∞
i=0 of elements of R is called

a formal power series over R. We will write SR for the set of all such power series. We define an
addition ⊕ pointwise on SR: If A = (ai) and B = (bi), then we set A⊕B = (ai + bi). With this
operation SR is a group, with identity O = (oi), where oi = 0 for all i. The inverse of A = (ai)
is −A = (−ai).

We also define a multiplication � on SR: for A,B ∈ SR, we set C = (ci) ∈ SR, where
ci =

∑
k+l=i akbl. We write C = A�B. With this operation and the addition, SR is a ring with

identity U = (ui), where u0 = 1 and ui = 0 for i 6= 0. An element A is invertible (for the multi-
plication) if and only if a0 is invertible in R. An element X ∈ SR plays a special role. We define
X = (xi) by x1 = 1 and xi = 0 for i 6= 1. Then it easy to check that, if Xk = (yi), then yk = 1
and yi = 0 for i 6= k. If we set X0 = U , then we can write the power series A =

∑∞
i=1 ai ·Xi.

By convention we usually write R[[X]] for SR and call the ring we have just defined the ring of
formal power series over R.

We also define a scalar multiplication · on SR: for λ ∈ R, λ · (ai) = (λai). With the addition,
SR is an R-module (an R-vector space, if R is a field) and with the three operations an algebra.

We make certain simplifications in the notation: we write A + B for A ⊕ B, AB for A ⊗ B
and λA for λ ·A.

Polynomials

It may be so that a power series has only a finite number of nonzero coordinates. We call
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such power series polynomials over R. We note the set of polynomials R[X], which is a subring
of R[[X]], when R[[X]] is considered as a ring, and a submodule (resp. vector subspace), when
R[[X]] is considered as an R-module (resp. R-vector space).

If A ∈ R[X] and A 6= O, then we define the degree of A, written degA, to be max{i : ai 6= 0}.
The coefficient ai, where i = degA is called the leading coefficient of A. If the leading coefficient
has the value 1, then we say that the polynomial is monic. We define the degree of the zero
polynomial O to be −∞. If A = (ai) is a nonzero polynomial and degA = n, then we may write
A =

∑n
i=0 aiX

i.The degree has the following properties:

• deg(−A) = degA;

• deg(A+B) ≤ max{degA,degB};

• degAB = degA+ degB, if R is an integral domain.

From the third property we easily derive that, if R is an integral domain, then R[X] is an integral
domain and the set of invertible elements R[X]× is composed of the constant polynomials A = a,
where a ∈ R×.

We may consider division of one polynomial by another. We have the following result:

Theorem A.1 Let B be a nonzero polynomial in R[X], with leading coefficient invertible in R.
For any A ∈ R[X], there exist unique polynomials Q,S ∈ R[X] such that

A = QB + S,

where degS < degB.

The polynomial Q (resp. R) is called the quotient (resp. remainder) of A divided by B.
Clearly, if R is a field, then the polynomial B can be any nonzero polynomial. The polynomial
B divides A if and only if S = O.

Polynomial functions

For a commutative ring R with identity, we note F(R) the collection of functions from R into
itself. We define three operations on F(R):

(f ⊕ g)(x) = f(x) + g(x) (f � g)(x) = f(x)g(x) (z · f)(x) = zf(x),

for all x, z ∈ R and f, g ∈ F(R). With the first two operations F(R) is a ring with identity, and
with the first and third operations F(R) is an R-module. We may define a mapping

Φ : R[X] −→ F(R), A 7−→ Ā

in the following way. Let x ∈ R and A ∈ R[X]. If A 6= O and A =
∑n
i=0 aiX

i, then we set
Ā(x) =

∑n
i=0 aix

i and if A = O, then we set Ō(x) = 0. The mapping Φ is a ring homomorphism
and also an R-module homomorphism. The image of Φ, which we will write P(R), is a subring of
F(R) and also an R-submodule. The image Ā of A is called the polynomial function associated
to A. We should notice that there is a clear distinction between polynomials and polynomial
functions. When there is no confusion possible, we often write A for Ā.

If α ∈ R and Ā(α) = 0, then we say that α is a root of A. The following result is fundamental.
It is an easy consequence of Theorem A.1.
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Proposition A.1 Let A ∈ R[X]. Then α ∈ R is a root of A if and only if −α+X divides A.

It may be so that a power of −α + X greater than 1 divides A. If (−α + X)k divides A, but
(−α+X)k+1 does not, then we say that the root α has multiplicity k. We will write ν(α) for the
multiplicity of the root α. Roots with multiplicity 1 are said to be simple; on the other hand,
roots with multiplicity k > 1 are called multiple roots. We must be careful with the number of
roots: in general, this number is bounded, however there are polynomials with an infinite number
of roots. In the case where A is an integral domain we have the following important result.

Theorem A.2 Let R be an integral domain and A a nonzero polynomial in R[X]. Then the
number of roots of A, counted with multiplicity, is bounded by the degree of A. If R is an
algebraically closed field, then we have equality.

If R is an infinite integral domain and A is a nonzero polynomial in R[X], then, from the
theorem, Ā 6= 0 and so the mapping Φ defined above is injective. This means that R[X] is
isomorphic as a ring, or as an R-module, to P(R).

Remark If R is not an integral domain, then Theorem A.2 may not be true. For example, if
f ∈ Z8[X], with f(X) = 4X, then deg f = 1, but f has four roots, namely 0, 2, 4, 6.

Differentiation of polynomials

Let A ∈ R[X] of degree n. We define the derivative A′ ∈ R[X] of A in the following way. If
degA ≤ 0, i.e., if A is a constant polynomial, then A = O; if degA ≥ 1 and A =

∑n
i=0 aiX

i,
then

A′ =

n∑
i=1

iaiX
i−1 =

n−1∑
i=0

(i+ 1)ai+1X
i.

Clearly degA′ ≤ degA − 1; however, the inequality may be strict. The following result is not
difficult to prove.

Theorem A.3 If A,B ∈ R[X] and z ∈ R, then

• (A+B)′ = A′ +B′;

• (zA)′ = zA′;

• (AB)′ = AB′ +A′B.

Corollary A.1 The mapping

D : R[X] −→ R[X], A 7−→ A′

is a an R-module homomorphism.

The derivative is useful in finding multiple roots:

Proposition A.2 If α ∈ R and A ∈ R[X], then α is a multiple root of A if and only if α is a
root of both A an A′.
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Remark We may extend the notion of root in the following way. If R is an integral domain and
A ∈ R[X], then any α in an extension of the field of fractions of R is called a root of A if Ā(α) = 0.

Irreducible polynomials

We recall that an element a in a ring R is irreducible if it is neither 0 nor invertible and, if
there are elements b, c ∈ R such that a = bc, then either b or c is invertible. Also, two elements
a and b are associates, if there exists an invertible element c such that a = cb. If R is an integral
domain and every element a ∈ R, which is neither 0 nor invertible can be written as a product
of a unit and irreducible elements and, given two complete factorizations of a

a = ub1 · · · br = vc1 · · · cs,

where u and v are units and the bi and cj are irreducible, then we have r=s and the bi can be
renumbered so that each cj is associated to bj , then we say that R is a unique factorization do-
main (UFD). A basic property of UFDs is that any two elements a and b have a highest common
factor (HCF) d and a lowest common multiple (LCM) m. In addition, dm is an associate of ab
(see [5]).

If R is a unique factorization domain and A ∈ R[X], with A 6= 0, then the content of A,
which we write c(A), is the HCF of the coefficients of A. We say that a polynomial is primitive
if its content is 1. Clearly, we may write A = c(A)B, where c(B) = 1. The following result is
known as Gauss’s lemma.

Theorem A.4 If R is a UFD and A,B ∈ R[X] are nonzero, then c(AB) = c(A)c(B), up to
association. Thus the product of two primitive polynomials is primitive.

This apparently simple result enables us to prove several other important results. Proofs may
be found, for example, in [1].

Theorem A.5 Let R be a unique factorization domain, with quotient field F , and A ∈ R[X].
Then, if A is nonconstant and irreducible in R[X], then A is irreducible in F [X]. On the other
hand, if A is primitive and irreducible in F [X], then A is irreducible in R[X].

Theorem A.6 If R is a UFD, then so is R[X].

Theorem A.7 (Eisenstein’s irreducibility criterion) Let R be a UFD, with quotient field F , and
A ∈ R[X], with degA = n ≥ 1. If there is an irreducible element p ∈ R such that p divides ai,
for i = 0, . . . , n−1, p does not divide an and p2 does not divide a0, then A is irreducible in F [X].
If, in addition, A is primitive, then A is irreducible in R[X].

Multivariate polynomials

We may define polynomials in an alternative way. We let X be a symbol and define R̃[X] to
be the collection of expressions of the form

A =

m∑
i=0

aiX
i,

where the ai ∈ R, m ∈ N, X0 = 1. We call the terms aiXi monomials. For A,B ∈ R[X],
we define their sum A ⊕ B by adding the coefficients of terms having the same power of X. If
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A = aXi and B = bXj , then we define A�B = abXi+j . We may extend this multiplication: if
A =

∑m
i=0 aiX

i and B =
∑n
j=0 ajX

j , then we multiply pairs of elements (aXi, bXj) and then
add resulting monomials having the same power; this gives us A�B. Finally, we define a scalar
multiplication: if λ ∈ R and A =

∑m
i=0 aiX

i then we set λ · A =
∑m
i=0 λaiX

i. With the three
operations so defined R̃[X] is an R-algebra isomorphic to R[X]. As above, we write A + B for
A⊕B, AB for A�B and λA for λ ·A and we identify R[X] and R̃[X].

The alternative way of defining polynomials enables us to extend the definition to polynomials
in several variables over a commutative ring R with identity. We let X1, . . . , Xn be n commuting
symbols, often referred to as variables or indeterminates, and we define R[X1, . . . , Xn] to be the
collection of expressions of the form

A =
∑

as1,...,snX
s1
1 · · ·Xsn

n ,

where as1,...,sn ∈ R and the sum is finite. Each term as1,...,snX
s1
1 · · ·Xsn

n is said to be a monomial.
We call the elements of R[X1, . . . , Xn] polynomials in n variables or indeterminates. We define
an addition ⊕ on elements of R[X1, . . . , Xn] by adding like monomials in the expressions of
polynomials and scalar multiplication · by an element λ ∈ R by multiplying the coefficients of all
the monomials by λ. We define a multiplication � first on monomials. If A = aXs1

1 · · ·Xsn and
B = bXt1

1 · · ·xtn , then we set A � B = abXs1+t1
1 . . . Xsn+tn

n . We extend this multiplication to
any pair of polynomials A and B by first multiplying all pairs of monomials (mA,mB), with mA

a monomial of A and mB a monomial of B, and then adding the monomials obtained with the
same powers of each Xi. With the three operations so defined R[X1, . . . , Xn] is an R-algebra.
As above, we write A + B for A ⊕ B, AB for A � B and λA for λ · A. We call the maximum
value of s1 + · · ·+ sn the total degree of the polynomial A, which we note degA.

Exercise A.1 Show that R[X1, . . . , Xn] is an integral domain if and only if R is an integral
domain.

If F is a field and f ∈ F [X] has an infinite number of roots, then f is the zero polynomial. The
situation with multivariate polynomials is not the same. For example, if f(X,Y ) = −X + Y 2 ∈
R[X,Y ], then f has an infinite number of roots, but f is not the zero polynomial. However, if
the infinite set on which f vanishes has a certain form, then we can assert that f is the zero
polynomial.

Theorem A.8 Let F be a field and A1, . . . , An infinite subsets of F . If f ∈ F [X1, . . . , Xn]
vanishes on the cartesian product A1 × · · · ×An, then f is the zero polynomial.

proof We use an induction on n, the number of indeterminates. If n = 1, then there is nothing
to prove. Suppose now that n > 1 and the result is true up to n− 1. Let f ∈ F [X1, . . . , Xn] and
A1, . . . , An infinite subsets of F such that f vanishes on A1×· · ·×An. Fixing a ∈ An, we obtain
a polynomial ga(X1, . . . , Xn−1) = f(X1, . . . Xn−1, a) in n − 1 indeterminates. By the induction
hypothesis, ga has the value 0 on all members of Fn−1. We may consider f as an element of
F (X1, . . . , Xn−1)[Xn], which has the value 0 on all values of An. As this is a polynomial in one
indeterminate, it vanishes on F . We have shown that f is the zero polynomial on Fn. This
completes the induction step and hence the proof. 2

Partial fraction decomposition

Let K be a field and K[X] the integral domain of polynomials with coefficients in K. We
note K(X) the field of fractions of K[X]. The following theorem generalizes a well-known result
of elementary analysis.
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Theorem A.9 Let K be a field and φ1, . . . , φl distinct polynomials in K[X] with positive degrees
d1, . . . , dl. We suppose that n1, . . . , nl are fixed positive integers and define g =

∏l
k=1 φ

nk
k and

set N = deg g. Then the following conditions are equivalent:

• a. The polynomials φ1, . . . , φl are pairwise coprime.

• b. For every f ∈ K[X] with deg f < N , there exist unique polynomials {pkj} 1≤k≤l
1≤j≤nk

in

K[X], with deg pkj ≤ dk − 1 such that f
g may be written in the form

f

g
=

l∑
k=1

nk∑
j=1

pkj

φjk
.

• c. Statement b. without the uniqueness condition.

proof see [2] 2

We refer to this result as the partial fraction decomposition theorem.
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Appendix B

Symmetric polynomials

If A is a polynomial in n indeterminates, then we obtain another polynomial σA if we permutate
the indeterminates Xi by the permutation σ: the monomial aX1 · · ·Xn becomes aXσ(1) · · ·Xσ(n).
The polynomial A ∈ R[X1, . . . , Xn] is symmetric if, for all permutations σ ∈ Sn, σA = A.
We write R[X1, . . . , Xn]Sn for the collection of symmetric polynomials over R. These form a
subalgebra of R[X1, . . . , Xn].

We define the polynomials Σ1, . . . ,Σn as follows:

Σ1 =

n∑
i=1

Xi, Σ2 =
∑
i<j

XiXj , . . . ,Σk =
∑

1≤i1<···<ik≤n

Xi1 · · ·Xik , . . . ,Σn = X1 · · ·Xn.

These polynomials are symmetric and are called the elementary symmetric polynomials in
R[X1, . . . , Xn]. Each Σk is the sum of

(
n
k

)
monomials of degree k. We will sometimes write

Σ
(n)
k , instead of Σk, to indicate the number of indeterminates. A symmetric polynomial can be

expressed in terms of these polynomials, as we will soon see. First we need to generalize the
notion of degree in a particular way.

We have seen the notion of total degree, which generalizes that of degree for a polynomial in
one variable. However, we may generalize the notion of degree in another way. First we define
an order < on Nn: if I = (i1, . . . , in) and J = (j1, . . . , jn) and there exists k such that ai = bi,
for i < k, and ak < bk, then we write I < J . Clearly < defines a total order on Nn, said to be a
lexicographic order. It is easy to see that, if I, J,K ∈ Nn, then

I < J =⇒ I +K < J +K.

We now consider a polynomial

A =
∑

i1,...,in

ai1,...,inX
i1
1 · · ·Xin

n ,

which we often abbreviate to
∑
I aIX

I . We notice that XIXJ = XI+J . For a nonzero polyno-
mial A we call the multidegree of A

mdeg A = max{I : aI 6= 0}.

If mdeg A = I, then we call aIXI the leading term of A and aI the leading coefficient of A, which
we note lead A. For the elementary symmetric polynomials we have

mdeg Σ1 = (1, 0, . . . , 0),mdeg Σ2 = (1, 1, 0, . . . , 0), . . . ,mdeg Σn = (1, 1, . . . , 1).

The multidegree has properties similar to those of the degree.
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Proposition B.1 If A,B ∈ R[X1, . . . , Xn] are nonzero, then

• mdeg AB = mdeg A+ mdeg B, if R is an integral domain;

• mdeg (A+B) ≤ max(mdeg a,mdeg B);

• mdeg (A+B) = mdeg B, if mdeg A < mdeg B.

proof Let
A =

∑
I<K

aIX
I + aKX

K and B =
∑
J<L

bJX
J + bLX

L.

Then AB has the nonzero term aKbLX
K+L and the other terms have multidegrees stricly less

than K + L. Hence
mdeg AB = mdeg A+ mdeg B.

The multidegrees of the monomials of A + B are those of A and B, with the exception of
those eliminated when the coefficients of a monomial in A and a monomial in B have opposite
signs. It follows that

mdeg (A+B) ≤ max(mdeg a,mdeg B).

If mdeg A < mdeg B, then the leading term of A+B is that of B, hence

mdeg (A+B) = mdeg B.

This ends the proof. 2

We now prove a fundamental result relating symmetric and elementary symmetric polynomi-
als.

Theorem B.1 Let R be a commutative ring with identity. If A ∈ R[X1, . . . , Xn]Sn , then there
exists a unique polynomial S ∈ R[X1, . . . , Xn] such that

A = S(Σ1, . . . ,Σn),

where S(Σ1, . . . ,Σn) is the polynomial S with Xi replaced by Σi.

proof Existence If A is the zero polynomial, then there is nothing to prove, so let us suppose that
this is not the case. We use an argument by induction on the multidegree. If mdeg A = (0, . . . , 0),
then A is constant and we may take S = A.

Now suppose that mdeg A = K = (k1, . . . , kn), with K 6= (0, . . . , 0). We have

A =
∑
I<K

aIX
I + aKX

K ,

with aK 6= 0. We claim that k1 ≥ k2 · · · ≥ kn. As (k1, . . . , kn) is the multidegree of a nonzero
monomial in A and A is symmetric, all permutations of the ki appear as multidegrees of mono-
mials of A and K is greater than any of these permutations. If, for some i, ki < ki+1, then
the sequence obtained by permutation of ki and ki+1 is greater than K and so mdeg A 6= K, a
contradiction, thus ki ≥ ki+1, for all i. We now set

a1 = k1 − k2, a2 = k2 − k3, . . . , an−1 = kn−1 − kn, an = kn.

As ki ≥ ki+1, for all i, the elements ai are all positive and B = aKΣa11 · · ·Σann is a polynomial.
Since the elementary symmetric polynomials are monic, we have
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mdeg B = a1mdeg Σ1 + a2mdeg Σ2 + · · ·+ anΣn

= (a1, 0, . . . , 0) + (a2, a2, 0, . . . , 0) + . . . (an, . . . , an)

= (a1 + a2 + . . .+ an, a2 + . . .+ an, . . . , an)

= (k1, k2, . . . , kn) = mdeg A.

It follows that A and B have the same leading term, namely aKXK . If A = B, then we are
done. If this is not the case and we set C = A−B, then mdeg C < K. As C is symmetric, there
is a polynomial S′ ∈ R[X1, . . . , Xn] such that C = S′[Σ1, . . . ,Σn] and

A = B + C = aKΣa11 · · ·Σann + S′[Σ1, . . . ,Σn] = S′′[Σ1, . . . ,Σn].

This finishes the induction step.

Uniqueness In order to prove the uniqueness of the polynomial S, we will prove, by induction
on n, the number of variables, that, if Q ∈ R[X1, . . . , Xn] and Q[Σ1, . . . ,Σn] = 0, then Q = 0.
First, if n = 1, then Σ1 = X and the only possibility is clearly Q = 0. Suppose now that n ≥ 2.
We may write

Q =

N∑
k=0

QkX
k
n,

where Qk ∈ R[X1, . . . , Xn−1]. If Q 6= 0, then there is a Qi 6= 0. We set p = min{i : Qi 6= 0}.
Then

0 = Q(Σ1, . . . ,Σn) = Σpn

N∑
k=p

Qk(Σ1, . . . ,Σn−1)Σk−pn .

Using the fact that Σpn is monic, we obtain

Qp(Σ1, . . . ,Σn−1) +Qp+1(Σ1, . . . ,Σn−1)Σn +Qp+2(Σ1, . . . ,Σn−1)Σ2
n + · · · = 0.

We define a mapping from R[X1, . . . , Xn] into R[X1, . . . , Xn−1] by setting Xn = 0. (We discard
all monomials with a power of Xn.) The mapping ψ is a surjective ring homomorphism and

Kerψ = {A ∈ R[X1, . . . , Xn] : A = aXn, a ∈ R}.

Then
ψ(Qp(Σ

(n)
1 , . . . ,Σ

(n)
n−1) = Qp(Σ

(n−1)
1 , . . . ,Σ

(n1)
n−1) and ψ(Σ(n)

n ) = 0,

hence
Qp(Σ

(n−1)
1 , . . . ,Σ

(n1)
n−1) = 0.

From the induction hypothesis, Qp = 0, a contradiction. It follows that Q = 0, which is what
we set out to prove. 2

Corollary B.1 Let R and S be commutative rings with identity such that R ⊂ S. We suppose
that f ∈ R[X], with leading term invertible and roots α1, . . . , αn in S. If A ∈ R[X1, . . . , Xn] is
symmetric, then A(α1, . . . , αn) ∈ R.
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proof AsA is symmetric, there exists a polynomial T ∈ R[X1, . . . , Xn] such thatA(X1, . . . , Xn) =
T (Σ1, . . . ,Σn). For i = 1, . . . , n, let us note si = Σi(α1, . . . , αn). Thus A(α1, . . . , αn) =
T (s1, . . . , sn). If f(X) =

∑n
i=0 aiX

i, then

an−i = an(−1)iΣi(α1, . . . , αn) = an(−1)isi =⇒ si = (−1)ia−1
n an−i

Therefore
A(α1, . . . , αn) = T (−a−1

n an−1, a
−1
n an−2, . . . , (−1)na0) ∈ R,

as required. 2

Exercise B.1 Let f be a monic polynomial in Z[X], with roots α1, . . . , αn ∈ C. We take e ∈ N∗

and let g be the monic polynomial in C[X] with roots αe1, . . . , αen. Show that g has its coefficients
in Z.
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Appendix C

Semidirect products

In this appendix we introduce the notion of the semidirect product of two groups, which general-
izes that of the direct product. This is not usually handled in depth in elementary algebra courses.

If H is a normal subgroup of a group G, then K is said to be a complement of H if

G = HK and H ∩K = {e}.

It is easy to see that any g ∈ G has a unique representation as a product hk, with h ∈ H and
k ∈ K. Also, G = KH and so g has a unique representation k′h′, with k′ ∈ K and h′ ∈ H. (It
is not necessarily the case that h′ = h or k′ = k.) If K is a proper normal subgroup of the group
G and H has a complement H, then we say that G is the semidirect product of H and K (the
order is important).

Proposition C.1 If G is the semidirect product of H and K, then K is isomorphic to the
quotient group G/H.

proof The kernel of the quotient mapping φ : G −→ G/H restricted to K is H ∩K = {e}, so
φ|K is injective. To see that φ|K is surjective, we take any element gH ∈ G/H. As g = kh, we
have

gH = khH = kH = φ|K(k),

hence φ|K is surjective. 2

If G is the semidirect product of H and K, then there is a natural bijection from the cartesian
product H ×K into G, namely

ψ(h, k) = hk,

for all (h, k) ∈ H ×K. However, this mapping is not necessarily a group homomorphism. If ψ
is a homomorphism, then we say that the indirect product is an internal direct product.

Proposition C.2 The mapping ψ is a homomorphism if and only if the elements of H commute
with those of K.

proof If ψ is a homomorphism, then, for h ∈ H and k ∈ K,

ψ((e, k)(h, e)) = ψ(e, k)ψ(h, e), i.e., hk = kh,

so elements of H commute with elements of K.
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Now suppose that the elements of H commute with those of K and let (h, k), (h′, k′) ∈ H×K.
Then

ψ((h, k)(h′, k′)) = hh′kk′ = hkh′k′ = ψ(h, k)ψ(h′k′),

so ψ is a homomorphism. 2

Corollary C.1 The mapping ψ is a homomorphism if and only if K is a normal subgroup of G.

proof If ψ is a homomorphism and k ∈ K and g = k′h′ ∈ G, then

gkg−1 = (k′h′)k(k′h′)−1 = k′(h′kh′−1)k′−1 = k′kk′−1 ∈ K,

so K �G.
Now let us suppose that K � G and let h ∈ H and k ∈ K. We set z = hkh−1k−1, the

commutator of h and k. As K � G, z = (hkh−1)k−1 ∈ K. In the same way, z ∈ H. However,
H ∩K = {e}, which implies that z = e and hence that h and k commute. As elements of H and
K commute, ψ is a homomorphism. 2

Examples - If G = Z6, then there exist subgroups H and K, isomorphic respectively to Z3 and
Z2, which satisfy the conditions, so we may say that G is the semidirect product of H and K.
- Now let us consider S3, with H = A3, which is a normal subgroup of S3, and K = {e, (1 2)}.
This subgroup is not normal: for example,

(1 2 3)(1 2)(1 3 2) = (2 3) /∈ H.

However,
H ∩K = {e} HK = G.

So S3 is the semidirect product of H and K (and H ' Z3, K ' Z2).
- The dihedral group D2n, n ≥ 3 is generated by elements a and b such that o(a) = n,

o(b) = 2 and bab = a−1. Using the relation bab = a−1, we see that, if H = 〈a〉 and K = 〈b〉, then
D2n = HK. If as = b, with 1 ≤ s < n, then a2s = e and n|2s. As 2s < n, we have n = 2s. This
is clearly impossible if n is odd. If n is even, then s = n

2 and

bab = a
n
2 aa

n
2 = a = a−1 =⇒ n = 2,

a contradiction. Hence H ∩K = {e}. We have shown that D2n is the semidirect product of H
and K.

The first two examples show clearly that groups G1 and G2 may be nonisomorphic, but at the
same time the semidirect product of pairs of subgroups (H1,K1) (resp. (H2,K2)), with H1 ' H2

and K1 ' K2.

Exercise C.1 Let H be the subgroup V4 of A4, i.e.,

V4 = {e, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}.

Show that H is normal in S4 and hence in A4 and then that A4 is the semidirect product of H
and the subgroup K generated by the 3-cycle (1 2 3). Is A4 a direct product of H and K?

If G is the semidirect product of H and K, then any g ∈ G may be written in a unique form
as g = hk, with h ∈ H and k ∈ K. We may write the product of two elements g and g′ as follows

gg′ = (hk)(h′k′) = hkh′k−1kk′ = hφk(h′)kk′,
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where φk is the automorphism of H defined by k, i.e.,

φk(h) = khk−1,

for all h ∈ H. (As H �G, φk(h) ∈ H, so φk is a mapping from H into H; checking that φk is an
automorphism is easy.) This means that the bijection ψ from H ×K into G defined above is a
homomorphism, if we define the product on H ×K by

(h, k)(h′, k′) = (hφk(h), kk′).

Exercise C.2 Show that the mapping

φ : K −→ Aut(H), k 7−→ φk

is a group homomorphism, where Aut(H) is the group of automorphisms defined on H.

A natural question now arises. Given groups H and K, together with a homomorphism
φ : K −→ Aut(H), can we construct a semidirect product based on this information? The
answer is affirmative and is based on our previous analysis of the semidirect product.

Theorem C.1 If H and K are groups and G = H × K, their cartesian product, then from
a homomorphism φ : K −→ Aut(H), we may define a multiplication on G such that G is the
semidirect product of H and K. (We identify H with H ′ = H×{eK} and K with K ′ = {eH}×K).

proof We define a multiplication on G by

(h, k)(h′, k′) = (hφk(h′), kk′).

We need to show first that G, with this multiplication, is indeed a group. The associativity is
the most difficult part. We have

((h, k)(h′, k′)) (h′′, k′′) =
(
hφk(h′), kk′

)
(h′′, k′′)

=
(
hφk(h′)φkk′(h

′′), kk′k′′
)

=
(
hφk(h′)φkφk′(h

′′), kk′k′′
)

=
(
φk(h′)φk(φ′k(h′′)), kk′k′′

)
=

(
hφk(h′φk′(h

′′), kk′k′′
)

= (h, k)
(
h′φk′(h

′′), k′k′′
)

= (h, k)
(
(h′, k′)(h′′, k′′)

)
.

For (eH , eK) we write (e, e). Then

(h, k)(e, e) = (hφk(e), ke) = (h, k)

and
(h, k)(φk−1(h−1), k−1) = (hφk(φk−1(h−1), kk−1) = (hh−1, kk−1) = (e, e),

hence G is a group.
We must now show that G is the desired semidirect product of H and K (or of H ′ and K ′).

Clearly, H ∩K = {(e, e)} and HK = G, so we only need to show that H is a normal subgroup
of G. First, we consider an element of H conjugated with an element of K:

(e, k)(h, e)(e, k)−1 = (e, k)(h, e)(φk−1(e−1), k−1)

= (e, k)(h, e)(e, k−1)

= (φk(h), k)(e, k−1)

= (φk(h)φk(e), kk−1) = (φk(h), e) ∈ H.
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Now, for the general case, we have:

(h, k)(h′, e)(h, k)−1 = (h, e)(e, k)(h′, e)(e, k)−1(h, e)−1

= (h, e)(φk(h′), e)(h, e)−1

= (h, e)(φk(h′), e)(φe−1(h−1), e−1)

= (hφk(h′)h−1, e) ∈ H.

Therefore H is normal in G and G is the semidirect product of H and K. 2

We write H oφ K for this semidirect product of H and K, or simply H oK. We often refer
to it as an external semidirect product.

It is natural to ask under what circumstances an external semidirect product is a direct
product. We give a simple criterion.

Proposition C.3 An external semidirect product is direct if and only if φ is trivial, i.e., φk =
idH , for all k ∈ K.

proof We must show that K is normal in G if and only if φ is trivial. If φ is trivial, then

(h, e)(e, k)(h, e)−1 = (h, k)(φe−1(h−1), e−1) = (h, k)(h−1, e) = (hφk(h−1), k) = (e, k) ∈ K,

because φk = idH . Therefore K is normal in G.
On the other hand, if φ is not trivial, then there exist h and k such that φk(h) 6= h and

(h, e)(e, k)(h, e)−1 = (h, k)(φe−1(h−1), e−1) = (h, k)(h−1, e) = (hφk(h−1), k) /∈ K,

because
hφk(h−1)k = e =⇒ hφk(h)−1 = e =⇒ h = φk(h),

a contradiction. It follows that K is not normal in G. 2

In general, external semidirect products are not abelian. In fact, this is always so if mapping
φ is nontrivial. In this case there exist h and k such that φk(h) 6= h and

(h, e)(e, k) = (h, k) 6= (φk(h), k) = (e, k)(h, e).

Consequently, if the external semidirect product is abelian, then it is a direct product. This
enables us to construct a large variety of nonabelian groups.

Remarks

• If the external semidirect product is abelian, then it is a direct product.

• Not all groups can be written as semidirect products. For example, for n ≥ 5, An is simple,
i.e., it has no nontrivial proper normal subgroup, and so cannot be written as a semidirect
product.

Application: Groups of order pq, with p, q prime and q < p

We first consider the case where q = 2.
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Proposition C.4 If G is a group of order 2p, with p > 2 prime, the G is cyclic or dihedral.

proof From Cauchy’s theorem there exist a, b ∈ G such that o(a) = p and o(b) = 2. Let us set
H = 〈a〉 and K = 〈b〉. As H has index 2, H is normal in G, hence

bab = bab−1 = ar,

for 1 ≤ r < p. (r = 0 is impossible, because in this case we would have a = e.) If as = b, with
1 ≤ s < p, then a2s = e, then p|2s. However, s < p, we have p = 2s, which implies that p is
even, a contradiction. It follows that H ∩K = {e} and |HK| = 2p. This in turn implies that
HK = G and so G = 〈a, b〉.

In addition,
ar

2

= barb = b(bab)b = a =⇒ ar
2−1 = e =⇒ p|r2 − 1.

This implies that p|r − 1 or p|r + 1.
Case 1: p|r − 1: Here r = 1, because

1 ≤ r < p =⇒ 0 ≤ r − 1 < p− 1 =⇒ r = 1 =⇒ ab = ba.

Therefore G is abelian and the order of ab is 2p. It follows that G is cyclic.
Case 2: p|r + 1: Here r = p− 1, because

1 ≤ r < p =⇒ 2 ≤ r + 1 < p+ 1 =⇒ r + 1 = p =⇒ r = p− 1.

This implies that
G = 〈a, b〉 ap = b2 = e bab = a−1,

ce qui implique que G ' D2p. 2

We now consider the general case. We need a preliminary result.

Lemma C.1 Suppose that the group G is generated by the elements a and b, whose orders are
respectively m and n. We also assume that bab−1 = ar, for some r ∈ Z. Then, for i, j, k, l ∈ N,

(aibk)(ajbl) = ai+jr
k

bk+l. (C.1)

Therefore, every element g ∈ G can be written g = asbt, with 0 ≤ s < m and 0 ≤ t < n. This
expression is unique if 〈a〉 ∩ 〈b〉 = {e}.

proof We first prove by induction that, for all k ∈ N,

bkab−k = ar
k

, (C.2)

For k = 0, 1, this is evident. Suppose now that the property is true for k − 1, for some k ≥ 2.
Then

bkab−k = b(bk−1ab−(k−1))b−1 = b(ar
k−1

)b−1 = (bab−1)r
k−1

.

From this last expression we obtain

bkab−k = (ar)r
k−1

= arr
k−1

= ar
k

.

This finishes the induction.
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Now, using this relation, we have

bkajb−k = (bkab−k)j = ajr
k

=⇒ bkaj = ajr
k

bk

and
(aibk)(ajbl) = aiajr

k

bkbl = ai+jr
k

bk+l.

Using the orders of the elements a and b, we obtain the expressions that, for all g ∈ G, g = asbt,
with 0 ≤ s < m and 0 ≤ t < n.

If 〈a〉 ∩ 〈b〉 = {e}, then, for 0 ≤ i, j < m and 0 ≤ k, l < n,

aibk = ajbl =⇒ ai−j = bl−k = e =⇒ m|i− j, n|l − k =⇒ i− j = k − l = 0.

Therefore the expression g = asbt is unique, if 0 ≤ s < m and 0 ≤ t < n. 2

We will now establish an elementary result, which is useful here (and elsewhere).

Lemma C.2 If n ≥ 2, then
Aut(Zn) ' Z×n .

proof If r ∈ Z×n , then the mapping φr : x 7−→ rx is an automorphism of Zn, so there are at
least φ(n) automorphisms of Zn. Notice that r is in fact φr(1), so we have φr(x) = xφr(1), where
φr(1) is inversible.

On the other hand, if φ is an automorphism of Zn, then φ(x) = xφ(1), for all x ∈ Zn. If φ(1)
is not inversible, then φ(1) = 0 or φ(1) is a zero divisor. The first alternative is false, because
this would imply that the mapping φ takes every x ∈ Zn to 0. In the second case, there exists
v 6= 0 in Zn such that vφ(1) = 0. This implies that φ(v) = 0 and, as φ(0) = 0, φ is not injective.
It follows that φ(1) is inversible and the result now follows. 2

Proposition C.5 Let p and q be prime numbers with q < p. There exists a nonabelian group of
order pq if and only if p ≡ 1(mod q).

proof Let us first suppose that p ≡ 1(mod q). From Lemma C.2, we know that |Aut(Zp)| = p−1.
Given that q|p− 1, from Cauchy’s theorem, there exists α ∈ Aut(Zp) with order q. We may now
define a homomorphism φ : Zq −→ Aut(Zp) by associating 1 ∈ Zq to α. The homomorphism φ
is not trivial, because α is not the identity on Zp. Therefore, from Proposition C.3, the external
semidirect product Zp oφ Zq is not direct, hence not abelian; its order is clearly pq.

Now let us suppose that p 6≡ 1(mod q) and that G is a group of order pq. Let P (resp. Q)
be a Sylow p-subgroup (resp. q-subgroup) of G. We note sp (resp. sq) the number of such
subgroups. From the Sylow theorems we know that sp|q and sp ≡ 1(mod p). As q < p, we must
have sp = 1. As every conjugate gPg−1, for g ∈ G, is a Sylow p-subgroup, gPg−1 = P , hence
P is a normal subgroup of G. Also, sq|p and sq ≡ 1(mod q). From the first property sq = 1 or
sq = p. However, if sq = p, then, from the second property, q|p− 1, which is false by hypothesis.
Hence, sq = 1 and it follows, as in the case of P , that Q is normal in G. This means that G is
the direct product of the cyclic subgroups P and Q and so is abelian. 2

There is a natural question which now arises: Can there be nonisomorphic nonabelian groups
of order pq? In fact, this is not possible, as we will now see.

Proposition C.6 If p, q are prime numbers with q < p and G, G′ are nonabelian groups of
order pq, then G is isomorphic to G′.
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proof Let P (resp. Q) a Sylow p-subgroup (resp. q-subgroup) of G and P ′, Q′ the corresponding
subgroups of G′. These four subgroups are cyclic, so we may write

P = 〈a〉 Q = 〈b〉 P ′ = 〈α〉 Q′ = 〈β〉.

The relation 〈a〉 ∩ 〈b〉 = {e} implies that the cardinal of 〈a〉〈b〉 is pq. Consequently G = 〈a〉〈b〉.
In the same way, G′ = 〈α〉〈β〉.

From the proof of Proposition C.5 we have P �G (resp. P ′�G′) and there exists r ∈ Z such
that bab−1 = ar (resp. s ∈ Z such that βαβ−1 = αs). Now, using Lemma C.1, we have

bq = e =⇒ bqab−q = ar
q

=⇒ a = ar
q

=⇒ e = ar
q−1 =⇒ rq ≡ 1(mod p).

An analogous calculation shows that sq ≡ 1(mod p). The order of s (mod p) cannot be 1, because
G′ are not abelian. It follows that the order of s is q. (A similar argument shows that the order
of r (mod p) is q. Now let us consider the equation

Xq ≡ 1 (mod p). (C.3)

The solutions are of the form sj , with j = 1, . . . , q − 1. (If sk ≡ sl (mod p), with k < l, then
sl−k ≡ 1 (mod p), which implies that k− l = 0, so the solutions are distinctes.) As r is a solution
of the equation (C.3), there is a j ∈ {1, . . . , q − 1} such that r ≡ si (mod p). We notice that
j 6= 1, because G is not abelian. We have

βjαβ−j = αs
j

= αr,

because αp = e. If β̄ = βj , then β̄ is a generator of Q′. Finally, we have G = 〈a, b〉, with
bab−1 = ar and G′ = 〈α, β̄〉, with β̄αβ̄−1 = αr. We define a mapping φ from G into G′ by

φ(a) = α and φ(b) = β̄

and extending it in a natural way to G. Using Lemma C.1, we see that φ is an isomorphism. 2

We can now summarize the preceding work:

Theorem C.2 If p and q are prime numbers, with q < p, and G is a group of order pq, then
either

• p 6≡ 1 (mod q) and G is cyclic, or

• p ≡ 1 (mod q) and G is either cyclic or nonabelian and isomorphic to the semidirect product
Zp oφ Zq defined in Proposition C.5.

proof From Proposition C.5, if p 6≡ 1 (mod q), then G is abelian and it follows that G has an
element of order pq and so is cyclic. On the other hand, if p ≡ 1 (mod q), then G may be abelian
or nonabelian. In the first case G has an element of order pq and so is cyclic. In the second case,
from Proposition C.5, we know that there exists a nonabelian group of order pq. However, from
Proposition C.6, all groups of order pq are isomorphic, hence G is isomorphic to the semidirect
product Zp oφ Zq defined in Proposition C.5. 2

Remark Given that all nonabelian groups of order pq, with q < p, are isomorphic, we often
write Zp o Zq for Zp oφ Zq.
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Appendix D

Nonabelian groups of order 8

We aim to identify the nonabelian groups with order 8. If G is such a group and has an element x
of order 8, then G is cyclic, so abelian. On the other hand, if all elements other than the identity
e have order 2, then x−1 = x, for all x ∈ G and it follows that G is abelian. Now suppose that
G has an element x with order 4 and let

H = 〈x〉 = {e, x, x2, x3}.

We take y /∈ H. Then Hy 6= H and G = H ∪Hy. Suppose that there is an element y′ ∈ G \H
with o(y′) = 2. To simplify the notation, let us write y for y′. We claim that yx 6= x2y. If so,
then

yx2y = yxxy = x2yxy = x2x2yy = x4y2 = ee = e,

then
x = ex = y2x = yyx = yx2y = e,

which is impossible. Hence yx 6= x2y, as claimed. There are two other possibilities, namely
yx = xy or yx = x3y. In the first case G is abelian, so let us consider the second. Then we have
G = 〈x, y〉, o(x) = 4, o(y) = 2 and

yxy = x3yy = x3 = x−1.

Therefore G is isomorphic to D8 (and nonabelian).
Now let us suppose that every element of G \H has order 4 and let y ∈ G \H. As o(y) = 4,

we have o(y2) = 2 and so y2 ∈ H. The only element of order 2 in H is x2, so y2 = x2. We claim
that yx 6= xy. If this is the case, then

(x3y)2 = x3yx3y = x6y2 = x2y2 = x2x2 = x4 = e,

which implies that o(x3y) 6= 4, because x3y /∈ H. This is a contradiction and the claim is
established.

If yx = x2y, then
yx = x2yy2y = y3 =⇒ x = y2,

which is impossible, because o(x) = 4 and o(y2) = 2. The remaining possibility is yx = x3y:

yx = x3y =⇒ yxy−1 = x3 = x−1.
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Thus G is isomorphic to the quatornian group Q8. To this more clearly, if we set

i = x j = y k = xy,

then we obtain
i2 = j2 = k2.

Writing −1 for this common value and then abbreviating (−1)u to −u, then we have

ij = −ji = k jk = −kj = i ki = −ik = j.

We have a nonabelian group of 8 elements with the required relations. This is called the quator-
nian group and we note it Q8.

D8 as a Galois group

Let
f(X) = −2 +X4 ∈ Z[X].

Using the Eisenstein criterion it is easy to see that f is irreducible over Q. The roots of f in C
are ± 4

√
2, ±i 4

√
2 and the splitting field of f in C may be written E = Q(i, 4

√
2). As [E : Q] = 8,

the cardinal of the Galois group of f is 8. Consider the automorphism ρ ∈ G = Gal(E/Q)
such that ρ(i) = i and ρ( 4

√
2) = i 4

√
2. The existence of such an automorphism is assured by

Proposition 2.3 and Theorem 2.2. Now ρ(i)2 = i and

ρ2(
4
√

2) = ρ(i
4
√

2) = i(i
4
√

2) = − 4
√

2,

therefore ρ4( 4
√

2) = 4
√

2. Hence o(ρ) = 4.
Now let σ ∈ G be complex conjugation. Then

σ ◦ ρ(
4
√

2) = σ(i
4
√

2) = −i 4
√

2 and ρ ◦ σ(
4
√

2) = ρ(
4
√

2) = i
4
√

2,

so ρ and σ do not commute. Thus G is not abelian. As o(ρ2) = 2, G has at least two elements
with order 2. This means that G is not isomorphic to Q8, which has a unique element of order
2. Hence G is isomorphic to D8.
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Appendix E

Free abelian groups and free
modules

Free abelian groups

In this appendix, as is usual for abelian groups, we will use the additive notation. A group
G is a free abelian group if G = {0} or G is isomorphic to a direct sum, not necessarily finite, of
additive groups Z, i.e.,

G ' ⊕i∈IZ.
(We recall that ⊕i∈IZ is the collection of sets (ni)i∈I , with ni ∈ Z, and only a finite number of
ni nonzero.)

If G is a nontrivial abelian group, i.e., G 6= {0}, then we say that a subset B of G is a basis, if

• B generates G, i.e., any element x ∈ G can be written x = n1x1 + . . . + nkxk, where the
xi ∈ B and the ni ∈ Z;

• if, for x1, . . . , xk ∈ B and n1, . . . , nk ∈ Z, we have n1x1 + . . .+ nkxk = 0, then n1 = · · · =
nk = 0.

(We often refer to a basis as an integral basis ).

Free abelian groups are precisely those abelian groups having a basis. More precisely, we
have:

Theorem E.1 A nontrivial abelian group G has a basis if and only if G is a free abelian group.

proof Suppose that G has a basis B. Then the mapping

f : ⊕x∈BZ −→ G, (nx)x∈B 7−→
∑
x∈B

nxx

is an isomorphism.
Now suppose that we have an isomorphism f : ⊕i∈IZ −→ G. For j ∈ I, let us set δj =

(ni)i∈I ∈ ⊕i∈IZ, where

ni =

{
1 if i = j,

0 otherwise.
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Then {f(δj)}j∈I is a basis of G. 2

We now consider bases of free abelian groups in more detail. We begin with an elementary
lemma.

Lemma E.1 Let {Gi}i∈I be a collection of abelian groups and Hi a subgroup of Gi, for each
i ∈ I. Then

⊕i∈IGi/⊕i∈I Hi ' ⊕i∈I(Gi/Hi).

proof For x = (xi)i∈I +⊕i∈iHi, let us set

f(x) = (xi +Hi)i∈I .

Then f(x) ∈ ⊕i∈I(Gi/Hi) and f is an isomorphism. 2

In order to prove the next theorem we will need the following elementary result from set
theory.

Proposition E.1 If X is an infinite set and Pfin(X) the collection of finite sets in X, then the
cardinal of X and that of Pfin(X) are equal.

Theorem E.2 If G is a nontrivial free abelian group, then all bases of G have the same cardinal.

proof Let B and B′ be two bases of the free abelian group G. Then we have isomorphisms

f : G −→ ⊕x∈BZ and f : G −→ ⊕y∈B′Z.

Let us consider 2G = {2a : a ∈ G}. 2G is a subgroup of G. From Lemma E.1,

G/2G ' (⊕x∈BZ)/2(⊕x∈BZ) ' ⊕x∈BZ/2Z.

In the same way
G/2G ' ⊕y∈B′Z/2Z,

so we have the relation
⊕x∈BZ/2Z ' ⊕y∈B′Z/2Z. (E.1)

Case 1 : |B| = m <∞, |B′| = n <∞.
Using equation (E.1), we have

2m = | ⊕x∈B Z/2Z| = | ⊕y∈B′ Z/2Z| = 2n,

therefore m = n.

Case 2 : |B| <∞, |B′| =∞.

As in the first case, we have
⊕x∈BZ/2Z ' ⊕x∈B′Z/2Z,

which is impossible, because ⊕x∈BZ/2Z is finite and ⊕x∈B′Z/2Z infinite.

Case 3 : |B| =∞, |B′| =∞.
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The mapping φ of Pfin(B) into ⊕x∈BZ/2Z, where φ(S) = (nx)x∈B, with nx = 1 if and only if
x ∈ S, is a bijection. We define a bijection φ′ of Pfin(B′) onto ⊕y∈B′Z/2Z in the same way.
From equation (E.1), we obtain a bijection ψ from Pfin(B) onto Pfin(B′), so these two sets have
the same cardinality. Applying Proposition E.1, we obtain |B| = |B′|. 2

If G is a nontrivial free abelian group, then the rank of G is the cardinal of a basis of G; if
G = {0}, then the rank is 0. For this rank we write rkG.

We now consider subgroups of free abelian groups. We need to some preliminary work.

Lemma E.2 If G and H are groups and f : G −→ H, g : H −→ G homomorphisms such that
fg = idH , then

G ' H ⊕Ker f.

proof Let G′ = g(H). If g(x1) = g(x2), then fg(x1) = fg(x2), which implies that x1 = x2,
because fg = idH . Hence H is isomorphic to G′. Suppose now that y ∈ G′ ∩Ker f . There exists
x ∈ H such that g(x) = y, because y ∈ G′. As y ∈ Ker f , f(y) = eH , the identity of H, hence
fg(x) = eH . As fg = idH , x = eH and it follows that y = g(eH) = eG, the identity of G. Thus
G′ ∩Ker f = eG. We now show that G = G′ + Ker f . Let y ∈ G and set y′ = gf(y). Then

f(y′−1y) = f(y′)−1f(y) = fgf(y)−1f(y) = eH

and so y′−1y ∈ Ker f . Thus y is the product of an element in G′ and an element in Ker f . We
have

G ' G′ ⊕Ker f ' H ⊕Ker f,

as stated. 2

Proposition E.2 If G and H are abelian groups, with H free, and f : G −→ H an epimorphism,
then

G ' H ⊕Ker f.

proof We take a basis B of H. As f is surjective, for every x ∈ B, there exists an element
yx ∈ G such that f(yx) = x. We define a homomorphism g : H −→ G by setting g(x) = yx, for
all x ∈ B. Then fg(x) = x, for all x ∈ B and so fg = idH . From Lemma E.2, G ' H ⊕Ker f . 2

Now we are in a position to prove an important result concerning subgroups of free abelian
groups of finite rank.

Theorem E.3 Let G be a free abelian group of finite rank n and H a subgroup of G. Then H
is a free abelian group and

rkH ≤ rkG.

We may suppose that G = Zn. We will prove the result by induction on n. If n = 1 and H ⊂ Z,
then H = kZ, for some k ∈ N. Therefore H = 0 or H ' Z, so the statement is true for n = 1.

Now suppose that the result is true for n and let H ⊂ Zn+1. The mapping

f : Zn+1 −→ Z, (m1, . . . ,mn+1) 7−→ mn+1

is a homomorphism and

Ker f = {(m1, . . . ,mn, 0) : mi ∈ Z} ' Zn.
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Clearly f restricted to H is an epimorphism onto its image. As Im f|H ⊂ Z, from what we have
seen for n = 1, Im f|H is a free abelian group, therefore, from Proposition E.2,

H ' Im f|H ⊕Ker f|H .

We notice that Ker f|H is a subgroup of Ker f and recall that Ker f ' Zn, hence, from the
induction hypothesis, Ker f|H is a free abelian group and rk ≤ n. It follows that H is a free
abelian group and rkH ≤ 1 + n. By induction the result is true for all n ∈ N. 2

Exercise E.1 Show that a free abelian group G may have a subgroup H strictly included in G
with the same rank.

If G is a nontrivial free abelian group and H a nontrivial subgroup, then G and H have bases.
We may find bases of G and H, which have a special relation to each other.

Theorem E.4 If H is a nontrivial subgroup of rank r of a free abelian group G of rank n, then
G has a basis (e1, . . . , en) for which there exist integers d1, . . . , dr ∈ N∗ such that di|di+1, for
1 ≤ i < r, and (d1e1, . . . , drer) is a basis of H.

proof We will prove the result by an induction on n. For n = 1, the statement is evident. Now
take n > 1 and suppose that the result is true for m < n. If (ui)

n
i=1 is a basis of G, then the

elements u ∈ H are expressions of the form
∑n
i=1 niui, with the ni ∈ Z. If we consider all such

expressions, then there is a coefficient of minimal value in N∗. For different bases this minimal
value could be different. We take a basis (vi)

n
i=1 for which this minimal value is a minimum.

We may suppose that this is the coefficient of v1 in some expression and we write l1 for this
coefficient. We fix v ∈ H with

v = l1v1 +

n∑
i=2

aivi.

We now divide each ai by l1 to obtain

ai = qil1 + ri, 0 ≤ ri < l1.

We have

v = l1(v1 +

n∑
i=2

qivi) +

n∑
i=2

rivi.

There is no difficulty in seeing that (v1 +
∑n
i=2 qivi, v2, . . . , vn) is a basis of G. As l1 is minimal,

ri = 0, for all i. Noting w1 = v1 +
∑n
i=2 qivi, we have v = l1w1 ∈ H.

Now let us note H0 the collection of elements of H whose coefficient of w1 in the basis
(w1, v2, . . . , vn) is 0. H0 is a subgroup of H and H0 ∩Zv = {0}. In fact, H = H0⊕Zv. To show
this it remains to prove that H = H0 + Zv. Let h = b1w1 +

∑n
i=2 bivi ∈ H. Dividing b1 by l1,

we obtain
b1 = m1l1 + s1, 0 ≤ s1 < l1,

and

h−m1v = (b1w1 +

n∑
i=2

bivi)− (m1l1w1)

= (b1 −m1l1)w1 +

n∑
i=2

bivi

= s1w1 +

n∑
i=2

bivi ∈ H.
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As l1 is minimal, s1 = 0, which implies that h −m1v ∈ H0. It follows that H = H0 + Zv. We
have shown that H = H0 ⊕ Zv.

Now, H0 is included in the subgroup G0 = ⊕ni=2Zvi of G. From the induction hypothesis, G0

has a basis (w2, . . . , wn) and there are integers d2, . . . , dr ∈ N∗ such that di|di+1, for 2 ≤ i < r
and (d2w2, . . . , drwr) is a basis of H0. It is clear that (l1w1, d2w2, . . . , drwr) is a basis of H and
(w1, . . . , wn) a basis of G. . To finish, we only need to show that l1|d2. We divide d2 by l1:

d2 = al1 + t, 0 ≤ t < l1,

and
l1w1 + d2w2 = l1(w1 + aw2) + tw2 ∈ H.

As (w1 + aw2, w2, . . . , wn) is a basis of G, from the minimality of l1, we must have t = 0, which
implies that l1|d2. 2

Free modules

Although we have already seen free modules, we first recall the definition. We define free
modules over rings in much the same way as we define free groups. Indeed, a free group may be
considered as a free Z-module.

Let R be a commutative ring and M an R-module. We say that a module M over R is free
if it has a basis, i.e., a subset U with the following properties:

• U is a generating set: every element m ∈M can be expressed in the form

m = r1u1 + · · ·+ rsus,

with ri ∈ R and ui ∈ U ;

• U is an independant set:

r1u1 + · · ·+ rsus = 0 =⇒ ri = 0 ∀i.

Theorem E.5 Any two bases of a free module M over a commutative ring R have the same
cardinality.

proof Let M be a free module over the ring R and I a maximal ideal of R. Then F = R/I
is a field. We note IM the collection of all finite sums of the form

∑m
i=1 aixi, with ai ∈ I and

xi ∈M . IM is a submodule of M . We now set V = M/IM and define an addition on V by

(a+ IM) + (b+ IM) = (a+ b) + IM.

We also define a scalar multiplication by

(r + I)(a+ IM) = ra+ IM.

Both these operations are well-defined and it is easy to check that V , with these operations, is
a vector space over F .

Suppose that B = {xi} is a basis of M and let us note B̄ = {x̄i}, where x̄i = xi + IM .
We claim that B̄ is a basis of V . As B is a generating set of M , B̄ is a generating set of V .
If
∑m
i=1 āix̄i = 0̄, with āi = ai + I and ai ∈ R, then

∑m
i=1 aixi ∈ IM . Hence there exist
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b1, . . . , bn ∈ I such that
∑m
i=1 aixi =

∑n
i=1 bixi. As B is a basis of M , for each i, there is a bj

with ai = bj , so ai ∈ I and it follows that āi = 0̄ in F . We have shown that the x̄i form an
independant set and therefore a basis of V over F . As all bases of a vector space have the same
cardinality, all bases of the free module M have the same cardinality. 2

The common cardinality of bases of a free R-module M is referred to as to as its rank .

Remark It is well-known that all bases of a finite-dimensional vector space have the same
cardinality. This is also the case for an infinite-dimensional vector space. Let B = {ui}i∈I and
B′ = {vj}j∈J be bases of the infinite-dimensional vector space V over the field F . Each xi lies
in the span of a finite set {yj}j∈Ji of B′. We claim that J = ∪i∈IJi. Clearly ∪i∈IJi ⊂ J . If
∪i∈IJi 6= J , then the span of the xi is contained in the span of the yj such that j is contained in
at least one Ji. However, the span of the xi is V , so a subset of B′ spans V , which is impossible,
because B′ is a basis of V and hence a minimal spanning set. It follows that J = ∪i∈IJi, as
claimed. Therefore

|J | = | ∪i∈I Ji| ≤
∑
i∈I
|Ji| ≤ |I|ℵ0 = |I|,

because the product of a pair of cardinals is equal to their maximum, if one of them is infinite.
To show that |I| ≤ |J |, we use an analogous argument. Hence all bases of an infinite-dimensional
vector space have the same cardinality.

We know that if V is a vector space over a field F and the dimension of V is n < ∞, then
there can be no independant subset of V with more than n elements. We have an analogous
result for free modules.

Theorem E.6 If M is a free module of rank n < ∞ over a commutative ring R, then any
independant subset of M is composed of at most n elements.

proof Let {b1, . . . , bm} be an independant subset of M . The mapping

φ : Rm −→M, (r1, . . . , rm) 7−→
m∑
i=1

ribi

is a monomorphism of R-modules. Hence there exists a monomorphism of R-modules ψ from
Rm into Rn. Now let I be a maximal ideal of R and IRn the collection of sums of the form∑k
i=1 aixi, with ai ∈ I and xi ∈ Rn. The set IRn is a submodule of Rn. We define IRm in an

analogous fashion. The mapping

Ψ : Rm/(IRm) −→ Rn/(IRn), x+ IRm 7−→ ψ(x) + IRn

is a well-defined monomorphism of R-modules. In addition, the mapping

Γ : (R/I)m −→ Rm/(IRm), (r1 + I, . . . , rm + I) −→ (r1, . . . , rm) + IRm

is a well-defined isomorphism of R-modules. In the same way, (R/I)n is isomorphic, as an R-
module, to Rn/(IRn). Therefore we have an R-module monomorphism α from (R/I)m into
(R/I)n. However, (R/I)m and (R/I)n are vector spaces over the field R/I. We claim that α is
an R/I-linear mapping. We notice that, for x ∈ (R/I)m (or x ∈ (R/I)n), (r + I)x = rx and so
α((r + I)x) is defined. Then

α ((r + I)x) = α(rx) = rα(x) = (r + I)α(x)

and it follows that α is R/I-linear. As α is a linear monomorphism, we have m ≤ n. 2
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Exercise E.2 In the proof of Theorem E.6 we stated that the mapping Ψ is a monomorphism.
Show that this is indeed the case.

We may extend this result to R-modules of infinite rank.

Theorem E.7 If M is a free module, with infinite basis B, over a commutative ring R, and A
an independant subset of M , then |A| ≤ |B|.

proof The elements of A are finite linear combinations of elements of B. For x ∈ A, we let f(x)
be the finite subset of B composed of the elements of B in the linear combination of x. We thus
obtain a mapping of A into Pfin(B), the collection of finite subsets of B. If E ∈ Pfin(B) has n
elements and 〈E〉 be the R-module generated by E, then, from Theorem E.6, any independant
subset of 〈E〉 has at most n elements. As f−1(E) ⊂ 〈E〉 and is a set composed of independant
elements, we have |f−1(E)| ≤ n. Thus

|A| =
∑
n>0

∑
E∈Pfin(B)
|E|=n

|f−1(E)| ≤
∑
n>0

n|B|,

because the cardinal of the collection of finite subsets of a given infinite set is the cardinal of the
set itself. We obtain

|A| ≤ |B|
∑
n>0

n = |B||N∗|,

where we have again used the result concerning finite subsets of a given infinite set. To finish,
we observe that, for two infinite cardinals X and Y , we have

|X||Y | = max(|X|, |Y |)

and so we obtain
|A| ≤ |B|,

as required. 2

We may use Theorem E.6 to prove another result concerning free modules.

Theorem E.8 Let R ⊂ S be integral domains, with respective fraction fields K and L. If S is
a free R-module of rank n <∞, then [K : L] = n.

proof Let X = {x1, . . . , xm} be an independant subset of the K-vector space L. Each xi can be
written in the form ui

vi
, with (ui, vi) ∈ S×S∗. If we set v = v1 · · · vm, then the set {sx1, . . . , sxm}

is independant in the R-module S. From Theorem E.6, we have m ≤ n. It follows that L is a
finite extension of K and [K : L] ≤ n.

Now let B be a basis of the R-module S. Clearly B is an independant subset of the K-vector
space L, so n ≤ [K : L]. Therefore [K : L] = n. 2

Corollary E.1 Under the conditions of Theorem E.8, if B is a basis of the free R-module S,
then B is a basis of the K-vector space L.

proof If B is a basis of the free R-module S, then B is an independant subset of the K-vector
space L. From Theorem E.8, we have rkS = [K : L], so B is a basis of L. 2

Torsion and free modules
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Our aim here is to prove a result giving us a condition for a module to be free. However,
before turning to modules, we will recall the Smith normal form of a matrix. For a ring R we
will writeMm,n(R) for the collection of m× n matrices with coefficients in R. If m = n, i.e., in
the case where the matrices are square matrices, we will use the notationMm(R). We have the
following result:

If R is a principal ideal domain and A ∈ Mm,n(R), then there exist invertible matrices
P ∈Mm(R) and Q ∈Mn(R) such that

PAQ = B =

[
D X
Y Z

]
,

where D = diag (d1, . . . , dr) is a diagonal matrix, with nonzero entries di such that di|di+1, for
i = 1, . . . , r − 1, and X, Y and Z are matrices of zeros of respective dimensions r × (n − r),
(m− r)× r and r × (n− r). The di are unique up to multiplication by an invertible element of
R. Such a matrix B is called a Smith normal form of the matrix A. (A good introduction to the
Smith normal form may be found in [5].)

We say that a module M over a ring R is finitely generated if there are m1, . . . ,ms ∈M such
that every element m ∈M can be expressed in at least one way as

m = r1m1 + · · ·+ rsms,

with the ri ∈ R. The module M is free if it has a basis, i.e., a set U which has the properties:

• U is a generating set: every element m ∈M can be expressed as

m = r1u1 + · · ·+ rsus,

with the ui ∈ U and the ri ∈ R;

• U is an independant set:

r1u1 + . . .+ rsus = 0 =⇒ ri = 0, for all i.

We now consider modules over integral domains. If R is an integral domain and M an R-
module, then an element u ∈ M is a torsion element if there exists r ∈ R× such that ru = 0.
The torsion elements form a submodule of M , which we note tM . If tM = 0, then we say that
M is torsion-free. The following result relates finitely generated, torsion-free and free modules.

Proposition E.3 Let R be principal ideal domain and M a finitely generated R-module. Then
M has a finite basis if and only if M is torsion-free.

proof Suppose that M has a finite basis U = (u1, . . . , us). If m = r1u1 + · · · + rsus 6= 0, then
there is at least one ri which is nonzero. If d ∈ R∗ and dm = 0, then

(dr1)u1 + · · ·+ (dri)ui + · · ·+ (drs)us = 0 =⇒ dr1 = · · · = dri = · · · = drs = 0,

because U is a basis. As R is an integral domain and ri 6= 0, d = 0, which is a contradiction.
Hence, M is torsion-free.

We now begin with the hypothesis thatM is torsion-free. Let U = (u1, . . . , us) be a generating
set of M . We use an induction on s to show that M is free. If s = 1, then M = Ru, so {u} is a
generating set. If ru = 0 and r 6= 0, then u ∈ tM . As M is torsion-free, this si impossible, hence
U = (u) is a basis. Now suppose that s > 1 and that the result is true for up to s− 1 elements
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in a generating set. Let r1, . . . , rs ∈ R, not all 0, be such that
∑s
i=1 riui = 0. Let C be the 1× s

matrix [ri]. From our discussion of the Smith normal form, we know that there are invertible
matrices, P ∈M1(R) and Q ∈Ms(R), such that

P [r1 . . . rs]Q = [d 0 . . . 0].

If P = [p], then p is invertible and we obtain

[r1 . . . rs]Q = [d′ 0 . . . 0],

where d′ = p−1d. If we set V = Q−1U , then V = (v1, . . . , vs) clearly generates M . Also,

0 = [r1 . . . rs]U = [r1 . . . rs]QV = [d′ 0 . . . 0]V =⇒ d′v1 = 0.

As d′ 6= 0 and M is torsion-free, v1 = 0. Hence, the set (v1, . . . , vs) generates M . By the
induction hypothesis, M has a finite basis. This finishes the proof. 2
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Appendix F

The Chinese remainder theorem

We give two versions of the Chinese remainder theorem, one as a corollary of the other. We
recall that two ideals I and J in a commutative ring R are said to be coprime if I + J = R.

Theorem F.1 Let I1, . . . , In be ideals in a commutative ring A which are coprime in pairs, i.e.,
Ii + Ij = R if i 6= j. If a1, . . . , an ∈ R, then there exists a solution α ∈ R to the system of
congruences

x ≡ a1 (mod I1)

...
...

...
x ≡ an (mod In).

Any two solutions are congruent modulo I1 ∩ · · · ∩ In.

proof We fix i and take j 6= i. As Ii + Ij = R, there exist bj ∈ Ii, cj ∈ Ij such that bj + cj = 1.
Then ∏

j 6=i

(bj + cj) = 1.

We now expand the left hand side of the equation to obtain xi + yi = 1, where xi is the sum of
the terms containing a bj and yi =

∏
j 6=i cj . Then

yi ≡ 1 (mod Ii) and yi ≡ 0 (mod Ij), j 6= i.

We now set
α = a1y1 + a2y2 + · · ·+ anyn.

Clearly α has the required properties.
If β is another solution to the system of congruences, then β ≡ ai(mod Ii), for all i. This is

equivalent to saying that β−α ≡ 0(mod Ii), for all i, which in turn is equivalent to the statement
β − α ∈ ∩ni=1Ii, i.e., β ≡ α(mod ∩ni=1 Ii). 2

Corollary F.1 Under the conditions of the theorem

R/(∩ni=1Ii) ' R/I1 × · · · ×R/In.
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proof We define a mapping φ from R into
∏n
i=1R/Ii by setting

φ(x) = (x+ I1, . . . , x+ In).

It is not difficult to see that φ is a ring homomorphism. From Theorem F.1, we know that, if
(a1, . . . , an) ∈ Rn, then there exists an a ∈ R such that a ≡ ai(mod Ii), for all i. It follows that
the mapping φ is surjective. As Kerφ = ∩ni=1Ii, we have

R/(∩ni=1Ii) ' R/I1 × · · · ×R/In,

from the first isomorphism theorem for rings. 2
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Appendix G

Lattices in euclidian space

A subgroup Λ of the additive group of Rn is said to be discrete if there exists an open ball of
radius ε > 0, centered on the origin, B(0, ε), such that B(0, ε) ∩ Λ = {0}. If, in addition, the
span of Λ is Rn, then we say that Λ is a lattice in Rn, or, more briefly, a lattice.

Example If V = {v1, . . . , vn} is an independant set in Rn, then the set

Λ = {v ∈ Rn : v =

n∑
i=1

aivi, ai ∈ Z} (G.1)

is a lattice. In the case where vi = ei, where (ei)
n
i=1 is the standard basis of Rn, then we call

this lattice the standard integer lattice in Rn .

Bases of lattices

If {v1, . . . , vk} is an independant set in Rn such that the lattice Λ can be written

Λ = {v ∈ Rn : v =

n∑
i=1

aivi, ai ∈ Z},

then we say that (vi)
n
i=1 is a basis of Λ. Our first task is to show that all lattices have a basis,

hence they are of the form (G.1).

Lemma G.1 Let Λ ⊂ Rn be a lattice and b1, . . . , bk, with k < n, be linearly independant. We
set L = span(b1, . . . , bk). Then there exists a point v ∈ Λ \L which minimizes the distance to L.

proof Let A be the closed parallelepiped generated by b1, . . . , bk:

A = {u ∈ Rn : u =

k∑
i=1

αibi, 0 ≤ αi ≤ 1}.

A is a compact subset of Rn. We claim that there there is a point v ∈ Λ \ L which minimizes
the distance to A. To see this, we first choose a ∈ Λ \ L and set ρ = dist (a,A). We note

Aρ = {u ∈ Rn : dist (u,A) ≤ ρ}.
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As Aρ is closed and bounded, it is compact. If Aρ ∩ Λ is infinite, then it contains a convergent
subsequence (xn) composed of distinct elements. By hypothesis, there is an open ball B(0, ε)
such B(0, ε)∩Λ = {0}. As Λ is a subgroup of the additive group of Rn, xs−xt ∈ Λ, when s 6= t,
so ‖xs − xt‖ ≥ ε. This implies that the sequence (xn) is not convergent and it follows that the
set Aρ ∩ Λ is finite. Also, as a ∈ Aρ ∩ Λ, there are points in this set which are not in L. Hence
Aρ ∩ Λ \ L 6= ∅ and this set is finite. We may thus choose v ∈ Aρ ∩ Λ \ L which minimizes the
distance to A. Clearly, v minimizes the distance from Λ \ L to A, which establishes the claim.

Let w ∈ Λ \ L and y ∈ L. Then

y =

k∑
i=1

γibi,

with γi ∈ R. If we set

z =

k∑
i=1

bγicbi,

then z ∈ Λ, hence w − z ∈ Λ. Also, w − z /∈ L. (If w − z ∈ L, then w = (w − z) + z ∈ L, a
contradiction.) Therefore w − z ∈ Λ \ L. In addition,

y − z =

k∑
i=1

(γi − bγic)bi ∈ A,

therefore

dist (w, y) = dist (w − z, y − z) ≥ dist (w − z,A) ≥ dist (v,A) = dist (v, L)

and so v minimizes the distance from Λ \ L to L. 2

We need another preliminary result.

Lemma G.2 Let Λ ⊂ Rn be a lattice and b1, . . . , bn ∈ Λ independant. We set L0 = {0} and
Lk = span(b1, . . . , bk), for k = 1, . . . , n. Then , for k = 1, . . . , n, there exists uk ∈ (Lk∩Λ)\Lk−1

which minimizes the distance from (Lk ∩ Λ) \ Lk−1 to Lk−1.

proof Let φ be the linear isomorphism from Lk onto Rk defined by

φ(α1b1 + · · ·+ αkbk) = (α1, . . . , αk).

It is not difficult to see that φ(Lk ∩ Λ) is a lattice in Rk. From Lemma G.1 we know that there
is a point u ∈ φ(Lk ∩ Λ) \ φ(Lk−1) which minimizes the distance to φ(Lk−1). It follows that
φ−1(u) minimizes the distance from (Lk ∩ Λ) \ Lk−1 to Lk−1. 2

We may now show that every lattice has a basis. We remark that any lattice Λ in Rn, from
the definition of a lattice, must contain a set of n independant vectors. We may see this in the
following way: Each vector ei of the standard basis is a linear combination of a finite number
of elements of Λ. Taking all the elements of Λ in these linear combinations, we obtain a finite
generating set of Rn, from which we may extract a minimum generating set of Rn, i.e., a basis.

Notation We will write {x} for the fractional part of the number x ∈ R, i.e., {x} = x− bxc.

Theorem G.1 Let Λ ⊂ Rn be a lattice and b1, . . . , bn ⊂ Λ independant. We define L0, L1, . . . , Ln
an in Lemma G.2. From the same lemma, we know that there exists uk ∈ (Lk ∩Λ) \Lk−1 mini-
mizing the distance to Lk−1. Then the vecteurs u1, . . . , un form a basis of the lattice Λ.
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proof Let us set Λk = Λ∩Lk. We will show by induction that the set {u1, . . . , uk} is a Z-basis
of Λk, i.e., an independant set such that

Λk = {v ∈ Rn : v =

k∑
i=1

aiui, ai ∈ Z}.

As Λ = Λn, this will be sufficient to prove the theorem.
For k = 1 we have

u1 = α1b1,

for some α1 6= 0 in R. If v ∈ Λ1, then
v = βb1,

for some β ∈ R. We claim that µ = β
α1

is an integer. If not, then 0 < {µ} < 1. Setting
u′1 = v − bµcu1, we have, since v = µu1,

u′1 = µu1 − bµcu1 = {µ}u1.

However, u′1 ∈ Λ1 \ {0} and is closer to the origin than u1, a contradiction. Thus β
α1
∈ Z. It now

follows that
v = βb1 =

β

α1
u1,

with β
α1
∈ Z. So {u1} is a Z-basis of Λ1.

We now suppose that the result is true for k − 1 and consider the case k. If

x =

k∑
i=1

γibi ∈ Lk,

then, since Lk−1 is a vector space,

dist (x, Lk−1) = dist (γkbk, Lk−1) = |γk|dist (bk, Lk1).

Also,

uk =

k∑
i=1

αibi,

with α1, . . . , αk ∈ R and αk 6= 0. If v ∈ Λk, then

v =

k∑
i=1

βibi,

with β1, . . . , βk ∈ R. We claim that µ = βk
αk

is an integer. If this is not the case, then 0 < {µ} < 1.
We set u′k = v − bµcuk. Then

u′k = v − µuk + {µ}uk

=

k∑
i=1

βibi + βkbk −
βk
αk

(
k−1∑
i=1

αibi + αkbk

)
+ {µ}

(
k−1∑
i=1

αibi + αkbk

)

=

k−1∑
i=1

βibi − bµc
k−1∑
i=1

αibi + {µ}αkbk

=

k−1∑
i=1

(βi − bµcαi)bi + {µ}αkbk.
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The element u′k belongs to Λk \ Lk−1 and the distance from u′k to Lk−1 is that of {µ}αkbk.
However, the distance of {µ}αkbk to Lk−1 is that of {µ}uk, which is strictly less than that of
uk, a contradiction. Hence µ = βk

αk
∈ Z, as claimed. Therefore v− µuk ∈ Λk−1. Applyinging the

induction hypothesis we obtain that v−µuk is an integer linear combination of u1, . . . , uk−1 and
it follows that v is an integer linear combination of u1, . . . , uk. This finishes the induction step
and hence the proof. 2

Corollary G.1 A lattice in Rn is a free abelian group of rank n.

Parallelepipeds

If Λ ⊂ Rn is a lattice and u = (ui)
n
i=1 a basis of Λ, then the set

Πu =
{
v =

n∑
i=1

αiui : 0 ≤ αi < 1,
}

is called the fundamental parallelepiped of the basis u. If the basis u is understood, then we
usually write Π in place of Πu.

Proposition G.1 If Π is a fundamental parallelepiped of the lattice Λ, then, for each element
x ∈ Rn, there exist unique elements y ∈ Λ and z ∈ Π such that x = y + z.

proof Let us consider the fundamental parallelepiped Π = Πu of the basis u. As u is a basis of
Rn, we can write x =

∑n
i=1 αiui, with αi ∈ R. If we set

y =

n∑
i=1

bαicui and z =

n∑
i=1

{αi}ui,

then y ∈ Λ, z ∈ Π and x = y + z.
Suppose now that there two decompositions: x = y1 + z1 = y2 + z2. Then

z1 =

n∑
i=1

αiui and z2 =

n∑
i=1

βiui,

with 0 ≤ αi < 1 and 0 ≤ βi < 1, for all αi, βi. We obtain

y1 − y2 = z2 − z1 =

n∑
i=1

γiui,

with γi = βi − αi. Clearly, |γi| < 1. As y1 − y2 ∈ Λ, we must have γi = 0, for all γi, which
implies that y1 = y2 and z1 = z2. 2

Corollary G.2 Let Λ ⊂ Rn be a lattice and Π a fundamental parallelepiped of Λ. Then the
translates {y + Π : y ∈ Λ} cover Rn without overlapping.

proof From Proposition G.1, if x ∈ Rn, then x = y+ z, with y ∈ Λ and z ∈ Π; hence x belongs
to the translate y + Π. Therefore the translates cover Rn. If x ∈ (y1 + Π) ∩ (y2 + Π), then
x = y1 + z1 = y2 + z2, with z1, z2 ∈ Π. From the uniqueness of the decomposition of x, we have
y1 = y2 (and z1 = z2), so there can be no overlapping of translates. 2
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We recall that the volume of a Lebesgue measurable set A in Rn is defined by

vol A =

∫
Rn

χA(x)dx,

where χA is the characteristic function of A. The next elementary result is important for what
follows.

Proposition G.2 Let A be a Lebesgue measurable set in Rn and T a linear automorphism of
Rn. Then

vol T (A) = |detT |vol A.

proof Using the "change of variable" formula (see for example [20]), we have∫
Rn

χA(x)dx =

∫
Rn

χA ◦ T (x)|detT |dx = |detT |
∫
Rn

χT−1(A)(x)dx.

Hence
vol A = |detT |vol T−1(A) =⇒ vol T (A) = |detT |vol A,

as required. 2

Corollary G.3 If X ⊂ Rn is Lebesgue measurable and r > 0, then

vol rX = rnvol X.

We now introduce a result which will enable us to define an important invariant of a lattice.

Theorem G.2 Let u = (ui)
n
i=1 and v = (vi)

n
i=1 be bases of the lattice Λ ⊂ Rn and Πu, Πv the

corresponding fundamental parallelepipeds. Then

vol Πu = vol Πv.

proof Let T be the linear automorphism of Rn defined by

T (ui) = vi,

for i = 1, . . . , n. The matrix of T in the basis u is the matrix representation A of the basis v
in terms of the basis u. The coefficients are integers, since each vi ∈ Λ and u is a basis of Λ.
Similarly, the matrix representation B of the basis u in terms of the basis v has only integer
coefficients. As AB = BA = In, we have |detT | = 1. Therefore, from Proposition G.2,

vol T (Πu) = vol Πu.

As T (Πu) = Πv, we have the result. 2

The volume of a fundamental parallelepiped of a lattice is called the determinant of the lattice.
For the determinant of the lattice Λ, we write det Λ. If u = (ui)

n
i=1 is a basis of Λ, e = (ei)

n
i=1

the standard basis of Rn and T the linear automorphism defined by

T (ei) = ui,

for i = 1, . . . , n, then from Proposition G.2 we have

vol Πu = vol T (Πe) = |detT |vol Πe.
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As vol Πe = 1 and detT is the determinant of the matrix U whose columns are the vectors
u1, . . . , un, we have

det Λ = |detU |.

This justifies the use of the term det Λ for the volume of a fundamental parallelepiped Πu.

Minkowski’s convex body theorem

In order to prove Minkowski’s theorem we will prove another result, namely Blichfeldt’s
theorem.

Theorem G.3 (Blichfeldt) Let Λ be a lattice in Rn and X a Lebesgue measurable set in Rn

such that vol X > det Λ. Then there are distinct points x1, x2 ∈ X such that x1 − x2 ∈ Λ.

proof Let Π be a fundamental parallelepiped of Λ. For each y ∈ Λ, we set

Xy = ((Π + y) ∩X)− y.

Then Xy + y = (Π + y) ∩X. From Corollary G.2 these sets form a partition of X. Therefore∑
y∈Λ

vol (Xy + y) = vol X > det Λ = vol Π.

We now set
f(x) =

∑
y∈Λ

χXy (x),

for all x ∈ Rn. Then∑
y∈Λ

∫
Π

χXy (x)dx =
∑
y∈Λ

vol (Xy ∩Π) =
∑
y∈Λ

vol (Xy ∩Π + y),

by the invariance of Lebesgue measure with repect to translation. Consequently,∫
Π

f(x)dx =
∑
y∈Λ

vol
(
(Xy + y) ∩ (Π + y)

)
=
∑
y∈Λ

vol (Xy + y) > vol Π.

From this we deduce that ∫
Π

(f(x)− 1)dx > 0

and so f(x) > 1 for some x ∈ Π. As f(x) ∈ N ∪ {+∞}, we must have f(x) ≥ 2, which implies
that there exist distinct values elements y1, y2 ∈ Λ such that Xy1 ∩Xy2 6= ∅. Let z ∈ Xy1 ∩Xy2 .
Then

z + y1 = x1 ∈ X and z + y2 = x2 ∈ X,

which implies that x1 − x2 = y1 − y2 ∈ Λ. 2

We may now prove Minkowski’s convex body theorem.

Theorem G.4 (Minkowski) Let Λ ⊂ Rn be a lattice and A a convex subset of Rn, with vol A >
2n det Λ. In addition suppose that A is centrally symmetric. Then A contains a nonzero lattice
point. If A is compact, then it is sufficient to suppose that vol A ≥ 2n det Λ.
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proof We set X = 1
2A. From Corollary G.3,

vol X =
1

2n
vol A > det Λ.

By Theorem G.4 there exist distinct elements x1, x2 ∈ X such that x = x1 − x2 ∈ Λ. Now,
2x1, 2x2 ∈ A and, as A is symmetric about the origin, −2x2 ∈ A. Since A is convex, we have

x = x1 − x2 =
1

2
(2x1) +

1

2
(−2x2) ∈ A.

Now we consider the case where A is compact and vol A = 2n det Λ. Let ρ > 1. Then, by
Corollary G.3,

vol ρA = ρnvol A > 2n det Λ,

so there is a nonzero lattice point xρ in ρA. Now let (ρn) be a sequence in (1,+∞) converging to
1. Then (

xρn
ρn

) is a sequence in A. As A is compact, the sequence has a convergent subsequence
(
xρm
ρm

). If x = lim
xρm
ρm

, then x = limxρm . For m,n sufficiently large, xρm −xρn = 0, because Λ is
a discrete group. This implies that x = xρm for some m, hence x ∈ Λ. Also, as xρm 6= 0, x 6= 0.
2

Sublattices

If Λ,Λ0 ⊂ Rn are lattices and Λ0 ⊂ Λ, then we say that Λ0 is a sublattice of Λ. As Λ0 is a
subgroup of Λ, we may consider the index of Λ0 in Λ.

Proposition G.3 The index of Λ0 in Λ, [Λ : Λ0], is finite.

proof We fix the fundamental parallelepipeds Π and Π0 of Λ and Λ0 respectively. Let x + Λ0

be a coset in the quotient group Λ/Λ0. From Proposition G.1 there is a unique decomposition
x = y + z, with y ∈ Λ0 and z ∈ Π0. As x, y ∈ Λ, we have z ∈ Λ. It follows that z is a
representative of the coset x+ Λ0: each coset has a representative in Λ ∩Π0. As Λ is a discrete
group and Π0 a compact set, the set Λ∩Π0 is finite, there can only be a finite number of cosets.2

In fact, we can determine [Λ : Λ0] from the determinants of the two lattices. We claim that,
if x1 + Λ0 = x2 + Λ0, with x1, x2 ∈ Λ ∩ Π0, then x1 = x2. First we notice that x1 − x2 ∈ Λ,
because both x1, x2 ∈ Λ. If v = (v1, . . . , vn) is a basis of Λ0, then the coefficients of x1 and x2

in this basis have values in the interval [0, 1), which implies that the coefficients of x1 − x2 have
values in the interval (−1, 1). Since x1 − x2 ∈ Λ0, these coefficients are integers, hence the only
possible value is 0 and so x1 = x2, as claimed. It follows that there are exactly |Λ ∩ Π0| cosets
in Λ/Λ0.

The lattice Λ is a free abelian group of rank n and the sublattice Λ0 is also a free abelian
group of the same rank. From Theorem E.4, there exists a basis (u1, . . . , un) of Λ for which there
exist integers d1, . . . , dn ∈ N∗ such that (d1u1, . . . , dnun) is a basis of Λ0. If x ∈ Λ ∩Π0, then

x = a1u1 + · · ·+ anun = b1d1u1 + · · ·+ bndnun,

where ai ∈ Z and 0 ≤ bi < 1. As ai, di ∈ Z, we have bi = ai
di
∈ Q. Given that 0 ≤ bi < 1,

we have di possibilities for bi, namely 0, 1
di
, . . . , di−1

di
. It follows that 0, 1, . . . , di − 1 are the only

possibilities for ai. Therefore for x there are d1 · · · dn possibilities, i.e., |Λ/Λ0| = d1 · · · dn.
We now consider the automorphism T of Rn defined by

T (ui) = diui,
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for i = 1, . . . , n. We now suppose that Π is the fundamental parallalepiped of Λ corresponding
to the basis (ui) and Π0 that of Λ0 corresponding to the basis (diui). As |detT | = d1 · · · dn,
from Proposition G.2 we have

vol Π0 = d1 · · · dnvol Π.

We have shown that

Theorem G.5
[Λ : Λ0] =

det Λ0

det Λ
.

We defined a lattice in Rn at the beginning of this appendix as a discrete subgroup whose
span is Rn. We now consider the case where we do not have a condition on the span.

Theorem G.6 If H is a discrete, nontrivial subgroup of Rn, then H is isomorphic to a lattice
in Rr, where r is the dimension of the vector subspace generated by H.

proof Let e1, . . . , er ∈ H be a maximal linearly independant subset in H and T the fundamental
domain defined by the ei, i.e.,

T = {x ∈ Rn : x =

r∑
i=1

aiei, 0 ≤ ai < 1}.

The closure of T is

T̄ = {x ∈ Rn : x =

r∑
i=1

aiei, 0 ≤ ai ≤ 1}.

If x ∈ H, then x =
∑r
i=1 biei, with bi ∈ R. For an integer j we set xj = jx −

∑r
i=1bjbicei.

We claim that xj ∈ H ∩T . As xj =
∑r
i=1(jbi−bjbic)ei and 0 ≤ jbi−bjbic < 1, we have xj ∈ T .

Also, H is a subgroup of Rn, so bjbicei ∈ H, for all i, and so their sum is also in H. Clearly
jx ∈ H, hence xj ∈ H. This proves the claim.

If we take j = 1, then we have x1 = x −
∑r
i=1bbicei ∈ H ∩ T . As H is discrete H ∩ T̄ is a

finite set, because T̄ is compact. It follows that H ∩ T is also finite, so there exist only a finite
number of choices for x1 and it follows that H is generated by the distinct values of the x1 and
the ei. (Any element y ∈ H is the translation of an element x ∈ H ∩ T by a sum of the form
u =

∑r
i=1 aiei, with ai ∈ Z, which belongs to H.)

Our next step is to show that the bi are rational. As there are only a finite number of distinct
elements in H ∩ T and all the xj belong to this set, there must be xj = xk, with j 6= k. Then,
using the linear independance of the ei, we obtain

(j − k)bi = bjbic − bkbic,

for all i, and it follows that the bi are rational.
Since the distinct values of x1 are linear combinations of the ei with rational coefficients, H

is generated by a finite number of linear combinations of the ei with rational coefficients. If d is
the lcm of the denominators of these coefficients, then d 6= 0 and dH ⊂

∑r
i=1 Zei. Thus dH is a

subgroup of a free abelian group of rank r, hence is free of rank at most r. Given that dH ' H,
H is free, and since H ⊃

∑r
i=1 Zei, the rank of H is at least r, and hence exactly r. Since H is

a free abelian group of rank r, it is isomorphic to the standard integer lattice Zr of Rr.
To conclude we need to show that r is equal to the dimension of the vector subspace generated

by H. Let us write S for this subspace and A for the subspace generated by the ei. It is sufficient
to show that S = A. In the previous part of the proof we showed that H is generated by a finite
number of linear combinations of the ei with rational coefficients, thus S ⊂ A. However, S must
contain all linear combinations of the ei, hence A ⊂ S. Therefore S = A, as required. 2
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Appendix H

Kronecker products of matrices

Let A be an m× n matrix and B a p× q matrix over a commutative ring R. The Kronecker (or
tensor) product of A and B, written A⊗B, is the mp× nq matrix defined as follows:

A⊗B =

a11B . . . a1nB
...

...
am1B . . . amnB


In general, A⊗B 6= B ⊗A, because we do not have mp = nq. However, even if this is the case,
for example when both A and B are square matrices of the same dimension, it is not in general
true that A⊗B = B ⊗A. For example,

[
1 2
3 4

]
⊗
[
1 0
2 3

]
=


1 0 2 0
2 3 4 6
3 0 4 0
6 9 8 12


and [

1 0
2 3

]
⊗
[
1 2
3 4

]
=


1 2 0 0
3 4 0 0
2 4 3 6
6 8 9 12

 .
We are particularly interested in the case where R is a field F and A and B square matrices.

Then A⊗B is an mn×mn matrix, with coefficients in F .

It is interesting to notice what happens when A = Im. We have

Im ⊗B = diag (B . . . B),

i.e., Im ⊗ B is a matrix with m blocks B on the diagonal and 0 elsewhere. We leave it to the
reader to determine the form of the matrix A⊗ In.

Let us write cij for the column vector

(a1ib1j . . . a1ibnj a2ibij . . . a2ibnj . . . amib1j . . . amib1j . . . amibnj)
t.
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We notice that the pairs of indices (k, l) in akiblj follow the order

(1, 1), (1, 2), . . . , (1, n), (2, 1), . . . , (2, n), . . . , (m, 1), . . . , (m,n).

We define a mapping

B : Fm × Fn −→ Fmn, (uv) 7−→ u⊗ v,

where
u⊗ v = (u1v1, . . . , u1vn, u2v1, . . . , u2vn, . . . , umv1, . . . , umvn).

The mapping B is clearly bilinear. Also, if (ei)
m
i=1 (resp. (fj)

n
j=1) is the standard basis of Fm

(resp. Fn), then the products ei ⊗ fj , for 1 ≤ i ≤ m and 1 ≤ j ≤ n, form the standard basis of
Fmn. It is not difficult to see that

(A⊗B)(ei ⊗ fj) = cij = Aei ⊗Bfj .

Using the bilinearity of B we obtain

(A⊗B)(u⊗ v) = Au⊗Bv,

for every pair (u, v) ∈ Fm × Fn.

We have seen that in general A⊗B 6= B ⊗ A. However, if the matrices A and B are square
matrices, then A⊗ B and B ⊗ A are conjugate, i.e., there exists an invertible mn×mn matrix
P such that

P (A⊗B)P−1 = B ⊗A.

To see this, let φ be the linear endomorphism defined on Fmn by the matrix A ⊗ B and the
ordered basis

B1 = (e1 ⊗ fI , . . . , e1 ⊗ fn, . . . , em ⊗ f1, . . . , em ⊗ fn).

The coordinates of φ(ei ⊗ fj) in this basis are the elements of the column vector cij. Suppose
now that we order the basis elements differently to obtain the new ordered basis

B2 = (e1 ⊗ f1, . . . , em ⊗ f1, e1 ⊗ f2, . . . , em ⊗ f2, . . . , e1 ⊗ fn, . . . , em ⊗ fn).

Then the coordinate vector of φ(ei ⊗ fj) in this ordered basis is

(a1ib1j a2ib1j . . . amib1j a1ib2j . . . amib2j . . . a1ibnj . . . amibnj)
t

However, this is the column c′ij of the matrix B ⊗A. Hence the representation of the linear en-
domorphism φ in the bases B1 and B2 is B⊗A and it follows that A⊗B and B⊗A are conjugate.

We can now prove the main result of this appendix.

Theorem H.1 Let A ∈Mm(F ) and B ∈Mn(F ). Then

tr (A⊗B) = tr (A)tr (B) and det(A⊗B) = det(A)n det(B)m.

proof For the trace we have

tr (A⊗B) =

m∑
i=1

n∑
j=1

aiibjj =

m∑
i=1

aii

n∑
j=1

bjj = tr (A)tr (B).
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The determinant is more subtle. We claim that

A⊗B = (A⊗ In)(Im ⊗B).

In fact, for u ∈ Fm and v ∈ Fn,

(A⊗ In)(Im ⊗B)(u⊗ v) = (A⊗ In)(u⊗Bv) = Au⊗Bv = (A⊗B)(u⊗ v),

which proves the claim. Now, using the fact that A⊗ In and In ⊗A are conjugate, we obtain

det(A⊗B) = det(A⊗ In) det(Im ⊗B) = det(In ⊗A) det(Im ⊗B) = det(A)n det(B)m,

as given in the statement of the theorem. 2

Corollary H.1 A⊗B is invertible if and only if both A and B are invertible.
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Appendix I

Infinite products

Let a1, a2, . . . be an infinite sequence of nonzero complex numbers. We say that the infinite
product

∏
n≥1 an converges if there is a number γ such that the sequence (

∏n
i=1 ai) converges to

γ. An infinite product may converge to 0, even if all the elements an are nonzero. For example, it
is sufficient to take an = 1

2 , for all n. However, we are interested in the case where γ is nonzero.

Lemma I.1 The infinite product
∏
n≥1 an converges to a nonzero element γ if and only if, for

all ε > 0, there is an n(ε) such that

|anan+1 · · · an+k − 1| < ε

for all n ≥ n(ε) and k ≥ 0.

proof Suppose that
∏
n≥1 an converges to γ 6= 0 and let ε > 0. Choose a positive number

δ < |γ| such that 2δ
|γ|−δ < ε. There exists n1 with the property

|a1 · · · ai − γ| < δ,

for all i ≥ n1. In particular,

|a1 · · · a1+i+k′ − a1 · · · a1+i| ≤ |a1 · · · a1+i+k′ − γ|+ |γ − a1 · · · a1+i| < 2δ,

for all i ≥ n1 and k′ ≥ 1. Also,

|a1 · · · a1+i+k′ − a1 · · · a1+i| = |a1 · · · a1+i||a1+i+1 · · · a1+i+k′ − 1|
= |a1 · · · a1+i − γ + γ||a1+i+1 · · · a1+i+k′ − 1|
≥ (|γ| − |a1 · · · a1+i − γ|)|a1+i+1 · · · a1+i+k′ − 1|
> (|γ| − δ)|a2+i · · · a1+i+k′ − 1|,

and so, setting n = 2 + i and k = k′ − 1, we obtain

|an · · · an+k − 1| < 2δ

|γ| − δ
< ε,

for all n ≥ 2 + n1 = n(ε) and k ≥ 0.
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We now consider the converse. Taking ε = 1
2 , we see that there exists n( 1

2 ) ≥ 1 such that

3

2
≥ |an · · · an+k| ≥

1

2
, (I.1)

for all n ≥ n( 1
2 ) and k ≥ 0. To simplify the notation, we set n( 1

2 ) = n2. We consider the sequence
of partial products

pn =

n2+n−1∏
i=n2

ai

and let ε > 0. Let n be sufficiently large so that n2 + n ≥ n( 2ε
3 ). Then we have

|pn − pn+k| = |an2 · · · an2+n−1 − an2 · · · an2+n+k−1|

= |an2 · · · an2+n−1||1− an2+n · · · an2+n+k−1| ≤
3

2
· 2ε

3
= ε,

where we have used the inequality (I.1). Thus the pn form a Cauchy sequence and hence con-
verge. The condition (I.1) shows that the limit is nonzero. 2

Remark By Lemma I.1, if we take ε > 0 and n is sufficiently large, then |an − 1| ≤ ε. Hence if
the infinite product converges to a nonzero element, then lim an = 1. Therefore, if the infinite
product

∏
n≥1(1 + an) converges, then we have lim an = 0.

Definition The infinite product
∏
n≥1(1 +an) is said to be absolutely convergent if the product∏

n≥1(1 + |an|) converges (necessarily to a nonzero element).

Lemma I.2 The infinite product
∏
n≥1(1+an) is absolutely convergent if and only if the infinite

sum
∑
n≥1 an is absolutely convergent.

proof First we notice that the function f(x) = ex − x − 1 is nonnegative for x ≥ 0: f(0) = 0
and f ′(x) = ex − 1 > 0, for x > 0. Then

|a1|+ · · ·+ |an| < (1 + |a1|) · · · (1 + |an|)
≤ e|a1| · · · e|an|

= e|a1|+···+|an|.

Therefore the sums
∑n
i=1 |ai| are bounded if and only if the products

∏n
i=1(1+ |ai|) are bounded

and the result follows. 2

We conclude this appendix with a fundamental theorem.

Theorem I.1 Suppose that the infinite product
∏
n≥1(1 + an) is absolutely convergent. Then

• a. the infinite product
∏
n≥1(1 + an) converges to a nonzero element;

• b. the infinite product
∏
n≥1(1 + an) is convergent after any rearrangement of the terms;

• c. all such rearrangements yield the same limit.

proof a. From Lemma I.2 the absolute convergence of the sum
∑
n≥1 an is equivalent to the

absolute convergence of the product
∏
n≥1(1+an). Let ε > 0. By Lemma I.1, for all n sufficiently

large and all k ≥ 0, we have

|(1 + |an|) · · · (1 + |an+k|)− 1| < ε.
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But

|(1 + an) · · · (1 + an+k)− 1| ≤ (1 + |an|) · · · (1 + |an+k|)− 1

= |(1 + |an|) · · · (1 + |an+k|)− 1| < ε,

and so, from Lemma I.1, the product
∏
n≥1(1 + an) converges to a nonzero element.

(The first inequality merits an explanation. The expression (1 + an) · · · (1 + an+k)− 1 is a sum
of monomials in an, . . . , an+k, whose absolute value is bounded by the sum of the corresponding
monomials in |an|, . . . , |an+k|, the value of which is (1 + |an|) · · · (1 + |an+k|)− 1.)

b. Let σ : N −→ N be a bijection, which is not the identity. The convergence of
∑
n≥1 |an|

implies that of
∑
n≥1 |aσ(n)| so, by Lemma I.2,

∏
n≥1(1 + |aσ(n)|) is convergent. From part a.

we deduce that
∏
n≥1(1 + aσ(n)) is convergent.

c. For n ≥ 1 we set pn = (1 + a1) · · · (1 + an) and p′n = (1 + σ(a1)) · · · (1 + σ(an)). Let
k1 < · · · < km denote the elements of {1, . . . , n} \ {σ(1), . . . , σ(n)} and k′1 < · · · < k′l the
elements of {σ(1), . . . , σ(n)} \ {1, . . . , n}. Then

pn
p′n

=
(1 + ak1) · · · (1 + akm)

(1 + ak′1) · · · (1 + ak′l)
.

Considering the numerator we have

|(1 + ak1) · · · (1 + akm)− 1| ≤ (1 + |ak1 |) · · · (1 + |akm |)− 1

≤ exp(|ak1 |+ · · ·+ |akm |)− 1

< exp

( ∞∑
i=k1

|ai|

)
− 1.

As n→∞, we have k1 →∞, so, from Lemma I.2, we have
∑
i≥k1 |ai| → 0. This shows that

the numerator tends to 1 as n→∞. An analogous argument shows that this is also the case for
the denominator. This proves part c. 2
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absolute different, 219
action of a group, 56

free action, 56
transitive action, 56

algebraic closure, 21
algebraic elements, 11
algebraic extension, 11
algebraic integer, 109
algebraic numbers, 14
algebraically closed field, 21

basis of a lattice, 338
basis of a module, 71, 334
basis of an abelian group, 327
biquadratic number fields, 273

character, 72
characteristic polynomial, 90
class number, 207
class number formula, 306, 307
complement of a normal subgroup, 318
complementary subset, 218
complete splitting, 185
compositum, 48
conjugate subfield, 44
content of the polynomial, 311
coprime ideals, 140
cyclotomic extension, 58
cyclotomic polynomials, 60

decomposition field, 180
Dedekind ζ function, 302
Dedekind domain, 132
Dedekind’s lemma, 72
Dedekind’s Theorem, 77
degree of a polynomial, 309
denominator of a fractional ideal, 142
determinant of a lattice, 342
different, 219
Dirichlet series, 301
discrete subgroup of Rn, 338

discriminant of a number ring, 117
discriminant of a polynomial, 75, 99
discriminant of a set of elements, 103

elementary symmetric polynomials, 314
exponent at Q of the different, 223
extension, 8
extension of an ideal, 147, 149
external semidirect product, 321

F-homomorphism, 21
field of rational functions, 47
finitely generated module, 71, 334
fixed field, 42
fixed field of G in E, 46
formal power series, 308
fractional ideal, 142
free abelian group, 327
free module, 71, 334
Frobenius automorphism, 66
fundamental parallelepipedid, 341
fundamental system of units, 213
fundamental theorem of algebra, 52
fundamental unit, 214

Galois extension, 40
Galois group, 41
Galois group of a polynomial, 54
Gauss sum, 67
Gauss’s lemma, 311
group action, 56

highest common factor, 139

ideal class group, 139
ideal counting equation, 287
ideal lying over another, 166
inertia field, 180
inertial degree, 168
integral basis, 117, 327
integral closure, 111

354



integral element, 111
integral ideal, 142
internal direct product, 318

Kronecker product, 346

lattice, 338
leading coefficient, 314
leading coefficient of a polynomial, 309
leading term, 314
lexicographic order, 314
linearly disjoint fields, 51
Lipschitz boundary, 289
Lipschitz function, 288
Lipschitz parametrizable, 289
local ring, 154
localization of a ring, 149
logarithmic mapping, 208
lowest common multiple, 139

minimal polynomial of α over F, 11
Minkowski bound, 206
Minkowski’s convex body theorem, 343
monic polynomial, 309
monogenic field, 269
multiple roots, 310
multiplicativity of the degree, 12
multiplicity of a root, 310

norm, 90
normal closure, 39
normal domain, 118
normal extension, 37
number fields, 12
number ring, 114

order, 118
order-preserving mappings, 42
order-reversing mappings, 42

perfect field, 31
polynomial function, 309
power basis, 269
power generator, 269
prime field, 10
primitive nth root of unity, 58
primitive element, 29
primitive polynomial, 311
principal theorem of ramification, 175

quotient, remainder after division, 309

ramification groups, 191
ramification index, 168, 223
ramified prime ideals, 178
rank of a free abelian group, 329
rank of a free module, 332
reduction modulo p, 61, 71
regulator, 299
resultant, 75, 96
Riemman ζ function, 302
ring of integers, 114

semidirect product, 318
separable

strongly separable, 25
separable element, 27
separable extension, 27
separable polynomial, 25
simple roots, 310
Smith normal form, 334
solvable group, 197
splitting field, 16

splitting field of a collection of polynomi-
als, 37

stabilizer, 56
standard integer lattice, 338
Stickelberger’s criterion, 121
sublattice, 344
Sylvester matrix, 74, 95
symmetric polynomial, 314

torsion, 71
torsion element, 71, 334
torsion-free, 71, 334
total degree of a polynomial, 312
totally imaginary number field, 214
totally ramified, 178
totally real number field, 214
trace, 90
transcendental elements, 11
transcendental extension, 11
transcendental numbers, 14
transitive group of permutions, 57
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