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Preface

Our aim in writing this book is to present a clear introduction to algebraic number theory at
the upper undergraduate/graduate level. The rst chapters are devoted to elementary Galois
theory, which plays a fundamental role in algebraic number theory. Usually the Galois theory
needed in algebraic number theory is con ned to a reference or a brief appendix. We feel it is
useful to have a good traitment of this material at hand. Naturally, there are important parts of
Galois theory, for example radical extensions and inverse Galois theory, which we do not handle,
as they do not concern the main subject of this text.

After this preliminary work we turn to the study of algebraic number elds, i.e., nite
eld extensions of the rationals, presenting basic results such as the Kronecker-Weber theo-
rem, Dedekind's di erent theorem, Dirichlet's unit theorem, Hermite's theorem and Dedekind's
factorization theorem. We also introduce and study the class group of a number ring and estab-
lish the class number formula. In general, our proofs are detailed and we do not leave important
parts of proofs to the reader. This avoids tedious reading and frustration when faced with gaps
which the reader is often unable to Il in.

As for required reading, we assume a good background in elementary algebra: semigroups,
groups, rings and modules over rings; in particular, the basic isomorphism theorems for groups,
rings and modules. We also assume a basic knowledge of Lebesgue integration and complex
analysis. Finally, we suppose that the reader is acquainted with fundamental number theory, for
example the rings of integersZ, and the nite elds F,. All this material is generally covered
in the rst years of a mathematics program. Of course, where necessary, we give reminders;
however, as our aim is to reach a relatively high level in a moderately short text, we do not
spend too much time on elementary notions.

Unless otherwise mentioned, we will suppose that all rings are commutative with identity,
although we will often recall these assumptions.
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Chapter 1

Field Extensions

If E and F are rings, in particular elds, then we say that E is an extensionof F, or F is included
in E, if there is a an injective ring homomorphism , or monomorphism, from F into E. The
following result justi es these terms.

Theorem 1.1 Let be a monomorphism of the ringA into the ring B. Then there is an
extension A of A and of to an isomorphism of A onto B.

proof If :A! B is anisomorphism, then there is nothing to prove, so we can suppose that
this is not the case. We setA = A[ Bn (A) andthendene :B! A by

Yy) ify2 (A);
y ifyz (A):

(y) =
is clearly a bijection. We de ne an addition + and a multiplication on A by
xitx2 = ( 'xa)+ fx2))  and  xaxa= ( f(xa)  H(x2):
It is easy to check that

(Yr+y2)= (Yyo+ (y2) and (Y1 ¥2)= (y1) (y2):

In addition (1) = 1. Thus A with the operations just de ned is a ring which is isomorphic to B.
What remains to be shown is that the operations+ and restricted to A are the ring operators
+ and of A. If (x1)=y1and (x2)= Yo, then

XitXe = (Yi+VY2)= ( (X))+ (X2))= ( (Xa)+ (X2))= X1+ Xz
A similar calcuation gives X; X, = X3 Xz. HenceA is an extension ofA and = 1is an
isomorphism from A onto B. 2

When the ring B is an extension of the ringA as de ned above we will often write B=A.

We recall that, if F is a eld, then the ring F[X] of polynomials with coecients in F is a
PID (principal ideal domain). For f 2 F[X] we write (f) for the ideal generated byf, i.e.,

(f)= fof :92 F[X]g;



and R; for the quotient ring F[X]=(f). The zero element of the quotient ring is(f). Using
the euclidean algorithm we see that, iff 6 0, then every coset has a unique element with
degr < degf. A nonconstant polynomial f is irreducible if there is no pair of nonconstant
polynomials g and h such that f = gh; if such a pair exists, then we say thatf is reducible.

Proposition 1.1  The following statements are equivalent:
a. Ry is a eld;
b. R; is an integral domain;

c. f is irreducible.

proof a. =) b. Itis su cient to observe that a eld has no zero divisors.

b. =) c. Suppose thatf is reducible. If f = gh, then (f) = (g+ (f))(h+(f)). As neither
(g+(f))=(f) nor (h+(f))=(f) we have a pair of zero divisors, a contradiction. Thereford

is irreducible.

c. =) a. Ifg+(f)6(f),theng2(f) and, from what we have said above, we may suppose
that degg < degf. If gcd(g;f) 6 1, then 1 deggcd@;f) < degf, a contradiction to the irre-
ducibility of f. Hencegcd(g;f) =1 and so there are polynomialss and t such that sg+ tf =1.

It follows that (s+(f))(g+(f))=1+(f),i.e.,g+(f) isinvertible. 2

If E is an extension ofF, then we may considerE as a vector space oveF . The dimension
of E over F, which we write [E : F], is called the degree of the extension. fE : F] < 1 , then
we say that the extension is nite, otherwise we say that it is in nite.

Exercise 1.1 If f : F ! E is a ring homomorphism, with F and E elds, then show thatf is
a monomorphism.

The next result is fundamental.

Theorem 1.2 If f 2 F[X], with degf 1, then there is an extensionE of F which contains a
root of f.

proof Let g be an irreducible factor off . From the previous proposition we know that E = Rg
isa eld. pgsthe mapping :F ! Rga7! a+(g)isamonomorphism,E is an extension of
F.Ifg= ., aXXand =X +(g),theninE

xs
o )= (+(9) “=g+(g=0:

k=0
Asg( )=0 in E and g dividesf,f( )=0 in E. 2

Exercise 1.2 Let f;g 2 F[X]. Show thatgcdf;g) =1 if and only if f and g have no common
root in an extension of F. Deduce that if f 6 g are nonconstant polynomials inF[X ], which are
monic and irreducible, thenf and g have no common root in an extension of-.

If E is an extension ofF and 2 E, then we write F( ) for the smallest subeld of E
containing F and , i.e., the intersection of all sub elds of E containing F and . In fact, F( )

is the collection of all fractions of the form % wheref;g 2 F[X]and g( ) 6 0. We also say

that F( ) is the sub eld of E generated byF and



1.1 Prime elds

In this section we will show that every eld can be considered as an extension of the rational
numbers Q or of a eld F,, for a certain prime number p. We begin with a preliminary resuilt.

Proposition 1.2 Let R be a subring of a eldF and K the intersection of all the sub elds of
F which contain R. Then K = Frac(R), the eld of fractions of R.

proof As R is is a subring of F, R is an integral domain and soFrac(R) is a eld. We can
de ne a monomorphism from Frac(R) into F in the following way:

()= a 8a2R and 5 " (@ (b *:
We setL = Im . Then L is a subeld of F containing R, henceK L. In addition, if G is
a sub eld of F which contains R, then G contains any element of the form (a) (b) 1, with
b6 0, becauseG is a eld and (R) = R. ThereforeL  G. It follows that L K. Thus
K =L Frac(R). 2

The intersection of all the sub elds of a given eld F is itself a sub eld of F, called the prime
eld of F. Clearly F is an extension of its prime sub eld.

Theorem 1.3 The prime subeld of a eld F is isomorphic to Q or to F, for some prime
number p.

proof Let be the mapping of Z into F de ned by (n) = n:1, where 1 is the identity for
the multiplication in F. It is easy to see that is a ring homomorphism. We write | = Ker
Then | is an ideal of Z and the factor ring Z=I is isomorphic to a subring of F, therefore Z=I
is an integral domain, which implies that | is a prime ideal inZ. As is not the zero mapping,
I =(0) orl =(p), wherep is a prime number.
In the rst case s injective and the subring (Z) of F is included in P, the prime eld of
F. From Proposition 1.2 above, P is isomorphic to Frac( (Z)), which is clearly isomorphic to
Q.
If I =(p), then (Z) is isomorphic to Z=(p), which is F,. However, (Z) is included in
every subeld of F and so (Z) P;but (Z)is asubeld of F, henceP (Z). Thus P is
isomorphic to Fy. 2

This theorem has an important corollary, namely

Corollary 1.1 If F is a nite eld, then the cardinal of F is p*, where p is a prime number
and k a positive integer.

proof The prime sub eld P of F must be nite, hence of the form F,, for some prime number
p. If [F : Fp] = Kk, then jFj = pk. 2

Some nal remarks before closing this section. It should be clear that, if one eld is an
extension of another, then they both have the same prime eld. Also, ifQ is the prime eld of a
given eld F, then the characteristic of F is 0. On the other hand, if the prime eld is Fp, then
the characteristic of F is p.

10



1.2 Algebraic extensions

If E is an extension ofF and 2 E is a root of a nonconstant polynomialf 2 F[X], then we
say that is algebraicover F. If is not algebraic, then we say it istranscendental If every
element of E is algebraic, then we say thatE is an algebraic extension An extension which is
not algebraic is said to be atranscendental extension

Proposition 1.3 If [E : F]< 1, then E is an algebraic extension ofF.

proof Let 2 E and[E : F]= n. The vectors 1; ;11 " are dependant and so we can nd
ag;a1;! p;an 2 F notall equal to 0 such that "o a& '=0.Hence isarootof the polynomial
f(X)= " ,aX'. 2

Corollary 1.2 If an extension is not algebraic, then it is in nite-dimensional.

proof Let E=F be an extension which is not algebraic. By hypothesis, there exists 2 E which
is not algebraic overF. If [E : F] < 1, then, from Proposition 1.3, E is an algebraic exten-
sion of F, so is algebraic overF, a contradicition. It follows that E=F is in nite-dimensional. 2

Remark We will see below that the converse of Proposition 1.3 is false (example after Corollary
1.5).

If E is an extension ofF and 2 E is algebraic overF, then the collection of polynomials
f 2 F[X]suchthatf( )=0 form an ideal | in F[X]. The unique monic generator ofl , which
we notem( ;F ), or simply m if the eld F is understood, is called theminimal polynomial of
over F. A minimal polynomial is clearly irreducible. It should also be noticed that if K=F , E=K
and 2 E is algebraic overF, then is also algebraic overK , sincem( ;F ) 2 K[X].

Proposition 1.4  If E is an extension ofF, 2 E anddegm(;F )= n,then[F( ):F]=n.

proof We will rst show that F, ;[ ], the set of polynomials in of degree strictly less thann
isa eld and thus is equal to F( ). If f 2 F[X]then we may nd g;r 2 F[X], with degr <n
such that

f(X)=gX)m(X)+ r(X)=) £()=9( )m()+r()=r():

Now if f1;f, 2 F[X] and we setf = fif,,thenwemay nd r 2 F, i[X]suchthatf( )= r( );
therefore F,, 1[ ] is closed under multiplication. Clearly F, i[ ]is closed under addition. It
follows that F, i[ ]is a subring of F( ). To show that it is a eld we only need to nd an
inverse for every nonzero element. If 2 F, (X) andf 6 0, then degf < degm. As m is
irreducible we may nd g;h2 F[X] such that

fX)g(X)+ m(X)h(X)=1=) f()g( )=1:

However, we have seen that there is 2 F, 1[X] such that s( ) = g( ), hencef( ) has an

inverse. We have shown thatF, ([ ] = F( ). Asthe vectors1; ;:::; " ! are independant
and " is a linear combination of smaller powers of , these vectors form a basis of, [ ]; it
follows that [F( ): F] = n. 2

Corollary 1.3 If is algebraic overF, then F( ) is an algebraic extension ofF.

11



Remark In the course of the proof of Proposition 1.4 we have shown that, if is algebraic, then

F()=F[1]

As examples of algebraic extensions we will consider quadratic number elds. We say that a
nite extension E of Q in C is anumber eld. It is quadratic if the degree of the extension is2.
Suppose thatd 2 Z is not a square and let be a square root ofd. If d > 0, then we usually
suppose that is the positive rgpt and, if d <p0Lthen is the product of i and the positive root
of d. In both cases we write' dfor . If  d= 2 2 Q, then b’d = a?, which is impossible
becaused is not a square. It follows tk@[degm( d;Q) > 1. As aiis a root of the polynomi@l
P(X)= d+ )%)ZLwe haveP (X) = m( d;Q). It follows that [Q( d): Q]=2 and that (1; d)
is a basis ofQ(" d) over Q, p_

If dis a square, then d 2 Z and soQ( d)pf Q, sopwe exclude this case. On the other
hand, if d = u®v, wherev is square-free, thenQ(" d) = Q(' V), so we can limit our attention to
square-free integersd. The following result is a little unexpected.

Theorem 1.4 If m and n are square-free integers andmn 6 n then Q(pm) is not isomorphic

to Q(" n).

proof Suppose that there isdm isomorph'ﬁm from Q(pﬁ onto Q(p n). As (1)=z1, must
x all elements of Q. Let ( m)= a+ b n. If b=0, we havea (a) = a= ( m), which
contadicts the fact that is injective, sob6 0. Also

m= (m= ("m)=( Pm2=(a+ " M?= a2+2a8 0+ tn:

If a6 0, then pﬁ= % 2 Q, a contradiction. Hencea=0 and m = ?n. If b= £, with

(e;f) = 1, then we havee?m = f 2n, which is only possible ife? = f2, becausem and n are
square-free. It follows thatk? =1 and som = n. 2

A little later we will see that all quadratic number elds are of the form we have seen here.

Suppose thatF, K and E are elds with K an extension ofF and E an extension ofK. We
now consider the relation between the degrees of the extensions. We recall that any vector space
over a eld has a basis which may be in nite.

Proposition 1.5 If ( j)j2s is a basis ofK over F and ( )i2; a basis ofE over K, then
(i j)i21j 2 is a basis ofE over F.

proof If 2 E, then s a linear combination of ;, with coe cients a 2 K. As each g
is a linear combination of j, with coecients j 2 F, is a linear combination of ; j, with
coe cients in F. Thus the set( ; j)i2i;j 20 generatesE. To show that it is a basis of E over
F. we must show that it is independant. To do so, let us consider a ( nite) linear combination

i i j.with j 2 F,whose value is0. Adding some terms j ; j, with j =0 if necessary,
we may write 0 1
X X X
0= i = @ i A
P i;j i i
As the ; are independant, j i =0 for every i. However, the ; are independant and so
j =0, for each pair (i;j ). Hence the elements ; ; form an independant collection. We have
shown that ( ; j)i21; 25 is a basis ofE over F. 2

This leads to the following statement, often referred to as themultiplicativity of the degree:

12



Corollary 1.4 If K=F and E=K, then

[E:F]=[E:K][K :F]:

Suppose now thatE is an extension ofF and that 1;:::; 5 2 E. We denoteF( 1;:::; 1)
the sub eld of E generated byF and the i, i.e., the smallest sub eld of E containing F and
the ;. (We have already seen this notion when there is only one;.) In fact, this eld is the
collection of all fractions of the form H wheref;g 2 F[Xy;:::;X,] and the denominator
is nonzero. We may generalize Corollary 1.3.

Corollary 1.5 If 4;:::; , are algebraic overF, then F( 1;:::; ) is a nite extension of F,
hence an algebraic extension of . Moreover, F( 1;:::; n)= F[ 1;:::; nl

Then Ex = Ex 1( k) and  is algebraic overEx ;. Now [Ex : Ex 1] =degm( «;Ex 1) and

1
[En:F]= [Ex+1 :Ex]< 1;
k=0

the result we were looking for.

To prove the second statement we use a simple induction argument. We have aleady seen
that it is true for n = 1. (See the remark after Corollary 1.3). If we suppose that the statement
is true up to n 1, then we have

FCOuii ) = FCaii a0 )
= F[ 0 nal(n)
= F[ o on ol nl
= FL[ o no1oal
which concludes the induction step and hence the proof. 2

Example Consider the,extensionE = Q(pi :n2 N ) of Q. Any element 2 E is algebraic
overQ, because 2 Q("2:n=1;:::;N),forsomeN 2 N ,and " 2is algebraic overQ. Hence
E is an algebraic extension ofQ. Foranyn 2 N b{S the Eisenstein criterion, fn(X) = 24X"
is irreducible and hence the minimal polynomial of " 2. However,E, E, whereE, = Q(" 2),
and, from Proposition 1.4, [E, : Q] = n. This implies that [E : Q] n,foralln2 N . Thus we

have found an algebraic extension ofQ, which is not nite.

We will see later that we may partially rectify this situation by imposing conditions on the
algebraic extension.

If E is an extension ofF then we will write A(E=F) (or simply A when the elds E and F
are understood) for the collection of elements oE which are algebraic overF.

Proposition 1.6  A(E=F) is a subeld of E.

13



proof It is sucient to show thatif ; 2 A, then , , ot and 1, with 60,
belong to A. However, F(; ) is an algebraic extension ofF, therefore F(; ) A. As
; A L2 F(; ), these elements belong teA. 2

Remark Proposition 1.6 ensures thatA(C=Q) is an algebraic extension ofQ. It contains all
the algebraic extensions ofQ and is an in nite extension, after the example following Corollary
1.5.

Exercise 1.3 We have seen that if and are algebraic, then + and are algebraic.
Prove the converse, namely, if + and are algebraic, then and are algebraic.

We may de ne a relation R on the collection of elds by FRE if E is an algebraic extension
of F. This relation is in fact a partial order. Clearly R is re exive and antisymmetric, so we
only need to show that it is transitive. To do so we need the following preliminary result.

Proposition 1.7 If K is an algebraic extension ofF, E=K and 2 E is algebraic overK,
then is algebraic overF.

P .
proof Let m(;K )= E:OaiX',witha,-2K,fori:0;:::;n,andan:1. As the g, for

1.5. Now, is algebraic overA, therefore A( ) is a nite extension of A, by Proposition 1.4.
Corollary 1.4 ensures thatA( ) is a nite extension of F. Proposition 1.3 now implies that is
algebraic overF. 2

Corollary 1.6 The relation R is transitive, hence a partial order.

Exercise 1.4 Suppose thatE is an algebraic extension ofF and that R is a ring containing F
and included inE, i.e., F R E. Show thatR is a eld.

1.3 Algebraic numbers

An element 2 C which is algebraic overQ is said to be analgebraic number This is equivalent
to saying that there is a polynomial f 2 Z[X]suchthatf( )=0. If 2 C is not algebraic then
we call atranscendental number We aim to show that A(C=Q) is countable.

Proposition 1.8 Let (E,)n2n be a countable collection of countable subsets of a 96t Then
the union S = [ 2N En is countable.

proof We setFg = EgandF, = Enn(Eo[ E1[ [ En 1),forn> 0. Then S= [ onFn

and,ifmé6 n,then F,\ F, = ;. Letf, :E, ! N be an injection and let us set, forx 2 F,,
f(x) = (n;fr(x)). Itis not dicult to see that f is an injection from S into N2. As N? is
countable, S is countable. 2

Corollary 1.7  The collection of polynomialsZ[X] is countable.

proof We note P4 the subset of Z[X] composed of polynomials whose degree & 0. We
obtain a bijection of Py into Z9*! by associating to each polynomialf its sequence of coe -

[ g2n Py is countable. If we now add the polynomialO, we obtain the result. 2

We may now prove the result mentioned in the rst paragraph.
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Theorem 1.5 A(C=Q) is countable.

proof From the previous corollary we know that Z[X] is countable. The subset ofZ[X]
composed of nonconstant polynomials is also countable: we may number these polynomials
fo;f1;:::. Foreachk 2 N, let R¢ be the ( nite) set of roots of fx. Then, from Proposition 1.8,
A(C nQ) = [ Rk is countable. 2

Corollary 1.8 The collection of transcendental numbers is not countable.

As A(C=Q) is a eld, it is easy to cogstrugt algebraic numbers. For example,p 2 and P 3
are algebraic numbers, hence their sum, 2+ 3, is also an algebraic number. Although the
transcendental numbers form a much larger set, it is not easy to nd explicit examples. We know
that e and are transcental, however the proofs are not easy, in particular for . It is an open

guestion whether the following numbers are transcendental or not: + e, e e, & €
and ©.

Exercise 1.5 Show that, if and are both transcendental, then either + or is tran-
scendental.
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Chapter 2

Splitting elds

Let E be an extension of the eldF andf 2 F[X]. We say that f splits in E, if we can write
fX)y= X 1) X )

with 2 F and 1;:::; n 2 E. Such a eld always exists: it is su cient to apply Theorem 1.2
an appropriate number of times. We say that an extensionE of F is a splitting eld of f 2 F[X]
if f splits in E and does not do so in any proper sub eld ofE.

Proposition 2.1 Let E be an extension ofF such thatf 2 F[X] splits in E:

fX)= (X 1) (X )

Then E is a splitting eld of f ifand only if E = F( 1;:::; n)
proof Suppose rst that E is a splitting eld of f. Then E contains F and the elements
;.00 n,thereforeF( 1;:::; ) E. Asf does not splitin any proper sub eld of E, we must
have equality.
Now suppose thatE = F( 1;:::; ) and let G be a sub eld of E such that f splits in G.
Then G containsF and the elements 1;:::; ,, henceF( 1;:::; n)2G. Itfollowsthat E G
and soE = G. Thus E is a splitting eld of f. 2

Corollary 2.1 If f 2 F[X] splits in an extensionE of F, then E contains a unique splitting

We can obtain an explicit presentation of a splitting eld.

Proposition 2.2  The splitting eld S of f 2 F[X] in an extension E of F can be written

If E is a splitting eld of f 2 F[X], then we can say something about order of the extension.
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Theorem 2.1 If f 2 F[X] and degf = n, then there is a splitting eld E of f such that
[E:F] nl.

proof If degf = 0, then f is constant and we can takeE = F. Now let us suppose that
degf = n 1. From Proposition 1.2 we know that there is an extensionE° of F which contains
aroot of f. The minimal polynomial m = m(;F ) divides f, sodegm degf. Now, from
Proposition 1.4, [F( ) : F]=degm, so there exists an extensiorE; of F which contains a root
1 of f and is such that with [E; : F] n. In E; we can writef (Y) =(Y 1)"19(Y), where
ri landg( 1 60. If gis not constant, then we can nd an extensionE, of E; which contains
aroot , of g (and hence off ) and is such that[E, : E;] n 1. E; is an extension ofF which
contains 5 and ,and[E,:F]=[E,:Ej][E1:F] (n 1)n. Continuing in the same way we
obtain an extensionE of F in which f splits and such that [E : F] n!. To nish it is su cient
to notice that E contains a splitting eld of f. 2

We have seen that every polynomial has a splitting eld. We now aim to show that all such
elds are isomorphic. We will begin with two preliminary results.

Lemma 2.1 Letf 2 F[X] be irreducible andE an extension ofF which contains a root of f.

Then there is an isomorphism
FIXI=(f) ! F()

which xes F, i.e., for g constant, ( g+ (f))= g, and such that ( X +(f)) =

proof The mapping :F[X]! E denedby (g)= 9( )is aring homomorphism. Asf is
irreducible and f 2 Ker , we have Ker = (f). It follows that the mapping

FIXIf) ! Im;g +(f)7! (9
is a ring isomorphism which xes F. In addition,
Im = Im =fg( ):g2F[X]g F(): (2.1)

As f isirreducible, (f) is maximal and soF [X]=(f ) isa eld. Thus Im a eld. However, F and
belong to Im , which implies that F( ) Im . From the equation (2:1) we obtain equality.
2

Lemma 2.2 Let R and S be rings, | is an ideal of R and J an ideal of S. If :R! Sisan
isomorphism such that (1) = J, then the mapping

CR=l 70 S=g;x+ 17 (X)+ ]
is well-de ned and is an isomorphism.

proof Left to the reader. 2

If F and FPare eldsand :F ! FO%is an isomorphism, then by setting

X X _
( ax’)s= (a)X!

we obtain an isomorphism from the ring F[X ] onto the ring FIX]. We will say that corre-
sponds to . We will often write f for (f).
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Proposition 2.3 Let :F ! F°be an isomorphism andf 2 F[X] irreducible. If E (resp.
EY is an extension of F (resp. F9 and (resp. 9 aroot of f (resp. f ) in E (resp. E9), then
there is an isomorphism” : F( ) !  FY 9 extending , with ~( )= 2 This isomorphism is
unique.

proof First we notice that (f)=(f ); from the preceding lemma the mapping

TFIXIHE) Y FAXIS(E )ig+(f) 70 (@) +(F)

is an isomorphism. We now set" as the composition

F()! FIXIHf)! FIXJ=(F )! FY9:

A is an isomorphism extending and ~( ) = ° The uniqueness is clear. 2

We are now in a position to prove the result referred to above, namely that splitting elds
are isomorphic. We will in fact prove a more general result and derive that on splitting elds as
a corollary.

Theorem 2.2 Let F and F°be elds, :F ! F%anisomorphism,f 2 F[X]andf 2 F9X]
the polynomial corresponding tof . If E is a splitting eld of f and E® a spliting eld of f ,
then there is an isomorphism~:E ! E%extending .

proof We will prove this result by recurrence onn =[E : F]. First, if n=1, then E = F and
f 2 F[X]andf is a product of linear factors (polynomials of degreel) and it follows that f is
also a product of such factors, s&°= F%and we can de ne~ =

Now let us suppose thatn > 1 and that the resultis true upto n 1. Let g be an irreducible
factor of f with degg 2and arootofgin E ( 2 E because isarootoff). Let g be
the polynomial in F9X] corresponding tog and °arootofg ( °2 E°because °is a root of
f ). From Proposition 2.3 there is a unique isomorphism® : F( ) ! FY 9 which extends
and is such that*( )= © Now, E is a splitting eld of f over F( ) and E°a splitting eld of
f overFY 9. As

[E:F]=[E:F()IF():F]

and[F( ): F] 2,wehavelE : F( )] <n. By theinduction hypothesis there is an isomorphism
~:E ! E9% which extends”, and hence . 2

Corollary 2.2 If f 2 F[X] and E and E° are splitting elds of f over F, then E and E° are
isomorphic.

proof Itis sucienttotake F°= F and =idg in the previous theorem. 2
_ [
22R, 2= 1( 3+2)

Example Letpf (X)= 2+X32 Q[X]. Theroots off inC are ; = R >

and ( % 72). As none of the roots belong toQ, f is irreducible. Asf is also monicf is the
minimal polynomial of ; and so[Q( 1): Q] =3. The eld Q( 1)pc§nnot be the splitting eld
in C of f, becauseQ( ;) R and ,2R. The eld K = Q( 1; 3i) Q( 1; 2; 3);as 1,
2, 3 belong toQ lie in K, we haveK = Q( 1; 2; 3),i.e., K isthe splitting eld of f in C.

We only need to nd the degree of the extension. From Theorem 2.1 we know that it cannot

be greater than3! = 6. It also must be a multiple of 3, because

[K:QI=[K :Q( )IQ( 1): QI =[K :Q( 1)I3:
If [K :Q]=3,then[K :Q( 1)]=1 and K = Q( 1), which is false; hencdK : Q] =6.
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Exercise 2.1 Find the splitting eld K of f (X)=4 2X + X2 2 Q[X]in C and determine
the degree of the extension oK over Q.

Exercise 2.2 Let C be a family of polynomials in F[X] and K an extension of F such that
everyf in C splits over K ; if, for every proper sub eld K © of K, at least one member ofC does
not split over K 9, then we say thatK is a splitting eld of C. Show that,C is nite and K is a
splitting eld of C, then there is a polynomialf 2 F[X] for which K is a splitting eld.

2.1 Existence of nite elds

We recall that we previously saw that the cardinal of a nite eld must be pX, wherep is a
prime number and k a positive integer. In this section we show that, for any suchp¥, there is a
nite eld F whose cardinal is preciselyp®, and that, in addition, there is essentially only one
such nite eld. We will use our knowledge of splitting elds in the proofs. We begin with a

preliminary result, but for this we need a lemma.

Lemma 2.3 Let f;g 2 F[X] be nonconstant. Thenf and g are relatively prime if and only if
they do not have a root in any extension eld ofF.

proof Assume that f and g are relatively prime in F[X]. Then there exist u;v 2 F[X] such
that
f(X)u(X)+ g(X)v(X) =1:

If is a common root off and g in some eld extension of F, then substituting  for X we
obtain 0 on the left-hand side and1 on the right-hand side of the equation, a contradiction.
Hencef and g have no common root in an extension eld ofF.

Now suppose thatf and g are not relatively prime. Then f and g have a common factorh,
which is not a constant. There is a eld extension ofF in which h has a root . Clearly, is a
common root of f and g. 2

Proposition 2.4 If f 2 F[X], then f has a multiple root in a splitting eld if and only if
ged(f;f 9 61.

proof Suppose thatf has a multiple root in a splitting eld. Then f(X) = (X )39(X),
wheres 2andg( ) 6 0. Hence,

FAX)=s(X  )® tgX)+ (X )°gAX)

and sof { ) = 0. From the previous lemmaf and f ®are not relatively prime, i.e., gcd(f;f 9 6 1.
Now suppose thatgcd(f;f 9 6 1. From the previous lemma,f and f ° have a common root
in an extension eld of F. We may write

FX)=(X  )a(X);
with s landg( ) 6 0. Then again
FAX)=s(X  )® fg(X)+(X  )g¥X):
If s=1,thenf% )= g( ) 60, a contradiction, hences 2 and is a multiple root. 2
Theorem 2.3 If pis a prime number andk a positive integer, then there is a eld F whose

cardinal is pX.
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proof To simplify the notation we set q = p*. For k = 1, we may take Fp. We now suppose
that k > 1. We setf(X)= X + X92 Fy[X]. AsfYX)= 1+ gX9 1= 1, becauseqis a
multiple of p, gcd(f;f 9 = 1 and so the roots off in a splitting eld are distinct, i.e., there are
g roots (Proposition 2.4). Let E be an extension ofF, which contains the roots off and F the
set of roots. We claim that F is a eld. First, if a2 F, then

O=f(a)= a+a%l() x=x%
We take x;y 2 F. Then
(xy)¥=x%yd=xy=) f(xy)=0 and (x+y)9=xI+yd=x+y=) f(x+y)=0:
If p6 2, then
(%=( Y= x

and, if p=2, then
( x)¥=( 1)¥I=x%=x= x;

because the characteristic of£ is 2. In both cases we have ( x) = x. It follows that F is a
subring of of E. In addition, if x 6 0, then, using the fact that F is an integral domain, we have

x+x9=0=) 1+x9=0=) xx9 2=1;
hencex has an inverse for the multiplication. Thus F is a eld. We have constructed a eld
with g= p¥ elements. 2

We now turn to the uniqueness of nite elds. We should notice that the eld F constructed
in the proof of preceding theorem is a splitting eld for the polynomial f . Any proper sub eld of
F will lack certain elements of F. As these are all roots off , f cannot split over such a sub eld.

Theorem 2.4 If F and F®are two nite elds with the same cardinality, then F is isomorphic
to FO.

proof If F is a nite eld with cardinality q= p*, then F has the prime eld Fp. Thereqg 1
elements inF  so, ifx 2 F ,thenx? 1 =1 and it follows that x+ x9=0, forall x 2 F. Thus

the roots of the polynomial f (X) = X + X 92 F,[X] are the elements ofF and it follows that
F is a splitting eld of f. As all splitting elds of a given polynomial are isomorphic, if F°is
another eld with cardinality g, then F°is isomorphic to F. 2

Notation We often write Fq for a nite eld with g elements.

2.2 Algebraic closures

We have seen that iff 2 F[X] then there is an extensionE of F over whichf splits. It is natural

to ask if there exists an extensionC of F such that every f 2 F[X] splits over this extension.
(It is well-known that C is such an extension oRR; however, we will give a proof of this later on
in the text.) In this section we aim to study this question. We will begin with an elementary
result.

Proposition 2.5 For a eld C the following conditions are equivalent

a. Every nonconstant polynomialf 2 C[X] has aroot 2 C;
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b. Every nonconstant polynomialf 2 C[X] splits over C;
c. Every irreducible polynomial f 2 C[X] is of degreel;

d. C has no proper algebraic extension.

proof a. =) b. If f is nonconstant, then the condition a. implies that we can write f (X) =
(X )a(X). If gis not constant, then we can write g(X) = ( X )h(X). Continuing the
process if necessary we nally obtain a splitting off .

b. =) c. If f isirreducible, then f is not constant. From the condition b. f splits over C:

fX)= (X 1) (X )

As f is irreducible, f has a unique nonconstant facteur, i.e.n = 1.

c. =) d. Let E be an algebraic extensionoff and 2 E. If f = m(;C ), then f is irreducible

and so of degreel: f (X) = X . Hence 2 C. Thus E = C.

d. =) a. Letf 2 C[X] nonconstant. We can nd an extension E of C which contains a root
of f. We may suppose that this extension is nite and so algebraic. From the conditiond.,

E=Candso 2C. 2

A eld satisfying the conditions of the above proposition is said to bealgebraically closed An
extension C of a eld F is an algebraic closureof F if C is algebraic overF and algebraically
closed.

Remark An algebraically closed eld is in nite. To see this, suppose that F 5 algebraically
closed and nite, with elements a;;:::;a,. However, the polynomialf (X) =1+ i“:l ( a+X)
has no root in F, contradicting the fact that F is algebraically closed.

Exercise 2.3 If E is an algebraic extension off and C an algebraic closure ofE, show thatC
is an algebraic closure ofF.

Remark If C is an algebraic closure o and E is an extension ofF which is strictly included
in C, then E is not algebraically closed. To see this, let 2 CnE. As is algebraic overF,

is algebraic overE. Now, =2 E, hencedegm( ;E ) > 1; from the condition c. of the above
proposition, E is not algebraically closed.

Proposition 2.6 Let C be an algebraic extension of . Then C is an algebraic closure ofF if
every nonconstant polynomialg 2 F[X] splits over C. (We do not need to consider polynomials
f 2 CIXInF[X]).

proof Letf 2 F[X]and be arootoff inan extensionE of C. The eld C( ) is an algebraic
extension of F and C is algebraic overF by hypothesis, thereforeC( ) is algebraic F. Thus

is the root of a polynomial g 2 F[X]. As g splits over C, all the roots of g belong to C, in
particular 2 C. Thus f has a root in C. 2

If E and ECare extensions off and :E ! ECis a homomorphism xing F (i.e., (X) = X,
forall x 2 F), thenwe call anF homomorphism. The following proposition is well-known
if E is a nite extension of F. However, we may relax the conditions:

Proposition 2.7 Let E be an algebraic extension oF and :E ! E an F-homomorphism.
If is injective, then it is also surjective.
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proof Let 2 E. We have to show thatthereexists 2 E suchthat = ( ). Letm=m(;F)
and L be the sub eld of E generated byF and the roots of m which are in E. These roots are
algebraic overF, therefore L is a nite extension of F (see Corollary 1.5). If %is a root of m
in E, then (9 is also a root ofm in E, because is an F-homomorphism and so (L) L.
However, is a linear mapping from the F -vector spaceL into itself, becauseF is xed by . As
L is nite-dimensional over F and injective, ;. :L ! L is also surjective. Moreover, 2L,
thus there exists 2L E suchthat = (). 2

We now prove the most di cult step in showing that a eld always has an algebraic closure.
Theorem 2.5 Every eld F has an extensionE which is algebraically closed.

proof We note S the collection of nonconstant polynomials ofF [X]. To eachf 2 S we associate
a variable X;. Now we let T be the family of these variables andF [T] the ring of polynomials
in these variables. (The elements of [T] are nite sums of monomials of the formaX;, X,
with a 2 F.) Finally we ge ne | to be the ideal ge'gerated by the elements of the fornf (X;),
with f 2 S. (If f(X)= " [, aX', thenf(Xs)= [, aX].). Infact, | is a proper ideal of
F[T] as we will now see. If this is not the case, then we can nd elementg; 2 F[T] and f; 2 |
such that

xs
gfi=1:
i=1
Let us write X; for the variable associated with f;. There is a nite number of variables
X110 Xy with m s, which are variables of theg,. Hence we have
xs
g Xy Xm)fi(Xi) =1

i=1

(Even if a certain variable Xy does appear explicitly in a certain g, we can still include it.)
Suppose now thatE is an extension ofF which contains all the roots of thef;. Then E contains
aroot ; of eachf;. IfwesetX;= ;forl i sandX; =0 fors<i m, then we obtain
0 =1, a contradiction. It follows that | is a proper ideal of F[T].

As | is a proper ideal, | is included in a maximal ideal M . The factor ring E; = F[T]=M is
a eld, becauseM is maximal. The canonical homomorphism

F! Eq;a7! a+ M
is injective: If (a)=0 anda60,thena+ M = M and
(al+M)a+M) M=) 12 M;
a contradiction. Hence we can writeF  E;. If f 2 F[X] is nonconstant, thenX; 2 E; and
f(X¢ +M)=f(X¢)+ M =0;

becausef (Xs) 21 M. Thereforef has a rootinE;.

We can now replaceF by E; and repeat the whole argument to obtain an extensionE, of
E1 such that every nonconstant polynomialg 2 E;[X] has a root in E,. Continuing in the same
way we obtain a chain of extensions

F E;1 E»
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such that a nonconstant polynomialh 2 E,[X] has a root in E,+; . We now let E be the union
of the elds in the chain and we de ne an addition  and a multiplication  on E as follows: If
X2Enandy2 E,,with m n,thenx y=x+pyandx y=Xx ,Yy. These operations are
well-de ned (x y and x vy do not depend on the choice oh m) and a simple check shows
that (E; ; )isa eld.

Now let f be a nonconstant polynomial inE[X]. All the coe cients of f belong to a certain
E, and sof has a root in E,+1 E . Thus we have an extension of~ which is algebraically
closed. 2

We may now prove the principal result of this section.
Theorem 2.6 Every eld F has an algebraic closure.

proof From the previous theorem, F has an extensionE which is algebraically closed. Let
G = A(E=F), i.e., the collection of elements ofE which are algebraic overF. Proposition 1.6
ensures us thatG is a sub eld of E. Let us take f 2 G[X] nonconstant. Asf 2 E[X], f has a
root 2 E. Asf 2 G[X], is algebraic overG. Now, G is an algebraic extension o and is
algebraic overG, therefore is algebraic overF, by Proposition 1.7. It follows that 2 G. We
have shown that G is algebraically closed. 2

Remark The previous proof shows that the eld of algebraic numbersA(C=Q) is an algebraic
closure ofQ. Moreover, the remark after Proposition 1.6 and Theorem 1.5 ensures tha\(C=Q)
is a countable in nite extension of Q.

Exercise 2.4 Show thatC is an algebraic closure ofR.

We have shown that a eld always has an algebraic closure. Our next task is to show that
any two such closures are isomorphic.

Lemma 2.4 Let be a monomorphism from a eldF into an algebraically closed eldC. If E
is an extension ofF, 2 E algebraic overF, then can be extended to a monomorphism from
F( ) into C.

proof Let FO= (F)andf = m(;F ). If f is the polynomial corresponding tof in F9X],
thenf has aroot °2 C. Applying Proposition 2.3 we see that there is an isomorphisnt* from
F()onto F{ 9. AsFY 9 C we have a monomorphism fromF ( ) into C extending . 2

Theorem 2.7 If : F ! C is a monomorphism, with C algebraically closed, andE an
algebraic extension ofF, then may be extended to a monomorphismt :E ! C.

proof Let G be the collection of all pairs (K; ), where K=F, E=K and is a monomorphic
extension of to K. (From the previous lemma, such pairs exist.) We now order these pairs:
(Kq; 1) (Kg; o) ifandonly if K; K, and , restricted to K1 is equal to ;. If the pairs
(Ki; i) form a chain Q, then Q has a maximum (K; ), with K = [ K; and (x) = (x), if
x 2 Kj. From Zorn's lemma, G has a maximal element(Kgq; o). We claim that Ko = E. If
Ko 6 E and 2 E nKy, then from the previous lemma, we may extend o to a monomor-
phism from Ko( ) into C. However, this contredicts the maximality of the pair (Kq; o). Hence
Ko = E; This nishes the proof. 2

If we add some conditions we obtain the important following corollary:
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Corollary 2.3 If, in the above theorem, E is algebraically closed andC algebraic over (F),
then ” is an isomorphism.

proof We only need to show that*(E) = C. As C is algebraic over (F), C is algebraic over
~(E), because (F) is a subset of*(E). Now, ~(E) is algebraically closed, becaus& is alge-
braically closed, henceC is an algebraic extension of the algebraically closed eld*(E). From
Proposition 2.5 d., C cannot be a proper extension and s@(E) = C. 2

We can now prove that the following theorem holds:

Theorem 2.8 If C; and C, are algebraic closures of the eldF, then C; and C, are F-
isomorphic.

proof F isasubeldof C; andC,. If :F ! C,is the inclusion mapping, then, from the
previous corollary, we may extend to an isomorphism” :C; ! C,. Thisclearly xes F. 2

Exercise 2.5 Let F be any eld. Show that there is an in nite number of irreducible elements
in the polynomial ring F[X]. Deduce that if F is algebraically closed, therF is in nite.
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Chapter 3

Separability

In this chapter we aim to look at two related topics, namely separable polynomials and separable
extensions. We will begin with the rst subject.

3.1 Separable polynomials
Let f 2 F[X] be nonconstant with the factorization into irreducible elements

f(X)= g1(X) g (X):

If each g; has no multiple root in a splitting eld, then we say that f is separable We will say
that a polynomial is strongly separable if it has no multiple roots. Clearly, a strongly separable
polynomial is separable, but a separable polynomial is not necessarily strongly separable. For
example, f (X) = (X2 +1)? 2 Q[X] is separable, but not strongly separable. However, for an
irreducible polynomial these notions are equivalent: Iff 2 F[X] is irreducible, then f is separa-
ble if and only if f is strongly separable.

Proposition 2.4 is useful in determining whether a polynomial is separable or not. Consider
a polynomial f 2 F[X]. If gcd(f;f 9 = 1, then f has no multiple root and so this is the case
for any factor; it follows that f is strongly separable and hence separable. On the other hand, if
ged(f;f 9 6 1, then f is not strongly separable; howeverf may be separable or not. We must
consider the irreducible factors off .

Corollary 3.1 If the characteristic of the eld F is 0, then every polynomialf 2 F[X] is
separable.

proof Let g be an irreducible factor off . As the characteristic of F is0, g°6 0. If h = gcd(g; ),
then degh < degg, becausedegg®< degg. As g is irreducible, h = 1. From the preceding propo-
sition, g has no multiple root. 2

Now we consider nite elds. If F is such a eld, then its characteristic is a prime number
p. Let f 2 F[X]. If, for every irreducible factor g of f, g°6 0, then, using the argument of the
corollary we have just proved, f is separable. We claim that this is always the case. Suppose
that this is not the case and let g be an irreducible factor of f with g°®= 0. Then g 2 F[XP].
The mapping
FD O Foix7l oxP
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is a homomorphism: (1)=1 and

(xy) = (xy)? = xPy?P = (x) (y)
x+y) = (xvyl o= T Pyl ey = 0+ ()
i=0
(We have used the fact thatp divides ? if1 i p 1) AsF isa eldandKer is an ideal
Ker = fOgorKer =F. As (1)=1, the second alternative is not possible, so Ker = f0g,
which implies that is injective. Gi\{gn that F is nite, must also be surjective. Now let us
return to g. We may write g(X) = :‘:0 aiXP'. As s bijective, for each a;, there exists b
such that a; = . We have
X xoooP
gX)=  PXP= bx'
i=0 i=0

a contradiction to the irreducibility of g. Henceg®6 0 and we have proven
Proposition 3.1 If F is a nite eld, then every polynomial f 2 F[X] is separable.

Remark Corollary 3.1 and Proposition 3.1 imply that if char F = 0 or F is nite, then an
irreducible polynomial f 2 F[X] is strongly separable.

Although polynomials which are not separable are relatively rare, such polynomials exist.
Here we will give an example. We recall Eisenstein's criterion:

P .
Let R be a unique factorization domain, with quotient eld F, and f (X) = i”ZO aX'2
R[X], with degf 1. If gis prime in R and g divides a;, for 0 i <n, g does not divide a,
and ¢? does not divide ag, then f is irreducible in R[X].

Consider Fy(t), the eld of rational fractions over the eld Fy, for any given prime p. The
characteristic of Fp(t) isp. We note f (X) = XP t 2 Fp[t][X]. If g(t) is prime in Fyl[t], then
deg? 2 and sog? does not dividet; it follows from Eisenstein's criterion that f is irreducible.
We claim that f has a multiple root in a splitting eld. Let be a root of f in a splitting eld
and suppose that

fFX)=(X  )Mg(X);

wheredegg landg( )60. Then
0=fPX)=m(X )" fg(X)+(X )"gAX):

This implies that mg(X) = (X )gAX) and somg( ) = 0. However, this is impossible,
becausem <p and g( ) 6 0. Therefore,f (X) = (X )P and f is not separable.

In Theorem 2.2 we showed that an isomorphism from the eld F onto the eld F°may be
extended to an isomorphism~: E |  ES where E is a splitting eld of f 2 F[X] and E®a
splitting eld of f , the polynomial in F9X] corresponding tof . If f is separable, then we can
say a little more.

Theorem 3.1 |If f is separable, then can be extended td in exactly [E : F] distinct ways.
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proof We prove this result by induction on n = [E : F]. First, if n =1, then there is a unique
extension of , namely ~= . Suppose now thatn > 1 and that the result is true upto n 1.
The polynomial f has an irreducible factor g with degg = d > 1. We may write f = gh. Let

de a root of g. If ~is an extension of , then %= ~( ) is a root of g , the polynomial in
F9X ] corresponding tog. As f is separable, so i$ , which implies that g hasd distinct roots

9 From Proposition 2.2 there are preciselyd isomorphisms” : F( ) ! FY 9 extending |,
one for each root ° Also, E is a splitting eld of f over F( ) and E°a splitting eld of f over
FYA 9 (for each 9. We have

[E:F]=[E:F()IF():F]

Becauseg is irreducible, [F( ) : F] = d, which imlies that [E : F( )] = § <n. Applying the
induction hypothesis, we see that each® has exactly § from E onto E® hence we have precisely
n extensions~ of . 2

We now turn to our second topic.

3.2 Separable extensions

If E is an extension ofF and 2 E, then is a separable elemenbver F, if is algebraic
over F and the minimal polynomial m( ;F ) is separable. If every element 2 E is separa-
ble, then we say that E is a separable extensiorof F. From Corollary 3.1 and Proposition 3.1
we know that every algebraic extension of a eld of characteristicO or of a nite eld is separable.

We have seen in Theorem 2.7 thatif : F |  C is a monomorphism, with C algebraically
closed, andE an algebraic extension ofF, then may be extended to a monomorphism” :
E ! C. If E is a nite separable extension ofF then we can say a little more.

Theorem 3.2 Let E be a nite separable extension ofF, with [E : F]= n, and a monomor-
phism from F into C, which is algebraically closed. Then there are exactiy monomorphic
extensions~:E ! C of

proof We will prove this result by induction on n. If n =1 then E = F and there is nothing
to prove. Suppose now thatn > 1 and that the result is correctupton 1. Let 2 EnF,
m = m(;F ) and m be the polynomial in K [X] corresponding tom, whereK = (F). Asm
is separable, so isn . Given that C is algebraically closed,m has a root °2 C and there is a
unique isomorphism” : F( ) ! K ( 9 extending and suchthat®( )= ©(Proposition 2.3).
If degm = d, then

[F():F]l=d=) [E:F( )= 5<n:

n
d
Also degm = d, som hasd distinct roots in C, because it is separable. Thus we have choices
for © and thus for ~, and, by the induction hypothesis, each mapping* : F( ) ! K ( 9 canbe
extended to a monomorphism fromk into C in § ways. We thus obtain §d = n monomorphisms
~ from E into C extending

It is not di cult to see that there can be no more than n such extensions. If is such an
extension, then %= ( )isarootofm and restricted to F( ) is an isomorphism ontoF ( 9.
The mapping is then a monomorphic extension of this restriction and so is one of the mappings
we have already considered. 2

Corollary 3.2 If E is a nite separable extension offF, with [E : F] = n, and C an algebraically
closed extension of~, then there are exactlyn F -monomorphisms ofE into C.
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proof It is su cient to take =id ¢ in the preceeding theorem. 2

Finite separable extensions have a useful property which Theorem 3.2 enables us to prove.
We will also need an elementary result on nite elds, which is interesting in itself, namely that
the multiplicative group of nonzero elements of a nite eld is cyclic. We will prove a more
general result. We recall that Euler's totient function is dened on N as follows: (n) is
fhe number of elements in the setfd : 1 d  n;(d;n) =1g. We have the following identity

gin (A =n.
Theorem 3.3 If F is a eld and G a nite subgroup of the multiplicative group F , then G is
cyclic.

proof We setjGj = n. If x 2 G, then o(x)jn, where o(x) is the order of the elementx. For each
divisor d of n, let us write (d) for the number of elements inG whose order isd. If (d) 6 0,
then there is an elementx 2 G whose order isd. If y 2 H, the group generated byx, then
y9 =1, hencey is a root of the polynomial f (X)= 1+ X92 F[X]. Asf has at mostd roots
and H hasd elements, all the roots off are in H, in particular, any element of order d is in
H. Also, the elements of orderd in H are the generators of this group and there are (d) such
generators, hence we have (d) = (d). If (d) =0, for a certain divisor d of n, then we have
X X
n= (d) < (d)=n;

djn djn

a contradiction. It follows that (d) = (d) for every divisor d of n. In particular, (n)= (n)
1 and soG is cyclic. 2

Corollary 3.3 If F is a nite eld, then its group of nonzero elements is cyclic.
We may now prove the interesting result we referred to above.

Theorem 3.4 (primitive element theorem) If E is a nite separable extension ofF, then there
exists an element 2 E, such thatE = F( ).

proof If F is nite, then so is E, being a nite extension. If is a generator of the cyclic group
E ,thenE = F( ).

Now let us consider the case wher& is not nite. We will use an argument by induction on
[E:F]=n.If n=1,then E = F and we can take any element 2 F. Now let us suppose
that n > 1 and that the result is true upto n 1. We take 2 E nF. We claim that E is a
separable extension of- ( ). To see this, notice that, if 2 E, then is algebraic overF, hence
algebraic overF ( ); in addition, m( ;F ( )) jm(;F ), thus, if m(;F ( )) has a multiple root,
then so doesm( ;F ), a contradiction. This proves the claim.

By hypothesis thereisa 2 E such that E = F(; ). We will now show that there is an
elementc 2 F such that E = F( + ¢ ). From Corollary 3.2 we know that there are exactly
n F-monomorphisms ofE into an algebraic closureC of F. For any ¢ 2 F, each one of these
mappings restricted to F( + ¢ ) is clearly an F-monomorphism into C. If F( +c ) 6 E,
then[F( + c :F]<n and so there are distinctF-monomorphisms and of E into C which
coincidentonF( + ¢ ). We have

()+c ()= ()+c()

28



If ()= (),thenalso ( )= ( ), which impliesthat = , becauseE = F(; ). Thisis
a contradictionand so ( ) 6 ( ) and we can write

O ).
O O

However, a little re exion shows that there is only a nite number of values ¢ which can be
expressed in this form; therefore we can nd an element 2 F such that E = F( + ¢ ), which
nishes the proof. 2

If E is an extension ofF and 2 E is such thatE = F( ), then we say that is a primitive
element hence the name of the theorem which we have just proved. The primitive element
theorem has an interesting application to quadratic number elds, namely

TheorerB 3.5 |If E is a quadratic number eld, then there is a square-free integed such that

E=Q(C d).

proof Let E be a quadratic number eld, i.e., an extension ofQ in C of degree2. As this
extension is nite and separable, there is a primitive element 2 E nQ, with minimal polynomial

f(X)= a+bX+ X2
and a;b2 Q. As is aroot of f, we have

P
:b%b%\:) (2 +b?=1 4a2Q:

Itis clear that =2 + bdoes not belong toQ and so[Q( ): Q]> 1. As[E : Q] =2, we must
have E = Q( ).
The number may not be a square-free integer. Il 4a= g then
(B 4a)=p=) (q2 +h)*22z:

Setting = g(2 + b), we haveE = Q( ) and 22 Z. TB _nish it B su cient to observe, as
previously, that if d = u®v, wherev is square-free, thenQ(" d) = Q(' V). 2

Here is another application of the primitive element theorem.

Theorem 3.6 Let E be a nite separable extension of a eldF of degreen. Then the eld of
fractions E(X) is a nite extension of degreen of the eld of fractions F(X).

proof From the primitive element theorem (Theorem 3.4), there exists 2 E such that
E:F( ): Fn 1[ ];

whereF, 1[ ]is the set of polynomials of degree less than in  with coe cients in F. We set
A=1f1; 2;:::; " lg This setis a basis ofE over F. We will show that A is also a basis of
E(X) over F(X). First we notice that F, the collection of expressions of the form

O(X) , aX) ., & 1(X) oo
do(X)  di(X) dn 1(X) ,
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where $$J 2 F(X), is a sub eld of E(X). We now show that E(X) F . If f 2 E[X], then

F(X)=po( )+ pa( )X+ +ps( )X

wherepi( ) 2 F, [ ], fori =0;1:::;s. Regrouping terms having the same power of , we
obtain the expression

FOX)= uo(X)+ us(X) +  +up 2(X) " 5

where u; 2 F[X], for all j. Hence any polynomial in E[X] lies in F. Now, if f 2 E[X] and
f 6 0, then there exists

a(X) = Co(X) N ci(X) . 4+ O 1(X)

WA L M\A) G 1(A) g :
= dX) T dX) ) o0

such that fg = 1, becauseF is a eld. As the inverse of f in E(X) is unique, g is its inverse
in E(X). It now follows that E(X) = F, because every element oE (X) is the product of an
element of E[X] and the inverse of a nonzero element oE[X]. HenceA is a generating set of
E(X) over F(X).

To nish we show that the elements of A form an independant subset ofE (X ) over F (X).
Suppose that

(X)) . aX) ., & aX) 4 120
do(X)  di(X) dn 1(X)
where 53 2 F(X), for all i. Multiplying by the product do(X)di(X)  dn 1(X) we obtain
0 1

1 Y _
aX)@ d(X)A '=0:;
i=0 i6i

As the elements ofA f@m an independant set overF, they form an independant set overF [X].
Because the products i6i d; (X) are nonzero, we have

C(X)=c(X)= =c¢c 1(X)=0;
and it follows that A is an independant set overF (X). 2

Exercise 3.1 In the proof of Theorem 3.6 we stated that the independance of the sét over F
implied its independance overF[X]. Why is this so?

We have seen that an algebraic extensioe of a eld F may not be nite. However, in the
case whereE=F is separable and satis es a certain condition, then this is the case.

Proposition 3.2 Let F be a eld and E a separable algebraic extension d&. Then E is a nite
extension of F if there existsn 2 N such that

sup[F( ): F] n:
2E

Moreover, [E : F] n.

30



proof Let E be a separable algebraic extension of the eld= such that
sup[F( ): F] n:
2E

Letr>n and 1;:::; [ elementsinE. ThenG= F( 1;:::; ;) E isa nite extension of F.
As the ; are algebraic and separable is a separable extension oF (Theorem 3.8). From the
primitive element theorem, there exists 2 G suchthat G=F( ). As 2 E,

[G:F]=[F():F] n:

However, i1;:::; : 2 G, so these elements form a dependant set. It follows thafe : F] n. 2

It may turn out that every polynomial over a given eld is separable. In this case we say that
the eld is perfect As we have seen, elds of characteristidd and nite elds are perfect. As
an example of a non-perfect eld, we may take the eld F(t), discussed in the previous section.
We will now give two criteria for a eld to be perfect.

Proposition 3.3 A eld F is perfect if and only if every algebraic extensiorE of F is separable.

proof Suppose rst that the eld F is perfect and that E is an algebraic extension ofF. If
2 E,then m(;F ) 2 F[X] and so this polynomial is separable. It follows thatE is separable.
We now turn to the converse. We suppose that every algebraic extensioR of F is separable.
Letf = g1 gy 2 F[X],with 2 F andg 2 F[X]irreducible forall i. Let E be a nite (hence
algebraic) extension ofF containing the roots q;:::; ¢ of f. The roots of any g, are roots of
f . For a given root | of g we havem( g;F)jgi. As g is irreducible, we haveg = m ( «;F),
for some 2 F. However, the roots ofm( ;F) are simple, hence those of; (the same) are also
simple. Thereforef is separable. It follows that F is perfect. 2

We now turn to our second criterion.

Proposition 3.4 Let F be a eld of characteristic p > 0. Then F is perfect if and only if, for
everya 2 F, there existsb2 F such thata = b° (or, alternatively F = FP).

proof First let us suppose that for everya 2 F we can nd b2 F such that a = B°. Let
f 2 F[X] be irreducible. If f (X) = ag+ ayXP + a;X 2P + + ap X "P, then

(kb+b_I.X+ +Xn)p= kﬁ+l‘£xp+ +t£|xnp:ao+alxp+ +anxnp;

hencef is reducible, a contradiction. It follows that at least one nonzero monomial inf has a
power which is not a multiple of p. This means that the derivative f ° is nonzero and sof does
not have a multiple root. It now follows that F is perfect.

Now the converse. Suppose thaf is perfect and leta2 F. We setf(X)= a+ XP and
let bearootoff. Thena= P andf(X)=( + X)P. Thereis anr 2 N such that
m(;F )=( + X)", becausem( ;F )jf (X). As f is separable,r =1 and so 2 F. Thus we
have found ab2 F, namely , with a= b°. 2

3.3 Transitivity of separability
Before looking at the principle theme of this section we will prove a result which is often useful.

Proposition 3.5 Let F, K and E be elds with K=F and E=K . If E is separable oveir, then
K is separable over- and E is separable overK .
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proof Suppose that the conditions on the eldsF, K and E are satis ed. First, as K is a
sub eld of E, K is separable overF. We now show that E is separable overK. If 2 E,
then m( ;K )jm(;F ). As m(;F ) has no multiple roots, m( ;K ) also has no multiple roots,
becausem( ; F ) has no multiple roots. ThereforeE is separable overK . 2

We have seen that we may de ne a partial orderR on the collection of elds by FRE if E is
an algebraic extension ofF. In a similar way, we may de ne a partial order R°by FRE if E is
a nite separable extension of F. As before the relation R is clearly re exive and antisymetric,
so we only need to prove the transitivity. Here however the proof is more di cult than in the
former case. Clearly the di culty arises only with in nite elds of characteristic p > 0. We will
begin with some preliminary results.

Lemma 3.1 Letf be a eld of characteristic p > 0, E an algebraic extension ofF and 2 E.
We setm(X) = m(;F ( P)). Then m splitsin E and is the unique root ofm. If is separable
overF( P),then 2 F( P).

proof We setf (X) = P+ XP2F( P). Thenf( )=0 and somjf. Now,f(X)=( +X)P
and som(X) = ( + X)', for somer 1, thus m splits in E and has as unique root.

If is separable overF ( P), then m is irreducible and som®6 0. Thereforem(X) = + X
and 2 F( P). 2

Lemma 3.2 Let E be a nite extension of F, where F is of characteristic p > 0. We note
K = F(EP), the sub eld of E generated byF and the pth powers of elements oE. Then K is
composed of all the linear combinations of elements &P with coe cients in F.

proof Let( 1;:::; n) be abasis ofE overF. Itisclearthat F( !;:::; P) K and,ife2 E,
then

e= 11+ + nqa=) €= PP+ + PR KOF(Lin R
Thus K = F( §;::1; P).

As E is algebraic overF the elements of F( ) may be expressed as as polynomials in}
with coe cients in F (see the proof of Proposition 1.4). Now, 5 is algebraic overF, hence over
F( §). This means that every element of F( }; 5) may be expressed as a polynomial in 5
with coe cients in F( }). Simplifying such expressions, we see that every element &( ©; 5)
may be expressed as a polynomial in} and 5 with coe cients in F. Continuing in the same
way we nd that every element of F( ©;:::; P) may be expressed as a polynomial in¥;:::; P

to F( %;:::; P) and the result follows. 2

We now consider the case wher& (EP) is not a proper subset ofE, i.e., E = F(EP).

Lemma 3.3 We suppose thatE be a nite extension of F, where F is of characteristic p > 0

proof In the previous lemma we saw that all elements ofF (EP) are linear combinations of
pth powers of members ofE. At the beginning of the proof we also saw that apth power of a
member of E can be expressed as a linear combination gth powers of a basis, so it follows that

E. 2
The following proposition is interesting in its own right.
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Proposition 3.6 Let E be a nite extension of F, where F is of characteristic p > 0. Then E
is a separable extension of if and only if E = F(EP).

proof We suppose rst that E is a separable extension ofF and take 2 E. The minimal
polynomial m( ;F ) has no multiple roots and so this is the case for the minimal polynomial
m(;F ( P)), becausem(;F ( P))jm(;F ). Hence is separable overF( P) and, from 3.1,
2F( P) F(EP). We haveE F(EP) E, which implies that E = F(EP).
We now turn to the converse. Suppose thatE = F(EP). If E is not a separable extension
of F, then we can nd 2 E such that m(X) = m(;F ) is not separable. We havem%X) =0
and som(X) = m(XP):

MX)= b+ BXP+ o+ by 3 X P+ X P

polynomial, so the elementsl; P;:::; P ! are independant overF. Also,sp 1 2s 1 s,
hencel; ;:::; S are independant overF. If necessary we may add vectors to obtain the basis
(@; ;:::; S;ug;iin;up) of E over F. From the previous lemma, we know that the pth powers of
the elements of this basis form a basis and hence that; P;:::; SP form an independant set, a
contradiction. Therefore m is separable and s is a separable extension of . 2

We are now in a position to establish the transitivity of nite separable extensions.

Theorem 3.7 Let F, K and E be elds, with K=F, E=K and [E : F] < 1. If E is separable
over K and K separable overF, then E is separable overr.

proof From Corollary 3.1 and Proposition 3.1 it is su cient to consider the case where F
is in nite and has a characteristic p > 0. From the previous proposition E = K (EP) and
K = F(KP). Hence

E = K(EP)= F(KP)EP)= F(KP;EP) = F(EP);
becauseK E. From the previous proposition again, E is separable over. 2

The result which we have just proved enables us to prove another, which seems quite natural.

Ei;Eixa  Eiv1 =) Ei(EP, Eiq:

To prove the equality we only need to show that i+; 2 Ei(EF,;). Now, .1 is separable overF,
hence overE;( P,;), becausem( i1 ;Ei( Py ))im( i+1;F). From Lemma 3.1 .1 2 Ei( P,;)
and soEj,; = Ei(Eip+l).

Now we can complete the proof. From Proposition 3.6, for each, E;.; is separable over
Ei. Applying successively Theorem 3.7 we obtain thatE is separable overE, -, then that E is
separable overE,, 3 and so on. Finally we obtain that E is separable overf. 2

Corollary 3.4 If E is the splitting eld of a separable polynomialf 2 F[X], then E is a separable
extension of F.
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Chapter 4

Properties of nite elds

In the Chapter ?? we introduced nite elds and in Corollary 3.3 we showed that the multiplica-
tive group of such elds is cyclic. We now examen more closely such elds.

Proposition 4.1  If F4is a nite eld, with g elements, then the roots of the polynomiah(X) =
X + X 92 Fy[X] are the elements ofF.

proof From Corollary 3.3 we know that 9 1 =1, forall 2 Fg4, which implies that f ( )=0.
This is also the case for = 0, so the elements ofF, are all roots of A. Since A can have at
most g roots, the elements offF, form a complete set of roots ofA. 2

Determining sub elds is not di cult.

Theorem 4.1 Let Fq be a nite eld, with gq= p" elements, wherep is a prime number andn
a positive integer. Then a sub eld ofFy hasp™ elements, for somem dividing n. On the other
hand, if m divides n, then there is a sub eld of F4 with p™ elements, and this sub eld is unique.

proof Clearly a subeld K of Fy must have p™ elements, for somen n. Let [Fy: K]= sand
B = fhby;:::;bsgbe abasis o overK. The elementsx 2 F can be written X = kiby+  +Kkshs,
with ki 2 K. Since eachk; can take onp™ values, F4q must have exactly (p™)° elements. Thus
ms = n and som divides n.
Conversely, ifm dividesn, then p™ 1 dividesp” 1,sof (X)= 1+XP" ®dividesg(X)=

1+ XP" 1in Fg[X]. Hence every root ofB(X)= X + XP" isarootof A(X)= X + XP"
and so belongs toF 4. Considering B as a polynomial over the eld Fpn, we see thatFq must
contain a splitting eld of B, which has orderp™, becauseB has p™ distinct roots.

If there were two distinct sub elds of order p™ in Fq, then the polynomial B, which has
degreep™, would have more than p™ roots in Fqy, which is impossible. Therefore, there is a
unique sub eld of Fq of order p™, wherem divides n, which considts precisely of the roots ofB
in Fq. 2

We now consider irreducible polynomials over nite elds. In the rst result we use the
primitive element theorem.

Proposition 4.2  For any nite eld Fq4 and positive integern, there exists an irreducible poly-
nomial f 2 F4[X] of degreen.
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proof There is a nite extension E of Fq with g" elements and so[E : Fq] = n. From the
primitive element theorem, there exists 2 E such that E = Fy( ). The minimal polynomial
m(; Fq) has degregF4( ): F]= n, becauseE = F( ). 2

Remark Since there is onlyq possibilities for each coe cient, there can only be a nite number
of polynomials, a fortiori of irreducible polynomials, of degreen over any F.

To continue we need two preliminary results.

Lemma 4.1 Letg= p" andf 2 Fgy[X] irreducible. If is a root of f in an extension of F
and h 2 Fy[X], then h( ) =0 if and only if f divides h.

proof It is su cient to notice that the minimal polynomial of isa f , wherea is the leading
coe cient of f. 2

Lemma 4.2 Let f 2 Fy[X] be irreducible of degreem. Then f divides A(X) = X + xa if
and only if m divides n.

proof Flrst suppose that f divides A. Let Dbe a root off in a splitting of f over F4. Then
+ =0,s0 2Fqg. Thus Fq( ) isasubeld of Fgn. Since[Fq( ): Fq]l = m, we have

n=[Fg :Fq( )Fq( ):Fgl=[Fg :Fq( )Im=) mjn:

Conversely, suppose thatm divides n. Suppose thatq = p*; then mk divides nk and so, by
Theorem 4.2,F .« contains Fpm« as a subeld, i.e., Fgn contains Fqm as a subeld. Let be a
root of f in a splitting eld of f over Fy. Then [Fq4( ): F4q] = m and so we have

m=[Fgn 1 Fql=[Fgn :Fq( )I[Fq( ):Fql=[Fgn :Fq( )Im=) [Fgqm :Fq( )]=1

It follows that Fgn = Fg( )andso 2 Fqn  Fgo. This implies that is a root of A(X) =
X + XP' 2 Fq[X]. Thereforef divides A, by Lemma 4.1. 2

Corollary 4.1 Let E be an algebraic extension of a nite eld Fq. Then, for any element
2 E , there exists a positive integem such that " = 1.

proof Let f =min( ; Fq). If the degree off is m, then, using Lemma 4.2 (with m = n), we
obtain that f divides the polynomial B(X) = X + X9". Hence + 9" =0. Multiplying
by 1 weobtain 9" 1=1. 2

In the next result we show that the roots of an irreducible polynomial may be expressed as
powers of a given root. This will enable us to nd an explicit form of a spltting eld.

Theorem 4.2 If f 2 F4[X] is of degreem, thenf has a root in Fyn. Moreover, all the roots
of f are simple and are powers of .

proof Let be arootoff in a splitting eld of f over Fq4. A splitting eld of f over Fq has
the form Fgs, with s 1, and Fq( ) Fgs. If Fg( ) strictly contains Fgn , then

m=[Fq( ):Fgn][Fgn : Fg]=[Fq( ): Fgn]m>m;

a contradiction. HenceFq( ) Fgn, which implies that 2 Fgn .
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P .
If isarootoff in Fg,then 9isalsoaroot: Iff (X)= T, &X', with a 2 Fq, then
f(9 = a+a 9+ +ay "
= al+al 9+ +3al am
(p+a + +an M= ()%

so 9 is a root of f, as claimed. It follows that the elements ; 9;:::; d " are roots of f .

These roots are distincts: Suppose, on the contrary, that ¢ = d with 0 j <k m 1
Then, multiplying by ™ ¥, we obtain

From Lemma 4.1, f divides the polynomial A(X) = X + X" “"’_ However, from Lemma
4.2, we havem divides m k + j, which is impossible, becaus® < k . j  k 1implies that
0<m k+j<m . Hence them roots of f in Fgn are ; 9;:::; 4 7. 2

Corollary 4.2 If f is an irreducible polynomial in F4[X] of degreem, then Fgn is a splitting
eld of f over Fq.

proof In Theorem 4.2 we established thatFqm = F4( ), where is a root of f in a splitting

eld of f over Fq. However, Fq( )= Fq(; 9 q” l), which is a splitting eld of f over
Fq. Therefore Fgn is a splitting eld of f over Fq. 2

Using Lemma 4.2 we may deduce a factorization of the polynomiah[X]= X + X 9",

Theorem 4.3 For a nite eld Fgandn 2 N , the product of all the monic irreducible polyno-
mials over Fq whose degree divides n is equal ta[X]= X + X a

proof From Lemma 4.2, the monic irreducible polynomials inF4[X ] which occur in the factor-
ization of A[X ] are precisely those whose degree divides SinceA%(X)= 1+ g'X4d 1= 1,
A has no multiple roots in a splitting eld over F4. Thus each monic irreducible polynomial
occurring in the factorization of A occurs exactly once. 2

Example The monic irreducible polynomials in F,[X] are f1(X) = X, fo(X) =1+ X and
f3(X) =1+ X + X 2. A simple calculation shows that the product of thef; isA(X)= X + X?,
which is not surprising, because4 = 22 and the divisors of 2 are 1 and 2.

Exercise 4.1 Let Ng(d) be the number of monic irreducible polynomials of degred in Fq[X].
Show that

N X
q = dNg(d):
djn
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Chapter 5

Normal extensions

In this short chapter we will consider another type of extension. LetE be an algebraic extension
of F such that any irreducible polynomial f 2 F[X] having a root 2 E splits over E. In this
case we say thatE is a normal extensionof F.

Proposition 5.1  The algebraic extensionE is normal over F if and only if, for each 2 E,
the minimal polynomial m( ;F ) splits over E

proof Let E be a normal extension off and 2 E. The polynomial m = m( ; F ) is irreducible
and has a root, namely , in E. Therefore m splits over E.

Now let us suppose thatE is an algebraic extension ofF and that, for each 2 E, the
minimal polynomial m( ;F ) splits over E. Let f be an irreducible polynomial inF[X]and a
rootof f in E. Asm = m(;F ) andf are irreducible and mjf, i.e.,f = cm, wherec2 F. As
m splits over E, so doesf . Thus E is a hormal extension ofF. 2

Ex?grrlple The number eld Q(~ 2) is not a normal extension ofQ. The minimalggolynomial
m(°2;Q)=2 X2 and the complex roots of this polynomial do not belong toQ (" 2).

We have other equivalent conditions particularly when E is a nite extension of F. We need
a de nition. If F = ff;gj2, is a collection of polynomials inF [X ], E an extension ofF such that
E is generated byF and the roots of thef;, then we say that E is a splitting eld of F.

Proposition 5.2  The following conditions are equivalent for an algebraic extensio: of F:
a. E is a normal extension ofF;
b. E is the splitting eld of a collection of polynomials in F[X];

c. If C is an algebraic closure ofF, with E=F and C=E, and :E ! Cis anF-
monomorphism, then (E) = E.

proof a. =) b. LetF =fm(;F ): 2 EgandA the family of roots of the polynomials in
F.If 2E,then 2 AandsoE F(A),the subeld of E generated byF and A. To see that
F(A) E itissucientto noticethat F E, becauseE is an extension ofF and that A E,
because the extensiorkE is normal. (If 2 E, then all the roots of m(;F ) are in E).

b. =) c. By hypothesis there is a collection of polynomialsc  F[X] such that E = F(A),
where A is the family of roots of members ofF. Let C be an algebraic closure of containing
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E and :E ! C amonomorphism. We claim that (A) = A. Indeed, ifa2 A, then ais a
root of a polynomial f 2 F ; this implies that (a) is also a root off. Thus (A) A and
induces an injection from the set of roots off into itself. As f has a nite number of roots, this
injection is also a surjection and it follows that (A) = A. Then

(E)= (F(A)=F( (A)= F(A)= E:

Cc. =) a. Suppose that the conditionc. is satis ed and that the extension E is not normal.
Then there exists an irreducible polynomialf 2 F[X] which has roots and , with 2 E
and 2 CnE. Let be the F-homomorphism of F( ) into C suchthat ( )= . isan
F -monomorphism becausen(;F ) = m(;F ). As E is an algebraic extension ofF ( ), from
Theorem 2.7, may be extended to a monomorphism of E into C. However,

()= ()= 2E
and so we have a contradiction to the conditionc. It follows that c. =) a. 2

We have seen that there is a transitivity property for algebraic extensions and for nite sep-
arable extensions. However, such a property does not exist for normal extensions. It may be
so that K is a normal extension ofF and E a normal extension ofK , without E being a nor-
mal extension of F. Here is an example. We sef- = Q, K = F( ), where is the positive
square root of2 and E = F( ), where is the positive 4th root of 2. K is a splitting eld of
the polynomial f(X) = 2+ X2 2 F[X] and soK is a normal extension ofF. Also, E is a
splitting eld of the polynomial g(X) = + X2 2 K[X], soE is a normal extension ofK . Let
h(X)= 2+ X22 F[X]. Then h has a root in E (in fact, two roots); however, the roots i
are not in E. Therefore, E is not a normal extension ofF.

Although we do not have transitivity, we can say something when we have three elds related
by inclusion.

Proposition 5.3  Suppose thatK=F and E=K, with E normal over F. Then E is normal over
K.

proof As E is normal over F, by Proposition 5.2a. =) b., there is a collection of polynomials
F  F[X]such that E = F(A), where A is the family of roots of the polynomials in F. Now,
F K implies that F K [X], hence, by Proposition 5.2b. =) a., E is normal overK. 2

For nite extensions we have a particularly simple characterization of normality:

Theorem 5.1 The nite extension E of F is normal if and only if E is the splitting eld of a
polynomial f 2 F[X].

proof Suppose thatE is normal over F. Let i;:::; , be a basis ofE over F and m; =
m( i;F), fori =1;:::;n. As ; 2 E and E is normal, m; splits over E. It follows that
f = m;y m, splits over E. If K=F and E=K and f splits over K, then ;:::; , 2 K. As
the ; form a basis ofE, we must haveK = E. Therefore E is a splitting eld of f.

For the converse it is su cient to apply Proposition 5.2 (b. =) a.). 2

Corollary 5.1 A nite extension of a nite eld is normal.
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proof Let F be a nite eld and E a nite extension of F, with [E : F]= n. As F is nite we
know that there is a prime number p and a positive integerk such that jFj = p¥. It follows that
jEj = p". Every elementa 2 E is a root of the polynomial f (X) = X + XP" 2 F[X]. As
degf = p", f splits in E. If K is a proper sub eld of E, then f cannot split in K, because at
least one element ofE, i.e., a root of f, is missing. ThereforeE is a splitting eld of f and so,
from Theorem 5.1, E is a normal extension ofF . 2

We nish this section with another criterion for an extension to be normal.

Proposition 5.4 Let F be a eld and 4;:::; , algebraic overF such that the roots of the

extension ofF.

proof Letf be the highest common factor of the minimal polynomialsm( ;;F). Thenf 2 F[X]
and f divides the product of the minimal polynomials. Thus every root off is a root of one of the
minimal polynomials and so, by hypothesis, lies inF( 1;:::; ). Itfollows that F( 1;:::; n)
contains a splitting eld of f. However, for eachi, ; is a root of one of the factors ofm( i;F)
and so is a root off . This means that each ; must belong to a splitting eld of f and so

so , by Theorem 5.1, is a normal extension oF . 2

5.1 Normal closures

Let E be an algebraic extension of and N an algebraic extension ofE such that N is normal
over F. If N is minimal with this property, i.e., there is no proper sub eld of N with the same
property, then we say that N is a normal closure of E over F.

Let E be nite extension of F. Then, from Proposition 1.3, E is algebraic overF and
there exist 1;:::; n 2 E suchthat E = F( 1;:::; n). We note mij(X) = m( j;F) and
m(X) = my(X) mp(X) and let N be a splitting eld of m. N is a nite extension of F
containing E. As N is a nite extension of E, N is algebraic overE. From Theorem 5.1,N is
a normal extension ofF. We claim that N is a normal closure ofE over F. To see this, letK
be a subeld of N containing E, which is also normal overF. From Proposition 5.1, eachm;
splits over K, hence so doesn. It follows that K = N and soN is a normal closure ofE over
F. Therefore, at least in the case of nite extensions, normal closures exist. In fact, this is also
true for transcendental extensions.

Lemma 5.1 Let F be a eld and E an algebraic extension ofF. If fEjgi», is a collection of
sub elds of E normal over F, then the intersection K of the E; is normal over F.

proof The intersection K is clearly a eld. If 2 K, then 2 E;, for eachi 2 |I. This implies
that the minimal polynomial m( ;F ) splits over E;, for eachi 2 |, and hence ovelK . It follows
that K is normal over F. 2

Theorem 5.2 If E is an algebraic extension of, then there is a normal closure ofE over F.

proof Let C be an algebraic closure ofe. Then C is an algebraic extension ofE, hence of
F. C is also a normal overF. Thus the collection of normal extensions ofF containing E is
non-empty. Using the lemma, we see that the intersectioN of all such extensions of is normal
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and contains E and so is a normal closure oE over F. 2

We will now see that normal closures are unigue up to isomorphism.
Theorem 5.3 If N and N °are normal closures ofE over F, then N and N ° are F -isomorphic.

proof Let C be an algebraic closure off and : E ! C a F-monomorphism. (From
Theorem 2.7 such a monomorphism exists.) From Theorem 2.7 again, we can extendto a
monomorphism (resp. 9 from N (resp. N9 into C. Then (N) and YN9 are both normal
closures of (E) over (F). From Lemma 5.1, (N)\ 9YN9 is normal over (F) and contains

(E). By minimality, (N)= (N)\ N9 = 9NO. Ifweset = © | then isan
isomorphism from N onto N 2

Exercise 5.1 Let E be nite separable extension ofF and N a normal closure of E over F.
Show thatN is a nite separable extension ofF.

An extension E of F is a Galois extensionif it is both separable and normal. In the case of
elds of characteristic 0 or of nite elds such extensions are very common: the extensiorE only
needs to be a splitting eld of a polynomial in F[X]. From what we have seen, a nite extension
of a nite eld is a Galois extension.
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Chapter 6

The Galois group

If E is an extension ofF, then the collection of automorphisms ofE xing F, together with the
composition of mappings , form a group called the Galois group of the extensionE of F. We
note this group Gal(E=F). We begin with some basic properties of this group.

Proposition 6.1 If E is a nite extension of F, then the Galois groupGal(E=F) is nite.

proof Let ( i)iL; be a basis ofE over F and let us notem; = m( i;F). If 2 Gal(E=F),

then, for any ;, ( i) is a root of m;, hence there is a nite number of choices for ( ;). As
is determined by the values of the ( ;) and those ofF, which are left unchanged by , there is
a nite number of automorphisms. 2

Let us look at some examples of Galois groups.

Example 1. G= GaI(Q( 2);Q). An element 2 G is,determined by its value L 2 che
2 is a root of the polynomial f (X)= 2+ X?2,sois ( 2), which implies that ( 2)=

This Ieadspto two dlstlbnct automorphisms, namely the identity and the automorphism de ned

by (a+b 2)=a 2, henceG = fIdQ( 2 9 Za.

Example 2. G= GaI(Q(Qi) Q). Anelement 2 Gis gqermined by its yalue on %2 Since
a rootB of the polynomial f (X) = 2+ X3,s0is (°2). However, (°2)2 Q(°2) R,
SO ( 2) = ° 2, which implies that is the identity. Thus G = fidQ(Bz)g.

It is interesting to notice that apparently similar extensions may have quite di erent Galois
groups. It is quite easy to see that the Galois group ofC over R has just two elements, namely
the identity and complex conjugation and so is isomorphic toZ,. But what can we say of the
Galois group of R over Q.

Example 3. G = Gal(R=Q). Let 2 G and suppose thata<b. Thenb a= y?, for some
y 60, and

B @= (b a= ()= ¥*>03 (@< (b:
If 6 idg, then there existsx such that (x) 6 x. If (x) > x, then there exists a rational
numberr suchthatx<r< (x). and (x)< (r)< ?(x). However, (r)= r, becauser 2 Q,
so we have a contradiction, hence (x) & x. A similar argument shows that (x) 8 x and it
follows thar is the identity on R. Therefore G = fidgr g.
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If the extension E of F is Galois, then we can be more precise.
Theorem 6.1 If E is a nite Galois extension of F, then we havejGal(E=F)j =[E : F].

proof As E is a nite normal extension of F, E is the splitting eld of a polynomial f 2 F[X],
which is a product of minimal polynomials (see Theorem 5.1 and its proof). However, the ex-
tension E is also separable, hence the minimal polynomials in the product are separable and it
follows that E is a splitting eld of a separable polynomial. Now applying Theorem 3.1 with
E%= E,F%= F and the identity, we obtain the result. 2
R

Remark From Theorem 6.1, the extensionQ( "~ 2) is not Galois.

6.1 Fundamental theorem of Galois theory

In this section we consider the relation between extensions of a eldr included in a given
extension E and subgroups of the Galois groupGal(E=F). We begin with two de nitions. For
H, a subgroup ofGal(E=F), we write

F(H)=fx2E: (X)=x;8 2Hg:

We often write EX for F(H). It is easy to check that EM is a eld and that F F (H) E.
EH is called the xed eld of H in E. For an intermediate eld K, i.e., K=F and E=K , we set

GK)= Gal(E=K)=f 2 Gal(E=F): (X)=x; 8x2Kg:

It is not di cult to show that G(K) is a subgroup ofGal(E=F).

We will note S(Gal(E=F)), or just S(G), the set of subgroups ofGal(E=F) and T (E=F), or
just T, the set of intermediate elds betweenF and E. With inclusion both of these sets are
partially ordered.

We recall that, if (A; ;) and (B; ) are partially ordered sets and is a mapping from A
into B such that, for x;y 2 A,

X ay=) (X)) b (V)

then s said to order-preserving On the other-hand, if

X ay=) () b (X);

then is said to order-reversing. It is not dicult to see that the mappings F and G are
order-reversing.

Theorem 6.2 Suppose thatE is a nite extension of F. Then E is Galois extension if and only
if F(G)= F, whereG = Gal(E=F).

proof Let us rst suppose that E is a Galois extension ofF. We setFg = F(G). AsF  Fy,
every Fg-automorphism is an F -automorphism. If there is an F-automorphism  which is not
an Fg-automorphism, then we can nd an elementy 2 Fo nF such that (y) 6 y. However, by
de nition of Fy, this is not possible, and so everyF -automorphism is an Fg-automorphism. As
E is separable over- and Fg is an intermediate eld, E is separable overy (Proposition 3.5).
Therefore, using Theorem 6.1, we have

[E : F]= jGal(E=F)j = jGal(E=Fo)j = [E : Fq]
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and it follows that Fo = F.

We now turn to the converse. We suppose that- (G) = F. From Proposition 6.1 we know
that the Galois group G = Gal(E=F) is nite. Let G=f 1;:::; g, with ; the identité. We
need to show that the extensionE is both normal and separable. We will rst show that it is
normal. We consider an irreducible polynomialf 2 F[X] with a root in E. Applying the
automorphisms ; to , we obtain r distinct images:

= 1= 2( ) 2= 20 )s:v5y = ()

where we have supposed that the rstr automorphisms give the distinct images. Let us write

X X X Y
€ = i €= i ji €= ij kel €& S i
i=1 i<j i<j<k i=1
(These expressions are just the evaluations af 1;:::; ;) of the elementary polynomials in

Any 2 G permutes the ; and so, for eachi, we have (g) = ¢. Therefore the g belong
to F(G) = F. We now consider the polynomial

gXxX)=( 1+X) ( +X)=( D'e+ +eX"? eX" '+X"2FKX]
We claim that g= m(;F ). Let h(X) = P 1o b X', with h( ) =0. Then, for everyi,
0= i(h( )= h(Ci( )= h(i)

As the roots of g are roots ofh, g divides h and sog= m( ;F ) as claimed.

We now return to the polynomial f. As f is irreducible and has as a root, there is a
constantc2 F such thatf = cg. Asthe ; 2 E, g splits over E, and so doed . We have shown
that E is a normal extension.

We now show that the extensionE is also separable. We take 2 E. The polynomial g
which we de ned above is the minimal polynomialm( ; F ) and this has distinct roots. Hence
is a separable element and it follows that the extensiorE is separable over-. 2

In the last result we saw that, in the case of a nite Galois extension,F (G) = F. Itis natural
to ask whether there is a subgroupH of G such that F(H) = F. In the next theorem, we will
see that the answer is negative.

Theorem 6.3 If E is a nite Galois extension of F and H a proper subgroup of the Galois
group G = Gal(E=F), then F is properly contained in F (H).

proof We will give a proof by contradiction. Suppose thatH is a proper subgroup ofG and that
F(H) = F. AsE is a nite separable extension ofF we may apply the primitive element theorem
(Theorem 3.3): there exists 2 E such that E = F( ). We de ne a polynomial f 2 E[X] by

Y
fxy=( ()+X):

2H

For 2 H, we de ne the polynomial f by applying to the coe cients of f. It is easy to see

that Y

f(X)= ( ()+ X)=f(X):
2H
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Therefore the coe cients of F are xed by , which implies that f 2 F[X], becauseF (H) = F.
Now we notice that is a root of f. (It is su cient to take =id). Thus

degf = jHj< jGj=[E :F]=[F( ): F]=degm(;F ) degf;
a contradiction. This establishes the result. 2

We now turn to the fundamental theorem of Galois theory. The theorem has three parts,
which we will handle separately.

Theorem 6.4 Let E be a nite Galois extension of a eld F, with Galois group G. As above
we write S the set of subgroups o and T for the set of intermediate elds betweenF and E.
Then the mappingsF : S! T andG: T ! S are bijections, each one being the inverse of
the other.

proof First, let us consider the mapping GF. We take a subgroupH of G. Then
2H=) (xX)=x8x2F(H)=) 2Gal(E=F(H))= GF(H):

ThereforeH GF (H). Suppose that we do not have equality. Using Propositions 3.5 and 5.3
we see thatE is a nite Galois extension of F(H). As H is a proper subgroup ofGF(H) =
Gal(E=F (H)), from Theorem 6.3, with F (H) asF, then F (H) is properly contained in itself, a
contradiction. It follows that we have H = GF(H).

We now consider the mappingFG. Let K be a eld intermediate between F and E. Using
Propositions 3.5 and 5.3 we see thakE is a nite Galois extension of K. Then, from Theorem
6.2, F(Gal(E=K)) = K, i.e., FG(K) = K. This nishes the proof. 2

Up to now we have seen that, in the case of nite Galois extensions, the mappings and
G are order-reversing bijections. We will now see that these mappings have other properties,
namely they associate certain types of subgroups with particuler sorts of intermediate elds.

We need a de nition. If K isasubeld ofa eld E and an automorphism of E, then (K)
is a sub eld of E. Such a sub eld is called aconjugate sub eldof K .

Theorem 6.5 Let E be a nite Galois extension of F and G the associated Galois group. If
H is a subgroup ofG, 2 G andK = F(H), then F(H Y= (K), i.e., F associates a
conjugate subgroup to a corresponding conjugate sub eld.

proof We have

F(H 1 = fx2E: (x)=x8 2Hg
= fx2E: ( x)= (x)8 2Hg
= fx2E: x)2F(H)g = (K):
This ends the proof. 2

We now consider normal subgroups of the Galois group. We notice rst that, if K is an
intermediate eld, then E is always a normal extension oK (Proposition 5.3); however,K may
not be a normal extension ofF.
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Theorem 6.6 Suppose thatE is a nite Galois extension of F and G the associated Galois
group. Then K is a normal extension ofF if and only if H = Gal(E=K) is a normal subgroup
of G. In this case the Galois groupGal(K=F ) is isomorphic to the quotient groupG=H.

In addition, for any subgroup H (not necessarily normal),

[K:F]=[G:H] and [E :K]= jHj:

proof Let K be an intermediate eld which is a normal extension of F and C an algebraic
closure of F, with C=E. (From Exercise 2.3 such an algebraic closure exists.) Suppose that
is an F-monomorphism from K into E, thus into C. As K is separable overE, we may extend

to an F-monomorphism~:E ! C (Theorem 3.2). AsE is a normal extension ofF, from
Proposition 5.2, ~ is an F-automorphism of E. Hence, everyF-monomorphism of K into E
is a restriction of an F-automorphism ~ of E. In addition, clearly every F-automorphism of E
restricted to K is an F-monomorphism of K into E. Thus the F-monomorphisms fromK into
E are the restrictions to K of F-automorphisms of E, i.e., of elements of 2 G. AsK is a
normal extension of F, using Proposition 5.2 again, we see that is an F-automorphism of K .
If K = F(H), then with Theorem 6.5 we have

F(H)= K= (K)=F(H %=) H=H %

and soH is a normal subgroup ofG.
Now we suppose thatH is a normal subgroup ofG. For any 2 G, we haveH = H
Then, for K = F(H),
(KY=F(H YH=FMH)=K:

Let f 2 F[X] be irreducible with a root 2 K. BecauseK E and E is a normal extension of
F, all the roots of f lie in E, SOE contains a splitting eld S of f, which is an extension ofK . If

0is another root of f , then using Proposition 2.2 with =id, we may nd an F-isomorphism

F()! F(9, whichissuchthat ( )= © Now, applying Theorem 2.2, we can extend

to an F-automorphism ©of EC We would like to extend ©to an F-automorphism of E. We
take an algebraic closureC of EC which is an extension ofE. Then we may consider ° as a
monomorphism of EC into C, which we can extend to” : E |  C. However, E is a normal
extension of EC becauseE is such an extension off and so, from Proposition 5.2,~(E) = E.
Thus, » is an F -automorphism of E, such that ~( )= % As~A(K)= K and 2K, 22K. It
follows that K is a normal extension ofF .

We have proved the hardest part of the theorem. Now we turn to the remaining parts. First,

we show that Gal(K=F)' G=H, if H G. Consider the mapping

cGal(E=F) ! Gal(K=F); 7! jk:

In the rst part of the proof we saw that the elements of the Galois group Gal(K=F ) are the
restrictions to K of the elements of the Galois groupGal(E=F). Hence, the mapping is an
epimorphism. Also,

Ker =f 2Gal(E=F): jx =idjxg= Gal(E=K)= H:

It follows that
Gal(E=F)=H ' Gal(K=F):
To conclude, we notice that
. o iGj
iGj=[E :F]=[E :K][K :F]= jHj[K :F]=) [K :F]= ;H—Jj:[G:H]
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and o
[E:F] _ iG]

[K :F] " jGigH]
This ends the proof 2

[E:K]= jHij:

Remark We may sum up the results of Theorem 6.6 in the following way. IfH is a subgroup of
the Galois group G = Gal(E=F) and K the corresponding intermediate eld betweenF and E
(K = F(H)), then

[E :K]= jHj= jGal(E=K)j

and
[K:F]=[G:H]:

If, in addition, H is a normal subgroup ofG, then K is a normal extension ofF and we may
extend the second line to obtain

[K :F]=[G:H]= jG=Hj = jGal(K=F)j:

The Theorems 6.4, 6.5 and 6.6 which we have just proved are usually handled together under
the name of the fundamental theorem of Galois theory. As two of the parts are rather long, it
seems to us preferable to divide the theorem into parts.

We have seen that a nite extensionE of a eld F gives rise to a nite group of automor-
phisms of E, namely the Galois group Gal(E=F). Suppose now that we have a nite group of
automorphisms G of a eld E. It is natural to ask whether there exists a sub eld F of E such
that G is the Galois group Gal(E=F). This is in fact the case as we will now see.

Let E be a eld and G a nite subgroup of the group of automorphisms of E. We suppose
that jGj = n and set
F=E®=fx2E:g(x)= x; 892 Gg:

F is clearly a sub eld of E; it is called the xed eld of G in E.
Theorem 6.7 (Artin) The eld E is a nite Galois extension of F and
Gal(E=F) = G:

proof We de ne an action of the group G on E :

G E!' E;j(g;x)7! g(x):
Let us take 2 E and note O the orbit of

O =1g( ):92Gg="f ;i1 50

with = ands n. We set

YS
f(X)= ( «*+X)
k=1
An element of G permutes the ;; given that the coe cients of the polynomial f are symmetric
polynomials in the ;, these coe cients are xed by G and sof 2 F[X]. Hence every element
2 E istherootof af 2 F[X], with degf n. As the roots of f are distinct, E is a separable
extension of F. From Proposition 3.2, E is a nite extension of F and [E : F] n.
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We need to show thatE is a normal extension ofF. From the primitive element theorem,
there exists 2 E such that E = F( ). As the roots of the minimal polynomial m( ;F ) lie in
the orbit of , which is contained in E, E is a splitting eld of m( ;F ); it follows from Theorem
5.1 that E is a normal extension ofF. We have shown thatE is a Galois extension offF.

To conclude, we show thatG is the Galois groupGal(E=F). By de nition of F, every element
of G xes the elements of F, soG Gal(E=F). In addition, from Theorem 6.1, we know that
jGal(E=F)j=[E :F] n, hence

n=jGj j Gal(E=F)j n

and it follows that
G = Gal(E=F):

This ends the proof. 2

The theorem which we have just proved has an interesting application. We recall a de nition.

If 2 S,, then the mapping de ned by X; 7! X () induces an automorphism of the
eld F(X1;:::;Xp). The mapping 7! is a group monomorphism, soS, may be considered

Conjugates in Galois extensions

If E is a nite eld extension of a eld F and 2 E, then we say that any root of the
minimal polynomial m( ;F ) is an (F-)conjugate of . It is clear that, for all 2 Gal(E=F),
( ) is an F-conjugate of . F@\Lvever,dll ge@gral, not @Iﬁconjugates of are of this form. For
example, the Q-conjygates of 2 are 2, j ~ 2 and | 272, wherej is a pri@@ve 3rd root of
ungy. If QZfGaI(Q( 2);Q),thenIim () R, sothereisno 2 Gal(Q(" 2);Q) such that
(7 2) =]~ 2 The following result ensures that, if E=F is a nite normal extension, then all

F -conjugates of an element 2 E are images of by an element in the Galois group.

Proposition 6.2 If E is a nite normal extension of F and 2 E then the set
A=f (): 2 Gal(E=F)g

is the set of conjugates of .

proof If is a conjugate of , then, from Proposition 2.3, there is an F-isomorphism
F()! F()suchthat ( )= ,sincem(;F )2 F[X]is irreducible. Both F( ) and F( )
are sub elds of E. (As E is a normal extension ofF, we may suppose that all the conjugates
of lie in E.) From Theorem 5.1 there exists a polynomialg 2 F[X ] whose splitting eld is E.
Now, g 2 F( )[X] and, in the notation of Theorem 2.2, with = , we haveg = g. It follows
that there exists °2 Gal(E=F) such that o )= . 2
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We have shown, at least in the case wherd& is a normal extension ofF, that the set of
conjugates of the element 2 F is composed of elements of the form( ), where 2 Gal(E=F).
However, it may be so that there are members; 2 Gal(E=F) such that ( )= (). We
are interested in knowing the number of automorphisms 2 Gal(E=F) which give us the same
conjugate.

Proposition 6.3 Let E be a nite Galois extension of F, 2 E and a conjugate of 2 L.
Then the number of 2 Gal(E=F) such that ( )= is equal to the dimension[E : F( )].

proof Let be a conjugate of . There exists °2 Gal(E=F) such that % )= . We have
f 2Gal(E=F): ()= g = f 2Gal(E=F): ()= Y )g
= f 2Gal(E=F): °! ()= g
Thus we have a bijection between the automorphisms 2 Gal(E=F) such that ( )= and
the automorphisms 2 Gal(E=F) such that ( )= . However, 2 Gal(E=F) xes if and

only if 2 Gal(E=F( )). From Theorem 6.6 we have
jGal(E=F( ))j=[E :ES®EF Oy,

where ECG (E=F (1)) is the xed eld of Gal(E=F( )). Moreover, by Propositions 3.5 and 5.3E
is a Galois extension ofF ( ). Using Theorem 6.2 we obtain

EGaI(E:F( ) - F( )

and so
[E:ECEFIN=[E:F()]:

This ends the proof. 2

Remark If E is a Galois extension ofF and the conjugates of an element 2 E are distinct,
then it is natural to ask whether these elements form a basis oE over F. (If E is a Galois
extension of F, then jGal(E=F)j = [E : F].) This is not in general the case. However, the
normal basis theorem ensures that for some 2 E this is the case. (For a proof, see for example
[23)).

6.2 Composita

In this section we will be primarily interested in intersections of subgroups of the Galois group.
We begin with a de nition. If K and L are subelds of a eld E, then the intersection of all
sub elds of E containing these elds, which we noteKL , is called the compositumof K and L.
Clearly KL is the smallest sub eld of E containing K and L. Of course we may easily generalize
this de nition to more than two sub elds, even to an in nite number of sub elds.

The subsetR of E de ned by

X
R = ki|iiki2K;|i2L;j|j<1
i2l

is the smallest subring ofE containing both K and L. The ring of fractions of R is the compositum
KL in E.
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Theorem 6.8 Let K and L be extensions of in E, whereK is a nite Galois extension of F.
Then

a. KL is a nite Galois extension of L;

b. If 2 Gal(KL=L), then the restriction of to K belongs toGal(K=F ) and the mapping
cGal(KL=L) ! Gal(K=F);, 7!

is @ monomorphism;

c. K is a Galois extension ofK \ L and the image of is Gal(K=K \ L); is an
isomorphism if and only if K\ L = F.

proof a. From the primitive element theorem there is an element 2 K such that K = F( ),
hence
KL =LF()=L():

As s algebraic overF, therefore overL, L( ) is a nite extension of L. As K is a separable
extension of F, is separable overF, hence overlL, and it follows that L( ) is separable over
L. We have shown thatKL is separable over.

We now need to show thatKL is a normal extension ofL. Letf = m(;F )andg= m(;L ).
Then gjf . Asf has aroot 2 K and K is a normal extension ofF, all the roots of f are in
K . It follows that all the roots of gareinK KL = L( ) and soL( ) is a splitting eld of g.
Thus KL is a normal extension ofL.

b. Let 2 Gal(KL=L ). We need to show that (K)= K and jx xes F. Forany 2K,

( ) is a root of the minimal polynomial m(;F ). As K is a normal extension ofF, ( )2 K.
Thus (K) K. Inthe same way, !(K) K andso (K)= K. In addition, the fact that
F L impliesthat xes F andso jx xes F. Therefore jx 2 Gal(K=F). If 2 Gal(KL=L)
and 2 K, then

C k()= ( )= (CN= k k()
therefore is a homomorphism.

We now need to show that is injective. If ;x xes each element ofK, then  xes each
element of K and each element ofL and so xes each element ofKL . This establishes the
injectivity of . Hence is a monomorphism.

c. First we show that K is a Galois extension ofK \ L. AsF K\ L K andK isa
Galois extension ofF, from Propositions 3.5 and 5.3,K is a Galois extension ofK \ L.

We setA = Im . A is a subgroup of the Galois groupGal(K=F ), thus, by Theorem 6.4,
A = Gal(K=K ~). Moreover,

KA=fx2K: (x)=x8 2 Gal(KL=L)g;

since the elements ofA are restrictions of elements ofGal(KL=L ) to K. Theorem 6.2 ensures
that any element of KL xed by all elements of Gal(KL=L ) lies in L. Hence

KA=K\L

and A = Gal(K=K \ L),i.e. Im = Gal(K=K \ L), as claimed.

Now, is an isomorphism if and only if Gal(K=K \ L) = Gal(K=F). However, Theorem 6.2
ensures thatK @ (KK VL) = K\ | and K% (K=F) = F_ Fipally, is an isomorphism if and
only if K\ L = F. This nishes the proof. 2

The theorem we have just proved has an interesting corollary linking the degrees of the
extensions overF.

49



Corollary 6.1  Under the conditions of Theorem 6.8 , we have

[KL:F]:%:
proof We have
[KL :F]=[KL :L]L :F]=) [TLL::FF]]:[KL:L]
and
[K:F]=[K:K\L]K\L:F]=) H:[K:K\L]:

From the previous theorem, KL is a Galois extension ofL and there is no di culty in seeing
that this is also the case forK over K \ L. Hence,

[KL :L]= jGal(KL=L)j = jGal(K=K \ L)j=[K :K\ LJ:

The second equality holds, because in the proof of Theorem 6.8 we showed that the Galois groups
Gal(KL=L ) and Gal(K=K \ L) are isomorphic. The result now follows. 2

Exercise 6.1 Show that[KL : L] divides[K : F].

We may now consider the image undel~ of the intersection of two subgroups of the Galois
group and of the group generated by two subgroups.

Theorem 6.9 Let E be a nite Galois extension of F and H1, H, subgroups of the Galois group
G = Gal(E=F). We note K, = F(H,) and K, = F(H>). Then F(H1\ H,)= K;K;, and, if H
is the subgroup generated bii; [ Ho, then F(H) = K1\ Ko.

proof If xes each element ofK K5, then xes each element ofK ; and each element oK ,,
hence 2 H;\ H,. On the other hand, suppose that 2 H;\ H,. Then restricted to K, or
to K, is the identity mapping. Therefore a polynomial in elements ofK; and K, is xed by
and, more generally,K 1K, is xed by . Thus

Hi\ Hz = G(K1K2)=)F (Hi\ Hz) = K1Ky:

If 2 H;[ Hp,then xes Kpor xes K;. AsK;\ Ky Kg,andKi\ K, Ky, xes
K1\ Kz. HenceH G (Kp\ Ky). If H 8 G(K1\ K3), then K1\ K5 is properly contained in
F(H), hence there existsx 2 F (H) nK1\ K,. If x 2 K,, thenwe can nd 2 H; H such
that (x) 6 x, hencex 2 F (H), a contradiction. We have the same situation ifx 2 K, and so
H = G(K1\ K3), which implies that F(H) = K1\ Ko. 2

Remark There is no di culty in extending the above result to n subgroups andn sub elds for
any n> 2,

We now return brie y to Corollary 6.1. It is easy to deduce that
[KL :F] [K:F]L:F]:
However, we do not need the condition orkK .

Proposition 6.4 Let E be a nite extension of F. In addition, let K and L be extensions of
in E. Then
[KL :F] [K :F]L :FJ;

with equality if [K : F] and [L : F] are coprime.
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proof Let ( i){I; and ( j)/'-; be respective bases ok over F and L over F. Then

[KL :L] m=) [KL :F]=[KL :L]JL:F] mn:

Now suppose that(m;n) = 1. As mj[KL : F] and nj[KL : F], mnj[KL : F] and hence the
equality. 2

We say that K and L are linearly disjoint over F if [K : F] and [L : F] are coprime. If this
is not the case, then we may have a strict inequality in the equation of the proposition. For
example, ifK 6 F and K = L, then

[KL :F]=[K :F]< [K :F]IL : FI:

If K, L are linearly disjoint over F and ( 1;:::; m), ( 1;:::; n) respective bases oK and L,
then a basis ofKL may be found by taking the products ; ;. Indeed, from Corollary 1.5,
KL =F( it my it )= FLagiin my a5ty al;
so the elements ofKL are polynomials in the ; and ;. However, an expression of the form
7 sm belongs to K, so we may it write it as a linear combination (with coe cients in
F) of the ;. In the same way, we may write an expression of the form tll I as a linear
combination of the ;. As a consequence, the elements; ; form a generating set ofKL (as

a vector space overF). Given that there are mn such elements and that the dimension oKL
over F ismn, the ; ; form a basis ofKL .

In Theorem 6.8 we considered the compositum of two extensions of a eld, one of which was
Galois. We now suppose thatK and L are both Galois extensions of the eldF contained in a
eld E. We claim that the compositum KL is a Galois extension ofF. As KL is a separable
extension ofL and L a separable extension of, from Theorem 3.7,KL is a separable extension
of F. Proving that KL is a normal extension ofF is a little more di cult. First we notice that
K and L are splitting elds of respectively polynomials f and g of F[X]. We have

K=F(15:055 m) and L=F( 1;::55 n);
where 1;:::; m (resp. 1;:::; n)aretheroots off (respg)in E. If 1;:::; s are the distinct
elementsinthe setf 1;:::; m; 1;:::; ng, thenKL = F( 1;:::; ). The polynomial fg splits
in KL. Let U KL beasplitting eldof fg. As 1::: s2U,F( 1;::1; s U,ie,KL U.

It follows that KL is a splitting eld of fg and so a normal extension of. We have shown that
KL is a Galois extension offF, as claimed.
If 2 Gal(KL=F ), then ;x 2 Gal(K=F) and ;_ 2 Gal(L=F), becauseK=F and L=F are
both normal.
Theorem 6.10 Let us suppose thatK=F and L=F are both normal. The mapping
:Gal(KL=F ) ! Gal(K=F) Gal(L=F); 7! ( jk; jL)s

is a monomorphism and is an isomorphism if and only if K\ L = F.
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proof The mapping is clearly a homomorphism and, if 2 Gal(KL=F ) xes each element of
K and each element olL, then  xex each element of KL . Cosequntly, is a monomorphism.

The mapping is an isomorphism if and only if [KL : F] = [K : F][L : F], which applies
only under the condition [KL :L]=[K :F]. This is the case if and only if the mapping

sGal(KL=L) ! Gal(K=F); 7!
is an isomorphism. From Theorem 6.8, a necessary and su cient condition for thisisK \ L = F.2

Remark We have seen that ifK and L are both Galois extensions offF, then KL is Galois
extension of F and we may consider that the Galois group ofKL over F is a subgroup of the
direct product of the Galois groups of K and L over F. In particular, if the Galois groups
Gal(K=F) and Gal(L=F) are both abelian, then so is the Galois groupGal(KL=F ).

6.3 The fundamental theorem of algebra

It is a well-known that any nonconstant complex polynomial has a complex root. This is the
fundamental theorem of algebraIn this section we will give a proof based on the eld theory we
have developped.

Proposition 6.5 The eld of complex humbersC has no extension of degre@.

proof Suppose tht C has an extensionE of degree2. If 2 E nC, then degm(;F ) = 2.
However, every polynomialf 2 C[X] of degree2 has a complex root, hencen( ; F ) is reducible,
a contradiction. Hence the result. 2

Now we consider extensions of the eld of real numberfR.
Proposition 6.6 R has no extension of odd degree strictly greater tha.

proof Suppose thatR has an extensionE with odd degree strictly greater than 1. Let 2
E nR. If degm(; R) is odd, then the polynomial m(; R) has a real root and so is reducible,
a contradiction. It follows from Proposition 1.4 that [R( ): R]is even. As

[E:R]I=[E:R()IR():R];
[E : R]is even. 2
We are now in a position to prove the fundamental theorem of algebra.
Theorem 6.11 If f 2 C[X] is nonconstant, thenf has a root in C.

proof We will rst prove the result for a nonconstant polynomial f 2 R[X]. We note g(X) =

(1+ X2)f (X) 2 R[X]and let E be a splitting eld of g. The complex numbers i and R belong
to E soC is contained in E. As the characteristic of R is 0, g is separable and sd is separable
(see Theorem 3.8). ThereforeE is a Galois extension ofR. We now setG = Gal(E=R), i.e., G
is the Galois group ofg. If jGj = 2°m, with m odd, then G has a (Sylow-)subgroupH of order
25. We setK = F(H). Then, from Theorem 6.6,

[K:R]=[G:H]=m:
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As m is odd and R has no extension of odd degree strictly greater tharl, m = 1. Thus G is a
2-group.

We now setH %= Gal(E=C) (the Galois group of g considered as a member o€[X]). As
HO%is a subgroup ofG, H%is a 2-group. If jH§ = 2!, with t 1, then H® has a subgroupH ®of
index 2. If K= F(H%, then

[K%: C]=[H%: H=2;

which contredicts Proposition 6.5. It follows that H°= fidg and E = C and so all the roots of
g, and hence off , lie in C.

We now consider polynomialsf 2 C[X]nR[X]. If we setg = ff , wheref is the polynomial
whose coe cients are the complex conjugates of those of , then g 2 R[X]. If is a root of g,
then is aroot off or of f. This implies that or is aroot of f. Hencef has a rootinC.
This ends the proof. 2

6.4 Normal closures

In this short section we give a useful characterization of the normal closuréN of E over F in

and m;(X) = m( ;;F), then a splitting eld of m(X) = mi(X) m,(X) is a normal closure
N of E over F. We recall that if L; and L, are sub elds of a eld E, then L,L» is the smallest

LiLs:::Ls is the smallest sub eld of E containing the L;.

Theorem 6.12 Let E be a nite extension of F and N the normal closure of E over F in an
algebraic closureC of E. Then v
N = (E):
2Gal (N=F )

proof We use the description of N as the splitting eld of m = m; m, seen above. If
2 Gal(N=F),then (F)= F and ( )2 N, forall i, because the ( ;) are roots ofm. Hence
(E) N, forall 2 Gal(N=F) and so
Y
(E) N:
2Gal (N=F )

If 2 N is aroot of m, then is a root of m;, for somei. From Proposition 2.3, we know
that there is an F- isomorphism :F( ;) ! F( ), with ( ;)= . Using Theorem 2.7, we
may extend to a monomorphism from N into C. As N is a normal extension, we know from
Proposition 5.2 that is an automorphism of N, i.e., 2 Gal(N=F). Giventhat ; 2 E and
()= ,wehave 2 (E). Itfollows that
Y Y
2 (E)=) N (E):
2Gal (N=F ) 2Gal (N=F )

This ends the proof. 2
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Chapter 7

The Galois group of a polynomial

In this chapter we continue our study of the Galois group. Iff is a polynomial with coe cients
inthe eld F and E a splitting eld of f, then we call Gal(E=F) a Galois group of the polynomial
f . As splitting elds of a polynomial are isomorphic, any two Galois groups of a polynomial are
isomorphic, so we often, with an abuse of language, speak of th@alois group of a polynomial.

Proposition 7.1 If E is a splitting eld of a separable polynomialf 2 F[X], then E is a Galois
extension of F.

proof From Theorem 2.1 we know that the extensionE is nite. Being a splitting eld of a
polynomial, we also know that it is normal, so we only need to show thatE is separable. Now,

E =F( 1;:::; n), where the ; are the roots off . Each minimal polynomial mj = m( i;F)
divides an irreducible factor of f. As the irreducible factors of f do not have multiple roots,
no m; has a multiple root. Thus each ; is separable. From Theorem 3.8F( 1;:::; ) is
separable. 2

Corollary 7.1 If G = Gal(E=F) is the Galois group of a separable polynomial, then
iGj =[E : F].

proof It is su cient to apply Theorem 6.1. 2

Di erent polynomials over the same eld may have the same Galois group. This may be
useful in determining the Galois group of a given polynomial. For example, iff 2 F[X] has
the splitting eld E and a 2 F, then E is also the splitting eld of g(X) = f( a+ X) : if

1;:::; p are theroots off inE, thena+ 1;:::;a+ , arethe roots ofgin E. The following
result is useful, because certain methods of determining the Galois group only apply to monic
polynomials with integer coe cients.

Proposition 7.2 If f 2 Q[X], then there is a strongly separable monic polynomiay 2 Z[X]
with the same Galois group ovelQ asf .

proof Let E be the splitting eld of f 2 Q[X]in C. If we setf, = hcf(ffifo) then f, has the

same roots ad and these roots are simple. Thereford ; is strongly separable and has the same
splitting eld as f.

Now let u be the lcm of the denomoinators of the coe cients off;. If we setf, = uf ¢, then
f, 2 Z[X] and has the same roots a$;.
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Finally, if fo(X)= P "o a X!, then we set
K1
g(Y) = a(an)" € YR+ y" 2Z[X]:
k=0
As
g(anX) = a, f2(X);
g has the same roots ag up to multiplication by the contant a, and so has the same splitting

eld as f,. Thus we have found a monic strongly separable polynomial irZ[X] with splitting
eld E. 2

By Cayley's theorem, any nite group of cardinal k can be identi ed with a subgroup of
polynomial can be identi ed with a subgroup of a group of permutations S,, where n is much

smaller that the cardinal of the group.

Proposition 7.3 If f 2 F[X] hasn distinct roots in a splitting eld, then the Galois group of
f is isomorphic to a subgroup ofS,.

proof We setA = f 1;:::; nhgthe set of roots off in a splitting eld E. If 2 Gal(E=F),
then permutes the roots off , so we may de ne a mapping

cGal(E=F)! Sa; 7! ja;

where Sy denotes the group of permutations onA. The mapping is clearly a group homomor-
phism. The F-automorphism is determined by its e ect on the roots of f, so is injective.
Thus Gal(E=F) is isomorphic to a subgroup ofSy. As Sa is isomorphic to S,, Gal(E=F) is
isomorphic to a subgroupG of S,. 2

We have assumed a certain order on the roots of the polynomial. It is natural to ask what
happens when we change the order. Suppose that we choose a di erent ordering of the roots:
— 0..... 0 -

A=1f 70 qo

We obtain an isomorphism ° of the Galois group Gal(E=F) onto another subgroupG°of S,. If
2 Gal(E=F), ()=sand Y )= s then

()= s(i) and (i0)= Som;

—
o
=

1
[EEN
>S5
—
>
@
-
)
&
8}
o
=.

o)
e
¢

e
[¢)
=
3
c
—
Q
=
o
=
-
N
(0]

=]
%]
o
(@]
=y
—
0
Q
—
el
1

r(i), for all i, hence we
can write
a@m)= ()= (D= 26 = o)
Therefore, for all i,
sr(i)=rs%i)=) r lsr=s%=) G%°=r lGr

i.e., Glis a conjugate ofG.

The general polynomial

The general polynomial of degreen over a eld F is
f(Y)=Y" X Y" 1+ X,¥" 2 +( D" Xy 1+ ( DX 2 F(Xq; i X))V

to determine the Galois group off .
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Theorem 7.1 The Galois group of the general polynomiaf is the symmetric groupS,.

Therefore
Gal (f)' Gal(F(Zy;:::;Zn)=F(s1;:::;80) " Gal(F(Z1;:::;Z0)=Fs(Z1;:::;Z1)) = Sp;

according to the discussion after Theorem 6.7. 2

7.1 Irreducible polynomials

Before studying the particular properties of Galois groups of irreducible polynomials, we will
revise the notion of the action of a group on a set. We recall that a group G, with identity e,
acts on a setX if thereisa mapping : G X ! X, called an action and usually written
( 9;%x) = g:x, such that

ex=x,forall x2 X;
(gh):x = g:(h:x), forall g;h2 Gand x 2 X.

(We sometimes refer to the action we have just de ned as a left action to distinguish it from a
right action, where we replace the second condition by the following:

(gh):x = h:(g:x);

forall g;h 2 G and x 2 X. Of course, if the group G is abelian, then there is no distinction
between left and right actions.)

The orbit of an elementx 2 X, written Oy, is the collection ofy 2 X for which there exists
g2 G with y = g:x. We de ne a relation R on X by xRy if y 2 Oy,. Then R is an equivalence
relation on X and the distinct orbits are its equivalence classes. We say that the action igran-
sitive if there is a unique orbit, i.e., for any x;y 2 X, there is ag 2 G, with g:x = y. The action
is free if g:x = x implies that g is the identity of G.

If x 2 X, then the stabilizer of x, which we write G,, is the set of elements ofG which leave
X unchanged:
Gy =fg2 G:g:x= xg:

Clearly Gy is a subgroup ofG. The following result is known as the orbit-stabilizer theorem.
Theorem 7.2 If Gis nite and x 2 X, then
iGj |

Ok =[G :Gy]= —:
JOxj =1 x] iG]
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proof We de ne a mapping
Gl Ox0g7! gx

is clearly surjective. As Gy is a subgroup ofG,

(@= (0 gx=hx( g'h2G:

Therefore we have a well-de ned bijection :G=G, ! Oy de ned by
(9G) = (9):
It follows that o iGj
jOxj =[G :Gx]= jGXj:
This ends the proof. 2
If f 2 F[X] is separable,A = f 1;:::; ng the roots of f in a splitting eld E and G =

Gal(E=F), then the mapping
G OAG DT ()

de nes an action of G on A. (As the Galois group G of a polynomial of degreen is isomorphic to
a subgroupH of S,, we may consider thatG acts onN ,.) For irreducible, separable polynomials
we can say more.

Theorem 7.3 Let f be a separable polynomial inF[X] of degreen with Galois group G =
Gal(E=F). If f is irreducible, then

a. n divides the order ofG;

b. the action of G on A is transitive.

proof a. Let 2 E be a root off. From Proposition 1.4 we have[F( ) : F] = n. Now
[F( ) : FIJ[E : F]. In addition, E is a Galois extension ofF and so, from Corollary 7.1,
[E : F]= jGj. Therefore n divides jG;j.

b. Let f 2 F[X] be irreducible and , ©°two roots of f in E. From Proposition 2.3, with

FO= F and =idg, we obtain an isomorphism” from F( ) onto F( 9 extending idg such
that ~( ) = © We now apply Theorem 2.2 to obtain 2 Gal(E=F) taking to ° This
implies that the action of the Galois group on A is transitive. 2

Remark We recall that a group of permutations G on a setX is said to betransitive if for any
pair (x;y) 2 X2, there exists 2 G such that (x) = y. Thus, if f is irreducible, then Gja isa
transitive permutation group.

The second part of the theorem which we have just proved has a partial converse.

Proposition 7.4 Letf 2 F[X], with degf 2, and G be its Galois group. Iff has two distinct
irreducible factors, then the action of G on A is not transitive.

proof Let 1, . be roots off and g;, go be distinct irreducible factors of f, with g;( 1) =
g( 2)=0.1f 2Gand ( 1)= »,then

A 2)=qu( ( 1))= (%u( 1))=0:
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We may suppose thatg; and g, are monic polynomials. Then bothg; and g, are minimal poly-
nomials of ,, which is impossible. Therefore the action ofG on A is not transitive. 2

Remark If f = g™, where 2 F, g2 F[X]is irreducible andm 2, then the action of G on
A is transitive. It is su cient to notice that a splitting eld of g is a splitting eld of f and then
apply the second part of Theorem 7.3.

7.2 Cyclotomic extensions

We consider the polynomialf (X)= 1+ X" 2 F[X]. The roots of this equation in a splitting
eld are called nth roots of unity. If char F =0 or char F = p > 0, with (p;n) =1, thenf is
separable:

fIAX)=nX" =) gedf;f 9=1:

In this case,f hasn distinct roots in a splitting eld E. The set of these roots, which we will
note ., form a subgroup of the multiplicative group of E. As , is nite, by Theorem 3.3, ,

is cyclic. A generator of this group is said to be aprimitive nth root of unity. An extension
E = F( ), where is a primitive nth root of unity is called a cyclotomic extensionof F. In
fact, E is a splitting eld of the polynomial f(X)= 1+ X", so we haveE = F( ,) and it
follows that E is a Galois extension ofF. Clearly, if ©is another primitive nth root of unity,

then E = F( 9. We write , for the subset of , composed of primitive nth roots of unity. The

cardinal of |, is (n), where is Euler's totient function.

Exercise 7.1 Show that, if charF = p > 0 and (p;n) 6 1, then there is no primitive nth root
of unity.

Up to now we have assumed that char- = 0, or char F = p > 0 with (p;n) = 1. In this
section we will continue to do so. We consider the Galois group of the cyclotomic extension

F(n).

Proposition 7.5 If 2 Gal(F( n)=F), then there is an integera = a( ), with (a;n) =1, such
that (x)= x2&, forall x2 .

proof Let be a generator of ,. Then
("= (M= @=1
and, forj =1;:::;n 1, _ ‘
(Y= (el

because | 6 1 and s injective. Hence ( ) is also a generator of ,,. This implies that

()= 2 where(a;n)=1. Now take any x 2 ,. There exists an integerk such that x = ¥,

SO
0= (9= OF=( H=(92=x3

which is what we set out to prove. 2

We may de ne a mapping from Gal(F( ,)=F) into Z,, the group of units of Z,, by setting
( )=Ta( )], where[u] denotes the congruence class modulo of u.

Theorem 7.4 The mapping is a monomorphism.
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proof Let and be elements ofGal(F( ,)=F) and a primitive nth root of unity. Then

()= ((n= ()= ()OI =(ana0)r= a0,
In addition, ( )( )= 2 ) and it follows that a( ) a( )a( )( mod n). Therefore

fat J=la()a()=) ¢ )= () ()

We have shown that is a homomorphism. It remains to establish the injectivity. If s in the
kernel of ,thena( )=1 andso ()= . As xes all the elements of F, is the identity on
F( n),i.e., isinjective. 2

Corollary 7.2 If E is a cyclotomic extension ofF, then the Galois groupG = Gal(E=F) is
abelian.

proof As G is isomorphic to a subgroup ofZ,, , which is abelian, G is abelian. 2

Remark The Galois group of a cyclotomic extension may be cyclic. This is so ifi = 2%, with
k=1;2 orn=pk wherepis an odd prime andk 2 N , because in these cases the group,
is cyclic (see [21], for example).

Exercise 7.2 Let n =5 or n > 6. Show that the injection of Gal(R( ,)=R) in Z, is not
surjective.

It is interesting to consider composita of cyclotomic extensions. To do so we will need a little
elementary group theory.

Theorem 7.5 Let G be a group, with identity e, and x, y elements of G which commute. If
o(x)= m, o(y) = n and (m;n) =1, i.e.,, m and n are coprime, theno(xy) = mn.

proof We rst notice that hxi\h yi = feg. By Lagrange's theorem,jhxi\ h yij divides both m
andn. As (m;n) =1, we havehxi\h yi = feg. Now,

()™ = (x™)"(y")" = ee= e:

On the other hand, if (xy)k = e, then x* = y ¥ and soxk 2 hxi\h yi. Hence,x* = e, which
implies that mjk. In the same way, we havenjk. It follows that mnjk, because(m;n) =1 and
soo(xy) = mn. 2

It would be natural to assume that if x and y commute then o(xy) = [ m; n]. However, this is
not true. We only need to consider the case wherg = x ! and x 6 e; then o(xy) = o(e) =1 and
[m;n]=[m;m]> 1. On the other hand, we have a result which is quite close to the statement
we have just considered. It follows from the theorem.

Corollary 7.3 Let G be a group, with identity e, and x, y elements of G which commute. If
o(x) = m, o(y) = n, then there are powersa of x and b of y such that o(x2y®) = [ m; n].

proo& If p1;:::;ps are theé)rimes in the decomposition ofm and n and m = Qis:l p;' and
n= ">, p' then[m;n]= ~>, p™', wherem; =max( i; ;). We divide the indicesi into two
distinct classes,| being composed of thoseé for which ; = m; and J of those indices for which
i=m; > . We set v v
m®=  p™ and n°= pM:
i21 i2J
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Clearly [m%n9 =[m;n]. We also notice that mm, n%n and

BJB

oxm?)= m®% o(y")=n® and (M%n%=1;

hence, by Theorem 7.5,
o(xmoya9) = mh®=[m;n];

which completes the proof. 2

We now consider the compositum of two cyclotomic elds.
Proposition 7.6~ The compositum of the eldsF( ) and F( ) is F( mn1)-

proof Because[m;n] is a multiple of m and n, both the elds F( ) and F( ) are included
in F( m:n1), hence the compositum of these two elds is also included it ( ;7). Now let
(resp. n) be an mth (resp. nth) primitive root of unity. From Corollary 7.3, there are powers
aof y andbof , such that o( g ) =[m;n], which implies that a primitive [m;n]th root of
unity lies in the compositum F( m)F( n). Therefore F( (mnj) F( m)F( n). We thus have
the equality we were looking for. 2

Remark We might be tempted to think that F( m)\ F( n) = F( (mn)). Asm andn are both
multiples of (m;n), we certainly have F( (mn)) F( m)\ F( n), however the other inclusion

may not be true. Here is an example. We seF = Q(' 3) and we considerF ( 3) and F( 4). As
(3;4)=1, F( 3:4)= F(1)= F. On the other hand,

F(a=0C3)=F( =) F()\F(a=a( 36 F:

With more knowledge of the eld F we can say more about cyclotomic extensions. We will rst
consider the case wheré& = Q. To do so we will introduce cyclotomic polynomials

Exercise 7.3 Let F be eld and ; (resp. ») an mth (resp. nth) root of unity. Show that the
compositumF ( 1)F ( 2) is included in the cyclotomic eld F( jmn 7).
7.3 Cyclotomic polynomials

In this section we will be concerned with a class of polynomials with coe cients inQ. The nth
cyclotomic polynomial , 2 C[X] is de ned by

Y
WX)= (X
2

n

The degree of , is (n), becausq ,j= (n).
If z2 ,,then o(z)jn, hencez 2 [ 4jn 4. On the other hand, if dinandz2 4, thenz2 .
Thus o = [g4n - As 4\ § =;,if d6 d° the sets 4, with djn, form a partition of , and
0 1
Y Y Y
1+X"= @ ( z+X)A= a
din 22 djn

In fact, all the coe cients of | are integers.
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Proposition 7.7  The polynomial , belongs toZ[X ] and is monic; in addition, its rst coe -
cientis1,if n 2

proof From the de nition of ,, itis clearly monic. We now prove by induction that , 2 Z[X]
and also that the constant term of the polynomial is 1, if n 2. As ;(X)= 1+ X and

2(X)=1+ X, the claimis true forn =1 and n =2. Suppose now thatitistrueupton 1,
with n > 2, and consider the casen. We have

0 1
Y
1+X"=@ dA n=A ,:

djn;d<n

P . P .
If A(X) = fzo aX'and ,(X) = jt:o b X!, thena 2 Z, forall i andag = 1 As
agly = 1, we havelp = 1. Also,

ab +alh= b+a=0=) bh=a22Z:
In addition, as
aohy + gy + ahy = b+ ab+a,=0=) p=ab+a2Z:

Continuing in the same way, we see thaty 2 Z, for all j. 2

r 1

Exercise 7.4 Show that, if p is a prime number andr 2 N , then  (X)= p(XP ).

We have seen that the coe cients of a cyclotomic polynomial are integers. We can say more.
In particular, any integer gures as a coe cient of at least one cyclotomic polynomial. A proof
of this may be found in [17]. Forn 3, the degree is even so there is a middle coe cient. Ifn
is a power of2, then this coe cient is 0; otherwise it is an odd number. This is proved in [7].

We may thus consider the polynomials , as members oZ[X]. We will now show that they
are irreducible over Q. However, we need some preliminary results.

If f is a polynomial in Z[X ] and p a prime number, then we may de nef 2 F,[X] by replacing
the coe cients of f by their congruence classes modulp. The polynomial f so obtained is called
the reduction modulo p of f. Clearly, if f = AB, then f = AB. The next result needs a proof.

Lemma 7.1 LetF be a eld and A;B 2 F[X], with A irreducible. If A and B have a common
root, then A divides B.

proof Let be a common root ofA and B. If A does not diviseB, then A and B are coprime
and so there existS; T 2 F[X] such that

SA+TB=1=) S( )A( )+ T( )B( )=1;
which is a contradiction, because is a root of A and B. HenceA divides B. 2

P P
Lemma 7.2 If pis a prime number andAq;:::; A, 2 Fp[X], then (L, AP = L AP
Also, if A(X) 2 Fp[X], then A(X)P = A(XP).
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proof As char F,[X] = pand pj yfori=1;::::p 1, we have(Ap+ Az)P = AY + AD. An
induction argugpent allows us to obtaln the result for any n.
IfAX)= 5 a; X', then from the rst part of the proof,

AX)P = (aX)P= aXP = @PXP = AXP):
i=0 i=0 i=0

This ends the proof. 2

Before turning to the proof of the irreducibility of cyclotomic polynomials, we recall the fol-
lowing result, which follows from Gauss's lemma:

If A2 Z[X]and A = BC, with B;C 2 Q[X] and monic, thenB;C 2 Z[X].
Theorem 7.6 For all n 2 N , the polynomial | is irreducible over Q.

proof Let A be a monic, irreducible polynomial in Q[X ], which divides . If 2 C is a root
of A, then is also a root of ,, and so a primitive nth root of unity.

As A divides , and |, dividesf(X)= 1+ X", there existsB 2 Q[X] such that AB = f.
As A is monic, so isB. Now using the result cited before the statement of the theorem, we see
that A;B 2 Z[X]. In addition, A and B are coprime. (If this were not the case, thenA and B
would have a common root and their product at mostn 1 distinct roots, a contradiction.)

Let p be a prime number such thatp < n and p 6r). We will show that P is a root of A.
If this is not the case, then P is aroot of B. (As is a root of f, any power of is also a
root of f, hence ofA or B.) It follows that is a root of B(XP). From Lemma 7.1, we have
A(X)jB(XP). Taking reductions modulo p, we obtain A(X)jB (XP). If C 2 Fp[X]is irreducible,
then, using Lemma 7.2,

C(X)JA(X) =) C(X)iB(XP)=) C(X)B(X)" =) C(X)iB(X):

Hence A and B are not coprime in Zy[X]. However, A and B are coprime, so we have a
contradiction. It follows that P is a root of A, and also a primitive nth root of unity.

If 1<s<n)is coprime with n and has the prime factorizations= p;  pk, then all the p;
are coprime with n. From what we have just seen, P! is a root of A, and also a primitive nth
root of unity. Replacing by P we obtain that PPz is a root of A and also a primitive nth
root of unity. continuing in the same way, we see that S is a root of A and also a primitive nth
root of unity. It follows that all the primitive nth roots of unity are roots of A and therefore
A= ,,ie., . isirreducible. 2

Corollary 7.4 The cyclotomic polynomial | is the minimal polynomial over Q of each primi-
tive nth root  of unity, i.e., m(; Q)= .

Exercise 7.5 Show that the polynomial
P.(X)=1+ X+ + X"2QI[X]

is irreducible if and only if n+1 is a prime number.
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7.4 Cyclotomic extensions of the rationals

We now consider the Galois group of certain polynomials inQ[X ], namely the cyclotomic poly-
nomials.

Theorem 7.7 The Galois groupG = Gal(Q( ,)=Q) is isomorphic to Z,, .

proof From Theorem 7.4 we know that G is isomorphic to a subgroup ofZ,, . However, if is
a primitive nth root of unity, then

iGj=[Q():Ql=deg = (n):

The second equality comes from Corollary 7.4. A$Z,,j= (n) and Q( )= Q( ), G is isomor-
phicto Z,, . 2

In the remark after Proposition 7.6 we observed thatF ( (m.ny)) F( m)\ F( n) and then
gave an example to show that equality is generally not the case. However, using the theorem we
have just proved, we may show that, in the case where the eldF is Q, then we do indeed have

equality.
Corollary 7.5 The property
Q( (mn))= Q( m)\ Q( n)
is true for all m;n 2 N .
proof As Q( (mn)) Q( m)\ Q( n), we only need to prove that
[Q( (mn)) : QI=[Q( m)\ Q( n): QI
From Proposition 7.6 we know that Q( m)Q( n) = Q( [mn}). Now, using Corollary 6.1, we

obtain
[Q( m):QJQ( n):Ql.
[Q( m)\ Q( n):Q]

[Q( [m;n]) Q=

Now, using the theorem, we have

Ty = (m) (n) .
A T ECl)
However,
((m;n]) ((m;n))=(m) (n)=) [Q( m)\ Q( n):QI= ((M;n))=[Q( mn)): QL
This nishes the proof. 2

There are other interesting questions concerning cyclotomic extensions of the rational num-
bers. We will now consider two of these, namely the number of roots of unity in a cyclotomic
extension and the coincidence of two such extensions. We will begin with two results concerning
Euler's totient function

Proposition 7.8  For any given positive integerN, there are at most nitely many integers n
such that (n)= N.
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proof Let N be a positive integer andp the least prime number greater thanN + 1. Suppose
that n is an integer such that (n)= N. If g pis a prime divisor of n, then n = ¢“m, for some
k;m 2 N , with (g;m)=1. We have

(M= () m q 1 p 1>N;
a contradiction. Therefore no prime divisor ofn is greater than N + 1. In particular, the distinct

a YS ai 1
n=p pF=) (M= p' (w1
i=1
For each prime p; we have
(m P e L

If & su ciently large, the expression on the right hand side of the equality is greater than N,
hence there is a nite number of choices for the exponents. Therefore the set of atl such that

(n) = N is nite. 2

Remark If N is not 1 or an even number, then there are no integers such that (n) = N.
It has been shown that, for any integerk 2, there is an integerN such that there are just k
solutions to the equation (n) = N [8]. For the casek = 1, the question is open.

Corollary 7.6  We have
nI|ilm (n)=1:

proof If limpy (n) 6 1, then there is an integerN > 0 and an in nite sequence of integers
(n;) such that (nj) N, for all nj. For the values of the (n;) let us write N1;:::;Ngs. There
is a nite number of such values andN; N, for all i. However, from Proposition 7.8, there
can only be a nite number of elements of the sequence whose image is equal to oneNf. If
we take an elementn; larger than all these elements, then we must have (n;) > maxN;, a
contradiction. This implies that lim; (n)=1. 2

We need another elementary result.

Proposition 7.9 If a and b are positive integers, then

(8) (Ba:D.

(ab = :
((a; )
proof If a=1 or b= 1, then the result is trivial, so suppose that this is not the case. Let
p1;:::;ps be the prime divisors ofa which are not divisors ofband q;;:::;q the prime divisors
of b which are not divisors of a. Finally let uq;:::;u, be the prime divisors of both a and b.
Then
' 1. Y 1 ¥ 1
(@ = a 1 =) T - @ )
g N0s Tt g
t
_ a iS:]_ (1 p% jr:]_ (1f\ ﬁ)b k=1 (1 qik ;:1 (1 ﬁ
- ~T
(3) (b(a;b

C RS

(a) (b(ah,
(a;h)
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This ends the proof. 2

We may now handle the questions referred to before Proposition 7.8. We will say that a root
of unity is an nth root of unity for some n 2 N . By de nition, the set Q( ) contains the mth
roots of unity in C. There are m such roots of unity. The following result shows that if, if m
is even, thenQ( ) contains no other roots of unity and, if m is odd, then Q( ) contains the
mth roots of unity and m other roots roots of unity.

Theorem 7.8 If m is a positive integer, then the number of roots of unity inQ( ) is [2;m].

proof In this proof denotes a primitive mth root of unity; then 2 Q( m) and, by Theorem
7.5, it has order2m, if m is odd. This implies that the set ,.,; Q( m). We have shown that
Q( m) contains .m}. Let us show that Q( ) contains no other roots of unity.

We claim that there is a largestr, which we noter, for which Q( ) contains a primitive rth
root of unity. If Q( ) contains a primitive rth root of unity, then |  Q( ), which implies

that Q( r) Q( m) and
[Q( m): QI=[Q( m): Q(muIQ( NIQ( r:Q]=) (m)  (r):

Now, using Corollary 7.6, we see that there is a largest for which Q( ) contains a primitive
rth root of unity.

Suppose now thatx is a nth root of unity belonging to Q( ) andy a primitive rth root of
unity. From Corollary 7.3, there is a power a of x such that o(x®y) = [ m; r]. Sincex?®y 2 Q( m),
the de nition of r implies that [n;r] r. It follows that [n;r] = r and njr. Finally, every root
of unity belongs to ;.

Let us now show thatr =[2;m]. As is an mth root of unity, from what we have just seen,
m dividesr. Let r = ms. Using Proposition 7.9, we have

(m) (s)(m;s)
((m;s))

Now, asmjr, we must haveQ( ) Q( ). Given that Q( ) contains a primitive rth root of
unity, we also haveQ( ;) Q( m) andsoQ( m)= Q( ). This implies that

()= (ms)= (m) (s):

(m= =) 1 (9=) (5=1=) s=1 or s=2;

and sor = morr =2m. If mis even, then (2m)=2 (m) > (m), sor = m; on the other
hand, if m is odd, then has order2m, sor 2m, and sor = 2m. We have shown that

r=[2;m].
To conclude, we have shown that the set of roots of unity belonging t@Q( ) contains [:m;
and is contained in .7 This implies that this setis [5:m;. 2

Corollary 7.7 I1f m6 n,then Q( )= Q( ) ifand only if n is odd andm =2n, or m is odd
andn=2m.

proof If m is even, thenQ( ) hasm roots of unity. If Q( m)= Q( n), then Q( ) also has
m roots of unity. If n is even, thenQ( ) hasn roots of unity, so m = n, a contradiction. It
follows that n is odd and Q( ) has2n roots of unity. Thus we have m = 2n.

If m is odd, then Q( ) has2m roots of unity. If Q( m) = Q( ), then Q( ,) also has
2m roots of unity. If n is odd, then Q( ) has 2n roots of unity, so m = n, a contradiction. It
follows that n is even and hasn roots of unity. Thus we have 2m = n. 2
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7.5 Cyclotomic extensions of nite elds

We have looked in some detail at cyclotomic extensions o®. We will now consider cyclotomic
extensions of nite elds. Being nite extensions of nite elds such extensions are Galois
extensions (Proposition 3.1, Corollary 5.1). We will begin with a preliminary result, which is
interesting in its own right. We recall that the cardinal of a nite eld has the form p*, wherep
is a prime number andk a positive integer.

Theorem 7.9 Let F be a nite eld, with jFj = p*, and E a nite extension of F of degreen.
Then the Galois groupG = Gal(E=F) is cyclic and generated by the Frobenius automorphism
Frox 7! xP.

proof To simplify the notation, let us write q for p¢. First we show that the mapping Fr is
indeed an automorphism. Fr is clearly linear. If x4 = 0, then x = 0, becausex? = x, for all
x 2 F, so Fris injective. An endomorphism of a nite-dimensional vector space is also surjective,
so Fr is a bijective endomorphism ofE. Finally, (xy)% = x99, so Fr is an automorphism ofE.
Asx%=x,forall x2 F, Fr 2 G.

If x 2 E, then x4 = x, which implies that o(Fr) n. However, if X is a generator ofE
then x° 6 x, for any s < q", and soo(Fr) = n. Now, jGj = [E : F] = n, therefore G is cyclic
with generator Fr. 2

Now we turn to cyclotomic extensions ofF,. (As usual we suppose thatp and n are coprime.)
From the previous theorem the Galois group of a cyclotomic extensiorF,( ») of F, must be
cyclic. We are interested in nding a generator of this group in Z,, . As the Frobenius mapping
Fr de ned on E maps every elementx of Fy( ) to xP, we have (Fr) = [p], where is the
mapping de ned in Theorem 7.4. Hence we have

Proposition 7.10  The image of the Galois groupG = Gal(F( »)=Fp) in Z,, under the map-
ping is generated by the congruence clagp], so the cardinal of G is the order of [p] in Z,, .

Exercise 7.6 Find the value of the following degrees :

[F3( 7):F3] [Fs( 4):Fs]  [F7( 10): F7]:

7.6 Quadratic and cyclotomic extensions

An easy calculation shows that

(9257‘ 3457' eGTI + e%)z =5;

which implies that the expression between the brackets is a square roob@. As this expression
is an element of the cyclotomic eld Q( s) the quadratic extension Q(' 5) of the rationals is
contained in the cyclotomic eld Q( s). The goal of this section is to generalize this by showing
that any quadratic extension of the rationals is included in some cyclotomic eld. In fact, we
may say more. A quadratic extensionE of Q is abelian, i.e., the Galois groupGal(E=Q) is
abelian, since its cardinal is2 (see Theorems 3.5, 5.1 and 6.1). The Kronecker-Weber Theorem,
which we will prove further on, states that any nite abelian extension of Q is included in some
cyclotomic eld.
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We begin with Gauss sums. Let be a primitive pth root of unity, where p is an odd prime
number. We de ne the Gauss sumby

9(1

k k.
p= —
k=1 P

’

where : denotes the Legendre symbol. Then

Proposition 7.11  We have

proof First
k;l =1 P P

the nonzero congruence classes df,, hence we can write

X1x1

2 _ ko km o im
p
k=1 m=1 P P
1y 1
- XK kiz k+ km m
k=1 m=1 P P
1yl
- XX M k+km.
k=1 m=1 p

because % =1. Rearranging the terms, we obtain

1 1 )
2 X X k(1+ m) m
p
m=1 k=1 P
If m6 p 1, then the sequence 1*™; 2@+ m)..... (p DA+ m) ryng through all the pth roots of

unity with the exception of 1, hence their sum has the value 1. On the other hand, ifm = p 1,
then the sum of the members of the sequence has the valge 1. Therefore

X 2 X 2
p p p p

o 2
p

°N

m=1 m=1

because the number of nonzero squares i, is the same as that of the nonsquares. The result
follows from the fact that -t = ( 1), 2

Corollary 7.8 We have q
( D= p2Q( p):

proof | is a square root of pz =( 1)”71p and ;2 Q( )= Q( p). 2

We now consider the relation between quadratic and cyclotomic extensions dp.
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Proposition 7.12 Let p be an odd prime number. Then the eldQ( ,) contains a unique
guadratic extension ofQ, namely q

Q (D¥p
(If p 1(mod4), then ( 1) p=pandifp 3(mod4), then( 1)z p= p)

proof Theorem 7.7 ensures thatG = Gal(Q( ,)=Q) is cyclic of orderp 1, hence contains a
unique subgroupH of order % Let K be a eld intermediate betweenQ and Q( ) such that
[K : Q] =2. By Theorem 5.1, Q( ,) is a Galois extension ofQ. Consequently, Proposition 5.3
ensures thatQ( p) is a Galois extension oK . Thus, Theorem 6.1 entails that Gal(Q( p)=K) is
a subgroup ofG of order ”2—1 From the unicity of H, we haveH = Gal(Q( ,)=K). Theorem 6.4
now implies that K = F (H). We have shown thath( p) contains a unique quadratic extension.

To conclude the proof it su ces to notice that Q ( 1)"71p is a quadratic extension ofQ

contained in Q( p), by Corollary 7.8. 2

For the moment we have only seen that quadratic extensions of a certain form are included in a
cyclotomic extension ofQ. This iE not di cult to extend. First let us suppose that p 1(mod 4)
and consider p. We may write = p= ip p. Then, using Proposition 7.6, we obtain

® =2i"p) AP Q) »)= QA e = A p):
If p 3(mod 4), then
AP =" B QM )= Q 4):

We Bave considered odd primes. What can we say about the prim2? We claim that Q(p 2)
and Q("  2) are included inQ( g). First we notice that = € is a primitive 8th root of ynity.

Also, 7= 1.pHience, + lis an element ofQ( g). However, this sum has the value 2. It
follows thﬁt&( 2@7 Q( 8)p, p__ p__
Now, 2=1i 2andi; 22 Q( g), therefore 22 Q( g) and it follows that Q(" 2)

Q( 8)-

Theorem 7.10 Every quadratic extension of the rationals is included in some cyclotomic ex-
tension.

proof We have seen that, ifE 'ﬁg guadratic extension of the rationals, then there is a square-
free integerd such that E = Q(' d) (Theorem 3.5). Ifd= p; p«, where thep; are distinct
primes, then

p- _ pn_ o .
o d=0 " ’m P ol melPm oo

However, we have just seen that, ifp is a prime number, there is an integern 2 such that
Q(p P Q( n) and the same applies for p. Hence, there are integersn; 2 such that

This ends the proof. 2

Exercise 7.7 Find a condition on d which ensures thatQ(p d)  Q( ).
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Remark We have seen that the square root of an integer lies in some cyclotomic extension @f.
A natural question arises, namely, ifp is an odd prime, does gith root of an integej necessarily lie
in some cyclotomic extension ofQ. In fact, this is not in general true. Let = * 2, wherepis an
odd prime and a primitive nth root of unity for some n. The Galois groupG = Gal(Q( )=Q) is
abelian. If 2 Q( ), then Q( ) is asub eld of Q( ) and the Galois groupG°®= Gal(Q( )=Q( ))
is normal in G, becauseG° is a subgroup of the abelian groupG. This implies that Q( ) is a
normal extension of Q. However, this is not so, because lies iQ( ), but the other roots of
f(X)= 2+ XPdonot. It follows that =2 Q( ).

7.7 Orbites of the Galois group action

In Section 7.1 we introduced the action of a Galois group of a separable polynomidl on its
roots. In this section we aim to look more closely at this. In particular, we will show that there
is an interesting relation between the orbits of the action and the decomposition into irreducible
polynomials of the polynomial f. We consider a separable polynomiaf 2 F[X], with set of
roots A = f 1;:::; hgin a splitting eld E and we note the action of the Galois group
G = Gal(E=F) on A. We write Oq;:::;O; for the orbits of and setn; = jO;jj.

Proposition 7.13 Let S be a subset oA and the polynomialfs 2 E[X] be de ned by

Y
fs(X) = ( i+ X)
i2s

If SC is the subset ofS xed by G, i.e., the subset of elementx 2 A for which (x) = x for all
2 G, thenfs 2 F[X]if and only if S® = S.

proof Suppose thatfs 2 F[X] and take 2 G. Let

Y
s(X) = ( ()+X):
258

The coe cients by of this polynomial are expressions, i.e., sums of products, of the( ;). As
is an automorphim, a coe cient by is the image under of the corresponding sum of products
ofthe ;,i.e.,, b= (ak). As xes the elements of F, ax = Iy, for all k and sofs = fs. This
implies that  xes S. As thisis so for all 2 G, we haveS® = S.

Now suppose thatS® = S and let be an element ofG. As  xes S, fg = fs. However,
this is so for all 2 G, so the coe cients of fg belong to the set of elements oE xed by G,
i.e., the eld F (see Theorem 6.2). Hencds 2 F[X]. 2

Remark Let g be a monic, irreducible factor of the polynomialf. Then there is a subsetS of
A such that g = fs. As g2 F[X], by the previous proposition, we haveS® = S, which implies
that S is a union of orbits of the action

Proposition 7.14  Suppose that the polynomiaf s de ned above is in F[X]. Then fg is irre-
ducible if and only if S is a minimal set xed by G.

proof Suppose thatfs is irreducible. If SCis strictly included in S and SPis xed by G, then
fso 2 F[X] and f sojf , with degfso < degfs. This is a contradiction to the irreducibility of fs.
HenceS must be minimal.

Now suppose thatS is a minimal set xed by G. If fs is not irreducible, then there exists
g 2 F[X] which is monic, dividesfs and is such that degg < degfs. There exists S strictly

69



included in S such that g = fso and soS is not minimal, a contradiction. It follows that fs is
irreducible. 2

We may now prove the main result of this section.

Theorem 7.11 If the separable polynomialf 2 F[X] has the decomposition into irreducible

factors
f=1f41 f

where 2 F and thef; are monic, then the action hasr orbits Oq;:::;O,, with degf; = jO;j.

proof The minimal sets xed by G are the orbits of , therefore the monic irreducible factors
of f are in one-to-one correspondence with the orbits and we have

f=1Ffo fo;
where 2 F and the polynomialsf o, are monic, irreducible. The degree of o, is n; = jO;j. 2

It is interesting to consider the case whereF = F,. From Theorem 7.4 we know that, if E
is a nite Galois extension of F, then the Galois group G = Gal(E=F,) is cyclic and generated
by the Frobenius automorphism Fr: x 7! xP. If we suppose thatE is a splitting eld of a
separable polynomialf 2 F,[X], then the orbits of the action  de ned above are of the form
O; = fFr®( j)gs2n, for some . If s%is the smallest indexs 1 such that Fr®( j) = |, then
= 1and Oy =f j;Fr( j);ii A Y i)g, i.e., O is a cycle of Fr of lengthn; = degf;.
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Chapter 8

Dedekind's reduction theorem

We recall that, if f is a polynomial in Z[X] and p a prime number, then we may de nef 2 F,[X]

by replacing the coe cients of f by their congruence classes modul@. The polynomial f so
obtained is called the reduction modulo p of f. We will sometimes refer tof as a reduced
polynomial. In this chapter we aim to establish an important relation between the Galois groups
of f over Q and f over F,, which will enable us to nd useful information about the former

Galois group. We will need some preliminaries.

8.1 A basic result in module theory

that every elementm 2 M can be expressed in at least one way as
m=rimy+ + rsms;

with the r; 2 R. The module M is free if it has a basis i.e., a setU which has the properties:

U is a generating set: every elementm 2 M can be expressed as

m=riu;+  + rsUs;
with the u; 2 U and ther; 2 R;
U is an independant set:
riup+ :::+rsus=0=) r;=0; foralli:

Let M be a module over an integral domainR. If x 2 M and there existsr 2 R such that
rx =0, then we say that x is atorsion element The set of torsion elements form a submodule of
M, which we write tM . (Clearly tM is closed under scalar multiplication; ifrx =0 and sx =0,

thenrs(x + y) =0, sotM is closed under addition.) We say thatM is torsion-free if tM = fOg
and torsion if tM = M. We now bring these ideas together.

Proposition 8.1 Let R be principal ideal domain andM a nitely generated R-module. Then
M has a nite basis if and only if M is torsion-free.

We will give a proof of this result in Appendix E.

Exercise 8.1 Show that a free module over an integral domain is torsion-free.
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8.2 Dedekind's lemma

In this section we present an important result due to Dedekind, which we will need further on
in this chapter. Let G be a (multiplicative) semi-group and F a eld. A character of G into
F is a mapping from G into F which preserves multiplication and is not identically zero. We
will write Char (G; F) for the set of characters fromG into F. The set of all mappings fromG
into F, which we note F ¢, can be given a vector space structure oveF with the vector space
operations de ned pointwise. The following result is referred to asDedekind's lemma

Theorem 8.1 The set of characters Cha(G;F) is a linearly independant subset ofF €.

proof Letn land 4;:::; n be distinct elements of ChalG;F). Suppose that
ap 1+ +an n=0; (8.1)
wherea;;:::;a, 2 F. We will show by induction that a; = = a, =0.

Forn=1, let x 2 G be such that 1(x) 6 0. Then a; ;(x) =0 implies that a; = 0. Now
suppose thatn > 1 and that the result istrue upto n 1. Since 1 6 |, there existsy 2 G
suchthat i1(y) & n(y). Evaluating equation (8:1) at x and yx, wherex is an arbitrary member
of G, we obtain

a 1(X)+  +an n(X)=0 (8.2)

and
ar 1(y) 1(X)+  +an a(y) n(x)=0: (8.3)

We now multiply equality (8:2) by ,(y) and subtract it from equality (8:3). Bearing in mind
that the element x was chosen arbitrarily, we obtain

ar( 1(y) n(y) 1+ +an 1( n 1y) n(y)) n 1=0:

From the induction hypothesis we deduce that all the coe cients of the linear combination on
the left hand side of the equality have the valueO. In particular, a;( 1(y) n(y) =0. As

1(y) n(y) 6 0, we must havea; = 0. However, now equation(8:1) is reduced ton 1 terms
and so, using the induction hypothesis again, we obtaira, = =a, =0. 2

Remark A character is not required to have only nonzero values; it is su cient that it has at
least one nonzero value. However, i5 is a monoid, then the image of an invertible element is
nonzero. In particular, if G is a group, then the image ofG under a character is a subgroup of
the multiplicative subgroup F of F.

proof An automorphism of a eld F, when restricted to the multiplicative group F becomes
a group automorphism, hence is a character of the groupF into the eld F. 2

8.3 Splitting elds of polynomials in Z[X]
In this section (and the following sections) we aim to consider certain properties of splitting elds

roots of f in C and E a splitting eld of f contained in C. We may considerf as a polynomial
in Q[X]. Then, from Proposition 2.2, we have



i.e., E is composed of the polynomials in the ; with coe cients in Q. We set

Then D is a subring of E and also aZ-module.

Proposition 8.2 The Z-module D is nitely generated and torsion-free, therefore has a nite

P ) P .
proof If f(X)= [, &X' and 2 A, then "= ",ta 1, therefore D is generated by
the elements 7' %2 e, with 0 & n 1 Thus D is nitely generated.
If am =0, with a 6 0, then consideringD E, we have

a Y(am)=(a 'am=0=) m=0:

Thus D is torsion-free.
As Z is a P.I.D. and D is nitely generated and torsion-free, we may apply Proposition 8.1
to obtain the existence of a nite basisU = (uq;:::;uy). 2

A natural question now arises: Can we nd a natural basis of theQ-vector spaceE? In fact,
this is the case.

proof E is the fraction eld of D, so, by Corollary E.1, U is a basis of theQ-vector spaceE .2

8.4 Splitting elds of reduced polynomials
Our aim in this section is to nd a splitting eld of a reduced polynomial.

Proposition 8.4 Let p be a prime number andM a maximal ideal of D which contains the
proper ideal Dp. If f 2 Z[X] and is monic, thenK = D=M is a splitting eld of f, the reduction
modulo p of f.

proof It is clear that the characteristic of K is p, henceK is an extension ofF,. Let us write
for the standard projection of D on K. If U = (u,) is the basis found in the preceding section
and
X = ajuq + + a;Ur; with a; 2 Z;

then
x)= (1) (up+ + (a) (u):

We may identify the image of restricted to Z with F, because the kernel of this mapping is
Z\ M = Zp. Thus we may consider the (&) belonging toF,. Thereforef (u;j)gis a generating
set of K over F, and K is a nite extension of F,. We next notice that f splits over K :

N Y
fFX)=~FX)N=~C  i+XN=( ()+X)
i=1 i=1

where ~ is the mapping of Z[X] into F,[X ] which corresponds to and the ; are the roots of
f . In addition,

K= (D)= (Z[ u::5 a)=Fpl ( 1)i:isy )= FpC )iy ()
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becauseFp[ ( 1);:::; ( n)] is a eld. It follows that K is a splitting eld of f. 2

The mapping : D ! K is a surjective ring homomorphism and the roots off are the
images of the roots off . In fact, we may generalize this.

Proposition 85 If :D ! K is a ring homomorphism, then restricted to Z is the same
forall 2 Hom(D;K). Also, is surjective and the images of the roots of are roots of f .

proof That restricted to Z is the same for all 2 Hom(D;K ) follows from the fact that
@Q)=1+ M.
Now we observe that

Y ¥
HXy=" ( i+X) = ( ()+X)

i=1 i=1

hence the ( ;) are the roots off .
Finally let us consider the surjectivity. We have

fore Fp[ ( 1);:::; ( n)] is isomorphic toK. It follows that (D)= K. 2

Remark This generalization, which is interesting in its own right, will be used in a proof a little
further on, namely that of Proposition 8.7.

8.5 Resultants and discriminants

In the following we will use the discriminant of a polynomial, which is useful in determining

whether an extension is separable. However, in order to study this concept it is useful to intro-
duce another concept, namely the resultant of two polynomials.There is an important relation
between the discriminant of a polynomial and the resultant of a polynomial and its derivative.

Here we will only introduce the subject. Further on we will handle it in more detail.

Resultants

and n are understood) as follows:

2 3
@m am 1 am 2 0O 0 O
0 0 0 a a O
.,_a0 0 0 a a a
Srn=8h by b, 0 0 0
0 b b 0 0 O
0 0 0 bh by O
0 0 0 b b by
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We obtain Sy, (f;g) by shifting the line vector of the coe cients of f successively to the right
by 0;1;:::;n 1 steps and the vector line of the coe cients of g successively to the right by
0;1;:::;m 1steps and then lling in the remaining places with 0.

Remark If 0 degf = k<m, then we havea,, = an, 1= = a4+ =0 andif f =0, then
a; =0, for all i. We have an analogous situation ifdegg 6 n.

Here is an example. Withm =3 ann =2, we have

2a3 a a a 0

0 a3 aa a1 a

Smn (;9)= 8l b b 0 O
0 bp b v O

0 0 bp bh by

The resultant of f and g, which we note R, (f;9), (or R(f;g), if m and n are understood) is
the determinant jSy.n (f;9)j. Clearly,

Rum (9:1)=( )™ Rmn (f;9):

Remark We may consider thea; and by as variables. In this way we obtain a mapping from
Fm*1  F"*1 into F, which is mn-homogeneous.

Discriminants

P .
Let f(X)= I, aX' a polynomial with coe cients in a eld F. We suppose that the degree
discriminant of f is de ned by

£)= g2m 2 Y , 2.
(f)=ay (i =
1 i m

From the theorem which follows this de nition is unambiguous: it does not depend on the split-
ting eld chosen.

It is usef@l to notice that ( f) belongs toF. Indeed, the multivariate polynomial
A=azm 27, i< m(Xi  Xj)? is a symmetric polynomial in F[X1;:::;X,]. Consequently,
from Corollary B.1, ( f) 2 F. Using the same corollary, we may also say that, if 2 R[X],
where R is an integral domain, then ( f) 2 R.

The following result links the resultant and the discriminant.
Theorem 8.2 |If char F =0 or char F = p > 0 and p 6, where degf = m, then
(f)=( "™ V=g Ry (9

Remark The polynomial f has a multiple root if and only if ( f)=0. From the above formula,
we see that we are able to determine the existence of a multiple root only taking into account
the coe cients of f. We should also notice that the formulas show that the discriminant belongs
to the eld F.
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8.6 The Galois group of a polynomial and of its reduction

In this section we aim to show that the Galois group of the reduction of a monic polynomial
f 2 Z[X] may be considered as a subgroup of the Galois group &f This will give us information
about the Galois group of f. We begin with a simple proposition, which we can prove using
discriminants, thus justifying their introduction in the last section.

Proposition 8.6 Let f 2 Z[X] be a monic polynomial,p a prime number andf 2 F,[X] the
reduction modulo p of f. Then, if f is strongly separable, then so ig .

proof IfM =(m;)2M ,(Z)andM =(m;)2M ,(Fp), wherem; is the congruence class of
m; modulo p, then the detM = det M. Hence, ifdegf = n, then

Ron 1(f; f 0): 0=) Rnn 1(f; fo): 0
and it follows that, if f is strongly separable, then so iff . 2

We suppose from here on thatf is strongly separable and thatE, D and K are de ned as
in Sections7:3 and 7:4. We de ne a right action  of G = Gal(E=Q) on Hom(D; K ), the set of
ring homomorphisms ofD into K, by

()= = iD;
foral 2 Gand 2 Hom(D;K). (The action is de ned, because (D) D.)
Proposition 8.7 The action is free and transitive.

proof Let A be the set of roots off . If restricted to D is equal to , then ( )ia = ja-
In addition, (A) A, so we may write

in =( JiA = ja  jA:

From Proposition 8.5, ja is surjective from A into A, the set of roots off . As f is strongly
separable, so if (Proposition 8.6), hence

jAj =degf =degf = jAj:

It follows that ;A is a bijection of A on A and so invertible. We deduce that j is the identity
on A, which implies that is the identity of the Galois group of f . We have established that
is free.

We now consider the transitivity. Let us x 2 Hom(D;K ) and note N the cardinal of the
Galois group G = Gal(E=Q), whereE is a xed splitting eld of f. We write O for the orbit of

o=f: : 2Gg

As the action is free, we havejOj = N. We aim to show that O = Hom(D;K ). Let us
write  1;:::; N for the homomorphisms inO. If O 6 Hom(D;K ), then there exists n+1 2
Hom(D; K ) nO. We may consider the homomorphisms as characters of the monoid®; ) into
K. We have

N = jGal(E=Q)j=[E : Q] = rkD:
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(For the last equality see Proposition 8.3.) Hence there is a basiéu;) of D whose cardinal isN .
The system

X1 1(ug) + + Xn+1 N+ (U1) = O
X1 1(un)+  + XN+ N+ (un) = O
is composed oN ?:guations andN +1 unknowns, therefore has a nonzero solutio 1;:::; N+1)-
fa2Danda= [.; auj, then
0 1
IX+1 IX+1 X\I
i i(@ = i i@ auA
i=1 i=1 j=1
DS\
= oA i(y)
=1 j=1
X\I IX+1
= 8 i i(uj)=0:
j=1 =1
P
Therefore iszl i i(@=0,forall a2 D, which contredicts Dedekind's lemma (Theorem 8.1).
It follows that O = Hom(D; K ) and therefore that the action is transitive. 2

We may now prove the principal result of this section. This is particularly important, in that
it often gives us important information concerning the Galois group of certain polynomials. It is
often referred to asDedekind's Theorem

Theorem 8.3 Let f 2 Z[X] be monic andp a prime number. If f, the reduction of f modulo
p, is strongly separable, then there is an injective group homomorphisrg of the Galois group of
f, G = Gal(K=Fp), into the Galois group off, G = Gal(E=Q).

proof Asin Section 7.4, we note the standard projection of D onK . Then 2 Hom(D;K),
forall inthe Galois group G. As the action  of the previous proposition is free and transitive,
there exists a unique 2 G such that

We dene g( ) = and so obtain a mapping fromG into G. In fact, g is an injective group
homomorphism, as we now see. First,

g1 2) = (1 2) = 1 (2 )
1 (o 9g2)=01 ) 92
( 9C1) 92 = (9 1) 9( 2)):

As the action s free,
9(1 2)=09(1) 9 2);
i.e., g is a homomorphism. In addition,

9( )=idg =) =
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Let x 2 K. As s surjective, there existsy 2 D such that (y) = x, so )= (y),ie.,
(x) = x. Hence, =idg. It follows that g is injective. 2

Remark We have xed the spliting eld of f over Q (resp. f over F;) to obtain a given Galois
group of f (resp. f). Changing the splitting elds and thus the Galois groups does not of course
a ect the result above, because all Galois groups of a given polynomial over a certain eld are
isomorphic.

From the theorem which we have just proved, for a root of f, we obtain the relation

(9 N= )

where is the mapping restricted to A. is an invertible function from A into A, sincef is
strongly separable. Indeed, as a function fromA into A, is surjective and the fact that f is
strongly separable ensures thatA and A have the same cardinality. Thus onA we have

o )= =) go()= *

From Section 7.7 we know that the Galois groupG = Gal(K=F) is generated by the Frobenius
automorphism Fr : x 7! xP and is composed of cycles whose length correspond to the degrees of
the irreducible polynomials in the decomposition of the reduced polynomiaf . From the relation

o )= L , We obtain a permutation in the Galois group of G = Gal(E=Q) with the
same cycle structure. By varying the value of the primep we may nd su cient permutations

to characterize the Galois group off .

Example If f(X)=3+ X + X%+ X5, then the factorizations of the reductions off modulo 2
and 3 are

f(X)=(1+ X)L+ X+ XA+ X +X3) and f(X)= X2+ X)2+2X +2X2+ X3+ X%):

The reductions have no multiple roots and so are strongly separable. Applying the theorem, we
see thatG has elements and such that j, is a permutation with the cycle structure (1;2;3)
(a product of a 2-cycle and a3-cycle) and ;4 a permutation with the cycle structure (1;1;4) (a
4-cycle). Going a little further, we nd that the reduction modulo 5 has the form

f(X)=(B+ X)?@2+ X +3X2+4X3+ X%

This has a factor which is a square and hence a multiple root, so we cannot apply the theorem.
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Chapter 9

Determination of the Galois group

In general, it is di cult to determine the Galois group of a polynomial. However, we can often
nd certain properties of the group. In some cases this may be enough to determine the group.
We will mostly consider irreducible rational polynomials.

9.1 Inclusion in an alternating group A,

We have seen that a Galois groupG of a polynomial having n distinct roots may be considered
as a subgroup of the permutation groupS,. It is natural to ask whether permutations of this
group are even, i.e., ifG  A,. We will begin with a criterion applying to this question.

Proposition 9.1 Let F be a eld whose characteristic is not2 and f 2 F[X] strongly separable
of degreen. Then the Galois groupG of f is isomorphic to a subgroup ofA,, the alternating
group of order n, if and only if the discriminant of f, ( f), is a square inF.

EJOOf Let A =f 1;:::; ng be the set of roots off in a splitting eld E of f and (f) =
1 i aCi i). Asf is strongly separable, (f) 6 0. Also, (f) 2 F( 1;:::; n) and
(f)2= ( f) 2 F. To shorten the notation let us write for (f) and for ( f). Clearly,

is a square inF ifand only if 2 F.

We now take 2 Gal(F( 1;:::; n)=F). If = 1isthe sign of the permutation =
of A, then v v
()= (! M) = (i D=
1 i<f n 1 i n
hence ()= . AscharF 6 2, we have 6 and so ()= ifand only if the permutation

is even, or, identifying A with N, = f1;:::;ng, if and only if 2 A,. We thus obtain that
the Galois groupG xes ifand only if G A,, or equivalently, by Theorem 6.2, 2 F if and
only G A,. As isasquareinF if and only if 2 F, this nishes the proof. 2

Example Let f 2 F[X] be separable, irreducible and of degre8. From Theorem 7.2, 3 divides
the cardinal of the Galois group G of f over Q. If we now suppose that is a square, then,
identifying G with a subgroup of S, we haveG  Ajz. However, asjAsj = 3, we have G iso-
morphic to Az. If, on the other hand, ( f) is not a square inF, then G 6 A3. The only other
subgroup of Sz divisible by 3 is S; itself, so in this caseG is isomorphic to S;.
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We will now consider another criterion which enables us to determine the nature of the Galois
group, but this time only over Q.

9.2 A criterion for rational polynomials

In the last section we considered a criterion which was generally applicable. Often criteria can
only be used for certain types of eld. This is the case with the criterion which we now consider.
We will rst need to do a little preliminary work on permutations.

Lemma 9.1 If pis a prime number, then every element o5, of order p is a p-cycle.

proof Let 2 S, be of orderp. We may write

= rs

where the ; are nontrivial disjoint cycles. We have

Hence,o( i)jp, for all i. As o( ;) > 1, we must haveo( ;) = p. This implies that all the ; are
p-cycles and so is a product of p-cycles. However, we cannot have more than one such cycle,
because the permutation is onp elements. Therefore, is a p-cycle. 2

It is well-known that the transposition (1 2) and the n-cycle (1:::n) generateS,. This is
not in general true for any transposition and n-cycle. For example, the cycleq1 3) and (1 2 3 4)
in S, generate a subgroupG isomorphic to Dg. To see this, it is su cient to notice that G is
a nonabelian group of cardinal8, with an element of order 4 and an element of order2 (see
Appendix B). However, if n is prime, then any transposition and n-cycle generateS,. We will
prove a related result and then establish this as a corollary.

Proposition 9.2 For1 a<b n,the transposition (a b and then-cycle(1 2 ::: n) generate
Sy, ifandonly if (b a;n)=1.

proof Letd=(b a;n). Weclaimthatif 2h(ab);(12:::)i,then
i j(modd)=) (i) (i) (mod d):
To prove this, it is su cient to consider the cases where =(ab)and =(12 ::: n). We have
fori 6 a;b (ab(i)=i;
fori=a, (ab(i)= b
b (ab(i)= a.

for i
From these equalities, we see that, if =(ab), then
dg =) dC a0 G);

i.e., the assertion is true for = (ab). Now let us consider the case where = (12 ::: n). We
have
(i)=i+1(modn)=) (i)=i+1(modd),
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becausedjn. As
i j(modd)=) i+1 j+1(modd);

the assertion is true for = (12 ::: n). We have proved the claim.
Now suppose thatd > 1 and consider the transposition(1 2). We have

12)1)=2 and (12)=1+ d:

However,1 1+ d(modd), but 26 1+ d(modd). Hence,(12) 2h(ab);(12 :::)i. Therefore
S, is not generated by(ab) and (12 ::: n). ‘
We now prove the converse. Let =(12 ::: n);then '(a) a+ i (modn). Hence

b 3a(@) b(modn):

As1l P 2@);b n,wehave  2(a) = b. Next we notice that there exist s and t such that
s(b a)+ tn =1, becauseb a and n are coprime. This implies that

— (b as nt — (b a)s =)h (ab), i = “ab), b aj-

Now P 2 s an n-cycle. If this is not the case, then P 2 can be written as a product of
disjoint cycles of length less thann. However,

(b-a@)y 1+ (b a) 1(modn)=) nj (b a)=) nj;

because(b a;n)=1.1f 1  <n , then this is not possible, so (° 3 (1) 6 1. This means
that 1 belongs to no cycle of length smaller tham and so ° 2 is an n-cycle.

There exists a permutation 2 S, suchthat (12:::n) = P 2and (1)=a, (2)= b
Then

Sy = S, = nmi2;@2:::n)i !
= h@2 Y @2:::n) 1
= hab; ° °i
= hab); i:
This nishes the proof. 2

Lemma 9.2 Let p be a prime number. If is a transposition and a p-cycle in S,, then
H = h; i, the subgroup ofS, generated by and , is the whole groupS,.

proof Let = (ab). Thereis a permutation 2 S, suchthat (12 :::p) 1= . Let
=(aband (a9 = a, ()= b Then we have

Sp= Na’h;(12 :::pi L
because(t’® a%p)=1 (Proposition 9.2). Now

ha’t): (12 :::p)i ! h @ % @2 :::p) i
hab); i = h; i:

We have proved what we set out to establish. 2

We now turn to a result which enables us to determine the Galois group of a rational poly-
nomial under certain conditions.
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Theorem 9.1 Let f 2 Q[X] be irreducible and of prime degreep. If f has only two complex
roots, and , then the Galois groupG of f over Q is isomorphic to Sp.

proof From Lemma 9.2, it is su cient to show that G has a transposition and ap-cycle. The
mapping conjugate conjugation restricted to the set of roots off is a transposition. Also, from
Theorem 7.2, pjjGj, so G has an element of ordemp. From Lemma 9.1, this must be ap-cycle.
This nishes the proof. 2

Example The polynomial f (X)= 1+ X + X 2 is irreducible over Q: If f is reducible overQ,
then f is also reducible overZ and, in this case,f, the reduction of f modulo 2, has a root in
Z». However, this is not the case, and sd is irreducible over Q. Also, f (X ) =1+ 3 X 2, which
does not vanish inR, sof has a unique root inR. This means that f has a pair of complex
roots and we may apply the theorem: the Galois group of is isomorphic to S;.

Example The polynomial f (X)= 1 4X + X% is irreducible overQ. To see this it is su cient
to show that f, the reduction of f modulo 2, is irreducible. This is so, becausd has no root in
Z, and no polyndme of degree? in Z,[X ] divides f . The derivative of f isfq(X)= 4+5X*.
As a function de ned on R, fis positive for x* 2 and negative forx* 2. Asf(0)= 1,
f( 1)=2 andlimyns f(X)= 1 ,f has precisely three real roots. Applying the theorem,
we see that the Galois group off is isomorphic to Ss.

We will now look at a more general polynomial. Letp be a Brime number, withp 7, and
m;ng; s n iti i h thatn; < n; d P.2%n2 2m<o0 Wed
;N1;::1;Np 2 positive even integers such thatn; < nj.; an i N m . We de ne
the polynomial g2 Z[X] by

gxX) =(m+ X?)( ni+x)( nz+X) ( np 2+ X):

The polynomial g has the rootsny;:::;np 2. On an interval (nj;ni+1) R the sign of the
polynomial function g does not change, because there is no real root in such an interval. Also,
asg(n;) 6 0, the signs ofg on adjacent intervals are opposites. Thusy has st positive relative
maxima and 973 negative relative maxima. If k is an odd integer, then it is not di cult to see
that jg(k)j > 2, hence the relative maxima have a value strictly superior to2.

We now setf (X) = g(X) 2. From what we have seen, there exisky;:::;Xp 22 (N1;Np 2)

f has a root in each interval (xi;xj+1). Asf(n;) = 2, and f (x1) and f (x, 3) have opposite
signs, there must exist a root off in (nq;x1) orin (Xp 3;np 2). In addition, as f(n, 2) = 2
and limy7z, f(x)=+ 1, we have another root off in the interval (n, »;1 ). We have shown
that f has at leastp 2 real roots.

We will now show that f has two roots inC nR. We have

FOX) = (X +iPmX iPm)( n+ X) na+X)  ( np 2+ X) 2

and the constant term is not divisible by 4 and

YJ
fX)y= ( i+ X)
i=1
where the ; are the complex roots off . If we compare the coe cients of XP * and XP 2 in
the two expressions forf , then we obtain

xXP X 2 X X
i = n; and ij= nin; + m:



0 1

X
f= i 2 = ni 2@ ninj+mA = nZ2 2m

i=1 i=1 i<j i=1 i< i=1

1 I
polynomial, the complex conjugate of ; is also a root off . We have shown thatf has only real

roots except for a pair of complex conjugates.

To complete the discussion we show thaf is irreducible over Q. Now, all the coe cients of
f , except the leading coe cient, are divisible by 2 and the constant term is not divisible by 4
(4mny  np =) 46(mny np o 2)). From Eisenstein's critrerion, f is irreducible over Q.
We may now apply Theorem 9.1 to see that for the class of polynomials under consideration the
Galois group isSp. It is worth noticing that there is an in nite number of polynomials in this
class.

P P .
As ip:lZ n? 2m< O0,we have P, ?< 0, soatleastone ; 2 CnR. However, asf is a real

9.3 Possible forms of the Galois group

As we have seen, the Galois group of a polynomidl of degreen may be considered as a sub-
group of S,. However, not all subgroups ofS, are possible. If we suppose thaf is separable
and irreducible, then the Galois group off must be transitive and its cardinal a multiple of n
(Theorem 7.2). Therefore, if we are considering such polynomials, then we know that the Galois
group must belong to a certain nite subclass of subgroups ofS,. For example, if f 2 Q[X]
is irreducible and of degree5 and G is its Galois group, then 5jjGj. If we also know that the
discriminant of f is a square inQ, then we can say thatG is a subgroup ofA, (Proposition 9.1).
This limits considerably the possibilities.

Now we aim to consider the Galois groupG of a an irreducible rational polynomial of degree
n. If n =2 and|S,j = 2, in this case there can only be one possibility for the Galois group,
namely S,. Let us now consider the case wherem = 3. We have already seen (in the rst
section of this chapter) that there are two possibilities, namely S, and A,, the rst when the
discriminant of the polynomial is not a square in Q and the other when it is. We now turn to
the case wheren = 4. This is more instructive and we will need some elementary group theory.
We recall that the only subgroup of S, of index 2 is A,.

Transitive subgroups of S, divisible by 4

Now let us consider the possible Galois groups for irreducible rational polynomials of degree
4. We must nd the subgroups of S; which are transitive and whose cardinal is divisible by4.
The possible orders for such subgroups aré, 8, 12 and 24. The only subgroup of order24is S,
and the only subgroup of order12is A4. Therefore we are left with subgroups of order4 and 8.

If Gis a subgroup of order8, then G must be a Sylow2-subgroup ofS4. All such subgroups are
conjugate and hence isomorphic. Thus, up to isomorphism, there is only one possible subgroup
of order 8. If we set

=(1234) and =(13);

then we nd that
t=@1432)= 1

and that the set



is a group (generated by and ). This group is thus isomorphic to the dihedral group Ds.

Finally we turn to the case where the subgroupG is of order4. Clearly the subgroup generated
by a 4-cycle is a transitive subgroup ofS, of order 4 and all such subgroups are isomorphic. The
other subgroups ofS, of order 4 are isomorphic to the Klein subgroup, i.e.,Z, Z,. In addition
to the identity, such a group has elements of order2 of cycle types(2;1;1) or (2;2). There are
three possibilities:

All the ; are transpositions: then we must have(1 2), (1 3) and (2 3) and the product of
the rst two is the 3-cycle (1 3 2), a contradiction.

One of the ; is of type (2;2) and the other two are transpositions: in this case, the two
transpositions must be disjoint, otherwise their product is a 3-cycle and the group has the
form

fe;(12);(34);(12)34)g;

which is not transitive.

Two of the ; are of type (2; 2), which implies that the third is also of this type and the
group has the form
fe;(12)(34);(13)(24);(14)(23)g;

which we note V4. This subgroup is clearly transitive.

We are now going to consider transitive subgroups 05s. However, before doing so, we need
to introduce a little group theory.

We recall that a group is simple if it has no proper normal subgroup other thanfeg. For
n 5, A, is simple. (A proof of this may be found, for example, in [19].)

Exercise 9.1 Show thatA,4 is not simple. What can we say aboufA, and A3?
Exercise 9.2 Show that, forn 5, A, is the unique nontrivial normal subgroup ofS,.
We need a technical result, which is not standard.

Proposition 9.3 If G is a nite group and H a nontrivial subgroup such thatjGj does not divide
[G : H]!, then H contains a nontrivial normal subgroup of G.

proof Letn=[G:H]. Eachg2 G induces a permutation 4 on the quotient set G=H:
g(xH) = gxH:
As [G : H] = n, we may identify 4 with an element of S,. The mapping :g7! 4isa

homomorphism:
gh(XxH) = ghxH = 4(hxH)= ¢ n(xH):

Now ker is a normal subgroup ofG contained in H:
gxH = H =) xH =g H:
As this is true for all x 2 G, it is true for the identity element, so we obtain

eH=g H=) gl2H=) g2H;
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and it follows that ker H.
Also
G=ker ' Im =)j G=ker jin!=)j Gjjj ker jn!

If jGj does not dividen!, then jker j& 1 and soker is not trivial. 2

The knowledge of semidirect products needed in the next part of our exposition can be found
in Appendix B.

Transitive subgroups of  Sg divisible by 5

Now let us consider the possible Galois groups for irreducible rational polynomials of degree
5. The orders of such groups must be multiples ob and divisors of 120 In fact, the transitivity
does not enter into the question.

Proposition 9.4 Let G be a subgroup oS5 whose order is divisible bys. Then G is transitive.

proof By Cauchy's Theorem G contains an element of order5, i.e., a5-cycle = (Xq1;:::;Xs).
It is not di cult to see there is a power k of which sendsx; to x;, for any pair of numbers x;
and x; . Therefore G is transitive. 2

Remark We can generalize this result toS,, for any prime p: If pis a prime number andG a
subgroup of Sy such that pjjGj, then G is transitive.

Taking into account what we have seen, the possible orders of subgroups 8§ which interest
us are5, 10, 15, 20, 30, 40, 60 and 120

Let us rst consider the possible cyclic subgroups. InSs the highest possible order of an
element is6; this results from the decomposition of a permutation into distinct cycles. It follows
that the only cyclic groups of Ss whose order is divisible by5 are those generated by &b-cycle.

Now we consider subgroups of ordetO. If G is such a subgroup, then it is cyclic or isomorphic
to D10 (Proposition C.4). The rst possibility has already been ruled out, so there only remains
the second. This occurs: Ifwe set =(12345)and =(13)(45) andthenG'h ; i. If we
setH = hi andK = h i, then it is easy to check that G is isomorphic to the semidirect product
of H and K, which is not direct.

Suppose thatG is a subgroup ofSs of order 15. From Theorem C.2, G is cyclic, which is
impossible, so there is no subgroup of ordet5in Ss.

We now turn to the case wherejGj = 20. This is a little more interesting. G has a Sylow
5-subgroupP and a Sylow?2-subgroup Q, with jPj =5 and jQj = 4. Writing ss for the number of
Sylow 5-subgroups, we havessj4 and soss can take the valuesl, 2 or 4. However,ss 1 (mod 5),
so the only possibility is ss = 1. This implies that P is normal in G. As the order of elements
in P and Q are coprimeP \ Q = fegand soPQ = G. If Q is normal in P, then G is the direct
product of P and Q and so abelian. However, in this cas& has an element of orderl0, which
we have excluded, sdG is a semidirect product of P and Q, which is not abelian.

We would like to know a little more about the subgroup Q. We consider the mapping

QU Aut(P)y 7!

where

y(x) = yxy %
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forall x 2 P. If aiis a generator ofP andy 2 ker , then
yay '=a=) ya= ay:

As y and a commute, we haveo(ya) = o(y)o(a), since the orders ofy and a are coprime. If
o(y) = 2, then o(ya) = 10, and if o(y) = 4, then o(ya) = 20, both of which are impossible.
Therefore o(y) = 1, which implies that y = e. Thus is injective. As Aut(P) "' Z4, Q' Z4and
Q is cyclic. It is a simple matter to check the subgroup ofSs generated by the cycleq1 2 3 4 5)
and (2 3 5 4)is a subgroup of order20 of the required type.

What about subgroups G of order 30. The index [Ss : G] of such a subgroup is4 and 120,
the cardinal of Ss does not divide 24 = 4!, so, from Proposition 9.3, G contains a nontrivial
normal subgroup N of Ss. However, the only nontrivial normal subgroup of S5 is As (Exercise
9.2). Thus N = Ajg, which is impossible, becausgN | < jAsj. So there is no subgroup of order
30. We may use an analogous argument to show that there is no subgroup of orddO.

Finally we come to subgroups of order60 or 120. In the rst case there is only As and in the
secondsSs itself.

The following theorem sums up our work on the transitive subgroups ofS; and Ss:

Theorem 9.2 For S, and Ss we have

The transitive subgroups ofS, of order divisible by 4 are S4, A4, Dg, subgroups generated
by a4-cycle andV,.

The (transitive) subgroups ofSs of order divisible by5 are Ss, As, D1g, subgroups generated
by a 5-cycle and subgroups isomorphic to the nonabelian semidirect product @fs and Z4.

The examples ofS; and Ss show the di culty in determining those subgroups of S, which
can be Galois groups of irreducible rational polynomials of degrea. Determining whether such
subgroups are actually Galois groups of an irreducible rational polynomial of degren is another
problem. We will come back to this question presently.

In the cases we have considered, the absence of abelian groups has probably been observed.
This is not an accident, as we will soon see. We recall that if the groupgs acts on the setX,
then the stabiliser Gy of x 2 X is de ned as

Gy =fg2 G:g:x=xg
and the orbit Ox of x as
Ox = fgix:g2 Gg:
The orbit-stabilizer theorem asserts, that if G is nite, then
iGj .

iOxj = —:
19«] iGyi

We say that the action is transitive, if for any pair x;y 2 X, there isag2 G such that g:x = y.
If G is a group of permutations on a setX , then there is a natural action of G on X de ned

by
g:x = g(x);

forall g2 G and x 2 X. We will be interested here in the case wher&c S, and X = N, =
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Proposition 9.5 If G S, is transitive and abelian, thenjGj = n.

proof From the orbit-stabilizer theorem we have

iGj .

1Gxj

As G is transitive, the action of G on N, is transitive and so, for anyx 2 N,

jOxj =

jOxj=n=)j Gj = njGyj:
We claim that jGxj = 1. Let g2 G4 and takea 2 N,. As G is transitive, there exists h 2 G
such that h:x = a. Hence, using the fact thatG is abelian,

g:a= g:(h:xx) = h:(g:x) = hxx = a:

As this equality is true for any a2 N, g = e, which proves our claim. We obtainjGj = n. 2

Corollary 9.1 If pis a prime number, andG is a transitive abelian subgroup ofS,, then G is
generated by ap-cycle.

proof This is a consequence of Proposition 9.5 and Lemma 9.1. 2

We now return to the question of the existence of an irreducible rational polynomial of degree
n whose Galois group is isomorphic to a given transitive subgroup 08,. For S, itself the answer
is always positive.

We now consider the case whera = 4.

If f(X)= 2+ X4, then the Galois group off is Dg. We give a proof of this in Appendix
D.

From Theorem 7.7 we know that the Galois groupG = Gal(Q( 5)=Q) is isomorphic to
Zg, which is in turn isomorphic to C4. However, Q( s) is a splitting eld of 5(X) =
1+ X + X2+ X3+ X4, which is irreducible. Thus the Galois group of s is isomorphic to
C4 and so must be generated by a-cycle.

For V4 we have the following argument. The splitting eld of g(X) =1+ X*is Q(i; p?),
which is also the splitting eld of h(X)=(1+ X?)( 2+ X?). However, the Galois group
of h is isomorphictoC, C, (see Example 1 in the next section), so this must be the case
for g. Given that V, is the only transitive subgroup of S4 isomorphic to C, C,, V4 must
be isomorphic to the Galois group ofg.

Finally we consider A,. We will show that this group is isomorphic to the Galois group
of k(X) =12+8 X + X*“. First we notice that the discriminant ( k) = 2123% a square,
so the Galois groupG of k is a subgroup ofA4, by Proposition 9.1. As 4jjGj, jGj =4 or
jGj = 12. Now we use Dedekind's Theorem. Factorizingk modulo 5, we nd

k(X) = (L+ X)@+ X +4X2+ X3);

hence the Galois group ok has a permutation of the form (1; 3), i.e., an element of order
3. This means that 3jjGj and it follows that jGj = 12. Thus the Galois group ofk is
isomorphic to A4.

It is also the case that, forn =5, n = 6 and n = 7, all transitive subgroups of S, are
isomorphic to the Galois group of an irreducible polynomial in Q[X] (see [22]); however, for
n> 7, the question is open.
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9.4 Reducible polynomials

In the previous section we were concerned with irreducible polynomials. Here we aim to con-
sider reducible polynomials, in particular, products of two polynomials whose Galois groups are
known. We will begin with some examples.

Example 1 Letf(X)=(1+ X?)( 2+ X?) 2 Q[X]. The splitting eld of g(X)=1+ X2inC
is Q(i). As Q(i) is a Galois extension ofQ, we have

jGal(Q(i)=Q)i =[Q(i) : Q] =2

and it follows that the Galois group of g is isomorphic to the cyclic groupC,. A similar argument
shows that the Galois group ofh(X)= 2+ X?is aIsB isomorphic toC,. We now consider the
Galois group off . The splitting eld of f in C is Q(i;  2) and

QG "2):Q1=1Q6 " 2): ¢ 210" 2): Q=2:2=4:

Using Corollary 7.1, we see that the cardinal of the Galois groups of f is 4, which implies that
G is isomorphictoC4 or C, Cy. If 2 G, then

(= (= (n= 13 @OH= i

In the same way 0 D D o
— 2 — —

(2°= (2)= @=2=) (2= 2

Hence 2(i)= i and 2(p 2)= P 2 and it follows that 2 =id . This means that all elements of

G have order1 or 2 and soG is isomorphictoC, C,.

Example 2 We consider the polynomialf (X) = (1+ X + X?2)(3+ X?2) 2 Q[X]. The splitting
eldof g(X)=1+ X + X2isQ(j), wherej = exp(%). HenceQ(j) is a Galois extension of
Q. It follows that the cardinal of the Galois group of g is 2 and so this group is isomorphic to
C,. There is no diculty in seeing that the Galois group of h(X) =3+ X?2is glsoC,. What
can we say about the Galois group off ? First, the splitting eld of f is Q(j;i 3). However,
i = 12 and soQ(ji 3)= Q(j)= Q( 3), therefore the Galois group off is isomorphic
to Co.

Example 3 This time we take the polynomial f (X) = ( 2+ X3)( 5+ X3) 2 Q[X]. From
Theorem 9.1, the Galois groups ofg(X) = 2+ X2 andh(X)= 5+ X2 are both isomorphic
to Sz. The splitting eld of f is

o® 2"
Clearly [Q(Fg R

R.R R

212275 %5,2%5- 0"2i"2 %5 %5 = o2 "5

2:j; °5]:Q] 27 so the Galois group off cannot be isomorphic toS;  Ss.

In the rst example the Galois group of the product of the two polynomials is the product
of their Galois groups. In the second and third examples this is not the case. The essential
di erence is that in the rst example the intersection of the splitting elds is Q, while in the
other two examples, this is not the case. In the next result we formalize this. (Beforehand it
may be useful to brie y look at Appendix A, where semidirect and direct products are handled.)
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Theorem 9.3 Letf 2 F[X] be separable. Suppose thdt = gh, with g;h 2 F[X] irreducible, E
is a splitting eld of f and K (resp. L) a splitting eld of g (resp. h) in E. Then

Gal(E=F)' Gal(K=F) Gal(L=F)
if and only if K\ L = F.

proof First it should be noticed that the separability of f, together with Theorem 3.8, ensures
that E is a separable extension of. Let us write G = Gal(E=F), Gk = Gal(E=K) and
G. = Gal(E=L). The extensionsK and L are normal, so the Galois groupsGx and G_ are
normal subgroups ofG.

As K and L are included in E, KL is included in E. On the other hand, if is a root of f,
then is aroot of g or h and sof splits over KL , henceE KL . We have shown thatE = KL .
Using Corollary 6.1, we may write

[K :FIL :F].

[E:F]=[KL :F]= K\ L F]

If we now suppose that the Galois group off is the direct product of the Galois groups ofg and
h, then
[E:F]=[K:F]JL:F]=) [K\L:F]=1=) K\ L=F:

We now consider the converse. Settings for the subgroup of G generated byGx and G,
we have, from Theorem 6.9,

F(G=K\L=F=) G=G:

From Theorem 6.9 we know thatF (Gx \ G.) = KL = E. This implies that Gk \ G_. =idg.
Since Gk and G_ are normal subgroups ofG, the elements ofGx commute with those of G_
and it follows that G = G = Gk G.. Thus G = Gk G_ and it follows that Gk (resp. G.) is
isomorphic to G=G_ (resp. G=Gx ). We have shown that

G' G=G. G=Gk ' Gal(L=F) Gal(K=F);
from Theorem 6.6. This ends the proof. 2

Remark This result may be easily extended to the case wheré is a product of more than two
polynomials.
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Chapter 10

Norm, trace and discriminant

In this chapter we introduce some important notions which will be used later on in the text, in
particular, when we come to study in more detail number elds.

10.1 Norm and trace
Let E be a nite extension of a eld F. For x 2 E, we de ne a linear endomorphismmy of E by
mx(y) = xy;
for all y 2 E. We de ne the norm and the trace of x, relative to the extension E of F, by
Ne=r (x) = det my and Te=f (X) = tr my:

We also de ne the characteristic polynomial of x. This is just the characteristic polynomial of
the endomorphismm, and we write char g-¢ (x) for this polynomial. To simplify the notation,
when the elds E and F are understood, we often omit the symbolE=F. From the de nitions,
if n=[E : F], then,

charg—s (X)=( 1)"N(x)+ T(x)X" T+ X"

As the coe cients of a matrix of my belong to F, the coe cients of char g (x) belong to F.
In particular, if E isanumber eld and x 2 K, then Ng-q (X) and Te-q (x) are rational numbers.

Example Let n be a squarefrﬁe integer ance = Q(pm. Then [K : Q] =2 and (1;pm is a
basis ofE over Q. If x = a+ b n, then

my(1l) = a+ bpﬁ and mx(pﬁ): apﬁ+ bn;
therefore the matrix of my in the basis (1; P n) is
_a bn
M= b a

Hence
Nezo(x)=a® n  and Teq(x)=2a
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If nis negative anda; b2 Z, then Ng-g(x) 2 N and Tg-o(X) 2 N.

If x 2 F, then the matrix of my in any basis is justxl , and so
N (x) = x"; T(x) = nx and char(x) =( x+ X)":
Exercise 10.1 Show that the norm is multiplicative, i.e.,
N (X1x2) = N(Xx1)N (x2);
for all x1;%x2 2 E, and that the trace is F -linear. Also, show that the mapping
B:E E! F:(X3;X2)7! T(x1x2)
is bilinear.

If x 2 F, then m(x;F) = x+ X, so char(x) = m(x;F)". In the next proposition we
generalize this fact.

Proposition 10.1  If r =[E : F(x)], then
charg=r (x) = m(x;F)":

proof First let us consider the caser = 1. Then E = F(x). From the Cayley-Hamilton
Theorem, we know that char(my) =0, hence

( D"N(x)y+ T)x" ty+x"y=0;

forally 2 E. If we sety =1, then we see thatx is a root of char (x). Hencem(x;f )jchar (x).
Now,
n=[E:F]=[F(X): F]=degm(x;F)

and som(x; F) = char (x), hence the result forr = 1.
a basis ofE over F(x). The elementsy;z;, with i sandl1l j r, form a basis ofE over

F. Let A = (ag) be the matrix representing my, in the basis (y;), for the extension F (x) of F.
(Notice that A2 M ¢(F).) Then

x xs
Xy; = &Yk =) X(Yiz)= ai (Ykz):
k=1 k=1

Now we order the basis(y;z;) as follows:

(There arer blocks A.) Thus
charg-r (X) = (det( A+ Xlg)" = m(x;F)";

where we have used the case=1 in the second equality. 2

The following result provides an expression foNg=¢ (X) in terms of the conjugates ofx over
F.
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Corollary 10.1 Let E be a splitting eld of the minimal polynomial m(x;F). If n = [E : F],

[F(x): F]= dand x3;:::;Xxq are the roots of m(x;F) in E (with repetition of roots possible),
then I n

W g n X

Ne=r (X) = Xji Te=r (X) = g X

i=1 i=1

and .
Y S
char g=f (x) = ( xi+X)

i=1
proof We have
[E:F]1=[E:FMX)IF(X):FI
hence[E : F(x)] = §. From Proposition 10.1,
Ly
chare=g (x)= MOGF)T = ( X+ X)
i=1

mx;F)= ag+ aX + +ag X% 1+ X%
then . n
m(x;F)d = af + + 4 XN T X

It is clear that the constant term is ag however, the coe cient of X" ! needs an explanation.
From the multinomial theorem, with ag = 1, we have

) X n Y )
(ap+ arX + +ag (X9 1+ X9T = k'k'd""k (a X ki
k0+k1+ +kd:% 0:K1, ..., Rd 0i d
To obtain the coe cient of X" 1, rst we notice that
Ko+ ki+ +Kkg= % (10.1)
and
Okg + 1k +2ky + +dkg=n 1 (102)
Multiplying equation (10:1) by d we obtain
dko + dkq + + dkg = n: (10.3)

We now subtract equation (10:2) from equation (10:3). This gives us
dko+(d 1)k +(d 2kp+ +(d (d 1)kg 1=1;

from which we deduce thatk; =0,for0 i<d 1,andky 1=1. To nd kg itis sucient to
use equation(10:3):

d+ dkg = n =) kd:% 1
Hence, for the term with X" 1 we have
n n
d Xd 11 Xd a 1: E Xn l:
0;:::0;1;% 1 % 1 dad .
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We may now continue the proof. Sinceag = ( 1)¢ Qidzl xi and ( 1)"N(x) = ag we have
N(x) = idzl Xj “. In a similar way, ag 1 = idzl xi and T(x) = Fag 1 imply that

T(x)= 5 4 x. 2

Separable extensions

Suppose now thatE is a nite separable extension of the eld F. If [E : F]= nand C is

3.2). (If E is a number eld, then it is natural to take C = A(C=Q), the eld of algebraic
numbers, from the remark after Theorem 2.6.)

Proposition 10.2 Suppose thatE is a nite separable extension ofF. Then, for all x 2 E,

N X
Ne=r (X) = i(x); Te=r (X) = i(x)
i-1 i-1

and

Y
chargs (x)=  ( i(x)+ X):
i=1

proof We have
[E:F]=[E :FXIFX):FI

If [F(x): F] = d, then [E : F(x)] = §. From Corollary 3.2, we know that there are d F-
distinct associatex;. From Theorem 3.2, each ; can be extended to anF (x)-monomorphism |

from E into C. An F (x)-monomorphism is anF -monomorphism, thus we obtainn (= § d) F-
monomorphisms ; from E into C. As [E : F] = n, theseF-monomorphisms form the complete
set of F-monomorphisms fromE into C. Now we have

I n |

v Wl q oW
i(x)= ix) = Xi = Ng= (X)
i=1 i=1 i=1
and
hd n X n X
=g 0= 5 xi= Tes (X):
i=1 i=1 i=1
For the characteristic function we have
| n I n
Ve Y ta Y S
( ix)+X)= ( ix)+X) = ( xi+X) = charg=f (x):
i=1 i=1 i=1
This nishes the proof. 2

The proposition which we have just proved has an important corollary. If we have a tower
of elds F K E, where E is a nite extension of F, then it makes sense to speak of the
compositionsNg=r Ng=x and Ty=r Tg= , becauseNg-x (x) and Tg=« (X) are elements of
K, forany x 2 E.
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Corollary 10.2 (transitivity of norm and trace) If K=F and E=K, whereE is a nite separable
extension of F, then

Ne=r = Nk=r Ng=x and Te=r = Tk=r Te=x:

proof Letn =[K :F]Jandm =[E : K]. From Proposition 3.5, K is separable overF and
E separable overK. Let N be a normal closure ofE over F. We saw in Section 5.1 thatN
may be considered as the splitting eld of a polynomialf 2 F[X] which is a product of minimal
polynomials m(;F ), with 2 E. As E is a separable extension oF , the polynomials m( ;F )
are separable, and sd is separable. Therefore, from Corollary 3.4N is a separable extension
of F. We have shown thatN is a nite Galois extension of F.

Let C be an algebraic closure ofN. From Corollary 3.2, there are n F-monomorphisms

the monomorphisms ; and ; may be extended to a monomorphism®; or 4 from N into C
(Theorem 3.2). Proposition 5.3 ensures thatN is normal over K, since N is normal over F.
Applying Proposition 5.2, we see that, for eachi and eachj, *i(N)= N and 4 (N)= N, hence
A and 4 are automorphisms ofN, for eachi and j. Hence we can compose the mappings
and .
V\/Je now use Proposition 10.2. Ifx 2 E, then
0 1 0 1
X0 X0 X0 X0 X
Tk=r Te=x (X) = @ (A = N@ A (XA =

i=1 j=1 i=1 j=1 i=1 j=1

N (X):

Each mapping *y;. is an F-monomorphism of E into C and there aremn such mappings. We
claim that for distinct pairs (i;j) these mappings are distinct. Suppose that;’y = *’x on
E. Then, asK E, this is also true on K. Given that %k = "k =idk, and Njx =
and Mjx = |, we have ; = |, ie,i = 1. Also, ® =" and % is a monomorphism, hence
A (X) = *k(x), and this is so for anyx 2 E. It follows that ; = , and thus that j = k. We
have shown that the F-monomorphisms”; Yy, restricted to E, are distinct and so form the set of
F -monomorphisms fromE into C. Hence, using Proposition 10.2 again, we have

XX
Te=F (x) = N (X) = Tr=r (Te=x (X));

i=1 j=1
forall x 2 E.
For the norm we proceed in an analogous way:
1
Yy m A \d
Ne=r (X) = A= N@ A 0A = Np Neex (X)

i=1j=1 i=1 j=1

This ends the proof. 2

Remark Corollary 10.1 supposes thatE is a splitting eld of the minimal polynomial of x over
F. Using Corollary 10.2 we may show that Corollary 10.1 is true if the eld E only contains
a splitting eld K of the minimal polynomial (providing that E is a separable extension of).
Indeed, we have the tower of eldsF K E and Ng=g (X) = Nk=r Ng=x (X). Asx 2 K, we
have Ng—x (x) = x!EX1 Thus

| [Kd:F][E:K] | [E:F]

E:K
Ner ()= N () =50 =



For the trace the calculation is analogous.

We now suppose thatE=F is not only separable but also normal, i.e. E is a Galois extension
of F.

Corollary 10.3 If E is a nite Galois extension of the eld F, then for all x 2 E

Y X
Ne=r (X) = (x) and  Te=r (x) = (x):
2Gal (E=F ) 2Gal (E=F )
proof AsE isa nite separable extensionF, there aren = [E : F] F-monomorphisms q1;:::; ,
of E into an algebraic closureC of F. However, E is a normal extension ofF and C an alge-
braic closure of F, with C=E, therefore ;(E) = E, fori = 1;:::;n (Proposition 5.2) and so
1;::1; n 2 Gal(E=F). As the cardinality of Gal(E=F) is n, the ; form the Galois group. The
result now follows from Proposition 10.2. 2

We conclude this section with a result concerning the bilinear formB de ned in Exercise
10.1:
B:E E! F:(Xy;x2)7! Te=r (X1X2):
Corollary 10.4 If E is a nite separable extension ofF, then the bilinear form B is nondegen-
erate.

proof Suppose thatB is degenerate, then there exists a nonzemp; 2 E such that T(x1x2) =0,
forall x, 2 E. If x 2 E, then there existsx, 2 E such that x;x, = X, s0T(x) =0, forall x 2 E.
However, this means that [, i(x) =0, for all x 2 E, which contradicts Dedekind's lemma
(Theorem 8.1). ThereforeB is nondegenerate. 2

10.2 Discriminant of a polynomial

In Section 8.5 we introduced the discriminant of a polynomial. Also, we de ned the resultant of
two polynomials and stated an important relation between these two concepts. Our aim in this
section is to study these concepts in more detail. In order to make the reading easier, we regive
the de nitions.

Resultants

and n are understood) as follows:

2 3

@m am 1 am 2 0O 0 O

0 0 0 a a O

.,_a0 0 0 a a a
Srn=8h by b, 0 0 0
0 b b 0 0 O

0 0 0 bh by O

0 0 0 b b by
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We obtain Sy, (f;g) by shifting the line vector of the coe cients of f successively to the right
by 0;1;:::;n 1 steps and the vector line of the coe cients of g successively to the right by
0;1;:::;m 1steps and then lling in the remaining places with 0.

Remark If 0 degf = k<m, then we havea,, = an, 1= = a4+ =0 andif f =0, then
a; =0, for all i. We have an analogous situation ifdegg 6 n.

Here is an example. Withm =3 ann =2, we have

2 3
a3 a a a O
0 a3 a a a
Smn(f;g)=8 b kb 0 O
0 bp b v O
0 0 by by by

The resultant of f and g, which we note Ry, (f; g), (or R(f;g), if m and n are understood) is
the determinant Sy (f; g)j. Clearly,

Rn;m (g-f) = ( 1)mn Rm;n (f; 9) (10.4)

Remark We may consider thea; and Iy as variables. In this way we obtain a mapping from
Fm*1  F"*1 into F, which is mn-homogeneous.

Proposition 10.3 Letf 2 F[X]etg2 Fy[X]. If m nandh?2 F, ,[X], then
R(f + hg;g) = R(f;9):

In the same way, ifm nandh2 F, [X], then
R(f;g + hf ) = R(f;9):

proof Let us begin with the casem n. If h(X) = cis a constant polynomial, then the
coe cients of f + hg are

From this, we see that the rst line of S(f + hg;g) is the rst line of S(f;g) plus ¢ multiplied
by a line in the bloc of the . This also applies to the lines2;:::n, so in this case we have

R(f + hg;9) = R(f;9).
Now suppose thath = ¢cX. Then the coe cients of f + hg are

Again the rstline S(f + hg;g) is the rstline of S(f;g) plus ¢ multiplied by a line in the bloc of
the iy . This also applies to the lines2;:::n, so in this case too we haveR(f + hg;g) = R(f;g).
If h=cy+ ¢ X, then

R(f + hg;g) = R(f +(c+ aX)g:9 = R((f + cg) + c1Xg;9) = R(f + cg:9 = R(f;9):

Continuing in the same way, we obtain the rst result. The second result is obtained in an
analogous way. 2

In the next proposition we consider the case wherelegg < n or degf < m . This result is
useful in proving the fundamental theorem which follows.
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Proposition 10.4 Letf 2 Fh[X]andg?2 F,[X]. If 0 degg=k m=degf, then

Rm;n (f; g) = anm kRm;k (f; 9)5 (10-5)
If, on the other hand, 0 degf = k n =degg, then
Rmn (f;9)=( D™ OB “Ryn (F;9): (10.6)

proof Let us look at the rst equation. If k = n, then there is nothing to prove, so let us

suppose thatk < n. Then b, =0 and the only nonzero element in the rst column of the matrix

Smn (f;9) is an. The submatrix obtained by eliminating the rst line and the rst column

Smn (f;9) is Smn 1(f;9). If we continue the process, then we nally obtain the rst formula.
Now we look at the second formula. Using the formulag10:4) and (10:5) we have

1)™ Rmn (9:)

D™ B “Rux (g;f)

D™ *( )™ R (f;9)
1)m gt kR, (F:9):

This ends the proof. 2

Rmn (f;9)

|
~ N~

We now turn to one of the most important results of this section. We will see that there is a
relation between the roots of the polynomialsf and g in a splitting eld and the resultant.

Theorem 10.1 Letf 2 Fh[X]andg2 F,[X]. If degf = m, then

N
Rmn (f;9) = a”m_ a( i);

i=1

where the ; are the roots off in some splitting eld of f. On the other hand, if degg = n, then
mn Y]
Rmn (f;9)=( )™ f();

where the ; are the roots of g in some splitting eld of g.

proof We begin with the rst formula and suppose that n m and that f has the roots

matrix S, (f;g) is upper triangular and on the diagonal we havea;, n times and by m times,
therefore

\d
Rmpn (f:9) = an ) = a%_ a( i);

so the result is true fors =0.
Now suppose thatO<s n and the resultis true up to s 1. Dividing g by f we obtain

g=fqg+r
with degr < degf = m. Then

degg=degfqg degf =deg(g r) m n m:
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From Proposition 10.3 we have
Rmn (f;9) = Rmn (f;9 fq) = R (fi1):
We setdegr = k <s and use Proposition 10.4 and the induction hypothesis.

Case 1:r 60

R (fi1)

1
QD
35

=~
Y
3
=
—
I
-
N

and so the result is true fors.
Case 2:r =0

In this case the lastm lines of the matrix Sy, (f;r ) are composed of zeros, hend@m., (f;r)=0.

In addition, for any root ; of f, we haveg( iéf a( i)f (i) =0, which implies that ; is also
a root of g. This implies that the expression im:l g( i) vanishes, so in this case also we have
equality. Thus the result is true for s.

In both cases, the result is true fors, so by induction, the result is true for all s n.
Now let us suppose thatm >n. Then g 2 F,[X] and, using Proposition 10.4, we have

Rmm (f;9) = an "Rma (f;9):

In addition, from what we have seen above,

\d
Rmm (;9)=an  9(i):
i=1
Therefore,
\d \d
an "Rmn(f;9)=an  9(i)=) Rmn(f;9)=ay 9(i):
i=1 i=1
Hence, form > n also the formula holds.

in some splitting eld. Then,

Rmn (;9) = ( D™ Rum (9:F)
Nd
= (. p™ME f());
j=1
where we have used the rst part of the theorem. 2
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Corollary 10.5 If degf = m, degg = n and, in a splitting eld of f and g, the roots of f (resp.
g)are 1;::: m (resp. 1;:::; n), then
. y oy
Rm;n(f;g):amﬁr;n (i j):
i=1j=1
proof It is su cient to notice that

gXxX)= (X 1) (X )
and then apply the rst part of the theorem. 2

Discriminants
P .
Let f(X)= I, aX' a polynomial with coe cients in a eld F. We suppose that the degree

discriminant of f is de ned by
Y
(f)=ay ? (i
1 igj m

We will see in the theorem which follows that this de nition is unambiguous: it does not depend
on the splitting eld chosen.

It is usef@l to notice that ( f) belongs toF. Indeed, the multivariate polynomial
A=ai" 27 o n(Xi Xj)?is a symmetric polynomial in F[X4;:::;X,]. Consequently,
from Corollary B.1, ( f) 2 F. Using the same corollary, we may also say that, if 2 R[X],
where R is an integral domain, then ( f) 2 R.

In Section 8.5 we stated the following result linking the discriminant of a polynomial and the
resultant of the polynomial and its derivative. Here we prove this result. it.

Theorem 10.2 If char F =0 or char F = p> 0 and p 6y, where degf = m, then
()= Y™™ e Rym 1 (O
proof We have

N 0 Y
fX)=an (X )= f(id)=an (i ;)
i=1 jei
Hence,
L
Rm:m l(f;fo) = am ! fo( )
i=1
2 1Yn
= ay (i i)
i=1 j6i
2 1 Y
= ay" i G0
1 i< m
2m 1 m(m 1)=2 Y 2
= ay ( 1) (i j)
1 i m

( Hnm DZa, (1)
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and the result follows. 2

If char F = p> 0 and pjm, then degf °= k<m 1. In this case, ifk 6 1 |, then

Rmm a(fif O): am ! kRm;k (f;f 0)
and
(f)=( pmm D=0 K 2R (i 9:

Remark The polynomial f has a multiple root if and only if ( f)=0. From the formulas here,

we see that we are able to determine the existence of a multiple root only taking into account
the coe cients of f. We should also notice that the formulas show that the discriminant belongs
to the eld F.

Example 1: ( b+ aX + X")

Our aim in this section is to determine a formula for the discriminant of the polynomial f (X) =
a+ bX + X" 2 F[X]. We will suppose that E is a eld containing F and the roots of f .

Lemma 10.1 If f 2 F[X]is monic and ¢ 2 E, then

( o+ X)F(X) =f( o)?( f(X):

proof Let 1;:::; n betherootsoff in C. Thentherootsof( o+ X)f(X)are o; 1;:::; n
and
Y
( ot X)F(X) = (i )
0.i<j n
Y
= (o ) (i §)?
1jn 1 i< n
= f( 0)?( f(X)):
This ends the proof. 2

We need a second preliminary result.

Lemma 10.2 If f(X)= c+ X" 2 F[X], then

n(n 1 1

(f)=C ) =z n"c
proof Let i;:::; , be the roots off in E. Then
1 o= D (10.7)
Also,
Y 0 Xy 0 Y
fX)= ( i+X)=) f(X)= ( 7 +X)=) £C)= ( ;+ i)
i=1 i=1j6i isi

It now follows that

) Y Y
(D™ ()= ()= np?

i
i=1 i=1




and, using the identity (10.7), we obtain

n(n 1)

( ) (f)_n(l n)n 1:nn( 1)n(n 1)Cn 1:nncn 1;
hence the result. 2

We are now in a position to consider the polynomialf (X) = b+ aX + X" 2 F[X]. The
following theorem provides a formula for the discriminant of f involving only its coe cients.

Theorem 10.3 For the polynomial f (X) = b+ aX + X" 2 F[X], with n 2, we have the

formula
(n_1(n 2 1)(n 2)

(D= 1y =z (0 " & +( 1

proof For the the case wherea = 0 we may use Lemma 10.2, so we may suppose thaté 0.
We begin with the case whereb=0. Then, using Lemmas 10.1 and 10.2, we have

n(n 1)

HH] 1:

(f) = X@+x""h
= a?(a+Xx"?
- az( 1)w(n l)n 1an 2
- ( 1)(n 1)(n 2) (n )n 1 n
= (DTF (D ()T nn
becauseb=0.
Now we turn to the case whereb 6 0. The calculations are much longer. If 1;:::; , are
the roots of f, then, for all i,
b+a;+ '=0 and 1 n=( 1"b: (10.8)

As b 6 0, none of the roots ; vanish. Now, proceeding as in the proof of Lemma 10.2, and
setting A = ( 1)™“z ( f), we have

i i
A= %)= (a+n Y=
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Using the expressions (10.8), we continue:

A = (;)n:(ai+np)
- (;)n:(ai+n(b a 1)
- (;)n:( bna(n 1) )
- ( ;)" IY"l ( a(nbn 5 Sain 1)
= (la oy |Y]1 a(nbnl) |
- ;)n a'(n 1) ( a(nb” )
= (a1 bra a(nb” 5t a(nb” . )

We now simplify the expression on the right-hand side:

A = (;)n ( D"B'n" an(n 1" P+ abn 1)

( D" ( "B " a'n(n " l+a'(n 1)"
( D" ("B Ipn a"(n 1) 1

51 lnn ( l)n(n 1)n lan

( 1)n l(n 1)n 1an + n”U“ 1

n(n 1)

Multiplying through by ( 1)~z , we obtain the desired result.

Applications We have
forn=2, ( f)=a® 4b
forn=3, ( f)= 4a° 277;
forn=4, ( f)= 27a*+2560°.

Example 2. ( p)

Proposition 10.5 If pis an odd prime, then
1
( p=( D7 P~
proof Let be a primitive pth root of unity. Then

1+XP=( 1+X) p(X)=) pXP I= (X)+( 1+X) 3(X):
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Substituting ' for X, since ,( ') =0, we obtain

W1 0 iy = p{1pi(p 1)
a D a1
_ PPt
T Qe
i=1 ( )
pp ! — p 2.
(rt@ 7
P
(The second equality follows from the relations’ P_;*i = 222 and P =1 and the third from
the identity o(X)=1+ X+ +XP 1)
Also,
Bl , o X1y )
p(X)= ( "+X) =) p(X) = ( '+X)
i=1 i=1 j6i
=) o=+
i6i
w1 ) & ly . . Y . .
=) o= ( '+ = '+ ")
i=1 i=1j6i igi
Therefore,
Y i i (P _2(p 1) H i p_1
( = (' D*=( 1 > (' = T2
j<i isi
This ends the proof. 2

10.3 General discriminants

We have seen the notion of the discriminant of a polynomial. Here we extend this notion, al-
though at rst it will not be clear how the new concept is actually an extension of the previous
one. This we will see later.

Let E be a nite separable extension of degreen of a eld F. We note 1;:::; , then
F -monomorphisms ofE into an algebraic closureC of E and we taken elements 1;:::; p in
E. We de ne the discriminant of the set 1;:::; , by
disce=¢ ( 1;::5; n) =] i i)jz;

i.e., the square of the determinant of the matrix S = ( i( j)). As we take the square of the
determinant, the order of the ; and ; do not have an e ect on the value of the discriminant.
We will also see that the discriminant does not depend on the algebraic closure we use, hence
we are justi ed in speaking of the discriminant.

Exercise 10.2 Show that
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Proposition 10.6 p Suppose thatU = fuy;:::;ungand V = fvg;:::;vag are sets of vectors in
E such thatu; = = [, & vj, with a; 2 F. Then

proof By de nition

where the ; are the n F-monomorphisms ofE into an algebraic closure ofE. Now
xX X
i(u)= i( akw)= ajk i (vk):

k=1 k=1

We de ne the matrices X = ( i(uj)), A = (a&j) andY = ( i(vj)). Then X = YA! and so
(det(X))? = (det( Y AY))?, i.e.,

as required. 2

The next result will enable us to show that the discriminant is indeed independant of the
algebraic closure ofE chosen.

Proposition 10.7 We have

wherejTe=¢ (; j)j is the determinant of the matrix T = (Te=¢ ( i ;).

proof As above let us setS=( i( j)). Then
|

0 !
S's= k(i) = Te== (i j)

k=1
hence

iSi%=jTe=r (i )it
This ends the proof. 2
Remark From the proposition we see that disg-¢ ( 1;:::; n) is independant of the algebraic
closure chosen. Also, aJe-¢ ( ; j)2F,forl i;j n,wehavedisg= ( 1;:::; n) 2 F.

The discriminant can help us to determine whethern elements in an extension of degrea
form a basis of the extension.
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does not vanish.

P
roof Let J-”zl G j =0, wheretheg 2 F and at least onec; 6 0. Then, for 1 i n,
jn=l ¢ i( j)=0. This implies that the columns of the matrix S=( ;( j)) are dependant. It

disce=r ( 1;:::; n) =0, thenthe rows of the matribs are dependant, hence there exist elements
Ci;:::;¢y 2 F, with at least onecps 0, such that inzl G i(j)=0,forl j n.Asthe ;
form a basis ofE over F, we have inzl G i(u)=0,forall u2 E; therefore the monomorphisms

i are dependant. However, this contradicts Corollary 8.1. Hence discr ( 1;:::; n)60. 2

In Section 8.5 we de ned the discriminant of a polynomial. There is a relation between this
notion and the notion of discriminant which we have de ned here.

Proposition 10.9 Let E be a nite separable extension of a eldF; then there exists 2 E
such that E = F( ) (Proposition 3.4). If m = m(;F ) and degm = n, then the elements

L ::::; " 1form a basis ofE over F. We have
. n(n 1)
discer (L; ;2253 " H=( m)=( 1)" 7 Nex mY):
proof Let C be an algebraic closure oE and i;:::; 5 the n F-monomorphisms fromE into
C. SinceE = F( ), each ; is determined ;( ). Moreover, isarootofm2 F[X],s0o i( )is
alsoarootofm. If = q; 2;:::; p are the roots ofm, then we may suppose, without loss of
generality, that {( )= ;. Consequently, i( /)= ! anddisg=F (1;;:::; " 1)isthe square
of the determinant of the matrix
0 1 2 o0t !
NINEEEE:
R
However, S is a Vandermonde matrix, therefore
Q2 Y 2
isif= (i )= ( m)

i<j

Moreover, v ) s Y
(i =1 = Ci )
i< i6]
and, from Proposition 10.2,
Ve
NEe=r mo( ) = i mo( )
i=1

Now, ; m ) =m°® ;( ), becausem 2 F[X], thus

Y
Ness mY ) = ml () = m% ):
i=1 i=1
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Finally, as m(X) = i + X), we have

Qn
i=1

04—Y . .
m( )= )

j6i

and so
Yy v
Ness mY( ) = C 5+ 0
i=1j6i
= C i+ 0
isi
= (DT (0 D

which implies that
n(n 1)
(m)=( )" 7 Nes mY):

This ends the proof. 2

Remark From Proposition 10.9 and the calculation of the discriminant of the pth cyclotomic
polynomial , for p an odd prime (Proposition 10.5), we obtain

disco( )= (L; ;i P 2)=( 1T PP 3
where is a primitive pth root of unity, because | is the minimal polynomial of over Q.

We now use the previous proposition and the notion of norm and trace to calculate the
discriminant of the p'th cyclotomic polynomial, wherer 2 N .

Corollary 10.6 We have
( p)=( 1" RUCESREE

wherec = (Sr), if pisodd orr> 1, and c=0 otherwise. ( is the Euler function.)

proof Let be a primitive p'th root of unity. Setting n= (p')= p" *(p 1), from Proposition
10.9

n(n 1)

( pr): diSCQ():Q(l;;ZZZ; " l):( 1) 2 NQ():Q gr():
We now calculate the norm. First, using Exercise 7.4, we have

r ro 1

: XP o1 prPoLce 1)
= N 0 — .
pr(X) = p(XP ) P T 1 ) o () TR
because P 1=0. Hence,
0 p' pr 1 .
pf( ): pr 1t 1

To calculate N ( y=q g, () we use the multipliplicity of the norm. To begin, we determine
No()y=o( ™ 1). This norm is the product of all the primitive p'th roots of unity (Corollary
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10.1), i.e.,( 1)" times the constant term of . However, ,(X)= ,(X P 1) (Exercise 7.4)
and o(X)=1+ + XP 1 hence

No(y=o( P H=( 1™

Let us now calculateN g ( =g ( . 1). To do so we initially notice that ' "isa primitive
pth root of unity. ( P ' is clearly a pth root of unity; if ( P ")k =1, with k <p, then there is

a poweru of less thatp” such that p* = 1, which is impossible, so P’ "isa primitive pth root
of unity.) Let  be a primitive pth root of unity. We apply Corollary 10.3 to the tower of elds

Q Q() Q() toobtain

r 1

r 1
No()=o( P 1)= Ng()=o No()=o()( " 1):

Moreover,

r 1 ro1 r 1

No()=o()( " n=(*"
since P © 12 Q() and

QO):Ql_ (¥) _ s

RURUIT gy ™ " T °
Hence, we have to consider
No(yo (P ° 1P " = Ngyo( ® © 17

Since P 'isa primitive pth root of unity, its minimal polynomial over Q is . The minimal
polynomial of P' ' loverQis (1 X), which has the splitting eld Q( ). Therefore, from
Corollary 10.1,

ro 1 |3{1 A
No()=o( " D= (" D= D' ;)= Y* 'p
i=1
and -
No( )=o p' )= (P pP = pe v Tpt
To conclude

P Nog )=Q(1p A 1)n1 S U CIE P
No()=o( P 1) ( rpe

0 —
No()=o p() =

If pisoddorr> 1,thenn= (p") is even and the parity of % is that of 5. On the other
n(n 1)

hand, if pis even andr =1,thenn= (2)=1,s0( 1)~ z =1. This nishes the proof. 2

Further on we will generalize this result, i.e., we will determine (), foranyn2 N .
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Part 11

Algebraic Number Theory
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Chapter 11

Number elds

In our previous work we have already seen number elds, namely nite extensions of the rational
numbers Q. In this chapter we will look into these elds in more detail. In particular, we will
study a natural subring occurring in such elds, namely that composed of algebraic integers.

11.1 Algebraic integers

We recall that an algebraic number is an element 2 C for which there is a polynomialf 2 Z[X],
such that f ( ) = 0. The algebraic numbers form an extension of the eldQ. We say that 2 C

is an algebraic integerif there is a monic polynomial f 2 Z[X], such thatf ( ) =0. An algebraic
integer is an algebraic number, but the converse is not necessarily true; for example, as we will
soon see, a rational number is an algebraic integer only if it is an integer.

Lemma 11.1 Let f 2 Z[X] and f = gh, with g;h 2 Q[X]. If f and g are monic, then
g;h2 Z[X].

proof Let m (resp. n) be the smallest positive integer such thatmg (resp. nh) belongs toZ[X].
Since g and h are monic, we claim that the contents ¢(mg) and c(nh) have both the value 1.
(We recall that the content of a polynomial in Z[X] is the hcf of its coe cients.) If ¢(mg) 6 1,
then the coe cients of mg have a common divisord > 1, such that djm, sinceg is monic. If we
setm® = T <m, then m% 2 Z[X], a contradiction, since m®is a positive integer. A similar
argument applies to ¢(nh). We claim that this in turn impliesthat m=n=1: f m> 1or

n> 1, then mn > 1; for p a prime divisor of mn, we have
mnf = (mg)(nh) =) 0= mgnh;

where the bars indicate the reductions modulop. As Z,[X ] is an integral domain, becauseZ, is
a eld, mg = 0or nh = 0, which implies that p divides the coe cients of mg or the coe cients of
nh. However, this is impossible, because(mg) = c(nh) = 1. Thereforem = n = 1, as claimed.
This implies that g;h2 Z[X]. 2

Theorem 11.1 If 2 C is an algebraic integer, then there is a monic polynomiaf 2 Z[X]
such thatf ( ) =0. If f is of minimal degree, thenf is irreducible in Q[X].

proof If f is reducible in Q[X], then there are nonconstant polynomialsg; h 2 Q[X] such that
f = gh. We may suppose thatg and h are monic. From Lemma 11.1, we haveg;h 2 Z[X]. In
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addition, g( ) =0 or h( ) = 0. However, degg < degf and degh < degf and so we have a
contradiction to the minimality of f. Thus f is irreducible. 2

From this result we obtain an important corollary.
Corollary 11.1 If 2 C is an algebraic integer, then the polynomiam = m(; Q) liesin Z[X].

proof Let f be a monic polynomial in Z[X ] of minimal degree such thatf ( ) = 0. Then f is
irreducible in Q[X] and mjf . It follows that m = f. 2

Exercise 11.1 Show that if E is a number eld and x 2 E is an algebraic integer, thenNg-q (x)
and Tg-q (x) are integers.

We now consider the algebraic integers inQ.
Theorem 11.2 The number 2 Q is an algebraic integer if and only if is an integer.

proof If 2 Z, then f(X) = + X 2 Z[X]and f is monic. Clearlyf( ) =0, so is an
algebraic integer. Now suppose that 2 Q is algebraic. Ifm = m(; Q), then m 2 Z[X] and
m( )=0. As isarootofm, g(X)= + X divides m. Now, m is irreducible and sog = m;
it follows that m 2 Z[X], which implies that 2 Z. 2

We will now establish criteria permitting us to decide whether a complex number is an
algebraic integer. This will enable us to show that the collection of algebraic integers, which we
will note O, is a subring of the eld of algebraic numbers.

Theorem 11.3 The following conditions are equivalent:
a. is an algebraic integer;
b. The additive group of the ringZ[ ] is nitely generated;
c. belongs to a subringR of C whose additive group is nitely generated;

d. There is a nitely generated subgroupG 6 fOg of the additive group of C such that

G G
proof a:=) b:If isarootof a monic polynomialf 2 Z[X] and degf = n, then the additive
group of Z[ ]is generated by the elementsl; ;:::; "

b:=) c¢:=) d: These implications are elementary.

d: =) a: Suppose thata;;:::;a, generateG. Then each term a; can be expressed as a
Iinear combination of the & with coe cients in Z. Therefore there is a matrixM 2 M (Z) such
that 0 1 0 1 0 1

a1 a a1
B XK=MB: K5 0. MB: k=0
an an an
As all the & are nonzero,det( | M) = 0. However, this determinant can be written :

"t 1 "+t +0=0;
with ¢; 2 Z. Hence we have a monic polynomiaf 2 Z[X]such thatf( )=0. 2

We may now show that the subsetO of C composed of algebraic integers is a ring.
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Corollary 11.2 The subsetO of C is a ring.

proof It is su cient to show that + and are in O, when and areinO. Letm, n
be the degrees of the minimal polynomials of , . Then 1; ;:::; ™ !is a generating set of
the additive group of Z[ Jand 1; ;:::; " ! a generating set of the additive group ofZ[ ]. The
elements ' J, for 0 i mandO0 | n, form a generating set of the additive group of
thering Z[; ]. AsZ[ + ]isasubringofZ[; ], from11.3c., + s algebraic. A similar
argument shows that  is also algebraic. 2

We may generalize the notion of algebraic integer. IR is a commutative ring and S a subring,
then we say that 2 R is integral over S if there is a monic polynomial f 2 S[X] such that
f( )=0. With Theorem 11.3 as model we may establish criteria allowing us to decide whether
an element ofR is integral over S.

Theorem 11.4 If S is a subring of the commutative ringR, then the following conditions are
equivalent for an element 2 R:

a. s integral;

b. The S-module S[ ] is nitely generated;

c. belongs to a subringJ of R containing S which is a nitely generated S-module;
d. There is a nonzero nitely generated S-module N in R such that N N.

proof a: =) b:If is a root of a monic polynomialf 2 S[X] and degf = n, then " and

all higher powers of can be expressed as linear combinations (with coe cients inS) of lower

powers of . HenceS[ ]is generated by the elementdl; ;:::;
b:=) c:=) d: These implications are elementary.

d: =) a: Suppose thata;;:::;a, generateN. Then each term a; can be expressed as a
linear combination of the a; with coe cients in S. Therefore there is a matrixM 2 M ,(S) such
that 0 1 0 1 0 1

ai ai aQ
B K=MB: K= 1. B : K=o
an an an
As all the g are nonzero,det( | M) = 0. However, this determinant can be written:

"t 1 "+t +0=0;

with ¢ 2 S. Hence we have a monic polynomiaf 2 S[X] such thatf( )=0. 2

Using arguments analogous to those employed in the proof of Corollary 11.2 we see that the
collection of elements inR which are integral over S form a subring of R. We call this subring
the integral closure of S in R. If the integral closure is S itself, then we say that S is integrally
closed inR. If S is an integral domain and integrally closed in its eld of fractions, then we say
that S is integrally closed. Above we saw thatZ is integrally closed in Q, its eld of fractions,
so Z is integrally closed.

If S is a subring of the ring R such that every element ofR is integral over S, then we say
that R is integral over S.

The integral closure of S in R is naturally an S-module. We will now explore some of its
properties. We rst consider minimal polynomials over integrally closed domains.
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Proposition 11.1 Let R be an integrally closed domain, with eld of fractionsK, and L an
extension of K. If x 2 L is integral over R and L is a splitting eld of the minimal polynomial
m = m(x; K ), then all the K -conjugates ofx belong toL and are also integral overR. It follows
that m 2 R[X]. If S is the integral closure ofR in L, then S\ K = R.

proof Let us write R for the integral closure of R in L. Then R R\ K R, becauseR is
integrally closed. ThusR\ K = R.

If x 2 L is integral over R, then there exists a monic polynomialf 2 R[X] such thatf (x)=0.
The minimal polynomial m = m(x;K ) divides f . It follows that the K -conjugates ofx (which
are in L) are also roots off , hence integral overR and so belong toR.

The coe cients of m are, up to sign, de ned by the elementary symmetric functions evaluated
at the K -conjugates ofx and so belong toR\ K = R, i.e.,, m 2 R[X].

To nish, we consider the integral closureS of R in L. If x 2 S\ K, then x 2 R, becauseR
is integrally closed, soS\ K R. Clearly R S\ K, sowe haveS\ K = R. 2

The next result concerns the eld of fractions of an integral closure of an integral domain.

Proposition 11.2 Let R be an integral domain andK its eld of fractions. If L is an algebraic
extension ofK and S the integral closure ofR in L, then the eld of fractions F of Sis L.

proof ClearlyR S F L.AsF L,weonlyneedtoshowthatt F.Letx2L.Ifx=
0, then there is nothing to prove, so let us suppose that this is not the casepAk is an algebraic
extension of K, x is aIgeq;;aic overK: there exists a polynomial f (X) = i";O aiX' 2 K[X]
such that f (x) =0. Then L, ;Ti(am x)!' =0. Setting b = aa—m we obtain a monic polynomial
g 2 K[X] such that g(anx) =0. Hences= apx 2 S. As K is the eld of fractions of R, there
existrq;ro 2 R such that a, = :—; SOX = ‘T—f 2 F, becauseri;ro 2 S. HenceL F. 2

Corollary 11.3 If R, K, L and S are as in Proposition 11.2, then every element ok of L has
the form £, wheres2 Sandr 2 R .

proof For x =0 there is nothing to prove, so we suppose that this is not the case. In the proof
of Proposition 11.2 we showed that, ifx 2 L, then x = Srr—f whererqy;r, 2 Rands2 S. As
R S, we havesr, 2 S, hence the result. 2

Exercise 11.2 Show that there exists a basis df over K composed of elements ir8.
We now introduce an interesting result, which we will use further on.

Theorem 11.5 Let R be an integrally closed domainK its eld of fractions and L a separable
extension of degreen of K. Suppose thatS is the integral closure of R in L. Then there exist
free R-modulesM and M ©, of rank n, such thatM® S M.

proof Lett be a primitive element of L overK , i.e., L = K (t). From Lemma 11.1, we may write
t= 2 withs2Sandr2R . Thus L = K(s). Sincel is an extension of degree of K, , the
degree of the minimal polynomialm(s;K) is alson. Consequently, the elementsl;s;:::;s" 1
are K -independant. These elements are als&-independant elements of theR-module S. The
R-submodule ofS generated by1;s;:::;s" tis

M°= R Rs Rs" 1:

which is a free module of rankn.
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It is a little more dicult to show that S is contained in some freeR-module. Let d =
disc -k (1;s;:::;8" 1). As the elements1;s;:::;s" ! are K -linearly independant, Proposition
10.8 ensures thatd 6 0. Then %; S % are R-linearly independant elements of theR-
module L. The R-module generated by these elements is
s" 1

d

M is a freeR-module of rank n. We aim to show that S M. As the setf1;s;:::;s" lgis a
basis ofL over K, anyy 2 S can be written

M=RH RC)  RC)

X 1 X 1 i
y= gd= dg = ;
j=0 j=0
where theg 2 K. We need to show thatdg 2 R. Sincedg 2 K and R is an integrally closed
domain, it is su cient to prove that the dg are integral overR.
Sincel is separable extension oK of degeen, Corollary 3.2 ensures that there aren distinct

K -monomorphisms i;:::; , from L into an algebraic closureC of K. AsL = K(s), each j is
entirely determined by (s), hence the elements 1(s);:::; n(s) are distincts. In addition, for
i=1;:::;n, j(s)is aK-conjugate ofs and so the setf 1(s);:::; n(S)gis equal to the set of
K -conjugatesfs;;:::;shg of s. Withol._;t loss of generality, we may suppose that i(s) = s;, for
all i. Applying ; to the equality y = j”:Olcj s we obtain, for all i,
X 1 N
= (i) = g5
j=0 j=0
We may express this in matrix form:
0 1 0 n1 10 1
1(y)X %Dl S1 i85 X% Co g
n(y) 1 sy :itospt Cn 1

The matrix V = (s{) is a Vandermonde matrix with all s; distinct, so its determinant does
not vanish. Using Cramer's rule, we obtain expressions for theg, namely ¢; = -, where ; is
the determinant of the matrix V; obtained from V by replacing the columnj + 1 by the column

Now, from Proposition 10.9,d = disg « (1;s;:::;s" 1) is the discriminant of the minimal
polynomial m(s;K); hence, using the formula for the determinant of a Vandermonde matrix, we
obtain %

d= (s §)°= %=) dg= j;
1 i n
forj =0;:::;n 1. As and ; are determinants of matrices with coe cients in S, becausey
and s belong to S. Therefore the dg are integral over R, as required. 2

11.2 Number rings

Let K be a number eld and let us note Ok the collection of algebraic integers inK. Clearly
Ok = O\ K and so, being the intersection of two subrings ofC, Ok is a subring of C. We
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say that Ok is the number ring associated toK or the ring of integers of K. We will see that
this ring has many interesting properties. However, let us rst consider a "simple" case, namely
that of number rings associated to quadratic number elds. We Iﬁwgw that, if K is a quadratic
number eld, then there is squarefree integerd such that K = Qb ~d) (Theorem 3.5). It would
be natural to think that associaﬁg number ring has the form Z[ d]. The next theorem shows
that Ooq) always containsZ[ d], but inclusion can be strict.

Theorem 11.6 Let d be a squarefree integer. Then

Z[ID d if d 2;3(mod4)
O2®) ™ z12£"8) g 1 (moday
[——] i (mod 4):
proof Case 1 d=2;3 (mod4). We take =r+ spaz OQ[PE]. If s=0,then 2 Q, hence,
from Theorem 11.2 2 Z,andso 2 Z[ d]. Now suppose thats 6 0. We note

f(X)=(r? ds?) 2rX + X22QI[X]:

Then ( f)=4ds?. Asdis squarefree,( f) is not a square inQ, hencef is irreducible. Now,
f( )=0, thereforef = m(; Q). From Corollary 11.1,f 2 Z[X] and sor? ds?;2r 2 Z. This
implies that 4ds? 2 Z. Using the fact that d is squarefree, we obtair2s 2 Z. Let us notem = 2r
and n =2s. Then

r2 ds?= %{(m2 dn?)2 z
and so4j(m? dn?). Then
d 2(mod4)=) m? dn? m?2+2n2(mod4)
and
d 3(mod4)=) m? dn? m?+ n? (mod4):

As m? 7dn2 0 (mod 4), in both casesm and n are even, which implies thatr;s 2 Z. Thus
2Z[ d]. p_
Suppose nowthat =r+s d,withrs2Z. Ifs=0,then 2Z O
r2 ds?;2r 2 Z and sof 2 Z[X]; asf( )=0, it follows that 2 O
We have proved the result for the cased  2; 3 (mod 4).

Q(Pa). If s60, then

o’ @

Case 2 d =1 (mod4). We take =r+ spa 2 OgPygy If s=0,then 2 Q, hence, from
p-
Theorem 11.2, 2 Zandso 2 Z[“Td]. To handle the case wheres 6 0, we dene f 2 Q[X]
as above and proceed as in Case 1 to ndj(m? dn?), wherem =2r andn = 2s.
d 1(mod4)=) m? dn? m? n?(mod4):

Thus we have4j(m? dn?) and 4j(m? n?), which implies that m and n have the same parity.

Now, b p_! b

_m+n d:m+n+n 1+ d 2 7 1+ d
2 2 2 2

]:

p-
Now suppose that =r + s “2 d with;s2Z. Ifs=0,then 27Z OQ(pa). For the

case wheres 6 0 we have2r;r? ds? 2 Z, sof 2 Z[X]; asf( ) =0, it follows that 2 OgPd)y:
This proves the result ford 1 (mod 4). 2

Examples
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Oqi) = Z[i], because 1 3 (mod 4),

Z[Io 3], because3 3 (mod 4);

OqP3 =

p_
OoP5 = Z[—5—2], because5 1 (mod 4);
OoPs = Z[p 6], because6 2 (mod 4).

We now consider certain basis properties of number rings. In particular, we will show that
the additive group of such a ring is a free abelian group. We begin with a characterization of
invertible elements.

Proposition 11.3 If K is a number eld and 2 Ok, then 2 Oy if and only if
Nk=q( )= 1

proof If 2 O,,then 120, and
1= Ng=0(1)= Nk=o( )Nk=o( 1):
As and !are algebraic,Nk=o ( ) and Nk=q ( 1y are integers, henceNk-o( )= 1
Now suppose thatNg-o( )= 1. Since 2 Ok, Proposition 10.1 and Corollary 11.1 ensure
that char - o ( ) belongs toZ[X]. Thus we have

char=o( )= l1+aX + +a, (X" 1+ X"

with a6 2 Z,forl i n 1. From the Cayley-Hamiltonian Theorem, we know that is a
root of char g ( ).
Now ! is a root of the reciprocal polynomial

f(X)=1+ a,, X + +aX" 1 X"

Sincef 2 Z[X], 1!is algebraic and it follows that 2 Oy . 2

Exercise 11.3 Show that, if K = Q(p ~ 2), then Oy is nite. Considering the positive powers
of 1+ 2, show that the dﬁpghantine equationa® 2k’ =1 has an in nite number of solutions
and deduce that, ifK = Q(* 2), then Oy is in nite.

As Ok is an integral domain, it has a eld of fractions (in C). It is natural to try to determine
this eld. This we will now do.

Lemma 11.2 If 2 C is algebraic overQ, then there is an integerk 2 N such thatk is an
algebraic integer.

proof If 50, then there is nothing to prove, so let us suppose that this is not the case.
Let m(X) = id:01 a;X' + X9 be the minimal polynomial of over Q. If k is the lcm of the
denominators of the coe cients aj, thenka,=h 2 Z,for0 i d 1. We have

k? Mo+ k Zhy(k )+ + Kby 2(k )T 2+ by a(k )Y P+ (k)= km( ) =0:

As the coe cients k9 by;:::;kby 2;by 1 are integers,k is an algebraic integer. 2
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Theorem 11.7 The eld of fractions of Ok is the number eld K.

proof Let us write L for the eld of fractions of Ok . The clearly Ok K. If L 6 K, then
there exists 2 K nL. As K is a nite extension of Q, K is algebraic overQ. In particular,

is algebraic overQ. From Lemma 11.2, there existsk 2 N such that k is an algebraic integer,
hencek 20k L.Ask2Og, = kT 2 L, a contradiction. 2

We now consider bases of the vector spack over Q. It turns out that there is a basis
composed entirely of elements irOx .

Proposition 11.4 If K is a number eld, and [K : Q] = n, then K has a basis 1;:::; p
composed of elements irDy .

proof From Lemma 11.2, we know that, if is nonzero and algebraic oveQ, then there in an

integer k 2 N such that k is an algebraic integer. Let( 1;:::; ) be a basis ofK over Q.
As K is a nite extension of Q, K is algebraic overQ and so each ; is algebraic overQ. For
each ;, we may nd ki 2 N such that k; ; is an algebraic integer. If ; = k; i, then clearly
( 1;:::; n)is a basis ofK over Q. 2

We now turn to the result referred to above concerning the nature of the additive group of
Ok . To understand the proof it is necessary to have a knowledge of free abelian groups. We
have included an appendix on the subject.

Theorem 11.8 The additive group of Ok is a free abelian group of rankn.

proof Let ( 1;:::; n) be a basis ofK over Q composed of elements 00k and A = Z ;

Z .. (The sum is direct because the ; are independant overQ.) If we can show that there
existsd 2 Z such that dOx A, then the theorem is proved. Indeed, in this caseQOyx %A,
where %A is a free abelian group. Thus, by Theorem E.30k is a free abelian group of rankr,
with r  n. Moreover, A is subgroup of Ox and so, using Theorem E.3 again, the rank of of
Ok is is larger than n. Finally, Ok is a free abelian group of rankn.

= i”=1 Xi i. We setd = disck-=q( 1;:::; n); then d is nonzero by Proposition 10.8. Using
Proposition 10.7 and Exercise 11.1 we see that is an integer, since the algebraic integers form
a ring.

We now show thatdx; 2 Z, for 1 i n, which impliesthat d 2 A. We note 1;:::; n
the Q-monomorphisms ofK into C. We have, forl i n,

i( )= xi( )+ +Xn i( n):
This is a system ofn equations in n unknowns (the x;). Applying Cramer's rule we obtain
XJ' = —
where is the determinant j ;( j)j and ; is the determinant of the matrix obtained from the
matrix ( i( j)) by replacing the jth column by the column composed of the elements ;( ).

Now, 2= d, so is an algebraic integer. In the same way, we may show that; is an algebraic
integer, since
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and 2 Ok . To nish, we notice that

which implies that dx; is an algebraic integer, since both and ; are algebraic integers. More-
over, dx; 2 Q. As an algebraic integer inQ is an integer, dx; is an integer. This concludes the
proof. 2

Discriminant of a number ring

Let K be a number eld with number ring Ok . As Ok is a free abelian group,Ox has a

Ok =7 Z n:

We call such a basis anintegral basis There may be many bases; however, they are related
through their discriminants.

Proposition 11.5 If ( 1;:::; n) and ( 1;:::; n) are integral bases ofOy , then
disck=q( 1;::1; n) = dist=q( 1;:::; n)
proof First we notice that there is a matrix M =(mj ) 2M ,(Z) such that
0 1 0 1
1 1
B k=MB : K
n n
Let 1;:::; n be the Q-monomorphisms ofK into C. Then
X
i = Mk k=) ()= Mik j( «)s
k=1 k=1

forl i;j n. Interms of matrices,
(iCiN=MCi();
which implies that
disce=q( 1;::1; n) = jMj?disc=q( 1;::%; n):
As the ; and ; are algebraic integers, from Proposition 10.7, the discriminants in the above
equations are integers. Given thatM 2 M ,(Z), the determinant jM j is an integer and it follows

We call the common value of the discriminant in the foregoing theorem thediscriminant of the
number ring Ox and we write disq Ok ) for this. We emphasize that disOx ) 2 Z.

Example Let K = Q(IO d), whered is a squarefreB (integer. yThe Galois grougGal(K=Q) =
(15 2), ngbere 1 isptbe identity and , permutes d and d. Ifd 23 (mod 4), then
Ok = Z[ dland (1; d) is an integral basis ofOy . It follows that

diso(Ok ) = disck= g (1; P d)=4d:
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Exercise 11.4 Show that, ifd 1 (mod4), then dis Ok ) = d.

We may extend the notion of the discriminant of a number ring. Let K be a number eld
with ring of integers Ok . An order in K is a subring R of O such that the index of R in Ok
(as additive groups) is nite. The order is said to be maximal if R = Ok .

If R is a subring of Ok , from Theorem E.3 we know thatR is a free group with rank at most
that of Ok .

Proposition 11.6 A subring R of Ok is an order if and only if R has the same rank as that of
Ok -

then the cosets ofR in Ok can be written
s,e+t +s,e+R; with 0 s, di 1:::;0 s d, L

Thus there ared; d, cosets, i.e.,[Ox : R]< 1 andR is an order. If r <n, then the cosets
of R in Ox may be written

S,e1+  tS, &+ X164+ FXn€ + R

with 0 s, di 1;:::;0 s, d landXr+1;:::;Xn 2 Z. In this case there is an in nite
number of cosets, sdOx : R]= 1 and R is not an order. 2

If R Ok is an order, then we may de ne the discriminant of R in the same way as we did for
Ok. If( 1;:::; n)and( 1;:::; n) are integral bases ofR, then the argument of Proposition
11.5 shows that

and that the common value is an integer. We call this the discriminant of R and note it disc(R).

Example Suppose thatK = Q( ), where 2 Ox. Then rkOx = [Q( ); Q]. However,
degm(; Q)= n=[Q( ):Q], sothesetfl; ;:::; " lgisa basis ofZ[ ]. Thus Z[ ] and Ok
have the same rank:Z[ ] is an order inK.

We will return to orders further on.

We say that an integral domain D is anormal domain if the integral closure of D inits eld of
fractions is D itself. It is worth noticing (although we will not prove it here) that the polynomial
ring D[X] is a normal domain if D is normal. We aim to show that a number ring is a normal
domain. We will rst prove a preliminary result, which is interesting in its own right.

Lemma 11.3 A subgroup of a nitely generated abelian group is nitely generated.

proof We will use an induction on the number of generators. LetG be a nitely generated
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induction hypothesis, the subgroupH = (H) of G is nitely generated: H = hhy;:::;hqi, with
hi = (h;) for someh; 2 H.

We now notice that H \h a,.; i is a subgroup ofha, . i, hence cyclic:H \hap+1i = thyya i,
with hp+p 2 H. We claim that H = hhy;:::;hg;hni. If h 2 H, then there exists g 2
hai;:::;hmi such that (g)= (h). Thereforeh = g+ k, with k 2 Ker = ha,+;i. In addition,

We have shown thatH = hhy; i hperi. 2

Remark The abelian hypothesis in the previous lemma is important. Here is a counter-example.
Theorems 11.2 and 11.3 ensure that the additive group of the ring[%] is not nitely generated.
Consequently the group of matrices

_ 1 x ) 1
Go=f ;5 7 2M2Qix2Z[lg

is not nitely generated. However, the elements on[%] are of the form £, with p 2 Z and
g2 N, and

my mz

1 & _ 20 % 11 20 % 11 M
01 =~ 01 01 01 01 '
where m, and m; are respectively the quotient and remainder after division ofp by 29. Hence
Gy is a subgroup ofG, the subgroup ofM ,(Q) generated by the matrices
_ 20 _ 11

S= 01 and T= 0 1
Thus we have a subgroup of a nitely generated group which is not nitely generated.
Exercise 11.5 Find an explicit description of the matrices in G.
Proposition 11.7 A number ring Ok is a normal domain.

proof We have segn thatOK_ has a nite basis. Let 2 K be integral over O : there exists a
poynomial f (X) = i”:Ol g X'+ X" with a 2 Ok, such that f ( ) =0. This implies that

n — n 1 .
= an 1 ap do:

It follows that the additive group of the ring Ok [ ]is nitely generated. As Z[ ] Ok][ ], the
additive subgroup of the ring Z[ ] is also nitely generated (Lemma 11.3). From Theorem 11.3,
is an algebraic integer and so 2 Ok . 2

Stickelberger's criterion

We may say a little more about the discriminant of a number ring. Let K be a number eld

disc(Ox ) =det( i( ;)%
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The determinant is the sum of expressions of the form

sgn( ) @ ( 1) m( n)s

where is a permutation of the setfl;:::;ng, i.e., 2 S,, and sgn( ) is the sign of . To
simplify the notation, letus set X = A, andY = S, nA,. Then

X ¥ X ¥ X ¥
det( i( j)) = sgn( ) ()= iy (i) mCi)=P N
2S, i=1 2X i=1 2Y i=1
Thus
diso(Ox)=(P N)2=(P+ N)? 4PN:

Now let L be a normal closure ofK over Q. By Exercise 5.1,L is a nite Galois extension
of Q. We aimto showthat (P+ N)= P+ N and (PN)= PN, forall 2 Gal(L=Q), the
Galois group of L over Q. First, we extend every embedding ; to an embedding ; of L into
C. (This is possible by Theorem 2.7.) From the normality of the extensionL=Q we deduce that

i(L) = L. (The image of ; is included in the set A(C=Q), which is an algebraic closure ofQ,
by the remark after Theorem 2.6; therefore, from Proposition 5.2), (L) = L.) It follows that

i(K) L. Hence, for every ;, the mapping i is de ned and is a Q-embedding ofK into
C.
We now notice that the mapping ; 7! i is a bijection onthe setS=f 1;:::; g, SOwe
can nd a permutation 2 S, such that i = (), foreveryi 2f1;:::;ng. We distinguish
two cases:

Case 1: even

Here we have X = X and |

X Y ' X Y
i) = (i)
2% i=1 2X i=1
= (i)
2X i=1
= (i)( i)
2 X i=1
= iy i)
2X i=1

Hence (P)= P. Inasimilar way, using the factthat Y = Y, we may show that (N)= N.

Case 2: odd
Now we have X =Y and Y =X andso (P)= N and (N)= P.

From what we have seen, in both cases we have(P + N) = P+ N and (PN) = PN.
This applies for any 2 Gal(L=Q), soP + N and PN belong to the xed eld of Gal(K=Q),
i.e., Q. Now the ; are algebraic integers; since the elements (;)( ;) are roots of the minimal
polynomial m( ;;Q), these elements are also algebraic integers. This means th& and N are
algebraic integers inQ, i.e., integers. From the formula

disc(Ox )= (P + N)2 4PN:
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we may deduce the following: IfP and N have the same parity, thenP + N 0 (mod 2) =)
(P + N)2 0 (mod 4); if P and N have dierent parities, then P + N 1 (mod 2) =)
(P + N)? 1 (mod4). Thus we have:

Theorem 11.9 (Stickelberger's criterion) If K is a number eld, with number ring Ok , then
disc(Ox) O (mod4) or disc(Ox) 1 (mod4):

Remark In a certain sense Stickelberger's theorem generalizes Exercise 11.4 and the remark

preceding it.

11.3 Roots of unity in number elds

In any commutative ring with identity, the roots of unity form a multiplicative group. In a
number eld, as we will soon see, this group is cyclic. IfK is a number eld and x is a root of
unity, then 1+ x" =0, for somen 2 N , sox lies in the number ring Ok .

Proposition 11.8 Let K be a number eld andc 2 R, . Then there are only a nite humber
of elementsx 2 Ok such thatjx()j ¢, for all conjugates x() of x.

proof Let[K :Q]=nand 4;:::; n, bethe elementary symmetric polynomials inn variables.
We set
0_ R LR S n «.... n~-
c®= maxfnc; i ¢ dg:
2 k g

Let S be the set of monic polynomials of degree at most, whose coe cients are integersa such
that jaj c® Then Sis nite. Now let T be the set of elements oK which are roots of some
polynomial belonging to S; T is also a nite set. If jx(j ¢, for all conjugates ofx in K, then

ioc(x®;x(My) O for k Lnn. Sincex is an algebraic integer, (x®;:::;x(M)2 z
and so the polynomialf (X)= ~_, ( x( + X) belongs toS. As x is a root of f, x belongs to
T. 2

We may now prove a fundamental result.

Theorem 11.10 The group W of roots of unity of a number eld K is a nite multiplicative
cyclic group.

proof It is su cient to notice that W is a nite subgroup of the multiplicative group of K and
apply Theorem 3.3. 2

The next result gives us a criterion for determining roots of unity.

Proposition 11.9 If f 2 Z[X] is monic and is such that all its roots in C have absolute value
1. Then these roots are all roots of unity.

2 N we set
fi(X)=( zZL+X) ( zL+ X):

From Exercise B.1,f|; 2 Z[X] for all I. If

fi(X)= ag+ arX + & 1 XK 1+ XK
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then, taking into account the fact that jzjj =1 for all i, we nd that

jaj]
forj =0;1;:::;k 1. There are only a nite humber of monic polynomials g 2 Z[X] with
degg = k and j th coe cient bounded by :‘ forj =0;1;:::;k 1, hence there existt <m such
that f; = f,. It follows that the roots of these two polynomials are the same. Ifz};:::;z are
the distinct roots of f| and z{";:::;z" the distinct roots of f,, then there exists a permutation
2 | such that zi' = zm(i), fori=1;:::;r. We claim that zi'k = zmk(i), for k 2 N . For this we

give a proof by induction. For k = 1, there is nothing to prove. Suppose now that the result is
true for k and consider the cas&k + 1. We have
k k+1
2y T 2y T(Z)" = () = (7)) = A
so the result is true fork +1 and, by induction, for all k 2 N . In particular, it is true for k = rl,

the cardinal of the symmetric group ; and hencezi'” = z". From this we deduce that z is
root of unity. 2

Corollary 11.4 x is a root of unity in a number eld K if and only if x 2 Ox and jx(Vj =1,
for every conjugate ofx.

proof Let x be a root of unity. We have already seen that a root of unity must lie inOx . There
exists a positive integerm such that x™ = 1. As the conjugatesx(!) of x are also roots of the
polynomial f (X)= 1+ X™, we must havejx()j™ =1, which implies that jx(j = 1.

Now suppose thatx 2 Ox and jx{j = 1, for all conjugates x(') of x. The conjugates are
the roots of the minimal polynomial m(x; Q), so by Proposition 11.9 they are roots of unity; in
particular, x is a root of unity. 2

Exercise 11.6 Let K be a number eld,x 2 K and m 2 N . Show that the conjugates ok™
are mth powers of the conjugates ok.

If pis an odd prime, = e’
the roots of unity of K.

and K = Q( ), then we can be more precise with respect to

Theorem 11.11 If pis an odd prime and = e
the form 1, with1 j p.

, then the roots of unity in K = Q( ) are of

proof From Theorem 11.10 we know that the roots of unity form a nite cyclic group C. If

jCj = m, then there is a generatorz = e“n of C. (It is su cient to take t coprime to m.) If

x 2 C,then x 2 C, becausex® =1 implies that ( x)? =1, hence 2 C and so there exists
Q+ i

s 2 N such that z° = , .e., efm = e . From this we deduce that there existsk 2 Z
such that . .
2is _ 2i

e T+ i +2ki =) 2sp=m@2+ p(2k+1))=) 2pjm;

because neither2 nor p divide 2 + p(2k + 1).
As z is a generator ofC, is a power ofz and soQ( ) Q(z). However,z 2 Q( ) and so
we also haveQ(z) Q( ) and it follows that Q( ) = Q(z). This being the case, we have

(m=[Q(®):QI=[Q():Ql= (M=p L
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where is Euler's totient function. We may write m =2 p m° with 1, 1 and 2 6)°
p 6m° and
p 1= (m=2 ' *p 1) M)=) 1=2 *p *(m:

Therefore = = (m9=1. Asm°62, we havem®=1 and som = 2p. Thus the cardinal
of C is 2p. Since the elements ', with 1 i p, belong to C and are distinct, these are the
roots of unity in K. 2

Exercise 11.7 Show that a number eld of odd degree has just two roots of unity.

11.4 Composita of number elds

We recall that, if K and L are sub elds of a eld E, then the compositum of K and L in E,
which we write KL , is the smallest sub eld of E containing both K and L. In this section we
consider the case wher&k and L are number elds (considered as sub elds ofC.) We will be
particularly interested in the number ring Ok, of KL .

Let K and L be number elds and Ok, O_ the associated number rings. From Proposition
6.4 we know that

KL :Q] [K :QJL :Qf;
with equality when [K : Q] and[L : Q] are coprime, or said otherwise, wherK and L are linearly
disjoint. We set R = Ok, S= O_ and

X
RS = risi:ri2R;si2S;jlj< 1
i21

RS is clearly a subring of Ok . The following result provides a su cient condition for equality.

Theorem 11.12 Let K and L be linearly disjoint number elds and d = gcd(disc(R); disc(S)).
Then Ox.  iRS. Thus, if d=1, then Ok, = RS.

of R and S. These bases are bases ov€ of respectively K and L. As K and L are linearly
disjoint over Q, the set

A=fi;:1 i ml j ng
is a basis ofKL over Q. (See the discussion on linear disjointness after Proposition 6.4.) Hence,
if x 2 Ok , then there exist rational numbers¢q; ,for1 i mandl | n,such that
X
X = Gj i j-

iij
We aim to show that dg; 2 Z,for all i andj. If this is the case, then we may write

1X 1
X= 4 . (dgj) i j 2 4RS
and it follows that Oy %RS. To establish that dog; 2 Z it is sucient to show that
disc(R)g; 2 Z. If we can do this, then with an analogous argument we may show that
disc(S)g; 2 Z. As there existu;v 2 Z such that d = udis¢(R) + vdisc(S), dg; 2 Z.
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From Corollary 3.2 we know that there are exactly [K : Q] Q-monomorphisms ofK into
C. Let be such a monomorphism. Theorem 3.2 ensures that there are exactiKL : K]
monomorphic extensions~ of into C. Restricting the ~ to L, we obtain [KL : K] distinct
monomorphisms © from L into C. (If two such restrictions { and 9 are equal, then the
corresponding mappings~; and ~, are equal onK and L and consequently onKL , contradicting
the fact that ~; and ~, are distinct.) As K and L are linearly disjoint [KL : K] =[L : Q],
therefore the considered restrictions are theQ-monomorphisms fromL into C. In particular,
one such restriction is the identity on L. Consequently, for the corresponding~, we have

X xn
~(x) = ~(g )~( )~( )= X (i)

i=1 j=l i=1

P
wherex; = 1!1=1 g; j. We may use the same procedure for each of tHK : Q] Q-monomorphisms

1;::1; m from K into C and obtain the corresponding extensions~i;:::;~y. In this way we
obtain a system ofm equations in m unknowns, the x;:

~1(xX) = 1( )xz+  + 1( m)Xm
~(x) = 2( X2+ + 20 m)Xm
~m(X) = m( 1)X1+ + m( m)Xm:

Applying Cramer's rule we nd the expression for the X;:
Xi = —;

where is the determinant of the matrix  ;( ;) and ; the determinant of the matrix obtained
from the previous matrix by replacing the ith column by that composed of the elements~;(x).
(Asthe ; areindependant, 6 0, from Proposition 10.8.) Asx 2 Ok_ , X is an algebraic integer
and so~(x) is an algebraic integer; also, the ; belong to R and so are algebraic integers, which
implies that the ;( ;) are algebraic integers. It follows that and the ; are algebraic integers.
Now, we have

2Xi= i:UizoKL:

However, 2 = diso(R) 2 Z, so
xo
ui = disc(R)x; = diso(R)g; :
i=1

Hence, u; is an algebraic integer inR and its coe cients in the basis ( j) are disqR)g; . It
follows that the elements dis¢R)q; are integers. This nishes the proof.

We now consider the relation between the discriminants of the number ringR and S and
the discriminant of Ok, .

Theorem 11.13 Let K and L be linearly disjoint number elds whose number rings have co-
prime discriminants. Then

disc(Ox. ) = dise(R)!-Qldisc(S)K Q1
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proof Let m = [K : Q], n = [L : Q], and (az;:::;am), (bi;:::;) be integral bases of
respectively R, S. As the a and by are algebraic integers, so are the products;ly, hence
ailh 2 Ok, forall i andj. From the previous theorem, thealy generateOx, overZ. Moreover,
asK and L are linearly disjoint, the elements ajly form a basis of KL over Q and hence are
independant overZ. Thus, the a;ly form an integral basis of Ox. and we can use this basis to
calculate the discriminant of Ok .

From Proposition 10.7 the discriminant of Ok is the determinant of the matrix

M = Tgi=q(abk ah):

We now apply Corollary 10.3 to the tower of elds Q K KL to obtain

Tki= o(@bc ayb) = Tk=0 Tk« (aibx ah)
= Tk=q Tki=x (aigjbh)
= Tk=q @&aTk=x (bxh) ;
becausea;a 2 K.

We claim that, for | 2 L, we have Tx - () = Ti=q(l). Let us consider the[KL : K] K-
monomorphisms fromKL into C. Restricting these monomorphisms toL we obtain [KL : K]
distinct Q-monomorphisms fromL into C. As K and L are linearly disjoint over Q, we have
[KL : K]=[L : Q], hence the restrictions toL of the [KL : K] K -monomorphisms ofK into
C are precisely theQ-monomorphisms ofL into C. Applying Proposition 10.2 establishes the
claim.

Sincebh 2 L, we have

Tk (kb)) = Ti=q(bxh) 2 Q

and so
Tki= o(@bc ajh)= Tk-qg @agTi-q(xh) = Ti-qg(bxb)Tk-0(aia):

Setting Tk=-q (aja) = & and Ti-q(bxh) = by, we obtain
detM =det(a; hq)=det (a;) (ba) :
From Theorem H.1, we have
det (aj) (ba) =det(a;)" det(ba)™;
as required. 2

Application to cyclotomic elds

We now apply the previous theorems to the study of cyclotomic elds, i.e., cyclotomic extensions
of the rationals. We have already studied these elds in Chapter 7. Here we will be particularly
interested in the form of the associated number rings and their discriminants. We begin with
the caseQ( ), where is a primitive p'th root of unity, p being a prime number andr a positive

integer.

Lemma 11.4 If is a primitive nth root of unity, then the setA = f1; ;:::; (" lgis a basis
of Q( ) over Q. ( is the Euler totient function.)
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proof In the proof of Theorem 7.7 we observed thafQ( ): Q]= (n). AsjAj= (n), we only
need to show that the setA is linearly independant overQ. If

ot 1 * (n) 1 (M 1=p;
where the ; are elements ofQ, which are not all zero, then is a root of a honzero polynomial

f 2 Q[X], whose degree is less than(n). However, the minimal polynomial of overQ is ,
whose degree is (n), so we have a contradiction. HenceA is a basis ofQ( ) over Q. 2

Proposition 11.10 If pis a prime number,r 2 N and a primitive p'th root of unity, then
OQ( y = Z[ ]:

proof From Lemma 11.4 the setA = f1; ;:::; () lgis a basis ofQ( ) over Q. Also, the
elements of this set belong toOq( ), because is an algebraic integer. The proof of Theorem
11.8 shows that

dog(y Z Z z )t
whered = disco( =9 (L; ;:::; ) 1) Thus, Og() 3Z[ ]. Moreover, from Corollary 10.6,
d is a power ofp (up to sign). Therefore there existsm 2 N such that p"Oq () Z[ ]

If
Z[ 1\ pOq( ) = pZ[ ; (11.1)

then, asp™Oq () Z[ ], we have

P"Oq¢y Z[ 1\ pOg¢y PZ[1=) p™ 'Oq¢y Z[I

If m =1, then we immediately have Og(y  Z[ |, if not, then it is su cient to iterate the
process to obtain the same inclusion. A<[ ] is clearly contained in Og( ), we only need to
establish the identity (11:1) to nish the proof. This is what we now do.

Our rst step is to show that
Og()p= Og()( +1) ®) (11.2)

To begin,
Y ) Y .
pr(X) = ( "+X)=) @)= ( "+1):
1 i<p ";(ip)=1 1 i<p ";(ip)=1

However, from Exercise 7.4, we know that

ro1

p(X) = p(XP )
S0

Y :
p= p@)= ( "+1):
1 i<p "5(ip)=1

Next we observe that the elementsi—fll, with 1 i<p" and (i;p) =1, are units in Ogq ().
We have _

'+l i1 :

1 =1+ + + 2 OQ( )-
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As ' is a primitive p"th root of unity, there exists s2 N such that = s, hence

+1 S +1 i i
— - (s 1) :
T - Tap it Y2 0y
so—*L is a unitin Og ).
We may write _
ip1= 1 +1)= u( +1);
- +1 ( )_ ul( )1
SO Y r
p= u( +1)=u( +1) ®
1 i<p "i(ip)=1

where u is a unit in Og(y. Aspand ( +1) ®) are associates iOq( ), they generate the
same ideal, i.e., .
Og()P= Og(y( +1) ®;

as asserted.
Our second step is to show that
Og(y( +1)\ Z=2Zp: (11.3)

From the identity (11:2) we obtainp2 ( +1)Ogq(),andsopZ ( +1)Oq()\ Z. Now the
reverse inclusion. Ifx 2 ( +1)Oq( ), thenx =y( +1), with y 2 Oq( ), and

No()=(X) = Ng()=o(¥)Ng()=o( +1):
Asy 2 Oq(y, Ng()=o(y) 2 Z (Exercise 11.1). Also, from Corollary 10.1,
Y .
No()=o( +1)= ( "+1)=p;
1 i<p ";(ip)=1

becauseQ( ) is the splitting eld of the polynomial (1 X)), whose roots are "+ 1, with
1 i<p"and(i;p)=1. Finally, as x 2 Z, Ng( )=o(x) = x ), sopjx, i.e,, x 2 pZ. This
concludes the second step. We have

OQ()( +1)\ Z=2Zp;
as required.

We are now in a position to prove the identity (11:1). There is no di culty in seeing that
Z[ Jp  Z[ ]\ Oq()p:

For the reverse inclusion, let us takex 2 Z[ |\ Oq( yp. Using the factthat A = f1; ;:::; () 1g
is a basis ofQ( ) over Q, we see thatthe setB = f1; +1;:::;( +1) () lgis also a basis
of Q( ) over Q. The setB is included in Z[ ] and is independant overZ, because it is indepen-
dant over Q. As A is a generating set ofZ[ ] and the elements of A can be written as linear
combinations of those ofB with coe cients in Z, B is a generating set ofZ[ ]. Thus B is a basis

x=c+a( +1)+  +cpy i( +1) PN
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Moreover, from the identity (11:2), there existsv 2 Og( ) suchthatx = (  +1) (P)v. Thus
Co 2 Og(y(  +1)\ Z, which from the identity (11:3) is equal to Zp. Therefore ¢y 2 pZ. Using

the identity (11:2) again, we see thap2 ( +1) P)Oq( ), hencex 2 ( +1) PIOq().
We may write X ¢y =( +1)x1, where

xi= e+ +1)  +c) a( +1) P22 (1 +1) P 1oy

As for ¢y, we nd that ¢; 2 Zp. Continuing in the same way, we obtain that ¢; 2 Zp, for all i
and sox 2 Z[ ]p. This ends the proof. 2

We have shown thatOq( y = Z[ ] when is ap'th root of unity. We now turn to the general
case. Here Theorem 11.12 plays an important role. We will need a preliminary result.

Lemma 11.5 If isa primitive nth root of unity, then the discriminant discq( y=o (1; ;:::; (M 1)
dividesn (M.

proof From Proposition 10.9

() (n) 1

disco( )= (L ;i ™ ) =( )7 7 No()=o( a()):
Since | is the minimal polynomial of overQ and " =1. there existsg 2 Q[X] such that
1+ X"= (X)g(X):

As |, is monic, g is also monic and Lemma 11.1 ensures thag 2 Z[X]. Di erentiating both
sides of the previous equation and evaluating at leads to

n"™t= 0()g()=) n= ()9 ):
Taking the norm on both sides, we obtain
n ™M =Ng()g a() Ng()g 9():

However, 9( ) and g( ) are elements ofZ[ ], which is included in Ogq( - Applying Exercise
11.1 we obtain the result. 2

Theorem 11.14 If is a primitive nth root of unity, then
Oq()=2[ I

proof We will use an induction on s, the number of prime factors in the decomposition ofn.
For s =1, we have already proved the result, so we consider the induction step. Let us suppose
that the result is true up to s 1. We now consider the cases. We have

N=p;'p*  Ps® = Mamy;
wherem; = p;* andmy = p,> pgs. As m; and my are coprime, from Proposition 7.6

Q(m:)Q(m,)= Q(n);

where |, is a primitive uth root of unity. From Proposition 11.10 (or the induction hypothesis),

dlSC(OQ( ml)): dISCQ( ml):Q(l; meiiii m(lml) l),
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becausef 1; m,;:::; m(lml) lg is an integral basis ofOq( ,, ). Also, by the induction hypothesis,

disOq ,,,)) = disCa( p,)-0 (L maiiiis g™ )

becausef1; m,;:::; me'? 'gis an integral basis ofOq( ,,,)- From Lemma 11.5, asml(ml)

and mz(mZ) are coprime, so are the discriminants dis@q ,, ,)) and disq{Oq ,,)). In addition,
Q( m,) and Q( m,) are linearly disjoint over Q, because (mimy) = (mi1) (m3). Applying
Theorem 11.12 and the induction hypothesis, we obtain

Oq(+) = 0Q(w0Q(m,) = ZI miJZ[ m,I:

Given that 'z is a primitive msth root of unity, n, 2 Z[ »]. In the same way, m, 2 Z[ ,], so
Z[ m,)Z[ m,] Z[ n]- Moreover, asm; and m, are coprime, there exist integersu and v such
that miu+ myv =1. Thus,

n =)' () 22l m)Z[ m,]1=) Z[n]l  Z[ m,1Z[ m.];

therefore
Z[ n]: Z[ ml]z[ mz]: OQ(n)'
as required. 2

We now turn to the discriminant of a cyclotomic number ring Oq( y. Proposition 10.9 ensures
that

( n)=disCg()=q(L; ;i M 1) = disq(Oq( ));
so, in nding disc(Oq()), we nd ( ), or vice-versa. In fact, we have already found( ),

where p is a prime number andr a positive integer (Corollary 10.6). We now generalize this
result. Theorem 11.13 will play an important role.

Theorem 11.15 Let be a primitive nth root of unity. Then
] ( 1)°n (n)_
( n)=diso(Oq()) = o
pin PP
wherec, = % if n62 andc, =0.

proof We will use an induction on s, the number of prime factors in n. First, if n has a single
prime factor p, the n = p", for somer 2 N . In Corollary 10.6 we found the expression

ro1
( p)=( 1 e DY

wherec= - if pis odd orr> 1, and c=0 otherwise. However,

') (") :(pr)p’ Yp 1) = pp’ r(p 1)

and
Y r Y
pp(pl) = pp o pp

pipf pip’
Hence, ifn = p', i.e., s =1, then the expression for () given in the statement of the theorem
is correct.
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Let us now suppose thats 2 and that the result is true upto s 1. We have
n=npp,’ Ps® = Mimgy;

wheremy = p;* andmy = p,2  pss. As in the proof of Theorem 11.14, we nd that disc(Op, )
and disqOy,,) are coprime. Using the induction hypothesis and Theorem 11.13 we obtain

0 - )1 my O - )1 (m2)
. _ ( 1)°maim, ( 1)°mzm, 2
disco(Oq( ,)) = @ Q (my) A @ Q (mg) A
pjm, PP * pim, P 7 *
(1) (m2)+ cm, (M1)p (n)_
- %) _(n) '
pin PP

To nish the induction step we only need to consider the term ( 1)¢m1 (M2)* cmy (M1) |f || the
primes in n are odd, then

Cny (M2) = G, (My)=) ( 1)fma (MDremy (M) = ()25 =g

If pp=2 and ; 2, then we have an analogous argument. To nish, suppose thap; =2 and

1=1. Then
m m n
oy (M) G, ()= (M) () _
becausen has at least two factors. This ends the induction step. 2

We have seen in Theorem 11.14 that if is a primitive nth root of unity, then the number
ring of Q( ) is Z[ ]. In Theorem 11.6 we observed a similar phenomenon for the case where
is the square root of a square-free integed = 2;3 (mod 4). In the next proposition we give

another criterion.

Proposition 11.11 If K is a number eld, then there is an algebraic integers such that K
Q(s). If the discriminant of the minimal polynomial m(s; Q) is a square-free integer, thenOg
Z[s].

proof The primitive element theorem (Theorem 3.4) ensures that for any number eldK , there
is an elementt 2 K such that K = Q(t). Sincet is an algebraic number, becaus& is a nite
extension of Q, Lemma 11.2 ensures that = 2, wheres is an algebraic integer andk a positive
integer. Consequently,K = Q(s), for some algebraic integers.

As s 2 Ok, we must have Z[s] Ok . We now aim to show that the condition on the
discriminant of the minimal polynomial m(s;Q) ensures the reverse inclusion. From Theorem

Sinces 2 Ok, there is a matrix M 2 M ,(Z) such that
1

0 0 1
1 Xo
S X1
. =M . ;
gn 1 Xn 1

Let q;:::; n be the Q-monomorphisms fromK into C. Forj =1 :::;n, we have
i (1) j (Xo)
% i (s) § % i (x1) E
S M . 7
ps" b j(Xn 1)
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We may write this expression in matrix form:
i(8) =M (jxi):

Taking determinants and squaring we obtain

Now Proposition 10.9 ensures that disg-(1;s;:::;s" 1) is the discriminant of the minimal
polynomial m(s; Q), which, by hypothesis, is a square-free integer. In addition, the discriminant

disck= o (X0;X1;:::;Xn 1) belongs toZ. (Clearly, disck=q (Xo;X1;:::;Xn 1) 2 Q; it is integral
over Z, because eactx; is integral over Z.) SincedetM 2 Z, becauseM 2 M ,(Z), we have
detM = 1, and it follows that the entries of M ! are integers. As

0 1 0 1
Xo 1

%} X.1 EZM 1% S g;
Xn 1 gn 1

and the x; generate Ox , the s' also generateOx over Z, which proves that Ok Z[s], as
required, and soOx = Z[s].
As the setfl;s;:::;s" lgisindependant overZ, it is an integral basis of O . 2

Example Let K = Q( ), where 1 + 3 =0. The minimal polynomial of over Q is
f(X)= 1 X + X3, whose discriminantis 23. As 23is square-free, we hav®x = Z[ ].

Remark We should notice that, if the discriminant of the minimal polynomial of  is not square-
free, then Ox may Q§ may not be equal toZ[ ]; it is su cient to consider the case where d is
square-free and = d.

11.5 Ideals in number rings

In this section we concentrate on the properties of ideals in number rings. Our rst result
concerns the factor ring Ok =I for an nonzero ideal. We recall thatn denotes the dimension of
K over Q.

Proposition 11.12  If | is a nonzero ideal in a number ringOx , then the factor ring Ok =l is
nite.

proof Let | be a nonzero ideal in the number ringOx and a nonzero element off . We set
m = Nk-o( ). As 2 Ok, is an algebraic integer and sam 2 Z. From the de nition of the
norm, m 6 0. We claim that m 2 |: From Proposition 10.2, m = , Where is a product
of conjugates of (in C);asm; 2 K, = ™ 2 K. As a conjugate of an algebraic integer is
also an algebraic integer, is an algebraic integer. Thus 2 Ok and it follows that m 2 |, as
claimed.

As m 2 |, the principal ideal (m) is included in |. Since the rank of the free abelian group
Ok is n, then it is easy to see thatOk =(m) is isomorphic to Z}},, hencejOx =(m)j = m". Also,
(m) | implies that the mapping

:0k=(m) ! Og=lix+(m)7! x+1

is a well-de ned surjective homomorphism. ThereforeOk =l is nite. 2
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Corollary 11.5 If | is a nonzero ideal in a number ringOx , then the rank of| as a free abelian
group is the same as that oD .

proof Ifrk Ox = nand rkl = r,thenr n (Theorem E.3). There is a basis(e;;:::;€e,) of
Ok and elementsdy;:::;dr 2 Z, with di  di+1, such that (dig;:::;d &) is a basis ofl . We
de ne a mapping from Ok onto Zq, Zg, Z" " by

(x1€1+  Xp€n)=(Xy+ diZ;:i X + A Z; Xpa1 50005 Xp):

It is clear that is a surjective group homomorphism. Also,

Ker = fx;e + + Xn€n iX12 hhZ;in X 2diZ X 4g = =Xp,=0g=1
Hence, as groups,
Ok =I'" Zd1 Zd, VAL
However, Ok =I is nite, so the last term on the right-hand side must be f0g, i.e.,r = n. 2

The next property of ideals in number rings is useful.

Proposition 11.13  If | is a nonzero ideal in a number ringOk , then there is a nonzero integer
inl.

proof Let be a nonzero element of . There exists a monic polynomialf 2 Z[X] such that
f()=0. We may suppose that the constant term off is nonzero. (If not, we may write
f(X)= XSg(X), with g(0) 60 and g( ) =0 and replacef by g.) Then,

ifC) fO@=) f() f@O21
Now,f( ) f(0)= f(0)2 Z ,thereforel has a nonzero integer . 2
Remark AsZ O, the setZ I, so there is an in nite number of nonzero integers inl .
We now consider prime ideals in a number ring.
Theorem 11.16 If | is a nonzero prime ideal in a number ringOx , then | is a maximal ideal.

proof From Proposition 11.12 we know that Ok =I is a nite ring. If | is a prime ideal, then
the quotient ring Ok =l is an integral domain. However, a nite integral domain is a eld. This

implies that | is a maximal ideal. 2
We recall that a ring R is noetherian if every ascending sequence of ideals 1, is
nally stationary, i.e., there exists an ideal | in the sequence such thatly = I+ = . This

condition is equivalent to showing that every ideall in R is nitely generated.

Theorem 11.17 A number ring Ok is noetherian.

proof We will show that every ideal | in Ok is nitely generated. If 1 = fOg, then there is
nothing to prove, so let us suppose thatl is nonzero. | is a free abelian group of rankn, the
rank of Ok . Thus | has a nite basis and so is nitely generated. 2

An integral domain D is said to be aDedekind domainif it has the following properties:
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D is normal;
D is noetherian;
every nonzero prime ideal inD is maximal.

We have shown above that a number ring is a Dedekind domain. As many of the properties
of number rings are derived from their properties as Dedekind domains, for the moment we will
handle the more general case. Later we will return to the more speci ¢ case of number rings.
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Chapter 12

Dedekind domains

In the last chapter we de ned the notion of a Dedekind domain and we saw that number rings
are examples of such domains. Dedekind domains are not in general UFDs. However, we will see
that the ideals have an interesting factorization similar to that found in UFDs. This statement

will be made more precise in the following. We will begin with some preliminary results.

Exercise 12.1 Show thatZ[p ~ 5]is,a Dedekind domain. Prove that2 is irreducible in Z[p - 5],
but not prime, and so deduce thaZ[ 5] is not a UFD.

12.1 Elementary results

We have seen in the last chapter that number rings are Dedekind domains. There is another
large class of Dedekind domains.

Theorem 12.1 A principal ideal domain is a Dedekind domain.

proof Let R be a PID. As every ideal inR is generated by a unique elementR is noetherian.
Next we show that R is a normal domain. Letx = & be an element of the eld of fractions of

R. We suppose thata and b are coprime. If x is algebraic overR, then there exists an equation

of the form

anl an

— + —

b b

where the a; belong to R. Multiplying by bB' we obtain an equation

a — .
ao“‘alB"' +an 1 =0;

bc+ a" =0

with ¢2 R. Hencebc= a". As R is a UFD and a and b are coprime,bis a unit and it follows
that b * 2 R. Hencex = 8 2 R. Therefore R is a normal domain.

It remains to show that a nonzero prime ideal is maximal. Let(a) be a prime ideal inR. (a)
is included in a maximal ideal (b) and there existsk 2 R such that a = kb. As a is prime, a is
irreducible, which implies that k is invertible and it follows that (a) = ( b). 2

To continue, we need two lemmas, the second depending on the rst.

Lemma 12.1 In a Dedekind domain D every nonzero ideall contains a product of nonzero
prime ideals.
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proof Suppose that the proposition is not true and let C be the collection of nonzero ideals in
D which do not contain a product of nonzero prime ideals. AsD is noetherian, C contains a
maximal element M. (If not, then it would be possible to create an in nite chain of distinct
ideals, contradicting the noetherian hypothesis.) AsM 2 C, M is not a prime ideal, hence there
exist x;y 2 D nM such that xy 2 M. Clearly, M is strictly contained in the ideals M + ( x)
and M + (y), which are not elements ofC, becauseM is maximal. It follows that M + (x) and
M + (y) both contain products of nonzero prime ideals, so the idea(M + (x))(M +(y)) also
contains a product of nonzero prime ideals. As this ideal is included iV, which is an element
of C, we have a contradiction. 2

The proof of the second lemma is a little longer.

Lemma 12.2 Let D be a Dedekind domain, with fraction eld K, and | a proper ideal in D.
Then there exists 2 K nD such that | D.

proof If I = f0g, then the result is obvious, so let us suppose that this is not the case. We x
a6 0 inl. From Lemma 12.1, the principal ideal(a) contains a product of nonzero prime ideals.
We take such a productP; :::P;, with r minimal. If r =1, then we have

Pr (@ | =Py

becauseP; is maximal, hencel = (a). Sincel is a proper ideal inD, we can takeb2 D n(a);
then = g 2 D, because in this case we would havk2 (a), a contradiction. If x 2 | then there
exists s 2 D, such that x = sa, hence

X = E)x: E)sa: b2 D;
a a

so forr = 1 the statement is true.

Now suppose thatr > 1. Sincel is a proper ideal in D, Zorn's lemma ensures that there
exists a maximal idealM such that | M. The ideal M contains at least one of the ideals;.
(If not, then, for all i, there existsa; 2 P; n M ; however, the producta; a. 2 M, which is
prime, implying that a certain a 2 M, a contradiction.) If P; is a prime ideal contained inM,
then P; = M, because all nonzero prime ideals are maximal. Without loss of generality let us
suppose thatj = 1. Asr is minimal, there existsb2 (P, P;) n(a). We consider = g As
above 2 D, hence 2 K nD. Then

IP, P, MP, P, =P/P, P (a)=) Ib (a):
Hence, ifx 2 | then there existss 2 D, such that xb = sa, which implies that

X :PX:SZD
a

and so | D. 2

We may now establish a result which will prove important further on, but is also interesting
in its own right.

Theorem 12.2 If | is an ideal in a Dedekind domain, then there is a nonzero ideal in D such
that 1J is a principal ideal.
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proof If I = f0g, then we may take any ideal inD for J, because in this casdJ = fO0g,
which is a principal ideal. So let us now takel nonzero. We choosea 2 |, with a6 0 and set
J=fb2D:bl (a)g. ThenJ is a nonzero ideal andlJ  (a).

Let us now consider the setA = %IJ . As IJ (a), A D; alsoA is anideal inD. If
A = D, then IJ =(a) and we have the result we are looking for. If this is not the case, therA
is a proper ideal inD and we can apply Lemma 12.2: there exists 2 K nD such that A D.

We now notice that A containsJ: asa21,1= za?2 %I , hencel %IJ . It follows that
J A D. This allows us to show that J  J:

A D= 10 (=) () (@=) I

As D is noetherian, the idealJ has a nite generating set a;;:::;an. Using the relation
J J,we may ndamatrice M 2M (D) such that
0 1 0 1
ap a;
%D : E =M %} : X;
am am
ag 0
(I'm M)%b;g=%bgg:
am 0

As the g are not all O, we havedet(| , M) =0. Thus is the root of a polynomial f 2 D[X].
However, D is a normal domain, so 2 D, a contradiction. We have shown thatlJ = (a), i.e.,
IJ is principal. 2

The result which we have just proved has two immediate consequences. The rst of these is
a cancellation rule for ideals in a Dedekind domain.

Corollary 12.1 If A, B and C are ideals in a Dedekind domainD, with A nonzero, then
AB = AC =) B=C:

proof There exists a nonzero ideall such that AJ is principal: AJ = (a), with a6 0, because
A and J are nonzero. Hence,

AB = AC =) AJB = AJC =) (a)B =(a)C=) aB = aC:
Multiplying by a !, we obtain B = C. 2

In a commutative ring R we may de ne a division on ideals in a natural way. If| and J are
ideals, then we say thatl divides J, and write | jJ, if there exists an idealK such that IK = J.
In Dedekind domains this is equivalent to an inclusion condition.

Corollary 12.2 If A and B are ideals in a Dedekind domain, then
AB() A B:

proof If A divides B, then there exists an idealC such that AC = B. If b2 B, then there exist
a;;ii;as 2 Aandcg;iii;cs 2 C such that b= ajc + + asCs. However, aic; 2 A, for all i,
and sob2 A. ThereforeB A.
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Now suppose thatA B. If A = f0g, then B = fOg and it is clear that A divides B. Suppose
now that A 6 fOg. There exists a nonzero ideal and a2 D such that AJ = (a). Let us set
C= 1JB. Then

1 1 1
B A=) ZJB ZJA= =(a)=D:
a a a
It is easy to see thatC is an ideal inD. We have
1
AC:AaJB:DB:B

and soA divides B. 2

12.2 Prime factorization of ideals

We have seen that a nonzero ideal in a Dedekind domain contains a product of nonzero prime
ideals. In fact, we can strengthen this statement.

Theorem 12.3 In a Dedekind domain D, every ideall 6 fOg; D can be expressed in a unique
way as a product of nonzero prime ideals.

proof Suppose that there exists an ideal 6 f0g; D which cannot be expressed as a product of
prime ideals. AsD is noetherian, the collection of such ideals has a maximal elemer¥ . The
ideal proper M is included in a maximal ideal P. As P is a maximal ideal, P is a prime ideal.
However, from Corollary 12.2,P M implies that PjM, i.e., there exists an ideall such that
Pl = M. Using Corollary 12.2 again, we obtainl M. If | = M, then, using Corollary 12.1,

DM = DPI = PDM =PM =) D = P;

a contradiction. Hence we haveM $ | and sol is a product of prime ideals. AsM = P, M is
also a product of prime ideals, which is a contradiction. It follows that an any ideall 6 fOg; D
is a product of prime ideals.

We now consider the uniqueness. Suppose that

P1P> Pr = Q1Q2 Qs;

where the P; and Q; are nonzero prime ideals (not necessarily distinct). Then

P1jQ1Q2 Qs=) P1 Qi;

for somei (see the proof of Lemma 12.2). Without loss of generality, let us suppose that=1.
As Q; is maximal, P; = Q1. Using Corollary 12.1 we obtain

P2 Ps= Q2 Qr:

Continuing in the same way we obtain the postulated uniqueness. 2

Corollary 12.3 In a Dedekind domain a countable intersection of distinct nonzero prime ideals
is trivial.
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proof Let (Pn)n2n be a collection of distinct nonzero prime ideals in a Dedekind domairD
and | =\ ,onPn. We have
Pn | =) Pijl;

for eachn. If | is nontrivial, then | has a unique decomposition into prime ideals and eacP,
must appear in this decomposition. This is impossible, because the decomposition is composed
of a nite number of prime ideals. Hence the result. 2

An integral domain which is principal ideal domain (PID) is always a unique factorization
domain (UFD). For a Dedekind domain the converse is also true. This is a corollary of the
theorem which we have just proved.

Corollary 12.4 A Dedekind domain which is a UFD is a PID.

proof Let D be a Dedekind domain andl an ideal inD. If | = fOgor| = D, then | is
clearly principal, so let us suppose that this is not the case. From Theorem 12.2, divides a
nonzero principal ideal(a). As D is a UFD, we may write a as a product of irreducible elements:
a=p1 ps. Each principal ideal (p;) is a prime ideal and we have

(@=(p1) (ps):

As | divides (a), there exists an idealC such that

1IC =(p1)  (ps):

F=(p,) (P)=(p, Ppi,):

We have shown thatl is a principal ideal. 2

Remark We might be tempted to think that the ideals in a Dedekind domain form a UFD.
However, the ideals in a nontrivial ring do not form an additive group: If | is a nonzero ideal,
then | + 1 = 1, which would not be possible ifl had an additive inverse. We can only arm
that the ideals form a monoid.

12.3 Ideal classes

If R is an integral domain, then we may de ne a relationR on the nonzero ideals inR as follows:
IRJ if and only if there exist elements ; 2 RnfOgsuchthat | = J. Itis easy to see
that R is an equivalence relation, so we will write for R. We de ne a multiplication on the
equivalence classes in an obvious way:

(IET=113]:

This multiplication is well-de ned, since |  1%°andJ  J%implies that 13 19°% We will
show that the equivalence classes with this multiplication form a monoid and, in the case of a
Dedekind domain, a group.

Lemma 12.3 If R is an integral domain, | an ideal in R and there exists 6 0 such that |
is principal, then | is principal.
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proof Let | = (a). Then there existsu 2 | suchthata= u. If s2 |, then we may nd
v 2 R such that s = va. We have

s =vu =) (s vu)=0=) s=vu;
It follows that 1 (u). Asu2 1, (u) | and so we havel = (u). 2
We now consider a particular equivalence class.

Proposition 12.1  If R is an integral domain, then the nonzero principal ideals form an equiv-
alence class.

proof Let | be a nonzero principal ideal:1 = (a). If J is also a nonzero principal ideal and
J = (D), then

bla)=a(=) I J;
henceJ 2 [I].

Now suppose thatJ is a nonzero ideal inR and |  J: there exist ; 2 R nf0g such that
I = J.Ifl =(a),then J = (a)=( a). From Lemma 12.3,J is principal. Therefore the
class ofl is composed of the nonzero principal ideals ifR. 2

We will note the set of equivalence classe€I(R). Clearly, CI(R) contains a unique element
if and only if R is a PID.

Theorem 12.4 CI(R) is a monoid. If R is a Dedekind domain, thenCI(R) is a group.

proof It is clear that the multiplication which we have de ned is associative. We claim that the
class of nonzero principal ideals, which we not&, is a neutral element. To see this, let(a) be a
nonzero principal ideal and| any nonzero ideal. Then(a)l = al. Asal =1al,| al andit
follows that E[I]=[1]. Thus CI(R) is a monoid.

Now suppose thatR is a Dedekind domain andl a nonzero ideal. From Theorem 12.2 we
know that there is a nonzero ideald such that 1J is principal. Moreover, 1J 6 f0g, sincel 6 fOg
and J 6 f0g. Hence the clasql ] has an inverse[J]. Therefore CI(R) is a group. 2

The group of classe<CI(D) of a Dedekind domainD is called the ideal class groupof D.

12.4 hcf and Icm

We have seen above that division of ideals in a Dedekind domain may be characterized by a
simple inclusion condition: 1jJ (| J. Keeping this in mind, we will now study in more
detail the division of ideals in a Dedekind domain.

We de ne a highest common factor(hcf) and a lowest common multiple(lcm) of two ideals
in the same way as we do in an integral domain. Let and J be nontrivial, proper ideals in a
Dedekind domainD. An ideal U is an hcf of| and J if

ujl, UjJ;
Xjl;X jd =) Xju.

An ideal V is an lcm of | and J if
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iV, JjV;
1jY;JjY =) VjY.

Exercise 12.2 Show that thehcf and thelcm are unique; hence we can speak of thecf and
the Ilcm of two ideals.

Another point is worth making. We say that two elements in an integral domain are coprime
if they have 1 as an hcf. IfR is a PID and x and y are coprime, then there exista;b2 R such
that ax + by = 1. This is equivalent to saying that (x) + (y) = R. This suggests the following
generalization: if | and J are ideals in ring R, then we say that these ideals arecoprime, if
I +J=R.

Proposition 12.2 If | and J are nontrivial, proper ideals in a Dedekind domainD, then
hef(1;J)=1+J and lem(l;J)=1\ J:
proof First the hcf. We have
I+J ;3 =) | +3Jjl;1 +J3jd

and
XihXjid=) X L1x J=) X 1+J=) Xjl +J;
hence hcfl;J)= 1 + J.
Now we consider the lcm. We have
5 1VJ=) 1jiN g djiNd
and
LjY;JjY =) | Y;J Y= I\J Y=) I\Jjy;
hence len(l;J )= 1\ J. 2

The following characterizations of the hcf and lcm are not di cult to establish:

Proposition 12.3 Let D be a Dedekind domain and, J nontrivial, proper ideals in D. We
note Py;:::Ps the prime ideals appearing in the factorization into products of prime ideals in
either | or J:

= p™ and J= P";
i=1 i=1
where them; and the n; are elements ofN and, for any giveni, m; and n; are not both equal to
0. Then

¥ min( m;i;nj) ¥ max(mi;ni)
hcf(l;J ) = P; b and lem(1;J) = P; B
i=1 i=1

Corollary 12.5 If I, J are nontrivial, proper ideals in a Dedekind domainD, then
hef (1; 3 )lem(1;J) = 13:

Remark Propositions 12.2 and 12.3 can be naturally generalized to a nite nhumber of ideals.

The following result is also useful:
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Proposition 12.4  In a commutative ring R, if the ideals| and J are coprime, thenl\ J = 1J.
If R is a Dedekind domain andl, J are nontrivial, proper ideals, then the converse is also true.

proof Let R be a commutative ring with ideals| and J. If | + J = R, then
INI=(IVDHR=(I\N DU+ =1\ DI +(I1V I I +1J =1

Clearly 13 I\ J,sol\ J=1J.
Now suppose thatR is a Dedekind domain. Then

3 =1\Jd=) (1+)UI)=(1+U\ I)=1J;

becausel + J = hcf(l;J) and I\ J = lem(l;J). If | + J is a nontrivial, proper ideal, then we
have a contradiction to the unique factorization of ideals. On the other hand, clearlyl + J 6 fQg,
sol +J =D, ie., | andJ are coprime. 2

We may slightly strengthen Theorem 12.2. To do so we need a preliminary result.

Lemma 12.4 Let | be a nonzero ideal in a Dedekind domairD. If P is a prime ideal, then
Pl 1 and the inclusion is strict.

proof The inclusion is clear. If| = D, then the strict inclusion is clear. On the other hand, if
| 6 D, ifthe inclusion is not strict, then we have a contradiction to the unicity of the factorization
of ideals, so the inclusion must be strict. 2

Theorem 12.5 If | and Q are nonzero ideals in a Dedekind domairD, then there exists an
ideal J of D such thatlJ is principal and J and Q are coprime.

proof If | = D, then itis su cient to take J = f0g. On the other hand, if Q = D, then, from
Theorem 12.2, there is a nonzero ideal such that IJ is principal; asJ + D = D, J and D are
coprime. Let us now suppose thatt 6§ D and Q 6 D.

— m ms.
| = PM  PMs;

hef(P/** ;P ™) = PP = D;

o) Pii+l and ij *1 are coprime. From the Chinese remainder theorem (Theorem F.1), we see
that there exists x 2 D such that x y; mod Pimi"l, for eachi 2 f1;:::;sg. Thus, for all
x2 PM; x2pM*t =) pMijx); PM* - (x):

This implies that |j(x) and so there exists an ideall in D such that 1J = (x). J and Q are
coprime, since no prime ideal divides both) and Q. Indeed, any prime ideal dividing both J
and Q is a P; for somei 2 f 1;:::;sg. This contradicts the fact that x 2 P™**. 2

Dedekind domains are 'almost principal, i.e., their ideals are generated by at most two
elements.
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Corollary 12.6 If | is an ideal in a Dedekind domainD, then there existx;y 2 | such that
I =(xy).

proof From Theorem 12.2 we know that there is a nonzero idea® in D such that IQ is principal:
there existsy 2 D such that IQ = (y). In addition, Theorem 12.5 ensures the existence of an
ideal J in D such that 1J is principal and J and Q coprime: 1J = (x), for somex 2 IJ. We
have

xy)=(x)+(y)=13 +1Q=10+Q)=1D =1

the result we were looking for. 2

We have seen above in Corollary12.4 that a Dedekind domain which is a UFD is a PID. We
can use Theorem 12.5 to obtain another criterion for a Dedekind domain to be a PID.

Corollary 12.7 A Dedekind domain with only a nite number of prime ideals is a PID.

proof Let D be a Dedekind domain with only a nite number of prime ideals. We write Q for
the product of these ideals. Ifl is a nonzero ideal inD, then from Theorem 12.5 there is an
ideal J such that 1J is a principal ideal (a), with J and Q coprime. AsJ and Q are coprime,
we must haveJ = D. Hence

@=13 =1ID =1

therefore | is principal. 2

12.5 Fractional ideals

If R is a commutative ring, then by de nition R is an R-module and an ideal ofR is an R-
submodule. In an integral domain we may extend the notion of ideal. This proves to be par-
ticularly useful in Dedekind domains. Let R be an integral domain with eld of fractions K.
If J is an R-submodule of K such that rJ R, for somer 2 R , then we say that J is a
fractional ideal. We call r a denominator of J. Setting r = 1, we see that an ordinary ideal is a
fractional ideal, so the notion of fractional ideal does indeed generalize that of ideal. When han-
dling fractional ideals we sometimes refer to ordinary ideals amtegral idealsto distinguish them.

Example %Z is a fractional ideal of Z, but not an integral ideal.

The ring R is a fractional ideal, but in general its eld of fractions K is not. If K is a
fractional ideal, then there existsr 2 R such that rK R. Asr is inversible in K, we have
K = 1R. Now, 3 2 K, s0o % = is, with s2 R. This implies that s= %, i.e., 1 2 R, and so

= &

K = R. We will suppose thatK 6 R.

We de ne the addition and multiplication of fractional ideals in the same way as we do for
ideals, i.e.,

l+J=fx+y:x21l;y2Jg and | J=f Xiyi:n Lixi21Ly;2Jg:

As in general for multiplication, we write 1J for | J.

Proposition 12.5 If | and J are fractional ideals with denominatorsr and s respectively, then
I\ J, 1 +J andIJ are fractional ideals with respective denominatorsr or s, rs and rs.
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proof There is no diculty in seeing that 1\ J, |1 + J and IJ are R-submodules ofK. In
addition,

rd\VJ) 1 R; rs(I+J) rl+s)J] R and rs(IJ)=(rl)(sd) R:

This ends the proof. 2
Proposition 12.6 Let R be an integral domain. The nonzero fractional ideals ofR are the
expressions of the formJ = | , wherel is a nonzero ideal ofR and 2 K .
proof LetJ = | ,wherel is a nonzero ideal ofR and 2 K . If = 2 with a;b2 R, then
bJ=al | R, therefored is a nonzero fractional ideal ofR.

Now let J be a nonzero fractional ideal ofR. There existsr 2 R such thatrJ R. More-
over,J = 1(rJ) andrJ is an ideal ofR. As 2 2 K , J has the required form. 2

Remark An R-submodule is not necessarily a fractional ideal. For exampIeZ[%] is aZz-
submodule contained inQ, but is not a fractional ideal of Z. (There is no positive integer
n such that nZ[3] Z).

Exercise 12.3 Let R be an integral domain. Prove the following statements:
a. If J is a fractional ideal of R and r a denominator, thenrJ is an integral ideal of R.
b. If a fractional ideal J of a ring R is contained in R, then J is an integral ideal of R.

The next result enables us to characterize fractional ideals in the case where the rinB is
noetherian.

Proposition 12.7 Let R be a noetherian domain. The nonzero fractional ideals oR are the
nonzero nitely generated R-submodules ofK , where K is the eld of fractions of R.

proof Let J be a nonzero nitely generated R-submodule ofK :
J=Rx;+ + Rxp;

where x; = ";‘)— with g 2 Randh 2 R. Ifwesetb=1Db b, thenbl R andsolJisa
nonzero fractional ideal ofR.

Reciprocally, let J be a nonzero fractional ideal oR and r a denominator ofJ. Then J %R.
As an R-module, %R is isomorphic to R, hence%R is a noetherianR-module. SinceJ is a sub-
module of %R, J is a nitely generated R-module. 2

The product of two nonzero fractional ideals is a nonzero fractional ideal and the multipli-
cation is associative. IfJ is a fractional ideal, then, using the fact that J is an R-module, we
have

RI J=1J RJ;

and soR is an identity for the multiplication. It follows that the nonzero fractional ideals form
a semigroup. In the case of a Dedekind domain the nonzero fractional ideals form a group, as
we will presently see.

Proposition 12.8  Every nonzero fractional ideal in a Dedekind domainD has an inverse in
the set of fractional ideals. More explicitly, if | is a nonzero fractional ideal ofD andJ = fx 2
K;xl Dg, then J is a fractional ideal and 1J = D.
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proof Letus rst suppose that | is a nonzero integral ideal. It is easy to see that] is a nonzero
D-submodule ofK, the eld of fractions of D. If r is a nonzero element ol (and so ofR) and
x 2 J, then rx 2 D, so there existsr 2 D such that rJ D. Thus J is a nonzero fractional
ideal.

Leta2l,with a60,andJ;=fb2 D :bl (a)g. The proof of Theorem 12.2 shows that
1J 4 = (a). In addition, %Ja = J. Indeed, %Ja is clearly included inJ and everyc 2 J can be
written ¢= 2caandca2 J,. Thus

1 1
IJ =1=-Ja= =(a)= D;
32z ()

therefore J is an inverse ofl .

Now let us consider the more general case, i.¢, is a nonzero fractional ideal, which is not
necessarily integral. There exists a nonzero integral ideah and 2 K , whereK is the eld
of fractions of D, such that | = A (Proposition 12.6). If we setB = A ! then B is a
fractional ideal and IB = D, sol has an inverse, namelyB. It remains to show that B = J =
fx 2 K;xl Dg. From the rst part of the proof we know that A ' = fx 2 K : xA Dg.

fu2l % thenu= Ix, wherexA D, which implies that u A D and it follows that
u2 J. We have shown thatl * J. To complete the proof, we show thatd | 1. Ifu2J,
thenul D,ie,uA D. Thisimpliesthat u 2 A *andsou2 A '=1 ! Therefore
J 1. 2

Corollary 12.8 The nonzero fractional ideals of a Dedekind domain form an abelian group.

In fact, Proposition 12.8 has a converse. IfR be an integral domain, then the nonzero
fractional ideals form a monoid, with identity R. The nonzero invertible fractional ideals form
an abelian group. If R is a Dedekind domain, then every nonzero fractional ideal is invertible,
hence the result of Corollary 12.8. However, the converse is also true.

Proposition 12.9  If R is an integral domain such that every nonzero fractional ideal is invert-
ible, then R is a Dedekind domain.

proof We must show that R is noetherian, that prime ideals are maximal and thatR is normal.
Let K be the eld of fractions of R.

Let | be a nonzero (integral) ideal ofR. Then | is invertible and J = fx 2 K : xl Rg
is the inverse ofl. (We can easily verify that IJ = R and in a monoid, if an element has an
inverse, then this inverse is unique.)

As |J = R, there existay;:::;a, 2| and by;:::;b, 2 J such that ayb; + + a,b,=1. If

becauseha 2 R, fori =1;:::;n. It follows that |  (ag;:::;a,). Clearly (a;;:::;a,) |, so
we have equality. As every ideal is nitely generated,R is noetherian.

Let P be a prime ideal inR and M a maximal ideal containing P. As M s invertible, there
exists an idealJ such that P = JM. (J = M P R, becauseP M from Exercise 12.6
the fractional ideal J is an integral ideal.) SinceP is a prime ideal, we have] P orM P.
(f J 6 Pand M 6 P, then there existx 2 JnP andy 2 M nP; but xy 2 JM = P, a
contradiction.) If J P, then P = JM PM; multiplying by P !, we obtain R M, a
contradiction. Therefore M P and it follows that M = P. HenceP is a maximal ideal.
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It remains to show that R is a normal domain. Letx 2 K be integral over R. Then there
exist elementscy;cq;:::;¢ 1 2 R such that x" = ¢cg+ ¢ x + ¢, 1x" 1. Let

X1
A=fy2K:y= uix';ui 2 Rg:
i=0

A is clearly an R-module. The elementx = L, with r 2 Rands2 R, sos" 1A is a subset
of R. HenceA is a fractional ideal of R. Sincex" 2 A, we havexA A. By hypothesis A is
invertible, so multiplying by A * we obtain x 2 R. Therefore R is integrally closed inK , i.e., R
is a normal domain. 2

Remark Propositions 12.8 and 12.9 provide us with a useful characterization of Dedekind do-
mains, which will use further on.

Decomposition of fractional ideals

We have seen that in a Dedekind domainD an ideall 6 f0g; D can be written in a unique
way as a product of prime ideals. We may extend this result to fractional ideals.

Theorem 12.6 If J is a fractional ideal in a Dedekind domain andJ 6 fOg; D, then
J=P" P";

where theP; are distinct nonzero prime ideals ofD and the n; integers (possibly negative). This
decomposition is unique.

proof We rst observe that such a decomposition exists. AsJ is a fractional ideal there is an
r2D suchthatrd D. Clearly rJ is a nonzero ideal ofD. There are two cases to consider:
L:risaunitof D, 2: r is not a unit of D.

Case 1. If r is a unit of R, then J is subset ofD, hence an ideal ofD (Exercise 12.6). By
hypothesis,J 6 D, so we have the required decomposition.

Case 2. If r is not a unit, then rD is a nonzero proper ideal inD and so there exists a
decomposition
rD =P P

where the P; are distinct prime ideals and the n; positive integers. From Proposition 12.8 each
P; has an inverse in the set of fractional ideals. Consequently;D has an inverse in the set of
fractional ideals:

(/D) =P, " P, " (12.1)

As rJ is an integral ideal of D (Exercise 12.6), we haveDrJ = rJ, thus
r 'brd =J=) (D) rJ =3

If rJ = D, then (rD) ! = J and, using Equation (12:1), we obtain a decomposition ofJ of the
required type. On the other hand, if rJ 6 D, then rJ is a nonzero proper ideal ofD and it
follows that J has a decomposition of the required type.
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We now consider the unicity of the decomposition. If
plml pm = 21 ns
r S

and all the exponents are positive, then there is no di culty as we have an ideal inD. The P;
and Q; are the same with the same positive powers. Suppose now that there are negative powers
in the expression. If, for example,ns < 0, then we may multiply both sides of the expression
by Q¢ ". If we do this for all prime ideals with negative powers, then we obtain an expression
with positive powers of the P; and the Q; on both sides. If we now have &Q; on the lefthand
side, then we must have aP; on the righthand side such thatQ; = P; and n; = m;, which
implies that n; = m;. If a Q; remains on the righthand side, then there must be aP; on the
lefthand side such thatQ; = P; and n; = m;. We may use an analagous argument for the®;
and so obtain the uniqueness of the decomposition. 2

We may distinguish the integral ideals among the fractional ideals in a simple way, as the
next result shows.

Corollary 12.9 A nonzero fractional ideal J of a Dedekind domainD, such thatJ 6 D, is an
integral ideal if and only if the powers of all the prime ideals in its decomposition are positive.

proof If all the powers are positive, then we have a product of ideals, which is an ideal.
Suppose now that at least one powem; is negative:

J=pP" PM P
with m; < 0. If J is an ideal, then we may write
J = 21 Ns.

S 1

where the Q; are ideals andn; > 0, for all j. Given the uniqueness of the factorization ofl , we
must have P; = Q; for somej, and m; = n;. However, this is impossible, because

S anj =) Pinj ™=D

andn; m; 2andP; is aproper ideal. Hence, if a power of a prime ideal in the decomposition
is negative, J is not an ideal. 2

Further properties of fractional ideals

Certain properties of ideals may be generalized to fractional ideals. First we consider divis-
ibility. Let | and J be fractional ideals in a Dedekind domainD. We say that | divides J if
there exists an integralideal H such that IH = J.

Exercise 12.4 Show that division de nes an order relation on fractional ideals.

Exercise 12.5 Show that division of fractional ideals is equivalent to inclusion, i.e., ifl and J
are fractional ideals of a Dedekind domainD, then | dividesJ if and only if | contains J.

It is also interesting to notice that inclusion is reversed by inversion:

Exercise 12.6 Let | and J be nonzero (integral) ideals in a Dedekind domairD. Show that if
| JthenJ ' | ! Deduce that this is also the case for any pair of nonzero fractional ideals.
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If R S are commutative rings and| an ideal in R, then we de ne an ideal S| in S, the
extension of | in S, by letting SI be the collection of nite sums of the form = 2, six;, with
si 2 Sandx; 2 |. This is the smallest ideal in S containing | (or the ideal in S generated by
). We may generalize this idea to fractional ideals.

Let C be Dedekind domain andD a commutative ring containing D. We note K the eld of
fractions of C. If K is a fractional ideal of D, then we write DJ for the collection of nite
sums of the form~ 2, dix;, with di 2 D and x; 2 J. We claim that, if D is an integral domain,
then DJ is a fractional ideal of D. Indeed, DJ is clearly a D-module of the eld of fractions
of D and any denominator of J is a denominator of DJ . This fractional ideal is the smallest
fractional ideal of D containing J.

If R S are commutative rings and| an ideal in R, then it is not necessarily the case that

SI\ R=1. Forexample, ifR=2,S= Q and | =(2), then SI = S, becauseQ is the only
nonzero ideal inQ. AsQ\ Z = Z 6 (2), in this caseSI\ R 6 |I. This example also shows that,
even if R and S are Dedekind domains, it may not be true that SI'\ R = |. The following result

provides a framework where this property holds.

Theorem 12.7 Let C be Dedekind domainD a commutative ring containing C and K the eld
of fractions of C. In addition, we suppose thatC\ D K.

a. If J is a fractional ideal of C, then DJ \ K = J;

b. If I is an (integral) ideal of C, then DI \ C = 1.

proof a. To begin with, DJ \ K is always a fractional ideal of C. Indeed, it is clearly a C-
submodule ofK and any denominator of J is a denominator ofDJ \ K, becauseD\ K C. If

J = f0g, then the result is evident, so suppose that this is not the case. Proposition 12.8 ensures
that J has an inverse. Then

D=DC=D(@JJ YH=(DI)DJ Y);

hence
C D\K= (DJYDJ ) \ K (DJ\ K)DJ *\ K):

SinceDJ \ K is a fractional ideal of C, from Proposition 12.8 again,DJ \ K has an inverse. We
have

C=(DJ\ K)DJ\ K) =) (DJ\K)DJ\K)?! (DJ\K)DJI\ \K):
Now, using Exercise 12.5, we obtain
(DJ\K) ! DJ M\ K:
SinceJ DJ\ K, from Exercise 12.6,
DU HYVK J 1 (DI\VK) !

and so
(DJ\K) '=DJ "W K=J1=) DI\K =

as required.
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b. Let | be an (integral) ideal in C. Sincel is also a fractional ideal, the parta. ensures that
DI\ K =1
Taking the intersection with D on both sides leads to
DI\ (K\ D)= 1I:

Clearly C K\ D and we have seenin parta. that K\ D C,soK \ D = C and it follows
that DI \ C=1. 2

Example If D is integral over C, then D\ K is included in the integral closure ofC in K. As C
is a normal domain, its integral closure inK , its eld of fractions, is C itself. Thus D\ K C
and so Theorem 12.7 applies.

If R is an integral domain, then we may extend the equivalence relation de ned in Section
12.3 to fractional ideals. In the same way as for the nonzero integral ideals, we de ne a relation
R on the nonzero fractional ideals ofR as follows: | RJ if and only if there exist elements
;7 2 Rnf0gsuchthat I = J. There is no diculty in seeing that R is an equivalence
relation and so we write  for R.

Proposition 12.10 If R is a Dedekind domain andl is a nonzero fractional ideal in R, then
there is a nonzero integral ideald such thatl J.

proof Let | be a nonzero fractional ideal. From the decomposition of fractional ideals we obtain
the existence of integral idealsB and C such that | = %, with C nontrivial. We take t 2 C, with
t60. ThenC Rt=) CjRt. Hence there exists an integral ideaE R such that CE = Rt.

Therefore we have B CEB
Rt)l = Rt—= =
(Rt) te C

hencel EB. 2

= EB =) tl =1EB;

Remark From the above proposition, every equivalence class contains an integral ideal.

12.6 Localization in a Dedekind domain

Before studying localization in a Dedekind domain, we will rst revise (or introduce, for those
not familiar with localization) the basic notions of localization in a commutative ring.

Let R be a commutative ring. A subsetU of R is said to be multiplicative if
12U;
X;y2U=) xy2U.
We de ne arelation R onR U by
(ru)R(r%uY;

if there existst 2 U such that
t(ru® r%)=0:
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It is easy to show that R is an equivalence relation, so we will write  for R. Also, we write [ for
the equivalence class ofr; u). In general, we writeU R for the collection of equivalence classes.

We may give U 'R a ring structure:

r, r% ru%+r% and roro o
u u uu® u ud  u®

It is easy to check that these operations are well-de ned and thatU R with these operations is
a commutative ring. (The element% (resp. %) is the identity for the addition (resp. multiplica-
tion).) The ring we have obtained is called the localization of R with respect toU. Clearly, the
procedure we have used generalizes the construction of the rational numbers, witR = Z and
Uu=2z.

Exercise 12.7 Show thatU 'R is a zero ring if and only if 02 U.
From now on we suppose that0 2 U.

Exercise 12.8 Show that, if R is an integral domain and K its eld of fractions, then the
mapping ) ;
U R K -7 —

u u

is an injective ring homomorphism. It follows that, if R is an integral domain, then so isU R,
For a commutative ring R, the mapping

r

'R! U7 -

1

is a ring homomorphism. In addition, if u 2 U, then

ul_
1 u

so the elements of (U) are invertible in U R.

1
1

u
u

Exercise 12.9 Show that the mapping de ned above is injective if and only if U has no zero
divisors. It follows that, if R is an integral domain, then is injective.

If X is a subset ofR, then we set
U X = fé:xzx;u 2 Ug:

Clearly, if | is an ideal inR, then U I is anjdeal inU !R. Itis not dicult to see that U 1|
is the collection of all nite sums of the form = L, yi (xi), wherey; 2 U R and x; 2 I, which
is the ideal in U R generated by (I). If is injective, then we may considerl as a subset of
U 'R and we write (U 'R)I for U 'I.

Remark We may extend this idea. Suppose thatA and B are commutative rings with identity

andf : Al B ahomomorphism. If| is an ideal in A, then f () is not necessarily an ideal in
B, even iff is injective (for example, the image of the ideal2Z in Z by inclusion of the ring of
integers Z in the rationat{;; Q is not an ideal in Q.) However, if we let 1€ be the collection of all
nite sums of the form in:1 yif (i), wherey; 2 B and x; 2 |, then | € is an ideal in B, called
the extension ofl (under f) in B. |¢ is the ideal in B generated byf (1). If f is an injection,
then we write BI for | €.
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Lemma 12.5 Let | be an ideal inR. Then U !l is a proper ideal in U 'R if and only if
IVu=;.

proof Ifu2l\ U, theng= 552U 11, soU !l is not a proper ideal. On the other hand, if
U !l = U IR, then 1= ., forsomer 21 andu 2 U, hence there existst 2 U such that

t(u r)=0=) tu=tr
However,tu 2 U, becauset;u 2 U, andtr 2 |, becauser 2 1,sol\ U6 ;. 2
The next result is elementary, but important.

Proposition 12.11 If | and J are ideals in R, then

a. U 1+J)=U 1 +U 1J;

b. U }(1\VJ)=U Y\ U 1J;

c. U 1(13)=(uU ) 1J).
proof It is clear that in all three cases the lefthand side is contained in the righthand side, so
we only need to show that the righthand side is included in the lefthand side.

a If L2U 1 and ;2 U 13, then

roor% ru%+r%
—+ -

u u®

becauseru®2 1 andr% 2 J. Thus

20U (1 +J);

Utr+u t U+
b. If L2 U Y1\ U 1J, then there existr; 2 1, u; 2 U and t; 2 U such that
ty(ruy riu)=0=) tyrug = taru2 1
andr, 2 J,u, 2 U and t; 2 U such that
ta(ruz  rou)=0=) torup = torou2 J:

It follows that
titoruquy 2 1 \ J

Thus there existsu 2 U such thatru2 1\ J. Now £ = f&2 U 1(1\ J), so

Uuthvu o u ey

0 0
c. Let Iyiii; L 2U Y and ;i 8 2 U 1. Then
1 Un u? ug
0 0
fri, fnfo . ° .
ug u? up u?  uud  upud’

wherer 2 1J, so
(U I 1) U )
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This ends the proof.
Above we introduced the mapping

r
R! U WRr7! =
’ 1

As is a ring homomorphism, if J is an ideal inU R, then 1(J) is an ideal in R. Also, we

have seen that, ifl is anideal inR, then U 1l isanideal inU !R. It followsthat U 1
is an ideal inU !R. In fact, we have a stronger result.

Proposition 12.12 If J is an ideal in U 'R, then
utl ) =
proof If L2U *  1(J),then there existr®2 *(J), u°2 U andt 2 U such that

0 0 0 1 tru©
tru® rW=0=) tru’=twr2 1Q)=) 2

Therefore
rtru® tru® 1

= — = =2
u tuu® 1 tuu®

Hence
ut ) I

To prove the converse, let us take] 2 J. Then

23=) r2 J)=9) %2u1 1) -

=

r
1 u
Thus
J ul

This completes the proof.
Let us write | g (resp. |y 1:g) for the collection of ideals inR (resp. U 'R).
Proposition 12.13  The mapping
Loy w1 g1I T 1)
is injective.
proof If 1(J1)=  1(J,), then from Proposition 12.12 we have
Ji=U ' M) =U (32 =32

and the injectivity follows.

Y(9)

2

The main object of this section is to show that the localization of a Dedekind domain is a
Dedekind domain. We have already observed that the localization of an integral domairD is
an integral domain (Exercise 12.8). We now show that the noetherian property carries over to a

localization.
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Proposition 12.14 If R is a noetherian ring and U a multiplicative subset of R, then the
localization U R is a noetherian ring.

proof Let :R ! U R be the standard ring homomorphism takingr to 7. We take an
ascending sequence of ideals id R:

Jo J1 J2
The inverse images under of these ideals form an ascending chain of ideals iR:

Qo) Q) Q)
As R is noetherian, this chain eventually stabilizes, i.e., there existk such that
3= TQka)=
However, the mapping ! is injective (Proposition 12.13), so we have
Jk = ka1 =

and it follows that U 1R is noetherian. 2

Our next step is to show that
Proposition 12.15 If R is a normal domain and0 2 U, then U R is a normal domain.

proof Let be an element gf the fraction eld of U 'R which is integral over U 'R, i.e., there
exists a polynomial f (X) = ._0 laxi+Xk2u 'R[X]such thatf( )=0. We takeu 2 U
such thalgu is a multiple of the denominators of the a;, then uag;ua;;:::;uax 1 2 R. Setting
f(X)= :<:01 uk Ta X'+ X% we havef 2 R[X]andf(u )=0, sou is integral over R. We
may also chooseu such that u lies in the eld of fractions of R. To see this, notice that

_ ri_ri _) u = Url I'2 _urpuz

= = =
Ui U» u; uz uz
If we chooseu 2 U to be a multiple of u, then u belongs to the eld of fractions of R. As R
is a normal domain, u 2 R, which implies that = “- 2 U *R. It follows that U 'R is a
normal domain. 2

To show that U D is a Dedekind domain if D is a Dedekind domain we must show that
prime ideals are maximal. To do so, we rst consider the mapping ! restricted to prime ideals.

Lemma 12.6 If | is an ideal in R, then
| Lu
with equality if | is a prime ideal disjoint from U.

proof 1f r21,then T2 U ', hencer 2 (U *I). This proves the rst part of the lemma.
Now suppose thatl is a prime ideal inR such that 1\ U= ; andletr 2 (U !l). Then
(N=1%2U Y,sof= r° for somer®2 | and u®2 U. Thus there existst 2 U such that

uOy
tru® r%=0=) tru’= tr®
with tu®2 |, becauseU\ | = ;. (If tu®2 1,thent2 | oru®2 I, a contradiction.) Sincetr®2 I,
alsotru®2 1. Given that tu®2 1 and | is prime, we must haver 2 |. Hence (U lI) 1.2

We will write P 1 for the set of prime ideals inU 'R and Pg,y for the set of prime ideals
in R disjoint from U.
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Theorem 12.8 The mapping ! restricted to Py :g de nes a bijection onto Pgpy .

proof We have already observed that, ifJ is an ideal inU 'R, then 1(J)is anideal inR and
that the mapping ! is injective (Proposition 12.13). It is elementary to show that  %(J) is
prime when J is prime. We must show that *(J)\ U = ;. From Lemma 12.5 and Proposition
12.12

foyrvu=;9 ut ) sulrRp)p JsU'R:

SinceJ is a prime ideal ofU 'R, J 6 U 'R,so 1(J)\ U = ;, as desired. We have shown
that the image of ! restricted to Py :g lies in Pgrny.-
To nish we only need to show that *(Py :r) = Prnu. Let | 2 Prpy. From Lemma 12.6
we have
= Yu )

As | is a prime ideal inR and I\ U= ;,U 1l isaprimeideal inU 'R, so ! restricted to
Py 1gr is surjective. 2

Corollary 12.10 If R is a commutative ring in which every nonzero prime ideal is maximal,
then this is also the case for the localizatiord R.

proof LetJ be a nonzero prime ideal inJ R which is not maximal. Then there exists a nonzero
prime ideal J°in U R which properly contains J. From the previous theorem, both  1(J)
and (39 are nonzero prime ideals and *(J) is properly contained in  1(J9. However,
this is a contradiction, because *(J) must be maximal. HenceJ is maximal. 2

Exercise 12.10 If | is a prime ideal in R and | \ U 6 ;, show thatU !l is not a prime ideal
inU 'R.

We are now in a position to establish the main theorem of this section.

Theorem 12.9 If D is a Dedekind domain andU a multiplicative subset of D not containing
0, then U !D is a Dedekind domain.

proof We noticed in Exercise 12.11 that if the multiplicative set U has no zero divisors, then
U IR is an integral domain. SinceD is an integral domain, so isU 'D. Next, from Proposition
12.14,U 1D is a noetherian ring. Now, using Proposition 12.18, we see that) D is a normal
domain. To nish we only need to show that every nonzero prime ideal inU D is maximal.
However, this follows from Corollary 12.10. 2

Suppose now that! is an ideal in D such that | 6 fOg;D and | = P;* P®& is the
decomposition of | into prime ideals of D. In the Dedekind domain D®= U 1D the ideal J
generated byl has a decomposition into prime ideals oD° The following proposition gives us
the form of this decomposition.

Proposition 12.16 Let | be an ideal of the Dedekind domairD, such that! 6 f0g;D, and U
a multiplicative subset of D not containing 0. If | = P*  P?® is the decomposition ofl into
prime ideals of D and J the ideal in D®= U D generated byl , then the decomposition ofJ
into prime ideals has the form v
J= (DOPi)e‘ .

Pi\ U=;
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proof First we have !
Y Y
J=DA=D° P& = (D%)*:
i=1 i=1

If P;\ U6 ; then D%; contains a unit, soD%; = D% Thus

Y
J= (D%y)e:

Pi\ U=;

It remains to show that DP; is a prime ideal ifP;\ U = ;. Let 2; 52 D%be such that%% 2 D%;.
Then %3 = &, with x 2 P, andw 2 U. Soabw= uvx 2 P;, becausex 2 P;. Given that w 2 P;,
becauseP; \ U = ;, we haveab 2 P;, which implies that a2 P; or b2 P;. Hence% 2 D% or
52 D%, which shows that D%; is a prime ideal. 2

A special case

If a commutative ring has a unique maximal ideal, then we say that it is alocal ring. In certain
cases the localization of a commutative ring is a local ring. We will be particularly interested in
the case where the ring is a Dedekind domain. However, we will rst present a result giving two
characterizations of local rings.

Proposition 12.17  The following conditions are equivalent for a commutative ringR:
a. R is a local ring;
b. There is a proper ideall of R which contains all the nonunits ofR;

c. The set of nonunits ofR is an ideal.

proof a: =) b: If r is a nonunit, then (r) is a proper ideal in R and so is contained in the
unigue maximal ideal of R.

b:=) c: Let A be the collection of nonunits inR. 1f ;r°2 A andx 2 R, thenr + r®and xr are
in A. If not, then there exists a2 R such that a(r + r9 =1, or b2 R such that b(xr) = 1. In

both cases, 12 A | and sol = R, a contradiction. HenceA is a proper ideal inR.

c: =) a:lf | is the ideal of nonunits, then| is maximal. If not, then there is an ideal 1°6 R
which properly contains | . As | ® must contain a unit, 1°= R. It folllows that | is maximal. If
H is a proper ideal in R, then H cannot contain a unit, soH |. Therefore | is the unique
maximal ideal. 2

Exercise 12.11 Show that the unique maximal ideal of a local ring is composed of its nonunits.

If P is a prime ideal in the commutative ring R, then U = R nP is a multiplicative subset of
R and 0 2 U. We write Rp for the localization (R nP) 'R. We call Rp the localization of R
at P. The expressionX \ RnP = ;,for X R, is equivalentto X P. We also notice that
R nP has no zero divisors, so from Exercise 12.11 the mapping: R!  Rp is injective.

Theorem 12.10 If R is a commutative ring andP a prime ideal in R, then the localization Rp
is a local ring, with unique maximal ideal

(RnP) P = f2X:x2 P;u2 RnPg:
u
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proof As P\ RnP = ;, from Lemma 12.5,(RnP) P is a proper ideal inRp. Let J be a

maximal ideal in Rp. As J is prime, 1(J) is a prime ideal in R, which is disjoint from R nP

by Theorem 12.8. As observed above, (J)\ (RnP)= ; is equivalentto (J) P, since
1(J) R. Then, by Proposition 12.12,

J=(RnP) ! 1J) (RnP) !P:

SinceJ is a maximal ideal inRp and (RnP) P is a proper ideal inRp , we haveJ = (RnP) P.
It follows that (R nP) P is the unique maximal ideal of Rp . 2

In accordance with the discussion after Exercise 12.11, for an idedlin R, (RnP) !l = Rpl,
i.e., (RnP) 1l is composed of nite sums of the form

Py
X = yi (Xi);

i=1

wherey; 2 Rp and x; 2 |. In particular, the unique maximal ideal of Rp can be written Rp P.

Now let us now consider the particular case of the localization of a Dedekind domaiD at a
prime ideal P.

Theorem 12.11 If D is a Dedekind domain andP a prime ideal in D, then the localization
Dp is a PID.

proof From Theorem 12.9,Dp is a Dedekind domain. By Theorem 12.10Dp is also a local
ring and so has a unique ideal. However, a Dedekind domain having only a nite number of
prime ideals is a PID (Corollary 12.7), hence the result. 2

We may characterize the nonzero fractional ideals oDp; however, we need to do some
preliminary work. We recall that in Proposition 12.11 we showed that if U is a multiplicative
subset of the ringR, and | and J ideals, then

U 13)=(u )y 1):
If R is an integral domain, P a prime ideal of R and U = R nP, then we obtain
Rp(IJ)=(Rpl)(RpJ): (12.2)

We aim to extend this relation to fractional ideals of R. First we extend the de nition Rpl to
fractional ideals. For a fractional ideal F of R we let Rp F be the subset of the fraction eld K
of Rp composed of nite sums of the form

x

X = fiXj;

i=1
whereij 2 1,%x; 2 Rp. (If f 2 F, thenf = L, with r 2 R, r°2 R ; then fx = % 2 K and it
follows that RpF  K.) In fact, RpF is a fractional ideal of Rp. If F is the zero ideal, then
there is nothing to prove, so let us suppose that this is not the case. Thek = | ,where 2 R
and | an ideal of R (Proposition 12.6). If f 2 F and x 2 Rp, then fx = fsx , wheres2 |. It
follows that RpF = R pl. As Rpl is an ideal in Rp, another application of Proposition 12.6
shows that Rp F is a fractional ideal of Rp .

We may now extend Equation (12:2) to fractional ideals.
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Proposition 12.18 If R is an integral domain, P a prime ideal in R and F, G fractional ideals,
then
Rp (FG) = (RpF)(RpG):

P
proof An element of Rp (FG) can be written in the form x i”:l fig, wheref; 2 F, g 2 G
and x 2 Rp. Sincex = L— with r 2 Randu 2 RnP, we have

x fig = (3fi)(;9) 2 Re(F)Rp (G);
i=1 i=1
HenceRp (FG) (RpF)(RpG).

Moreover, any element of(Rp F)(Rp G) is a nite sum of terms of the form (xf )(yg), where
X;y 2 Rp andf 2 F, g2 G. However, (xf )(yg) = (xy)(fg). Given that xy 2 Rp andfg 2 FG,
(xf )(yg) 2 Rp(FG) and it follows that (RpF)(RpG) Rp(FG). 2

We are now are in position to establish a result which will prove essential further on. It pro-
vides us with a characterization of the nonzero fractional ideals of the localization of a Dedekind
domain at a prime ideal.

Theorem 12.12 If D is a Dedekind domain andP a nonzero prime ideal in D, then every
nonzero fractional ideal J of Dp is a power ofDp P and, forany m 2 Z, (DpP)™ = DpP™.
In addition, forany m 0, Dp(P™)\ D = P™,

proof Theorem 12.9 ensures thatDp is a Dedekind domain and Theorem 12.10 thatDp has

a unique prime ideal, namelyDp P. Now, using Theorem 12.6, we obtain that every nonzero
fractional ideal J of Dp is a power ofDpP: J = (DpP)™, for somem 2 Z. If m = 0, then

J = Dp.

Let us now show that (DpP)™ = Dp(P™). We will consider three cases, namelym = 0,
m landm 1

Case 1: m=0. For m =0, this amounts to showing that Dp = DpD. Clearly, DpD Dp. If
22Dp,then 2= 222DpD,soDp DpD and we have the desired equality.

Case 2. m= 1. Form 1 we use an induction argument. Form = 1, there is nothing to
prove. Form 2, it is su cient to apply Proposition 12.18.

Case 3: m 1. From Proposition 12.18 we have
Dp = DpD = Dp(PP ')=(DpP)(DpP ) =) DpP '=(DpP)
If m 2, let us setn = m. Then, using Proposition 12.18 again, we have
DpP™=Dp (P ) ™ =(DpP 1) ™:
However,DpP ! =(DpP) 1, so

m

(DpP 1) M= (DpP) * =(DpP)™:

We now turn to the nal part of the theorem. Let m 1. Itis clear that P™ DpP™\ D.
Suppose now that’ 2 DpP™\ D, with x 2 P™ and u 2 P. There existsr 2 D such that
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% = 1. Thisimplies that there isat 2 P such thatt(x ru)=0. Hence we haveru = tx 2 P™,
with tu 2 P. Astru 2 P™, P™ contains the product of the principal ideals Dtu and Dr. This
means thatP™ divides DtuDr . Astu 2 P, P does not divideDtu . SinceP is a prime ideal, P™
divides Dr, which implies that r 2 P™. Thus { = T, with r 2 P™. ThereforeDpP™\ D P™.

This ends the proof. 2

Quotient rings of localizations

If 1 is a proper ideal inR, then we have a canonical homomorphism of R onto the quotient
ring R = R=Il. A multiplicative subset U of R induces in a natural way a multiplicative subset
of R = R=l, namely U = (U). The following proposition characterizes the localization ofR
with respect to U.

Proposition 12.19 Let U be a multiplicative subset of the ringR and R°= U !R. If | is a
proper ideal in R such that
ru2l;r2Ru2U=) r2l;

then the imageU of U under is a multiplicative subset ofR with no zero divisors, andU 1R
is isomorphic to R=RY .

proof First we noticethat |\ U= ;:Ifa2l\ U, thenal2 | and so, by hypothesis,12 I,
which is impossible, becausé is a proper ideal ofR.

To see that U is a multiplicative subset of R, rst we notice that 12 U implies that 12 U.
Next, if a;b2 U, thena= a+ |, with a2 U,and b= b+ I, with b2 U, henceab= ab+ | 2 U,
becauseab?2 U.

Finally we show that U has no zero divisors. Leta 2 U. If ab= 0, with b2 R=l, thenab2 I.
As a2 U, by hypothesisb2 I, sob= 0. Therefore U has no zero divisors.

We now de ne a mapping from U R into R0= R=RY by

r
u

(=)=

|

WhereLj is the image of - under the canonical homomorphism ofR%onto R%. We need to show
that is well-de ned, i.e.,

_ 1,

_ T _
) w0

r
u Usq

|

Indeed, if there existst 2 U such that
t(ruy riu)= 0

then roor ru; rqu
ru; rut21 =) rug ru2l=) — =71 1PoRO.
(rup riu) ) rup rp ) T s

where in the rst implication we have used the hypothesis onl. Thus & = {71; and the mapping
is well-de ned.
Clearly, is a ring homomorphism. Ifx 2 R% then x = L+ R, with r 2 R, u 2 U. If we
sety= L thenr 2R, u2 U and (y)= x. Thus is surjective. If 7 = 0, then - 2 RA. Then

L= L—g with r®2 1 and u®2 U. Hence there existst 2 U such that t(ru® r%) =0 and so

tru®2 1. Astu®2 U, by hypothesisr 2 | and it follows that = =0 in U 'R, so is injective.
This ends the proof. 2
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The next result characterizes the residue eld of the localization of a commutative ring with
respect to a maximal ideal.

Corollary 12.11 If all the elements ofU are invertible in R, then R is isomorphic to R%=R9 .
If P is a maximal ideal in a commutative ring R, then R=P is isomorphic to Rp=Rp P.

proof Suppose that all the elements olJ are invertible in R. If &2 U IRandwesetr; = ru 1,
then & = L, so the canonical mapping fromR into U R is an isomorphism. Thus we have an
isomorphism from R onto R=RY .

LetussetU = RnP. If ru 2 P,with r 2 Randu 2 U, thenr 2 P, becauseP is a prime
ideal. Hence we can apply Proposition 12.19 witH = P: U !(R=P) is isomorphic to Rp=Rp P.
BecauseR=P is a eld, every element of U is invertible. It follows that there is an isomorphism
from R=P onto Rp=Rp P. 2

Localization and integral closure

If U is a multiplicative subset of a ring R, and S a ring containing R, then U is also a
multiplicative subset of S. We aim to consider the case wheré. is some eld containing R and
S the integral closure of R in L. Thus the setU 'S is de ned. However, if R°= U 'R is also
contained in L, then integral closure of R%in L also exists.

Proposition 12.20 Let R be an integral domain andL a eld containing R. We suppose that
S is the integral closure ofR in L and that U is a multiplicative subset ofR. Then S°= U 'S
is the integral closure ofR°= U IR in L.

proof As R? K, the eld of fractions of R, and K L, the integral closure of R%in L exists.

1
ro+ris+ +rp 8" T+s"=0=) ot s+ +ry 48" t+s")=0:

This can be written

r r{ s rh 1"t s
1o + 1 >, g 1S LS 0
un un 1 u u un 1 un
which implies that £ is integral over RO,
Now let x 2 L be integral over S°. There exist {&; {+;:::; ;== 2 S%such that
r r r
L Iy o+ DIyn 1y =0

Ug up Un 1
Setting U= uUgu; U, 1, We may write

T APLE YOI L B SN B SRV o
Uo up Un 1
However, . '
urp U™ ; . nor
Lxi = L(ux)’ with L2 R;

Uj Ui Ui
soux is integral over R. As the integral closure of R in L is S, we haveux 2 S, which implies
that x = ¥ 2 U 1S, 2

Remark We may sum up the proposition by saying that localization of the integral closure
is the same as the integral closure of the localization, i.e., the operations integral closure and
localization commute.
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12.7 Integral closures of Dedekind domains

If D is a Dedekind domain, then certain extensions ob are also Dedekind domains. We have seen

that this is in general the case with localizations. In this section we aim to consider another class

of such extensions. The properties of such extensions enable us to establish certain important
results.

Lemma 12.7 Let A B C be commutative rings. If B is a nitely generated A-module and
C a nitely generated B-module, thenC is a nitely generated A-module.

overB. For x 2 C, there are 1;:::; » 2 B such that
X
X = iG:
i=1
Forany i =1;:::;n, there exist 1;:::; im 2 A such that
xn
i = i
j=1
hence 0 1
xe X X xo
x= @ hAqg= i (B6):
i=1 j=1 i=1 j=1
As B C, the elementsh ¢; belong to C and it follows that the b, for 1 | m and
1 i n,form a generating set forC over A. 2

Theorem 12.13 (transitivity of integrality) Let A B C be commutative rings. IfB is
integral over A and C integral over B, then C is integral over A.

b+ bx+ +b x" T+ x"=0: (12.3)

n 1 can be expressed as a linear sum of powers »f(with coe cients in D) smaller than n.
HenceE is a nitely generated D-module. In the same way, asB is integral over A, for eachh,
there is a positive integerm; such that powers ofhy higher than m; 1 can be expressed as a
linear sum of powers ofty (with coe cients in A) smaller than m;. As D is composed of nite
sums of of expressions of the form

akbo bll bs s :

with a2 A, D is a nitely generated A-module. From Lemma 12.7,E is a nitely generated A-
module. Thus x belongs to a subring ofC containing A, which is a nitely generated A-module.
From Theorem 11.3,x is integral over A. It follows that C is integral over A. 2

Corollary 12.12 Let S R be commutative rings andC the integral closure ofS in R. Then
C is integrally closed in R.

The intersection of all subrings ofR which contain S and integrally closed inR is the integral
closure C of Sin R.
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proof Let x 2 R be integral over C. From Theorem 12.13 we deduce thaiC[x] is integral over
S. In particular, x is integral over S, sox 2 C.

Suppose now thatS T R are commutative rings, whereT is integrally closed inR. Let
X 2 C. Then x is a zero of a monic polynomial with coe cientsin S. AsS T, x is also a zero
of a monic polynomial with coe cients in T. Given that T is integrally closed,x 2 T. Thus
C T and the result now follows. 2

We have a second corollary.
Corollary 12.13 If K L are number elds, then O is the integral closure ofOk in L.

proof Let A be the integral closure ofOx in L. Then we haveZ Ok A, with Ok integral
over Z and A integral over Ok . From Theorem 12.13,A is integral over Z and soA O_. On
the other hand, of x 2 O_, then x is integral over Z. As Z Ok, X is integral over O, i.e.,
X2 A. ThusO. A. 2

We now aim to consider in particular integral closures of noetherian domains.

Lemma 12.8 Let E be a separable extension df, with [E : F]= m. If fby:::;b,gis a basis
of E over F, then there is a basisfc;;:::;cng such that Te_g (bg) = §, where j is the
Kronecker symbol.

proof Thetrace Tg_ : E ! F islinear, soTezg 2 Hom(E; F), the dual space of theF -vector
spaceE. Wedene :E! Hom(E;F) by

(B)(x) = B(b;X);

where B is the bilinear form de ned by the trace. The mapping is clearly linear; it is also
injective, becauseB is nondegenerate. AsE and Hom(E; F) hve the same dimension, is an

isomorphism. Letf 1;:::; mgbe the dual basis offb, :::;bng, sothat ()= . As isan

isomorphism, there existc;;:::;cn 2 E such that (¢g)= i, fori=1;:::;m, therefore
(e)x)= ix)=) (a)B)= §j =) Te=r(Gh)= j;

which is what we set out to prove. 2

We now consider integral closures of noetherian domains.

Theorem 12.14 Let D be a noetherian integrally closed domain, with eld of fractionsF. If E
is a nite separable extension ofF and B the integral closure ofD in E, then B is a noetherian
ring.

proof From Theorem 11.5,B is a submodule of a nitely generated D-module, which we note
M. As D is noetherian andM nitely generated, M is noetherian. However, a submodule of a
noetherian module is noetherian, and sd is a noetherianD-module.

Let | be anideal inB. Then | is a submodule of theD-module B. As B is a noetherian, |

| = Dx1+ + DXq:
Given that D B, we may also write

| = Bx,+ + Bxp
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and sol is a nitely generated B-module. As every ideal inB is nitely generated, B is noethe-
rian. 2

Our next step is to show that every prime ideal in the integral closureB as de ned above is
maximal. We need some preliminary results.

Lemma 12.9 Let D be a domain which is integral over the subrindR. If J is a nonzero ideal
of D, then J\ R is a nonzero ideal ofR.

proof J\ R is clearly an ideal. Letx 2 J, x 6 0. There exists a monic polynomial
f(X)= ap+ aiX + +a, X" 1+ X"2R[X]

such that f (x) = 0. We may take f of minimal degree, which implies thatay 6 0. (If ap =0,
then
a;+ ax+ +a, 1x" 2+x" t1=0;

becausex 6 0 and R is a domain and sof is not of minimal degree, a contradiction.) Hence
ap= (ar+axx+ +a, X" 2+x" Hx2 I\ R;
soJ\ R 6 f0Og. 2

Remark It is easy to see that, if J is a prime ideal, thenJ \ R is also a prime ideal.

Before considering the case of maximal ideals we prove another lemma.

Lemma 12.10 Let D be a domain which is integral over the subrindR. Then D is a eld if
and only if R is a eld.

proof Suppose thatD is a eld and let x be a nonzero element oR. The inversex ! of x is

a+ax T+ +ag a(x )" T+(x D=0
Multiplying by x" ! we obtain
ax" Y+ ax" 2+  +a, 1+x '=0;

hencex ! 2 R and so it follows that R is a eld.

Now suppose thatR is a eld and let x be a nonzero element oD. From Lemma 12.9 there
existsa 2 Dx \ R, a6 0. We can write a = bx, with b2 D. Let a° be the inverse ofa in R.
Then

1= a%= a%bx) = (ab)x;

and sox is invertible in D and thus D is a eld. 2

Proposition 12.21  Let D be a domain which is integral over the subrindR and J a prime ideal
in D. Then J is a maximal ideal in D if and only if J\ R is a maximal ideal in R.

161



proof Let J be a prime ideal inD. Then the ring homomorphism
‘R=J\R)! D=Jx+(J\R)7! x+1

is injective, so we may consideR=(J\ R) to be a subring ofD=J. We claim that D=J is integral
over R=(J \ R). To see this let us takex + J 2 D=J. As D is integral over R, there exists a
monic polynomial

f(X)= ap+ a1X + +a, X" 1+ X"2R[X]

such that f (x) = 0. To simplify the notation we set | = J\ R. We de ne a monic polynomial
f 2 R=I[X] by

f(X)=(ag+ 1)+ (ar+ )X+ i+ (an 1+ X" 1+ XM

Then
fx+J)=FfX)+J =

As J is the zero element ofD=J, x + J is integral over R=Il. This establishes the claim.

If J is a maximal ideal in D, then D=J is a eld. From Lemma 12.10R=(J \ R) is a eld,
therefore J \ R is a maximal ideal.

Conversely, if J \ R is a maximal ideal in R, then R=(J \ R) is a eld and so, from Lemma
12.10 again,D=J is a eld and thus J is a maximal ideal. 2

We may now establish the principal result of this section.

Theorem 12.15 Let D be a Dedekind domain, with eld of fractionsF. If E is a nite separable
extension of F and B the integral closure of D in E, then B is a Dedekind domain.

proof As B is contained in E, which is a eld, B is an integral domain.

Let C be the integral closure ofB in its eld of fractions. Then C is integral over B and B
is integral over D, so C is integral over D (Theorem 12.13). Thus, ifx 2 C, then x 2 B and it
follows that C = B, i.e., B is integrally closed.

To see that B is noetherian, it is su cient to apply Theorem 12.14.

Finally, we show that every nonzero prime ideal is maximal. LetP be a nonzero prime ideal
in B. Then P = Q\ D is a nonzero prime ideal inD (Lemma 12.9). AsD is a Dedekind domain,
P is a maximal ideal in D. From Proposition 12.21, Q is a maximal ideal in B. 2

Remark From Proposition 11.2 the eld of fractions of B isE. If F 6 E, then D and B have
di erent elds of fractions and so are distinct. Thus D is strictly included in B. We have shown
that a Dedekind domain is strictly included in another Dedekind domain.

Let C be a Dedekind domain andD an integral domain containing C. If P is a nonzero prime
ideal in C, then C=P is a eld and the mapping

:C=P ! D=DP; a+ P 7! a+ DP

is a well-de ned homomorphism. Hence we may consider thaD=DP is a C=P-vector space.
(The scalar multiplication is de ned as follows: cx = (c)x, for c2 C=P and x 2 D=DP .) There
is a natural question: If K and L are the respective fraction elds of C and D and we know
the dimension[K : L], what can we say about the dimension of theC=P-vector spaceD=DP ?
We aim to give an answer to this question for a particular integral domainD. We will need the
following standard result, for which a proof may be found, for example, in [5].
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Theorem 12.16 If R is a PID and M a free R-module of rank n, then any submoduleN of M
is free and has rank at mostn.

Theorem 12.17 Let C be a Dedekind domainK its eld of fractions and L a separable exten-
sion of K of degreen. Suppose thatD is the integral closure ofC in L. If P is a nonzero prime
ideal in C, then the dimension of theC=P-vector spaceD=DP is n.

proof Let U= CnP andC°= U 1C = Cp. From Theorem 12.11,C%is a PID. Proposition
12.20 ensures that, adD is the integral closure ofC in L, D°= U D is the integral closure of
C%in L. Since the fraction eld of C%is that of C, from Theorem 11.5,D%is contained in a free
C%module M of rank n. As C%is a PID and D°a submodule ofM, from Theorem 12.16,D%is
a free Cmodule of rank at most n. Using Theorem 11.5 again, we see thab° contains a free
C%module of rank n. Thus, using Theorem 12.16 again, we obtain thatD? is a free C-module
of rank n.

The extension of P to C%is C%P and its extension toD%isD%P. AsD%P = DYC®P),DP is
also the extension ofC%P to D° so the mapping

:C=c%P ! D%D%P;P+Cc®P 7! F+DP

is a ring homomorphism. SinceC% is the maximal ideal of the local ring C° the quotient
C%C% is a eld. Thus D%=D% is a C%=C% -vector space. (The scalar multiplication is de ned
by c%x%= " (c9x? for °2 C=C%P and x°2 D°=D%.) We now consider the dimension of this
vector space.

us write x? for the image ofx? in D%=D% (under the standard mapping of D° onto D%=D%).
We claim that B°= fx9;:::;xpg s a basis ofD°=DB. Clearly B%is a generating set oD =D%,
so we only need to consider the independance. Let [, ¢®x?=0, wherec®2 C%=C%. Then

X
%2 D% = DYCP)

i=1
P, Pm , . .
and so we may write. L, ¢ = |1, Igjoyjo, with y? 2 D%and €’ 2 C%. Expressing they? in
terms of the x?, we obtain =, %= " &0 with 2 CP  C° It follows that ¢ = <,
for all i, which implies that c® 2 C% and soc® = 0, for all i. We have shown that B® is an
independant set and so a basis 0D %=D%P: D%=D% is a C%=C% -vector space of dimensiom.

We now consider the mappings

:C=P! C%C%;c+ P 7! ;+C°P and :D=DP ! D%D%:d+ P 7! %+ D %:

These mappings and are clearly well-de ned ring homomorphisms. We aim to use Corollary
12.11 to show that they are in fact isomorphisms. For there is no diculty, because P is a
prime ideal in a Dedekind domain, hence maximal. We now consider. Let us setU = CnP.
BecauseC=P is a eld, for u 2 U there existsv 2 U and x 2 P such that uv =1+ Xx. As
P  DP, every element ofU + DP has an inverse in the same set and it follows that is an
isomorphism.

We now notice that D°=D% is a C=P-vector space for the scalar multiplicationc x°=  (c)x°,
wherec 2 C=P and x°2 D%D%. (We distinguish scalar multiplication and ring multiplication
by using a dot in the former case.) It is not di cult to check that B°is a basis of this vector
space, so it too has dimensiom. We claim that is an isomorphism of C=P-vector spaces. We
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only need to verify that the scalar multiplicaion is respected. Letc 2 C=P and x 2 D=DP.
Then

(cx)= (@©x)= ( () (x)
with ( ()= &+ DP. Thus

( (o) (X)=(%+ CP) ()= (c+P) (M=c (x

and so

(c x)=c (x);
as required. SinceD%=D% is a C=P-vector space of dimensiom, so isD=DP . This nishes the
proof. 2

12.8 Norm and trace for ring extensions

We have studied traces and norms in eld extensions. We now consider ring extensions. We
suppose thatR S are commutative rings. In addition we consider that S is a free R-module
whose rankn is nite. Let B = fxq;:::;X,g be a basis of theR-moduleSand :S! Sa
linear mapping. We have

X

xj)= ax;

i=1
with &; 2 R. The matrix M () = ( &; ) is called the matrix of with respect to the basisB. If
B= fx?;:::;x%g is another basis of theR-module S, then

0y — 0 0.
(X)) = aj Xi,

with a}l? 2 R. We note the matrix with respect tgthis basis M Y ). We now look for the relation

between the matricesM ( ) and M ). If x; = ., ¢ x? then
! !
X X X o XX o
(xj) = aj Xi = g Cki Xx = Gk aj Xy
i=1 i=1 k=1 k=1 =1

and, on the other hand

X X

)= o (x)= g agxy = G0 Xk

i=1 i=1 k=1 k=1 i=1

Therefore, with C = (¢ ), we have
MY YC=CM():
As C is the matrix of a change of basisC 2 Gl,(R), hence we may write
MY )= cCcM()C % (12.4)

Also, as

det(C)det(C ) =det(1,)=1;

164



det(C) is a unit in the ring R.

We now consider the special case whereis de ned by multiplication by a nonzero element
of S:
(z) = «x(z)= xz:
We de ne the trace, norm and characteristic polynomial of x as we did for eld extensions,
namely
Ts=r(X) = Tr(M(x))  Ns=r(x)=det M( )

and
charg_r (x) =det( XI M( x)):

(The relation (12:4) ensures that the trace, norm and characteristic polynomial are una ected
by the choice of basis.) In the same way as for eld extensions, the trace is linear and the norm
multiplicative.

We now turn to rings of fractions. Let U be a multiplicative subset of R. AsR S, U is
also a multiplicative subsetS. We setR°= U 'R and S°= U !S. Itis not di cult to see that
RY SC s0S%is an R%module. Let B = fx1;:::;X,g be a basis of theR-module S. We claim
that B®= fX%1;:::;%gis a basis of theR%module S henceS®is a free R%module of rank n.
First we show that B%is a generating set ofS°. Let 2 2 S Then there existry;:::;ry, 2 R such
that

- u TRE u 1’
which implies that B®is a generating set ofS°. Now we show that the setBCis independant. If
X,y InXn_y.
u; 1 u, 1

a_ rixg+  +rpx riX n X
a _ IXs nXn _ M1Xs o Xn,
u

with {2 R then
riudxy +  +rpulx, =0;

where uf = 414> Hence
raud= =rul=0=) rp=  =r,=0;

becauseu? = 0, for all i. It follows that G- =0, for all i and so BCis an independant set. We
have shown thatBCis a basis of theR%module S°.

Let be the canonical mapping fromS into SC If x 2 S, then (x) 2 S°and we have linear
endomorphisms x : S! Sand °, :8%! S% If the matrix of  in the basis B is (aj ),

then the matrix of ©, in the basisB%is ( (a; )).

Tso=ro( (X)) = (Ts=r(X)) Nso=po( (X)) = (Ns=r(X))

and
char go-ro( (X)) = (char s-g (X));

where is the mapping from R[X ] into RYX ] which applies to each coe cient of a polynomial
in R[X]. Identifying S with its image under , we obtain

Tso=po(X) = Ts=r (X) Ngo=ro(X) = Ng=r (X)

and
char go-go(x) = char s=g (X):
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Chapter 13

Rami cation theory

Let K and L be number elds, with K included in L, and R = Ox and S = O, the associated
number rings. If | is an ideal inR, thlgn we write S| for the ideal generated byl in S: Sl is the
collection of expressions of the form i”:l XiVi, with x; 2 Sandy; 2 |. If | is a principal ideal
(a), then SI = Sa, i.e., the prime ideal generated bya in S. We will be particularly interested

in the case wherel is a prime ideal and the relation F5)1:such an ideal with prime i(g)egls inS.

For e@mple,l =Z2is a[piime ideal inZ, but J = Z[ 2]2is not a prime ideal in Z[ 2], since
(2+3 2)?22J,but 2+3 22 J. The way a prime ideal "lifted" to a larger ring is decomposed
is a central topic of algebraic number theory.

Remark The ideal Sl is in fact the extension of the ideall in S with respect to the injection
mapping of R into S.

13.1 First notions

Let P be a prime ideal inR; if Q is a prime ideal in S such that Q@ SP, then we say that Q
lies over P, or P lies under Q.

Remark If K = Q, then R = Z and a prime idealP 6 f0Og is of the form (p) = Zp, wherep is
a prime number, SOSP = Sp.

Proposition 13.1  Let Q be a proper ideal ofS and P a nonzero prime ideal ofR. ThenQ SP
if and only if P = Q\ R.

proof If Q SP,thenQ P, becausel2 S. This impliesthat Q\ R P\ R=P. AsP is
a maximal ideal, becauseP is prime and nonzero, andQ\ R 6 R, we haveQ\ R = P.
On the other hand, if Q\ R = P,then Q P, which implies that Q = SQ SP. 2

Proposition 13.2 If | is a proper ideal in R, then Sl is a proper ideal in S.

proof If SI = S, then there existn2 N |, s;;:::;8, 2 Sand x1;:::;Xy 2 | such that

xo
1= SiXi:
i=1

S%is a nitely generated R-module, since thes; are algebraic integers. In addition, as1 2 S9,
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SO  S%. We now take a set of generatorsy;;::: g, of the R-module S°. BecauseS® S9, we
may write | 0 1

g = Xij Sij = Xij reou = @ Xij Iy Ao
j=1 j=1 u=1 u=l  j=1
0 ; P ;
wherex; 21,sj 2 S’andr! 2 R. As j|=1 Xj ry 21, we have
xo
g = XuOQus

u=1
with x, 2 I. Hence there is a matrixA 2 M ,(I) such that
g= Ag;
where 0 1
O1
9=® : K:
On

Therefore, (I, A)g = 0. Multiplying on the left by the adjoint matrix of 1, A, we obtain
det(l, A)l,g = 0. Consequentlydet(l, A)s®= 0, for any s° 2 S% which implies that
det(l, A)=0. If we develop the determinant, then we obtain an expression which idl plus
a sum of products of elements ofl, i.e., of the form 1 + x, with x 2 |. From this we have
1= x 21, which contradicts the fact that | is a proper ideal ofR. We have shown thatSI is
properly contained in S. 2

Exercise 13.1 In the proof of the theorem we used the fact that the; are algebraic integers.
Why is this important?

Corollary 13.1 Let P be prime ideal inR. Then SP\ R = P.

proof If P = fQg, then the result is clear, so let us suppose that this is not the case. AR is a
prime ideal of R, P is a proper ideal ofR, therefore SP is a proper ideal ofS. From Proposition
13.1, with Q = SP, we haveSP\ R= P, 2

Remarks
a. Corollary 13.1 is in fact a particular case of Theorem 12.7.

b. If K = Q and P = Zp, wherep is prime number, then we obtain

OLp\ Z = Zp:

It is natural to ask whether there exists a prime ideal lying over a given prime ideal.

Theorem 13.1 Every nonzero prime idealQ of S lies over a unique nonzero prime ideaP of
R

Every prime ideal P of R lies under at least one prime idealQ of S. If P 6 f0g, then there is a
nite number of prime ideals Q lying over P.
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proof Let Q be a nonzero prime ideal ofS. Clearly P = Q\ R is a prime ideal of R. Since
Q 6 f0g, there is a nonzero integerx 2 Q (Proposition 11.13). Asx 2 R, x 2 Q\ R, soP 6 f0g.
If Q lies over the nonzero prime ideaP? then, from Proposition 13.1,P°= Q\ R, soQ lies over
a unique prime ideal.

Suppose now thatP is a prime ideal of R. If P = fQ0g, then P lies underfOg S. Now
let us suppose thatP 6 f0g. We claim that a prime ideal Q of S contains SP if and only if Q
appears in the decomposition ofSP into prime ideals: From Corollary 12.2,Q  SP if and only
if QjSP; asSP 6 f0g nor S, from Theorem 12.3,SP has a unique decomposition into nonzero
prime ideals, soQ divides SP if and only if Q is one of the prime ideals in the decomposition of
SP. It follows that P lies under a prime ideal ofS, namely any prime ideal in the decomposition
of SP. These are the only ideals which can lie oveP, so the number of prime ideals lying over
P is nite. 2

Exercise 13.2 Use Theorem 13.1 to nd a proof that a prime ideal P in a number ring Ok
contains exactly one prime numberp. (This result has already been seen in Proposition 13.6.)

If P is a nonzero prime ideal ofR, Q a nonzero prime ideal ofS dividing SP and e the highest
power of Q in the decomposition of SP into prime ideals, then we call e the rami cation index
of Q over P. We note the rami cation index e(QjP). In the case whereR = Z and P = Zp,
then we write e(Qjp).

Suppose again thatP is a nonzero prime ideal ofR and Q a nonzero prime ideal ofS dividing
SP. As P and Q are maximal ideals,R=P and S=Q are elds, which, from Proposition 11.12,
are nite. The mapping

R S=Q;x7! x+Q

is a well-de ned ring homomorphism, with kernel Q\ R = P, so we may consideR=P as a
sub eld of S=Q. We setf (QjP) = [ S=Q: R=P], which is called the inertial degree of Q over P.
In the case whereR = Z and P = Zp we write f (Qjp).

We often say that the rami cation index and the inertial degree are multiplicative due to the
properties given in the following proposition.

Proposition 13.3  Suppose thatP, Q and U are nonzero prime ideals in the number rings
R S T such thatU lies overQ and Q lies overP. Then U lies overP and

e(UjP) = e(UjQ)e(QjP)  and  f(UjP)= f (UjQ)f (QjP):
proof Q lies overP means that we have
SP = Qe(QjP)QSZ gs;

whereg = ¢(Q;ijP). SinceTS=T and T" = T, forall n 2 N , when we multiply the previous
expression byT we obtain

TP =(TQ*VUPN(TQ)*= (TQs)™:
Now, U lies overQ, so we can write
TQ= Ue(UiQ)Uzaz Uta‘;
where a; = e(U;jQ). Hence,

TP = Ue(UjQ)e(QjP)Uzaze(QiP) Uf“e(QjP)(TQz)e? (TQS)es:
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Moreover, U does not divide TQ;, for i = 2;:::;s. Indeed, if UjTQ;, then UjTQ and UjTQ;,
which implies that
U TQ+Qi)=Thef(Q;Qi)=TS=T,

which is not possible. ThereforeU lies overP and
e(UjP) = e(UjQ)&(QjP):

We now consider the inertial degree.S=Qis a eld extension of R=P and T=U is a eld extension
of S=Q, so we have

f(U=P)=[T=U:R=P]=[T=U:S=Q|[S=Q: R=P] = f (UjQ)f (QjP);

as claimed. 2

13.2 Norm of an ideal

In this section we introduce the norm of an ideal in a number ring, which will play an important
role in the following. We have seen above thatjOk =lj is nite when | is a nonzero ideal
(Proposition 11.12). We de ne the norm of | by

kik = jOg =Ij:

The norm has an important multiplication property, namely, if | and J are nonzero ideals,
then
klJ k = kI kkJk:

We will rst prove this in the case where the ideals are coprime and then later in the general
case.

Proposition 13.4 If | and J are nonzero coprime ideals in a number ringO , then

klJ k = kI kkJk:
proof From the Chinese remainder theorem (Appendix F) we have

Ok=(1\J)= Ox=l O =J:
However, from Proposition 12.4,1 \ J = IJ, hence the result. 2
We now generalize Proposition 13.4.

Theorem 13.2 If | and Q are nonzero ideals in a number ringOx , then

kiQk = ki kkQk:

proof From Theorem 12.5, there is an ideall in Ok , coprime with Q, such that 1J is principal.
Let IJ =(x). Then

X)+1Q=10+Q)=1(0)=1: (13.1)
We now de ne a mapping from Ok into I=1Q by
()= ax+ 1Q:
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The mapping is an Ok -module homomorphism, which, from equation 13.1, is surjective. Also,
Ker =fa20Ok :ax21Qg:

We claim that Ker = Q. First,
ax21Q (a(x) 1Q

0 @I 1Q
0 (@J Q

thus, for all a2 Ker
@=(a)0k =(a)J+Q)=(a)J +(a9)Q Q+Q=Q:

This implies that Ker Q. In addition, if a2 Q, thenax 2 1Q, sincex 2 |, and soQ Ker
and we have Ker = Q.
As s surjective, from the third isomorphism theorem for groups, we have

Ok =Q" I1=IQ =)k Qk=jI=IQ]j

and
kIQk = jOk =IQj = jOk =ljjI=1Q j = kI kkQk:

This ends the proof. 2

If K is a number eld, with [K : Q] = n and| anonzero ideal inO , then | is a free abelian
group of rank n (Corollary 11.5). From a basis of| we may obtain an expression for the norm
of I.

Theorem 13.3 If B= fhy;:::;b,gis a basis ofl, then

disck= o (B) 2
k= dsGco(B)
disc(Ok )
proof From Theorem E.4, there exists a basi€ = fep;:::;e,g0of Ox and numbersd;;:::;d, 2
N such that D = fdies;:::;dhengis a basis ofl . We de ne a mapping of Ox onto Zq,
Zg4, in the following way:
if X = X161 + + Xp€n; then (X)=(x1+ diZ;:::; %Xy + dp2):
The mapping is a ring homomorphism and Ker = |, hence
Ok =Il" Zg, Zg, =)j Ox=lj=d1 dn:
If we set C = diag(ds;:::;dn), then C is the matrix transforming the basis E into the basis D
and
jOk =lj = det C:
If B= fby;:::;bgis any basis ofl, then the hh are linear combinations of the elements of

D with integer coe cients. The matrix M transforming the basis B into the basis D thus has
integer coe cients. This is also the case of the matrix N transforming the basis D into the
basisB. It follows that detM = 1 (and also that detN = 1). It follows that the matrix C°
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expressing the basisB in terms of the elements of the basisE is such that detC°= detC and
so

jOk=lj=jdetCY=d; dp:
However, from Proposition 10.6,
disc= o (B) = jdetCY?disck= o (E) = Kl k?dis¢(Ox );

from which we deduce )
disck-o(B) 2
disc(Ok ) ’
This nishes the proof. 2

klk =

If an ideal | of Ok is principal and | = ( a), then we consider two norms, namely the norm
of the generatora and the norm of the ideal. In fact, we have

Theorem 13.4 If a2 Ok nf0g, then

INk=q (a)j = k(a)k:

det( i(ag)) 2

det( 1(a) i(g))

(@) n(a)det( () >
( 18  n(a)%(disc(Ok )%

diSCK: Q (B)

By Theorem 13.3, we have

disce= o (B) £
“diso(Ox )
i 1(8) n(@] = Nk=q(a)j;

k(@k =

as required. 2

We will now investigate further the properties of the norm.

Proposition 13.5 Let K be a number eld, Ok its associated number ring andl a nonzero
ideal in Ok .

a. If klk is prime, then | is a prime ideal.
b. klk2 1.
proof a. If | = P,  Pg, where the P; are prime ideals, then
klk = kP1k  kPsk:
As kI k is prime, only one P;, say P1, has a norm di erent from 1. This means that P, = =

Ps = Ok and sol = P;.
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B =fl+ q;::5;1+ «gis also a complete set of residues moduld. If x 2 Ok, then
x 1= j+y,forsomel | klkandy2Il. From this we obtain x= ; +1+ vy, so the set
B=f(1+ 1)+ ;0 (+ )+ IgcoversOk . Inaddition, if (1+ ;) @+ )21, then

i i 2 1, which is impossible ifi & j. This proves the claim. Then
1t =0+ )+ +(1Q+ i) (modl);
which implies that klk1 0 (mod 1), and it follows that klk 2 I. 2
Before going further we introduce a preliminary result.
Lemma 13.1 A nonzero integer belongs to at most a nite number of ideals inOk .

proof Let a be a positive integer and suppose thatl is an ideal containing a. We now let

= Wi+ + CaWp!

For eachc; we may write ¢ = ag + rj, whereqg;ri 2 Zand0 rj <a. Then
=(agq+ rywi+  +(ag + rp)wnp = a(uwi+  + hWp) H(riwi+ +Frpwp) = a + o

Clearly 2 Ok and 2 B, whereB is a nite subset of Ox . The ideal | is nitely generated,

becauseOk is noetherian, so there exist 1;:::; s 2 Ok, such that
P=( 105 %)
As a2 |, we may also write
I=( 1000 si@)
and then
l=(a1+ 1iias+ ),
where 1;:::; s2 Ok and i;::: 2 B. Itis not dicult to derive the expression
I =( 1,5 s a):

As there is a nite number of ideals of this form, the result follows for the casea > 0.
If a < 0 and a belongs to an in nite number of ideals, then so does a, which contradicts
what we have just proved. This nishes the proof. 2

We may now prove an interesting result concerning the number of ideals having a given norm.
Theorem 13.5 There is only a nite number of ideals in Ok of a given norm.

proof Suppose that there is an in nite number of ideals having the same norm . From Propo-
sition 13.5, belongs to an in nite number of ideals, which contradicts Lemma 13.1. Therefore
there can be only a nite number of ideals with a given norm. 2

We now consider the special case wherkeis a prime ideal.

Proposition 13.6 If P is a nonzero prime ideal in Ok, then P contains exactly one prime
number p and kPk = p™, for some natural numberm n=[K :Q].
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proof If P is a prime ideal, then P is maximal and soOk =P is a nite eld. It follows that
kPk = p™, for some prime numberp and positive integerm. The characteristic of the eld Ok =P
is p, which implies that the number p 2 P and so the principal ideal (p) = Ok p is contained in
P. Ifq6 pandqg2 P, then (g = Ok q is also contained inP. However, (p) +(qg) = Ok, So
Ok P, which is impossible; hence there is a unique prime numbep in P.

As (p) is a subset ofP, P divides (p), hencekPk divides k(p)k. From Theorem 13.4,k(p)k =
Nk-o(p) = p", therefore kPk = p™, with m  n. 2

13.3 Principal theorem of rami cation

Our goal in this section is to prove an important result connecting rami cation indices and
inertial degrees. We will refer to this as the principal theorem of rami cation. We begin with a
special case of this result and then generalize it.

Proposition 13.7 Let p be a prime number andL an extension ofK = Q, with number eld
S. If n=[L : Q] and

Sp= Qi(Q“p) Qg(Qsjp)

is the decomposition ofSp into nonzero prime ideals, then

x
n= f(Qijp)e(Qijp):

i=1

proof To simplify the notation, let us write ¢ for e(Q;jp) and f; for f (Qijp). From Theorem
13.2 we have
kSpk = kQ1k®  kQgk®:

Also,
fi =[S=Q :Z=pz] =)k Qik= p'’;

therefore
ksd(: pf1e1 pfj_Ej_:

However, from Theorem 13.4 and Section 10.1
kSpk = [Nz (p)j = p";
so we have

x . .
n= f(Qijp)&(Qijp);

i=1
as announced. 2

We aim now to generalize this proposition to the case wher& is not necessarilyQ. We will
begin with a preliminary result.

Lemma 13.2 Let |, J be nonzero ideals in a Dedekind domai, with J | 6 D, and K the
eld of fractions of D. Then there exists 2 K such that J Dand J 6 1I.
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proof From Theorem 12.2 we know that there is a nonzero idealC in D such that JC is
principal: JC = (a). Then JC 6 al, because

JC al =2) %Jc =) 121=) | =D;

a contradiction. We now take b2 C such that bJ 6 al and set = g Then

J = E)J }JC = }(a): D:
a a a
If J I, then b al, a contradiction, so J 6 I|. 2

We now establish another preliminary result. This is a little longer to prove.

Proposition 13.8 Let K L be number elds, with corresponding number ringsR S, and |
a nonzero ideal inR. Then
kSlk = ki k";

wheren =[L : K].

proof It is su cient to prove the result for a prime ideal: If this is the case and | = P; Py
is the decomposition of the ideall into prime ideals, then

kSlk = kP; P,Sk
= kP1S P:Sk
= KkP1Sk kP, Sk
= kPik" kP K"

= kP; Pk" = kik":

So let us now establish the result for a nonzero prime idedP.
To begin with, we notice that S=SP is a vector space over the eldR=P. (The scalar
multiplication is de ned by
(x+ P)(y+ PS)= xy + SP:

There is no di culty in seeing that this scalar multiplication is well-de ned.) We claim that the
dimension of the vector space we have de ned is. First we show that the dimension is at most

dependant overK , because they are elements df andn =[L : K]. AsK is the eld of fractions
of R, the a; are linearly dependant overR. Hence we have

1@+ + pirans =05

with ; 2 R and at least one ; nonzero. We need to show that we can nd 9;:::; %, 2 R
such that
fag+  + pia0s =0;

and at least one °2 P. If one of the ; 2 P, then we have nothing to do, so let us suppose that
all the ; belong toP. If J is the ideal generated by the ;, thenJ P 6 R. Applying Lemma
13.2 we obtain an element 2 K such that J Rand J 6 P. If we replace ; by i°= i
then the set of ?so obtained has the properties we were looking for. Thus we have shown that

S=SP is at most n-dimensional overR=P.
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Now we establish the equality. AsP \ Z is a nonzero ideal ofZ, there is a prime number

Proposition 13.1 P is one of the idealsP;. From what we have just seenS=SR is a vector space
over R=P; of dimensionn; n. Also, from Proposition 13.7 we have

X ) ) X
m = f (Pijp)e(Pijp) = fie;

=1 i=1
wherem =[K : Q]. Then
|
Y N : "
Rp = Piei :) Sp: RSp = Piei S = (PI S)el '
i=1 - -
therefore
Y % i
kSpk=  kSPk® =  kpk"® =  (pfryme:
= i=1 i=1
(The second equality follows from the fact that S=SR is a vector space ovelR=P; of dimension
ni n.)

On the other hand, we have

kSpk = [Ni=q(p)j = pP"™;

because
[L:Q]=[L:K]K :Q]= nm:

If there exists n; < n, then !

X X

finig <n fieg = nm;

i=1 i=1
a contradiction. Hencen; = n, for all P;, in particular, for P. We have shown that the dimension
of S=SP over R=P is n. If V is a vector space of dimensioru over a nite eld of s elements,
then V hass! elements. AsS=SP has kSPk elements and the dimension ofS=SP over R=P is
n, S=SP haskPk" elements, i.e.,kSPk = kPk". This nishes the proof. 2

We now prove the main theorem of this section, which we refer to as therincipal theorem
of rami cation .

Theorem 13.6 Let K L be number elds, with[L : K] = n, and R, S the corresponding

proof We have
¥ €j ¥ € ¥ fie
SP = i =)k SPk= kQik® = kPk' &
i=1 i=1 i=1
Also,
kSPk = kPk";
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therefore

This ends the proof. 2

Example If L is a quadratique extension ofQ, with number eld S, and p is a prime number,
then there are three possible decompositions gfS into prime ideals:

8
2 Q% f(Qjp)=1;
Sp=_ Q; f(Qjp) =2;
" Q1Q2; f(Qujp) = f(Q2jp)=1:

13.4 Normal extensions

Let us now suppose thatK and L are number elds, with L a normal extension ofK. As
char Q =0, L is separable overQ. Using Proposition 3.5 we obtain that L is separable over
K. Hencel is a Galois extension ofK . As usual we setR = Ox and S = O,. If x 2 S, then
there exists a monic polynomialf 2 Z[X] such that f (x) = 0. However,Z R K, so the
coe cients of f are xed by any automorphism 2 Gal(L=K), which implies that (x) is an
algebraic number. Thus (x) 2 O. = Sandso (S) S. Inthe same way, %(S) S, which
implies that S (S), hence (S)= S.
We now consider ideals inS. Let Q be anideal inS. If x;y 2 Q,a2 Sand 2 Gal(L=K),

then

x) M= x y2 Q)
and
ax= @ = @2 Q)

wherea’=  1(a) 2 S. Therefore (Q) is an ideal of S.
Suppose now thatQ is a prime ideal in S. If x;y 2 Sandxy 2 (Q), then

'xy)2Q =) ') 'y2Q
=) 'x)2Qor  Y(y)2Q
=) x2 (Qory2 (Q:

As (Q)6 S, (Q) is a prime ideal.
If Q is a prime ideal in S lying over the prime ideal P in R, then

Q SP=) (Q (SP)= (S) (P)=S (P):

SinceP R K, (P)= P,so (Q) lies overP. Thus we obtain an action of the group
Gal(L=K) on the setQ of nonzero prime idealsQ lying over the prime ideal P:

rGal(L=K) Q :(;Q) 7! (Q):
In fact, due to the normality of the extension L=K , this action is transitive:

Theorem 13.7 If Q and QP are nonzero prime ideals inS lying over the prime ideal P in R,
then there exists 2 Gal(L=K ) such that (Q)= Q°
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proof If this is not the case, then (Q) 6 QO forall 2 G = Gal(L=K). Let us suppose

that 1(Q);:::; s(Q) are the distinct images ofQ under G = Gal(L=K ). (We may assume that
1=1id_,s0Q = 1(Q).) The prime ideals Q% 1(Q);:::; s(Q) are coprime in pairs. By the

Chinese remainder theorem (Theorem F.1), there is a solutiom 2 S of the system of congruences

X 0 (mod QY
X 1 (mod 1(Q))

X 1(mod s(Q)):

Let us now considerN, - (a). Corollary 10.3 ensures that

Y
Ne=k (a) = Y(a):
2G

Sinceid. 2 Gand 1(a) 2 S, we have
Nix (8 2 K\ Q%= Q% R:

As QClies overP, N ¢ (a) 2 P.
On the other hand, (a) 2 Q, forevery 2 G. Giventhat Q is a prime ideal,N -« (a) 2 Q,
which is a contradiction, becauseP SP Q 2

Corollary 13.2 Let K and L be number elds with corresponding number ringsR and S. If L
is a normal extension ofK , P a nonzero prime ideal inR and Q, Q° nonzero prime ideals inS
lying over P, then

&QiP)= &QJP) and  f(QjP)= f(QIP):

proof We may write
SP = QE1Q032 33 es .

S 1

where e; = ¢(QjP), & = &(QYP), Qs;:::;Qs are the other prime ideals lying over P and

SP= (PS)= (Q™ (@)% (Qa)®  (Q)* =Q™ (QI* (Qa)*  (Qs)*:

However, we also have

SP=Q%Q®™Q% Q%
As Q is the only prime ideal whose image under is Q°and the decomposition ofSP into prime
ideals is unique, we must have

Q™ =Q™ =) &= e

Now we show thatf (QjP) = f (QYP). There exists 2 Gal(L=K ) such that (Q)= Q° The
mapping restricted to S is a ring automorphism. We set = js» where is the projection
of S onto S=Q”. Then

Ker =fx2S: (x)2Q%=Q:
Hence
s=Q' s=@"
and

[S=Q°: R=P] = [$=Q: S=QJ[S=Q: R=P] = [S=Q: R=P];
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ie.,
f(QIP) = f (QjP);

as announced. 2

Remark From Corollary 13.2 , if L is a normal extension ofK and P is a nonzero prime ideal
in R, then
SP =(Q1:::Qs)";

where e is the common rami cation index of the prime ideals in S lying over P.
Example The cyclotomic eld Q( ) is a normal extension ofQ, becauseQ( ) is the splitting

ideals inS = Ogq( ,) which lie over p, then Sp=(Q1; Qs)®, wheree is the common rami ca-
tion index of the ideals Q;.

13.5 Ramied prime ideals

Let R S be number rings, with respective number eldsK and L. We say that a prime ideal
P in Risramied in S, if & QjP) > 1 for some prime idealQ in S lying over P. This amounts
to saying that SP is not squarefree. Ifp is a prime number, then we say thatp is ramied in
S, if &Qjp) > 1, for some prime idealQ lying over (p). A prime ideal (resp. prime number) is
unramied in S, if it is not ramied in S. It may occur that e(QjP) = n (resp. €Qjp) = n),
where[L : K] = n; in this case we say thatP (resp. p) is totally ramied in S.

We recall that all integral bases of a number ringR have the same discriminant, which we
note disqdR). We have seen that dis¢R) 2 Z. The discriminant of a number ring R helps us to
determine whether a prime numberp is ramied in R.

Theorem 13.8 Let L be an extension ofQ of degreen. If S= O_ andp2 Z a prime rami ed
in S, then pjdisc(S).

proof Let Q be a prime ideal inS lying over p such that e(Qjp) > 1. Then
Sp= Ql;

where | is an ideal of S divisible by all prime ideals lying over p. We note 4;:::; , the
Q-monomorphisms ofL into an algebraic closureC of Q. (We may take the set of algebraic
numbers A(C=Q) for C.) From Section 5.1 we know that there is a nite extensionN of L which
is normal over Q. Now, using Theorem 3.2, we extend each; to a monomorphism ; from N
into C. As N is a normal extension ofQ, from Proposition 5.2 we have j(N)= N and so ; is
an automorphism of N..

Let 1;:::; , be anintegral basis ofS and take 2 |1 nSp; belongs to every prime ideal
of S lying over p. We may write

=mp 1+ + Mp n;

with m; 2 Z. If pjm;, for all i, then 2 pS, a contradiction, so there exists anm; such that
p 6m;. Without loss of generality, let us suppose thati = 1; then p 6j;. We set
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Then, using Exercise 10.2 we see that
disc=q(; 2;:::; n)= mid:

As p 611, to show that pjd it is su cient to prove that pjdisc(; 2;:::; n). This we will now
do.

As belongs to every prime ideal inS lying over p, must lie in every prime ideal in T = Oy
lying over p: If Qis such a prime ideal, thenQ Tpandsop2 Q;ifwesetQ = Q\ S,thenQisa
prime idealin Slyingoverp,so 2 Q Q. Wenow x aprimeideal Qin T lying over p; we claim

() 2 Q for every Q-automorphism of N. We notice rst that 1(Q) is a prime ideal in T
lying over p, hence 2  (Q). Itfollowsthat ;( )2 Q,fori=1;:::;n. SinceC is an algebraic

closure ofL, from the de nition of the discriminant we see that disc,-q(; 2;:::; n) 2 Q.
However, the discriminant is an integer, so disc-q(; 2;:::; n) 2 Q\ Z = Zp. Therefore
pidisc=q(; 2:::%5 n)- 2

Exercise 13.3 Consider the quadratic number eldK = Q(p d), where d is squarefree. Show
that if an odd prime number p is rami ed in the number ring Ok , then p divides d.

Corollary 13.3  Only nitely many primes in Z are rami ed in a given number ring S.

proof The discriminant of S has only a nite number of prime divisors. 2
We may extend this result.

Corollary 13.4 Let R and S be number rings, withR  S. Then only a nite number of prime
ideals in R are ramied in S.

proof Let P be a prime ideal inR which is rami ed in S. Then there exists a prime idealQ in
S which lies overP and is such that ¢(QjP) > 1. However, the prime ideal P lies over a unique
prime number p2 Z (Theorem 13.1). From Proposition 13.3, we have

e(Qip) = e(QjP)e(Pjp) > 1:

Corollary 13.3 states that there is only a nite number of such primesp. Now, each such prime
lies under a nite number of prime ideals in R (Theorem 13.1) and the result follows. 2

13.6 Decomposition and inertia groups

Let K and L be number elds, with L normal over K. As L is a Galois extension ofK, we
haven =[L : K] = jGal(L=K)j. Let R and S be the number rings ofK and L respectively, i.e.,
R =0k and S = O_, and P a prime ideal in R. All the prime ideals Q lying over P have the
same rami cation index e and inertia degreef . If there are r such prime ideals, thenn = ref .
For each prime ideal Q lying over P we de ne two subgroups ofG = Gal(L=K):

the decomposition group
D=D(@QP)=1f 2G: (Q= Qg

the inertia group
E=EQP)=f 2G: () (modQ); 8 2 Sg
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It is clear that D and E are subgroups ofG. Also, E is a subgroup ofD: for all 2 E, we have

() (modQ);8 2S=) () (modQ);8 2Q=) (Q «Q

As E is a subgroup ofG, ! 2 E, so we also have

Q) Q3 Q (Q:

Therefore
(Q=Q:
The members of D induce elements of the Galois groupG = Gal(S=Q R=P) in a natural
way. If we restrict 2 G to S, then we obtain an automorphism ;s of S. We now set = is

where is the projection of S onto S=Q. As
Ker =f 2S: ()2Qg= Q;

the mapping
1S=Q! S=Q; +Q7! ()+Q
is an automorphism. In addition, xes R=P,so 2 G = Gal(S=Q;R=P).

It is not di cult to see that the mapping
D! G, 7!

is a group homomorphism, whose kernel i€. It follows that E is a normal subgroup ofD

and D=E is isomorphic to a subgroup ofG. However, from Proposition 13.10 proved below,
[LE : LP]=f =[S=Q;R=P] and [S=Q; R=P] = jGj, becauseS=Q is a Galois extension ofR=P,

being a nite extension of a nite eld, hence [LE : LP]= jGj. In addition, [LE : LP]= jD=Ej],

sojD=Ej = jGj and it follows that the groups D=E and G are isomorphic. From Theorem 7.9
the group G is cyclic (and generated by the Frobenius automorphismFr : x 7! x9, where
g = jR=Pj), which implies that D=E is also cyclic.

Exercise 13.4 If P R is a prime ideal, then there is a nite number of idealsQq;:::;Qr S
lying over P. Corresponding to eachQ; is a decomposition groupD; and an inertia group E;.
Show that the decomposition (resp. inertia) groups are conjugate in the Galois groual (L=K ),
if L is a normal extension of K. Deduce that, if the Galois group is abelian, then there is only
one decomposition (resp. inertia) group.

We now consider the xed elds LP and LE, called respectively thedecomposition eld and
inertia eld . We have the relations

K LP LE L

and

R=0¢ SP sF s
where SP = O,» and SF = O e. We also introduce two other prime ideals, namelyQ® and
QE, where QP (resp. QF) is the unique prime ideal in SP (resp. SF) lying under Q. Then

P Q° QF «Q
We aim now to consider the relation between the eldsK, L, LP and LE, in particular, to

determine [L° : K], [LE : LP]and[L : LP].
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Proposition 13.9  We have
LD :K]=r
proof We de ne a mapping from the set of left cosets ofD into the set of prime ideals over
P in S by
(D)= (Q):
We have
Q= (@0 L(Q=Q) ''2D() D = D;
therefore is well-de ned and injective. From Theorem 13.7 s also surjective, so is a bi-

jection. There arer prime ideals lying over P, so [G : D] = r. However, from Theorem 6.6
[LP :K]=[G:D], hence[LP :K]=r. 2

Using the multiplicativity of the degree, we obtain
Corollary 13.5 The degree
[L:LP]= ef:
Our next task is to show that [LE : LP]= f. To do so we need some preliminary results.
Lemma 13.3 We have
f(QiQF)=1:
proof SinceS=Qis a Galois extension of the nite eld SE=QF, it is su cient to prove that the
Galois group G = Gal(S=Q SE=QF) is reduced to the identity. We take 2 S=Q and consider

the polynomial
fFX)=( +X)™ 2 S=Q[X];

wherem = jEj. We claim that the coe cients of f belong to the subring of S=Q
S,=fa+Q:a2SEg

To see this, rst we notice that there exists 2 Ssuchthat = + Q. We set
Y
gxX)= ( ()+X) 2 L[X]
2E

In fact, g 2 SE[X]: The coe cients of g are xed by any element 2 E, so they belong toLF;
in addition,as 2 S, ( )2 S, forall 2 E, hence the coe cients of g belong to S; it follows
that the coe cients of gbelongtoLE\ S = SE. If we now consider the coe cients of g modulo
Q, then we obtain a polynomial g with coe cients in  S;. However, this polynomial is precisely
f , hence the coe cients of f belong to S;, as claimed.

Now we consider the ring homomorphism

:SE 1 oSx 7! x+ Q:

The kernel of this mapping isSE\ Q = QF, henceSE=QF ' SE=Q. Therefore we may consider
that the coe ients of f belongto SE=Q. If 2 G, then xes the coe cients of f,so () is
a root of f. As f has the unique root , we must have ( ) = . We have shown that the only
element in G is the identity, as required. 2

The prime ideal Q lies over QP. This is the unique prime ideal in S with this property:
Theorem 6.7 ensures thatL is a nite Galois extension of LP. If Q° lies over QP, then there
exists 2 Gal(L=LP), suchthat (Q) Q°(Theorem 13.7). However, Theorem 6.7 also ensures
that Gal(L=LP) = D, soQ = (Q) QY which implies that Q = Q% We will use this
observation to obtain our second preliminary result.
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Lemma 13.4 We have
e(Q°jP) = f(Q°jP) =1:
proof First we notice that
ef =[L:L°]= &QjQ®)f (QiQ);
becauseQ is the unique ideal in S lying over QP . Also,
e= e(QjP) = e(QjQ°)e(Q°jP) =) &QjQ°) e
In the same way,
f(QiQ®) f:
Hence
eQjQ°)=e and f(QIQ°)=f
and it follows that
e(Q°jP) = f(QPjP) =1;
as claimed. 2
The third preliminary result is the following:
Corollary 13.6  For QF and Q° we have
f(QFjQP) = f:
proof Using the multiplicativity of the inertial degree, we obtain
f(QiP) = f(QIQF)f (QFjQ”)f (Q°jP) =) f =1f(QFjQ")1= f(QFjQ°):

The result now follows from Lemma 13.3 and Lemma 13.4. 2

Now we are in a position to consider[LE : LP]

Proposition 13.10 We have
[LE :LP]= 1

proof As QF lies overQP, from Theorem 13.6 we have
[LE:LP] eQFjQP)f (QFiQ°):
and then, using Corollary 13.6, we obtain
[LE:LP]

We have seen thatL is a Galois extension ofL®, with D = Gal(L=LP), and that E is a normal
subgroup of D, with D=E embedded inG = Gal(S=Q;R=P). Then Theorem 6.4 ensures that
E = Gal(L=LF); in addition, from Theorem 6.6 we obtain that LE is a Galois extension oflP
and D=E is isomorphic to Gal(LE=LP). From this we deduce

[LE :LP]= jGal(LE=LP)j = |D=Ej | G;j:

Moreover, jGj = f, becauseS=Q is a nite extension of the nite eld R=P and thus a Galois
extension. This nishes the proof. 2

We can now easily obtain[L : LE]. In fact,
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Proposition 13.11
L:LE]=e:

proof We have
ef =[L:LP]=[L:LEJLE :LP]=[L:LE]f

and the result follows. 2

13.7 Optimal properties of LP and LE

Let K and L be number elds with L normal over K. The prime ideal Q lies over QP . This is
the unique such prime ideal inS with this property: If QCis such a prime ideal, then there exists
2 Gal(LP) such that (Q) = Q% However, we have seen thaGal(L=LP) = D, soQ°= Q.
This suggests the following question: IfK ®is a eld intermediate between K and L, is there a
prime ideal Q° R%= Oy o such that Q is the unique prime ideal ofS lying over Q% We claim
that any such eld must contain LP, or, in other words, LP is the smallest intermediate eld

with this property.

Theorem 13.9 Let L be a normal extension ofK . If K%is a eld intermediate betweenK and
L and there is a prime idealQ® RO such that Q is the unique prime ideal ofS lying over Q°,
thenLP KO

proof If K is an intermediate eld between K and L, then there is a subgroupH of Gal(L=K )
such that K°= L". Suppose thatQ is the unique prime ideal lying over Q°. Every element

2 H sendsQ to a prime ideal lying over Q% As there is only one such prime idealH D,
which implies that LP  LH = K?© 2

We are going to consider another property ofLP, but, before doing so, we must do some
preliminary work. We suppose that K °is an intermediate eld between K and L. From Propo-
sition 5.3, L is a normal (hence Galois) extension oK . We now setR°= Ok o and Q°= Q\ RC
Then QUis the unique prime ideal in R lying under Q. Also, Q°lies overP. We aim to replace
K by K% We set

D°=D(QQY) and E°= E(QQ%:

There is a subgroupH of the Galois group Gal(L=K ) such that K°= LY. We have
D°=f 2Gal(L=L"): (Q)=Qg=f 2H: (Q) = Qg=D\H
and

f 2Gal(L=L"): ()= (modQ); 8 2 Sg
f 2H: ()= (modQ); 8 2 Sg
E\ H:

EO

Now, from Theorem 6.9,L°° = LPK%and LE" = LEK?O,

We now consider the property of LP referred to above. We restate Lemma 13.4 as a propo-
sition:

Proposition 13.12
e(Q°jP) = f(Q°jP) = 1:
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This proposition suggests the following question: IfK ®is a eld intermediate between K and
L and there is a prime idealQ® R?%= Ok o such that

e(Q9P) = f(QIP) =1;

what can we say about the relation betweenk ®and LP ? We claim that L® must contain such
a eld, or, in other words, LP is the largest intermediate eld with this property.

Theorem 13.10 Let K and L be number elds with L normal over K. If K%is a eld in-
termediate betweenK and L such that the prime idealQ®in R°= Oko lying under Q has the
property

e(QIP) = f(QIP) = 1;
thenK® LD,

proof SinceQ lies over Q° and Q° over P, we notice that
e= e(QjQYe(QIP) = QjQY) and  f = f(QQY (QIP) = f(QiQY:
Therefore, sincel is a normal extension ofK ° (Proposition 5.3), from Corollary 13.5,
[L L= e(QIQYF (QIQY = ef =[L :LP]:

However, L®  LP°, which implies that LP = LP° = LPK%and soK® LP. This ends the
proof. 2

We now turn to a property of LE.

Proposition 13.13  We have
e(QFjP)=1:
proof We notice that
e(QjP) = &(Q%jQ”)e(Q"jP) = (QFjQ°);
from Proposition 13.12. It remains to show that e QFjQP) = 1. This can be derived from
Corollary 13.6 and Proposition 13.10. We have

f =[LF :LP]= e(QFjQ")f (QFjQ°) = e(QFjQP°)f
hencee(QEjQP)=1. 2

This property suggests the following question: IfK %is a eld intermediate between K and L
and there a prime idealQ® R?%= O o such that

e(QYP) =1;

what can we say about the relation betweerK ®and LE ? We have seen thatk © LP. We claim
that LE must contain any intermediate eld containing K ©, or, in other words, LE is the largest
intermediate eld with this property.

Theorem 13.11 Let K and L be number elds withL normal over K. If K%is a eld interme-
diate betweenK and L and the prime ideal Q° of R°= Ok lying under Q is such that

e(QYP) =1;
then K® LE.
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proof We will use a procedure analogous to that used in the proof of Theorem 13.10. As in the
proof of this theorem, we obtain e(P4P) = 1 and e = ¢(QjQY%, where P°= Q\ R® However,
sinceL is a normal extension ofK © (Proposition 5.3), using Proposition 13.11 we obtain

[L:LE]= eQiQ)= e=[L:LE]:

BecauseLE  LE’, we have the equality LE = LE" = LEK? thus K® LE. This ends the
proof. 2

Remark It is interesting to compare Theorems 13.10 and 13.11. In the rst case we obtain
K% LP, which is stronger than K® LE, the result obtained in the second case, because
LD  LE.

Non-rami cation and complete splitting in composita

Let K, L be number elds, with L an extension (not necessarily normal) oK, and R and S
the corresponding number rings. IfP is a nonzero prime ideal inR, then we say that P splits
completely in S, if PS can be written as a product of n = [K : L] distinct prime ideals in S.
From Theorem 13.6 we have

efi=n=) =1 =1:
i=1
Clearly, if = f; =1, for all i, then P splits completely in S.
We can compare this notion with that of non-rami cation. If the ideal P splits completely
in S, then P is unrami ed in S. However, the converse is false: We may have

SP=0Q: Qs;

with s <n and certain f; > 1. Non-rami cation is thus weaker than complete splitting. In the
following, if F and G are number elds, with F G, and Q is an ideal in Og, then we will write
QF for Q\ Of, the unique prime ideal of O lying under Q. If Q is a prime ideal, then so is
Qr . (It should be noticed that QP = Q.o and QF = Q. .)

Theorem 13.12 Let K, L and M be number elds, withL and M extensions ofK, and P a
nonzero prime ideal in Ok which is unrami ed (resp. splits completely) in O, and Oy . Then
P is unrami ed (resp. splits completely) in Opy .

proof We rst consider the non-rami cation. Suppose that P is a nonzero prime ideal which
is unramied in O_ and Oy and Q° a prime ideal in O.y lying over P. We must show that
e(QYP) =1. As LM is a nite extension of K, there exists a nite normal extension N of K

containing LM (see Section 5.1). LetQ be a prime ideal in Oy lying over Q°. Proposition 13.3
ensures thatQ also lies overP. We note E the inertia group E(QjP), i.e.,

E(QjP)=f 2Gal(N=K): () (modQ);8 2Ong:

As QL \ Ok = Pand Quy \ Ok = P, Q. and Qy lie over P. Given that Q. and P_ are
unrami ed over P, we have

e(QLjP)= e(QmjP)=1:
From Theorem 13.11NE contains both L and M and hencelLM . As Q is a prime ideal, so is
Qne . Then, using Proposition 13.14, we have

1=¢e(QnejP)= e(QnejQum )e(Quwm jP):
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This implies that e(Q.m jP) =1, i.e., eQYP)=1.

We now consider the complete splitting. As we have seen, the nonzero prime ideBl in Ok
splits completely in Oy if and only if , for every prime ideal Q%in Oy lying over P, we have
e(QYP) = f(QYP) = 1. As above we take a prime idealQ®in Opy , let N be a nite normal
extension of K containing LM and Q be a prime ideal inN lying over Q% Once again,Q also
lies overP. We note D the decompaosition groupD (QjP), i.e.,

D(QjP)=f 2 Gal(N=K): (Q)= Qg
We dene Q. and Qy as above and sd@Q, and Qy, lie over P. As P splits completely in O,
and Oy , we have
e(QujP)= f(QLjP)=1 and  eQmjP)=f(QujP)=1:
From Theorem 13.10,NP contains both L and M, henceLM . Then, by Proposition 13.12

1=¢eQnojP)= eQnojQum )&Qum jP) and 1=71(QnojP)= f(QnojQum )f (Quw jP);

and so
&Quw jP)= f(Quu jP)=1; ie, eQIjP)=f(QIP)=1:
This nishes the proof. 2

Exercise 13.5 In the preceeding proof, we take the normal closurél of K over LM . What is
the reason for doing so?

Corollary 13.7 Let K and L be number elds, withK L, and P a nonzero prime ideal in
Ok . If P is unramied or splits completely in O, then the same is true in a normal closureN
of L overK.

proof Let P be a nonzero prime ideal inOx . We rst suppose that P is unramied in O.
We must show that, if Q is a nonzero prime ideal inOy lying over P, then e(QjP) = 1. If
2 Gal(N=K), then we have

OP=Q) Q=) P (O)= (@)  (Q;

which means that P is unramied in O (). However, from Theorem 6.12, we know that

Y
N = (L):

2Gal (N=K )

Applying Theorem 13.12 successively we obtain thaP is unramied in Oy .
We use an analogous argument to show that, i splits completely in L, then P splits com-
pletely in Oy . 2

A criterion for complete splitting

We begin with a preliminary result.

Proposition 13.14 Let K, L be number elds, with L a normal extension of K. We suppose
that P is a prime ideal in Ox and Q a prime ideal in O, lying over P. In addition, we assume
that the decomposition groupD = D(QjP) is normal in G = Gal(L=K). If r is the number of
distinct prime ideals in the splitting of P in O, then P splits into r prime ideals in O, o .
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proof SinceD is normal in G, the corresponding eld LP is a normal extension ofK . From
Lemma 13.4 we have

«Q°jP) = f(QCjP) = 1:

Thus, using Corollary 13.2, for every prime idealP in O_» lying over P
e(PjP) = f(PjP)=1:
If r is the number of distinct prime ideals P; in the splitting of P in O, o, then

X
e(PijP)f (PijP) =[LP : K];
i=1

i.e., r = [LP : K]. However, from Proposition 13.9 we know that[LP : K] = r, sor = r as
claimed. 2

Theorem 13.13 Let Q be any ideal inO, lying over the prime ideal P of Ok . Let us assume
the conditions of Proposition 13.14 and letK ° be an intermediate eld betweenK and L. Then
P splits completely in Ok o if and only if K® LP(QiP),

proof If P splits completely in Ok o, then
e(QIP) = f(QIP) =1; (13.2)

where QCis the unique ideal ofOk o lying under Q. (Q°lies overP and the relation (13:2) follows
directly from the de nition of complete splitting.) By Theorem 13.10 we have K° LP.

Now suppose thatk® LP(QiP)  As in the proof of Proposition 13.14, Lemma 13.4 and
Corollary 13.2 ensure thatP splits completely in O, po. If P%is a prime ideal in Ok o lying over
P, then Plies under some prime ideaP in O o lying over P. We have

e(PjP) = f(PjP)=1=) e(PP)=f(PIP)=1;

HenceP splits completely in O o. 2

13.8 Existence of rami ed prime numbers

In this section our goal is to establish a necessary and su cient condition for the existence of
a rami ed prime number in a given number ring. We have already seen that, ifp is a prime

number which is rami ed in a number ring R = Ok, then p divides disc(R) (Theorem 13.8). We

aim to show that this condition is also su cient.

Theorem 13.14 Let K be a number eld andR = Ok . Then the prime numberp is rami ed
in R if and only if p divides the discriminant of R.

proof We have already shown that ifp is rami ed in R, then pjdisc(R), so we only need to prove
the converse. Let us suppose thapjdisc(R). We x an integral basis ;;:::; , of R. Then,
from Proposition 10.7,

disc(R) = jTk=q( i )i
wherejTg-q( i ;)i is the determinant of the matrix T = Tx-q( i j) . From the de nition of
the trace in Section 10.1 the elementIy-q( i j) 2 Q. However, ; ; 2 Ox,S0Tk-q( i j)2Z
(Exercise 11.1). Working modulop, i.e., considering these elements lying irF, and, knowing
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that disc(R) = 0 in F,, we see that the rows of the matrixT are linearly dependant, i.e., there

We may express this by saying that there exist integeramg;:::;my, not all divisible by p, such
that
Tk=q( i j)mi
i=1 P
is divisible by p, for j =1;:::;n. If we set = i":l m; i, then
PiT=q( )

forj =1;:::;n, and it follows that pjTk-o( ),forany 2 R,i.e.,Tk=q(R ) Zp. Moreover,

2 RnpR, since the integersmy;:::; my are not all divisible by pand ( 1;:::; ) is anintegral
basis ofR.

Let Q1;:::;Qs be the prime ideals in R involved in the decomposition of the ideal Rp.

Propositions 12.2 and 12.3 ensure that 7_; Qi = Q1 Qs. If pis unramied in R, then Rp =
Q1 Qs; thus, as =2 Rp, there existsQ; such that 2 Q;.

We now consider a normal closureN of K over Q. From Corollary 13.7, p is unrami ed in
On = S. Let Q%be a nonzero prime ideal inS lying over Q;. If 2 Q% then 2 Q° R = Q;,
a contradiction, thus 2 Q% We claim that Tn=0(S )  Zp. To see this, we apply Corollary
10.3:

Tn=Q(S )= Tk=q Tn=k (S )= Tk=q Tn=x (S) Tk=(R ) Zp:

of nonzero prime ideals inS which lie over p. From the Chinese remainder theorem (Theorem
F.1), there is a solution 2 S of the system of equivalences

X 1 (mod Q9
X 0 (mod Q9)

X 0 (mod QY):
The element lies in QY, for i =2;:::;t, but notin Q% We claim that
Tn=o( )2Q% for 2S;
( )2Q%for 2Sand 2GnD,

where G = Gal(N=Q) and D = D(QYp). The rst assertion is easy to prove. We only need
to observe that 2 Sand Ty=o(S ) Zp QP The second assertion requires a little more
work. First we notice that 2 G nD implies that (Q% 6 Q° or equivalently Q°6  1(Q9.
As  1(QY liesoverp, 2  (Q9, which implies that ( ) 2 Q% which in turn implies that

( )2
We now claim that X
( )2Q°
2D
forall 2 S. To see this, we rst remark that from Corollary 10.3
X
Tn=q( )= ¢ )
2G
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Then X X
()= Th=o( ) C

2D 2GnD

i.e., the di erence of two elements inQ°.
We may now nish the proof. The members of the subgroupD of G induce automorphisms

of S=Q”.
x+ Q)= )+ Q%
Reducing , and modulo Q% we obtain
X

2D

forall 2 S. We have seen above that; =2 Q% so is a nonzero member of the eldS=C.
As runs through all the elements ofS, runs through all the elements ofS=CF. It follows that

X
(x)=0;
2D

for all x 2 S=Q°. Hence the automorphisms , with 2 D, are not independant, which contra-
dicts the corollary to Dedekind's lemma (Corollary 8.1). The supposition that p is unrami ed
led us to this contradiction, hence p must be rami ed. 2

Remark We will show in the next chapter that, if K 6 Q, then jdis¢(R)j > 1. Thus, in this case
there exists a prime numberp which divides disqR). Consequently, Theorem 13.14 ensures the
existence of a rami ed prime number. More generally, ifK L are number elds, then there
exists a prime ideal in Ox which ramies in O_. To see this, it su ces to consider any prime
ideal in Ok in the decomposition of Ok p, where pjdisc(OL ).

13.9 Prime decomposition in cyclotomic number rings

Let p be a prime number, s a positive integer and = e . We will be interested in the
decomposition of a primeq in the number ring of the cyclotomic eld K = Q( ). As K is normal
over Q we may write

Okaq=(Q:1 Q)%

where the Q; are prime ideals inOx .

We will rst consider the case whereq= p. In the proof of Proposition 11.10 we saw that
Okp=0x( )P =(oc@ ) ® (13.3)
and
Nk=q( )=p:

From Theorem 13.4
Nk=o(1 )= kOk (1 )k

hencekOk (1 )k = p. However, from Proposition 13.4, the principal idealOx (1 ) is a prime
ideal, therefore the expression(13:3) is the decomposition ofOk p into prime ideals.

189



We now turn to the case whereq 6 p. This is more dicult. From Theorem 11.15 the
discriminant of Ok is a power ofp. As g6 p, qdoes not divide the discriminant, so, by Theorem
13.14,qis not rami ed in Ok . This implies that the decomposition has the form

OquQl Qr;

where the Q; are prime ideals inOx . We now aim to determine the value ofr.

We recall that Ox = Z[ ]. Fori=1;:::;r, sinceQ;jOk g, we haveQ; Ok q= Z[ ]Jgand it
follows that Q; lies overZq. From Corollary 13.2, the inertial degreesf (Q;jqg) all have the same
value. If f is the common value of the inertial degrees, then we can write

f = (p°)=p° p 1) (13.4)

where denotes the Euler totient function. We claim that f is the order ofqin the multiplicative
group Zps.

Let Q be one of theQ;. Then Z[ ]=Qis isomorphic toF , with sub eld Fq. (This is obtained
from the mapping de ned just before Proposition 13.3.) We may identify the elements ofF
with the cosets of Q, which we will write in the usual way, i.e., a= a+ Q. If a2 Z,thena2 Fy
and from this it follows that Fy = Fq( ). This implies that an element of the Galois group
G = Gal(F4 =Fg) is determined by its value at .

Moreover, from Theorem 7.9, G is cyclic and generated by the Frobenius automorphism
Frox 7! x9 SinceFy = Fq( ), the Frobenius automorphism, is determined by its value at .
Let f °be the order ofqinin Z,.. Then

f0 0

Frfo(): d = o= 1+kg®: (13.5)

for somek 2 N . Therefore Frfo( )=, which implies that f jf .
We now show thatf9f. If 1(mod p®), then f §f , so this is what we will show. We set

f

d a(modp®);

with a2f1;:::;p° 1g. Suppose thata> 1. Then

However, from equation 13:5),

hence
a— :) alzl:) 1 alZQ:

On the other hand we have
psY 1 pSY 1 1 + X ps

1+ XP = T+ X)= Ty X))z — 2 =1+ X + + XP° 1
TR T = Y

Noting g(X) the last expression on the right-hand side, we obtain

psyl

( "+1)=g@)= p*
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Since one of the factors in the expression on the left-hand side of the equation s 2 * and
all the factors are in Ok , we see thatp® 2 Q. This means that Q contains both p* and g, which
are coprime. Hencel 2 Q, a contradiction. Therefore a=1 and it follows that

g  1(modp®);

as required. To conclude, we have shown that is the order of gin Zs, as claimed.
To conclude, from (13:3) we obtain

_P e 1),

' f

wheref is the order of gin Z.

Remark Further on, in Chapter 18, we will reconsider the question of the decomposition of a
prime number in a number ring, but in a more general context.
13.10 Higher rami cation groups

Let K and L be number elds, with L a nite normal extension of K. We setR = Ok, S = O_
andletP R, Q S be prime ideals with Q lying over P. We recall the de nition of the inertia

group:
E=E@QjP)=f 2G: () (modQ) 8 2 Sg;

where G = Gal(L=K ). We now extend this de nition. For m 2 N, we set
Vp=f 2G: () (modQ™*?1)8 2 Sg:

Thus Vo = E. The V., form a descending chain of subgroups of the decomposition group
D = D(Q]jP) and are calledrami cation groups .

We recall the Krull Intersection Theorem:

Theorem 13.15 If R is a commutative noetherian domain andl a proper ideal in R, then
\1_, 1™ = fog.

Proposition 13.15 The groups Vy, are normal subgroups ofD and their intersection is the
identity.

proof Let 2V, and 2 D. Then, for 2 S, we have
()= ()+x
with x 2 Q™*1 | This implies that
()= o+
Since 'Q=Qandx2QM*, 1(x)2QM*, thus
() (modQM;

and it follows that V,, is normal in D.

191



As S is a noetherian domain, from Theorem 13.15\ 1 _, Q™ = f0g. If 2\ 1 _,Vy and
2 S, then

()  2\54Q"=f0g=) ()= :

Therefore is the identity on S and consequently onL, becausel is the eld of fractions of S.
2

Corollary 13.8 There existsn 0 such thatVy, is reduced to the identity form n.

proof As D is nite, so are the subgroupsV,, and the chain must be stationary after a certain
point, i.e., there exists n such that Vi, = V,,, form n. If V,, is not reduced to the identity for
m n, then the intersection of the groupsV, must contain elements other than the identity,
which is a contradiction. Therefore, form n, V, is reduced to the identity. 2

We recall that SE is the number ring of LE, i.e., SE = O_ e, and that QF is the unique
prime ideal in SE lying under Q. We now consider the localizationsSq and SSE . These rings
are both Dedekind domains, being localizations of Dedekind domains (Theorem 12.9). They are
also local rings with respective unique maximal idealsSo Q and SE¢ QF (Theorem 12.10). From
Theorem 12.11 these localizations are PIDs.

If 2 SSE ,thens 2 S, becauseSE  S. In addition, u2 Q (If u2 Q, then 2 SE\ Q = QF,
a contradiction.) Hence SSE So, and we may considerSqy to be a SSE -module. Lett be a

generator of the principal ideal So Q. We may suppose thatt 2 S: if t°= fj— is a generator, then
SO ist.

Theorem 13.16 The module Sq is a free module overSE., with basis B = f1;t;:::;t® 1g,
wheree=[L : LF].

proof Our rst step is to show that if a is a nonzero element olLE, then there existss 2 Z
such that Sga = SoQ®®. Let us write Lq for the fraction eld of Sq and Lqe for that of SSE.
ThenLE L Lo and so any nonzero elemena of LE generates a nonzero fractional ideal of
Sq, which we may write Spa. We aim to study the decomposition of Sga into prime ideals in
So. SinceLE Loe, a also generates a fractional ideal OSSE , hamely SSE a. From Theorem
12.11 there existss 2 Z such that

SGe a=(SGe QF)° = SGe Q°°;
and so, using the fact that SSE is contained in Sg, we obtain
Sga = SqSGe a= Sq(S5e QF°) = SeQ°*:
Now, using the inclusion ofS in Sg, we have
SQQ™° = SoS(Q™) = So(SQF)*:

SinceQF lies overQP and Q is the unique prime ideal ofS lying over QP (see Section 13.7)Q is
the unique prime ideal of S lying over QF: SQF is a power ofQ. Taking into account Theorem
13.6, with K = LE, and then Lemma 13.3 and Proposition 13.11, we obtairSsQF = Q°¢. Finally,
we have shown that, for any nonzero elemenain L&, there existss 2 Z such that Sga = SqQ®e.

Our next step is to show that the elements1;t;:::;t® 1 form a basis ofL over LE. As
[L : LE] = e, it is sucient to prove that these elements are linearly independant over LE.
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P .
Suppose thatx = jezolajtJ , with 3 2 LE and somea; 6 0. If 0 k;I e 1, with k6 I, and
ax 60, a 60, then we claim that s,e+ k 6 sie+ |, where

SQ ag = SQ Qesk and SQa| = SQ Qes| .

If not, then
06 k I=-¢e(s sk);

which is impossible, becaus¢gk |j <e. We now set
m=minfes +j :a 60; Sga = SuQ* ¢

Let i be such thatm = es + i; then,if 0 j<e anda 60, there exists ; 2 Sg such that
a = t% € Therefore there exists 2 Sg such that

X .
X = jtsleﬂ:tm( itt):
j;aiso

If 2 SoQ,then a = tS¢€ut, with u2 Sq. This implies that
(SQQ)Sie - SQai (SQQ)S, e+l :

which is not possible. Hence ; 2 SoQ and it follows that ;+t 2 SoQ. Thus ;+t 60 and
sox 6 0. We have shown that the setf 1;t;:::;t® g is independant.

At this point we should also notice that Sox = SqQ™. Indeed, asSq is a local ring, its
maximal ideal SqQ is composed of its nonunits. Hence ; + t is a unit and so

SoX = Sth = SQQm:

The nal step is to show that B is also a basis of theSE. -module Sq. Suppose that there

shown that B is an independant set overL &, the by all have the value 0, soB is an independant
set over Sg. .

We must now show that B a generating set of theSE: -module Sq. Let x be a nonzero
element of Sq. As Sq is included in L, we may write x = = 7_g ajt/, wherea 2 LE, for all j,
and at least onea; is nonzero. We claim that eacha; belongs toSSE . Looking at the beginning
of the proof, we notice that, if a; 6 0, then there is an integers; such that the fractional ideal
Soe & = (Sge QF)% . This is the decomposition of this fractional ideal into prime ideals of S5 .
In addition, we have shown that Sgx = (SoQ)™ is the decomposition into prime ideals ofSq
of the fractional ideal Sox. As X 2 Sg, Sgx is an integral ideal of S and som 0 (Corollary
12.9). However,

m=minfes +j :a 60; Sga = SuQ* g;
so, ifg 6 0, thenes +j 0, which implies that s; Jg > 1. Therefores; 0, because
s is an integer. It follows that Sge a; is an ideal of S§e , becauseS§e g = (S§e Q%) , and so
a 2 SSE . We have shown thatB is a generating set ofSqg as aSE: -module. This nishes the
proof. 2

We continue our study of the rami cation groups using a generatort 2 S of the principal

ideal SoQ. We notice that t 2 S L, so it makes sense to write (t) for any automorphism
2 Gal(L=K).
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Proposition 13.16 For i =0;1;2;::;,
Vi=f 2E: (1) t2SQ"g

proof If 2V, then 2E and (t) t2 Q" sincet2 S. However,Q'*'  So(Q'*!), thus
(t) t2SgQ*t. '
Now suppose that 2PE and (t) t2SoQ'!. If x2S, then we may consider thatx 2 Sq

and so we can writex = je:01 atl, with a 2 SSE (Theorem 13.15), hence

x) x= &g @ t;

because thea; are xed by the automorphisms of E. (Indeed, g 2 SSE and SE.  SE LE)
Also, (t) tj () tinsS,ie, () t =s( () t),forsomes; 2S. Asboth S§. and S
are included in Sq,
X 1
a (Y t 2S,Q"
j=0

Given that x 2 S, we now have
(X) X 2 SQQi+1 \ S= Qi+1;
where we have used Theorem 12.12 for the equality. This ends the proof. 2

We have seen that the rami cation groups V; form a sequence of normal subgroups of the
inertial group E. As Vi.1 Vi, we have a sequence

E = Vo V]_ V2

We also know that after a certain point V11 = Vi, so we may consider the sequence to be nite.
We are now interested in the factor groupsV,=M.; .

Theorem 13.17 There exists a group monomorphism fromE=V; into S=Q . Thus E=V; is a
cyclic group whose order is coprime tq, whereQ\ Z = Zp.

proof Lett 2 S be a generator of the principal idealSg Q, sot 2 S\ SqQ = Q(Theorem 12.12).
If 2 E,then 2 D, which implies that (t) 2 Q, becauset 2 Q. As Q  SpQ, there exists
X 2 Sg such that
(t)y=x t

From Exercise 12.8 we may suppose thaBSq as a subset ofL, i.e., we considerx = [ 2 Sq
as an element ofl. This permits us to induce a mapping °®on Sg from 2 E by setting

Ax) = % 2 L. Clearly, (r); (u) 2 S. Itis elementary to check that ©is an automorphism
of Sg. We should also notice that, since 2 E, for all x 2 Sq,

%x) x(modSyQ):
Indeed, there existsq2 Q such that (r) = r + gand so

() _r+q _r rq° uqg

)= WUt U uu+r g

X+ O,
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with qp 2 S Q.
To simplify the notation, from here on we will write  for °. Our next step is to show that
X 2S59Q. As !2E, there existsx 1 2 Sq such that

Mty= x :t:
Then
t= ) = (x )= (x 1) ()= (x )X t

As Sq is an integral domain, we have
1= (X 1)x;

sox is invertible in Sg, which implies that x 2 SgQ, becauseSqgQ is a proper ideal ofSg.
From Corollary 12.10, there is an isomorphism from Sg=5Q onto S=Q. Noting x the
image (x + SgQ), we havex 60, becausex 2 SgQ. We now de ne a mapping
'E! S=Q by
()=x:
We consider the properties of . First we notice that is a group homomorphism: If ; 2 E,
()= x tand (t)= x t, then

)= (xt)= (x) ()=(x +vi)x t=(x x + vx t)t
wherev 2 Sq, therefore
( )=xx +tvwit=xx = (x) (x);

so is a homomorphism. We claim that the kernel of is V;. To establish this we use Proposition
13.16. If 2 V4, then

(1) t2SeQ%=) ()=t+vt?=(1+ vi)t=) ()=T+vi=1
wherev 2 Sq. Hence 2 Ker . On the other hand, if 2 Ker ,then ( )= 1and we have
X =1=) (1) t=xt t=(1+ vi)t t= vt?

wherev 2 Sq. It follows that 2 V. We have shown thatV, = Ker .

As Vi is the kernel of , the quotient group E=V; is isomorphic to a subgroup ofS=Q , which
is the group of nonzero elements of the nite eld S=Q. From Corollary 3.3 ,S=Q is cyclic and
so E=V; is cyclic, being isomorphic to a subgroup of a cyclic group.

There exists a unique prime numberp such that Q\ Z = pZ. AspZ Q, we havep 2 Q,
so the characteristic of S=Q is p. This implies that the prime eld of S=Qis F, and it follows
that jS=Q = p", for some positive integern. HencejS=Q j= p" 1. AsjE=V;j divides p" 1,
JE=V1j must be coprime top. 2

Remark In the proof of the theorem we chose a particular generatot 2 S of Sg Q. In fact, we
obtain the same mapping if we choose another such generatat®. First we notice that t°= at,
wherea 2 S,. This implies that a 2 SoQ. Then we have

(t% = x°t°= x%at:
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As we saw in the proof of Theorem 13.17, ik 2 Sg and 2 E, then (x) x(mod SgQ), so
there existsq2 SqQ such that (a) = a+ q= a+ vt, with v2 Sg. Hence

xPat = (at) = (a) (t) = (a+ vi)x t
=)  x%a = (a+ vt)x
:) ax = axo = XO =X ;

becauseSo=5,Q is a eld and a 8 0. Therefore the value of ( ) is unaltered by choosing
another generator in S of Sq Q.

We now consider the quotient groupsV;=Vi+; , with i 1.

Theorem 13.18 There exists a group monomorphism fromV;=V.; into the additive group of
the eld S=Q. Hence Vi=M,; is an abelian p-group, whereQ\ Z = Zp.

proof As in the proof of Theorem 13.17, we lett 2 S be a generator of the principal idealSq Q

and sot 2 S\ SgQ. If 2V, then (t)= t+ x t'*}, wherex 2 Sq (Proposition 13.16).

From Corollary 12.10, there is an isomorphism from Sg=SoQ onto S=Q. Noting x the image
(x + SgQ), we obtain a mapping ; from V; into S=Q de ned by

i( )= x:
We claim that ; is a homomorphism into the additive group of S=Q. If ; 2 V;, then
= (t+xt™)= O+ (x) ()
If x= L 2Sq and 2 Vi, then there existq;f 2 Q'** such that

r r+ r rq® u
with ¢ 2 SgQ'*1. Thus
()= t+ x t* +(x + vttt + x t*1)i+L,
However,
(t+ x t*1)* = 1 + x (i +1)t%*1 + expressions in higher powers of;
with 2i +1 >i +1, becausei 1. Hence
()= t+(x +x +vHt*t;
wherev;v°2 Sq. It follows that
i()=Xx +x +VE=X FX =x +x = ()+ ()

We have shown that ; is a homomorphism fromV; into the additive group of S=Q.
Our next task is to consider the kernel of ;. If 2 Vi41, then, for somev 2 Sqg,

(1) t2SoQ*2 =) (t)=t+ vt =t+(v)t'*?
and so

i()=vt=0
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So we haveVi,;  Ker . Now suppose that j( )= 0. Then x = 0, which implies that
(t)= t+ (vt = t+ vt'*?:

with v 2 Sq. Therefore 2 Vijy; and it follows that Ker ; = Vi1 . Therefore the quotient group
Vi=M 41 is isomorphic to a subgroup of the additive group ofS=Q. We have seen in the proof of
Theorem 13.17 thatjS=Q = p", whereQ\ Z = Zp and n is a positive integer, sojVi=Vj+1 ] = p™,
wherem n. Therefore the order of an element inV;=\{;; is a power ofp. 2

Exercise 13.6 In the proof of the preceding theorem we have used a particuler generatb® S of
the principal ideal SqQ to construct the homomorphism ;, which in turn gives us a monomor-
phism ; of Vi=M.; into S=Q. Suppose that we take another generator® 2 S of SoQ and
so obtain another monomorphism of 0 of Vi=\,,; into S=Q. What can we say of the relation
between ; and 2?

We recall the de nition of a solvable group. A normal series of a nite group G, with identity
e, is a chain of subgroups
G=Gy G; Gh = feg:

where the subgroupGj+; is normal in G;, for all i. If a nite group G has such a series and all
the quotient groups G;=G;.; are abelian, then we say thatG is a solvable group

Proposition 13.17  The inertia and decomposition groups are solvable.
proof The series

D E V, Vm = fidp g

cyclic and from Theorems 13.17 and 13.18 above, far 0, Vi=\(4; is a subgroup of an abelian
group, hence abelian. It follows thatE and D are solvable groups. 2

Here are two further results concerning the rst rami cation group Vi.
Proposition 13.18 We have
a. The cardinal of V; is a power ofp, henceV; is a p-group: jVij = pX, wherek 0;
b. If eis the rami cation index e(QjP), then e= mpX, where p 6y and m = JE=V4j.
proof a. As V, is reduced to the identity, we may write
V1] = V1=V = Vi=V5jjVo=V5]  jVim 1=V

As all the factors on the right hand side are powers o, so isjVij.
b. From Proposition 13.11,e=[L : LE]. In addition, from Theorem 6.6, [L : LE] = jEj, which
in turn is equal to jVi1jjE=V4j. Using part a. we obtain e = p“m, and p 61, by Theorem 13.172

We have seen thatV; and E are normal subgroups ofD. As E is contained in D, V; is also
normal subgroup of E and so the cosets oW/, in E form a group, the quotient group E=V;. We
may de ne an action of D on E=V; by conjugation: for 2 D and V; 2 E=V;, we set

Vi= (V1) *=( Hvi:
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(It is simple to check that this action is well-de ned, i.e., if %; = Vi, then O = Vi)
From the group action we obtain, for each 2 D, a bijection ~ of E=V; de ned by

M Vi) = Vi= (Vi) &
We may also de ne an action ofD on S=Q: for 2 D ands+ Q 2 S=Q, we set
(s+ Q)= (s5)+ Q:

(There is no di culty in seeing that this action also is well-de ned.)
From this second group action we obtain, for each 2 D, a bijection ~ of S=Q de ned as follows:

~(s+ Q)= (s+Q= (9+ Q

In Section 13.6 we saw that the the bijections~ belong to the Galois groupGal(S=Q; R=P) =
G and that the corresponding mapping : 7! ~is an epimorphism. Moreover,G is a cyclic
group generated by the Frobenius automorphism:Fr : x 7! x9, whereq= jR=Pj. The following
result links the bijections * and ~.

Proposition 13.19 If 2 D is such that ( )=~ is the Frobenius automorphism, then
M V)= v
for all cosets V1 2 E=V;.

proof First we x a generator t of the ideal SgQ, i.e., SgQ = Sgt. As *( V1) = 1 we
have
MV = Vi AV oA t(mod SeQ?):

We now sum up some basic facts which we will need further on in the proof:

Forall 2 D, there existsx 2 Sg suchthat (t)= x t and
(x 1)x =1:
(This result is established in the proof of Theorem 13.17.)

If 2D andx 2 Sg, then
(x) 2 Sg:

Indeed, x = L 2 Sg can be considered an element of, thus (x) = ((L; because

(5) (W= (Gu= (). If (U2Q,thenu= 1 (u)2 Q)= Q, because

12 D, a contradiction. Therefore (u) 2 Q and so ((L; 2 Sg.

If 2 E andx 2 Sg, then
(x) x (modSgQ):

Since : L ! L satis es the condition ( ) (mod Q), for all 2 S, we have
(x) x(modSpQ), for all x 2 Sg, because

() _r+q_r rq° ug _ _
W urg u uur W

x=12S L3 (=
with on 2 SpQ.
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With these rules in mind we aim to show that
11 9t)  t(modSqQ?):
To begin with, we establish that for 1 i g we have
'(t) x't (modSqeQ?):
For i =1, the result is clear, because (t) = x t. Next we consider the case = 2. First,
M=xt=) )= (x) )= (x)xt
As 2 E, there existsv 2 Sg such that (x )= x + vt, hence
20) = (x + vi)x t= X%t + vx t? = X2t + vqt?:

As vi 2 Sg, we have
2(t)  x*t (mod SqQ?):

Our next step is to consider the casa = 3. We have

3(t)

(%)= (x*t+vit)
M)+ (v1) (1)
(x +vt)2x t+ (vi)(x t)?
X3t + vyt

wherev, 2 Sq. Hence
3t)  x3t (mod SqQ?):

Continuing in the same way we obtain
'(t)  x't (mod SqQ?);
for1 i qand, in particular for i = g. Therefore there existsw 2 Sq such that
at) = x9t + wt?:
We now consider the expression 1 9. First,

) = It wt?)
= Yxx o at+ o Hw) ()P
= xMx  t+ Y(w)x? ,t?
= MxMx ot + wyt?;
wherew; 2 Sq. Thus
HE(09) Y(xT)x 1t (mod SqQ?)
and so

1 1q(t) 1( 1(xq)x 1)X at (modSQQz)
Yx%)x 1x 1t (mod SoQ?);
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because ! 2 E implies that
o txhx 1) YxMx 1 (mod SqQ):
Thus

11oagp x4 (x 1) (X 1)X t(mOdSQQZ)
x4 (x 1)t (mod SoQ?);

because (x 1)x =1.
Our next step is to nd useful expressions forxd and (x :). Firstly, as ' 2 E, we have

X Y(x ) (mod SgQ) =) xd 1(x )? (mod SgQ):

Secondly, we consider (x 1). Since () 9 (mod Q), for all 2 S, because~ is the
Frobenius automorphim, we have (x) x9(modSgQ), forall x 2 SpQ: For x= -2 Sq L,
we have

(x) = (r) _r%+q _r% rl9gp uig

(U Ui+ Ul uUT+ )

rd )
o (mod SgQ):

Hence
(x 1) x%, (modSqQ):

Using these two expressions, we have
Lolag)  x9 (x ot Y(x )Ix9 ,t (mod SpQ?):
As 1(x )x 1=1,we nally obtain
oA t(modSqQ?);

and the result follows. 2

Corollary 13.9 If the decomposition groupD is abelian, then thenjE=V;j dividesq 1.

proof If D is abelian, then the action of D on E=V; is trivial, i.e., V= Vq,foral 2D
and cosets V; 2 E=V;. It follows that ~ is the identity for every 2 D. If is such that
its image under the mapping is the Frobenius automorphism, then from Proposition 13.19
A V1) = 9V, Thus we have Vi = 9V, or 9 1(V;)= V1. Hence the order of V; divides
g 1. However,E=V; is cyclic, so if V1 is a generator ofE=Vy, then its order is the cardinal of
the group, hence the result. 2

Remark In the proof of Theorem 13.17 we showed thajfE=V;j divides ° 1, whereq®= jS=Q.

On the other hand, in Corollary 13.9 we show thatjE=V;j divides q 1, whereq= jR=Qj. As
q 1dividesg® 1, whenD is abelian we obtain a stronger result.
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Chapter 14

Number elds and lattices

Before reading this chapter we advise the reader unfamiliar with lattices in euclidian space to
read our appendix on the subject. There we have brought together the basic notions on the
subject and, in particular, we state and prove Minkowski's convex body theorem.

14.1 Number rings as lattices

We consider a number eldK, such that [K : Q] = n, with associated number ringR. There are
n monomorphisms ofK into C which x Q. (If K is a normal extension ofQ, then the monomor-
phisms are automorphisms oK and so form the Galois groupGal(K=Q).) Let i;:::;  be the
monomorphisms with image inR. The others occur as pairs of complex conjugates, which we
write 1; 1;::1; s s Clearly, n = r +2s. We obtain a mapping :K ! R" by setting

forall 2 K. This mapping is a monomorphism from the additive group ofK into the additive
group of R". The image ofR, which we note R, is a subgroup of the additive group ofR". We
claim that g is a lattice. To see this, let( 1;:::; n) be an integral basis ofR. Clearly

X
rR=fv2R":v= a (i)a2Zg
i=1

determinant D of the matrix having these elements as rows. Applying appropriate column
operations we obtain that D is the product of ( 2i) $ and the determinant D° of the matrix
with rows

10 i) a0 ) 20D sCi) sCi)
However,

D@ = disc(R) 6 0;

since any integral basis ofR is a basis of the vector spac& over Q and Proposition 10.8 holds.
Thus A is an independant set. It follows that g is a lattice.

We recall that the determinant of a lattice  is the volume of a parallelepiped formed by the
vectors of any basis(u;){L; . This volume is the absolute value of the determinant of the matrix
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U having these vectors as columns. Hencdet g = jDj. Now,

D=( 2) °D%=) D*=( 1)°2 *D%

therefore p

det R = jDj=2 ° jdis(R)j:
If 1 is a nonzero ideal ofR, then we claim that | = (I) is a sublattice of r. To see this,
we notice that | is a free abelian group of rankn and hence has a basi$ 1;:::; ). The set
B=1f (1):;:::; ( n)ggenerates (1) over Z and is independant, hence | is a sublattice of

r- Also, the index of | in g isthat of | in R, since the mapping
R=1 ! R= 1;r+ 170 (nN+
is a bijection. Therefore, using Theorem G.5, we have

det |
det Rr

kik= jR=lj = o) det | =det rklk=2 5 jdiSqR)KI k:

14.2 Some calculus

In this section we consider a particular subset oR", with n 1, which we will use further on.
We devote a section to the calculation of its volume. We suppose that = r + 2s and set

g —M— g ——
A=fx2R" :jX1j+ + jer+2 Xr2+l + Xr2+2 + + Xﬁ 1t X% ng:

Before considering the volume of the sefA, we observe certain of its properties. For

S(X) = X1 Xr(Xr2+1 + Xr2+2) (Xﬁ 1 + Xﬁ):
Proposition 14.1 The setA is a convex, compact, centrally symmetric subset dR", such that,
for all x 2 A,
jSx)j L

proof A is clearly convex, compact and centrally symmetric. The arithmetic mean of the
numbers
q q q q

TV T VD 2 2 . 2 2 e 2 2- 2 2
PXafi it IXe s Xpeg T XP s Xpa F XPap st Xg o P XRE o Xp gt XR

r
is at most 1 and their geometric mean, which isE) jS(x)j is bounded above by the arithmetic
mean, thereforejS(x); 1L 2

We now turn to the calculation of the volume of A.

Theorem 14.1 We have
vol A = ?Tzr _
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proof We consider the volumev, (t) of the subset ofR"*?S

Ars()= IX2R" ijxaj+  +jxj+2 xZy +xE, v+ ! X5 1+ X3 to:
As A (1) = tArs (1), we have
Vrs () = 1742 5vpg (1): (14.1)
Given that vol A = v, (r +289), it is su cient to show that
Ve ()= — L o _ °. (14.2)
’ (r +29)! 2

We rst consider the case wherer = 0; this implies that s 1, becausen 6 0. For s=1 we
have zZ Z

Vo:s(1) = 1dxdy = Z:

x2+y2 L
We now suppose thats > 1 and aim to nd a relation between vg.s(1) and vos 1(1). To simplify
the notation we let f be the characteristic function of Ag.s(1). f is a function in the variables

by xing v and we set 7
(v)= fy(u)dy

then, by Fubini's theorem (see fgr example [%O]%, we have

(v) dv= f (u;v) dudv:
However, f (u) is the characteristic function of the set
n I — q_— 0
Ay = (Xg;iiiXzs 2)2R% 2:2  xZ4 x4 i+ X3 g+ X3, 1 2 X34+ X3
From equation (14:1),
Z q 2s 2
fu(udu= 1 2 x5 5+ x5 Vos 1(1)

and sozwriting f (u;v) for f(u),

Z1Z P_— 25 2
f(u;v)dudv = vgs(1) = Vos 1(1) 1 2 x2+y2 dxdy
x2+y2_1
Z°Z D
= Vos 1(1) 1 2 x2+y?2 dxdy:
x2+y2 L
Using polar coordinates we obtain
ZZ D as o Z,Z:
1 2 x2+y2 dxdy = 1 2)* 2dd
x2+y2 % 0 0
Z 4
= 2 1 2)=2d
z5
- _ 2s 2 1
7, u (1 u)du
-+ r _ 1
T2 25 1 25 22s(2s 1)
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and hence the recurrence relation

Vois(1) = Voss 1<1>525<T11):

With an induction argument we nd that

1 * 1
Vois(1) = 2 @

We now consider the case where > Oands 1. Let g be the characteristic function of
Ars (1). gis a function in the variables X1;:::;X2s. Let us setu = (X1;::5;Xr 1;Xr+15:075 X2s
and v = x,. If gy is the function in u obtained by xing v and we set

Z
V)= o(u)dy
then, by Fubini's theorem, we have
z ZZ
(v) dv = g(u; V) dudv:

However, g, (u) is the characteristic function of the set

By =  (X1:i5Xe 1XeansiiniXes) 2 RT TS ki 4 X 4

4 2 4 2 o C
t 2 Xpg FXpp h Il X 1+ Xy 1] X

From equation (14.1), we obtain
z
g (u)du=(1 j xj) "% 1:5(2)

and so, writing g(u;v) for g, (u),

z z,
g(u;v) dudv = vis (1) = @ j xj)" ¥*2sv, 15(2) dx
1 Zl
= 2v 15(1) 1 %' 12 5dx
0
2
= mvr 1s(1):

Using this recurrence relation and the value ofvy.s(1), which we have already determined, we
obtain the expression forv,s (1) in equation (14.2), namely

1 r s .

Vs (l) = mZ E

There is one case we have not considered, namely that where> 0 and s = 0. However, this
is not di cult. As above, for r> 1 we may obtain the recurrence relation

Vi o(1) = rer 1,0(1):
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This, together with the fact that v;.0(1) = 2, enables us to establish by induction that

r

2
Vro(1) = Ml

and hence
nn
vol A= —2":
n!

as desired. This nishes the proof. 2

In the next section we will use the results we have considered here to prove certain important
properties of number rings.

14.3 The ideal class group of a number ring

We now return to number rings. As usual, let K be a number eld with number ring R. We
recall that in the rst section of this chapter we de ned a monomorphism :K ! R", where
n is the degree of the extension oK over Q, such that the image ofR is a lattice . We begin
with a property of general lattices.

Theorem 14.2 If A is a compact, convex, centrally symmetric subset oR", with vol A > 0,
satisfying the property
azA=)j S(@j 1L

then every lattice R" contains a nonzero pointx such that

n

. . 2
iS(X)j Vol A det

proof We use Minkowski's convex body theorem (Theorem G.4). First we seB = tA, where

t> O0and
n 2" det
t" = e
vol A

Then
vol B = t"vol A = 2" det

From Minkowski's theorem, B contains a nonzero lattice pointx. As { 2 A, we have

n

——det
vol A

. . XL
IS()j = t"S()i
This ends the proof. 2

Suppose now that we can writen = r +2s and we take A to be the corresponding set de ned
in the previous section, then

n" s
ol A= —2" —
v N’ 2
and so we obtain
Corollary 14.1 Every lattice R" contains a nonzero pointx such that
., .. n 8°
J1S(X)j ol det
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Remark We emphasize that the setA and the application S depend on the values of and s.
We now return to the number eld K.
Lemma 14.1 If 2K, thenforx= ( ), we have
S(x) = Nk=q( ):

proof Since

then, by Proposition 10.2,
SCCN= 1) ()2l )a2() () s()=Ni=q():
This ends the proof. 2

Theorem 14.3 A nonzero ideall in R, the number ring of K, contains a nonzero element
such that

, oonl 4 %P
Nk=o( )i 7 — = IdisR)jklIk:
proof Corresponding to the ideall is the lattice | = (I). From Lemma 14.1, there exists a

nonzero lattice point x such that
. .. n 8°% .
i1S(X)j el det :

There exists nonzero inl such that x = () and, from Lemma 14.1,S(x) = Nk=q( ). In

addition, in Section 14.1 it is established thatdet | = 2% jdisc(R)jklI k, therefore
: . nl 4 %P ——
IN=( )i 5 = idisdR)jkik;
as required. 2

From this theorem we may deduce two important results, namely

the number of ideal classes in a number ring is nite;

for any number eld K 6 Q, there is a prime numberp which is rami ed in the nhumber
ring R of K.

Let us consider the rst question. We set = :—n' asP jdis¢(R)j. (The number is called
a Minkowski bound)

Proposition 14.2  Every ideal class ofR contains an ideal J such thatkJk

proof Let C be an ideal class. As the ideal classes form a group, there exists an ideal class
C 1. Let | be anideal in the classC . From Theorem 14.3, there exists a nonzero 2 | such
that jNk=o( )j kl k. I contains the principal ideal ( ), which implies that | divides ( ), i.e.,
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there exists an idealJ such that 1J =( ). As () is an element of identity class,J lies in the
classC. Therefore, using Theorems 13.2 and 13.4, we have

iNk=o( )i = k( )k = Kl kkJK;

which implies that . _
Nk=o( )i kik _
Kl k Kkl k '

as required. 2

kJk =

We may now handle the rst question.
Theorem 14.4 If R is a number ring, then there is only a nite number of ideal classes inR.

proof We claim that there is only a nite number of nonzero ideals J such that kJk . Let
J be such an ideal. If the decomposition ofl into prime ideals is

J=PM P

then, by Theorem 13.2,
kP1k"  kPgk"s

Each prime ideal P; lies over a unique prime numbem; and kPik = p'', for someu; 2 N . Hence
kP k" = pii" =) pi

There is only a nite number of prime numbers p such that p , thus in the decomposition of
J there can only be prime ideals lying over a nite number of prime numbers. However, from
Theorem 13.1, we know that there is only a nite number of prime ideals lying over a given prime
number, so in the decomposition of] there can only be members of a certain nite set of prime
ideals. If P is one such prime andP™ is in the decomposition ofJ, then kPk™ , So there
can only be nite number of powers of P in the decomposition of idealsJ. It now follows that
there is only a nite number of nonzero idealsJ such that kJk , as claimed.

As any class contains a nonzero ideal such that kJk , there can only be a nite number
of ideal classes. 2

Remark To prove Theorem 14.4 we only need to know that there is some constant such that
every ideal class ofR contains an idealJ satisfying the inequality kJk . There exists at least

one other such constant, namely
Y x

Hk = ()i

i=1j=1

(see [15]). This constant is known as Hurwitz's constant, hence the notation, although it is not
certain that Hurwitz was the rst to nd it. It has the disadvantage of being dependant on the
basis chosen and is also in general larger than Minkowski's constant. We will see further on that
the bounding constant can be used in determining the class group and it is important that this
be as small as possible.

De nition  The cardinal of the class group of a number ringOk is referred to as theclass humber
of K. In general we write h(K) (or just h) for the class number.

We now turn to the second question.
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Theorem 14.5 For any number eld K 6 Q, there is a prime numberp which is rami ed in
the number ring R of K.

proof From Proposition 14.2 we know that there is a nonzero ideall such that

nl 4 °p — : [ ~ " oyt
kJk = Pl jdisc(R)j =) jdisc(R)j 7 ‘o

becausen = r +2s. As ; < 1, we have

n

jdis(R)j noa

VB

Forn 1the sequence(2n 1) is increasing, so
P— n
SR ot L

whenn  2; hence some prime numbep divides jdiso(R)j. From Theorem 13.14,p is rami ed
in R. 2

The Minkowski bound (or equivalent bound) is useful in determining the class number. In
particular, if is less than2, then the class number isl, because every ideal class contains the
unique ideal with norm 1, namely R. p_

For example, consider the quadratic number eld K = Q( 5). From Exercise 11.4 we
know that disc(Ox) = 5. Also, there are no complex embeddings oK into C. Therefore

2 (4)°" 5= _5 < 2 and the class number isl.

As a second example we take the quadratic number eld. = Q( ~ 2). From the example
before Exercise 11. 4 we kBow thab dig®©,) = 8. As there are two complex embeddings of.
into C, we have = ( 41" 8 2< 2, s0, as in the rst example, the class number isl.

14.4 Dirichlet's unit theorem

Let K be a number eld of degreen over Q. We recall that, if 2 Ok is a unit, then
Nk-o( )= 1 (Proposition 11.3).

We de ne the monomorphism as in Section 14.1 and letUx be the set of units in Ok .

As in Section 14.1, we letr be the number of real and2s the number of complex embeddings of
K into C (n = r+2s). The complex embeddings arise in pairs, namely; and ,fori=1;:::; S.
Fori=1;:::;s,letusset +; = ;. Wedeneanewmapping :0O ! R'*3, whichwe WI||
refer to as theloganthm|c mapping, by

()=(nj 20y v ()2Ing rea ()fsii52Ing ras())):

Proposition 14.3 Let Y be a bounded subset ®"**andX =f 20O, : ( )2 Yg. Then X
is a nite set.

proof AsY is bounded, all the coordinates of ( ) are bounded and it follows that the elements
j i( )j belong to a bounded interval. Hence the absolute values of the elementary symmetric
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functions of the ( ) lie in some bounded interval. However, the elementary symmetric func-
tions of the ;( ) are the coe cients of the characteristic polynomial of  (Proposition 10.2),
which is a power of the minimal polynomial m(; Q) (Proposition 10.1). As this polynomial has
integer coe cients, there is a real bounded interval containing the coe cients of the character-
istic polynomial of and these are all integers. Therefore there can only be a nite nhumber of
characteristic polynomials of elements belonging to X. Since is a root of its characteristic
polynomial, X is a nite set. 2

Corollary 14.2 The kernel G of is a nite group.

proof To see that G is nite, it is su cient to take Y = f0g in Proposition 14.3. We also need
to show that G is a group. If 2 G, thenj i( )j=1, forall i, From Proposition 10.2,

Y
iNk=0()i= Ji()i=1;
i=1

so is a unit. Therefore G is the kernel of restricted to Uk , which is a homomorphism. Hence
G is a group. 2
We now examineG in more detail.

Proposition 14.4 The kernel G of consists of all the roots of unity of K and is cyclic.

proof As G is a nite subgroup of K , by Theorem 3.3,G is cyclic. If n is the order of G and
2 G, then " =1, hence all elements ofG are roots of unity.
Suppose that 2 K and ™ =1, forsomem 2 N . Then 2 Ok and, for everyi, with

FiONm =00 Mi=i=1:
Thus, for all i,j i( )j=1, solnj ;( )j =0, which implies that 2 G. 2

We now turn to the analysis of the group of units U . We recall that a subgroup H of a
topological group G is discrete if the topology induced onH is discrete. For example,(Z";+) is
a discrete subgroup of(R";+) with the usual metric topology.

Proposition 14.5 If K is a number eld, then its group of units Ux is nitely generated and
there existst r + s such that Ux is isomorphic to the productG  Zt.

proof From Proposition 14.3, every bounded subset oR"* S contains only a nite number of
elements of (Uk ), hence (Uk) is a discrete subgroup oR"*S. From Theorem G.6, there exists
t r+ ssuchthat (Ux) is a lattice in RY, hence a free abelian group of rank (Corollary
G.1). By the rst isomorphism theorem (Ug ) is isomorphic to the quotient group Uk =G, hence

is a basis ofUx =G and G belongs toUk =G, then G is a nite product of powers of the G ;:
G =G Ggk=clh K

where the k; are unique. Thus there exists 2 G such that = ke Clearly, is

unique. From Proposition 14.4 ,G is cyclic, soUx is nitely generated. We also notice that the

mapping
g:Uc ! G Z% 7! (Gkaiinke)
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is a group isomorphism. 2

We will now aim to make precise the value oft. If 2 Uk then

h¢ Y Y s
1= Nk=q( )= i( )= i( ) iC) i)
i=1 i=1 j=r+1
which implies that
X X s
0= InjiC)i+ 2Inj ()i
i=1 j=r+1

Thus ( ) belongs to the hyperplane

NS
H=1f(X5::5Xees): X =09
i=1

which has dimensionr + s 1. Hence (Ux ) may be considered a discrete subgroup d®'*s 1!
and it follows that (Ux) is a lattice in R, wheret r + s 1 (Theorem G.6). Therefore
(Uk) is a free abelian group of rankt  r+ s 1 (Corollary G.1). This improves our estimate
of t found in the proof of Proposition 14.5, where we only found that the rankt of (Ux) was
bounded by r + s. It follows that Uk is isomorphic to the product G Z!, witht r+s 1.

If r+s=1,thent =0 and Uk is isomorphic to the group G. In fact, in all cases we have
equality, i.e., t = r + s 1. This is the content of Dirichlet's unit theorem, which we will now
prove. The proof is much longer than those of the results we have encountered up to now in this
section.

Theorem 14.6 The group Uk of the number eld K is isomorphic to the productG Z!, where
G is the nite cyclic group consisting of all the roots of unity in K andt=r+s 1

proof We have already covered the case whene+ s =1, so we will suppose thatr + s > 1. Let
W be the R-span of (Ux ). Above we de ned a certain hyperplaneH . Since (Ug ) is contained
in H, W is a subspace oH. We aim to show that W = H. To do so, it is su cient to prove
that W? H?, or equivalently that x 2 H? =) x2W?. We x x =(X1;::;Xr+s) 2H? and
dene afunction f :K ! R by

fO)=xanj )i+ X Inj (()j+ Xea1 2Inf ra (I + Xeas2Inj ras()J
To show that x 2 W? we will nd u2 Uk such that f (u) 6 0. We will procede by steps.

Step 1: An application of Minkowski's theorem

Let D 2
A= jdisq(Ok)j(-)° 2 R,:

C1 C (Cr+1 Cr+s)2 = A
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M

Y 2 2 2 2 2 2 i
I1Xi) G, and Xr+]: * Xtz C|?+1 '_Xr+3 * Xt ) (\72+2 v Xp 1t Xy C$+ s* We may view S
as a product ofr intervals and s discs. We obtain

\4 s
vol (S)=  (2c) (c?)=2" SA:

r=1 i=r+l
We may associate a lattice o, (= (Ok)) with Ok . From Section 14.1 we have

det o, =2 P [0 )]

and so
7 A = 20 = jdisqoRi(2)®
= 27" fdisoO )]
= 27"S25det o,
= 2"det o, ;
ie.,

vol (S)=2"det o,:

From Minkowski's theorem (Theorem G.4), S contains a nonzero lattice point, i.e., the set
S\ (O ) contains a nonzero element. Therefore there exists 2 Ok which is nonzero and such
that j i( )j ¢,fori=1;:::;r+s.

Step 2: Properties of the point

First we consider the norm of . To simplify the notation, for i =1;:::;s, we set .+; = |
and (+s+i = 7. Then
I’YZS
INk=@( )i = j i( )

i=1
Yo s "

= J ()i Ji()i
i=1 i=r+l

G G (G Ges)?= A

As is nonzero we also havgNk-o( )j 1, because the norm of an algebraic integer is an
integer. Thus we havel j Nk-q( )] A.

We now use the norm to estimate the values of the elementg ;( )j. Suppose that for some
i rwehavej i( )j< %. Then

. . i A
1] NK:Q( Ji<ca % G (G+1 Cr+s)2= le;
a contradiction, soj i( )j %, fori = 1;:::;r. In the same way, j i( )j? %2 for i =
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Gi Gi

- - A i =1;0r and - . A i=r+l;::r+s: (14.3)
Ji() Ji()i

From Theorem 13.5, there is only a nite number of ideals inOk of a given norm, therefore

there exists a nite humber of nonzero principal ideals( 1);:::;( m) of norm at most A. Since

K( )k = jNk=o( )i A, we must have( ) =( «), for somek, so there exists a unitu 2 Ok
such that = u .

Step 3: Showing thatf (u) 6 0

For the point x 2 H? we de ne
a=a(c;::G+s)= Xalne + + Xr41 2INnCriq +
We recall the de nition of the function f : K ! R:
fFC)=xalnj 20 )i+ +X422Inf s ()j+

Then

jif(u) aj ) (W) &
JfCi+ja )

iFCi+ixane Inj())+  +2xa(nca Inj () +

2
. .. C1 Cr+1 .
= |f + jX11n -+ i+ X n ————
PO baln =) O] )
XPS
JECi+Iin A jx]
i=1
DQ-S
maxjf ( )j+In A jx;j = B:
i=1

where we have used the equations (14.3). If we can nd, which depends on thec;, such that
jag>B,thenjf (u) a B would imply that jf (u)j > 0. We will now show that it is possible
to nd such an element a.

We recall the de nition of the hyperplane H:

i=1
SinceH? is the vector subspace generated by the vector
V:(1,,1)2 Rr+S,
x 2 H? implies that we cannot havex; = = Xr+s. T0 simplify the notation, we set d; = ¢,

a= X1Indg + + Xr+sIndrss
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Qr+s
i=1

and ~;.°di = A. As already stated there existx; 6 x;. Without loss of generality, let us
suppose thati =1 andj =2. If we setds = =d+s=1,thend;d, = A and
X‘-S
ja = XiIndij = jxiIndy+ xzIndyj
i=1
. A
= jXgInd; + x2In —j
d;
= j(X1 X)Indi+ x2InAj!l ;
whend; '1 . Hence we can nd an elementa such that jaj >B and soW = H.
In Proposition 14.5 we saw that there are elements 1;:::; 2 U such that for any element
2 Uk we have = fl f‘, where is a root of unity. Then
()= (8 =k ()+ +k (o)
It follows that the set B =f ( 1);:::; ( t)gis a generating set ofW and hence ofH. Given

that the dimension of H isr+s 1, we havet r+s 1. However, we know thatt r+s 1,
so we havet = r + s 1. We deduce thatB is a basis of the vector spacéd. Also, (Ux) is a
free abelian group of rankt and the elements ofB form an independant generating set, s is
also a basis of the free abelian group (Uk ). 2

Dirichlet's unit theorem implies that there are t = r + s 1 particular units in Ok such that
any unit 2 Ok can be expressed uniquely in the form

with  a root of unity and the k; in Z. The setf 1;:::; (g, which is not unique, is called a
fundamental system of units

As an example, let us consider the cyclotomic eldK = Q( ), where = ezT', with p an odd
prime number. The degree of the extensiorK overQ isp 1 and so there arep 1 embeddings
in C. As the applications j, with ()= I forj=1;:::;p 1, are distinct embeddings, all
the embeddings are complex, i.ef =0;2s= p 1, which implies that t =0+ 2,2 1= P2 |f
p = 3, then the only units are the roots of unity. If p 5, then there is an in nite number of units.

If K = Q(p@ is an imaginary quadratic eld, then there are no real embeddings and so
2s=n=2=) s=1=) t=0, so again the only units are the roots of unity.

Now we consider real quadratic elds, which are more interesting. IfK = Q(p m) is a real
qguadratic eld, then there are no imaginary embeddings inC, sos=0 andr =2. Thust=1
and there is an in nite number of units. There are only two roots of unity, namely 1, hence
there exists an elementx 2 Uk such that the elementsu 2 Ux can be written u = x", with
n2 Z. If uis a unit, then so are u, % and % This implies that there are units u with u > 1.
Let us set U,Z for the set of such units. The elements ofUx can be determined from those of
Ug : u2 U if and only if there exists v 2 Ug such thatu= voru= 1.

Let us look more closely at the setJg . If v2 Uy, thenv = x", which implies that v = jxj".
Clearly jxj 2 Uk . If jxj < 1, then we may replacex by % which ensures thatv = jxj", with

n2 N . Itis clear that jxj is the minimum of U and that the elements of U; are the positive
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powers of this minimum, which we call the fundamental unit of K .

We now consider how we might calculate the fundamental unit. There are dierent ap-
proaches to this question. We will give an elementary method. There are two cases.
Case 1:m 2;3 (mod 4) The algebraic integers are of the formx = a+ bp m, with a;b2 Z (see
the proof of Theorem 11.6). The units are those whose norm is 1, i.e., a> ©Pm= 1. We
seek the smallest such element whose value is greater than 1. Here is a simple method to nd
it: Compute mb? far b= 1;2;3::: until either mb? +1 or mb? 1 is a squarea?, wherea > 0.
Then setu = a+ b m. u is the fundamental unit.

Example Let m =6. Then 6 1?2 j 1is not a square. However,6 2% =24 and 24 +1 =52,
hence the fundamental unitis5+2 6.

Case 22m 1 (mod 4) The algebraic integers are of the formx = %(a+ bp m), wherea;b2 Z

and have the same parity (see the proof of Theorem 11.6). Since the norm afis %(a2 mb?),
x is a unit if and only if a2 mb? = 4, with a and b both odd or even. We seek the smallest
such element whose value is greater than 1. Here is a simple way to nd it: Computenty for
b=1;2;3::: until either mb?+4 or mb? 4is a squarea?, wherea > 0. Thensetu = Z(a+b m).

u is the fundamental unit. (As m is odd, the elementsa and b found will have the same parity;
this may be seen by considering the norm oti.)

Example Letm =17. Then17 12 4is ng{ a square. b|owever17 22 =68 and68 4 =64 =82,
hence the fundamental unit isu= 3(8+2" 17) =4+

Exercise 14.1 Calculate the fundamental unit on( m) form=7, m=11 and m = 21.

Exercise 14.2 Leb m  2;3 (mod 4), K = Q(pﬁ andu = a+ bpﬁ be an element ofU .
Show that p b m all belong to Ux . Establish a similar result for m 1 (mod 4) and
u= i(a+ b m) an element of Ux

Remark We have seen here that all the embeddings of the number elK into C may be real.
In this case we say thatK is totally real. Then the units in Ok are the roots of unity and soUg
is nite. On the other hand, it may be so that no embedding is real. In this case we say thatK
is totally imaginary .

Exercise 14.3 Show that a number eld K which is a normal extension ofQ is either real or
imaginary.

14.5 Hermite's theorem

In this section we will see another application of Minkowski's theorem (Theorem G.4). We will
show that for any given positive integer there is only a nite number of number elds whose ring
of integers has a discriminant equal to the positive integer in question. We will begin with a
preliminary result.

Proposition 14.6 Let K be a number eld of degreen and r (resp. 2s) the number of real
(resp. complex) embeddings oK into C. If | is a nonzero ideal inOx and ¢;:::; G+ positive

constants such that
s 2
P 1 .
G > (—)%jdisc(Ok )jz ki k;

i=1
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then there exists nonzero in 1, with j j( )j<ci for1 i r,andj +j( )j? < cr4j, for
1 j s

proof Consider the region
X(©=fx=(y;z)2R"" R" CS:jyij<ci;l i rjzj?<crej;l | so

It is clear that X (c) is convex and centrally symmetric. Also
NS

X@ = 27° ¢
i=1

2 S(E)deisc(OK )jzkl K

\Y

2"2 Sjdisq(O )jZ kI k;
where denotes Lebesgue measure dR". In Section 14.1 we saw that
det | =2 Sjdisc(Ok )j%kl k=) (X(c)>2"det ;:

From Minkowski's theorem there existsan 2 | suchthat ( )60 and ( )2 ;\ X(c). Thus
we have 60 andj i( )j<ciforl i r,andj r+j( )i?<crsj,forl | s, asrequired2

We are now in a position to establish Hermite's theorem.

Theorem 14.7 For a xed positive integer d there exist only nitely many number rings Ok
such that disdOg ) = d.

proof If K is a number eld and [K : Q] = n, then there is an ideall in Ok such that
n' 4 . . 1 n" .. .1
kik 5 (=)%disOk )iz =) —(7)° | disc(Ok )j7;

becausekl k 1. Hence the degree of the extension is bounded and so it is su cient to prove
that there is only a nite number of number rings with a given discriminant when the degree of

the corresponding number eld has a certain value. We consider two cases : (I has a real

embedding inC, (2) all embeddings ofK in C are complex.

Case 1In this caser > 0. We choose real numbers;, forl i r+ s,suchthatc;> 1, ¢ <1
fori> 1 and
s 2. 1
¢ > (—)%jdis¢(Ok )j2:
i=1
From Proposition 14.6 there exists a nonzero 2 Ok such thatj i( )j<cj,forl i r,and
j rej( )i?<crsj,forl j s Since
_ o Y r Y
1 N=()i=17 2001 130 J e OI5
i=2 j=1

we havej 1( )j> landj i( )j< 1,for ;6 ;. Hence ;( )6 (), ifi61.
Case 2We de ne a centrally symmetric convex regionX of C3 as follows:
— S . H 1.-_ H Lig 12 — 1. H .
X =122 C>1j<(z1)j < E,J—(Zl)l <cuizit<cy =52 ) sy
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where ¢; is some constant such that (X) > 2"2 Sjdisc(Ok )j% = 2"det . From Minkowski's
theorem there exists a nonzero 2 Ox suchthat ( )2 X\ , where is the usual monomor-
phism of K into C. Therefore we havej<( 1( ))j < 3,j=( 1( ))j<ciandj j( )j?2 < 3, for

2 j s. Now
YS

L Nk=oOi=i ()7 O3] 20> L
j=2
Therefore, if2 | s,wehave j( )6 1( ). (Asj 1( )j>1landj<( 1( )< % we must
havej=( 1( )j> )

In both cases we haven = [Q( ) : Q]. If thisis not the case, then[K : Q( )]=m 2and ;
restricted to Q( ) may be extended toK in m distinct ways (Theorem 3.2), which implies that
there exists { 6 ; suchthat i( )= 1( ), a contradiction. It follows that [K : Q( )]=1,
e, K=Q(). Iff =m(; Q),thendegf = nandf 2 Z[X].

From Proposition 10.2 we have

Y
chark-o( )= ( i( )+ X)2Z[X];
i=1

because chark-q( ) is a power off, by Corollary 10.1. Also, as thec are bounded, so are
the coe cients of char x-o( ) and it results that the coe cients of f are all bounded. We now
observe that there can only be a nite number of polynomials in Z[X ] with all the coe cients
bounded. Let us write P(c) for the set of such polynomials obtained here. IK is a number eld
whose ring of integersOx has discriminant d and [K : Q] = n, then, from what we have seen,
there exists  with minimal polynomial f in P(c) such that K = Q( ). As a polynomial has a
nite number of roots, there can only be a nite number of number elds with K = Q( ) and

a root of a polynomial in P(c). This nishes the proof. 2
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Chapter 15

Di erents

In this chapter we introduce the di erent, which, as the norm, trace and discriminant, plays an
important role in algebraic number theory. We will de ne the di erent and then consider its
properties. As the de nition requires quite a lot of preliminary work, we will consecrate a section
to it.

15.1 De nition of the di erent

Let C be a Dedekind domain andK its eld of fractions. Suppose that L is an n-dimensional
separable extension oK and D the integral closure of C in L. From Theorem 12.15,D is also
a Dedekind domain and, from Proposition 11.2,L is the eld of fractions of D. We consider
the bilinear form B denedon L L by (x;y) 7! T,k (xy). This is nondegenerate, because
L is a separable extension oK (see Corollary 10.4). From Lemma 12.8, we know that if

B(xi;xj) = i, where j is the Kronecker symbol.

Proposition 15.1  Let L be a separablen-dimensional extension ofK and B the nondegenerate
bilinear form on L L de ned above. We suppose thatxi;:::;X,0 is a basis ofL over K and

proof Let i;:::; , be the K-monomorphisms ofL into an algebraic closureC of K. We set
X =(i(xj)andX = i(x;) . Then

X = Tk (%%) ;

therefore
detX detX =detl, =1:

However,

therefore
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as required. 2

For a subsetM of L, we de ne
M =fx2L:Tix (xy)2C; 8y2Mg:

M is called thecomplementary subsebf M . In the next proposition we consider some elementary
properties of complementary subsets.

Proposition 15.2  We have
a. M isaC-module. f DM M, then M is a D-module.
b. M1 M,=) M, M.
c. D D andT,« (D) C.

d. If M is a free C-module with basisB = fxj;:::;Xng, then M is a free C-module with
basisfx;;:::;x,gandM = M.
(The basisB is also a basis of the vector spack over K, so has a dual basi8 = fx;;:::;X,9
in L.

proof a. Let x1;x22 M andy2 M. Then
Tk (X1 + X2)y) = Ti=x (X2y) + Ti=x (x2y) 2 C;
SoX;1+Xx22M . Ifa2C,x2M andy2 M, then
Tk ((ax)y) = aTi (xy) 2 C;

soax 2 M . We have shown thatM is C-module.
Suppose now thatDM M. If b2 D,x2 M andy 2 M, then

Ti=k ((bX)y) = Tk (x(by)) 2 C;

becauseby2 M. Hencebx2 M and it follows that M is a D-module.
b. The proof of this part is elementary.

c. Let x 2 D. As x is integral over the integrally closed domainC, from Proposition 11.1
the minimal polynomial m(x;K) has coe cients in C. However, the characteristic polyno-
mial char - (X) is a positive power ofm(x; K ) (Proposition 10.1), therefore the coe cients of
char |- (x) belong to C, in particular T -x (X) 2 C. Thus T.—x (D) C. If x;y 2 D, then
Xy 2 D and soT, -« (xy) 2 C, which implies that x 2 D and it follows that D D .

By de nition, if x2 D ,then Tox (xy) 2 C,forally2 D. As12 D, T,- (x) 2 C and so
T« (D) C.

d. We know that B is a basis ofL over K. To show that B is a basis ofM , we rst need to
establish the inclusion ofB in M . If x; 2B , then, for x; 2 B, we have

Tk (X)) = §j 2C=) T (X;y)2C; 8y 2 M;
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As B is independant overK, this is also the case ovelC, which is a subset ofK . To show
that B is a basis ofM , we nged to show that it is a generating set. A3 is a basis ofL over
K,forx 2 M , we havex = L, ax;, with & 2 K. Itis sucient to show that the a 2 C.
We have I I

X
a = T ax; x; 2C 8 =) a 2¢C;
i=1
Thus B is a generating set ofM

We now turn to the qgcond part ofd. M is composed of those elements 2 L which can be

written in the form x = in:1 aiX;, with a; 2 C, for all i. ReplacingM by M pve see thatM

is composed of those elementg 2 L which can be written in the form x = = ., ax; , with
a 2 C,foralli. Asx; = x;, forall i, we have

M = M;
as claimed. 2

We now concentrate our attention onD . For the next proposition we will need two standard
results on Noetherian rings. Proofs may be found, for example, in [1].

Lemma 15.1 a. If M is a nitely generated module over a noetherian ringR, then M is
noetherian.

b. A submodule of a noetherian module is nitely generated.
Proposition 15.3 D is a fractional ideal of D.

proof As DD D, from Proposition 15.2 a., D is a D-module (contained in the eld of
fractions of D). It is su cient to show that D is a nitely generated D-module. (If this is
the case, then the product of the denominators of the elements of a generating set provides a
denominator of D .)

Since the extensionL=K is nite and separable, from the primitive element theorem there
exists 2 L suchthatL = K( ). As is algebraic overK, the fraction eld of C, there exists
c2 Cnf0g such that d = ¢ is is integral over C; then d belongs toD, the integral closure of

L = K (d) ensure that the the degree of the minimal polynomialm(d; K) is n. The free module
C-module generated byD is the module C[d].

As C[d] D, we haveD C[d] , using Proposition 15.2b. Also, C is a Dedekind domain,
hence a noetherian domain, andC[d] is nitely generated over C, so C[d] is a noetherian
C-module (Lemma 15.1a.). Since D is a submodule of theC-module C[d] , D is nitely
generated overC (Lemma 15.1b.). Given that C D, this is also the case oveD. 2

We are now in a position to de ne the dierent. We notice that D is nonzero, because
D D, soithas an inverse in the set of fractional ideals oD. The fractional ideal (D ) ! is
called the di erent of D over C and is denoted ( DjC). In the next section, we will see that the
di erent is in fact an integral ideal of D.

Remark Suppose thatK and L are number elds, whereL is a nite extension of K. If we set
C =0k and D = O, then C and D are Dedekind domains andD is the integral closure ofC
in L. In this case we often write |- for ( DjC). If K = Q, then, instead of writing | -q,
we often use the shorter form . [ is called the absolute di erent of L.

219



15.2 Basic properties of the di erent

As we said at the end of the preceding section, the dierent is an integral ideal ofD. We will
now prove this.

Proposition 15.4 The dierent of D over C is an integral ideal of D.

proof AsD D ,wehave(D ) ! D '=D,so(D ) !isan integral ideal ofD. 2

We may generalize the product of two ideals in the following way. IfR S are commutative
rings and | (resp. J) is an ideal ir|1,R (resp. S), then we may de ne the product JI to be the
collection of all sums of the form i”:l XiVi, wherex; 2 1 andy; 2 J. Then clearly JI is an
ideal in S. In the case whereR and S are integral domains, we may generalize the product of
fractional ideals in a similar manner.

We recall that C is a Dedekind domain with eld of fractions K, L a nite separable extension
of K and D the integral closure of C in L. In addition, let M be nite separable extension ofL
and E the integral closure of D in M. Then M is also a nite separable extension oK and E
the integral closure ofC in M. The dierents ( DjC), ( EjC) and ( EjD) are all de ned and
related in the following way:

( EiC)= ( EjD)( DjC):

We say that the di erent is transitive. To prove this result we need a lemma.

Lemma 15.2 Let C be a Dedekind domain, with eld of fractionsK, L a nite separable exten-
sion of K and D the integral closure of C in L. Assume thatJ is a fractional ideal of D. Then
Ti.x J) CifandonlyifJ D .

proof Suppose thatT,-x (J) C. AsJ isaD-module, we havel = DJ. If x2Jandd2D,
then Ty (xd) = T =« (y), with y 2 J. Thus T, (xd) 2 C and it follows that J D .

We now consider the converse. Supposethdt D .Ifx2 Jandd2 D,thenT -« (xd) 2 C.
Setting d = 1, we obtain T ¢ (X) 2 C and it follows that T,-x (J) C. 2

We may now establish the transitivity of the di erent referred to above.

Theorem 15.1 We have
( EjC)= ( EjD)( DjC):

proof To simplify matters, we will proceed in steps. However, rst of all we recall that
( EjD) '=fx2M : Ty (xy)2 D;8y 2 Eg

and
( EJjC) '=fx2M : Ty (xy) 2 C;8y 2 Eg:

Also, we will write D for ( DjC) *.

Step 1 If Jg is a fractional ideal of E contained in ( EjD) !, then
Tw=k (JeD ) T« (D ):

Indeed, ifd2 D,d 2D andjg 2 Jg, then

Tiek Tm=L (jed )d =T« dd (Tu=L (jg)) ;
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becaused 2 L. Moreover, jg 2 ( EjD) ! implies that Ty-. (je) 2 D. Consequently,
Tizk Tm=L (jed )d C, sinced 2 D . This means that

Tvu=t JED ) D =) Tix Tu=t JeD ) T (D)

and transitivity of the trace ensures that the statement of Step 1 holds.
Step2 Jg  ( E=C) 'D .

From Proposition 15.2 ¢c. and the rst step, we have
C T« (D) Tw=x (JeD ):
Now, using Lemma 15.2, withL = M, D = E and J = JgD , we obtain
JD  (EjC) *5) Je ( EjC) '( DjC);
becauseD = ( D=C) 1.

Step 3 ( EjC)= ( EjD)( DjC).

Setting Jg = ( EjD) !, we obtain
( Ejp) * ( EjC) *( DjC):

SinceC D, we have ( EjC) * ( EjD) ! and so

( Ejb) * ( EjC) *( DjC) ( EjD) *( DjC) ( EjD) %
because( EjD) ! is an E-module and ( DjC) D. Therefore
( EjD) *=( EjC) *( DjC)=) ( EjC)= ( EjD)( DJjC):
This ends the proof. 2
If we multiply ( DjC) on the left by E, we obtain an ideal ofE and an analogous expression
to that of Theorem 15.1, but involving a multiplication of ideals in E.

Corollary 15.1 We have
( EjC)= ( EJD)(E ( DjC)):

proof It is su cient to show that
( EJD)(E ( DjC))= ( EjD)( DjC):
As ( DjC) E ( DjC), we have
( EiD)( DiC) ( EJ'FI)D)(E( DjC)) :
Now letx 2 ( EjD)andy 2 E ( DJC). Theny = i“:l aib, with s 2 E andb 2 ( DjC), so
X x _
xy=x ab= (ax)h2 ( EjD)( DC));
i=1 i=1
because( EjD) is an ideal in E. It follows that
( EiD)(E ( DjC)) ( EJD)( DjC);

and hence the required equality. 2
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15.3 Rings of fractions

We now consider rings of fractions. LetC be a Dedekind domain, with eld of fractions K, and
L a nite separable extension of K. We suppose thatD is the integral closure ofC in L and U
a multiplicative subset of C. AsC D, U is also a multiplicative subset of D. We recall that
D%= U !D is the integral closure ofC°= U 1C in L. (Proposition 12.20).

If P is a prime ideal ofC and U = CnP, then we write p (LjK) for ( DYC9. The di erent
p(LjK) is called the dierent of LjK overP.

We now consider the special case of number elds. We wish to nd a relation between | ¢
and ( DYCO9.

Theorem 15.2 Let K L be number elds, whereL is a nite extension of K and C = Ok,
D = O the corresponding number rings. IfU is a multiplicative subset ofC and C°= U 1C,
D= U D, then
D° .« = ( DYCH:

proof If x 2 D® ¢, then x is a nite sum of products of the form ab, with a 2 D° and
b2 |-« . However,a= % with d2 D andu2 U. As | isanidealinD,db2 |-« , so
x= ¥ withy2 |« andu2U.

Let z2 D?; then T,« (zD% C° As D is a nitely generated Z-module, D is a nitely
generated C-module. Let fty;:::;tng be a generating set ofD. Then T ¢ (zt;) = ﬁ—' with
¢G2Candu 2 U. Wesetug=u; um 2 U. Then

Ti=x (zuot;) = uoTi=x (zt) 2 C;

Ti=k (zwD) C=) zup2D :
Now, ( DjC)= D 'andy2 ( DjC), so, by Proposition 12.8,yzu, 2 D. From this we deduce

that
= Y2t 5, po
UuUg
Thus, for everyz 2 D°, xz 2 D% Using Proposition 12.8 again, we obtain thatx belongs to the
inverse of D?, i.e., x 2 ( DYCY. We have shown thatD® «  ( DYC9.

We now consider the reverse inclusion. Letx 2 ( DYC9. First we recall that D is a
fractional ideal of D (Proposition 15.3), henceD is a nitely generated D-module (Proposition
12.7). Letfz;;:::;z,g be a generating set of theD-module D . Then T -« (z D) C. If
£ 2 DY then

Xz

1
Tk @2)= ST @) 2C°3) Tk @DY O

which implies that z 2 D°. Using Proposition 12.8, we obtainxz; 2 C° D%= U !D and so
we may write xz; = ﬁ—'l with di 2 D andu; 2 U. Let ug = u; u, 2 U. Then ugxz; 2 D, for
i=1; :n, henceugxD D, thus

ux ( Djc) ¥ D=) ux2D( DjC)= ( DjC)

and so
x2U 1( Djc) D% DjC):
Therefore
( DYCY D°( DjC):
This ends the proof. 2
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15.4 Preliminary work for Dedekind's di erent theorem

Let K L be number elds with respective associated number ringsC and D. The di erent
1=k is an ideal inD such that ,-x 6 fOg. If -« 6 D, then there exist nonzero prime

L« = Q" A

If Q belongs to the set of prime ideals in this decomposition and) = Q;, then we setsg =
So(L=K) = n;. For any other prime ideal Q in D, we setsg = 0. In particular, if -« = D,
then sq = 0, for all nonzero prime ideals inD. sq is called the exponent atQ of the di erent
L=K -
If Q is a nonzero prime ideal inD, then P = C\ Q is a nonzero prime ideal inC (Theorem
13.1). From Proposition 13.1 we haveQjDP . If

—_ e1 (ST
DP = Q3 N

then Q = Q;, for someQ; in the decomposition of DP. We call ¢ the rami cation index of Q
and note it eg. (In fact, eg = e(QjP), whereP = C\ Q.) Q is said to be ramied if eg 2.
There is an important relation between sq and eg:

Result For every nonzero prime idealQ in D, we havesg ey 1. In addition, so = eg 1
if and only if the characteristic of the eld D=Q does not divideeg.

The proof of this result is rather long and requires some preliminary work. This we will do in
this section and in the next we will concentrate our attention on the proof of the result.

Lemma 15.3 Let :S ! S be a surjective ring homomorphism. We suppose thaR is a
subring of S such that S is a free R-module with basisB = fxj;:::;x,g9. We note R the image
of R and B = fx1;:::;Xng the image of B and we suppose thab is a free R-module with basis

B. If x 2 S, then

Ns=r(X) = Ns=r(X) (15.1)
Ts=r(X) = Ts=r(X) (15.2)
chars-g(X) = charg_g(X); (15.3)

where is the mapping fromS[X ] into S[X ] which applies to each coe cient of a polynomial
of S[x].

proof We note 4 the mapping from S into itself de ned by multiplication by x and M ( &) the
matrix of  in the basisB. In the same way we note x the mapping from S into itself de ned
by multiplication by x and M ( x) the matrix of , in the basisB. If

XXjp = orgpxpoj =l

then
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Therefore,
M(x)=(rj) and  M(x)=(rj):
If we apply to the coe cients of the characteristic polynomial char s-g (x) =det( Xl M ( x)),

then we obtain det(XI M ( x)) = char gs_g(X), i.e., the third relation. The other two relations
follow easily. 2

The next preliminary results are more dicult. Let R be a ring and K a subeld of R.
Then R is a K -vector space. We suppose thatimg R = n< 1 . In addition, let :R! R
be aK -linear endomorphism and we suppose the existence &f -subspacesR; of R forming a
decreasing sequence

R =Ry R1 Rk 1 Rk:fOQ

such that (Rj) R;,fori=1;:::;k. Then induces aK -linear endomorphism ; on R; =R,
de ned by
i(x+ Ri)= (X)+ Rj:
(If x°2 R;, then
(x+x)+Ri= )+ (x)+Ri= (X)+ Ri;
because (x% 2 R;, so ; is well-de ned.)

Bi=B[ [B «
is a basis ofR; 1. In particular,
B=B1=Bi[ [B «

is a basis ofR.

proof If x 2 R; 1, then there exist i1;:::; im, 2 K andy 2 R; such that
X= j1iXiz+  + im Xim; * Y-
Asy 2 Rj, there exist j+1:1;:::; i+1:m;,, 2 K and z 2 Rj41 such that
Y= i+11Xiv1n t T oitimig Xitimi, T2

Continuing in the same way, we see thatB; is a generating set ofR; 1, sinceRy = f0g.
Suppose that

i1Xit+t  F im Xim, FoisaXisnat o+ islmin Xitlmia T F kaXktt  F kmy Xkm, = O
Then
i+1:1Xi+1:1+ F km Xkmy 2RI T) 0 Xttt im Xim, 2 Ry

As fxi1 + Ri; 15 Xim, + Rig is a basis ofR; 1, we have ; = = im; = 0 and it follows
that  j+1:1Xi+1.1 + + km,Xkm, = 0. We now repeat the preceding argument to show that
i+1:1 = = i+1:m., = 0. Continuing in the same way we nd that all the coe cients
have the value0. HenceB; is an independant set and so a basis d®; ;. 2

The basisB enables us to nd a factorization of the characteristic polynomial of the K -linear
homomorphism de ned above.
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Proposition 15.5 We have

YK
charg=x ()= char (g, ,=ry)=k ( i):
i=1
proof We consider with respect to the basisB. As (x; ) 2 R; 1, we may express it in terms
of the basisB;:

X M+t X«
(xj )= il X+ i1l Xie1a ¥+ kil Xkl ;
I=1 I=1 I=1

where the coe cients 4,c belong to K. Then

X
i(xij)= il Xil
I=1
and so 0 1
M( 1) 0 - 0
M o1 M ( 2) L 0
M()= : —_— ;
Mz Mz it M ()
where M () is the matrix of in the basisB and, fori =1;:::;k, M ( ;) is the matrix of ; in
the basisB; = fxj1;:::;Xim; g of R; 1=R;; the other blocks Mj; are matrices with entries in K.
It now follows easily that
Ny
charp=x ()=  charg, ,=r)=x (i)
i=1
This ends the proof. 2

Suppose now that we remain in the same context and add the following condition$C):

a. Each R; is an ideal in R;

c. fy2R;andz2 R; 1,thenyz2 R;.
Lemma 15.5 Under the conditions (C), if y;z2 R with yz2 R; andy 2 R;, then z 2 R;.

proof From a. and b. R; is a maximal ideal in R. We claim that R; is the unique maximal
ideal. Suppose thatt 2 Ry; thent 2 R, 1, so, fromc., t2 2 R,. Nowt 2 R; andt? 2 Rz 1, SO
t3 2 R3. Continuing in the same way, we nd that tk 2 R, = f0g, so

Q@ H@a+t+ +tkH=1 tk=1;

sol tis invertible. If | is a maximal ideal of R such that | is not included in Ry, then
R = R; + |, becausel is a maximal ideal in R, so there existt 2 R; and u 2 | such that
1=1t+ u. However,u=1 tis invertible, which is impossible, becausd is a proper ideal in
R. It follows that any maximal ideal | in R is included in R; and soR; is the unique maximal
ideal of R.
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Suppose thatz 2 R nR; and z is not invertible. Then z lies in a maximal ideal | . As there
is only one such ideal, namelyR;, z 2 Ry, a contradiction, so z is invertible.

Let y;z 2 R, with yz 2 R;. If z Z R4, then z is invertible. Since R; is an ideal, we have
y=1z lyz2 R;. 2

We are now in a position to establish a key result of this section. We will remain in the same

context, with the conditions (C) and suppose that the linear mapping = x (multiplication by
X 2 R, for some xed x 2 R).

Chaf(Ri 1:Ri):K( i) = Char(R:Rl):K( 1);

Hence .

charg=x (x) = char(r=r,)=x ( 1) :
proof We claim that, for i = 1;:::;k, there exists a linear isomorphism ; : Rj 1=Ri ! R=R;
suchthat 1 = ;i i.Letu2R; 1nR;j. ThenR; Rj+ Ru R; 1. AsR; is an ideal of

R (condition (C) a.), Rj + Ru is also an ideal ofR. In addition, R; + Ru = R; ; (condition (C)
b.) If y+ Rj 2 Rj 1=R;, theny = y, + y;u, with y, 2 R; andy; 2 R. We set
i(y+ Ri)=yi+Rq
Suppose thaty = z, + z;u, with z;, 2 R; and z; 2 R, then
0=(y2 zZ)+(y1 z)u=) (Y1 z1))u22R;:

Given that u 2 R, from Lemma 15.5 we obtain thaty; 2z; 2 R1, soy;1 + Ry = z1 + Ry, i.e.,
is well-de ned. Clearly ; is a surjective R-module homomorphism. Suppose that j(y + Rj) =
02 R=R;. If y = y, + yyu, then y; 2 R; and, from condition (C) c., yiu 2 R; and soy 2 R;,
ie.,y=02R; 1=R;. It follows that ; is injective. We have shown that ; is an isomorphism.

It remainsto showthat ; = ; ;. LetybeanelementofR; ; suchthaty = y,+ yyu,
with y, 2 Rj andy; 2 R. Then xy = xy, + (xy1)u, with xy, 2 R; and xy; 2 R. We have

1(i(y+Ri))= 1(yr+ R1)= (y1)+ R1= xy1 + Ry;

and then
xyi1+ Ri= ixy+Ri)= i((W+R)= i(ily+R)):
Hence ; = i i, asclaimed.
Let Bi = fX1;:::;Xmg be aK -basis ofRj 1=R; and B? = x9;:::;x% g, wherex? = {(xk),
rk=1;:::;m. Then BP is a K -basis ofR=Ry, because ; is a linear isomorphism. If j(x;) =

k=1 8 Xk, then
x xn
i(i(x)))= ag i(Xk)= aik X,
k=1 k=1
and
X
1) = (i) = (i) = ayj Xy
k=1
Thus the matrix of ; with respect to the basisB; and the matrix of ; with repect to the basis
B? are the same. It follows that

char g, ,=r,)=x ( i) = char r-r )=k ( 1)
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and, using Proposition 15.5, we obtain

k
chargx ()= charg-r,)=x (1)

as required, since = , the multiplication by x. 2

We now turn to Dedekind domains. Let C be a Dedekind domain, with eld of fractions K,
and L a separable extension of degrem of K. We suppose thatD is the integral closure of C
in L. (We know from the remark after Theorem 12.15 that D is a Dedekind domain, which is
distinct from C, if n> 1.) We take a nonzero prime idealP of C. As DP is an ideal in D and
DP 6 f0g; D, we have a decomposition

where the Q; are prime ideals inD and the g positive integers. From Theorem 12.16D=DP is a
vector space over the eldC=P = F of dimensionn. We now de ne certain canonical mappings:

:C!  F o.D! D=DP and i:D! D=Qj=Lj;

fori =1;:::;r. It will be shown during the proof of Theorem 15.4 that L; is a eld extension
of F of nite degree. If i 6 j, then Q; and Q; are coprime and this is also the case fo{" and
5 With
i

U= CnP; c’=u Ic; D°= U D and P%= C%;
we de ne the following canonical mappings:
~:c% c%p°=F% and 5 :D%  D%D%:

From Corollary 12.11, there is a ring isomomorphism from D=DP onto D%=D%, taking d+ DP
to 4+ D%P. The image of F is F°.
From Proposition 12.4, we have

r e — Y e — .
\[4QF = QF = DP;
i=1

S0, using Corollary F.1, we obtain

Y
D=DP '  D=Qf:
i=1

Explicitly the isomorphism is de ned by

i(y+ DP)=y+ Q7;
i.e., i is the projection of D=DP onto D=Q .
If Aand B areringsand :A ! B aring homomorphism, then we dene to be the
mapping from A[X] into B[X] which applies to each coe cient of a polynomial in A[X].
With this preliminary work, we may now state (and prove) the second key result of this
section.
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Theorem 15.4 If x 2 D, then char -« (x) 2 C[X] and
Qr

a. char o« (x) = [ chary - ( j(x)%;

P
b, Tk () = [ gTL= (j(X);
Q
c. N (X) = T{y Nj= (jO))%.
(It is important to show that char (-« (x) 2 C[X], because the mapping is de ned on C.)

proof The proof of this result is rather long, so we have divided it into parts and paragraphs.
Also, to simplify the notation, in general we write x for 7.

Part 1

- As x 2 D, x is integral over C, therefore the minimal polynomial m(x; K ) belongs toC[X]
(Proposition 11.1). Given that the characteristic polynomial char - (x) is a power ofm(x;K)
(Proposition 10.1), it belongs to C[X].

- Using the proof of Theorem 12.17, we note certain properties o€° and D° namely C%is
a PID, D%is the integral closure of C°in L and D%is a free C>module of rank n. In addition,

the canonical mapping ~ of D%onto D%=D.

- Now let V = C%°nf0g. The setV is a multiplicative subset of the integral domain C° and
V 1CClis the eld of fractions of C% which is K. Also, DY is the integral closure of C%in L, so,
by Proposition 12.20,V D?is the integral closure ofV 1C%in L, i.e., the integral closure ofK
in L. If is the canonical monomorphism fromD?into V DY then from Section 12.8 we have
chary i1pooy 1co( (X)) =  (char po-co(X)):

As s the canonical inclusion ofD%in V 'D° we may identify D°with its image under and
SO we obtain
char - (X) = chary 1pozy 1co(X) = char po=co(X):

We aim to study char po-co(X). At the beginning of the proof we recalled certain properties of
C%and D®, which permit us to apply Lemma 15.3 with T in the place of . We obtain

o charpoco(x) = char po-popy=po  To(X) ;

- From Corollary 12.11, there is a ring isomorphism from D=DP onto D%D%, taking
d+ DP to d+ D%. The image of F is F° We now show that

char(DO:DOP):Fo To(x) = char(D:Dp ):F( o(X)) :

and To(x) = x + D%P. We consider the matrices of , and ~(x) In the respective basesB
and B If

X X
o(X)(dk + DP) = (ak + P)(di + DP)=  (ax + DP)(di + DP);
i=1 i=1
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then

X
( o(x)) (d+DP) = (ax + DP) (di + DP)
i=1
= (ax + D®P)(d; + DP)
i=1
= (aix + C%®P)(d, + DP):
i=1
However,
( o(x))= o(x)+ DP = (xX) = "o(x);
hence

X
o(X)(d + DP) = (ak + CP)(di + DP):
i=1
If (ai) is the matrix of () in the basis B, then the matix of -, in the basis B? has the
form ( (aix)). From this we obtain

char (po=popy=po  To(X) = char ip=pp )=r ( o(X)) ;
as required.
- To sum up, we have shown that

"o charpoco(x) = char (p=pp )= ( o(X)) :

This nishes the rst part of the proof.
Part 2
- Qur rst step in this part is to show that

char (p=pp )=r ( o(x)) = charQ:_ p=qeij=¢ ( ( o(X))):

- Th@ring isomorphism : D=DP ! Qi':l D=Q{" enables us to de ne a scalar multiplica-
. r e L
tion on ~,_; D=Q;", making it into an F -vector space:
(c+P) (D+DP)= (c+DP) (d+ DP)= (c+ DP)(d+ DP)):
Then

(c+P) (D+DP)= (c+ DP)(d+DP))=(c+P) (D +DP);

and so is an F-linear isomorphism.

- With the notation already used, we de ne ~ (x) to be multiplication by o(x) in D=DP
and ( ,(x) to be multiplication by ( o(x)) in ir:1 D=Q¢& . We claim that

0(x) Y= (15.4)
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Using the fact that is a ring homomorphism, we have

o(x)(d+ DP) ( o(x)(d+ DP))
( o(x)) (d+ DP)

= (oxy (d+DP);

hence the claim.

Q,

- If B = fxq;:::;Xng is a basis ofD=DP, then B®= fx{;:::;x%g is a basis of *|_, D=Q®.
For x{ 2 B%there existayx 2 F, with i =1;:::;n, such that
0 X 0 X
(o(XNxk = akxi=  ak (X)= aik Xi;
i=1 i=1 i=1

where we have used the linearity of . Employing equation (15.4), we obtain

( 0(NXR = ( oxy (XR) = 0(x) Y(xQ) = o) (Xk) = ( o(X)Xk):

Therefore
X

X
( o(X)Xk) = ai (Xi) =)  o(X)xx = ik X ©
i=1 i=1

Thus the matrix of () in the basis B is the same as that of ( ,(x) in the basis B®. From
this we conclude that
char (p=pp )=r ( o(X)) = charQLl (o=q &)= ( ( o(X)));

as required.
- We now show that

charQ: (p=geiy=r ( ( 0(x))) = charQ:_ pogey=p ( ( o(X)):

We now use Theorem 15.3. Let
Y Y Y
R= D=Q%;R;= D=Q%;R;= D=Q%;:::;R, = f0Og:
i=1 i=2 i=3
Then
R R; Ry R, = fOg;

and the R; are F-linear subspaces. Considering the explicit form of the mapping we deduce
that ( ;) (Ri) Ri. In addition, we have R; 1=R; "' D=Q{". The linear endomorphism ;

induced onR; 1=R; by ( ,(x) is the multiplication by ;( o(x)) in D=Q;". Using Proposition
15.5, we obtain

Y
charr_ (p=gey=r ( ( o(X))=  charp_qeiy (i( (X)) : (15.5)
i=1

This ends the second part of the proof.
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Part 3

- Our aim in this section is to determine the polynomials in the product on the right hand

char p-geiy=¢ ( i( o(x))) = char ¢ (i(x)):

We apply Theorem 15.3 for a givenj and setk = g . To apply the theorem, we de ne

Then R is a ring. We notice that P DP Q}‘, so the mapping
:F! Ric+P7! c+Qf
is a well-de ned ring homomorphism. If (c+ P)=0,thenc2 C\ Q}‘. However,
P CP Q=) P C\Qf and C\Qf C\ Q=P

soC\ Qf = P and it follows that is a monomorphism. Hence we may de ne arf -vector
space structure onR. In fact, R is nite-dimensional. To see this, we notice that D=DP is an

n-dimensional F -vector space and thatQ:” =DP is a vector subspace 0D=DP . Given that

J

(D=DP)=(Q{' =DP)" D=Q" = R;

R is nite-dimensional. We also need to show that the R; are vector subspaces oR. For
i=1;:::;k 1, the setR; is clearly an additive group. If c2 C and x 2 QJ' then cx 2 QJ'
becausec 2 D and Qj is an ideal of D. Therefore we may de ne a scalar product onR; by
(c+ P)(x+Q;) = cx+ Q). (There is no di culty in seeing that this scalar product is well-de ned.)
Hence theR; are F -vector spaces. Clearly

R Ri R 1 Ry =f0g;
so the R; are nite-dimensional subspaces ofR.

- In order to apply Theorem 15.3 we need to check that the conditions(C) given before
Lemma 15.3 are satis ed:

a. If x+ QfF 2 Randy+ QF 2 Ry, then (x + Qf)(y + Qf) = xy + Qf, with xy 2 Qi,
becausey 2 Q‘k, so theR; are ideals ofR.

b. Suppose that there is an ideal of R suchthatR; 1 | Rj.Let :D! D=Q}‘ be
the standard homomorphism. 1fJ = (1), then J is an ideal and Q} Y J Q. As
it J, thereis an idealA such that J = Q] 'A. If A= D, thenJ = Q . Ifthisis

. K J
not the case, then, as]  Qj, A= Qj and soJ = Q. Itfollows that Rj 1 =1 orl = R;.

c. fy=y+Qf2Ryandz=1z+QF2R; 1;thenyz = yz+ Qf, with yz 2 Q}, so
yz 2 R;.

Therefore the conditions (C) are satis ed.
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- We now apply Theorem 15.3. Letx 2 D and x = x + ij 2 R and consider the mapping
=  de ned by multiplication by x: forally 2 R,

(y) = xy = xy + QF:

SinceR; is anideal ofR, (R;) R;. From Theorem 15.3 we have

Char(D:QJk):F( i (( o(x))) = charr=r ( j(( o(x)))= chargr=r,)=r( 1) “

and for ; we have
1(y+ R1) = xy+ Ry:

- Next we notice that
R=R; = (D=Q{)=(Q;=Q) ' D=Q; = L;:

(As R; is a nite-dimensional subspace ofR, R=R; is nite-dimensional and hence this is the
case forL;.) The isomorphism of F -vector spaces fromR=R; onto L;, which we note , has the
explicit form:
(y+Ri)=y+ Q= j(y):
If x 2 D, then the element ;(x) belongs toL; and, in conformity with the notation already
used, we de ne the mapping | (x) to be multiplication by the element ;(x). Then, for all
y2D,
joo C Y+ Ry))=(x+Q)(y+ Q)= xy+ Q

and
(1(y+ R1)= (Xy+ R1)= xy+ Qj;
thus
j (x) = 1
We may now write
char (r=r,)=F ( 1) = char(r=r,)=r ! i (x)

char (rery)=r | (x
char, = (j(x)):

Therefore we have obtained
char (=g )= ( (( o())) = chary = ( (X))

and it follows that

¥ Y .
char (D=Q {1)=F ( i ( O(X))) = char Li=F ( i (X)) L
i=1 i=1

Part 4

We have now shown that

Y
char (p=pp )= ( o(X)) = char ¢ ( i(x):
i=1



and so ]
Y .
~ charpoco(x) = char ¢ ( i(x))®
i=1
However,
~ charpoco(x) = char = (x)
and it follows that

Y
char  (x) = char = ( i(x))*;
i=1
which is the rst equality in the statement of the theorem.

Part 5

termof  (char -« (x)) is the product of the constant terms of the polynomials char ¢ ( j (X)),
each taken respectively to the powerg. However, the constant term of (char -k (X)) is
( )" Ni= (x) and the constant term of the product of the polynomials char ¢ ( j(x)),
each taken respectively to the powerg , is

P, ¥ .

(1) =S NG = ()T

j=1
P r . . .
Asn=;_ njg, we obtain the third equality, namely

Y €

N =k (X) = NLj=F( j(X)) '
j=1

For the second equality we consider the coe cients of X" ! in the two sides of the rst
equality. The coe cient of X" ! on the lefthand side is Tk (X) . The coe cient of X" 1!
on the righthand side is the sum of coe cients of the X" 1, each multiplied respectively by e .
As the coe cient of X" 1is T, =F ( j(x)), we have the second equality, i.e.,

X
Tk X) = T = (j(X):
j=1

This ends the proof. 2

The theorem we have just proved has an interesting corollary.

Corollary 15.2 Let C be a Dedekind domain with fraction eldK, L a nite sepa@ble extension
of K and D the integral closure ofC in L. If P is a prime ideal of C and DP = ~{_, Qf, then

X
[L:K]= efi;

wheref; =[D=Q; : C=P].
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proof It is su cient to consider the degrees of the characteristic polynomials in the statement
of Theorem 15.4a. 2

Remark The corollary which we have just proved is in fact a generalization of Theorem 13.6.

We will need another result, based on the Chinese remainder theorem.

X xi2P% and x x 2P8*;

proof ~ For eachi, Pf *1 s strictly included in P, so there existsa; 2 P® nP&*™ If i 6 j,
then Pi'+1 and PJ-J *1 are coprime. From the Chinese remainder theorem (Theorem F.1) there
existsx 2 D such that

X (X1 + a1) (mod P{1*1)

X (Xs + as) (mod P&*1):

Then, for all i,
X (Xi+a)2P8t =) x x 2Pf:

Ifx x 2P%™, then
(x x) a+a2P =) a2P;

a contradiction. This proves the result. 2

15.5 Proof of Dedekind's di erent theorem

Having done the preliminary work, we may prove the inequality referred to in the last section.
For the notation, it is su cient to look at the beginning of the previous section. We only recall
that K L are number elds with associated number ringsC and D. We setn =[L : K].

Theorem 15.5 For every nonzero prime idealQ in D, we havesg eo 1. In addition,
So = eg 1lif and only if the characteristic of the eld D=Q does not divideeg.

proof As the proof is long, we will break it up into three parts, namely
a. Proof of the inequality;
b. The case where the characteristic o0D=Q divides eg;

c. The case where the characteristic 0D=Q does not divideeg.
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a. Proof of the inequality Let Q be a nonzero prime ideal inD and setP = Q\ C. We now
setU=CnP,C%= U 1CandD®= U !D. In the decompositions of -x and DP appear a

L=K — isi and DP = -ei:
(Certain s; or  may be equal to 0.) From Proposition 12.16,

y
D%P= D%

i=1

and, having number elds, from Theorem 15.2,

\d
(DYCYH=D° |« = DQ}:
i=1

Qm

Hence the complementary moduleD® has the form =2, D, *. Then the inequalities
si & 1 i=1;:::;m

hold if and only if Qi”;l DXQ! ® DO. We aim to show that this is the case.

Let x 2 Qi”ll D%Q ®. From Theorem 12.11 we know thatP®= CP is a principal ideal, so

there existst 2 C%such that P°= C%. We may suppose thatt 2 C. However,

v
DQ® = D% =D%C%P = DP°= DY =DY;
i=1

soxt 2 Qi”;l DY%;. We claim that T-x (xt) 2 P% (As xt 2 D% we may consider thatxt 2 L,

so T (xt) is de ned.) We notice rst that D%is a freeC-module of rank n. This has already
been shown in the proof of Theorem 12.17 in a more general framework. We have also seen,
in the proof of Theorem 15.4, that if V = C%n f0g, then V is a multiplicative subset of C°,

VvV 1c%= K,V D%°= L and, for x 2 D% we have

char - (X) = chary 1pozy 1co(X) = char po=co(X):

It follows that
Ti=k (Xt) = Tpo=co(xt);

becausext 2 D°

D%D%, where x{ is the image ofx° under the standard mapping of D® onto D%=D%. We can
thus apply Lemma 15.3, with  this standard mapping, to obtain

TD Ozco(Xt) = T(D 0=(D 0P )) =(C =P 9) (H)

We claim that Xt is a nilpotent element of the ring D%=D%%. Letr = g + + ey. Then

\d
xt2 DWQi=) xt=y: ym yi 2 DQ;;

i=1
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wherey; = dig, with d; 2 D%and g 2 Q;. Hence

(xt)" = y=y" & ygry" emo=ditgt  dir R d;
whered 2 D% As Qinll DN is an ideal, (xt)" 2 Q:‘ll DX = D%, which implies that xt
is a nilpotent element of the ring D%=D%, as claimed. From the fact that xt is a nilpotent
element of the ring D=D% we obtain that char (po(popy=co=poy(Xt) = X", which implies
that T(po-(pop))=(co=poy(Xt) = O; this in turn implies that Tpo-co(xt) = 0, which means that
Tpo-co(xt) 2 DP. However, Tpo-co(xt) 2 C% so

Tk (Xt) = Tpoco(xt) 2 C%P = P%

Now,
tTik (X) = Tk (xt) 2 P°= C% =) T« (x)2 C®

If y 2 DO then xy 2 Qim:1 DXQ! @, so, replacingx by xy, we obtain T_-« (xy) 2 C° Therefore
x 2 DO, which nishes the proof of the rst part of the theorem.

b. The case where the characteristic of D=Q divides eg Suppose thatQ is a prime ideal
in D such that the characteristic of the eld D=Q divides the rami cation index eq. If P = C\ Q,
then P is a nonzero prime ideal. Supposing thaDP = Qf* QS is the decomposition ofDP
into prime ideals, then Q = Qj, for somei. Without loss of generality, let us suppose that
Q= Q1. We set

y
J=D%Q,* DX *:
i=2
= Qim:l DY, ¥, then

DQ;"jDQ;® =) D™ D= DV DT

which implies that s;  e;. We aim to show that J D°. Let x 2 J. We notice that

IfJ DO

y y
J DU, % =) x2 DY *:
i=2 i=2

Qm 1 e Qm Qm 1l oe

Sincel g si, fori =25::0;m, 5, Q i, Q %, sox 2 "L, Qf %, and, from
part a., we may write xt 2 ~ 0, D%Q;. Then xt 2 D%and T =« (xt) = Tpo=co(xt) 2 C% We
now use Theorem 15.4, with : C°! C%P%and ; :D°! D%DY;, fori=1;:::;m, the
standard mappings. Then, settingL?= D%=D%Q; and F°= C%P° we have

xn
Tz (xt) = eTiozpo( i(Xt)) = &TLo=po( 1(xt));
i=1
becausext 2 Qim:Z DQ =\",D%N;.
In addition, 1(xt) is in D%=D%);, which is isomorphic to D=Q, by Corollary 12.11, and
so has a characteristic which is a divisor of;. Given that the trace Ty o=ro( 1(xt)) belongs to

D%=D%Q,, we have T, (xt) =0. This implies that T -« (xt) 2 P hence

tTL:K (X) = TLZK (Xt) 2 POZ Cot :) TL=K (X) 2 CO:
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If y 2 DO then xy 2 J, becausel is a D%module. It follows that T, -x (xy) 2 C% which shows
that x 2 D?, as required. We have shown that

S1 e :) s16¢e 1L

This nishes the proof of part b.

c. The case where the characteristic of D=Q does not divide eg We will use the nota-
tion de ned in a. and b. For example, we setP = C\ Q and suppose thatDP = Qf* m |
with Q = Q. Let x 2 D°be such that 1(x) 2 D®=D%Q; has nonzero trace, i.e..T o=Fo( 1(X)) 6
0. (For example, we could takex = 1.) From Proposition 15.6 there existsy 2 DO such that
y x2D%Q;andy?2 DX, fori=2;:::;m. On the one hand, i(y) = 1(x) 60, and so

1(y) has nonzero trace; on the other hand foi =2;:::;m such thate 60,y 2 DOQ., hence

i(y) =0. Applying Theorem 15.4 we obtain

xn
Tk (y) = @Tiozpo( i(Y)) = eTro=ro( 1(y)) 60;
i=1

because the characteristic oD =D%; (equal to that of D=Q) does not divide e;. Therefore

Tik ()= Toecoly) 2 P0= C¥ =) Tix () 2C°

Now,

y
D%= D% =) DWQ,* =(D% " DQf:

i=1 i=2
Also, 1 2 (D%) !, because(D%) = D%, and, fori=2;:::;m,

y2DQ% =) y2\M,DQ* = DWQY;
because the idealD%Q are pairwise coprime. Therefore

2 (D%) " DQ = DU, *:

i=2

Given that ¥ 2D, it must be so that DOQ € is not included in D° .

Suppose ney thats; e;. Then DOQel m, DX dividesQi”ll D%Q}', which implies that
D%QS! divides ~ 1, DQT, i.e.,

m
D QS DR =) DQ,* DY;
a contradiction. Therefore

€1 >S5S, e 1:) si=6 1

as required. 2

The theorem which we have just proved has an important consequence.
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Corollary 15.3 A nonzero prime ideal Q in D is ramied in L=K if and only if Q divides the
dierent |- . HenceD has only a nite number of rami ed prime ideals.

proof If Qisramiedin L=K, then ey 2, which implies that s; 1 and soQ divides the
dierent | —« . On the other hand, if Q is not ramied in L=K, then eg = 1, which implies
that so = 0, soQ does not divide the dierent |-« . 2

15.6 Total rami cation

We recall the de nition of a totally rami ed prime ideal or prime number. Let K L be number
elds such that L=K is Galois and[L : K]=n< 1. We setR = Ok and S = O_ and suppose
that P is a nonzero prime ideal inR. If there is a prime ideal Q in S such that SP = Q", then
we say that P is totally ramied in S. If K = Q and p2 Z is a prime number, then we say that
p is totally rami ed in S if the ideal (p) is totally ramied in S.

Example 1+ i is irreducible in Z[i], so prime. Hence(l1 + i) is a prime ideal in Z[i]. As
Z[i]12 = (1 + i)?, the prime number 2 is totally rami ed in Z[i].

We will presently return to the context of number elds; however, before doing so, we will
establish some results in the more general context of Dedekind domains.

Proposition 15.7 Let C be a Dedekind domain,K its eld of fractions, L a nite Galois
extension of K and D the integral closure of C in L. We suppose thatP is a prime ideal in C
and assume that there is a unique idea@ such thatC\ Q = P. Finally we let U = CnP and
setD%= U D. Then Dq = D°.

proof Let x 2 D% AsQ\ C=P,ifx2P,thenx 2 Q,soU D nQ. This implies that
D° Dg. We now must show thatDg  DP If every element of Dq is integral over C°, then
Dg is contained in the integral closure ofC%in L, which is D% We aim to show that this is the
case. Ifx 2 Dqg, then x = 3 whered 2 D andv 2 D nQ. As d is integral over C, d is also
integral over Cp, so it is su cient to show that % is integral over Cp. Let

m(v;K)= ag+ aiX + +a, X" 1+ XM 2C[X]

be the minimal polynomial of v over K. (From Theorem 11.1, m belongs to C[X ], becausev
is integral over C.) Since L=K is a Galois extension andQ is the only ideal of D such that
C\ Q= P,wehave (Q)= Q, forall 2 Gal(L=K). This implies that no conjugate of v lies in
Q and hence the product of the conjugates of/ is not in Q. Henceag 2 C nP and so% 2 Cp.
However, % is a root of the polynomial

an 1

1 ap
f(X)= —+ X + + =XM1+ X" 2 Cp[X];
(X) p[X]

hence% is integral over Cp. 2

The next result is technical.

Proposition 15.8 Let C be a Dedekind domain,K its eld of fractions, L a nite Galois
extension of K and D the integral closure of C in L. We also suppose thal. = K (t), where
t2 D and we setf = m(t;K) andn=degf. Then
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a T g =0.fori=0;L n 2andTk g =1;
b. C[t] = f0(I)C[t]
proof a. AsL is a Galois extension ofK , we may write
Y
fFX)= ( e+ X);
k=1
with t = t; and ty;ty;:::;t, distinct elements of L. (As L=K is separable, the roots off are

simple; these roots lie inL becauseL=K is normal.)

We now consider the rational fraction fl To begin with, the partial fraction decompaosition

theorem (Theorem A.9) in L[X ] ensures that there exista;;:::;a, 2 L such that
1 _ 4 1 X a0
FO) T “ha W+ X)L b X
whereax 2 L. Multiplying by f (X) we obtain
0 1
X f(x X Y
1= %: a@ ( i+ X)A:
k=1 K k=1 i6k
Setting X = t;, we nd
0 1
X0 Y Y
1= a@ (t+t)A=g ( ti+t)
k=1 i6k i8]
and so 1 1
g =Q =

iej (it 1)) IREC)
From this we obtain the expression

1 X 1

W: f Oty )( tk"'x):

k=1

To continue we consider theF;anonaI fraction 5~ (x) in the ring of formal Laurent series L(( ),

composed of series of the form “I a X', with a 2 L andm 2 Z. It is easy to check that, for

k=1;:::;n,
((te+X) =X T+X 2+t2X 3+

hence
SRS (X 44X 2+t2X 3+ )
FX) ., FAt) “ '
However, ﬁ is also equal toQW and so
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1
foxg C (X TrnX PedX Se ) (X TenX PHgX 2+ )

X M@+ tX T+ 2X 2+ ) (L+tpX T+t2X 2+ )
X n+ blx (n+1) + bZX (I"I+2) +

Comparing the two formal Laurent series forﬁ we nd

xX ti
k - 0,
ey 1At
fori=0;1, ;n 2, and
th *
=1
f Atk)
Now, using Corollary 10.3 and the fact that f °2 K [X ], we obtain
t! X tl
Tk  ogm = o
A 2Gal (L=K ) V)
_ X '
2Gal (L=K ) Fa®
X ti(
oy At

since the setsfty;:::;tpgand f (t); 2 Gal(L=K )g are both composed of the conjugates of
(Proposition 6.2). This establishes parta. of the proposition.

b. We rst show that ﬁC[t] CJ[t] . Ast is a root of a monic polynomial in C[X] of degree

t" = ay+ ait+ +a, (t" L

tS=c+ct+ +oc, t" L

C-module CJt] (resp. C-module ﬁC[t]). As B and B° are clearly independant sets, they are
bases of the respectiveC-modules C[t] and ﬁC[t].
ForO i n 1andO0 | n 1, thereexistdy;:::;dy 12 C such that

ti+j = dodst + + dn 1tn L.

(For i+ j n, this is clear; fori + j <n, it is sucient to take di+;j =1 and d¢ = 0, for
k6 i+j.) Thus

ti+j 1 t tn 1
%0 = doTik 755 +TUTik 755 + +0h 1Tk 55 =0 1




from part a. HenceT, -«
However,
C[t] =fx2L:T« (x2) 2 C;8z2 C|t]g

P i P .
and an element ofﬁC[t] (resp. C[t]) has the form [ " a fim (resp. jn:1l b t'). Hence, for

X 2 ﬁC[t] and z 2 C[t], we have
0 1

X 1 ) X
Tk (x2)= Tiek @ g Rt!A = ab
jion 1

i=1 A j=1 0

th]

10 2C

and so (57 Clt]  Clt] -

We now consider the reverse inclusiorC|t] fo%t) C[t]. Anelementy of C[t] isinL = K (t).

BRLOMLON fqn

P n 1 i . 0 . . . .
(Clearly y = L, k&', with k?2 K ; setting ki = k¥ At), we obtain the required expression for
y.) Moreover,

n 1
Ko + kit +kn 1t .

L + k o k LA Kn 1
from part a. Asy 2 C[t] , Tk=L (Y) = Tk=L (Y1) 2 C,i.e.,,k, 12 C. Now,

Tk=L (¥) = koTi=k

t t2 tn 1 tn
Tk (Y1) = koTi=k o) + Ky Ti=k 0] +  + Ky 2Ti=x 0 + Ky 1Ti=k 0
tn
= kn 2+ kn 1T W

Sincey 2 C[t] andt 2 CJt], we haveT - (yt) 2 C. Also, we have shown above the existence of

t" =g+ ot+ Gy at" =) T 2 C;

tn
fot)
using a. It follows that k, » 2 C. If we replacet by t2, then we nd that k, 32 C. Continuing
the process we nally obtain that all the k; belong to C, which implies that C[t] ﬁC[t], as
required. 2

Corollary 15.4 Let C be a Dedekind domainK its eld of fractions, L a nite Galois extension
of K and D the integral closure of C in L. We also suppose that. = K (t), wheret 2 D, and
we denotef = m(t;K ) 2 C[X]. Then the dierent ( DjC)= Df {t) if and only if D = C[t].

proof If D = CJt], then

D =C[] = ——C[t] =

— H — £ 0 — O+ -
= =) ( DjC)= ft)D = Df %t);

1
o0 0
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becauseD ' = D.
Now suppose that ( DjC) = Df qt). As C[t] D, we haveD CJ[t] , hence

D=D '=fq)D fqt)C[t] = C[t]=) C[t]= D;
becauseC[t] D. 2

We now return to number rings, with the notation of the rst paragraph of this section, i.e.,
K L are number elds such that L=K is Galois and[L : K] = n< 1. We setR = Ok
and S = O_ and suppose thatP is a nonzero prime ideal inR which is totally ramied in S:
SP = Q", whereQ is a prime ideal in S. To simplify the notation, we write o for ( SgjRp).
As g is anideal in Sg, there exists an integers O such that q = SgQ3. In addition, there
existst 2 S such that SgQ = Sgt (Theorem 12.12 and remark before Theorem 13.16).

Proposition 15.9  The exponent atQ of ( SjR), i.e., the power of Q in the decomposition of
( SjR) into prime ideals of S (sq(LjK)), is equal tos.

proof The decomposition of ( SjR) into prime ideals of S has the form

oY
( SjR)= Q%K) Q,;
i=1

decomposition of S°( LjK) into prime ideals has the form

) Y
SY( SjR) = (STQ)se (HiK) (sQ) '
SOQi\I(:San): ;

However, from Proposition 15.7,S°= Sy, and from Theorem 15.2, o = Sq o, thus

. Y
o = SqQse(HiK) (SeQ1) !
Qi (5nQ)= ;

Since the decomposition of ¢ is unique, we must havesg (LjK) = s and the product of the
other ideals equal t0Sg . 2

There is an important relation between the exponentsg(LjK) and the rami cation groups
V; of Q in the extension L=K .

Theorem 15.6 If L=K is a nite Galois extension of number elds, P a nonzero prime ideal
of Ok totally ramied in O_, Q the unique prime ideal inO_ lying over P and

Vo \1 V, = fldg
are the rami cation groups of Q in L=K, then
K1

So(LjK) = (Vij 1)
i=0



proof We aim to apply Corollary 15.4, with C = Rp and D = Sg. However, we need to justify
this.

First we show that L = K(t). (Ast2 S, we havet 2 Sg.) SinceK L andt2S L, we
must haveK (t) L. For the reverse inclusion, to begin we notice that the seB = f1;t;:::;t" 1g
is a K -basis ofL (Corollary E.1 ). Thus, if y 2 L, then there exist ag;a;;:::;a, 1 2 K such
that y= [ ‘at’, hencey 2 K [t] = K (t). We have shown thatL = K (t).

Now we show that Sg is the integral closure ofRp in L. From Corollary 12.13, O, is the
integral closure of Ox in L. Setting U = RnP,R%= U 'R and S°= U 'S, from Proposition
12.20 we obtain that S® is the integral closure ofR%in L. However, by de nition R°= Rp and,
from Proposition 15.7, Sg = S° Thus Sq is the integral closure ofRp in L.

Our next step is to show that S = Rp[t]. As (Q) = Q, for all automorphisms 2
Gal(L=K ), the decomposition groupD = D(QjP) = Gal(L=K ). Thus L® = K. From Corollary
13.5 and the fact that e = n, we obtain f = 1. Now, using Proposition 13.10, we see that
LE = K and soE = Gal(L=K). It follows that

SE=0t=0k=R and QF=p:

From Theorem 13.16Sq is a free module overSE = Rp, with basis B = f1;t;:::;t" 1g, where
t 2 S is a generator of the principal idealSqQ. HenceSg = Rp [t] as required.

We have shown that the conditions for applying Corollary 15.4, with C = Rp and D = Sg,
are met. Thus o = Sof At), wheref = m(t;K). (This makes sense, becausk 2 R[X] and
R Rp Sq, which implies that f qt) 2 Sq.) To simplify the notation we set G = Gal(L=K).
Then % Y
f(X)= ( O+ x)=) 9= ( (@®+1):

2G 2G
6id

We may partition the elements of G into disjoint subsets Vi, =Vip+1, for m=0;1;:::;r 1.
If 2 Vin NVm+1, then, from Proposition 13.16, (t) t2 Q™ nQ™*2. AsSq( () t)is
an ideal of Sq, there existss( ) 2 N such that Sq ( (t) + t) = Sots( ). With s as de ned in
the paragragh before Proposition 15.9, we obtain

Y Y
Sot® = g = Sof O(t) = So ( M+1v= SQIS( )

2G 2G
6id 6id
Therefore
X X1 X
s= s( )= s( ):
2G m=0  2Vpy nVm

&id
We need to determine the valuess( ), for 2 Vyp NVp+1. If 2 Vi NVp+1, then
SQtS( ) = SQ( (t)+ t) = SQQm+l - Sth+l;
which implies that s( ) = m+ 1. As there arejVinj j Vm+1]j elements inVy, NnVpy41, we have

Xl X Xl . . . .
s( )= (Vml ] Vm+sa))(m+1):
m=0  2Vp NV 4 m=0

Writing A for the sum on the right hand side, we have
A=(jVoj ] VI)L+(jV1j | V2)2+  +(jVr 1] | ViD)r = jMoj+ jVaij+  +jVr 4] 1

P
becauseV; = fidg. Simplifying the right hand side, we nd ﬁn:t (jVmj 1). However, from
Proposition 15.9,s = sq(LjK), hence the result. 2
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Chapter 16

The Kronecker-Weber theorem

In this chapter we present and prove one of the principle theorems of algebraic number theory.
The proof is long and needs certain preliminary results, which we handle in detail. The theo-
rem states that any abelian nite normal extension of the rationals is included in a cyclotomic
extension. Our proof follows that given in [18].

16.1 Preliminaries
We begin with a su cient condition for a prime number to be totally rami ed in a number ring.

Proposition 16.1 If L=Q is a nite normal abelian extension such that the discriminant disqO, )
is a power of a primep, then p is totally ramied in O.

proof We need to show that there is a unique prime idealQ in S lying over p and that its
inertial degree is1. Let Q be a prime ideal inO_ lying over p. To simplify the notation we set
E = E(QjZp). As usual we write LE for the xed eld of E. We claim that no prime number
divides the discriminant disc(O_ e ). Indeed, if qis such a prime number, thengramiesin O e,
hence inO_. Thus q divides disqO, ), which is a power ofp and soq= p. So we need to show
that p does not ramify in O .

To see this, letQ, be a prime ideal inO_e lying over p and Q, a prime ideal in O, lying over
Q1. Then Q and Q; are both prime ideals inO_ lying over p. As the Galois groupG = Gal(L=Q)
is abelian, from Exercise 13.4 we deduce thaE (Q»jZp) = E. Now, Q; is the unique prime ideal
in O e lying under Q,, so, from Proposition 13.14, we have(Q:jZp) = 1, i.e., p is unrami ed
in O_ e, as required, which implies that p does not divide dis¢O, e ).

As no prime number divides dis¢O, e ), from Theorem 14.5 we must haveL® = Q. Since
Q LP LE,itis also the case thatL® = Q. From Theorem 6.7, we obtain

Gal(L=Q) = Gal(L=LP) = D:

Let Q and Q° be prime ideals in O_ lying over p. Given that L=Q is normal, there exists
2 Gal(L=Q) such that (Q) = Q% However, Gal(L=Q) = D(QjZp), which implies that
Q = Q%and so there is a unique prime ideal inO,_ lying over p.
We now consider the inertial degreef (Qjp). Proposition 13.10 assures that[LE : LP]
f (Qjp). As LE = LP, we havef (Qjp) =1 and sop is totally ramied in O .

N I
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Example Let be ap" primitive root of unity, where pisanodd primeandr 1,andK = Q( ).
From Theorem 11.15 we know that the discriminant dis€Ok ) is a power ofp, hencep is totally
ramied in Ok .

If L is a number eld as in Proposition 16.1, i.e.,L=Q is a nite normal abelian extension
such that the discriminant disc(O, ) is a power of a primep, and K a number eld included in L,
then K=Q is also a nite normal abelian extension. This follows from Theorem 6.6: We can write
K = L", whereH is a subgroup ofG = Gal(L=Q), which is normal, because the Galois group
is abelian. It follows that K=Q is a normal extension. Also, the Galois groupG®= Gal(K=Q)
is isomorphic to the quotient group G=H, which is abelian, becauseG is abelian. To simplify
the notation we write S= O and R = Ok . Let Q be the unique prime ideal ofS lying over p
and Q; the unique prime ideal of R lying under Q. We aim to show that, if [K : Q] = p, then
S, (KjQ), the exponent at Q of the dierent ( KjQ), is independant of the eld K which we
choose.

Proposition 16.2 Let L=Q be a nite normal abelian extension such that the discriminant
disc(O, ) is a power of an odd primep and K a number eld included in L whose degree oveQ)
is p. Then p is totally ramied in R and, if Q; denotes the unique prime ideal oR lying over
p, then sq, (KjQ)=2(p 1), wheresg,(KjQ) is the exponent atQ; of the dierent ( KjQ).

proof Our rst step is to show that p is totally ramied in R. Suppose thatQ, and Q3 are
distinct prime ideals in R lying over p. Then Q, (resp. Qg) lies under a prime ideal Q3 (resp.
QY) in S. Clearly QS and QY are distinct and lie over p. As p is totally ramied in S, this is
impossible, hence there is a unique prime ideal iR lying over p. We also notice that

1=1(Qip) = f(QQF (Qujp) =) f(Qujp) =1

and sop is totally ramied in R, or equivalently, Zp is totally rami ed in R.

We now apply Theorem 15.6 to obtain

K 1
se,(KjiQ)= (VI 1)
i=0

where V,° denotes theith rami cation group of Q; in the extension K=Q. Now, eachV\is a
subgroup of Gal(K=Q) and jGal(K=Q)j = [K : Q] = p, s0jV,y has the valuel or p and it follows
that p 1 divides sg, (KjQ).

In the spirit of the discussion before Proposition 15.9, we write o, = ( Rog,jZzp), which
is an ideal in Rg, . In addition, there exists t 2 R such that Rq, Q1 = Rg,t and an integers > 0
such that o, = Rg,Q} = Rg,t°. Proposition 15.9 tells us that sq,(KjQ) = s. We will use
this relation to determine the precise value ofsg, (KjQ).

We aim to use Corollary 15.4 with C = Zz, and D = Rq, and respective elds of fractions
Q and K. We need to check that the conditions of the corollary are satis ed. R = Ok is the
integral closure of Z in K by de nition; Proposition 15.7 then assures us thatRg, is the integral
closure ofZz, in K. Showing that K = Q(t), with t 2 Rg, is a little more di cult.

We claim that Rq, is a free module overZz, with basis B = f1;t;:::;tP 'g. To establish
this we use Theorem 13.16. We seE = E(Q1jZp) and D = D(Q1jZp). From Proposition 13.10,

[KE:KP]=f(Qup=1=) KE=KP:
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Forall 2 G= Gal(K=Q), we have (Qi1) = Qi, becauseQ; is the only prime ideal lying over
p. This impliesthat G D and soD = G Thus

KE=KP=K®=qQ:

and so
RE = Oke = Og = Z:

Continuing we have
f=RE\ Qi=2Z\ Qi=2p=) RGe = Zzp:

In addition, e = e(Q1jp) = p. From Theorem 13.16 we obtain thatRq, is a free module over
Zzp, With basis B= f1;t;:::;tP 1g, as required.
From Corollary E.1, B is a basis ofK over Q, which implies that K = Q[t] = Q(t).

Now we have the conditions for applying Corollary 15.4. Also, we have seen thaRq, is a
free module overZz, and soRq, = Zz,[t]. It follows that

( Rq.iZzp) = Rq,fAL);
wheref is the minimal polynomial m(t; Q). If
f(X)=ag+aX + +a, 1XP 1+ XP
then f 2 Z[X] and
fot) = ag +2at+ +(p 1a, 1tP 2+ pt* -

We notice that
Rp= RZp= Qf;

becauseZp is totally rami ed in R and Q; is the unique prime ideal ofR lying over Zp. Hence,
Rq.p= Rq,;Rp = Rq,Q} = Ro,t";

thus
Rletp ! :(Rle)(RQltp 1) = RQltzp 1;

from which we deduce that there exists , 2 Rq, such that pt> 1= ,t?* 1 |tis important to
notice that t 6 jp. If tj p, then pt? 1= Dt?? with 0§ 2 Rq, and we obtain

RQltzp ! RQltzp :) RQltzp t= RQltzp;

Thus
(RQ1)2p 1= ( RQl)Zp;

which is impossible, becaus&q, Q1 is a nonzero prime ideal in the Dedekind domairRg, .
Fori=0;1;:::;p 1suchthatvy(ia;) 0, we can writeia; = Vo(2)h  where p 6. Then

RQliaiti t= ( RQliai)(RQlti l) = ( Rlevp(iai))(Rth)(RQlti l):
As p 6k, by is invertible in Rq,, we haveRg, b = Rg, and thus

RQliai[i 1_ RQltpr(iai)RQlti 1_ RQltpvp(iai)+i 1;
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from which we deduce that there exists ; 2 Rq, such thatia;jt' * = ;tP¥e(@)*1 1 e notice
that t 6j;. If tj i, theniait’ = &Pve(@D+T with 92 Ry, and so

RQltpr(ia1)+i 1 RQltpr(iai)+ i :) RQltpvp(ia1)+i 1_ RQltpvp(iai)+ i;
or
(RQl)pvp(ia1)+ i1 ( RQl)pvp(ial)+ i;
which is impossible, becaus&q, Q1 is a nonzero prime ideal in the Dedekind domairRg, .

We notice that the integers pvy(ia;)+ i 1,fori=0;1;:::;p 1, with ia; 60,and2p 1
are distinct. If m is the minimum of these integers and ;, corresponds to the minimum, then

PO =( i+ ™

where ;;; 2 Rg, andt 6 j;,. Thus,

t 6( ip t 1 ) =) i + t—‘ZRQlt: RQlQl;

the unique maximal ideal of Rg,. From Exercise 12.11, the element ;, + t is invertible in Rq,
and hence

Ro.fAt) = Ro,t™ =) sq,(KjQ) = m:

We now conclude. By de nition of the minimum m, we havesg, (KjQ) 2p 1. Also, from
Theorem 15.5,50,(KjQ) p 1. The characteristic of the eld R=Q; is p, becausep 2 Qq,
hencesg, (KjQ) 6 p 1, which implies that sq,(KjQ) p. Putting this information together,

we obtain .
1< P sKiQ 20 1_, 1 _,
p 1 p 1 p 1 p 1
becausep 6 2. Therefore % =2, as required. 2

Having developed some preliminary results, we will now turn to the proof of the theorem.
We will proceed by steps.

16.2 Step 1: [L : Q] and disc(O.) are both powers of the
same odd prime.

Let L=Q be a nite normal abelian extension such that the discriminant disc(O_ ) is a power of
a prime p. Then Proposition 16.1 ensures thatp is totally ramied in O_. We have also seen
that

E(Qjp) = D(Qip) = Gal(L=Q);

where Q is the unique prime ideal of O_ lying over p. We now suppose that[L : Q] is a power
of the same prime numberp. Then Proposition 13.18 b. ensures thatE(QjZp) = V1(QjZp).
Indeed, asp is totally ramied e(Qjp) =[L : Q], which is a power ofp; this in turn implies that

JE=V4j =1 and it follows that E(QjZp) = Vi(QjZp). We now aim to show that there is a unique
eld extension K of Q of degreep contained in L. To do this we will use Proposition 16.2.
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Proposition 16.3 Let L=Q be a nite normal abelian extension such that dis¢O_) and [L : Q]
are both powers of the same odd prime. We suppose thatQ is the unique prime ideal of O_
lying over Zp and that V; (QjZp), for j 0, are the higher rami cation groups. In addition, we
let i be the smallest index such thatV; (QjZp) 6 Gal(L=Q). Theni 2, [LVi(QiZP) :Q]=p
and LVi(QiZp) js the only eld extension of degreep over Q contained in L.

proof From hereon, to simplify the notation, we will write E for E(QjZp) and V, for V; (QjZp).

By de nition Vp = E, and in the preamble to the proposition we have seen thatE =
Gal(L=Q), which implies that i 1. However, we have also seen thaV; = Gal(L=Q), hence
i 2. Now we establish that[LY' : Q] = p. SinceV; ; = Gal(L=Q), we have

[LY :Q]=jGal(L=Q)=\V)j = jVi 1=Mi:

From Theorem 13.18,V; 1=V is isomorphic to a subgroup of the additive group ofS=Q, because
i 2. Aspistotally ramiedin O, we have

1=1(QjZp) =[S=Q: Z=Zp];

which implies that S=Q is isomorphic to F,. It follows that jV; 1=Vj = p, becauseV, 1 6 V.

Now let K be a humber eld contained in L whose degree ovef is p. We aim to show that
K =LVY. WesetR!= Ok and Q; = R*\ Q. Then Qq is totally ramied in S = O_. There is
a unique ideal in S lying over Qq, namely Q, and

1=1(Qjzp) = f(QjQf (Q1jZp) =) f(QjQ1)=1:
By de nition (Section 15.3), we have
o:(LiK) = (( R'nQi1) 'SjRg,):
Using Proposition 15.8 we obtain
0:(LiK) = ( SqQiRG,):

To simplify the notation we will write  o(LjK) for o, (LjK).

Next we setR? = O, v, and Q, = R?\ Q. Then Q; is totally ramied in S = O: There is
a unique ideal in S lying over Q,, namely Q, and

1=1(Qjzp) = f(QjQ2)f (Q2jZp) =) f(QjQ2)=1:
By de nition (Section 15.3), we have
Q. (LiLY) = (( R®*nQy) 'SjRS,)
and, using Proposition 15.8 again, we obtain
o: (LiLY) = ( SqiR3,):
We simplify the notation by writing o (LjLVi) for o, (LjLY").
From Theorem 15.1 we have

(LjQ) = (LiK)Sq . (KjQ) (16.1)
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and
o(LiQ) = o(LiLY)Sq o, (LYQ): (16.2)
To clarify these equalities, we recall the de nitions of the ideals appearing in the equalities:
Q(LiQ) = ( SqiZzp);

o(LiK) = ( SqiRy,) Q(LiLY) = ( SqiR3,)
and
Q:(KiQ) = ( R&,iZzp) Q.(LYjQ) = ( R,iZzp):
We now consider o,(KjQ) and q,(L"jQ) more closely. From Proposition 16.2 we have

o:(KjQ) = R§, Q1" ¥
and ao 1

o:(L¥]Q) = R, QI ¥
As Ry, is embedded inSg, we have

So :(KiQ) = Q" V:
Now Q; is totally ramied in S, soSQ; = QI“*K] and we have
SeSQu = SeQ*1=) SeQu = SQ* 1 =) Sq o, (KjQ) = SeQI-* =P U
In the same way
So Q:(L"jQ)= SQ- "R b
As|[L :K]=[L:LY], we have

So :(KjQ)= Sq q,(LViQ)
and from equations(16:1) and (16:2) we derive
o(LiK) = o(LjLY):
We now show that this equality ensures thatk = LVi. First we notice that
o(LiK) = (SqQ)* ™) and  o(LjLY") = (SeQ)*eI-™);
which implies that
So(LjK) = sq(LjLY):

From Theorem 15.6 .
X
sQ(LiK) = (Vi (QIQu)i  1);
j=0
whereV, (QjQ1), forj =0;1;:::;r1 1, are the rami cation groups of Q in the extension L=K .
(Indeed, L=K is a Galois extension andQ; is totally ramied in S.) The same theorem ensures

that
1

so(LjL) = (Vi (QIQ2)j  1);

j=0

249



whereV, (QjQz), forj =0;1;:::;r, 1, are the rami cation groups of Q in the extensionL=L"".
(Indeed, L=L Vi is a Galois extension andQ, is totally rami ed in S.) We can taker = max(rq;r»)
in both cases.

Now we consider orders of the rami cation groups. We notice that

Vi(QiQ1) = Vi\ H;
whereH = Gal(L=K) and

Vi(QjQ2) = Vi \ Vi;
sinceV; = Gal(LjLV"). Therefore, forj =0;1;:::;i 1, we have

Vi(QR1)=H and  Vj(QiQ2) = Vi:

Then L:Q] [L:Q]
jHj = jGal(L=K)j = [L K] = pesr = =

and |
p=[LY :Q]= jGal(L=Q)=V,j=)j Vij= [L bQ];

thereforejHj = jVij, i.e., }V; (QiQu)j = jVi (QiQ2)j. If] i, thenV;(QiQ2) = Vj, becausey; Vi
and it follows that jV; (QjQ1)j j Vj(QjQz2)j. As

X1 X1
(Vi(@QR; 1= (V(QQ2j 1);

j=0 j=0

we must have
Mi(QjQ1) = jMi(QiQ2) =) VI H=Vi=) Vi H:

However, this implies that K = LY LVi. As K and LY are subspaces ot of the same
dimension, they must be equal, as required. 2

Our next step is to show that under the conditions we have assumed at the beginning of
the section, i.e.,p is an odd prime, L an abelian nite normal extension of Q of degreep™ and
diso(O,) = p¥, wherem;k 2 N , then L is a cyclic extension ofQ. We will use an elementary
result from group theory, namely, an abelian group of ordem™, wherep is a prime, with a unique
subgroup of orderp™ 1, is cyclic. We need a preliminary result.

Lemma 16.1 Let G be an abelian group of ordep™, wherep is a prime andm 1. If G has
a subgroupH of order p* and k < | m, then there is a subgroupK of G containing H and
having order p'.

proof Suppose rstthat | = k+1 m and let G = G=H. Then jGj = p™ ¥ and so, by
Cauchy's theorem, there exists an elemenk 2 G=H of order p. Let K be the subgroup ofG
generated byH and x. Sincex 2 H, the group H is properly contained in K. Also,

K=H[Hx[ [ HxPl=2)j Kj=pt:

Repeating the argument if necessary, we nally obtain the desired subgroup. 2
where p is an odd prime andm;k 2 N
We may now prove the result concerning the cyclicity ofG.
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Proposition 16.4 If G is an abelian group of orderp™, where p is a prime, with a unique
subgroupH of order p™ 1, then G is cyclic.

proof Let x 2 GnH. If x has order less thanp™, then, from Lemma 16.1, the cyclic group
hxi is contained in a subgroupK of G of order p™ 1. By hypothesis, K must be equal toH, so
X 2 H, a contradiction. Hencex has orderp™ and soG is cyclic. 2

We may now show that, under the conditions given above, the extensioh.=Q is cyclic.

Theorem 16.1 Let p be an odd prime,L a nite normal abelian extension of Q of degreep™,
wherem 2 N , and disqO, ) a power ofp. Then the extensionL=Q is cyclic.

proof By hypothesis the Galois groupG = Gal(L=Q) is abelian of orderp™. From Proposition
16.3 we know that G has a unique subgroup of ordep™ *. Applying Proposition 16.4 we nd
that G is cyclic. 2

We are now in a position to prove the Kronecker-Weber theorem in a particular case. Further
on we will extend the theorem to the general case.

Theorem 16.2 If L is a nite normal abelian extension of Q of degreep™, where p is an odd
prime and m 2 N , and disqO, ) is a power ofp, then there exists a root of unity such that

L Q().

proof Let K = Q( ), where is a primitive p™*'th root of unity. The extension K=Q is a
Galois extension and, writing G = Gal(K=Q), from Theorem 7.7 we have

jGi=[K :Q]=deg pna = (pP"*)=p"(p 1)

Also, by Theorem 7.7, G is isomorphic to me . » Which is cyclic, because the group of units of
Z, is cyclic, whenn is a power of an odd prime (see, for example, [4]).

The cyclic group G has a subgroupH of orderp 1. (If is a generator ofG, then P" has
orderp 1) We setK%= KH";then [K?: Q] = p™. SinceH is a subgroup ofG, H is cyclic,
and so, by de nition, K %is a cyclic extension ofQ. We claim that the discriminant disc (O o)
is a power ofp. To see this, notice that a prime q dividing disc(Ok o) is rami ed in Ok o, hence
also rami ed in Ok, thus g divides disq Ok ), which is a power ofp. It follows that gq= p. This
proves the claim.

Now we consider the composition eldLK ° As L is a nite Galois extension of Q, so isLK ©
(Theorem 6.8). Both L and K © are normal extensions ofQ, therefore, from Theorem 6.10, the
Galois group Gal(LK °=Q) is isomorphic to a subgroup of the productGal(L=Q) Gal(K =Q),
which is abelian. HenceGal(LK %=Q) is abelian.

Now, from the proof of Corollary 6.1, we know that the Galois groupsGal(LK =K 9 and
Gal(L=L \ K9 are isomorphic, hence

LK %: Q] =[LK %: K9YK%: Q]=[L:L\ KYK®: Q]

which is a power ofp, because[L : L \ K9 divides [L : Q] and [L : Q] = p™. We claim that
the discriminant disc(O.k o) is also a power ofp. If g is a prime and gjdisc(O.k o), then g is
ramied in O,k o. From Theorem 13.12,qis ramied in L or in K This means that gjdiso(Oy )
or gjdisc(Ok o). In both cases we obtaing = p, so dis€Ok o) is a power ofp, as claimed.

We now apply Theorem 16.1 toLK % the Galois group Gal(LK %Q) is cyclic. Both L and
K % are normal extensions ofL \ K% With L\ K°= F in Theorem 6.10, we obtain

Gal(LK =L\ K9 "' Gal(L=L\ K9 Gal(K*:L\ K9:
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We notice that both Gal(L=L \ K9 and Gal(K %L\ K9 have orders a power ofp and are
cyclic, becauseGal(L=L \ K9 is a subgroup ofGal(L=Q) and Gal(K %=L\ K9 a subgroup of
Gal(K =0).

We have seen thatGal(LK =Q) is abelian, thus Gal(LK =L\ K9) is also abelian. The
previous isomorphism gives us a primary decomposition of this nite abelian group. Moreover,
Gal(LK %=L\ K9 is a cyclic p-group, sinceGal(LK %=Q) is a cyclic p-group. Thus Gal(LK %=L\
K9 is its own primary decomposition. The uniqueness of the primary decomposition ensures
that Gal(L=L \ K9 or Gal(K %=L\ K?9 is trivial. In the rst case,

L=L\K®) L K¢

In the second case
KO= L\ K%=) KO L

hence

[L:Q]=[L:KIK®:Q]=) [L:KI=1;
becausellL : Q] = p™ =[K°: Q]. ThereforeL = K© In both cases we have found a cyclotomic
extension containingL. This nishes the proof. 2

16.3 Step 2: [L : Q] and disc(O,) are both powers of 2.

Up to here we have considered the case where the order of the Galois gro@al(L=Q) is the
power of an odd primep and the discriminant disc(O_) a power of the same prime. It should
be clear that certain arguments we have used will not work if the primep is 2. In this section
we aim to look at this case. We will rst consider real elds, i.e., sub elds of the eld of real

numbers R. To begin we establish a preliminary result analogous to Theorem 16.1.

Proposition 16.5 Let L be a real eld which is a nite normal abelian extension of Q of degree
a power of 2 such that the discriminant disq Oy ) is also a power of2. Then the extensionL=Q
is cyclic.

proof Let[L;Q]=2™,with m2 N . We rst consider the case wherem =1, i.e., [L : Q] = 2.
Then L = Q(' d), whered is a square-free integer. In this case dig®©, ) = d, if d 1 (mod 4),
and disq O, ) =p47d, ifd 2;3(mod4). As dis(O_) is a power of2, the only possibility is d =2
and soL = Q(' 2) (and disc(O_) = 8). Thus the extension L=Q is cyclic.

Now suppose thatm 2. From Lemma 16.1 we know that the Galois groupGal(L=Q)
contains a subgroupH whose order is2™ 1. For any such subgroupH, from Theorem 6.6,

LM :Q]= jgeal(l_l;:g)j =2

Moreover, disqO, ) is a power of2, since any primeq dividing disc(O_+ ) ramies in O « and so
ramies in O_. As 2 is the only primeﬂgmifying in O_, q=2. Thus disc(O_+ ) is a power of2
up to sign. As[L" :Q]=2,L" = Q( d), whered is a square-free integer, and dig@Q,~) = d
or disqO.w ) =4d. It follows that d = 2. Since L L,d=2 and soL" = Q( 2) and
H = Gal(L=Q( 2)). We conclude that the Galois group Gal(L=Q) has a unique subgroup of
order 2™ 1. Applying Proposition 16.4 we obtain that Gal(L=Q) is cyclic. 2

We now establish another result concerning real extensions.
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Proposition 16.6 If m2 N and a primitive root of order 2"*2 thenL = Q( )\ R is the
unique real nite normal abelian extension K of Q such that[K : Q] = 2™ and disqOk ) is a
power of 2. In addition, L  Q( ).

proof We will begin by showing that L satis es the conditions. L is clearly a real eld and
L  Q( ). Any prime g dividing the discriminant disc (O, ) ramies in O_, hence inQ( ). This
implies that q divides disqOgq ), which is a power of2, by Theorem 11.15. Thusq=2 and It
follows that disc(O_ ) is a power of2.

Now

[Q():Ql=deg om= = (272)=2"";
where is Euler's totient function. From the primitive element theorem (Theorem 3.4), there
exists 2 Q( ) suchthat Q( )= L( ). If = a+ bi, then s a root of the polynomial

f(X)=(a?+ ) 2aX + X?. Moreover, =a bi2 Q( ), because is a root of the minimal
polynomial m(; Q) and Q( ) is a normal extension ofQ. Hence

+

a= 2L and b= 2 L;

2i
sincei = 4= 2" 2 Q(). Itfollows that f 2 L[X]and degm(;L Jislor2 As =2 L,we
have degm(;L )=2 and so[Q( ):L]=2. As

[Q():QI=[Q():LIL :Ql

we have[L : Q] =2™, as required.

It remains to show that L is unique. Let F and K be two elds satisfying the conditions
in the statement of the proposition. We aim to show that F = K. Both F and K satisfy the
assumptions of Proposition 16.5, so the compositunfr K also satis es the assumptions. Indeed,
the extensions F=Q and K=Q are both normal, so FK=Q is normal and the Galois group
Gal(FK=Q) is isomorphic to a subgroup of the productGal(F=Q) Gal(K=Q), by Theorem
6.10. ThereforeGal(FK=Q) is abelian of order a power oR. If a prime qdivides the discriminant
disc(Ofk ), thenitisramied in Ofx and hence rami ed in O orin Ok (Theorem 13.12). Thus
g divides disq O ) or diso(Ok ), which are both powers of2. Henceq = 2 and it follows that
disc(Ork ) is a power of2.

Now, from Theorem 6.10,

Gal(FK=F \ K)' Gal(F=F\ K) Gal(K=F \ K):

As Gal(FK=F \ K) is a subgroup of the abelian groupGal(FK=Q), Gal(FK=F \ K) is abelian.
Both Gal(F=F\ K) and Gal(K=F \ K) are cyclic and of order a power of2, being respectively
subgroups ofGal(F=Q) and Gal(K=Q), which are cyclic by Proposition 16.5. Thus the previous
isomorphism is a primary decomposition of the nite abelian group Gal(FK=F \ K). However,
Gal(FK=F \ K) is cyclic of order a power of2, being a subgroup ofGal(FK=Q), which is cyclic
by Proposition 16.5. The uniqueness of the primary decomposition of a nite abelian group
ensures thatGal(F=F \ K) or Gal(K=F \ K) is trivial. Therefore F = F\ K orK = F\ K,
which implies in the rst case that F K and in the second thatK F. As[F : Q] =[K : Q],
we must haveF = K. 2

We have shown in the previous section that when the extensioh=Q is abelian of degree a

power of p, with p an odd prime, and dis€O, ) a power ofp, then there exists a root of unity
such that L  Q( ).We will now establish an an analogous result for the prime2.
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Theorem 16.3 Let L=Q be a nite normal abelian of degree a power of2, with disc(O_) a
power of 2. Then there exists a root of unity such thatL  Q( ).

proof In Proposition 16.6 we have already proved the theorem in the case wherk is a real
eld. Our aim is now to generalize this to any eld contained in C.

Let K = L(i)\ R. Then K is a real extension ofQ. As L(i) = Q(i)L and both Q(i)=Q
and L=Q are nite normal abelian extensions, L (i)=Q is also a nite normal abelian extension
(Theorem 6.10). SinceK is a subeld of L(i), K is a nite normal abelian extension of Q.

Next we notice that [K : Q] is a power of2. Indeed,

[L@):QI=[L():LIL :Ql:

As m(i;L) divides f (X) =1+ X?, the degree ofm(i;L) is 1 or 2 and so[L(i) : L] is equal to
1 or 2. By hypothesis [L : Q] is a power of2, so[L(i) : Q] is a power of2. However, [K : Q]
divides [L (i) : Q], hence[K : Q] is a power of2.

Our next step is to show that the discriminant disc(Ok ) is also a power of2. If gqis a
prime number dividing disc(O (;)), the gramiesin L(i) = Q(i)L, which implies that g rami es
in Q(i) or in L (Theorem 13.12), i.e.,q divides disqOgq ) or q divides disqO.). Now, by
hypothesis dis¢O, ) is a power of2, and disqOq(j)) = 4, because 1 3 (mod 4) implies that
diso(Oq(i)) =4( 1)= 4. Itfollows that g=2 and so dis¢Oy ;) is a power of2. As K is a
sub eld of L(i), dis¢(Ok ) is also a power of2. Indeed, if q is a prime dividing disc(Ok ), then g
rami es in Ok and hence inO (j); thus q divides disqOy (;y) and soq= 2.

We now apply Proposition 16.6: there exists a root of unity such that K  Q( ). From
the primitive element theorem (Theorem 3.4), there exists 2 L(i) such that L(i)= K( ). Let

= a+ib. As = a ibis a root of the minimal polynomial m(;K ) and L(i) is a normal
extension ofK,a= —— 2 K andb= —— 2 K. Also,i = 4,0 = a+ib2 Q( 4)Q( ). Then

L L@)=K() Q(4Q()=Q();

where is a root of unity, by Exercise 7.3. 2

Exercise 16.1 With K and L as de ned in Theorem 16.3, show thatl (i) = K (i).

16.4 Step 3: [L : Q] is a power of a prime p.

We have shown that a normal abelian extensiorL of the rationals of degree a power of a prime
p such that the discriminant disc(O_) is also a power ofp can be considered as a sub eld of a
cyclotomic extension of the rationals. In this section we aim to show that we may dispense with
the condition on the discriminant. We will begin with a preliminary result.

Proposition 16.7 Suppose thatL=Q is a normal abelian extension of degreé and g a prime
dividing disc(O ) but not dividing n. Then there exists a normal abelian extensior.’=Q and a
primitive gth root of unity  such that

[L°: Q] divides n;

L LY

g does not divide dis¢Oy o);

any prime ¢° dividing disc(Oyo) also divides dis¢Oy ).
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proof We consider two cases, namely wheh contains a primitive gth root of unity and then
when this is not the case.

Case 1: L contains a primitive gth root of unity

Suppose thatQ is a prime ideal in O, lying aboveq: Q\ Z = Zq. To simplify the notation we
write e for the rami cation index e(Qjqg), Vi for the corresponding rami cation group Vi(QjZq)
and E for the corresponding inertia group E (QjZq).

The assumption that g does not divide[L : Q] ensures thatL = LV:. Indeed, from Proposition
13.18 we know thatV; is ag-group, i.e., the order ofV; is a power ofqg, thus Theorem 6.7 ensures
that [L : LV1] is a power ofg. Moreover, [L : LV1] divides [L : Q]. Sinceq does not divide[L : Q]
we must have[L : LV1]=1,ie., L = LV,

Now we considerLE. As L=Q is normal, by Proposition 13.11 we havelL : LE] = e. Now,
from Theorem 6.7 we obtainGal(L=LE) = E and so

e=[LY*:LE]= jE=Vy; (16.3)

by Theorem 6.6. SinceGal(L=Q) is abelian, the decomposition groupD (QjZq), being a subgroup
of Gal(L=Q), is also abelian. Given thatL=Q is normal, Corollary 13.9 ensure thatjE=V;| divides
® 1, where

¢°= jOg=Zqj = jZ=Zdj = q: (16.4)

We now setL®= LE. As E is a subgroup ofGal(L=Q), [L°: Q] divides n. Also, L°=Q is a
normal abelian extension, becaus¢ = LE and E is a normal subgroup ofGal(L=Q), which is
abelian.

By hypothesis there is a primitive gth root of unity in L. We claim that L = LY ). As
Q Land 2L,wehaveQ() L. The primeidealQ in O_ lies over a unique prime idealQ®
in Og( ). To simplify the notation we write €° for the rami cation index e(QjQ% and E° for the
inertia group E (QjQY%. We notice that EC= E\ Gal(L=Q( )), the intersection of two subgroups
of Gal(L=Q). Using Theorem 6.9 we have

LE° = LELGa(L=Q()

= LFQ()
= L5()
= LY):

To establish the claim it is su cient to show that LE® = L. By Pr;}oposition 53L=Q( ) isa
normal extension, so we may use Proposition 13.11 to obtaiflL : LE] = €% Also,

e= %(QY0): (16.5)

From equations (16:3) and (16:4) we obtainejq 1. However, we also havey 1lje. From Theorem
11.15, dis¢Oq ( ) is a power ofq, soq is totally ramied in Ogq y, by Proposition 16.1, which
implies that &(QY%q) = q 1, because[Q( ): Q]= q 1. Therefore, by equation (16:5), q lje.
It follows that e= q 1 and soe®= 1, which implies that [L : LEO] = 1. We have shown that
LE” = L and hence established the claim.

We now show that the remaining two conditions of the proposition are satis ed. First we
show that q does not divide dis€O,0). Let Q; be a prime ideal of O o lying over g and Q»
a prime ideal in O, lying over Q;. Both Q, and Q are prime ideals in O_ lying over g. As
Gal(L=Q) is abelian, Exercise 13.4 ensures thaE (Q»jZqg) = E(QjZq). Hencel®= LE(Q2iza),
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The ideal Q; is the unique prime ideal inO_ e (= Opo0) lying under Q;, so, by Proposition 13.14,
e(Q1jZg) =1, i.e., gis unramied in O o, which implies that q does not divide dis¢O, o).
Finally, we show that, if ¢°is a prime dividing disc(Oy o), then o€ divides disqO.). If ¢°is a
prime dividing disc(O o), then ¢® rami es in O o, which implies that ¢° rami es in O, because
L® O.; henced® divides disq Oy ). 2

Case 2: L does not contain a primitive gth root of unity.

We begin by adding a primitive gth root of unity to L. We may apply Case 1 toL( ).
Indeed, L( ) = LQ( ). As both L and Q( ) are normal extensions ofQ, by Theorem 6.8,
LQ( ) is a normal extension ofQ. In addition, by Theorem 6.10, Gal(LQ( )=Q) is a subset of
Gal(L=Q) Gal(Q( )=Q), hence abelian. By construction,L( ) contains a primitive gth root of
unity. Moreover, q divides disqO_ ( )), becauseq divides disqO.) and OL O (), It remains
to show that q does not divide[L( ): Q]. As

[LC):QI=[L():LIL :Ql

if g[L( ): Q], then either gj[L( ): L] or gL : Q]. By hypothesis, the second alternative is not
possible. Also, by Theorem 7.4, the Galois grougal(L( )=L) is a subset ofZ, , which implies
that [L( ):L]jg 1. Asgdoes notdivideq 1, the second alternative is also not possible. We
have shown that q does not divide[L( ) : Q].

As all the conditions of Case 1, withL replaced by L( ), are satis ed, there exists a nite
normal extension L% of Q and a primitive gth root of unity  such that

[LO: Q] divides [L( ): QI;

L() LA

g does not divide dis¢O, o);

any prime ¢ dividing disc(Oo) also divides dis¢O, ( ).

As LY )= LY ), we may suppose that = . In the course of proving Case 1 we showed that
e=q 1, thus by Theorem 13.11[L : LE]=q 1,ie,[L :L9=q 1. ReplacingL by L( ) we
obtain [L( ):L9=q 1. In a similar way, we obtain L® L( ).

We maintain that L° has the required properties of the proposition.

[LO: Q] divides n =[L : Q]: Using Corollary 6.1, we have

L:QIR():Q]_ [L:Qlg 1),

O RI=ILRO):QI= e yiar ~ thva():aQl

Thus
[L:QIa 1)=[L\ Q():QIL():LIL®:Q];
which implies that
[L:Q]=[L\ Q():QIL°:Q];
becauselL( ):L9=qg 1 Hence[L°: Q] divides|[L : Q].
L LY ),sinceL L() LY).

g does not divide dis¢O_o): Here there is nothing to prove.

256



Any prime @° dividing disc(O0) also divides dis€O,): As L® L( ), gdisc(O0) =)

qjdisc(Oy ( ), which implies that ¢ ramies in O_(,. However, L( ) = LQ( ), so
ramies in Op orin Og( ) (Theorem 13.12). Asq does not divide dis¢Oy o), q°6 g, soc
does not ramify in Oq , so¢” must ramify in O, which implies that o divides disqO, ).

This nishes the proof. 2

We are now in a position to dispense with the condition on the discriminant in Theorems
16.2 and 16.3.

Theorem 16.4 If L=Q is a normal abelian extension of degre@™, for some prime p, then there
exists a root of unity such thatL  Q( ).

proof If the discriminant disc (O, ) is also a power ofp, then there is nothing to prove, so let us
suppose that this is not the case. Then there is a primay 6 p dividing the discriminant. From
Proposition 16.7 there is an abelian extensiorl. 1=Q and a gth root of unity ; such that

[L1: Q] divides p™ and so is a power ofp;

L La( 1)

g does not divide dis¢O, ,);

any prime o€ dividing disc(O ,) also divides dis¢O, ).

Thus dis(O, ,) has fewer prime factors than dis€O, ). We can repeat the process and so nd a
normal abelian extensionL ,=Q and a root of unity , suchthatL; L2( 2),[L2: Q]is a power
of p and disqO.,) has fewer prime factors than dis¢O.,). Continuing in the same way, we
nally obtain a normal abelian extension L,=Q and a root of unity , suchthatL, ; L.( ),
[L; : Q] is a power ofp and disqO,, ) is also a power ofp, possibly 1, in which caseL, = Q
(Theorem 14.5). It follows from Theorems 16.2 and 16.3 that there is a root of unity ;+; such
that L, Q( r+1). To sum up, we have the inclusions

L Li(a)ibs La(2)iinbe o Le(r)ibe QCre)s
which implies that
L Q(u1 20555 rsn)  Q( )
where is a root of unity (Exercise 7.3). This ends the proof. 2
16.5 Step 4. The general case
We are now in a position to prove the general case of the Kronecker-Weber theorem.
Theorem 16.5 |If L=Q is a nite normal abelian extension, then there is a primitive root of

unity such thatL  Q( ).

such that
Gal(L=Q)"' H; Hs:
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If jH;j = p ', then jGal(L=Qj = Qf:l p'. Let By = Qisj Hi andL; = L™, Then[L; : Q] =

P . Moreover, sinceL=Q is assumed normal, Theorem 6.9 ensures that

v G

Since\ &, ¥ = feg, we obtain Qiszl L; = L. Also, each subgroupH; is normal in Gal(L=Q),
s0, by Theorem 6.6,L;=Q is normal and Gal(L;=Q) ' Gal(L=Q)=H;. ThereforeL;=Q is a nite
normal abelian extension, with degree a power of a prime, and so there exists a root of unity
suchthat Ly Q( ). Thus

L=L: Ls Q(1) Q(s) Q();

where is a primitive root of unity (Exercise 7.3), i.e., L is included in a cyclotomic extension
of Q. 2

The Kronecker-Weber theorem answers an important question. Earlier we saw that a cy-
clotomic extension of the rationals is normal and abelian; it follows that any subextension of a
cyclotomic extension of the rationals is also normal and abelian. It is natural to ask whether
there are other nite normal abelian extensions of the rationals. The Kronecker-Weber theorem
gives a negative response to this question.
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Chapter 17

Factoring primes in extensions

In a unique factorization domain R any elementx which is neither the identity for the addition
nor a unit can be expressed as product of prime factors and a unit x = up;* p,", where

such factorizations, but the number n is always the same, as are the powersy;:::; . If we
take the powers of the primes in increasing order, then we obtain a nite sequence of positive
integers, which we call the form of the decomposition. For examplel12 = 3:22, so the form of
the decomposition of 12 is (1;2). Similarly, 30 = 2:3:5 has the form (1;1;1), 36 = 22:3? the
form (2;2) and 20 = 5:22 the form (1;2). We should notice that the factorizations of 12 and
20 have the same form(1; 2); thus di erent elements may have factorizations with the same form.

If K is a number eld and Ok its number ring, then any nonzero ideal ofOx not equal to
Ok has a unique factorization into prime ideals, becaus®y is a Dedekind domain. For a prime
number p we will be concerned in this chapter with the form of the factorization of the ideal

Ok p.

17.1 Preliminary results

Proposition 17.1  Let K be a number eld of degreen over Q and R an order of Ox . Then
jdiso(R)j =[Ok : RF’jdisc(Ox )j;

where[Ok : R] is the index of R as an additive subgroup oy .

proof We argue as in Section 14.1, de ning in the same way. IfB=( 1;:::; n) is a basis of
R, then B®=( ( 1);:::; ( n)) generates (R) over Z and is an independant set, hence (R) is
a sublattice of o, , which we note r. We have
det Rr
: = =) det : =det g:
[ ok ¢ R] det o, ) ok [ ok & R] R

However, from Section 14.1 we have
P — pP—
det o, =2 ° jdisc(Ok)j and det g =2 ° jdisc(R)j;
hence

jdiso(R)j =[Ok : RI?jdiso(Ox )j;

259



because o, : r]=[Ok :RI]. 2

A particular application of this resultiswhen 2 Ox,K = Q( )andR = Z[ ]. In this case
the elements1; ;:::; " ! form an integral basis of Z[ ]. As we will see presently, it is often
important to know whether a given prime number p does not divide [Ok : Z[ ]]. In particular,
if the discriminant disc(Z[ ]) is square-free, then[Ox : Z[ ]]=1 and soZ[ ]= Ok.

In fact, we may improve the equality of Proposition 17.1.

Lemma 17.1 Let K be a number eld such that[K : Q] = n. We suppose that there are real
embeddings oK in C and 2s complex embeddings. Then the sign of the discriminant of an order
Rin K is ( 1)5.

dings of K into C. We have
det( i(g))=( 1)°det( i(h));

because complex conjugation interchanges rows. If s is even, thendet( i(ly)) is real, so its
square is positive. On the other hand, ifs is odd, then det( ;(ly)) is purely imaginary, so its
square is negative. 2

We may now improve Proposition 17.1:
Theorem 17.1 Let K be a number eld of degreen over Q and R an order of Ok . Then
disc(R) = [ Ok : R]?disc(Ok );
where [Ok : R] is the index of R as an additive subgroup ofx .

proof From Lemma 17.1 the discriminants of bothR and Ok have the sign( 1)S. 2

We also need some elementary results from group theory.

Lemma 17.2 Let G be a nite (additive) abelian group of order n. If pis a prime and p does
not divide n, then the mapping
Gl G)x7! px

is an automorphism.

proof The mapping is clearly a homomorphism. AsG is nite, it is su cient to show that
is injective. Suppose thatpx =0. If x 6 0, then 1 <o(x) p, which implies that o(x) = p.
Then we havepjn, a contradiction. So is injective. 2

Proposition 17.2 Let :G°! G be an injective homomorphism of (additive) abelian groups.
If H= (GY9 andj%j is nite and not divisible by the prime p, then the induced mapping

0
:%)! p% x%+ pG°7! (X% + pG

is an isomorphism.
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