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Abstract

Monographs are graph-like structures with directed edges of unlimited
length that are freely adjacent to each other. The standard nodes are
represented as edges of length zero. They can be drawn in a way consis-
tent with standard graphs and many others, like E-graphs or co-graphs.
The category of monographs share many properties with the categories
of graph structures (algebras of monadic many-sorted signatures), except
that there is no terminal monograph. It is universal in the sense that its
slice categories (or categories of typed monographs) are equivalent to the
categories of graph structures. Type monographs thus emerge as a natu-
ral way of specifying graph structures. A detailed analysis of single and
double pushout transformations of monographs is provided, and a notion
of attributed typed monographs generalizing typed attributed E-graphs
is analyzed w.r.t. attribute-preserving transformations.

Keywords: Algebraic Graph Transformation, Graph Structures, Typed Graphs

1 Introduction

Many different notions of graphs are used in mathematics and computer science:
simple graphs, directed graphs, multigraphs, hypergraphs, etc. One favourite
notion in the context of logic and rewriting is that also known as quivers, i.e.,
structures of the form (N, E, s,t) where N, E are sets and s, t are functions from
E (edges) to N (nodes), identifying the source and target tips of every edge (or
arrow). One reason for this is that the category of quivers is isomorphic to
the category of algebras of the many-sorted signature with two sorts nodes
and edges and two operator names src and tgt of type edges — nodes. In
conformity with this tradition, by graph we mean quiver throughout this paper.

In order to conveniently represent elaborate data structures it is often nec-
essary to enrich the structure of graphs with attributes: nodes or edges may be
labelled with elements from a fixed set, or with values taken in some algebra,
or with sets of values as in [I], etc. An interesting example can be found in [2]
with the notion of E-graphs, since the attributes are also considered as nodes.



More precisely, an E-graph is an algebra whose signature can be represented by
the following graph:

SrCe

| sTow  edges — nodes —szow

ev-edges tet. nv-edges

*/‘ values e’/?’t//

ev gCny

The names given to the sorts and operators help to understand the structure
of E-graphs: the edges relate the nodes among themselves, the nv-edges relate
the nodes to the values, and the ev-edges relate the edges to the values.
Hence the sort values holds attributes that are also nodes. But then we see
that in E-graphs the ev-edges are adjacent to edges. This is non standard,
but we may still accept such structures as some form of graph, if only because
we understand how they can be drawn.

Hence the way of generalizing the notion of graphs seems to involve a gener-
alization of the signature of graphs considered as algebras. This path has been
followed by Michael Lowe in [3], where a graph structure is defined as a monadic
many-sorted signature. Indeed in the examples above, and in many examples
provided in [3], all operators have arity 1 and can therefore be considered as
edges from their domain to their range sort. Is this the reason why they are
called graph structures? But the example above shows that E-graphs are very
different from the graph that represent their signature. Besides, it is not conve-
nient that our understanding of such structures should be based on syntax, i.e.,
on the particular names given to sorts and operators in the signature.

Furthermore, it is difficult to see how the algebras of some very simple
monadic signatures can be interpreted as graphs of any form. Take for instance
the signature of graphs and reverse the target function to tgt : nodes — edges.
Then there is a symmetry between the sorts nodes and edges, which means
that in an algebra of this signature nodes and edges would be objects of the
same nature. Is this still a graph? Can we draw it? Worse still, if the two sorts
are collapsed into one, does it mean that a node/edge can be adjacent to itself?

We may address these problems by restricting graph structures to some class
of monadic signatures whose algebras are guaranteed to behave in an orthodox
way, say by exhibiting clearly separated edges and nodes. But this could be
prone to arbitrariness, and it would still present another drawback: that the
notion of graph structure does not easily give rise to a category. Indeed, it is
difficult to define morphisms between algebras of different signatures, if only
because they can have any number of carrier sets.

The approach adopted here is rather to reject any structural distinction
between nodes and edges, hence to adopt a unified view of nodes as edges of
length 0, and standard edges as edges of length 2 since they are adjacent to two
nodes. This unified view logically allows edges to be adjacent to any edges and
not just to nodes, thus generalizing the ev-edges of E-graphs, and even to edges
that are adjacent to themselves. Finally, there is no reason to restrict the length



of edges to 0 or 2, and we will find good reasons (in Section @ for allowing edges
of infinite, ordinal length. The necessary notions and notations are introduced
in Section 2l The structure of monograph (together with morphisms) is defined
in Section [3] yielding a bestiary of categories of monographs according to some
of their characteristics. The properties of these categories w.r.t. the existence
of limits and co-limits are analyzed in Section

We then see in Section [5| how monographs can be accurately represented by
drawings, provided of course that they have finitely many edges and that these
have finite length. In particular, such drawings correspond to the standard way
of drawing a graph for those monographs that can be identified with standard
graphs, and similarly for E-graphs.

Section[6]is devoted to the comparison between monographs and graph struc-
tures, and the corresponding algebras (that we may call graph structured alge-
bras). We show a property of universality of monographs, in the sense that all
graph structured algebras can be represented (though usually not in a canonical
way) as typed monographs, i.e., as morphisms of monographs.

The notion of graph structure has been introduced in [3] in order to obtain
categories of partial homomorphisms in which techniques of algebraic graph
rewriting could be carried out. The correspondence with monographs estab-
lished in Section [0] calls for a similar development of partial morphisms of
monographs in Section [7] The single and double pushout methods of rewriting
monographs can then be defined, analyzed and compared in Section

The notion of E-graph has been introduced in [2] in order to obtain well-
behaved categories (w.r.t. graph rewriting) of attributed graphs, and hence to
propose suitable representations of real-life data structures. This is achieved
by enriching E-graphs with a data type algebra, and by identifying nodes of
sort value with the elements of this algebra. We pursue a similar approach in
Section [0] with the notion of attributed typed monograph by identifying elements
of an algebra with edges, and obtain similarly well-behaved categories. Due to
the universality of monographs we see that any X-algebra can be represented
as an attributed typed monograph.

We conclude in Section Note that parts of Sections [] to [6] have been
published in [4].

2 Basic Definitions and Notations

2.1 Sets

For any sets A, B, relation R € A x B and subset X < A, let R[X]| < {y €
B|xze X A (x,y) € R}. For any x € A, by abuse of notation we write R[z] for
R[{z}]. If R is functional we write R(x) for the unique element of R[z], and if
S € C x D is also functional and R[A] < C let So R = {(x, S(R(x))) | z € A}.

A function f: A — B is atriple (A, R, B) where R € A x B is a functional
relation. We write f[X] and f(z) for R[X] and R(x) respectively. For any Y ©
FIX] let fI% = (X, Rn (X xY),Y) and f|x = f|¥. A function g = (C, S, D)



may be composed on the left with f if B = C, and then go f & (A,SoR,D).
If R[A] < C we may write go R or So f for So R.

Sets and functions form the category Sets with identities Id4 = (A, {(z, z) |
x € A}, A). In Sets we use the standard product (A x B, my,m2) and coproduct
(A + B, 1, p2) of pairs of sets (A, B). The elements p € A x B are pairs of
elements of A and B, i.e., p = (m1(p), m2(p)). For functions f : C — A and
g : C — B we write (f,g) : C — A x B for the unique function such that

mo{f,g) = [ and m o {f,9) = g, i.e., {f,9)(2) = (f(2),9()) for all z € C.
The elements of A + B are pairs u(x) = (x,0) or us(y) = (y,1) for all z € A
and y € B, so that A’ € A and B’ < B entail A’ + B’ = 1 [A'] U ua[B’].

An ordinal is a set « such that every element of « is a subset of «, and such
that the restriction of the membership relation € to « is a strict well-ordering
of « (a total order where every non empty subset of « has a minimal element).
Every member of an ordinal is an ordinal, and we write A\ < « for A € a. For
any two ordinals «, 8 we have either & < 3, a = f or a > (3 (see e.g. [9]).
Every ordinal « has a successor o U {a}, denoted o + 1. Natural numbers n are
identified with finite ordinals, so that n = {0,1,...,n — 1} and w o {0,1,...}
is the smallest infinite ordinal.

2.2 Sequences

For any set F and ordinal \, an E-sequence s of length X is an element of E*,
i.e., a function s : A\ — E. Let £ be the only element of E° (thus leaving F
implicit), and for any e € E let e\ be the only element of {e}*. For any s € E*
and ¢ < A, the image of ¢ by s is written s,. If A is finite and non zero then
s can be described as s = sp---sy—1. For any x € F we write z | s and say
that « occurs in s if there exists ¢ < A such that s, = . For any ordinal «, let
E<® = J,_, F?; this is a disjoint union. For any s € E<* let |s| be the length
of s, i.e., the unique A < « such that s € E*.

For any set F' and function f : E — F, let f<¢ : E<® — F<% be the
function defined by f<(s) < fos for all s € E<®. We have Id5* = Idg<a and
(go f)=*=g~%o f<*forall g: F — G. Since s € E* entails f os e F*, then
|f=(s)] = Isl.

If s and s’ are respectively E- and F-sequences of length A, then they are
both functions with domain A hence there is a function (s, s") of domain A\. Thus
(s,5"yis an (E x F)-sequence of length A\, and then 77%((s,s')) = m10(s,8" )y = s
and similarly 75%((s,s")) = s’ foralla > X If f: E > Fandg: F - G
then (f,¢g) : E — F x @G, hence for all s € E<* of length A < « we have
(F,0)=%(s) = (f,g)05 = (fos,908) = ([<(s),g=*(s)) is an (F x G)-sequence
of length A.

For s € E<% and (A.)cer an E-indexed family of sets, let Ag E HKISI A,
In particular we take A, = 1 as a terminal object in Sets. For (B,)eer an E-
indexed family of sets and (f. : Ae — Be)ecr an E-indexed family of functions,

let fs def HL<‘5‘ fSL . As — BS,



2.3 Signatures and Algebras

A signature is a functiorﬂ Y 2 - S<¥ such that X(o) # ¢ for all 0 € f2.
The elements of 2 are called operator names and those of S sorts. The arity
of an operator name o € 2 is the finite ordinal n “ |X(0)| — 1, its range is
Rng(o) = X(0), (the last element of the S-sequence X(0)) and its domain
is Dom(o) = X(0)|, (the rest of the sequence). o is monadic if n = 1. The
signature X is finite if {2 and S are finite, it is a graph structure if all its operator
names are monadic.

A Y-algebra A is a pair ((As)ses, (0%)oen) Where (As)ses is an S-indexed
family of sets and (o : Abom(o) — ARng(0))ocn2 15 an 2-indexed family of
functions. A X-homomorphism h from A to a Y-algebra B is an S-indexed
family of functions (hs : As — Bs)ses such that

OB © hDom(o) = hRng(o) © OA
for all 0 € 2. Let 14 = (Id4,)ses and for any X-homomorphism k : B — C, the
Y-homomorphism ko h : A — C is defined by (ko h)s  k.ohg for all se S.
Let X-Alg be the category of Y-algebras and X-homomorphisms.

2.4 Categories

We assume familiarity with the notions of functors, limits, colimits and their
preservation and reflection by functors, see [7]. Isomorphism between objects in
a category is denoted by ~ and equivalence between categories by ~.

For any object T of A, the slice category A\T has as objects the morphisms
of codomain T of A, as morphisms from object a: A — T to object b: B - T
the morphisms f : A — B of A such that bo f = a, and the composition of
morphisms in A\T is defined as the composition of the underlying morphisms
in A (see [2] or [7, Definition 4.19]).

3 Monographs and their Morphisms

Definition 3.1 (monographs, edges, ordinal for A). A set A is a monograph
if there exists a set E (whose elements are called edges of A) and an ordinal «
(said to be an ordinal for A) such that (E, A, E<%) is a function.

A monograph is therefore a functional relation, which means that its set of
edges is uniquely determined. On the contrary, there are always infinitely many
ordinals for a monograph. As running example we consider the monograph
A = {(z,zyx),(y,yxy)} then its set of edges is E = {x,y}. Since A(z) and
A(y) are elements of E3 € E<4 then (E, A, E<%) is a function. Hence 4 is an
ordinal for A, and so are all the ordinals greater than 4.

IFor the sake of simplicity we do not allow the overloading of operator names as in [6].
These names will turn out to be irrelevant anyway.



It is easy to see that for any set of monographs there exists a common ordinal
for all its members.

Definition 3.2 (length |z|, edge z,, trace tr(A4), O-monographs). For any

monograph A with set of edges E, the length of an edge x € E is the length

|A(z)|, also written |x| if there is no ambiguity. Similarly, for any v < |z| we
def

may write x, for A(x),. The trace of A is the set tr(A) = {|z| | x € E}. For
any set O of ordinals, A is an O-monograph if tr(A) € O.

Since any ordinal is a set of ordinals, we see that an ordinal « is for a
monograph iff this is an a-monograph. Hence all edges of a monograph have
finite length iff it is an w-monograph.

Definition 3.3 (adjacency, nodes N4, standard monographs). For any mono-
graph A and edges x,y of A, x is adjacent to y if y | A(z). A node is an edge
of length 0, and the set of nodes of A is written N4. A is standard if y | A(x)
entails y € N 4, i.e., all edges are sequences of nodes.

The running example A has no nodes and is therefore not standard. Since
A(z) = zyx then x is adjacent to y and to itself. Similarly, A(y) = yxy
yields that y is adjacent to = and to itself. In this case the adjacency relation is
symmetric, but this is not generally the case, e.g., a node is never adjacent to
any edge, while edges may be adjacent to nodes.

Definition 3.4 (morphisms of monographs). A morphism f from monograph
A to monograph B with respective sets of edges E and F', denoted f : A — B,
s a function f : E — F such that f<* o A = Bo f, where « is any ordinal for
A.

Building on the running example, we consider the permutation f = (z y) of
E (in cycle notation), we see that f<*o A(z) = f~*(zyz) = yoy = A(y) =
Ao f(z) and similarly that f~%o A(y) = f~*(yxy) =zyx = A(z) = Ao f(y),
hence f<*o A = Ao f and f is therefore a morphism from A to A. Since
f o f=1Idg is obviously the identity morphism 14 then f is an isomorphism.

Note that the terms of the equation f<“o A = Bo f are functional relations
and not functions. One essential feature is that this equation holds for all
ordinals « for A iff it holds for one. Thus if we are given a morphism then we
know that the equation holds for all big enough «’s, and if we want to prove
that a function is a morphism then we need only prove that there exists a big
enough « such that the equation holds.

This equation is of course equivalent to f<*o A(x) = Bo f(z) for all z € E.
The terms of this last equation are F-sequences that should therefore have the
same length:

|z = [A()| = [f=" 0 Az)| = [Bo f(x)| = [f(2)],

i.e., the length of edges are preserved by morphisms. Hence tr(A) € tr(B), and
the equality holds if f is surjective. This means that if B is an O-monograph



then so is A, and that every ordinal for B is an ordinal for A. This also means
that the images of nodes can only be nodes:

fTINgl ={z e E||f(2)] =0} = {z € E | |z = 0} = Na.
The sequences f<*o A(x) and B o f(z) should also have the same elements

(f= e A(x)). = (f o (A(2)). = f(A(x).) = f(.)
and (Bo f(z)), = B(f(x)). = f(x).

for all ¢« < |z|. Thus f: E — F is a morphism iff
|f(z)| = |z| and f(x,) = f(x), for all z € E and all ¢ < |x|.

Assuming that f : A — B is a morphism and that B is standard, we have
f(z,) = f(x), e Ng thus x, € f1[Np] = N4 for all z € E and ¢ < |z, hence A
is also standard.

Given morphisms f: A — B and g: B — C, we see that go f is a morphism
from A to C by letting o be an ordinal for B, so that

(gof)=*0A=yg="of~"0A=g""oBof=Cogolf.

Definition 3.5 (categories of monographs, functor E). Let Monogr be the
category of monographs and their morphisms. Let SMonogr be its full sub-
category of standard monographs. For any set O of ordinals, let O-Monogr
(resp. O-SMonogr) be the full subcategory of O-monographs (resp. standard
O-monographs). Let FMonogr be the full subcategory of finite w-monographs.

Let E be the forgetful functor from Monogr to Sets, i.e., for every mono-
graph A let EA be the set of edges of A, and for every morphism f: A — B let
Ef : EA — EB be the underlying function, usually denoted f.

There is an obvious similitude between standard {0,2}-monographs and
graphs. It is actually easy to define a functor M : Graphs — {0, 2}-SMonogr
by mapping any graph G = (N, E, s, t) to the monograph MG whose set of edges
is the coproduct N+ F, and that maps every edge e € F to the sequence of nodes
s(e)t(e) (and of course every node x € N to ). Similarly graph morphisms are
transformed into morphisms of monographs through a coproduct of functions.
It is easy to see that M is an equivalence of categories.

It is customary in Algebraic Graph Transformation to call typed graphs the
objects of Graphs\G, where G is a graph called type graph, see e.g. [2]. We will
extend this terminology to monographs and refer to the objects of Monogr\T
as the monographs typed by T and T as a type monograph.

4 Limits and Colimits

The colimits of monographs follow the standard constructions of colimits in
Sets and Graphs.



Lemma 4.1. Every pair (A, B) of monographs has a coproduct (A + B, u1, t12)
such that tr(A + B) = tr(A) u tr(B) and if A and B are finite (resp. standard)
then so is A + B.

Proof. Let a be an ordinal for A and B, and (EA+EB, y11, 112) be the coproduct
of (EA,EB) in Sets. Since every element of EA+EB is either a u () or a us(y)
for some x € EA, y € EB, we can define a monograph C by taking EC < EA+EB
with C(u1(z)) = pi®o A(x) and C(ua(y)) = ps*oB(y) forallz € EA, y € EB,
so that p; : A — C and pe : B — C are morphisms. It is obvious that
tr(C) = tr(A) u tr(B) and if A and B are finite (resp. standard) then so is C.

EA A
m| S m| TR
h h
EA+EB---2ED C------- e D
el “QT/
EB B

Let f : A > D and g : B — D, there exists a unique function A from
EA +EB = EC to ED such that f = hop; and g = h o ug, hence

h=% o C(p(x)) = (hop)=" o A(z) = f~% 0 A(x) = Do f(x) = Do h(u(z))

for all x € EA, and similarly h<%oC(u2(y)) = Doh(u2(y)) for all y € EB, hence
h<®oC = Doh,i.e., h:C — D is a morphism. O

Lemma 4.2. Every pair of parallel morphisms f,g : A — B has a coequalizer
(Q, ¢) such that tr(Q) = tr(B) and if B is finite (resp. standard) then so is Q.

Proof. Let o be an ordinal for B and ~ be the smallest equivalence relation
on EB that contains R = {(f(z),g(x)) | z € EA} and ¢ : EB — EB/~ be the
canonical surjection, so that co f = cog. We thus have for all x € EA that

0 Bo f(z) = (co f)= 0 Alx) = (cog)= o A(x) = ¢ 0 Bog(a).

For all y,y’ € EB such that ¢(y) = ¢(y'), i.e., y ~ ¢/, there is a finite sequence
Y0, - -,Yn of elements of EB such that yo = vy, ¥, = v’ and y; R y;11 or
yir1 R y; for all 0 < i < n, hence ¢ o B(y;) = ¢~ o B(y;+1), and therefore
c<*o B(y) = c=* o B(Yy).

We can now define a monograph Q by taking EQ = EB/~ with Q(c(y)) <
c¢<“ o B(y), so that ¢ : B — @ is a morphism. Since c¢ is surjective then
tr(Q) = tr(B) and if B is finite (resp. standard) then so is Q.

ED D

A~ A~

! / " f /h

— l o l

EA_ [EB——EB/~ A IB—/Q
9 9



Let d : B — D such that do f = do g, there exists a unique function h from EQ
to ED such that d = hoc, and h: Q — D is a morphism since for all y € EB ,

Doh(c(y)) = Dod(y) = d=~" o By) = h=% 0 ¢~ 0 B(y) = h=" 0 Q(c(y))-
O
Corollary 4.3. The epimorphisms in Monogr are the surjective morphisms.

Proof. Assume f: A — B is an epimorphism. Let (B+B, 1, p2) be a coproduct
of (B, B) and (Q, ¢) be the coequalizer of uy o f, uso f : A — B+ B constructed
in the proof of Lemma [4.2] then copuj o f = copso f, hence copuy = co pus.
For all y € EB we thus have u(y) ~ p2(y), and since u1(y) # pe2(y) then uy(y)
must be related by R to some element of E(B + B), hence there is an x € EA
such that p1(y) = p1 o f(x), thus y = f(z) since pq is injective; this proves that
f is surjective. The converse is obvious. O

A well-known consequence of Lemmas [L.1] [£:2] and that @ is the initial
monograph is that all finite diagrams have colimits.

Theorem 4.4. The categories of Definition are finitely co-complete.

We next investigate the limits in categories of monographs. Products of
monographs are more difficult to build than products of graphs. This is due
to the fact that edges of identical length may be adjacent to edges of different
lengths.

Lemma 4.5. FEvery pair (A, B) of monographs has a product (A x B, 7w}, 7})
such that A x B is finite whenever A and B are finite.

Proof. Let « be an ordinal for A and B, let (EA x EB, 71, m2) be the product of
(EA,EB) in Sets, we consider the set of subsets H of {(x,y) e EAX EB | |z| =
ly|} such that (z,y) € H entails (z,,y,) € H for all ¢+ < |z|. This set contains
& and is closed under union, hence it has a greatest element EP, and we let
P(z,y) = (A(x), B(y)) for all (z,y) € EP; this is obviously an EP-sequence,
hence P is a monograph. Let 7} = 7 |zp and 7 = Ta|gp, we have

m=% o P(z,y) = A(z) = Aom(z,y)
for all (z,y) € EP, hence 7} : P — A and similarly 7} : P — B are morphisms.

EA A

f f
1 )
4 T / '

EC --"“EAxEB Cco------ S

|
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Let f: C —> Aand g: C — B, then{f,g): EC - EAXEB and for all z € EC
we have | f(z)| = |2| = |g(2)| hence (f,g)[EC] = {(2,y) € EA x EB | |2| = |y[}.
Assume that (z,y) € {f, g)[EC], then there exists a z € EC such that © = f(z)

and y = g(2), hence |z| = |y|, f(z) = f(2). = =i and g(z) = g(2). = v.
for all v < |z|, hence (z,,y,) € {f,g)[EC]. Thus {f,¢g)[EC] < EP and we let

h'= (f, g)|EE, then h is the unique function such that 7joh = f and mhoh = g,
and h : C'— P is a morphism since for all z € EC,

Poh(z) = P(f(2),9(2))

= (Ao f(2),Boy(z))

= {fT%0C(2),g7" o C(2))
= h~%o(C(2).

We therefore see that E(A x B) is only a subset of EA x EB.

Lemma 4.6. FEvery pair of parallel morphisms f,g : A — B has an equalizer
(E,e) such that E is finite whenever A is finite.

Proof. Let o be an ordinal for A, EE = {z € EA | f(z) = g(z)}, e : EE — EA

be the canonical injection and E(z) = A(z) for all x € EE. Since

=0 A(x) =Bof(x) =Bog(xz)=g~%0 A(x)

then E(x) is an EFE-sequence, hence E is a monograph. Besides e<* o E(x) =
A(z) = Aoe(x), hence e : E — A is a morphism such that foe=goe.

ED D

| d | d

b ! h !

v . 3 o

EE‘?EAVEB E‘ﬁAvB
g g

For any d : D — A such that fod = god, we have d(y) € EE for all y € ED,
hence h = d|ES is the unique function such that d = e o h. We have

eS“oh~*oD=d~%“cD=Aod=Aoceoh=e~*0FEoh

and e<®: (EE)<* — (EA)<* is the canonical injection, hence h~*o D = Eoh
and h: D — FE is a morphism. O

Corollary 4.7. The monomorphisms in Monogr are the injective morphisms.

Proof. Assume f : A — B is a monomorphism. Let (A x A, 7y, m3) be a product
of (A, A) and (E, e) be the equalizer of fom, foms : Ax A — B constructed in
the proof of Lemma [£.6] then fom oe = fomoe, hence m oe = myoe. For all
x,y € EA, if f(x) = f(y) then fom(x,y) = fom(x,y) hence (x,y) € EE and
therefore x = m o e(x,y) = ma o e(x,y) = y, hence f is injective. The converse
is obvious. O
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A well-known consequence of Lemmas and is that all non-empty
finite diagrams in Monogr have limits. Since a limit of O-monographs (resp.
standard monographs) is an O-monograph (resp. standard), this holds for all
categories of Definition [3.5] In particular they all have pullbacks.

We shall now investigate the limits of the empty diagram in these categories,
i.e., their possible terminal objects.

Definition 4.8. For any set of ordinals O, let
{ {(\,01N) | Ae O} if0eO
To =

& otherwise.

If 0 € O then 0 is a node of T and obviously ETo = tr(To) = O. Hence in
all cases To is a standard O-monograph.

Lemma 4.9. Ty is terminal in O-SMonogr.

Proof. If 0 ¢ O then @ = Ty is the only standard O-monograph, hence it is
terminal. Otherwise let A be any standard O-monograph, « an ordinal for A
and ¢ : EA — O be the function that maps every edge x € EA to its length
|z|. Since A is standard then (£<* o A(x)), = |A(x),| = 0 for all ¢ < |z|, hence
(=% o A(z) = 0%|x| = To o £(x), so that £ : A — Tp is a morphism. Since
morphisms preserve the length of edges and there is exactly one edge of each
length in T, then ¢ is unique. O

We now use the fact that every ordinal is a set of ordinals.

Lemma 4.10. For any monograph T and morphism f : T, — T, any ordinal
for T is equal to or greater than «.

Proof. Let B be an ordinal for T, then by the existence of f we have a =
tr(Ty) € tr(T) < B, hence o < . O

Lemma 4.11. Monogr, SMonogr and FMonogr have no terminal object.

Proof. Suppose that T is a terminal monograph, then there is an ordinal 8 for
T and there is a morphism from Tgy; to T'; by Lemma this implies that
B+ 1 < B, a contradiction. This still holds if T is standard since Tgy; is
standard. And it also holds if 7" is a finite w-monograph, since then 3 can be
chosen finite, and then Tgy; is also a finite w-monograph. O

Since terminal objects are limits of empty diagrams obviously these cate-
gories are not finitely complete.

Theorem 4.12. O-SMonogr is finitely complete for every set of ordinals O.
The categories Monogr, SMonogr and FMonogr are not finitely complete.

Proof. By Lemmas and O

The category Graphs is also known to be adhesive, a property of pushouts
and pullbacks that has important consequences on algebraic transformations
(see [§]) and that we shall therefore investigate.

11



Definition 4.13 (van Kampen squares, adhesive categories). A pushout square
(A, B,C, D) is a van Kampen square if for any commutative cube

/

<

:

A

B

-

where the back faces (A', A, B', B) and (A’, A,C’,C) are pullbacks, it is the case
that the top face (A',B',C’,D’) is a pushout iff the front faces (B', B, D', D)
and (C',C, D', D) are both pullbacks.

A category has pushouts along monomorphisms if all sources (A, f,g) have
pushouts whenever f or g is a monomorphism.

A category is adhesive if it has pullbacks, pushouts along monomorphisms
and all such pushouts are van Kampen squares.

YARY.

As in the proof that Graphs is adhesive, we will use the fact that the
category Sets is adhesive.

Lemma 4.14. E reflects isomorphisms.

Proof. Let f : A — B such that f is bijective, then it has an inverse f~! :
EB — EA. For all y € EB and all ¢ < |y|, let z = f~1(y), we have

f_l(yb) = f_l(f(x)b) = f_l(f(mL)) =T, = f_l(y)b
hence f~' : B — A is a morphism, and f is therefore an isomorphism. O

A side consequence is that Monogr is balanced, i.e., if f is both a monomor-
phism and an epimorphism, then by Corollaries 3] and [£.7] f is bijective, hence
is an isomorphism. More important is that we can use [7, Theorem 24.7], i.e
that a faithful and isomorphism reflecting functor from a category that has some
limits or colimits and preserves them, also reflects them.

Lemma 4.15. E preserves and reflects finite colimits.

Proof. Tt is easy to see from the proofs of Lemmas [£.1] and [£.2] that E preserves
both coproducts and coequalizers, so that E preserves all finite co-limits and
hence also reflects them. O

This is particularly true for pushouts. The situation for pullbacks is more
complicated since E does not preserve products.

Lemma 4.16. E preserves and reflects pullbacks.

12



Proof. We first prove that E preserves pullbacks. Let f: A — C, g: B — C and
a be an ordinal for A and B, we assume w.l.o.g. a canonical pullback (E,h, k)
of (f,g,C), i.e, let (A x B, 7}, m%) be the product of (4, B) and (F,e) be the
equalizer of (for),gonh) with h = mjoeand k = mhoe. Let (EA x EB,m,m2)
be the product of (EA,EB) in Sets, we have by the proof of Lemma that
E(Ax B) S EAXEB, ) = mi|g s, py and T = 2[g 4, )

Let H = {(z,y) e EAxEB | f(z) = g(y)} and j : H < EA x EB be the
canonical injection. By canonical construction (H,m o j, 7 o j) is a pullback
of (f,9,EC) in Sets; we next prove that it is the image by E of the pullback
(E,h,k) of (f,g,C) in Monogr.

E
‘ e
B

By the construction of E in Lemma [£.6] we have EE = {(z,y) € E(4 x B) |
f(z) =g(y)} € H and e : EE — E(A x B) is the canonical injection. For all
(z,y) € H we have |z| = |f(z)] = |g(y)| = |y|, and for all + < |z| we have
fz,) = f(z), = g(y), = g(y.) so that (z,,y,) € H and therefore H < E(A x B)
by the construction of A x B in Lemma We thus have H = EE hence

mpoj=mjoe=hand moj =m7hoe =k, sothat E preserves pullbacks and
hence as above E also reflects them. O

H——

/\ S AT

T

:b/

x B Ty 0] EA x EB

Vs

EBTEC’

N~

|

Theorem 4.17. The categories of Definition[3.5 are adhesive.

Proof. The existence of pullbacks and pushouts is already established. In any of
these categories a commutative cube built on a pushout along a monomorphism
as bottom face and with pullbacks as back faces, has an underlying cube in Sets
that has the same properties by Corollary[4.7] Lemmas[4.15|and [£.16] Since Sets
is an adhesive category (see [8]) the underlying bottom face is a van Kampen
square, hence such is the bottom face of the initial cube by Lemmas and
4,16 O

5 Drawing Monographs

Obviously we may endeavour to draw a monograph A only if EA is finite and
if its edges have finite lengths, i.e., if A is a finite w-monograph. If we require
that any monograph MG should be drawn as the graph G, then a node should
be represented by a bullet « and an edge of length 2 by an arrow - 3 joining
its two adjacent nodes. But generally the adjacent edges may not be nodes and
there might be more than 2 of them, hence we adopt the following convention:

13



an edge e of length at least 2 is represented as a sequence of connected arrows
with an increasing number of tips

R

To Ty T2 T3

(where A(e) = xgzizaws---) and such that any arrow should enter z; at the
same angle as the next arrow leaves z;. For the sake of clarity we represent
symmetric adjacencies by a pair of crossings rather than a single one, e.g., if
A(e) = ze'y and A(e’) = xey, where z and y are nodes, the drawing may be

It is sometimes necessary to name the edges in a drawing. We may then
adopt the convention sometimes used for drawing diagrams in a category: the
bullets are replaced by the names of the corresponding nodes, and arrows are
interrupted to write their name at a place free from crossing, as in

_—€ e’
S

Note that no confusion is possible between the names of nodes and those of
other edges, e.g., in

fyD
L

it is clear that z and z are nodes since arrow tips point to them, and that y is
the name of an edge of length 3.

As is the case of graphs, monographs may not be planar and drawing them
may require crossing edges that are not adjacent; in this case no arrow tip is
present at the crossing and no confusion is possible with the adjacency crossings.
However, it may seem preferable in such cases to erase one arrow in the proximity
of the other, as in X

There remains to represent the edges of length 1. Since A(e) = z is stan-
dardly written A : e — x, the edge e will be drawn as

]

T

In order to avoid confusion there should be only one arrow out of the thick dash,
e.g., if A(e) = ¢ and A(e’) = ex where z is a node, the drawing may be

}—é but not ¢ ejA
6/
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since this last drawing may be interpreted as the monograph A(e’) = z and
A(e) = €’¢’, that is not isomorphic to the intended monograph.

Other conventions may be more appropriate depending on the context or on
specific monographs. Consider for instance a monograph with one node = and
two edges 13 and z14. The concentration of many arrow tips on a single bullet
would make things confused unless it is sufficiently large. One possibility is to
replace the bullet by a circle and treat it as a standard edge without tips. This
monograph could then be drawn as

x

These conventions are designed so that it is only possible to read a drawing
of any finite w-monograph A as the monograph A itself if all edges are named in
the drawing, or as some monograph isomorphic to A otherwise. This would not
be possible if a monograph A was a function rather than a functional relation,
since then its codomain (EA)<® would not be pictured. It would of course be
possible to add the ordinal « to the drawing, but then would it still qualify as
a drawing?

Note that the drawing of a graph or of a standard {0, 2}-monograph can be
read either as a graph G or as a monograph A, and then MG ~ A.

One particularity of monographs is that edges can be adjacent to themselves,

QO & 5

We may also draw typed monographs, then every edge e € EA has a type
a(e) that can be written at the proximity of e. For instance, a monograph typed
by T = {(u, v), (v, u)} is drawn with labels « and v as in

Of course, knowing that a is a morphism sometimes allows to deduce the
type of an edge, possibly from the types of adjacent edges. In the present case,
indicating a single type would have been enough to deduce all the others.
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In particular applications it may be convenient to adopt completely different
ways of drawing (typed) monographs.

Example 5.1. In [9] term graphs are defined from structures (V, E,lab,att)
where V is a set of nodes, E a set of hyperedges, att : E — V<% defines the
adjacencies and lab : E — (2 such that |att(e)| is 1 plus the arity of lab(e) for all
e € E (for the sake of simplicity, we consider only ground terms of a signature
X0 — 5<% such that 2 S = @). The first element of the sequence att(e) is
considered as the result node of e and the others as its argument nodes, so that
e determines paths from its result node to all its argument nodes. Term graphs
are those structures such that paths do not cycle, every node is reachable from a
root node and is the result node of a unique hyperedge. This definition is given
for unsorted signatures but can easily be generalized, as we do now.

def

We consider the type monograph Ty defined by ETx = S U £2, and

def

Tx(s) =€ forall se S,
Tx(0) < X(0) for all o € 2.

Note that Ty is a standard w-monograph, and indeed that any standard w-
monograph has this form for a suitable X .

Any typed monograph a : A — Tx corresponds to a structure (V, E, lab, att)
where V.= Ny, E = EA\Ny, lab(e) = a(e) and att(e) = A(e) for all e € E.
The only difference (due to our definition of signatures) is that the result node
of e is now the last node of the sequence A(e).

We now consider the signature X with two sorts s, s, a binary function
symbol f with X(f) = s’ s’ s and a constant symbol ¢ with X(c) = . We
represent the term graph f(c, c), where the two occurrences of ¢ are shared, as
a typed monograph a : A — Tx. We need two edges e, €' and their result nodes
x, @, the first for f and the second for c. Thus A is defined by

EA={z, 2 e, ¢}, Alx) =A(2") =¢, Ale) =2’ 2"z and A(e') = 2.
The typing morphism a : A — T is given by
a(r) = s, a(z’) =&, ale) = f and a(e') = c.

We give below the standard drawing of the monograph A typed by a and the
(clearly preferable) standard depiction of the corresponding term graph.

s

(R
5/
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6 Graph Structures and Typed Monographs

The procedure of reading the drawing of a graph as a I'y;-algebra G, where I'y
is the signature of graphs given in Section [I} is rather simple: every bullet is
interpreted as an element of Gyoges, €very arrow as an element of Gegges and the
images of this element by the functions srcY and tgt9 are defined according to
geometric proximity in the drawing. A procedure for reading E-graphs would
be similar, except that bullets may be interpreted either as nodes or values,
and this typing information should therefore be indicated in the drawing.

Since the drawing of a graph is nothing else than the drawing of a stan-
dard {0, 2}-monograph, we may skip the drawing step and directly transform a
standard {0, 2}-monograph A as a I';-algebra G. Then

Onodes = N4, Geqges = {r € EA | |2| = 2}, srcg(x) = 20 and tgtg(x) =1

for all & € Gegges- Thus every node of A is typed by nodes and all other edges are
typed by edges. This typing is obviously a morphism from A to the monograph
{(nodes, ¢), (edges, nodesnodes)} that is isomorphic to the terminal object of
{0,2}-SMonogr (see Lemma [4.9).

More generally, for any given graph structure I" we may ask which mono-
graphs, equipped with a suitable morphism to a type monograph T', can be
interpreted in this way as I'-algebras. As above, the edges of T' should be the
sorts of I". But this is not sufficient since there is no canonical way of linking
adjacencies in T (such as edges, = nodes and edges; = nodes) with the op-
erator names of I' (such as src and tgt). We will therefore use a notion of
morphism between signatures in order to rename operators, and we also rename
sorts in order to account for functoriality in 7.

Definition 6.1 (categories Sig, GrStruct, Sig,.). A morphism r from X :
02— 5 to X : 2 — 5'<Y is a pair (ropn,Tsrt) of functions ropy = 2 — (2
and 1o 1 S — S’ such that

<w v
Tt 02 =2 orgpn.

For any morphism v’ : X' — X" let ' or < (Topn © Topns Targ © Tsrt) = X — X7,
1y & (Idp,Idg), and Sig be the category of signatures and their morphisms.
Let GrStruct be the full subcategory of graph structures.

Let Sig.., be the subcategory of Sig restricted to morphisms of the form
(ropn,j) where j is a canonical injection. We write = for the isomorphism

relation between objects in Sigg,.

The question is therefore to elucidate the link between T'and I'. As explained
above, the edges of T correspond to the sorts of I'. We also see that every
adjacency in T' corresponds to an operator name in I, e.g., an edge e of length
2 adjacent to eg and ey (i.e. such that T'(e) = e e1) corresponds to two operator
names, say src. and tgt,, of domain sort e and range sort eg and e; respectively.
Since edges may have length greater than 2, we create canonical operator names
of the form [e-.] for the (*! adjacency of the edge e for every ¢ < |e| (hence we
favor [e-0] and [e-1] over src. and tgt,).
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Definition 6.2 (functor S : Monogr — GrStruct). To every monograph T
we associate the set of operator names Qp = {[e-1] | e € ET and v < |e|} and
the graph structure ST : Qp — (ET)<% defined by ST([e-1]) = ee, for all
[e-t] € Qr, i.e., we let Dom([e-1]) = e and Rng([e1]) = e,.

To every morphism f : T — T’ in Monogr we associate the morphism
Sf : ST — ST’ defined by: (Sf)opn is the function that maps every operator
name [e-1] € Qr to the operator name [f(e)-t] € Qr/, and (Sf)swt s the function
f:ET - ET'.

We see that Sf is indeed a morphism of graph structures:

(SF)GteST(Le-td) = f(e) fe.) = f(e) f(e). = ST'(Lf(e)-]) = ST"o(Sf)opn (Le-1)

for all [e-t] € Qr, and it is obvious that S is a faithful functor.

The next lemma is central as it shows that no graph structure is omitted by
the functor S if we allow sort-preserving isomorphisms of graph structures. We
assume the Axiom of Choice through its equivalent formulation known as the
Numeration Theorem [5].

Lemma 6.3. For every graph structure I' there exists a monograph T such that
ST ~1T.

Proof. Let I' : 2 — S=“ and for every sort s € S let {25 be the set of operator
names o € £2 whose domain sort is s, i.e., 2, = Dom™'[s]. By the Numeration
Theorem there exists an ordinal \s equipollent to (2, i.e., such that there exists
a bijection v : Ay — (25. Let T be the monograph such that ET < S and
T(s), = Rng(vs(r)) for all ¢ < X, so that T'(s) is an S-sequence of length \,.

vs(2)y 52 (521

I s S1 s ST

T(s)

We now consider the function ropy, : Qr — 2 defined by ropn([s-¢]) Lef ve(L).
This function is surjective since for all o € {2, by taking s = Dom(o) and
L =v;1(0) we get ¢ < As = |s| hence [s] € Qr and obviously 7opn([s-t]) = o.
It is also injective since ropn([st]) = ropn([s’-']) entails s = Dom(v,(e)) =
Dom(vg (")) = ' hence ¢ = ¢/ and therefore [s-t] = [s'-//]. Finally, we see that

1d5* o ST([s1) = s s, = Dom(v,(¢)) Rng(vs(e)) = I'(vs(v)) = I' 0 ropn([s-L])
for all [s-t] € Qp, hence (Topn,Ids) : ST — I' is an isomorphism, so that

ST ~ T O
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The reason why monographs require edges of ordinal length now becomes
apparent: the length of an edge s is the cardinality of (2, i.e., the number of
operator names whose domain sort is s, and no restriction on this cardinality is
ascribed to graph structures. The bijections v provide linear orderings of the
sets 2. Since T'(s) depends on vs the monograph T such that ST = I may not
be unique, even though S is injective on objects, as we now show.

Theorem 6.4. S is an isomorphism-dense embedding of Monogr into GrStruct.

Proof. Tt is trivial by Lemma that S is isomorphism-dense since ST = I’
entails ST ~ I'. Assume that ST = ST’ then ET = ET” and Q7 = Qp, hence
|T(e)] = |T'(e)| for all e € ET, and T(e), = (ST([e-t1)); = (ST'([e-t]))1 =
T'(e), for all ¢ < |e|, thus T = T". O

It is therefore clear that if S were full it would be an equivalence of categories,
but this is not the case as we now illustrate on graphs.

Example 6.5. We consider the graphs structure I's. We have (2p,qes = @
and eqges = {srec, tgt}, hence Aegges = 2. Let Vegges : 2 — (2eages be the
bijection defined by Vegges : 0 — src,1 — tgt, the corresponding monograph
is Ty = {(nodes,e), (edges, nodesnodes)}, and we easily check that ST, =
[g. However, the only automorphism of Ty is 11, while 'y has a non trivial
automorphism m = ((src tgt),Id noges,eages}) (i cycle notation), hence S is
not surjective on morphisms.

This automorphism reflects the fact that a graph structure does not define
an order between its operator names. Directing edges as arrows from src to
tgt or the other way round is a matter of convention that is reflected in the
choice of Vegges in Example This contrasts with monographs where edges are
inherently directed by ordinals, and also with the structure of graphs where the
source function comes first. In the translation from Monogr to GrStruct the
direction of edges are necessarily lost, hence these categories are not equivalent.

Example 6.6. The signature T's of E-graphs from [2] has five sorts edges,
nv-edges, ev-edges, nodes, values and six operator names src., tgt,, STCpy,
tgt,,, STCe, tgt,, whose domain and range sorts are defined as in Section [1}
We have Qnodes = Q’ualues =4, Qedges = {S'f’Ce, tgte}7 an—edges = {S’PC,W, tgtm,}
and 2ey-eages = {STCev, tgt,,}. There are four possible monographs T such that
ST ~ Ty given by

T(nodes) = T'(values) = e, T(nv-edges) = nodeswvalues or valuesnodes,
T(edges) = nodes nodes, T(ev-edges) = edges values or values edges.

These four monographs are depicted below.
T Ty T Ty
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ST [et] — ee, ET

Figure 1: The ST-algebra A = Apa wherea: A - T

The type indicated by the syntazx (and consistent with the drawings of E-graphs
in [2]) is of course Ty.

The restrictions of S to the categories of Definition|3.5|are isomorphism-dense
embeddings into full subcategories of GrStruct that are easy to define. The
O-monographs correspond to graph structures I" : 2 — S<% such that |£25] € O
for all s € S, and the standard monographs to r,g,) = @ for all 0 € 2. The
finite monographs correspond to finite S, hence FMonogr corresponds to finite
signatures.

We can now describe precisely how a monograph A typed by T through
a: A — T can be read as an ST-algebra A. As mentioned above, every edge x
of A is typed by a(x) € ET and should therefore be interpreted as an element of
Aa(z), hence A, () is the set of all edges = € EA that are typed by a(z). Then,
for every ¢ < |z| = |a(z)|, the «*} adjacent edge =, of x is the image of = by the
'h operator name for this type of edge, that is [a(z)-t]. Note that the sort of
this image is a(x,) = a(x), that is precisely the range sort of the operator name
[a(z)-] in ST (see Definition [6.2)), so that A is indeed an ST-algebra. This
leads to the following definition.

Definition 6.7 (functor Ay : Monogr\T — ST-Alg). Given a monograph T,
we define the function Ar that maps every object a : A — T of Monogr\T to
the ST-algebra A = Ara defined by

o A. ¥ a'e] for all e € ET, and
o [e]Ma) Y z, for all [e] € Qr and x € A..

Besides, At also maps every morphism f : a — b, where b : B — T, to the
ST-homomorphism Arf from A to B = Arpb defined by

(Arf)e = f\iee for all e € ET.

The ST-algebra A can be pictured as in Figure[ll The carrier sets A, form a
partition of EA. Since f : a — b (not pictured) is a function f : EA — EB such
that bo f = a, then bo f[A.] = a[a'[e]]  {e} hence f[A.] < b~ ![e] = Be, so
that f |i"; is well-defined. We also see that h = Arf is an ST-homomorphism
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from A to B since for every operator name [e-t] € Q7 we have Dom([e-t]) = e,
Rng([e-t]) = e, and

le-ldB ohe(z) = [e:dB(f(2)) = f(x), = f(2) = f([e] 7 (x)) = he, 0 [e:] ()

for all € A.. It is obvious from Definition [6.7] that Ar preserves identities and
composition of morphisms, hence that it is indeed a functor.

Theorem 6.8. For every monograph T, At is an equivalence.

Proof. Let a : A — T and b: B — T be objects of Monogr\T and A “ Ara,

def

B = Arb. It is trivial that At is faithful.

Ar is full. For any ST-homomorphism h: A — B, let f : EA — EB be the
function defined by f(z) < ha(zy () for all z € EA. Let e = a(x) so that x € A,
since he(z) € B. = b~ ![e] then bo f(z) = b(he(x)) = e, hence bo f = a and
|f(x)] = |b(f(2))| = |a(z)| = |z|. For all ¢ < |z| we have a(x,) = a(x), = e, and
since h is an ST-homomorphism then

F(@,) = he, ([e:] () = [e11B(he()) = f(),

hence f : @ — b is a morphism. Since (Arf).(z) = f|ff("e (x) = he(z) for all
e€ ET and all x € A., then Arf = h.
A7 is isomorphism-dense. For any ST-algebra C, let

ECE |J Cex{e} and (C(a,e)), = ([e1(x),e.)

ecET

for all (x,e) € EC and ¢ < |e|. Since Rng([et]) = e, then [e-]¢(z) € C,,
hence (C(z,e)), € EC, so that C' is a monograph such that |(z,e)| = |e|]. Let
¢: EC — ET be defined by c(z,e) < e, we have

o((z,e),) = c([e]¢(x),e,) = e, = (c(x,€)),,

hence ¢ : C — T is a morphism. For all e € ET we have (Arc). = ¢ !e] =
C. x {e}, and we let h, : C, — (Arc). be defined by he(z) = (z,e) for all z € C,.
The functions h, are bijective and h = (he)eeer is an ST-homomorphism since

e )27 0 he(z) = [e-]AT¢(z,e) = (x,¢e), = ([e-1]¢(x), e,) = he, o [e-1€(z),
for all [e-t] € Q7 and z € C,, hence C ~ Apc. O

It is easy to see that for any two signatures X and X', if ¥ ~ X’ then
Y-Alg ~ Y’-Alg. We conclude that all graph structured algebras can be rep-
resented as typed monographs.

Corollary 6.9. For every graph structure I' there exists a monograph T such
that I'-Alg ~ Monogr\T'.

Proof. By Lemma there exists T such that I" ~ ST, hence Monogr\T =~
ST-Alg ~ I'-Alg. O
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Example 6.10. Following [10], an co-graph G is given by a diagram of sets

S0 s1 Sn—1 Sn Sn+1
Gor— G T— «+  —— G T—Gpy1¢— -
to t1 th—1 tn tnt1

such that, for every n € w, the following equations hold:
Sn O Snt1 = Sp Olny1, ln © Spy1 =1n Otny1.

This means that every element x of G412 is an edge whose source xg and target
x1 are edges of G, that are parallel, i.e., that have same source (xg)g = (x1)o
and same target (x0)1 = (x1)1. Graphically:

o

(zo0)o /IJ?\) (z1)1
~_ v 7

z1

This is known as the globular condition. We consider the type monograph T
defined by ETo, = w,Tx(0) = € and Ton(n + 1) = nn for all n € w. This is an
infinite non-standard {0, 2}-monograph that can be pictured as

We express the globular condition on typed monographs g : G — Ty as:
for all x € EG, if g(z) = 2 then G(xo) = G(x1).

We rapidly check that this is equivalent to the globular condition on the ST, -
algebra G = Ar_g. The set of sorts of STy is w and its operator names are
m+1.07 and [n+ 1-1] with domain sort n+ 1 and range sort n, for alln € w.
We let s, < [n+1.079 and t, < [n+ 1179, that are functions from Gy, 11 to
G, as in the diagram of co-graphs.

By Definition we have for all ¥ € G190 = g~ 1[n+2] and all i,j € 2 that

[n+ 15790 [n+2i1%(x) = [+ 151%(:) = (:);
hence
G(zo) = G(21) iff (zo)o = (z1)o and (zo)1 = (z1)1
iff [n+1-0190 [n+2:079(x) = [n+ 10790 [n+2-17%(x)
and [n+11]%0 [n+2:079() = n+ 1179 0 [n+2:17%(x)

iff sp 0 spi1(x) = sp o tpi1(x) and ty, 0 spy1(x) =ty 0 tpyr ().

Example 6.11. The signature T'y of hypergraphs (see [3, Ezample 3.4]) is

def

defined by the set of sorts Sy = {V} U {Hym | n,m € w} and for all n,m € w
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by n operator names src;”™ and m operator names tgt;"™ with domain sort

H, m and range sort V for all 1 <i<n and 1 < j <m. Hence there are n +m
operator names of domain Hy, ., and (n+ m)! bijections from the ordinal n+m
to this set of operator names. But since they all have the same range sort V,
the type monograph Ty, does not depend on these bijections (one for every pair

(n,m)). It is defined by ETy, = Sy, and

Th(V) =£
Th(Hym) = VI (n+m) for alln,m e w.

This is a standard w-monograph. It is easy to see that any standard w-monograph
can by typed by Ty, though not in a unique way. Fvery edge of length I > 0 can
be typed by any sort Hy, ., such that n +m =1, and every node can be typed by
V (or by Hy o if it is not adjacent to any edge). To any such typing corresponds
an STy -algebra by the equivalence Ar,, and then to a hypergraph (a T'y-algebra)
since I'y, ~ STy,.

But to know which hypergraph H corresponds exactly to a typed monograph
we need to be more specific, since there are infinitely many isomorphisms be-
tween 'y, and STy,. The natural isomorphism stems from the obvious orderings
srep™ <o < srcl™ < tgt]"™t < --- < tgth™ for all nym € w. In this iso-
morphism the canonical operator name [Hy, i1 for alli < n-+m corresponds to
sre;! if i <n, and to tgt;}?_, ifi = n. Thus an edge z, say of length 3 typed
by Hz 1, must be interpreted as an hyperedge x € Hpy, , with (srcPY(z) = o,

(srey () = x1, (tgt?" ) (x) = x5 and xo, 21,29 € Hy.

The results of this section apply in particular to typed graphs. It is easy
to see that S o M is an isomorphism-dense embedding of Graphs into the full
subcategory of graph structures I' : 2 — S=<“ such that for every operator
name o € §2 we have |[2pom ()| = 2 and 2gye() = @. Hence for every such I’
there exists a graph G such that Graphs\G ~ Monogr\MG ~ I'-Alg. The
type graph G is determined only up to the orientation of its edges.

7 Submonographs and Partial Morphisms

Graph structures have been characterized in [3] as the signatures that allow
the transformation of the corresponding algebras by the single pushout method.
This method is based on the construction of pushouts in categories of partial
homomorphisms, defined as standard homomorphisms from subalgebras of their
domain algebra, just as partial functions are standard functions from subsets of
their domain (in the categorical theoretic sense of the word domain). The results
of Section [] suggest that a similar approach can be followed with monographs.
We first need a notion of submonograph, their (inverse) image by morphisms
and restrictions of morphisms to submonographs.

Definition 7.1 (submonographs and their images, restricted morphisms). A
monograph A is a submonograph of a monograph M if A < M. For any
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monograph N and morphism f : M — N, let f(A) = {(f(z),No f(z)) | z €
EA}. For any submonograph C < N, let f~1(C) = {(z, M(z)) | z € f*[EC]}.
If f(A) < C, let f|G : A — C be the morphism whose underlying function is
fIES-

In the sequel we will use the following obvious facts without explicit ref-
erence. f(A) and f~!(C) are submonographs of N and M respectively. If
A and B are submonographs of M then so are A u B and A n B. We have
f(Au B) = f(A) u f(B) thus A € B entails f(A) < f(B). If C and D
are submonographs of N we have similarly f~1(C u D) = f~3(C) u f~Y(D)
and C € D entails f~}(C) < f~1(D). We also have A < f~1(f(A)) and
f(f7YC)) = C ~n f(M). For any g : N — P and submonograph E of P,
(go f)"YE) = f~H (g7 (E)). If (A+ B, u1, pa) is the coproduct of (A4, B) and
C is a submonograph of A + B then C = u; ' (C) + u3 ' (C).

We may now define the notion of partial morphisms of monographs, with
a special notation in order to distinguish them from standard morphisms, and
their composition.

Definition 7.2 (categories of partial morphisms of monographs). A partial
morphism [f]: A — B is a morphism f : A’ > B where A’ is a submonograph
of A. f is called the underlying morphism of [f]. If the domain of f is not
otherwise specified, we write [f] : A «— A" — B. If the domain A" of f is
specified but not the domain of [f] then they are assumed to be identical, i.e.,
[fl]: A < A" — B. For any [g] : B <« B’ — C we define the composition of
partial morphisms as

910171 < [0 1| A £ (B) = C.

Let 1\/Ion0grP be the category of monographs and partial morphisms. Let
SMonogr? be its full subcategory of standard monographs. For any set O of
ordinals, let O-Monogr® (resp. O-SMonogr® ) be its full subcategory of O-
monographs (resp. standard O-monographs). Let FMonogr? be its full subcat-
egory of finite w-monographs.

Note that (f~'(B'), fI¥1 gy : f7H(B) = B, j : [T1(B) — A) is a
pullback of (j : B’ — B, f: A’ > B, B) and is therefore an inverse image (i.e.,
a pullback along a monomorphism, see [7]), and it is therefore easy to see that
composition of partial morphisms is associative, see [I1I]. (Note however that
Monogrt is not a category of partial maps in the sense of [11], since partial
maps are defined modulo isomorphic variations of A’.)

We now see how these inverse images allow to formulate a sufficient condition
ensuring that restrictions of coequalizers are again coequalizers.

Lemma 7.3 (coequalizer restriction). Let A’ and B’ be submonographs of A
and B respectively and f,g: A — B be parallel morphisms such that

f7HB) = A =g71(B),
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if (Q,¢) is a coequalizer of (f,g) then (Q',¢) is a coequalizer of (f|5,4|%),
where Q' = ¢(B'), ¢ = ¢|% and ¢ (Q') = B'.

f

~_
g

il
A’ ~____ B —— Q'

’
9|§/

Proof. We assume w.l.o.g. that (@, ¢) is the coequalizer of (f,g) constructed in
Lemmal[d.2]with ~ being the equivalence relation generated by R = {(f(z), g(z)) |
x € EA}, and we let (Q',¢’) be the coequalizer of (f|5,,g|5,) constructed simi-

larly with the equivalence relation ~ generated by R’ = {(f|% (z),g|% (z)) | = €
EA’}. By the properties of f and g we have that

f(z) e EB iff v e f~'[EB'] iff v € EA" iff v € g~ '[EB'] iff g(x) € EB’

for all z € EA, hence for all y,yy’ € EB we have that y R ¢/ iff y R 3/ and
at least one of y,y’ is in EB’. By an easy induction we see that y ~ 3’ iff
y ~y and 3y’ € EB’, hence the ~-classes are the ~-classes of the elements of

EB’, i.e., EQ' = ¢[EB’]. Tt follows trivially that Q" = ¢(B’), ¢ = c\% and
Q") =B. O

It is then easy to obtain a similar result on pushouts.

Lemma 7.4 (pushout restriction). Let A’, B’, C' be submonographs of A, B,
C respectively and f : A — B, g: A — C be morphisms such that

fHB) =4 =g7H(C),

if (h,k,Q) is a pushout of (A, f,g), let Q" = h(B') U k(C"), h"{(Q') = B’ and
E~HQ') = C’, then (h|‘§,,k|§,,Q’) is a pushout of (A’,f\ﬁ:,g\g:).
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Proof. We assume w.l.o.g. that (h, k&, Q) is obtained by the canonical construc-
tion of pushouts, i.e., that h = cop; and k = cous where (Q, ¢) is a coequalizer of
(u1of, uaog) and (B+C, py, p2) is the coproduct of (B, C). Let (B'+C", u}, ph)
be the coproduct of (B’,C"), then obviously B'+ C' < B+ C, pj = ,u1|gl+cl
and ph = po|8, T . Since

(o /)M (B +C)=f1B)=A"=g¢g(C") = (n20g) (B + ")
then by Lemma (Q', ) is a coequalizer of
(o NIT (20 )| 577) = Gy 0[5 5 0 915)

where Q' = ¢(B' + ('), ¢ = C|g:+c, and ¢71(Q') = B’ + C’. We thus have
Q") = (cou) Q') = pu;*(B' + C") = B’ and similarly k~1(Q") = C".
We also have h|Qi = (co u1)|gj = ¢ oy} and k|g: = (co ug)\g: = ¢ o b,
hence (h|g;, k|g:, @) is the canonical pushout of (A’ f\ﬁ,’,gﬁ,’), and therefore
Q = h|%(B) U k|Z(C) = h(B') U k(C"). O

We can now show that categories of partial morphisms of monographs have
pushouts. The following construction is inspired by [3, Construction 2.6, Theo-
rem 2.7] though the proof uses pushout restriction.

Theorem 7.5. The categories of Definition [7.3 have pushouts.

Proof. Let [f] : A «— Ay — B and [g] : A « Ay — C. The set of submono-
graphs J © A; n Ay such that f~1(f(J)) = J and g~ 1(g(J)) = J contains &
and is closed under union, hence has a greatest element denoted I. There is also
a greatest submonograph X € B such that f~1(X) < I, that must therefore be
greater than f(I), i.e., we have f(I) € X hence f~1(f(I)) < f~1(X) and this
yields f~1(X) = I. Similarly, there is a greatest submonograph ¥ < C such
that g~1(Y) < I, so that g(I) € Y and g~ (V) = I.

Let f' = f|X, ¢’ = g|¥ and (h,k, Q) be a pushout of (I, f/,¢') in Monogr,
we claim that ([R],[k],Q) is a pushout of (A,[f],[g]) in Monogr®, where
obviously [h]: B<«— X — Q and [k] : C <Y — Q. We first see that

(W o [£1 = [ho X | = [ho 1= ke g] = [ko gl | = k1o gl

We now consider any pair of partial morphisms [v] : B <« B’ — U and
[w] : C « C" — U such that [v]o[f] = [w]o[g], hence vo f|53 = wog|§ where
JE fTHB) =g 1(C). Since f(J) = f(f~1(B')) € B then J < f~(f(])) <
f~Y(B’") = J, hence f~*(f(J)) = J and similarly g=*(g(J)) = J, so that J < I.
This can be written f~!(B’) € I and thus entails B’ € X and similarly ¢’ € Y,
hence f'~Y(B') = J = ¢~ }(C").

We can therefore apply Lemmaﬂ and get that (h|gj, /<:|g:7 Q') is a pushout
of (J, f1%,¢'|§) where @ = h(B') U k(C"), h"1(Q') = B’ and k~1(Q') = C".
Since vo f'|F =wvo f|F =wogl§ =wog'|§ there exists a unique u : Q' — U
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such that u o h|g: =wvand w = uo k;|g: We thus have a partial morphism
[u] : Q « Q" — U such that

[ul o[l = [uo iy g | = [uo iG] = ol
and similarly [u] o [k] = [w].
1y

\I 1
'\\A 557

!
qlg q A h

J

1

Cl

Suppose there is a [u/] : @ <« D — U such that [u] o [h] = [v] and
[u] o [k] = [w], then u o h|f_1(D) = v hence h™1(D) = B’ and similarly
k~Y(D) = C'. Since D € Q = h(X) U k(Y) then

D=(Dnh(X)u(Dnk())=hh YD) uk(k (D)) =hB)uk(C)=@Q

and we get [u'] = [u] by the unicity of u.
If B and C are finite (resp. standard, resp. O-monographs) then so are X
and Y, hence so is @ by Theorem [4.4] O

One important feature of this construction is illustrated below.

Example 7.6. Suppose there are edges x of A1 n As and y € EA3\EA; such
that g(z) = g(y). If x is an edge of I = g~ '(g(I)) then so is y, which is
impossible since I € Ay n Ay. Hence x is not an edge of I = f~1(X) and
therefore f(x) ¢ EX. Since y is not an edge of I = g=*(Y) then similarly
g(z) = g(y) ¢ EY. This means that even though x has images by both f and g,
none of these has an image (by h or k) in Q, i.e., they are “deleted” from the
pushout.
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The result of the present section can be replicated by replacing every mono-
graph, say A, by a typed monograph with a fixed type T, say a : A — T. But
then expressions like A € B are replaced by a < b, which ought to be inter-
preted as A € B and a = b| 4, so that Ara is then a subalgebra of Arb. In this
way the results of [3] on categories of partial homomorphisms could be deduced
from Corollary They cannot be obtained directly from Theorem

8 Algebraic Transformations of Monographs

Rule-based transformations of graphs are conceived as substitutions of sub-
graphs (image of a left hand side of a rule) by subgraphs (image of its right
hand side). Substitutions are themselves designed as an operation of deletion
(of nodes or edges) followed by an operation of addition. This last operation is
conveniently represented as a pushout, especially when edges are added between
existing nodes (otherwise a coproduct would be sufficient).

The operation of deletion is however more difficult to represent in category
theory, since there is no categorical notion of a complement. This is a central
and active issue in the field of Algebraic Graph Transformation, and many
definitions have been proposed, see [12] 13, [14] [I5]. The most common and
natural one, known as the double pushout method [I6] [I7, 18], assumes the
operation of deletion as the inverse of the operation of addition.

More precisely, in the following pushout diagram

l
L+——K

we understand M as the result of adding edges to D as specified by | and k.
Images of edges of K are present in both D and L, and therefore also in M,
without duplications (since f ok = mol). The edges that are added to D are
therefore the images by m of the edges of L that do not occur in {(K). We may
then inverse this operation and understand D as the result of removing these
edges from M. The monograph M and the morphisms m, [ then appear as the
input of the operation, and the monograph D and morphisms &, f as its output.
The problem of course is that the pushout operation is not generally bijective,
hence it cannot always be inverted. We first analyze the conditions of existence
of D.

Definition 8.1 (pushout complement, gluing condition). A pushout comple-
ment of morphisms l: K — L and m : L — M is a monograph D and a pair
of morphisms k: K — D and f : D — M such that (m, f, M) is a pushout of
(K, L, k).

The morphisms | : K — L and m : L — M satisfy the gluing condition
(GC(l,m) for short) if, for L' = EL\][EK],
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(1) for all x,2' € EL, m(z) = m(a’) and x € L' entail x = 2/, and
(2) for alle,e’ e EM, e | M(e') and e € m[L'] entail e’ € m[L'].

The edges of M that should be removed from M to obtain D are the ele-
ments of m[L’]. We may say that an edge m(z) of M is marked for removal if
x € L' and marked for preservation if x € I[[EK]. Condition (1) of the gluing
condition states that the restriction of m to m~1[m[L’]] should be injective, or
in other words that an edge can be deleted if it is marked for removal once, and
not marked for preservation. Condition (2) states that an edge can be deleted
only if all the edges that are adjacent to it are also deleted (otherwise these
edges would be adjacent to a non existent edge). It is obvious that this glu-
ing condition reduces to the standard one known on graphs, when applied to
standard {0, 2}-monographs. We now prove that it characterizes the existence
of pushout complements (note that [ is not assumed to be injective).

Lemma 8.2. The morphismsl : K — L and m : L — M have a pushout
complement iff they satisfy the gluing condition.

Proof. Necessary condition. We assume w.l.o.g. that the pushout (m, f, M) of
(K, 1, k) is obtained by canonical construction, i.e., let (L + D, 1, pi2) be the
coproduct of (L, D), (M, ¢) bet the coequalizer of (u1 ol, usok), m = copy and
f =copus. Thus EM is the quotient of EL + ED by the equivalence relation ~
generated by R = {(u1 0l(2),u2 0 k(z)) | z € EK}. Let L' = EL\I[EK], we first

prove (1) and then (2).
L
M

For all x,2’ € EL, if € L' then x ¢ I[EK], hence p;(x) is not related by
R to any element and is therefore alone in its ~-class. Henceﬂ if m(z) = m(z’)
then py(x) ~ p1(a’) and therefore x = a’.

For all e,e’ € EM such that e | M(¢') and e € m[L'], let = € L’ such that
e = m(z). Suppose that e/ = f(y’) for some y’ € ED then M(e') = f<* o D(y')
hence there is a y | D(y’) such that e = f(y), hence m(z) € f[ED] which
is impossible by note Since M = f(D) v m(L) there must be a 2’ € EL
such that ¢/ = m(2’). Suppose now that 2’ = I(z) for some z € EK then
e = m(l(z)) = f(k(z)) € f[ED], and we have seen this is impossible. Hence
x’ ¢ I[[EK] and therefore €’ € m[L'].

<—

K
+
uz
D

<7

\h/s

2 Another consequence is that p1(z) is not related by ~ to any element of us[ED], hence
that m(x) ¢ f[ED].



Sufficient condition. We assume (1) and (2), let o be an ordinal for M, ED =
EM\m[L'] and D(e) = M(e) for all e € ED; by (2) this is an ED-sequence,
hence D is a submonograph of M and the canonical injection f: D <— M is a
morphism. By (1) we have m[L'] nmo[[EK]| = &, hence mol[EK] € ED and

we let k= (mol)|ER so that fok =mol. We have

kS0 K =m~%ol~*ocK =m~“oLol=Momol=Dok

hence k : K — D is a morphism.

To prove that (m, f, M) is a pushout of (K,l,k), let m’ : L — M’ and
1"+ D — M’ be morphisms such that m’ ol = f’ o k. Since EM = ED w m[L']
we define h : EM — EM' as

he) dé,f{ f'(e) ifeeED

m/(z) ifxe L and e = m(x)

since z is unique by (1). For all € EL, if € L’ then h o m(z) = m/(x),
otherwise there is a z € EK such that z = [(z) and then

hom(z) =homol(z) =ho fok(z)=fok(z) =m'ol(z) =m'(x),

hence hom = m’. It is obvious that ho f = f/ and that these two equations
uniquely determine h. Proving that h : M — M’ is a morphism is straightfor-
ward. O

Note that D is finite whenever M is finite. This proves that this gluing con-
dition is also valid in FMonogr, and it is obviously also the case in SMonogr,
O-Monogr and O-SMonogr for every set O of ordinals. It therefore charac-
terizes the existence of D, but by no means its unicity.

It is well known (and easy to see) that in the category of sets one may find
pushout complements with non isomorphic sets D, this is therefore also the
case for monographs (since Sets ~ 1-Monogr). An analysis of the proof of
Lemma [8.2] (necessary condition) however yields that f[ED] is invariant.

Corollary 83. If D,k : K — D, f: D — M 1is a pushout complement of
l:K—> L, m:L— M then f[ED] = EM\m[L'], where L' = EL\/[EK].
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Proof. Since m[EL]\(m ol)[EK] < m[L'] then
m{EL)\m[L'] < (m o D[EK] = (f o K)[EK] < f[ED].

By property of pushouts we have EM = f[ED]um[EL], and by note|2| we have
m[L'] n f[ED] = &, hence

EM\m[L'] = (f[ED\m[L']) U (m[EL]\m[L]) = f[ED].
O

One way of ensuring the unicity of D (up to isomorphism) is to assume that
l is injective: this is a well-known consequence of Theorem [£.17] (see [8]). How-
ever, an analysis of the construction of D in the proof of Lemma (sufficient
condition) shows that we can always build D as a submonograph of M, hence
we may as well assume that f is a canonical injection and avoid restrictions
on [. We therefore adopt a restricted notion of double pushout transformation
compared to the standard one.

Lr .
Definition 8.4 (span rules (I, ), matching m, relation (zgm) A span rule is
a pair (I,r) of morphisms | : K — L, r : K — R with the same domain K. A
matching of (I,7) in an object M is a morphism m : L — M. For any object N

L . . .
we write M (:’I“gm N if there exists a double-pushout diagram

|

M ——
f

j

»

4>gN

where [ is a canonical injection.

We easily see that the relation (:rgm is deterministic up to isomorphism.

lr lr .
Corollary 8.5. M (:gm N and M (:Qm N’ entail N ~ N'.

Proof. We have two pushout complements k¥ : K — D, f : D — M and
k':K — D', f': D' < M of m, I, hence by Corollary [8.3]

ED = f[ED] = EM\m[L'] = f'[ED'] = ED’

hence D = D/, f = f', k= (fok)|R = (mol)|R = (f o k)R =k, and
therefore N ~ N’ by general property of pushouts. O

It is obvious by Theorem [£.4] and by the construction of D in Lemma [8:2

l,r .
that, in the categories of Deﬁnition there exists a N such that M (:gm N if

and only if [ and m satisfy the gluing condition. This means in particular that
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an edge e of M may be deleted only if it is explicitly marked for removal, i.e.,
if there is an edge = € L’ such that m(z) = e. All edges that are not marked
for removal are guaranteed to be preserved. This conservative semantics for
transformation rules is extremely safe but imposes a discipline of programming
that may be tedious.

As noted in Example pushout of partial morphisms have a potential of
removing edges. Since such pushouts always exist, they can be used to define
transformations that are not restricted by the gluing condition. This is the idea
of the single pushout method, that was initiated in [I9] and fully developed in
[20, 3]

Definition 8.6 (partial rules [r], relation Qm, rule [I,r]). A partial rule is
a partial morphism [r] : L « K — R. A matching of [r] in a monograph M

is a morphism m : L — M. For any monograph N we write M gm N if
there exist partial morphisms [g] and [n| such that ([n],[g],N) is a pushout of
(L [r] s [m]).

To any span rule (I,r) where |l : K — L, r : K — R we associate a partial
def

rule [l,r] = [r'] : L < I(K) — R’ such that (q,r', R’) is a pushout of (K,r,1’)

where I % 1|10
(1,7 L+t —K—">R
[1,7] L+— l(K) —TR/

The relation im is also deterministic up to isomorphism since N is ob-
tained as a pushout. Obviously a morphism m is a matching of (I,r) in M iff
it is a matching of [I, 7] in M. The partial rule [I,r] is designed to perform the
same transformation as the span rule (I,7). We prove that this is indeed the
case when the gluing condition holds.

Theorem 8.7. For any span rule (I,r), monographs M, N and matching m of
(I,r) in M, we have
(Lr) . [1,r]
M =5, N iff M =,, N and GC(l,m).

Proof. Let R', ', g and ' be as in Definition [8.6] We first compute the pushout
of [I,7] and [m] according to the construction in Lemma by assuming the
gluing condition GC(l,m) and that D € M, k: K - D, f: D — M is a
pushout complement of I, m.

Let I be the greatest submonograph of [(K)n L such that 7'~ (r'(I)) = I and
m~Y(m(I)) = I. By GC(I,m) (1) we have for all z € EL that m(z) € m[I[EK]]
entails ¢ L' = EL\I[EK], i.e., # € I[EK], hence m~*(m(l(K))) < I(K) and
since the reverse inclusion is always true we get I = [(K). Hence the greatest
monograph X € R’ such that '~}(X) < I'is R'.
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I(K) R’
~, . 7
L+ l(K)> R
k ]\ n
m’ L n’
m|
M
A
D 7 N

Let Y be the greatest submonograph of M such that m=1(Y) < I(K), this
entails m™1[EY] n L' = @, hence EY n m[L'] = @ and by Corollary Y c
f(D) = D. Conversely, for all z € m~[ED] = m~[EM\m[L']] we have m(z) ¢
m[L'], hence by GC(I,m) (1) x ¢ L' and thus = € I[EK], so that m~!(D) < I(K).
Hence D € Y and we get Y = D.

The pushout of [I,7] and [m] is therefore obtained from the pushout of r/
and m’' = m|{(x. Besides, we have m’ ol' = (mol)|g = (fok)|} = k.

l, . . .
Sufficient condition. We assume M (=T>)'m N and the diagram in Defini-

tion By Lemmawe have GC(I,m). By the above we get (gom/)ol’ =
gok = nor, and since (¢,r’, R') is a pushout of (K,r,l’) then there exists a
unique n’ : R — N such that n’ o7’ = gom’ and n’ 0 ¢ = n. Since (n,g, N) is
a pushout of (K, r, k) then by pushout decomposition (n’, g, N) is a pushout of

(I(K),r",m”), hence M gm N.

Necessary condition. By GC(l,m) and Lemma we can build a pushout

complement D € M, k : K — D, f: D — M of I, m. By M 22, N

and the above there is a pushout (n’, g, N) of (I(K),r’,m’), hence by pushout
L

composition (N, n’ o ¢, g) is a pushout of (K, r, k), hence M gm N. O
Note that any partial rule [r]|: L «= K — R can be expressed as [r] = [4, 7]

where j : K — L is the canonical injection. Thus, provided the gluing con-

dition holds, single and double pushout transformations are equivalent. Single

pushout transformations are more expressive since they also apply when the

gluing condition does not hold, as illustrated in the following example.

Example 8.8. We consider the following “loop removing” rule:

L K R

O L. - .
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and try to apply it to monograph Ty, from Ezample[6.10, There is a unique
morphism m : L — Ty but it does not satisfy the gluing condition. Indeed,
we see that condition (2) is breached since 1 | Too(2) and 1 € m[L'] and yet
2 ¢ m[L']. Hence the only way to apply the rule to Ty is through a single
pushout transformation.

For this we first compute the rule [l,r]. Since l is the canonical injection
of (K) = K into L, then " = r (and R’ = R = K) and hence [l,r] = [r] :
L «— K — R. The monograph D is the greatest one such that D < Ty, and
m~Y(D) < I(K), hence obviously D = {(0,¢)}. Since I(K) and R are both
isomorphic to D then so is the result of the transformation, i.e.,

[r]

Hence removing the edge 1 from Ty silently removes the edges n for all n > 1.

We therefore see that single pushouts implement a semantics where edges
can be silently removed, but minimally so for a monograph to be obtained. This
may remove edges in a cascade, a feature that does not appear on graphs. Note
that item (1) of the gluing condition may also be breached when an edge is
marked more than once for removal, in which case it is deleted, but also when
an edge is marked both for removal and for preservation. Example [7.6] shows
that in such cases the edge is also removed. All edges marked for removal are
guaranteed to be deleted, and the other edges are preserved only if this does not
conflict with deletions. This semantics of transformation rules is thus dual to the
previous one, and should be more appealing to the daring (or lazy) programmer.

9 Attributed Typed Monographs

The notion of E-graph has been designed in [2] in order to obtain an adhe-
sive category of graphs with attributed nodes and edges. This follows from a
line of studies on Typed Attributed Graph Transformations, see |21} 22] 23].
The attributes are taken in a data type algebra and may be of different sorts
(booleans, integers, strings, etc.). In the case of E-graphs only the nodes of sort
values represent such attributes. But they are also typed by E-graphs, and in
the type E-graphs each node of sort values represent a sort of the data type
algebra. This should recall the constructions of Section [6] that we now use in
order to generalize the notion of typed attributed graphs given in [2]. The idea
is similarly to impose that the edges typed by a sort of a data type algebra are
the elements of the corresponding carrier set.

Definition 9.1 (categories ATM(T, X)). For any monograph T and signature
Y2 — S an attributed typed monograph (ATM for short) over T, X is a
pair (a, A) of an object a : A — T in Monogr\T and a X-algebra A such that
As = (Ara)s for all se S nET.
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A morphism m from (a, A) to an ATM (b,B) over T, X is a pair (m,m) of
a morphism m : a — b in Monogr\T and a X'-homomorphism m : A — B such
that s = (Arm)s for allse S nET.

def def

Let 14,4y = (1a,14) and for any morphism m’ : (b, B) — (c,C) let m'om =
(m/ om,m’ om) that is a morphism from (a, A) to (¢,C). Let ATM(T, X)) be
the category of ATMs over T, X and their morphisms.

The edges that are considered as attributes are not the nodes of a specific
sort as in E-graphs; they are characterized by the fact that they are typed by
an edge of T that happens to be also a sort of the data type signature X i.e.,
an element of S. This is consistent with the typed attributed E-graphs of [2].

We therefore see that the signatures ST and X share sorts but we shall
consider them as otherwise distinct, in particular w.r.t. operator names. To
account for this property we need the following construction.

Definition 9.2 (signature X' + X'). Given two signatures X : 2 — S=% and
X — S et (2 + 2, pa, pe) be the coproduct of (£2,82') in Sets and
7, 7' be the canonical injections of S, S’ respectively into S U S’, let ¥ + X' :
N+ 2 — (SuS)<¥ be the unique function such that (X + X )opu; = j~“oX
and (X + X")opg = 5<% o XV,

'u'll lj<w
0+ -7 (Su S

We leave it to the reader to check that this construction defines a coproduct
in the category Sig,,, and therefore that ¥y ~ Xy and X} = X/ entail Xy + X ~
Yo + X4, For the sake of simplicity we will assume in the sequel that ST and X
have no operator name in common, thus assimilate Qr + {2 to Q7 U 2 and omit

the canonical injections, so that ST = (ST + X)) glETT)W and ¥ = (ST + %)|5 .

Definition 9.3 (functor D : ATM(T, X) — (ST+X)-Alg). For every signature
X 2 — S<% and monograph T such that Qpr n 2 = @, let &' < ST + X and
D : ATM(T, X)) — X'-Alg be the functor defined as follows: for every object
(a, A) of ATM(T, X) let D(a,.A) be the X’'-algebra A" defined by

o A det A, forall se S and A, def (Ara)e for all e € ET,
o oA oA foralloe 2 and [e1]V Y [ ] for all [e] € Q.

For every morphism m : (a, A) — (b,B), let (Dm)s I for all s € S and
(Dm). & (Arm), for all e € ET.
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It is straightforward to check that Dm is a X’-homomorphism from D(a,.A)
to D(b, B), and hence that D is a functor.

Theorem 9.4. D is an equivalence from ATM(T, X) to (ST + X)-Alg.

Proof. Tt is easy to see that D is full and faithful by the same property of Ar.
We prove that D is isomorphism-dense. For any X'-algebra B’, let B (resp.
C) be its restriction to X' (resp. ST). Since Ar is isomorphism-dense by Theo-
rem there exist an object a : A — T in Monogr\T and an ST-isomorphism
h : Ara — C. We define simultaneously a set A, and a function ks : A; — B;
for all s € S by taking A, & B, and k, & 14, if s € S\ET, and A, E (Ara)s
and ky < hy if s € S~ ET (in this case we have C, = B, = Bs). We then define

for every o € 2 the function o & k;{ig(o) ooBo Epom(o) : Abom(o) = ARng(0)s

and the X-algebra A & ((As)ses, (oA)OeQ). By construction (a,.A) is obviously
an ATM over T, ¥ and k = (k,)ses is a D-isomorphism k : A — B.

b)) A B
ST Ara c
X' A’ B

Let A = D(a, A), b, = ky: A, — B, for all s € S and hl, = h, : A, — B,
for all e € ET, since hy = ks for all s € S n ET then b/ < (ML) sesoeT is well-

defined. It is then easy to see that b/ : A’ — B’ is a X’-isomorphism, so that
D(a, A) ~ B'. 0O

Theorem (9.4 generalizesﬂ [2, Theorem 11.3] that establishes an isomorphism
between the category of attributed E-graphs typed by an attributed E-graph
ATG and the category of algebras of a signature denoted AGSIG(ATG). In
particular Theorem 11.3 of [2] requires the hypothesis that AGSIG(AT'G) should
be well-structured, which means that if there is an operator name of ST whose
domain sort is s then s is not a sort of the data type signature X~. Obviously this
is equivalent to requiring that only nodes of T' can be considered as sorts of X
and is linked to the fact that only values nodes of E-graphs are supposed to hold
attributes. Since we are not restricted to E-graphs there is no need to require
that attributes should only be nodes. This has an interesting consequence:

30ur proof is also much shorter than the 6 pages taken by the corresponding result on
attributed typed E-graphs. This is due partly to our use of Ap (Definition and of The-
orem @ but also to the simplicity of monographs compared to the 5 sorts and 6 operator
names of E-graphs.
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Corollary 9.5. For every signatures X, X’ and graph structure I' such that
X' =T + X there exists a monograph T such that X'-Alg ~ ATM(T, X).

Proof. By Lemma there exists a monograph T such that ST = I', hence
ST+XY = I't+ X = X' and therefore X'-Alg ~ (ST+X)-Alg ~ ATM(T,Y). O

Obviously, any signature X’ can be decomposed as I" + X' by putting some
of its monadic operators (and the sorts involved in these) in I and all other
operators in Y. And then any X’-algebra can be represented as an ATM over
T, X, where ST ~ I'. This opens the way to applying graph transformations to
these algebras, but this requires some care since it is not generally possible to
remove or add elements to a X’-algebra and obtain a X’-algebra as a result.

The approach adopted in [2, Definition 11.5] is to restrict the morphisms used
in span rules to a class of monomorphisms that are extensions of X-isomorphisms
to (I'+ X)-homomorphisms. It is then possible to show [2, Theorem 11.11] that
categories of typed attributed E-graphs are adhesive HLR categories (a notion
that generalizes Definition see [24]) w.r.t. this class of monomorphisms.

A similar result holds on categories of ATMs. For the sake of simplicity,
and since rule-based graph transformations are unlikely to modify attributes
such as booleans, integers or strings (and if they do they should probably not
be considered as graph transformations), we will only consider morphisms that
leave the data type algebra unchanged, element by element. This leaves the
possibility to transform the edges whose sort is in I" but not in X.

Definition 9.6 (categories ATM(T, A), functor U, f stabilizes A). For any X-
algebra A let ATM(T, A) be the subcategory of ATM(T, X)) restricted to objects
(a, A) and morphisms (f,14).

The forgetful functor U : ATM(T, A) — Sets is defined by U(a, A) = EA,
where a: A — T and U(f,14) = Ef (usually denoted f).

By abuse of notation we write A for the set | J,cq gr As. A function f
stabilizes A if f~'[z] = {z} for all x € A.

The proof that the categories ATM(T, A) are adhesive will only be sketched
below. The key point is the following lemma.

Lemma 9.7. For all objects (a, A), (b, A) of ATM(T, A) and morphism f :
a — b of Monogr\T, we have

(f,14) : (a, A) — (b, A) is a morphism in ATM(T, A) iff f stabilizes A.

Proof. For all s € S n ET we have A, = (Ara)s = a '[s] and A, = b~ ![s].
Since bo f = a then f~1[As] = f71[b7![s]] = a7 ![s] = As, hence f7HA] = A.
Thus f stabilizes A iff f(z) =z for all z € Aiff (Apf)s = f|° =Ida, = (La)s
for all se S n ET iff (f,14) is a morphism in ATM(T, A). O

Hence the property of stabilization characterizes the difference between mor-
phisms in Monogr\T and morphisms in ATM(T, A). Besides, it is well-known

37



how pushouts and pullbacks in Monogr\T can be constructed from those in
Monogr, and we have seen that these can be constructed from those in Sets.

But then it is quite obvious that in Sets, starting from a span of functions
that stabilize A, it is always possible to find as pushout a cospan of functions
that stabilize A. Hence not only does ATM(T,.A) have pushouts, but these
are preserved by the functor U. A similar result holds for pullbacks, and a con-
struction similar to Corollary [£.7] yields that U also preserves monomorphisms.
Finally, we see that U reflects isomorphisms since f~! stabilizes A whenever f
does. We conclude as in Theorem 17

Theorem 9.8. ATM(T, A) is adhesive.

This result does not mean that all edges that are not attributes can be freely
transformed. Their adjacencies to or from attributes may impose constraints
that only few morphisms are able to satisfy.

Example 9.9. Let X be the signature with no operation name and one sort s,
and A be the X-algebra defined by As = {a,b}. We consider the type monograph
T = {(e, s), (s,e)}. A monograph typed by T has any number (but at least one)
of edges typed by e that must be adjacent either to a or b, and two edges typed
by s, namely a and b, that must be adjacent to either the same edge x typed by
e, which yields two classes of monographs

’ b }_ _[ ’ b
£ ¥ ¥ ¥
(to which may be added any number of edges typed by e and adjacent to either
a ord), or a and b are adjacent to y and z respectively, and we get four more

L
€ 4 F D

The function y, z — x is a morphism from these last two monographs to the two
monographs above (respectively). There are no other morphisms between mono-
graphs from distinct classes. We therefore see that in the category ATM(T, A)
1t 15 possible to add or remove edges typed by e to which a or b are not adjacent,
but there is no way to remove the edges y and z (because this would require a
rule with a left morphism from an ATM without y and z to an ATM with y and
z, and there is no such morphism), though they are not attributes.

Besides, we see that this category has no initial object, no terminal object,
no products nor coproducts.
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10 Conclusion

Monographs generalize standard notions of directed graphs by allowing edges of
any length with free adjacencies. An edge of length zero represents a node, and
if it has greater length it can be adjacent to any edge, including itself. In “mono-
graph” the prefix mono- is justified by this unified view of nodes as edges and of
edges with unrestricted adjacencies that provide formal conciseness (morphisms
are functions characterized by a single equation); the suffix -graph is justified
by the correspondence (up to isomorphism) between finite w-monographs and
their drawings.

Monographs are universal with respect to graph structures and the corre-
sponding algebras, in the sense that monographs are equivalent to graph struc-
tures extended with suitable ordering conventions on their operator names, and
that categories of typed monographs are equivalent to the corresponding cat-
egories of algebras. Since many standard or exotic notions of directed graphs
can be represented as monadic algebras, they can also be represented as typed
monographs, but these have two advantages over graph structures: they provide
an orientation of edges and they (consequently) dispense with operator names.

Algebraic transformations of monographs are similar to those of standard
graphs. Typed monographs may therefore be simpler to handle than graph
structured algebras, as illustrated by the results of Section [0] The represen-
tation of oriented edges as sequences seems more natural than their standard
representation as unstructured objects that have images by a bunch of functions.
Thus type monographs emerge as a natural way of specifying graph structures.
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