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Abstract

Monographs are graph-like structures with directed edges of unlimited
length that are freely adjacent to each other. The standard nodes are
represented as edges of length zero. They can be drawn in a way consis-
tent with standard graphs and many others, like E-graphs or 8-graphs.
The category of monographs share many properties with the categories
of graph structures (algebras of monadic many-sorted signatures), except
that there is no terminal monograph. It is universal in the sense that its
slice categories (or categories of typed monographs) are equivalent to the
categories of graph structures. Type monographs thus emerge as a natu-
ral way of specifying graph structures. A detailed analysis of single and
double pushout transformations of monographs is provided, and a notion
of attributed typed monographs generalizing typed attributed E-graphs
is analyzed w.r.t. attribute-preserving transformations.

Keywords: Algebraic Graph Transformation, Graph Structures, Typed Graphs

1 Introduction

Many different notions of graphs are used in mathematics and computer science:
simple graphs, directed graphs, multigraphs, hypergraphs, etc. One favourite
notion in the context of logic and rewriting is that also known as quivers, i.e.,
structures of the form pN,E, s, tq where N,E are sets and s, t are functions from
E (edges) to N (nodes), identifying the source and target tips of every edge (or
arrow). One reason for this is that the category of quivers is isomorphic to
the category of algebras of the many-sorted signature with two sorts nodes

and edges and two operator names src and tgt of type edges Ñ nodes. In
conformity with this tradition, by graph we mean quiver throughout this paper.

In order to conveniently represent elaborate data structures it is often nec-
essary to enrich the structure of graphs with attributes: nodes or edges may be
labelled with elements from a fixed set, or with values taken in some algebra,
or with sets of values as in [1], etc. An interesting example can be found in [2]
with the notion of E-graphs, since the attributes are also considered as nodes.
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More precisely, an E-graph is an algebra whose signature can be represented by
the following graph:

edges nodes

ev-edges nv-edges

values

srce

tgte

srcev srcnv

tgtev tgtnv

The names given to the sorts and operators help to understand the structure
of E-graphs: the edges relate the nodes among themselves, the nv-edges relate
the nodes to the values, and the ev-edges relate the edges to the values.
Hence the sort values holds attributes that are also nodes. But then we see
that in E-graphs the ev-edges are adjacent to edges. This is non standard,
but we may still accept such structures as some form of graph, if only because
we understand how they can be drawn.

Hence the way of generalizing the notion of graphs seems to involve a gener-
alization of the signature of graphs considered as algebras. This path has been
followed by Michael Löwe in [3], where a graph structure is defined as a monadic
many-sorted signature. Indeed in the examples above, and in many examples
provided in [3], all operators have arity 1 and can therefore be considered as
edges from their domain to their range sort. Is this the reason why they are
called graph structures? But the example above shows that E-graphs are very
different from the graph that represent their signature. Besides, it is not conve-
nient that our understanding of such structures should be based on syntax, i.e.,
on the particular names given to sorts and operators in the signature.

Furthermore, it is difficult to see how the algebras of some very simple
monadic signatures can be interpreted as graphs of any form. Take for instance
the signature of graphs and reverse the target function to tgt : nodesÑ edges.
Then there is a symmetry between the sorts nodes and edges, which means
that in an algebra of this signature nodes and edges would be objects of the
same nature. Is this still a graph? Can we draw it? Worse still, if the two sorts
are collapsed into one, does it mean that a node/edge can be adjacent to itself?

We may address these problems by restricting graph structures to some class
of monadic signatures whose algebras are guaranteed to behave in an orthodox
way, say by exhibiting clearly separated edges and nodes. But this could be
prone to arbitrariness, and it would still present another drawback: that the
notion of graph structure does not easily give rise to a category. Indeed, it is
difficult to define morphisms between algebras of different signatures, if only
because they can have any number of carrier sets.

The approach adopted here is rather to reject any structural distinction
between nodes and edges, hence to adopt a unified view of nodes as edges of
length 0, and standard edges as edges of length 2 since they are adjacent to two
nodes. This unified view logically allows edges to be adjacent to any edges and
not just to nodes, thus generalizing the ev-edges of E-graphs, and even to edges
that are adjacent to themselves. Finally, there is no reason to restrict the length

2



of edges to 0 or 2, and we will find good reasons (in Section 6) for allowing edges
of infinite, ordinal length. The necessary notions and notations are introduced
in Section 2. The structure of monograph (together with morphisms) is defined
in Section 3, yielding a bestiary of categories of monographs according to some
of their characteristics. The properties of these categories w.r.t. the existence
of limits and co-limits are analyzed in Section 4.

We then see in Section 5 how monographs can be accurately represented by
drawings, provided of course that they have finitely many edges and that these
have finite length. In particular, such drawings correspond to the standard way
of drawing a graph for those monographs that can be identified with standard
graphs, and similarly for E-graphs.

Section 6 is devoted to the comparison between monographs and graph struc-
tures, and the corresponding algebras (that we may call graph structured alge-
bras). We show a property of universality of monographs, in the sense that all
graph structured algebras can be represented (though usually not in a canonical
way) as typed monographs, i.e., as morphisms of monographs.

The notion of graph structure has been introduced in [3] in order to obtain
categories of partial homomorphisms in which techniques of algebraic graph
rewriting could be carried out. The correspondence with monographs estab-
lished in Section 6 calls for a similar development of partial morphisms of
monographs in Section 7. The single and double pushout methods of rewriting
monographs can then be defined, analyzed and compared in Section 8.

The notion of E-graph has been introduced in [2] in order to obtain well-
behaved categories (w.r.t. graph rewriting) of attributed graphs, and hence to
propose suitable representations of real-life data structures. This is achieved
by enriching E-graphs with a data type algebra, and by identifying nodes of
sort value with the elements of this algebra. We pursue a similar approach in
Section 9 with the notion of attributed typed monograph by identifying elements
of an algebra with edges, and obtain similarly well-behaved categories. Due to
the universality of monographs we see that any Σ-algebra can be represented
as an attributed typed monograph.

We conclude in Section 10. Note that parts of Sections 4 to 6 have been
published in [4].

2 Basic Definitions and Notations

2.1 Sets

For any sets A, B, relation R Ď A ˆ B and subset X Ď A, let RrXs
def
“ ty P

B | x P X ^ px, yq P Ru. For any x P A, by abuse of notation we write Rrxs for
Rrtxus. If R is functional we write Rpxq for the unique element of Rrxs, and if

S Ď C ˆD is also functional and RrAs Ď C let S ˝R
def
“ tpx, SpRpxqqq | x P Au.

A function f : AÑ B is a triple pA,R,Bq where R Ď AˆB is a functional
relation. We write f rXs and fpxq for RrXs and Rpxq respectively. For any Y Ě

f rXs, let f |YX
def
“ pX,RXpX ˆY q, Y q and f |X

def
“ f |BX . A function g “ pC, S,Dq
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may be composed on the left with f if B “ C, and then g ˝ f
def
“ pA,S ˝R,Dq.

If RrAs Ď C we may write g ˝R or S ˝ f for S ˝R.

Sets and functions form the category Sets with identities IdA
def
“ pA, tpx, xq |

x P Au, Aq. In Sets we use the standard product pAˆB, π1, π2q and coproduct
pA ` B,µ1, µ2q of pairs of sets pA,Bq. The elements p P A ˆ B are pairs of
elements of A and B, i.e., p “ pπ1ppq, π2ppqq. For functions f : C Ñ A and
g : C Ñ B we write xf, gy : C Ñ A ˆ B for the unique function such that

π1 ˝ xf, gy “ f and π2 ˝ xf, gy “ g, i.e., xf, gypzq
def
“ pfpzq, gpzqq for all z P C.

The elements of A ` B are pairs µ1pxq
def
“ px, 0q or µ2pyq

def
“ py, 1q for all x P A

and y P B, so that A1 Ď A and B1 Ď B entail A1 `B1 “ µ1rA
1s Y µ2rB

1s.
An ordinal is a set α such that every element of α is a subset of α, and such

that the restriction of the membership relation P to α is a strict well-ordering
of α (a total order where every non empty subset of α has a minimal element).
Every member of an ordinal is an ordinal, and we write λ ă α for λ P α. For
any two ordinals α, β we have either α ă β, α “ β or α ą β (see e.g. [5]).
Every ordinal α has a successor αYtαu, denoted α` 1. Natural numbers n are

identified with finite ordinals, so that n “ t0, 1, . . . , n ´ 1u and ω
def
“ t0, 1, . . . u

is the smallest infinite ordinal.

2.2 Sequences

For any set E and ordinal λ, an E-sequence s of length λ is an element of Eλ,
i.e., a function s : λ Ñ E. Let ε be the only element of E0 (thus leaving E
implicit), and for any e P E let eÒλ be the only element of teuλ. For any s P Eλ

and ι ă λ, the image of ι by s is written sι. If λ is finite and non zero then
s can be described as s “ s0 ¨ ¨ ¨ sλ´1. For any x P E we write x | s and say
that x occurs in s if there exists ι ă λ such that sι “ x. For any ordinal α, let
Eăα

def
“

Ť

λăαE
λ; this is a disjoint union. For any s P Eăα let |s| be the length

of s, i.e., the unique λ ă α such that s P Eλ.
For any set F and function f : E Ñ F , let făα : Eăα Ñ Făα be the

function defined by făαpsq
def
“ f ˝ s for all s P Eăα. We have IdăαE “ IdEăα and

pg ˝ fqăα “ găα ˝ făα for all g : F Ñ G. Since s P Eλ entails f ˝ s P Fλ, then
|făαpsq| “ |s|.

If s and s1 are respectively E- and F -sequences of length λ, then they are
both functions with domain λ hence there is a function xs, s1y of domain λ. Thus
xs, s1y is an pEˆF q-sequence of length λ, and then πăα1 pxs, s1yq “ π1 ˝xs, s

1y “ s
and similarly πăα2 pxs, s1yq “ s1 for all α ą λ. If f : E Ñ F and g : E Ñ G
then xf, gy : E Ñ F ˆ G, hence for all s P Eăα of length λ ă α we have
xf, gyăαpsq “ xf, gy˝s “ xf ˝s, g ˝sy “ xfăαpsq, găαpsqy is an pF ˆGq-sequence
of length λ.

For s P Eăω and pAeqePE an E-indexed family of sets, let As
def
“

ś

ιă|s|Asι .

In particular we take Aε
def
“ 1 as a terminal object in Sets. For pBeqePE an E-

indexed family of sets and pfe : Ae Ñ BeqePE an E-indexed family of functions,

let fs
def
“

ś

ιă|s| fsι : As Ñ Bs.
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2.3 Signatures and Algebras

A signature is a function1 Σ : Ω Ñ Săω, such that Σpoq ‰ ε for all o P Ω.
The elements of Ω are called operator names and those of S sorts. The arity
of an operator name o P Ω is the finite ordinal n

def
“ |Σpoq| ´ 1, its range is

Rngpoq
def
“ Σpoqn (the last element of the S-sequence Σpoq) and its domain

is Dompoq
def
“ Σpoq|n (the rest of the sequence). o is monadic if n “ 1. The

signature Σ is finite if Ω and S are finite, it is a graph structure if all its operator
names are monadic.

A Σ-algebra A is a pair ppAsqsPS , po
AqoPΩq where pAsqsPS is an S-indexed

family of sets and poA : ADompoq Ñ ARngpoqqoPΩ is an Ω-indexed family of
functions. A Σ-homomorphism h from A to a Σ-algebra B is an S-indexed
family of functions phs : As Ñ BsqsPS such that

oB ˝ hDompoq “ hRngpoq ˝ o
A

for all o P Ω. Let 1A
def
“ pIdAsqsPS and for any Σ-homomorphism k : B Ñ C, the

Σ-homomorphism k ˝ h : A Ñ C is defined by pk ˝ hqs
def
“ ks ˝ hs for all s P S.

Let Σ-Alg be the category of Σ-algebras and Σ-homomorphisms.

2.4 Categories

We assume familiarity with the notions of functors, limits, colimits and their
preservation and reflection by functors, see [7]. Isomorphism between objects in
a category is denoted by » and equivalence between categories by «.

For any object T of A, the slice category AzT has as objects the morphisms
of codomain T of A, as morphisms from object a : AÑ T to object b : B Ñ T
the morphisms f : A Ñ B of A such that b ˝ f “ a, and the composition of
morphisms in AzT is defined as the composition of the underlying morphisms
in A (see [2] or [7, Definition 4.19]).

3 Monographs and their Morphisms

Definition 3.1 (monographs, edges, ordinal for A). A set A is a monograph
if there exists a set E (whose elements are called edges of A) and an ordinal α
(said to be an ordinal for A) such that pE,A,Eăαq is a function.

A monograph is therefore a functional relation, which means that its set of
edges is uniquely determined. On the contrary, there are always infinitely many
ordinals for a monograph. As running example we consider the monograph
A “ tpx, x y xq, py, y x yqu then its set of edges is E “ tx, yu. Since Apxq and
Apyq are elements of E3 Ď Eă4, then pE,A,Eă4q is a function. Hence 4 is an
ordinal for A, and so are all the ordinals greater than 4.

1For the sake of simplicity we do not allow the overloading of operator names as in [6].
These names will turn out to be irrelevant anyway.
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It is easy to see that for any set of monographs there exists a common ordinal
for all its members.

Definition 3.2 (length |x|, edge xι, trace trpAq, O-monographs). For any
monograph A with set of edges E, the length of an edge x P E is the length
|Apxq|, also written |x| if there is no ambiguity. Similarly, for any ι ă |x| we

may write xι for Apxqι. The trace of A is the set trpAq
def
“ t|x| | x P Eu. For

any set O of ordinals, A is an O-monograph if trpAq Ď O.

Since any ordinal is a set of ordinals, we see that an ordinal α is for a
monograph iff this is an α-monograph. Hence all edges of a monograph have
finite length iff it is an ω-monograph.

Definition 3.3 (adjacency, nodes NA, standard monographs). For any mono-
graph A and edges x, y of A, x is adjacent to y if y | Apxq. A node is an edge
of length 0, and the set of nodes of A is written NA. A is standard if y | Apxq
entails y P NA, i.e., all edges are sequences of nodes.

The running example A has no nodes and is therefore not standard. Since
Apxq “ x y x then x is adjacent to y and to itself. Similarly, Apyq “ y x y
yields that y is adjacent to x and to itself. In this case the adjacency relation is
symmetric, but this is not generally the case, e.g., a node is never adjacent to
any edge, while edges may be adjacent to nodes.

Definition 3.4 (morphisms of monographs). A morphism f from monograph
A to monograph B with respective sets of edges E and F , denoted f : A Ñ B,
is a function f : E Ñ F such that făα ˝ A “ B ˝ f , where α is any ordinal for
A.

Building on the running example, we consider the permutation f “ px yq of
E (in cycle notation), we see that fă4 ˝ Apxq “ fă4px y xq “ y x y “ Apyq “
A ˝ fpxq and similarly that fă4 ˝Apyq “ fă4py x yq “ x y x “ Apxq “ A ˝ fpyq,
hence fă4 ˝ A “ A ˝ f and f is therefore a morphism from A to A. Since
f ˝ f “ IdE is obviously the identity morphism 1A then f is an isomorphism.

Note that the terms of the equation făα ˝A “ B ˝ f are functional relations
and not functions. One essential feature is that this equation holds for all
ordinals α for A iff it holds for one. Thus if we are given a morphism then we
know that the equation holds for all big enough α’s, and if we want to prove
that a function is a morphism then we need only prove that there exists a big
enough α such that the equation holds.

This equation is of course equivalent to făα ˝Apxq “ B ˝ fpxq for all x P E.
The terms of this last equation are F -sequences that should therefore have the
same length:

|x| “ |Apxq| “ |făα ˝Apxq| “ |B ˝ fpxq| “ |fpxq|,

i.e., the length of edges are preserved by morphisms. Hence trpAq Ď trpBq, and
the equality holds if f is surjective. This means that if B is an O-monograph
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then so is A, and that every ordinal for B is an ordinal for A. This also means
that the images of nodes can only be nodes:

f´1rNBs “ tx P E | |fpxq| “ 0u “ tx P E | |x| “ 0u “ NA.

The sequences făα ˝Apxq and B ˝ fpxq should also have the same elements

pfăα ˝Apxqqι “ pf ˝ pApxqqqι “ fpApxqιq “ fpxιq

and pB ˝ fpxqqι “ Bpfpxqqι “ fpxqι

for all ι ă |x|. Thus f : E Ñ F is a morphism iff

|fpxq| “ |x| and fpxιq “ fpxqι for all x P E and all ι ă |x|.

Assuming that f : A Ñ B is a morphism and that B is standard, we have
fpxιq “ fpxqι P NB thus xι P f

´1rNBs “ NA for all x P E and ι ă |x|, hence A
is also standard.

Given morphisms f : AÑ B and g : B Ñ C, we see that g ˝f is a morphism
from A to C by letting α be an ordinal for B, so that

pg ˝ fqăα ˝A “ găα ˝ făα ˝A “ găα ˝B ˝ f “ C ˝ g ˝ f.

Definition 3.5 (categories of monographs, functor E). Let Monogr be the
category of monographs and their morphisms. Let SMonogr be its full sub-
category of standard monographs. For any set O of ordinals, let O-Monogr
(resp. O-SMonogr) be the full subcategory of O-monographs (resp. standard
O-monographs). Let FMonogr be the full subcategory of finite ω-monographs.

Let E be the forgetful functor from Monogr to Sets, i.e., for every mono-
graph A let EA be the set of edges of A, and for every morphism f : AÑ B let
Ef : EAÑ EB be the underlying function, usually denoted f .

There is an obvious similitude between standard t0, 2u-monographs and
graphs. It is actually easy to define a functor M : Graphs Ñ t0, 2u-SMonogr
by mapping any graph G “ pN,E, s, tq to the monograph MG whose set of edges
is the coproduct N`E, and that maps every edge e P E to the sequence of nodes
speq tpeq (and of course every node x P N to ε). Similarly graph morphisms are
transformed into morphisms of monographs through a coproduct of functions.
It is easy to see that M is an equivalence of categories.

It is customary in Algebraic Graph Transformation to call typed graphs the
objects of GraphszG, where G is a graph called type graph, see e.g. [2]. We will
extend this terminology to monographs and refer to the objects of MonogrzT
as the monographs typed by T and T as a type monograph.

4 Limits and Colimits

The colimits of monographs follow the standard constructions of colimits in
Sets and Graphs.
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Lemma 4.1. Every pair pA,Bq of monographs has a coproduct pA`B,µ1, µ2q

such that trpA`Bq “ trpAq Y trpBq and if A and B are finite (resp. standard)
then so is A`B.

Proof. Let α be an ordinal for A and B, and pEA`EB,µ1, µ2q be the coproduct
of pEA,EBq in Sets. Since every element of EA`EB is either a µ1pxq or a µ2pyq

for some x P EA, y P EB, we can define a monograph C by taking EC
def
“ EA`EB

with Cpµ1pxqq
def
“ µăα1 ˝Apxq and Cpµ2pyqq

def
“ µăα2 ˝Bpyq for all x P EA, y P EB,

so that µ1 : A Ñ C and µ2 : B Ñ C are morphisms. It is obvious that
trpCq “ trpAq Y trpBq and if A and B are finite (resp. standard) then so is C.

EA

EB

EA` EB ED

f
µ1

g
µ2

h

A

B

C D

f
µ1

g
µ2

h

Let f : A Ñ D and g : B Ñ D, there exists a unique function h from
EA` EB “ EC to ED such that f “ h ˝ µ1 and g “ h ˝ µ2, hence

hăα ˝ Cpµ1pxqq “ ph ˝ µ1q
ăα ˝Apxq “ făα ˝Apxq “ D ˝ fpxq “ D ˝ hpµ1pxqq

for all x P EA, and similarly hăα ˝Cpµ2pyqq “ D˝hpµ2pyqq for all y P EB, hence
hăα ˝ C “ D ˝ h, i.e., h : C Ñ D is a morphism.

Lemma 4.2. Every pair of parallel morphisms f, g : A Ñ B has a coequalizer
pQ, cq such that trpQq “ trpBq and if B is finite (resp. standard) then so is Q.

Proof. Let α be an ordinal for B and „ be the smallest equivalence relation
on EB that contains R “ tpfpxq, gpxqq | x P EAu and c : EB Ñ EB{„ be the
canonical surjection, so that c ˝ f “ c ˝ g. We thus have for all x P EA that

căα ˝B ˝ fpxq “ pc ˝ fqăα ˝Apxq “ pc ˝ gqăα ˝Apxq “ căα ˝B ˝ gpxq.

For all y, y1 P EB such that cpyq “ cpy1q, i.e., y „ y1, there is a finite sequence
y0, . . . , yn of elements of EB such that y0 “ y, yn “ y1 and yi R yi`1 or
yi`1 R yi for all 0 ď i ă n, hence căα ˝ Bpyiq “ căα ˝ Bpyi`1q, and therefore
căα ˝Bpyq “ căα ˝Bpy1q.

We can now define a monograph Q by taking EQ “ EB{„ with Qpcpyqq
def
“

căα ˝ Bpyq, so that c : B Ñ Q is a morphism. Since c is surjective then
trpQq “ trpBq and if B is finite (resp. standard) then so is Q.

EA EB EB{„

ED

f

g
c

d
h

A B Q

D

f

g
c

d
h
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Let d : B Ñ D such that d ˝ f “ d ˝ g, there exists a unique function h from EQ
to ED such that d “ h ˝ c, and h : QÑ D is a morphism since for all y P EB ,

D ˝ hpcpyqq “ D ˝ dpyq “ dăα ˝Bpyq “ hăα ˝ căα ˝Bpyq “ hăα ˝Qpcpyqq.

Corollary 4.3. The epimorphisms in Monogr are the surjective morphisms.

Proof. Assume f : AÑ B is an epimorphism. Let pB`B,µ1, µ2q be a coproduct
of pB,Bq and pQ, cq be the coequalizer of µ1 ˝f, µ2 ˝f : AÑ B`B constructed
in the proof of Lemma 4.2, then c ˝ µ1 ˝ f “ c ˝ µ2 ˝ f , hence c ˝ µ1 “ c ˝ µ2.
For all y P EB we thus have µ1pyq „ µ2pyq, and since µ1pyq ‰ µ2pyq then µ1pyq
must be related by R to some element of EpB `Bq, hence there is an x P EA
such that µ1pyq “ µ1 ˝ fpxq, thus y “ fpxq since µ1 is injective; this proves that
f is surjective. The converse is obvious.

A well-known consequence of Lemmas 4.1, 4.2 and that ∅ is the initial
monograph is that all finite diagrams have colimits.

Theorem 4.4. The categories of Definition 3.5 are finitely co-complete.

We next investigate the limits in categories of monographs. Products of
monographs are more difficult to build than products of graphs. This is due
to the fact that edges of identical length may be adjacent to edges of different
lengths.

Lemma 4.5. Every pair pA,Bq of monographs has a product pA ˆ B, π11, π
1
2q

such that AˆB is finite whenever A and B are finite.

Proof. Let α be an ordinal for A and B, let pEAˆEB, π1, π2q be the product of
pEA,EBq in Sets, we consider the set of subsets H of tpx, yq P EAˆ EB | |x| “
|y|u such that px, yq P H entails pxι, yιq P H for all ι ă |x|. This set contains
∅ and is closed under union, hence it has a greatest element EP , and we let
P px, yq

def
“ xApxq, Bpyqy for all px, yq P EP ; this is obviously an EP -sequence,

hence P is a monograph. Let π11
def
“ π1|EP and π12

def
“ π2|EP , we have

π1ăα1 ˝ P px, yq “ Apxq “ A ˝ π11px, yq

for all px, yq P EP , hence π11 : P Ñ A and similarly π12 : P Ñ B are morphisms.

EA

EB

EAˆ EBEC

f
π1

g
π2

xf, gy

A

B

PC

f
π11

g
π12

h
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Let f : C Ñ A and g : C Ñ B, then xf, gy : EC Ñ EAˆEB and for all z P EC
we have |fpzq| “ |z| “ |gpzq| hence xf, gyrECs Ď tpx, yq P EA ˆ EB | |x| “ |y|u.
Assume that px, yq P xf, gyrECs, then there exists a z P EC such that x “ fpzq
and y “ gpzq, hence |x| “ |y|, fpzιq “ fpzqι “ xi and gpzιq “ gpzqι “ yι
for all ι ă |x|, hence pxι, yιq P xf, gyrECs. Thus xf, gyrECs Ď EP and we let

h
def
“ xf, gy|EPEC , then h is the unique function such that π11 ˝h “ f and π12 ˝h “ g,

and h : C Ñ P is a morphism since for all z P EC,

P ˝ hpzq “ P pfpzq, gpzqq

“ xA ˝ fpzq, B ˝ gpzqy

“ xfăα ˝ Cpzq, găα ˝ Cpzqy

“ hăα ˝ Cpzq.

We therefore see that EpAˆBq is only a subset of EAˆ EB.

Lemma 4.6. Every pair of parallel morphisms f, g : A Ñ B has an equalizer
pE, eq such that E is finite whenever A is finite.

Proof. Let α be an ordinal for A, EE
def
“ tx P EA | fpxq “ gpxqu, e : EE ãÑ EA

be the canonical injection and Epxq
def
“ Apxq for all x P EE. Since

făα ˝Apxq “ B ˝ fpxq “ B ˝ gpxq “ găα ˝Apxq

then Epxq is an EE-sequence, hence E is a monograph. Besides eăα ˝ Epxq “
Apxq “ A ˝ epxq, hence e : E Ñ A is a morphism such that f ˝ e “ g ˝ e.

EA EBEE

ED

f

g
e

d
h

A BE

D

f

g
e

d
h

For any d : D Ñ A such that f ˝ d “ g ˝ d, we have dpyq P EE for all y P ED,

hence h
def
“ d|EEED is the unique function such that d “ e ˝ h. We have

eăα ˝ hăα ˝D “ dăα ˝D “ A ˝ d “ A ˝ e ˝ h “ eăα ˝ E ˝ h

and eăα : pEEqăα ãÑ pEAqăα is the canonical injection, hence hăα ˝D “ E ˝ h
and h : D Ñ E is a morphism.

Corollary 4.7. The monomorphisms in Monogr are the injective morphisms.

Proof. Assume f : AÑ B is a monomorphism. Let pAˆA, π1, π2q be a product
of pA,Aq and pE, eq be the equalizer of f ˝π1, f ˝π2 : AˆAÑ B constructed in
the proof of Lemma 4.6, then f ˝π1 ˝ e “ f ˝π2 ˝ e, hence π1 ˝ e “ π2 ˝ e. For all
x, y P EA, if fpxq “ fpyq then f ˝ π1px, yq “ f ˝ π2px, yq hence px, yq P EE and
therefore x “ π1 ˝ epx, yq “ π2 ˝ epx, yq “ y, hence f is injective. The converse
is obvious.
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A well-known consequence of Lemmas 4.5 and 4.6 is that all non-empty
finite diagrams in Monogr have limits. Since a limit of O-monographs (resp.
standard monographs) is an O-monograph (resp. standard), this holds for all
categories of Definition 3.5. In particular they all have pullbacks.

We shall now investigate the limits of the empty diagram in these categories,
i.e., their possible terminal objects.

Definition 4.8. For any set of ordinals O, let

TO “

"

tpλ, 0Òλq | λ P Ou if 0 P O
∅ otherwise.

If 0 P O then 0 is a node of TO and obviously ETO “ trpTOq “ O. Hence in
all cases TO is a standard O-monograph.

Lemma 4.9. TO is terminal in O-SMonogr.

Proof. If 0 R O then ∅ “ TO is the only standard O-monograph, hence it is
terminal. Otherwise let A be any standard O-monograph, α an ordinal for A
and ` : EA Ñ O be the function that maps every edge x P EA to its length
|x|. Since A is standard then p`ăα ˝ Apxqqι “ |Apxqι| “ 0 for all ι ă |x|, hence
`ăα ˝ Apxq “ 0Ò|x| “ TO ˝ `pxq, so that ` : A Ñ TO is a morphism. Since
morphisms preserve the length of edges and there is exactly one edge of each
length in TO, then ` is unique.

We now use the fact that every ordinal is a set of ordinals.

Lemma 4.10. For any monograph T and morphism f : Tα Ñ T , any ordinal
for T is equal to or greater than α.

Proof. Let β be an ordinal for T , then by the existence of f we have α “

trpTαq Ď trpT q Ď β, hence α ď β.

Lemma 4.11. Monogr, SMonogr and FMonogr have no terminal object.

Proof. Suppose that T is a terminal monograph, then there is an ordinal β for
T and there is a morphism from Tβ`1 to T ; by Lemma 4.10 this implies that
β ` 1 ď β, a contradiction. This still holds if T is standard since Tβ`1 is
standard. And it also holds if T is a finite ω-monograph, since then β can be
chosen finite, and then Tβ`1 is also a finite ω-monograph.

Since terminal objects are limits of empty diagrams obviously these cate-
gories are not finitely complete.

Theorem 4.12. O-SMonogr is finitely complete for every set of ordinals O.
The categories Monogr, SMonogr and FMonogr are not finitely complete.

Proof. By Lemmas 4.5, 4.6, 4.9 and 4.11.

The category Graphs is also known to be adhesive, a property of pushouts
and pullbacks that has important consequences on algebraic transformations
(see [8]) and that we shall therefore investigate.

11



Definition 4.13 (van Kampen squares, adhesive categories). A pushout square
pA,B,C,Dq is a van Kampen square if for any commutative cube

C

D

A

B

C 1

D1

A1

B1

where the back faces pA1, A,B1, Bq and pA1, A,C 1, Cq are pullbacks, it is the case
that the top face pA1, B1, C 1, D1q is a pushout iff the front faces pB1, B,D1, Dq
and pC 1, C,D1, Dq are both pullbacks.

A category has pushouts along monomorphisms if all sources pA, f, gq have
pushouts whenever f or g is a monomorphism.

A category is adhesive if it has pullbacks, pushouts along monomorphisms
and all such pushouts are van Kampen squares.

As in the proof that Graphs is adhesive, we will use the fact that the
category Sets is adhesive.

Lemma 4.14. E reflects isomorphisms.

Proof. Let f : A Ñ B such that f is bijective, then it has an inverse f´1 :
EB Ñ EA. For all y P EB and all ι ă |y|, let x “ f´1pyq, we have

f´1pyιq “ f´1pfpxqιq “ f´1pfpxιqq “ xι “ f´1pyqι

hence f´1 : B Ñ A is a morphism, and f is therefore an isomorphism.

A side consequence is that Monogr is balanced, i.e., if f is both a monomor-
phism and an epimorphism, then by Corollaries 4.3 and 4.7 f is bijective, hence
is an isomorphism. More important is that we can use [7, Theorem 24.7], i.e.,
that a faithful and isomorphism reflecting functor from a category that has some
limits or colimits and preserves them, also reflects them.

Lemma 4.15. E preserves and reflects finite colimits.

Proof. It is easy to see from the proofs of Lemmas 4.1 and 4.2 that E preserves
both coproducts and coequalizers, so that E preserves all finite co-limits and
hence also reflects them.

This is particularly true for pushouts. The situation for pullbacks is more
complicated since E does not preserve products.

Lemma 4.16. E preserves and reflects pullbacks.

12



Proof. We first prove that E preserves pullbacks. Let f : AÑ C, g : B Ñ C and
α be an ordinal for A and B, we assume w.l.o.g. a canonical pullback pE, h, kq
of pf, g, Cq, i.e., let pA ˆ B, π11, π

1
2q be the product of pA,Bq and pE, eq be the

equalizer of pf ˝π11, g ˝π
1
2q with h “ π11 ˝ e and k “ π12 ˝ e. Let pEAˆEB, π1, π2q

be the product of pEA,EBq in Sets, we have by the proof of Lemma 4.5 that
EpAˆBq Ď EAˆ EB, π11 “ π1|EpAˆBq and π12 “ π2|EpAˆBq.

Let H
def
“ tpx, yq P EA ˆ EB | fpxq “ gpyqu and j : H ãÑ EA ˆ EB be the

canonical injection. By canonical construction pH,π1 ˝ j, π2 ˝ jq is a pullback
of pf, g,ECq in Sets; we next prove that it is the image by E of the pullback
pE, h, kq of pf, g, Cq in Monogr.

A

B C

E

AˆB f

g

h

k

e
π11

π12

EA

EB EC

H

EAˆ EB f

g

π1 ˝ j

π2 ˝ j

j π1

π2

By the construction of E in Lemma 4.6 we have EE “ tpx, yq P EpAˆBq |
fpxq “ gpyqu Ď H and e : EE ãÑ EpAˆBq is the canonical injection. For all
px, yq P H we have |x| “ |fpxq| “ |gpyq| “ |y|, and for all ι ă |x| we have
fpxιq “ fpxqι “ gpyqι “ gpyιq so that pxι, yιq P H and therefore H Ď EpAˆBq
by the construction of A ˆ B in Lemma 4.5. We thus have H “ EE hence
π1 ˝ j “ π11 ˝ e “ h and π2 ˝ j “ π12 ˝ e “ k, so that E preserves pullbacks and
hence as above E also reflects them.

Theorem 4.17. The categories of Definition 3.5 are adhesive.

Proof. The existence of pullbacks and pushouts is already established. In any of
these categories a commutative cube built on a pushout along a monomorphism
as bottom face and with pullbacks as back faces, has an underlying cube in Sets
that has the same properties by Corollary 4.7, Lemmas 4.15 and 4.16. Since Sets
is an adhesive category (see [8]) the underlying bottom face is a van Kampen
square, hence such is the bottom face of the initial cube by Lemmas 4.15 and
4.16.

5 Drawing Monographs

Obviously we may endeavour to draw a monograph A only if EA is finite and
if its edges have finite lengths, i.e., if A is a finite ω-monograph. If we require
that any monograph MG should be drawn as the graph G, then a node should
be represented by a bullet and an edge of length 2 by an arrow joining
its two adjacent nodes. But generally the adjacent edges may not be nodes and
there might be more than 2 of them, hence we adopt the following convention:
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an edge e of length at least 2 is represented as a sequence of connected arrows
with an increasing number of tips

x0 x1 x2 x3

(where Apeq “ x0x1x2x3 ¨ ¨ ¨ ) and such that any arrow should enter xi at the
same angle as the next arrow leaves xi. For the sake of clarity we represent
symmetric adjacencies by a pair of crossings rather than a single one, e.g., if
Apeq “ xe1y and Ape1q “ xey, where x and y are nodes, the drawing may be

but not

It is sometimes necessary to name the edges in a drawing. We may then
adopt the convention sometimes used for drawing diagrams in a category: the
bullets are replaced by the names of the corresponding nodes, and arrows are
interrupted to write their name at a place free from crossing, as in

x y
e e1

Note that no confusion is possible between the names of nodes and those of
other edges, e.g., in

x

y

z

it is clear that x and z are nodes since arrow tips point to them, and that y is
the name of an edge of length 3.

As is the case of graphs, monographs may not be planar and drawing them
may require crossing edges that are not adjacent; in this case no arrow tip is
present at the crossing and no confusion is possible with the adjacency crossings.
However, it may seem preferable in such cases to erase one arrow in the proximity

of the other, as in .
There remains to represent the edges of length 1. Since Apeq “ x is stan-

dardly written A : e ÞÑ x, the edge e will be drawn as

x

In order to avoid confusion there should be only one arrow out of the thick dash,
e.g., if Apeq “ e1 and Ape1q “ ex where x is a node, the drawing may be

but not e

e1
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since this last drawing may be interpreted as the monograph Ape1q “ x and
Apeq “ e1e1, that is not isomorphic to the intended monograph.

Other conventions may be more appropriate depending on the context or on
specific monographs. Consider for instance a monograph with one node x and
two edges xÒ3 and xÒ4. The concentration of many arrow tips on a single bullet
would make things confused unless it is sufficiently large. One possibility is to
replace the bullet by a circle and treat it as a standard edge without tips. This
monograph could then be drawn as

x

These conventions are designed so that it is only possible to read a drawing
of any finite ω-monograph A as the monograph A itself if all edges are named in
the drawing, or as some monograph isomorphic to A otherwise. This would not
be possible if a monograph A was a function rather than a functional relation,
since then its codomain pEAqăα would not be pictured. It would of course be
possible to add the ordinal α to the drawing, but then would it still qualify as
a drawing?

Note that the drawing of a graph or of a standard t0, 2u-monograph can be
read either as a graph G or as a monograph A, and then MG » A.

One particularity of monographs is that edges can be adjacent to themselves,
as in

We may also draw typed monographs, then every edge e P EA has a type
apeq that can be written at the proximity of e. For instance, a monograph typed
by T “ tpu, vq, pv, uqu is drawn with labels u and v as in

u

u

v

v
vu

u

Of course, knowing that a is a morphism sometimes allows to deduce the
type of an edge, possibly from the types of adjacent edges. In the present case,
indicating a single type would have been enough to deduce all the others.
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In particular applications it may be convenient to adopt completely different
ways of drawing (typed) monographs.

Example 5.1. In [9] term graphs are defined from structures pV,E, lab, attq
where V is a set of nodes, E a set of hyperedges, att : E Ñ V ăω defines the
adjacencies and lab : E Ñ Ω such that |attpeq| is 1 plus the arity of labpeq for all
e P E (for the sake of simplicity, we consider only ground terms of a signature
Σ : Ω Ñ Săω such that ΩXS “ ∅). The first element of the sequence attpeq is
considered as the result node of e and the others as its argument nodes, so that
e determines paths from its result node to all its argument nodes. Term graphs
are those structures such that paths do not cycle, every node is reachable from a
root node and is the result node of a unique hyperedge. This definition is given
for unsorted signatures but can easily be generalized, as we do now.

We consider the type monograph TΣ defined by ETΣ
def
“ S YΩ, and

TΣpsq
def
“ ε for all s P S,

TΣpoq
def
“ Σpoq for all o P Ω.

Note that TΣ is a standard ω-monograph, and indeed that any standard ω-
monograph has this form for a suitable Σ.

Any typed monograph a : AÑ TΣ corresponds to a structure pV,E, lab, attq
where V “ NA, E “ EAzNA, labpeq “ apeq and attpeq “ Apeq for all e P E.
The only difference (due to our definition of signatures) is that the result node
of e is now the last node of the sequence Apeq.

We now consider the signature Σ with two sorts s, s1, a binary function
symbol f with Σpfq “ s1 s1 s and a constant symbol c with Σpcq “ s1. We
represent the term graph fpc, cq, where the two occurrences of c are shared, as
a typed monograph a : AÑ TΣ. We need two edges e, e1 and their result nodes
x, x1, the first for f and the second for c. Thus A is defined by

EA “ tx, x1, e, e1u, Apxq “ Apx1q “ ε, Apeq “ x1 x1 x and Ape1q “ x1.

The typing morphism a : AÑ TΣ is given by

apxq “ s, apx1q “ s1, apeq “ f and ape1q “ c.

We give below the standard drawing of the monograph A typed by a and the
(clearly preferable) standard depiction of the corresponding term graph.

s1 s

a

f
f

a

s

s1
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6 Graph Structures and Typed Monographs

The procedure of reading the drawing of a graph as a Γg-algebra G, where Γg

is the signature of graphs given in Section 1, is rather simple: every bullet is
interpreted as an element of Gnodes, every arrow as an element of Gedges and the
images of this element by the functions srcG and tgtG are defined according to
geometric proximity in the drawing. A procedure for reading E-graphs would
be similar, except that bullets may be interpreted either as nodes or values,
and this typing information should therefore be indicated in the drawing.

Since the drawing of a graph is nothing else than the drawing of a stan-
dard t0, 2u-monograph, we may skip the drawing step and directly transform a
standard t0, 2u-monograph A as a Γg-algebra G. Then

Gnodes “ NA, Gedges “ tx P EA | |x| “ 2u, srcGpxq “ x0 and tgtGpxq “ x1

for all x P Gedges. Thus every node of A is typed by nodes and all other edges are
typed by edges. This typing is obviously a morphism from A to the monograph
tpnodes, εq, pedges, nodes nodesqu that is isomorphic to the terminal object of
t0, 2u-SMonogr (see Lemma 4.9).

More generally, for any given graph structure Γ we may ask which mono-
graphs, equipped with a suitable morphism to a type monograph T , can be
interpreted in this way as Γ -algebras. As above, the edges of T should be the
sorts of Γ . But this is not sufficient since there is no canonical way of linking
adjacencies in T (such as edges0 “ nodes and edges1 “ nodes) with the op-
erator names of Γ (such as src and tgt). We will therefore use a notion of
morphism between signatures in order to rename operators, and we also rename
sorts in order to account for functoriality in T .

Definition 6.1 (categories Sig, GrStruct, Sigsrt). A morphism r from Σ :
Ω Ñ Săω to Σ1 : Ω1 Ñ S1ăω is a pair propn, rsrtq of functions ropn : Ω Ñ Ω1

and rsrt : S Ñ S1 such that

răωsrt ˝Σ “ Σ1 ˝ ropn.

For any morphism r1 : Σ1 Ñ Σ2 let r1 ˝ r
def
“ pr1opn ˝ ropn, r

1
srt ˝ rsrtq : Σ Ñ Σ2,

1Σ
def
“ pIdΩ , IdSq, and Sig be the category of signatures and their morphisms.

Let GrStruct be the full subcategory of graph structures.
Let Sigsrt be the subcategory of Sig restricted to morphisms of the form

propn, jq where j is a canonical injection. We write 9» for the isomorphism
relation between objects in Sigsrt.

The question is therefore to elucidate the link between T and Γ . As explained
above, the edges of T correspond to the sorts of Γ . We also see that every
adjacency in T corresponds to an operator name in Γ , e.g., an edge e of length
2 adjacent to e0 and e1 (i.e. such that T peq “ e0 e1) corresponds to two operator
names, say srce and tgte, of domain sort e and range sort e0 and e1 respectively.
Since edges may have length greater than 2, we create canonical operator names
of the form [e¨ι] for the ιth adjacency of the edge e for every ι ă |e| (hence we
favor [e¨0] and [e¨1] over srce and tgte).
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Definition 6.2 (functor S : Monogr Ñ GrStruct). To every monograph T

we associate the set of operator names ΩT
def
“ t[e¨ι] | e P ET and ι ă |e|u and

the graph structure ST : ΩT Ñ pET qăω defined by ST p[e¨ι]q
def
“ e eι for all

[e¨ι] P ΩT , i.e., we let Domp[e¨ι]q
def
“ e and Rngp[e¨ι]q

def
“ eι.

To every morphism f : T Ñ T 1 in Monogr we associate the morphism
Sf : ST Ñ ST 1 defined by: pSfqopn is the function that maps every operator
name [e¨ι] P ΩT to the operator name [fpeq¨ι] P ΩT 1 , and pSfqsrt is the function
f : ET Ñ ET 1.

We see that Sf is indeed a morphism of graph structures:

pSfqăωsrt ˝ST p[e¨ι]q “ fpeq fpeιq “ fpeq fpeqι “ ST 1p[fpeq¨ι]q “ ST 1˝pSfqopnp[e¨ι]q

for all [e¨ι] P ΩT , and it is obvious that S is a faithful functor.
The next lemma is central as it shows that no graph structure is omitted by

the functor S if we allow sort-preserving isomorphisms of graph structures. We
assume the Axiom of Choice through its equivalent formulation known as the
Numeration Theorem [5].

Lemma 6.3. For every graph structure Γ there exists a monograph T such that
ST 9» Γ .

Proof. Let Γ : Ω Ñ Săω and for every sort s P S let Ωs be the set of operator
names o P Ω whose domain sort is s, i.e., Ωs

def
“ Dom´1

rss. By the Numeration
Theorem there exists an ordinal λs equipollent to Ωs, i.e., such that there exists
a bijection νs : λs Ñ Ωs. Let T be the monograph such that ET

def
“ S and

T psqι
def
“ Rngpνspιqq for all ι ă λs, so that T psq is an S-sequence of length λs.

s1

s0

s2

s sΓ ST

...

T psq

[s¨0]

[s¨1]

[s¨2]

νsp0q

νsp1q

νsp2q

We now consider the function ropn : ΩT Ñ Ω defined by ropnp[s¨ι]q
def
“ νspιq.

This function is surjective since for all o P Ω, by taking s “ Dompoq and
ι “ ν´1

s poq we get ι ă λs “ |s| hence [s¨ι] P ΩT and obviously ropnp[s¨ι]q “ o.
It is also injective since ropnp[s¨ι]q “ ropnp[s

1¨ι1]q entails s “ Dompνspιqq “
Dompνs1pι

1qq “ s1 hence ι “ ι1 and therefore [s¨ι] “ [s1¨ι1]. Finally, we see that

IdăωS ˝ ST p[s¨ι]q “ s sι “ DompνspιqqRngpνspιqq “ Γ pνspιqq “ Γ ˝ ropnp[s¨ι]q

for all [s¨ι] P ΩT , hence propn, IdSq : ST Ñ Γ is an isomorphism, so that
ST 9» Γ .
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The reason why monographs require edges of ordinal length now becomes
apparent: the length of an edge s is the cardinality of Ωs, i.e., the number of
operator names whose domain sort is s, and no restriction on this cardinality is
ascribed to graph structures. The bijections νs provide linear orderings of the
sets Ωs. Since T psq depends on νs the monograph T such that ST 9» Γ may not
be unique, even though S is injective on objects, as we now show.

Theorem 6.4. S is an isomorphism-dense embedding of Monogr into GrStruct.

Proof. It is trivial by Lemma 6.3 that S is isomorphism-dense since ST 9» Γ
entails ST » Γ . Assume that ST “ ST 1 then ET “ ET 1 and ΩT “ ΩT 1 , hence
|T peq| “ |T 1peq| for all e P ET , and T peqι “ pST p[e¨ι]qq1 “ pST 1p[e¨ι]qq1 “
T 1peqι for all ι ă |e|, thus T “ T 1.

It is therefore clear that if S were full it would be an equivalence of categories,
but this is not the case as we now illustrate on graphs.

Example 6.5. We consider the graphs structure Γg. We have Ωnodes “ ∅
and Ωedges “ tsrc, tgtu, hence λedges “ 2. Let νedges : 2 Ñ Ωedges be the
bijection defined by νedges : 0 ÞÑ src, 1 ÞÑ tgt, the corresponding monograph

is Tg
def
“ tpnodes, εq, pedges, nodes nodesqu, and we easily check that STg 9»

Γg. However, the only automorphism of Tg is 1Tg
, while Γg has a non trivial

automorphism m “ ppsrc tgtq, Idtnodes,edgesuq (in cycle notation), hence S is
not surjective on morphisms.

This automorphism reflects the fact that a graph structure does not define
an order between its operator names. Directing edges as arrows from src to
tgt or the other way round is a matter of convention that is reflected in the
choice of νedges in Example 6.5. This contrasts with monographs where edges are
inherently directed by ordinals, and also with the structure of graphs where the
source function comes first. In the translation from Monogr to GrStruct the
direction of edges are necessarily lost, hence these categories are not equivalent.

Example 6.6. The signature Γe of E-graphs from [2] has five sorts edges,
nv-edges, ev-edges, nodes, values and six operator names srce, tgte, srcnv,
tgtnv, srcev, tgtev whose domain and range sorts are defined as in Section 1.
We have Ωnodes “ Ωvalues “ ∅, Ωedges “ tsrce, tgteu, Ωnv-edges “ tsrcnv, tgtnvu
and Ωev-edges “ tsrcev, tgtevu. There are four possible monographs T such that
ST 9» Γe given by

T pnodesq “ T pvaluesq “ ε, T pnv-edgesq “ nodes values or values nodes,
T pedgesq “ nodes nodes, T pev-edgesq “ edges values or values edges.

These four monographs are depicted below.

T1 T2 T3 T4
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e eι[e¨ι] ÞÑST

x xιA EA

ET

[e¨ι]A

a a

Figure 1: The ST -algebra A “ ATa where a : AÑ T

The type indicated by the syntax (and consistent with the drawings of E-graphs
in [2]) is of course T1.

The restrictions of S to the categories of Definition 3.5 are isomorphism-dense
embeddings into full subcategories of GrStruct that are easy to define. The
O-monographs correspond to graph structures Γ : Ω Ñ Săω such that |Ωs| P O
for all s P S, and the standard monographs to ΩRngpoq “ ∅ for all o P Ω. The
finite monographs correspond to finite S, hence FMonogr corresponds to finite
signatures.

We can now describe precisely how a monograph A typed by T through
a : AÑ T can be read as an ST -algebra A. As mentioned above, every edge x
of A is typed by apxq P ET and should therefore be interpreted as an element of
Aapxq, hence Aapxq is the set of all edges x P EA that are typed by apxq. Then,

for every ι ă |x| “ |apxq|, the ιth adjacent edge xι of x is the image of x by the
ιth operator name for this type of edge, that is [apxq¨ι]. Note that the sort of
this image is apxιq “ apxqι that is precisely the range sort of the operator name
[apxq¨ι] in ST (see Definition 6.2), so that A is indeed an ST -algebra. This
leads to the following definition.

Definition 6.7 (functor AT : MonogrzT Ñ ST -Alg). Given a monograph T ,
we define the function AT that maps every object a : A Ñ T of MonogrzT to
the ST -algebra A “ ATa defined by

• Ae
def
“ a´1res for all e P ET , and

• [e¨ι]Apxq
def
“ xι for all [e¨ι] P ΩT and x P Ae.

Besides, AT also maps every morphism f : a Ñ b, where b : B Ñ T , to the
ST -homomorphism AT f from A to B “ AT b defined by

pAT fqe
def
“ f |BeAe for all e P ET.

The ST -algebra A can be pictured as in Figure 1. The carrier sets Ae form a
partition of EA. Since f : aÑ b (not pictured) is a function f : EAÑ EB such
that b ˝ f “ a, then b ˝ f rAes “ ara´1ress Ď teu hence f rAes Ď b´1res “ Be, so
that f |BeAe is well-defined. We also see that h “ AT f is an ST -homomorphism
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from A to B since for every operator name [e¨ι] P ΩT we have Domp[e¨ι]q “ e,
Rngp[e¨ι]q “ eι and

[e¨ι]B ˝hepxq “ [e¨ι]Bpfpxqq “ fpxqι “ fpxιq “ fp[e¨ι]Apxqq “ heι ˝[e¨ι]
A
pxq

for all x P Ae. It is obvious from Definition 6.7 that AT preserves identities and
composition of morphisms, hence that it is indeed a functor.

Theorem 6.8. For every monograph T , AT is an equivalence.

Proof. Let a : A Ñ T and b : B Ñ T be objects of MonogrzT and A def
“ ATa,

B def
“ AT b. It is trivial that AT is faithful.
AT is full. For any ST -homomorphism h : A Ñ B, let f : EA Ñ EB be the

function defined by fpxq
def
“ hapxqpxq for all x P EA. Let e “ apxq so that x P Ae,

since hepxq P Be “ b´1res then b ˝ fpxq “ bphepxqq “ e, hence b ˝ f “ a and
|fpxq| “ |bpfpxqq| “ |apxq| “ |x|. For all ι ă |x| we have apxιq “ apxqι “ eι and
since h is an ST -homomorphism then

fpxιq “ heιp[e¨ι]
A
pxqq “ [e¨ι]Bphepxqq “ fpxqι

hence f : a Ñ b is a morphism. Since pAT fqepxq “ f |BeAepxq “ hepxq for all
e P ET and all x P Ae, then AT f “ h.

AT is isomorphism-dense. For any ST -algebra C, let

EC
def
“

ď

ePET

Ce ˆ teu and pCpx, eqqι
def
“ p[e¨ι]Cpxq, eιq

for all px, eq P EC and ι ă |e|. Since Rngp[e¨ι]q “ eι then [e¨ι]Cpxq P Ceι
hence pCpx, eqqι P EC, so that C is a monograph such that |px, eq| “ |e|. Let

c : EC Ñ ET be defined by cpx, eq
def
“ e, we have

cppx, eqιq “ cp[e¨ι]Cpxq, eιq “ eι “ pcpx, eqqι,

hence c : C Ñ T is a morphism. For all e P ET we have pAT cqe “ c´1res “

Ceˆteu, and we let he : Ce Ñ pAT cqe be defined by hepxq
def
“ px, eq for all x P Ce.

The functions he are bijective and h
def
“ pheqePET is an ST -homomorphism since

[e¨ι]AT c ˝ hepxq “ [e¨ι]AT cpx, eq “ px, eqι “ p[e¨ι]
C
pxq, eιq “ heι ˝ [e¨ι]

C
pxq,

for all [e¨ι] P ΩT and x P Ce, hence C » AT c.

It is easy to see that for any two signatures Σ and Σ1, if Σ » Σ1 then
Σ-Alg » Σ1-Alg. We conclude that all graph structured algebras can be rep-
resented as typed monographs.

Corollary 6.9. For every graph structure Γ there exists a monograph T such
that Γ -Alg « MonogrzT .

Proof. By Lemma 6.3 there exists T such that Γ » ST , hence MonogrzT «
ST -Alg » Γ -Alg.
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Example 6.10. Following [10], an 8-graph G is given by a diagram of sets

G0

s0

t0
G1

s1

t1
¨ ¨ ¨

sn´1

tn´1

Gn
sn

tn
Gn`1

sn`1

tn`1

¨ ¨ ¨

such that, for every n P ω, the following equations hold:

sn ˝ sn`1 “ sn ˝ tn`1, tn ˝ sn`1 “ tn ˝ tn`1.

This means that every element x of Gn`2 is an edge whose source x0 and target
x1 are edges of Gn that are parallel, i.e., that have same source px0q0 “ px1q0

and same target px0q1 “ px1q1. Graphically:

px0q0 px1q1

x0

x1

x

This is known as the globular condition. We consider the type monograph T8
defined by ET8 “ ω,T8p0q “ ε and T8pn` 1q “ nn for all n P ω. This is an
infinite non-standard t0, 2u-monograph that can be pictured as

¨ ¨ ¨

We express the globular condition on typed monographs g : GÑ T8 as:

for all x P EG, if gpxq ě 2 then Gpx0q “ Gpx1q.

We rapidly check that this is equivalent to the globular condition on the ST8-
algebra G “ AT8g. The set of sorts of ST8 is ω and its operator names are
[n` 1¨0] and [n` 1¨1] with domain sort n` 1 and range sort n, for all n P ω.
We let sn

def
“ [n` 1¨0]G and tn

def
“ [n` 1¨1]G, that are functions from Gn`1 to

Gn as in the diagram of 8-graphs.
By Definition 6.7 we have for all x P Gn`2 “ g´1rn` 2s and all i, j P 2 that

[n` 1¨j]G ˝ [n` 2¨i]Gpxq “ [n` 1¨j]Gpxiq “ pxiqj

hence

Gpx0q “ Gpx1q iff px0q0 “ px1q0 and px0q1 “ px1q1

iff [n` 1¨0]G ˝ [n` 2¨0]Gpxq “ [n` 1¨0]G ˝ [n` 2¨1]Gpxq

and [n` 1¨1]G ˝ [n` 2¨0]Gpxq “ [n` 1¨1]G ˝ [n` 2¨1]Gpxq

iff sn ˝ sn`1pxq “ sn ˝ tn`1pxq and tn ˝ sn`1pxq “ tn ˝ tn`1pxq.

Example 6.11. The signature Γh of hypergraphs (see [3, Example 3.4]) is

defined by the set of sorts Sh
def
“ tVu Y tHn,m | n,m P ωu and for all n,m P ω
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by n operator names src
n,m
i and m operator names tgt

n,m
j with domain sort

Hn,m and range sort V for all 1 ď i ď n and 1 ď j ď m. Hence there are n`m
operator names of domain Hn,m, and pn`mq! bijections from the ordinal n`m
to this set of operator names. But since they all have the same range sort V,
the type monograph Th does not depend on these bijections (one for every pair

pn,mq). It is defined by ETh
def
“ Sh and

ThpVq “ ε

ThpHn,mq “ VÒpn`mq for all n,m P ω.

This is a standard ω-monograph. It is easy to see that any standard ω-monograph
can by typed by Th, though not in a unique way. Every edge of length l ą 0 can
be typed by any sort Hn,m such that n`m “ l, and every node can be typed by
V (or by H0,0 if it is not adjacent to any edge). To any such typing corresponds
an STh-algebra by the equivalence ATh

, and then to a hypergraph (a Γh-algebra)
since Γh » STh.

But to know which hypergraph H corresponds exactly to a typed monograph
we need to be more specific, since there are infinitely many isomorphisms be-
tween Γh and STh. The natural isomorphism stems from the obvious orderings
src

n,m
1 ă ¨ ¨ ¨ ă srcn,mn ă tgt

n,m
1 ă ¨ ¨ ¨ ă tgtn,mm for all n,m P ω. In this iso-

morphism the canonical operator name [Hn,m¨i] for all i ă n`m corresponds to
src

n,m
i`1 if i ă n, and to tgt

n,m
i`1´n if i ě n. Thus an edge x, say of length 3 typed

by H2,1, must be interpreted as an hyperedge x P HH2,1 with psrc2,1
1 qHpxq “ x0,

psrc
2,1
2 qHpxq “ x1, ptgt2,1

1 qHpxq “ x2 and x0, x1, x2 P HV.

The results of this section apply in particular to typed graphs. It is easy
to see that S ˝M is an isomorphism-dense embedding of Graphs into the full
subcategory of graph structures Γ : Ω Ñ Săω such that for every operator
name o P Ω we have |ΩDompoq| “ 2 and ΩRngpoq “ ∅. Hence for every such Γ
there exists a graph G such that GraphszG « MonogrzMG « Γ -Alg. The
type graph G is determined only up to the orientation of its edges.

7 Submonographs and Partial Morphisms

Graph structures have been characterized in [3] as the signatures that allow
the transformation of the corresponding algebras by the single pushout method.
This method is based on the construction of pushouts in categories of partial
homomorphisms, defined as standard homomorphisms from subalgebras of their
domain algebra, just as partial functions are standard functions from subsets of
their domain (in the categorical theoretic sense of the word domain). The results
of Section 6 suggest that a similar approach can be followed with monographs.
We first need a notion of submonograph, their (inverse) image by morphisms
and restrictions of morphisms to submonographs.

Definition 7.1 (submonographs and their images, restricted morphisms). A
monograph A is a submonograph of a monograph M if A Ď M . For any
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monograph N and morphism f : M Ñ N , let fpAq
def
“ tpfpxq, N ˝ fpxqq | x P

EAu. For any submonograph C Ď N , let f´1pCq
def
“ tpx,Mpxqq | x P f´1rECsu.

If fpAq Ď C, let f |CA : A Ñ C be the morphism whose underlying function is
f |ECEA.

In the sequel we will use the following obvious facts without explicit ref-
erence. fpAq and f´1pCq are submonographs of N and M respectively. If
A and B are submonographs of M then so are A Y B and A X B. We have
fpA Y Bq “ fpAq Y fpBq thus A Ď B entails fpAq Ď fpBq. If C and D
are submonographs of N we have similarly f´1pC Y Dq “ f´1pCq Y f´1pDq
and C Ď D entails f´1pCq Ď f´1pDq. We also have A Ď f´1pfpAqq and
fpf´1pCqq “ C X fpMq. For any g : N Ñ P and submonograph E of P ,
pg ˝ fq´1pEq “ f´1pg´1pEqq. If pA` B,µ1, µ2q is the coproduct of pA,Bq and
C is a submonograph of A`B then C “ µ´1

1 pCq ` µ´1
2 pCq.

We may now define the notion of partial morphisms of monographs, with
a special notation in order to distinguish them from standard morphisms, and
their composition.

Definition 7.2 (categories of partial morphisms of monographs). A partial
morphism rf s : AÑ B is a morphism f : A1 Ñ B where A1 is a submonograph
of A. f is called the underlying morphism of rf s. If the domain of f is not
otherwise specified, we write rf s : A Ðâ A1 Ñ B. If the domain A1 of f is
specified but not the domain of rf s then they are assumed to be identical, i.e.,
rf s : A1 Ðâ A1 Ñ B. For any rgs : B Ðâ B1 Ñ C we define the composition of
partial morphisms as

rgs ˝ rf s
def
“

Q

g ˝ f |B
1

f´1pB1q

U

: AÐâ f´1pB1q Ñ C.

Let MonogrP be the category of monographs and partial morphisms. Let
SMonogrP be its full subcategory of standard monographs. For any set O of
ordinals, let O-MonogrP (resp. O-SMonogrP) be its full subcategory of O-
monographs (resp. standard O-monographs). Let FMonogrP be its full subcat-
egory of finite ω-monographs.

Note that pf´1pB1q, f |B
1

f´1pB1q : f´1pB1q Ñ B1, j1 : f´1pB1q ãÑ A1q is a

pullback of pj : B1 ãÑ B, f : A1 Ñ B, Bq and is therefore an inverse image (i.e.,
a pullback along a monomorphism, see [7]), and it is therefore easy to see that
composition of partial morphisms is associative, see [11]. (Note however that
MonogrP is not a category of partial maps in the sense of [11], since partial
maps are defined modulo isomorphic variations of A1.)

We now see how these inverse images allow to formulate a sufficient condition
ensuring that restrictions of coequalizers are again coequalizers.

Lemma 7.3 (coequalizer restriction). Let A1 and B1 be submonographs of A
and B respectively and f, g : AÑ B be parallel morphisms such that

f´1pB1q “ A1 “ g´1pB1q,
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if pQ, cq is a coequalizer of pf, gq then pQ1, c1q is a coequalizer of pf |B
1

A1 , g|
B1

A1 q,

where Q1 “ cpB1q, c1 “ c|Q
1

B1 and c´1pQ1q “ B1.

A B Q

f

g

c

A1 B1 Q1

f |B
1

A1

g|B
1

A1

c1

Proof. We assume w.l.o.g. that pQ, cq is the coequalizer of pf, gq constructed in
Lemma 4.2 with„ being the equivalence relation generated byR “ tpfpxq, gpxqq |
x P EAu, and we let pQ1, c1q be the coequalizer of pf |B

1

A1 , g|
B1

A1 q constructed simi-

larly with the equivalence relation « generated by R1 “ tpf |B
1

A1 pxq, g|
B1

A1 pxqq | x P
EA1u. By the properties of f and g we have that

fpxq P EB1 iff x P f´1rEB1s iff x P EA1 iff x P g´1rEB1s iff gpxq P EB1

for all x P EA, hence for all y, y1 P EB we have that y R1 y1 iff y R y1 and
at least one of y, y1 is in EB1. By an easy induction we see that y « y1 iff
y „ y1 and y1 P EB1, hence the «-classes are the „-classes of the elements of

EB1, i.e., EQ1 “ crEB1s. It follows trivially that Q1 “ cpB1q, c1 “ c|Q
1

B1 and
c´1pQ1q “ B1.

It is then easy to obtain a similar result on pushouts.

Lemma 7.4 (pushout restriction). Let A1, B1, C 1 be submonographs of A, B,
C respectively and f : AÑ B, g : AÑ C be morphisms such that

f´1pB1q “ A1 “ g´1pC 1q,

if ph, k,Qq is a pushout of pA, f, gq, let Q1 “ hpB1q Y kpC 1q, h´1pQ1q “ B1 and

k´1pQ1q “ C 1, then ph|Q
1

B1 , k|
Q1

C1 , Q
1q is a pushout of pA1, f |B

1

A1 , g|
C1

A1 q.

A1

C 1

B1

B1 ` C 1

A

C

B

B ` C Q

Q1

f |B
1

A1

c1

h|Q
1

B1

k|Q
1

C1
g|C

1

A1

f

g

µ1
µ2

µ11
µ12

h

k

c
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Proof. We assume w.l.o.g. that ph, k,Qq is obtained by the canonical construc-
tion of pushouts, i.e., that h “ c˝µ1 and k “ c˝µ2 where pQ, cq is a coequalizer of
pµ1˝f, µ2˝gq and pB`C, µ1, µ2q is the coproduct of pB,Cq. Let pB1`C 1, µ11, µ

1
2q

be the coproduct of pB1, C 1q, then obviously B1 ` C 1 Ď B ` C, µ11 “ µ1|
B1`C1

B1

and µ12 “ µ2|
B1`C1

C1 . Since

pµ1 ˝ fq
´1pB1 ` C 1q “ f´1pB1q “ A1 “ g´1pC 1q “ pµ2 ˝ gq

´1pB1 ` C 1q

then by Lemma 7.3 pQ1, c1q is a coequalizer of

ppµ1 ˝ fq|
B1`C1

A1 , pµ2 ˝ gq|
B1`C1

A1 q “ pµ11 ˝ f |
B1

A1 , µ
1
2 ˝ g|

C1

A1 q

where Q1 “ cpB1 ` C 1q, c1 “ c|Q
1

B1`C1 and c´1pQ1q “ B1 ` C 1. We thus have

h´1pQ1q “ pc ˝ µ1q
´1pQ1q “ µ´1

1 pB1 ` C 1q “ B1 and similarly k´1pQ1q “ C 1.

We also have h|Q
1

B1 “ pc ˝ µ1q|
Q1

B1 “ c1 ˝ µ11 and k|Q
1

C1 “ pc ˝ µ2q|
Q1

C1 “ c1 ˝ µ12,

hence ph|Q
1

B1 , k|
Q1

C1 , Q
1q is the canonical pushout of pA1, f |B

1

A1 , g|
B1

A1 q, and therefore

Q1 “ h|Q
1

B1pB
1q Y k|Q

1

C1pC
1q “ hpB1q Y kpC 1q.

We can now show that categories of partial morphisms of monographs have
pushouts. The following construction is inspired by [3, Construction 2.6, Theo-
rem 2.7] though the proof uses pushout restriction.

Theorem 7.5. The categories of Definition 7.2 have pushouts.

Proof. Let rf s : A Ðâ A1 Ñ B and rgs : A Ðâ A2 Ñ C. The set of submono-
graphs J Ď A1 X A2 such that f´1pfpJqq “ J and g´1pgpJqq “ J contains ∅
and is closed under union, hence has a greatest element denoted I. There is also
a greatest submonograph X Ď B such that f´1pXq Ď I, that must therefore be
greater than fpIq, i.e., we have fpIq Ď X hence f´1pfpIqq Ď f´1pXq and this
yields f´1pXq “ I. Similarly, there is a greatest submonograph Y Ď C such
that g´1pY q Ď I, so that gpIq Ď Y and g´1pY q “ I.

Let f 1 “ f |XI , g1 “ g|YI and ph, k,Qq be a pushout of pI, f 1, g1q in Monogr,
we claim that prhs , rks , Qq is a pushout of pA, rf s , rgsq in MonogrP, where
obviously rhs : B Ðâ X Ñ Q and rks : C Ðâ Y Ñ Q. We first see that

rhs ˝ rf s “
Q

h ˝ f |Xf´1pXq

U

“
P

h ˝ f 1
T

“
P

k ˝ g1
T

“

Q

k ˝ g|Yg´1pY q

U

“ rks ˝ rgs .

We now consider any pair of partial morphisms rvs : B Ðâ B1 Ñ U and
rws : C Ðâ C 1 Ñ U such that rvs˝ rf s “ rws˝ rgs, hence v ˝f |B

1

J “ w ˝g|C
1

J where

J
def
“ f´1pB1q “ g´1pC 1q. Since fpJq “ fpf´1pB1qq Ď B1 then J Ď f´1pfpJqq Ď

f´1pB1q “ J , hence f´1pfpJqq “ J and similarly g´1pgpJqq “ J , so that J Ď I.
This can be written f´1pB1q Ď I and thus entails B1 Ď X and similarly C 1 Ď Y ,
hence f 1´1pB1q “ J “ g1´1pC 1q.

We can therefore apply Lemma 7.4 and get that ph|Q
1

B1 , k|
Q1

C1 , Q
1q is a pushout

of pJ, f 1|B
1

J , g
1|C

1

J q where Q1 “ hpB1q Y kpC 1q, h´1pQ1q “ B1 and k´1pQ1q “ C 1.

Since v ˝ f 1|B
1

J “ v ˝ f |B
1

J “ w ˝ g|C
1

J “ w ˝ g1|C
1

J there exists a unique u : Q1 Ñ U
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such that u ˝ h|Q
1

B1 “ v and w “ u ˝ k|Q
1

C1 . We thus have a partial morphism
rus : QÐâ Q1 Ñ U such that

rus ˝ rhs “
Q

u ˝ h|Q
1

h´1pQ1q

U

“

Q

u ˝ h|Q
1

B1

U

“ rvs

and similarly rus ˝ rks “ rws.

J

I

A A1

A2

B

C

X

Y Q

B1

C 1 Q1

U

f

g

f 1

g1

k

h

k|Q
1

C1

h|Q
1

B1

w

v

f |B
1

J

g|C
1

J

u

Suppose there is a ru1s : Q Ðâ D Ñ U such that ru1s ˝ rhs “ rvs and
ru1s ˝ rks “ rws, then u1 ˝ h|Dh´1pDq “ v hence h´1pDq “ B1 and similarly

k´1pDq “ C 1. Since D Ď Q “ hpXq Y kpY q then

D “ pDXhpXqqY pDX kpY qq “ hph´1pDqqY kpk´1pDqq “ hpB1qY kpC 1q “ Q1

and we get ru1s “ rus by the unicity of u.
If B and C are finite (resp. standard, resp. O-monographs) then so are X

and Y , hence so is Q by Theorem 4.4.

One important feature of this construction is illustrated below.

Example 7.6. Suppose there are edges x of A1 X A2 and y P EA2zEA1 such
that gpxq “ gpyq. If x is an edge of I “ g´1pgpIqq then so is y, which is
impossible since I Ď A1 X A2. Hence x is not an edge of I “ f´1pXq and
therefore fpxq R EX. Since y is not an edge of I “ g´1pY q then similarly
gpxq “ gpyq R EY . This means that even though x has images by both f and g,
none of these has an image (by h or k) in Q, i.e., they are “deleted” from the
pushout.
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The result of the present section can be replicated by replacing every mono-
graph, say A, by a typed monograph with a fixed type T , say a : A Ñ T . But
then expressions like A Ď B are replaced by a Ď b, which ought to be inter-
preted as A Ď B and a “ b|A, so that ATa is then a subalgebra of AT b. In this
way the results of [3] on categories of partial homomorphisms could be deduced
from Corollary 6.9. They cannot be obtained directly from Theorem 7.5.

8 Algebraic Transformations of Monographs

Rule-based transformations of graphs are conceived as substitutions of sub-
graphs (image of a left hand side of a rule) by subgraphs (image of its right
hand side). Substitutions are themselves designed as an operation of deletion
(of nodes or edges) followed by an operation of addition. This last operation is
conveniently represented as a pushout, especially when edges are added between
existing nodes (otherwise a coproduct would be sufficient).

The operation of deletion is however more difficult to represent in category
theory, since there is no categorical notion of a complement. This is a central
and active issue in the field of Algebraic Graph Transformation, and many
definitions have been proposed, see [12, 13, 14, 15]. The most common and
natural one, known as the double pushout method [16, 17, 18], assumes the
operation of deletion as the inverse of the operation of addition.

More precisely, in the following pushout diagram

M

KL

D

l

km

f

we understand M as the result of adding edges to D as specified by l and k.
Images of edges of K are present in both D and L, and therefore also in M ,
without duplications (since f ˝ k “ m ˝ l). The edges that are added to D are
therefore the images by m of the edges of L that do not occur in lpKq. We may
then inverse this operation and understand D as the result of removing these
edges from M . The monograph M and the morphisms m, l then appear as the
input of the operation, and the monograph D and morphisms k, f as its output.
The problem of course is that the pushout operation is not generally bijective,
hence it cannot always be inverted. We first analyze the conditions of existence
of D.

Definition 8.1 (pushout complement, gluing condition). A pushout comple-
ment of morphisms l : K Ñ L and m : L Ñ M is a monograph D and a pair
of morphisms k : K Ñ D and f : D Ñ M such that pm, f,Mq is a pushout of
pK, l, kq.

The morphisms l : K Ñ L and m : L Ñ M satisfy the gluing condition
(GCpl,mq for short) if, for L1 “ ELzlrEKs,
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(1) for all x, x1 P EL, mpxq “ mpx1q and x P L1 entail x “ x1, and

(2) for all e, e1 P EM , e |Mpe1q and e P mrL1s entail e1 P mrL1s.

The edges of M that should be removed from M to obtain D are the ele-
ments of mrL1s. We may say that an edge mpxq of M is marked for removal if
x P L1 and marked for preservation if x P lrEKs. Condition (1) of the gluing
condition states that the restriction of m to m´1rmrL1ss should be injective, or
in other words that an edge can be deleted if it is marked for removal once, and
not marked for preservation. Condition (2) states that an edge can be deleted
only if all the edges that are adjacent to it are also deleted (otherwise these
edges would be adjacent to a non existent edge). It is obvious that this glu-
ing condition reduces to the standard one known on graphs, when applied to
standard t0, 2u-monographs. We now prove that it characterizes the existence
of pushout complements (note that l is not assumed to be injective).

Lemma 8.2. The morphisms l : K Ñ L and m : L Ñ M have a pushout
complement iff they satisfy the gluing condition.

Proof. Necessary condition. We assume w.l.o.g. that the pushout pm, f,Mq of
pK, l, kq is obtained by canonical construction, i.e., let pL ` D,µ1, µ2q be the
coproduct of pL,Dq, pM, cq bet the coequalizer of pµ1 ˝ l, µ2 ˝kq, m “ c ˝µ1 and
f “ c ˝ µ2. Thus EM is the quotient of EL` ED by the equivalence relation „
generated by R “ tpµ1 ˝ lpzq, µ2 ˝ kpzqq | z P EKu. Let L1 “ ELzlrEKs, we first
prove (1) and then (2).

M

L`D

KL

D

l

km

µ1

µ2

f

c

For all x, x1 P EL, if x P L1 then x R lrEKs, hence µ1pxq is not related by
R to any element and is therefore alone in its „-class. Hence2 if mpxq “ mpx1q
then µ1pxq „ µ1px

1q and therefore x “ x1.
For all e, e1 P EM such that e | Mpe1q and e P mrL1s, let x P L1 such that

e “ mpxq. Suppose that e1 “ fpy1q for some y1 P ED then Mpe1q “ făα ˝Dpy1q
hence there is a y | Dpy1q such that e “ fpyq, hence mpxq P f rEDs which
is impossible by note 2. Since M “ fpDq Y mpLq there must be a x1 P EL
such that e1 “ mpx1q. Suppose now that x1 “ lpzq for some z P EK then
e1 “ mplpzqq “ fpkpzqq P f rEDs, and we have seen this is impossible. Hence
x1 R lrEKs and therefore e1 P mrL1s.

2Another consequence is that µ1pxq is not related by „ to any element of µ2rEDs, hence
that mpxq R f rEDs.
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Sufficient condition. We assume (1) and (2), let α be an ordinal for M , ED
def
“

EMzmrL1s and Dpeq
def
“ Mpeq for all e P ED; by (2) this is an ED-sequence,

hence D is a submonograph of M and the canonical injection f : D ãÑ M is a
morphism. By (1) we have mrL1s Xm ˝ lrEKs “ ∅, hence m ˝ lrEKs Ď ED and

we let k
def
“ pm ˝ lq|EDEK so that f ˝ k “ m ˝ l. We have

kăα ˝K “ măα ˝ lăα ˝K “ măα ˝ L ˝ l “M ˝m ˝ l “ D ˝ k

hence k : K Ñ D is a morphism.

M

M 1

KL

D

l

km

f
m1

f 1

h

To prove that pm, f,Mq is a pushout of pK, l, kq, let m1 : L Ñ M 1 and
f 1 : D ÑM 1 be morphisms such that m1 ˝ l “ f 1 ˝ k. Since EM “ ED ZmrL1s
we define h : EM Ñ EM 1 as

hpeq
def
“

"

f 1peq if e P ED
m1pxq if x P L1 and e “ mpxq

since x is unique by (1). For all x P EL, if x P L1 then h ˝ mpxq “ m1pxq,
otherwise there is a z P EK such that x “ lpzq and then

h ˝mpxq “ h ˝m ˝ lpzq “ h ˝ f ˝ kpzq “ f 1 ˝ kpzq “ m1 ˝ lpzq “ m1pxq,

hence h ˝m “ m1. It is obvious that h ˝ f “ f 1 and that these two equations
uniquely determine h. Proving that h : M Ñ M 1 is a morphism is straightfor-
ward.

Note that D is finite whenever M is finite. This proves that this gluing con-
dition is also valid in FMonogr, and it is obviously also the case in SMonogr,
O-Monogr and O-SMonogr for every set O of ordinals. It therefore charac-
terizes the existence of D, but by no means its unicity.

It is well known (and easy to see) that in the category of sets one may find
pushout complements with non isomorphic sets D, this is therefore also the
case for monographs (since Sets » 1-Monogr). An analysis of the proof of
Lemma 8.2 (necessary condition) however yields that f rEDs is invariant.

Corollary 8.3. If D, k : K Ñ D, f : D Ñ M is a pushout complement of
l : K Ñ L, m : LÑM then f rEDs “ EMzmrL1s, where L1 “ ELzlrEKs.
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Proof. Since mrELszpm ˝ lqrEKs Ď mrL1s then

mrELszmrL1s Ď pm ˝ lqrEKs “ pf ˝ kqrEKs Ď f rEDs.

By property of pushouts we have EM “ f rEDsYmrELs, and by note 2 we have
mrL1s X f rEDs “ ∅, hence

EMzmrL1s “ pf rEDszmrL1sq Y pmrELszmrL1sq “ f rEDs.

One way of ensuring the unicity of D (up to isomorphism) is to assume that
l is injective: this is a well-known consequence of Theorem 4.17 (see [8]). How-
ever, an analysis of the construction of D in the proof of Lemma 8.2 (sufficient
condition) shows that we can always build D as a submonograph of M , hence
we may as well assume that f is a canonical injection and avoid restrictions
on l. We therefore adopt a restricted notion of double pushout transformation
compared to the standard one.

Definition 8.4 (span rules pl, rq, matching m, relation
pl,rq
ùñm). A span rule is

a pair pl, rq of morphisms l : K Ñ L, r : K Ñ R with the same domain K. A
matching of pl, rq in an object M is a morphism m : LÑM . For any object N

we write M
pl,rq
ùñm N if there exists a double-pushout diagram

M

RKL

D N

l

km

r

gf

n

where f is a canonical injection.

We easily see that the relation
pl,rq
ùñm is deterministic up to isomorphism.

Corollary 8.5. M
pl,rq
ùñm N and M

pl,rq
ùñm N 1 entail N » N 1.

Proof. We have two pushout complements k : K Ñ D, f : D ãÑ M and
k1 : K Ñ D1, f 1 : D1 ãÑM of m, l, hence by Corollary 8.3

ED “ f rEDs “ EMzmrL1s “ f 1rED1s “ ED1

hence D “ D1, f “ f 1, k “ pf ˝ kq|DK “ pm ˝ lq|D
1

K “ pf 1 ˝ k1q|D
1

K “ k1, and
therefore N » N 1 by general property of pushouts.

It is obvious by Theorem 4.4 and by the construction of D in Lemma 8.2

that, in the categories of Definition 3.5, there exists a N such that M
pl,rq
ùñm N if

and only if l and m satisfy the gluing condition. This means in particular that
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an edge e of M may be deleted only if it is explicitly marked for removal, i.e.,
if there is an edge x P L1 such that mpxq “ e. All edges that are not marked
for removal are guaranteed to be preserved. This conservative semantics for
transformation rules is extremely safe but imposes a discipline of programming
that may be tedious.

As noted in Example 7.6, pushout of partial morphisms have a potential of
removing edges. Since such pushouts always exist, they can be used to define
transformations that are not restricted by the gluing condition. This is the idea
of the single pushout method, that was initiated in [19] and fully developed in
[20, 3].

Definition 8.6 (partial rules rrs, relation
rrs
ùñm, rule rl, rs). A partial rule is

a partial morphism rrs : L Ðâ K Ñ R. A matching of rrs in a monograph M

is a morphism m : L Ñ M . For any monograph N we write M
rrs
ùñm N if

there exist partial morphisms rgs and rns such that prns , rgs , Nq is a pushout of
pL, rrs , rmsq.

To any span rule pl, rq where l : K Ñ L, r : K Ñ R we associate a partial

rule rl, rs
def
“ rr1s : L Ðâ lpKq Ñ R1 such that pq, r1, R1q is a pushout of pK, r, l1q

where l1
def
“ l|

lpKq
K .

L

RKL

lpKq R1

pl, rq

rl, rs

l

l11L

r

r1

q

The relation
rrs
ùñm is also deterministic up to isomorphism since N is ob-

tained as a pushout. Obviously a morphism m is a matching of pl, rq in M iff
it is a matching of rl, rs in M . The partial rule rl, rs is designed to perform the
same transformation as the span rule pl, rq. We prove that this is indeed the
case when the gluing condition holds.

Theorem 8.7. For any span rule pl, rq, monographs M , N and matching m of
pl, rq in M , we have

M
pl,rq
ùñm N iff M

rl,rs
ùñm N and GCpl,mq.

Proof. Let R1, l1, q and r1 be as in Definition 8.6. We first compute the pushout
of rl, rs and rms according to the construction in Lemma 7.5, by assuming the
gluing condition GCpl,mq and that D Ď M , k : K Ñ D, f : D ãÑ M is a
pushout complement of l, m.

Let I be the greatest submonograph of lpKqXL such that r1´1pr1pIqq “ I and
m´1pmpIqq “ I. By GCpl,mq (1) we have for all x P EL that mpxq P mrlrEKss
entails x R L1 “ ELzlrEKs, i.e., x P lrEKs, hence m´1pmplpKqqq Ď lpKq and
since the reverse inclusion is always true we get I “ lpKq. Hence the greatest
monograph X Ď R1 such that r1´1pXq Ď I is R1.
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K R

lpKq

L lpKq

L

R1

M

R1

D N

r1

m

r1

m1

g

n1

r

l1 q

nk

f

Let Y be the greatest submonograph of M such that m´1pY q Ď lpKq, this
entails m´1rEY s X L1 “ ∅, hence EY XmrL1s “ ∅ and by Corollary 8.3 Y Ď

fpDq “ D. Conversely, for all x P m´1rEDs “ m´1rEMzmrL1ss we have mpxq R
mrL1s, hence by GCpl,mq (1) x R L1 and thus x P lrEKs, so thatm´1pDq Ď lpKq.
Hence D Ď Y and we get Y “ D.

The pushout of rl, rs and rms is therefore obtained from the pushout of r1

and m1
def
“ m|DlpKq. Besides, we have m1 ˝ l1 “ pm ˝ lq|DK “ pf ˝ kq|

D
K “ k.

Sufficient condition. We assume M
pl,rq
ùñm N and the diagram in Defini-

tion 8.4. By Lemma 8.2 we have GCpl,mq. By the above we get pg ˝m1q ˝ l1 “
g ˝ k “ n ˝ r, and since pq, r1, R1q is a pushout of pK, r, l1q then there exists a
unique n1 : R1 Ñ N such that n1 ˝ r1 “ g ˝m1 and n1 ˝ q “ n. Since pn, g,Nq is
a pushout of pK, r, kq then by pushout decomposition pn1, g,Nq is a pushout of

plpKq, r1,m1q, hence M
rl,rs
ùñm N .

Necessary condition. By GCpl,mq and Lemma 8.2 we can build a pushout

complement D Ď M , k : K Ñ D, f : D ãÑ M of l, m. By M
rl,rs
ùñm N

and the above there is a pushout pn1, g,Nq of plpKq, r1,m1q, hence by pushout

composition pN,n1 ˝ q, gq is a pushout of pK, r, kq, hence M
pl,rq
ùñm N .

Note that any partial rule rrs : LÐâ K Ñ R can be expressed as rrs “ rj, rs
where j : K ãÑ L is the canonical injection. Thus, provided the gluing con-
dition holds, single and double pushout transformations are equivalent. Single
pushout transformations are more expressive since they also apply when the
gluing condition does not hold, as illustrated in the following example.

Example 8.8. We consider the following “loop removing” rule:

L K R
l r
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and try to apply it to monograph T8 from Example 6.10. There is a unique
morphism m : L Ñ T8 but it does not satisfy the gluing condition. Indeed,
we see that condition (2) is breached since 1 | T8p2q and 1 P mrL1s and yet
2 R mrL1s. Hence the only way to apply the rule to T8 is through a single
pushout transformation.

For this we first compute the rule rl, rs. Since l is the canonical injection
of lpKq “ K into L, then r1 “ r (and R1 “ R “ K) and hence rl, rs “ rrs :
L Ðâ K Ñ R. The monograph D is the greatest one such that D Ď T8 and
m´1pDq Ď lpKq, hence obviously D “ tp0, εqu. Since lpKq and R are both
isomorphic to D then so is the result of the transformation, i.e.,

¨ ¨ ¨
rl,rs
ùñm

Hence removing the edge 1 from T8 silently removes the edges n for all n ą 1.

We therefore see that single pushouts implement a semantics where edges
can be silently removed, but minimally so for a monograph to be obtained. This
may remove edges in a cascade, a feature that does not appear on graphs. Note
that item (1) of the gluing condition may also be breached when an edge is
marked more than once for removal, in which case it is deleted, but also when
an edge is marked both for removal and for preservation. Example 7.6 shows
that in such cases the edge is also removed. All edges marked for removal are
guaranteed to be deleted, and the other edges are preserved only if this does not
conflict with deletions. This semantics of transformation rules is thus dual to the
previous one, and should be more appealing to the daring (or lazy) programmer.

9 Attributed Typed Monographs

The notion of E-graph has been designed in [2] in order to obtain an adhe-
sive category of graphs with attributed nodes and edges. This follows from a
line of studies on Typed Attributed Graph Transformations, see [21, 22, 23].
The attributes are taken in a data type algebra and may be of different sorts
(booleans, integers, strings, etc.). In the case of E-graphs only the nodes of sort
values represent such attributes. But they are also typed by E-graphs, and in
the type E-graphs each node of sort values represent a sort of the data type
algebra. This should recall the constructions of Section 6 that we now use in
order to generalize the notion of typed attributed graphs given in [2]. The idea
is similarly to impose that the edges typed by a sort of a data type algebra are
the elements of the corresponding carrier set.

Definition 9.1 (categories ATMpT,Σq). For any monograph T and signature
Σ : Ω Ñ Săω, an attributed typed monograph (ATM for short) over T , Σ is a
pair pa,Aq of an object a : AÑ T in MonogrzT and a Σ-algebra A such that
As “ pATaqs for all s P S X ET .
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A morphism m from pa,Aq to an ATM pb,Bq over T , Σ is a pair p~m, 9mq of
a morphism ~m : aÑ b in MonogrzT and a Σ-homomorphism 9m : AÑ B such
that 9ms “ pAT ~mqs for all s P S X ET .

Let 1pa,Aq
def
“ p1a, 1Aq and for any morphism m1 : pb,Bq Ñ pc, Cq let m1 ˝m

def
“

p~m1 ˝ ~m, 9m1 ˝ 9mq that is a morphism from pa,Aq to pc, Cq. Let ATMpT,Σq be
the category of ATMs over T , Σ and their morphisms.

The edges that are considered as attributes are not the nodes of a specific
sort as in E-graphs; they are characterized by the fact that they are typed by
an edge of T that happens to be also a sort of the data type signature Σ, i.e.,
an element of S. This is consistent with the typed attributed E-graphs of [2].

We therefore see that the signatures ST and Σ share sorts but we shall
consider them as otherwise distinct, in particular w.r.t. operator names. To
account for this property we need the following construction.

Definition 9.2 (signature Σ ` Σ1). Given two signatures Σ : Ω Ñ Săω and
Σ1 : Ω1 Ñ S1ăω, let pΩ ` Ω1, µ1, µ2q be the coproduct of pΩ,Ω1q in Sets and
j, j1 be the canonical injections of S, S1 respectively into S Y S1, let Σ ` Σ1 :
Ω `Ω1 Ñ pS Y S1qăω be the unique function such that pΣ `Σ1q ˝ µ1 “ jăω ˝Σ
and pΣ `Σ1q ˝ µ2 “ j1ăω ˝Σ1.

Ω `Ω1 pS Y S1qăω

Ω

Ω1

Săω

S1ăω

µ1

µ2

Σ

Σ1

jăω

j1ăω

Σ `Σ1

We leave it to the reader to check that this construction defines a coproduct
in the category Sigsrt and therefore that Σ1 9» Σ2 and Σ11 9» Σ12 entail Σ1`Σ

1
1 9»

Σ2 `Σ12. For the sake of simplicity we will assume in the sequel that ST and Σ
have no operator name in common, thus assimilate ΩT `Ω to ΩT YΩ and omit

the canonical injections, so that ST “ pST `Σq|
pET qăω

ΩT
and Σ “ pST `Σq|S

ăω

Ω .

Definition 9.3 (functor D : ATMpT,Σq Ñ pST`Σq-Alg). For every signature

Σ : Ω Ñ Săω and monograph T such that ΩT XΩ “ ∅, let Σ1
def
“ ST `Σ and

D : ATMpT,Σq Ñ Σ1-Alg be the functor defined as follows: for every object
pa,Aq of ATMpT,Σq let Dpa,Aq be the Σ1-algebra A1 defined by

• A1s
def
“ As for all s P S and A1e

def
“ pATaqe for all e P ET ,

• oA
1 def
“ oA for all o P Ω and [e¨ι]A

1 def
“ [e¨ι]AT a for all [e¨ι] P ΩT .

For every morphism m : pa,Aq Ñ pb,Bq, let pDmqs
def
“ 9ms for all s P S and

pDmqe
def
“ pAT ~mqe for all e P ET .
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It is straightforward to check that Dm is a Σ1-homomorphism from Dpa,Aq
to Dpb,Bq, and hence that D is a functor.

Theorem 9.4. D is an equivalence from ATMpT,Σq to pST `Σq-Alg.

Proof. It is easy to see that D is full and faithful by the same property of AT .
We prove that D is isomorphism-dense. For any Σ1-algebra B1, let B (resp.

C) be its restriction to Σ (resp. ST ). Since AT is isomorphism-dense by Theo-
rem 6.8, there exist an object a : AÑ T in MonogrzT and an ST -isomorphism
h : ATa Ñ C. We define simultaneously a set As and a function ks : As Ñ Bs
for all s P S by taking As

def
“ Bs and ks

def
“ 1As if s P SzET , and As

def
“ pATaqs

and ks
def
“ hs if s P S X ET (in this case we have Cs “ B1s “ Bs). We then define

for every o P Ω the function oA
def
“ k´1

Rngpoq ˝ o
B ˝ kDompoq : ADompoq Ñ ARngpoq,

and the Σ-algebra A def
“

`

pAsqsPS , po
AqoPΩ

˘

. By construction pa,Aq is obviously

an ATM over T,Σ and k
def
“ pksqsPS is a Σ-isomorphism k : AÑ B.

AΣ B

ATaST C

Σ1 A1 B1

k

h

Let A1 def
“ Dpa,Aq, h1s

def
“ ks : A1s Ñ B1s for all s P S and h1e

def
“ he : A1e Ñ B1e

for all e P ET , since hs “ ks for all s P S X ET then h1
def
“ ph1sqsPSYET is well-

defined. It is then easy to see that h1 : A1 Ñ B1 is a Σ1-isomorphism, so that
Dpa,Aq » B1.

Theorem 9.4 generalizes3 [2, Theorem 11.3] that establishes an isomorphism
between the category of attributed E-graphs typed by an attributed E-graph
ATG and the category of algebras of a signature denoted AGSIGpATGq. In
particular Theorem 11.3 of [2] requires the hypothesis that AGSIGpATGq should
be well-structured, which means that if there is an operator name of ST whose
domain sort is s then s is not a sort of the data type signature Σ. Obviously this
is equivalent to requiring that only nodes of T can be considered as sorts of Σ
and is linked to the fact that only values nodes of E-graphs are supposed to hold
attributes. Since we are not restricted to E-graphs there is no need to require
that attributes should only be nodes. This has an interesting consequence:

3Our proof is also much shorter than the 6 pages taken by the corresponding result on
attributed typed E-graphs. This is due partly to our use of AT (Definition 6.7) and of The-
orem 6.8, but also to the simplicity of monographs compared to the 5 sorts and 6 operator
names of E-graphs.
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Corollary 9.5. For every signatures Σ, Σ1 and graph structure Γ such that
Σ1 “ Γ `Σ there exists a monograph T such that Σ1-Alg « ATMpT,Σq.

Proof. By Lemma 6.3 there exists a monograph T such that ST 9» Γ , hence
ST`Σ 9» Γ`Σ “ Σ1 and therefore Σ1-Alg » pST`Σq-Alg « ATMpT,Σq.

Obviously, any signature Σ1 can be decomposed as Γ `Σ by putting some
of its monadic operators (and the sorts involved in these) in Γ and all other
operators in Σ. And then any Σ1-algebra can be represented as an ATM over
T,Σ, where ST 9» Γ . This opens the way to applying graph transformations to
these algebras, but this requires some care since it is not generally possible to
remove or add elements to a Σ1-algebra and obtain a Σ1-algebra as a result.

The approach adopted in [2, Definition 11.5] is to restrict the morphisms used
in span rules to a class of monomorphisms that are extensions ofΣ-isomorphisms
to pΓ `Σq-homomorphisms. It is then possible to show [2, Theorem 11.11] that
categories of typed attributed E-graphs are adhesive HLR categories (a notion
that generalizes Definition 4.13, see [24]) w.r.t. this class of monomorphisms.

A similar result holds on categories of ATMs. For the sake of simplicity,
and since rule-based graph transformations are unlikely to modify attributes
such as booleans, integers or strings (and if they do they should probably not
be considered as graph transformations), we will only consider morphisms that
leave the data type algebra unchanged, element by element. This leaves the
possibility to transform the edges whose sort is in Γ but not in Σ.

Definition 9.6 (categories ATMpT,Aq, functor U, f stabilizes A). For any Σ-
algebra A let ATMpT,Aq be the subcategory of ATMpT,Σq restricted to objects
pa,Aq and morphisms pf, 1Aq.

The forgetful functor U : ATMpT,Aq Ñ Sets is defined by Upa,Aq def
“ EA,

where a : AÑ T and Upf, 1Aq
def
“ Ef (usually denoted f).

By abuse of notation we write A for the set
Ť

sPSXET As. A function f
stabilizes A if f´1rxs “ txu for all x P A.

The proof that the categories ATMpT,Aq are adhesive will only be sketched
below. The key point is the following lemma.

Lemma 9.7. For all objects pa,Aq, pb,Aq of ATMpT,Aq and morphism f :
aÑ b of MonogrzT , we have

pf, 1Aq : pa,Aq Ñ pb,Aq is a morphism in ATMpT,Aq iff f stabilizes A.

Proof. For all s P S X ET we have As “ pATaqs “ a´1rss and As “ b´1rss.
Since b ˝ f “ a then f´1rAss “ f´1rb´1rsss “ a´1rss “ As, hence f´1rAs “ A.
Thus f stabilizes A iff fpxq “ x for all x P A iff pAT fqs “ f |AsAs “ IdAs “ p1Aqs
for all s P S X ET iff pf, 1Aq is a morphism in ATMpT,Aq.

Hence the property of stabilization characterizes the difference between mor-
phisms in MonogrzT and morphisms in ATMpT,Aq. Besides, it is well-known
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how pushouts and pullbacks in MonogrzT can be constructed from those in
Monogr, and we have seen that these can be constructed from those in Sets.

But then it is quite obvious that in Sets, starting from a span of functions
that stabilize A, it is always possible to find as pushout a cospan of functions
that stabilize A. Hence not only does ATMpT,Aq have pushouts, but these
are preserved by the functor U. A similar result holds for pullbacks, and a con-
struction similar to Corollary 4.7 yields that U also preserves monomorphisms.
Finally, we see that U reflects isomorphisms since f´1 stabilizes A whenever f
does. We conclude as in Theorem 4.17.

Theorem 9.8. ATMpT,Aq is adhesive.

This result does not mean that all edges that are not attributes can be freely
transformed. Their adjacencies to or from attributes may impose constraints
that only few morphisms are able to satisfy.

Example 9.9. Let Σ be the signature with no operation name and one sort s,
and A be the Σ-algebra defined by As “ ta, bu. We consider the type monograph
T “ tpe, sq, ps, equ. A monograph typed by T has any number (but at least one)
of edges typed by e that must be adjacent either to a or b, and two edges typed
by s, namely a and b, that must be adjacent to either the same edge x typed by
e, which yields two classes of monographs

a b

x

a b

x

(to which may be added any number of edges typed by e and adjacent to either
a or b), or a and b are adjacent to y and z respectively, and we get four more
classes:

a

y

b

z

a

y

b

z

a

y

b

z

a

y

b

z

The function y, z ÞÑ x is a morphism from these last two monographs to the two
monographs above (respectively). There are no other morphisms between mono-
graphs from distinct classes. We therefore see that in the category ATMpT,Aq
it is possible to add or remove edges typed by e to which a or b are not adjacent,
but there is no way to remove the edges y and z (because this would require a
rule with a left morphism from an ATM without y and z to an ATM with y and
z, and there is no such morphism), though they are not attributes.

Besides, we see that this category has no initial object, no terminal object,
no products nor coproducts.
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10 Conclusion

Monographs generalize standard notions of directed graphs by allowing edges of
any length with free adjacencies. An edge of length zero represents a node, and
if it has greater length it can be adjacent to any edge, including itself. In “mono-
graph” the prefix mono- is justified by this unified view of nodes as edges and of
edges with unrestricted adjacencies that provide formal conciseness (morphisms
are functions characterized by a single equation); the suffix -graph is justified
by the correspondence (up to isomorphism) between finite ω-monographs and
their drawings.

Monographs are universal with respect to graph structures and the corre-
sponding algebras, in the sense that monographs are equivalent to graph struc-
tures extended with suitable ordering conventions on their operator names, and
that categories of typed monographs are equivalent to the corresponding cat-
egories of algebras. Since many standard or exotic notions of directed graphs
can be represented as monadic algebras, they can also be represented as typed
monographs, but these have two advantages over graph structures: they provide
an orientation of edges and they (consequently) dispense with operator names.

Algebraic transformations of monographs are similar to those of standard
graphs. Typed monographs may therefore be simpler to handle than graph
structured algebras, as illustrated by the results of Section 9. The represen-
tation of oriented edges as sequences seems more natural than their standard
representation as unstructured objects that have images by a bunch of functions.
Thus type monographs emerge as a natural way of specifying graph structures.
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