
HAL Id: hal-03967388
https://hal.univ-grenoble-alpes.fr/hal-03967388

Submitted on 8 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Hybrid Partitioning for Embedded and Distributed
CNNs Inference on Edge Devices

Nihel Kaboubi, Loïc Letondeur, Thierry Coupaye, Frédéric Desprez, Denis
Trystram

To cite this version:
Nihel Kaboubi, Loïc Letondeur, Thierry Coupaye, Frédéric Desprez, Denis Trystram. Hybrid Parti-
tioning for Embedded and Distributed CNNs Inference on Edge Devices. ANTIC 2022 - International
conference on advanced network technologies and intelligent computing, Department of Computer
Science Institute of Science Banaras Hindu University, Dec 2022, Varanasi, India. �hal-03967388�

https://hal.univ-grenoble-alpes.fr/hal-03967388
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Hybrid Partitioning for Embedded and
Distributed CNNs Inference on Edge Devices

Nihel Kaboubi1,2[0000−0002−1538−0785], Loïc Letondeur1[0000−0003−0817−3689],
Thierry Coupaye1, Fréderic Desprez2, and Denis Trystram2

1 Orange, France
nihel.kaboubi@orange.com
loic.letondeur@orange.com
thierry.coupaye@orange.com

2 Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, France
frederic.desprez@inria.fr
denis.trystram@inria.fr

Abstract. Convolutional Neural Networks (CNNs) and Deep Neural
Networks (DNNs) are ubiquitously utilized in many Internet of Things
applications, especially for real-time image-based analysis. In order to
cope with concerns such as resiliency, privacy and near real time anal-
ysis, these models must be deployed on edge devices. Particularly for
large models, the large number of parameters becomes a bottleneck for
the inference process because edge devices are resource constrained, sub-
jects to failures and/or hardware faults. New solutions to cope with these
issues are required. This paper proposes a hybrid partitioning strategy,
architecture and implementation (called HyPS), which identifies the best
positions in the model structure to split the network structure into small
partitions that fit resources constraints of edge devices noticeably by
decreasing instantaneous memory needs. The generated partitions con-
sume less memory than the original network and each partition can be
processed almost separately, resulting in new ways to process CNN’s ex-
ecution at the edge. Thanks to this partitioning strategy, large CNNs
inference can be run without modifying the main model architecture.
The proposed approach is assessed on the well-known neural network
structure of VGG16 for image classification. The results of the experi-
mental campaign show that the partitioning method allows for the suc-
cessful inference of large models on devices with limited overhead and
high accuracy.

Keywords: Distributed Inference · Edge Computing · Edge Intelligence
· Convolutional Neural Networks · Internet of Things

1 Introduction

Internet of Things (IoT) and Artificial Intelligence (AI) affect our daily lives in
a revolutionary way. Billions of connected devices should be deployed in homes,
buildings, vehicles, cities, and industries. Connected devices product data and



2 N. Kaboubi et al.

offer interactions used to enhance smart services in their surrounding environ-
ment. AI models can be used and are based on DNNs and noticeably on CNNs
on various tasks such as image recognition, video analysis, or object detection.

CNNs are typically deployed on remote cloud servers, requiring the upload of
data through all the communication infrastructure. This can be an issue regard-
ing infrastructure solicitation and latency. Such uploads are also problematic
concerning privacy [1] [2] as data are shared with third-party and hackers might
access this information along the way [3]. Performing inference in the cloud can
be a problem for some critical applications for a big telecommunications opera-
tor, which nevertheless has an extensive infrastructure at the network periphery
(e.g. : relay antennas, network point of presence (POPs), internet access boxes,
etc.) [4].

A better alternative solution is to relocate CNN models at the edge of the
network. This process is known as Edge intelligence, i.e., Edge computing ap-
plied to AI [5]. The edge intelligence paradigm moves computing resources from
clouds and data centers as close as possible to the originating data source. Edge
infrastructure is composed of one or more edge devices that will leverage deep
learning models to implement accurate predictions, make decisions, and decode
behavior behind sensors’ data.

However, inferring pre-trained large CNNs consumes significant time, mem-
ory, and computational resources that can be higher than most edge devices’
capabilities. Some existing works use model compression techniques [6][7] to
adapt CNN models to run at the edge. Others use partitioning strategies to
split CNN’s structures into small partitions that fit edge devices [8][9]. Besides
hardware capabilities, edge devices often suffer from failures that result in un-
predictable service loss because edge devices are often located in unprotected
areas (e.g., customers’ homes). Another tremendous topic related to edge intel-
ligence is the protection of secrets. This issue concerns data to process and the
used AI models themselves. If various approaches intent to fill the gap between
resources demands of CNNs models and edge devices capabilities for inference,
they do not cover the subject as proposed in this paper, that is without im-
pacting accuracy, without requiring to re-train a model and/or without complex
computations before deployment. The proposed solution also brings preliminary
answers concerning secrets protection and execution reliability. Other existing
approaches only partially cover the described problems.

The main contributions of this work are listed below:

– a strategy which couples different partitioning methods. It offers
the opportunity to effectively partition a large CNN model by
identifying the best partitioning points while minimizing the com-
munication cost and inference response latency. This strategy allows
inference processing using large CNNs without modifying their main archi-
tecture and guarantees high accuracy. Partitioned CNNs can be easily
executed on one device or can be distributed across a cluster of
multiple edge devices,



Hybrid Partitioning 3

– an orchestration architecture for hybrid distributed inference. This ar-
chitecture also exhibits good properties in terms of reliability, resilience, and
privacy,

– a prototype that demonstrates the functional behavior of the proposed con-
cepts of HyPS assessed by experimental results on an actual testbed.

The paper is organized as follows. Section 2 presents the background, con-
text and objectives of this work, and introduces illustrative use cases which will
be used throughout the article. Section 3 presents the proposed solution and
architecture overview. Section 4 discusses the evaluation of HyPS on a defined
testbed and the analysis of experimental results. Section 5 briefly reviews the
relevant existing researches related to the proposed work. Section 6 concludes
and introduces some perspectives for future works.

2 Background, Context, and Objectives

2.1 Overview of CNNs

A CNN specializes in processing data with a grid-like topology, such as an image.
CNN architecture is essentially composed of two parts: feature extractor and
classifier. Feature extractor layers process the original input, and classifier layers
then classify the resultant features. A CNN model mainly includes Convolution
layers (Conv), Pooling layers (Pool), Batch Normalization layers (BN), and
Fully Connected layers (FC). A CNN can be deployed monolithically on a single-
edge device or partitioned into multiple partitions. CNNs have a chain topology
as each layer only depends on the previous layer’s output and not on the other
layers. This characteristic will help us to distribute partitions on one or multiple
devices and sequentially perform inference, which will be detailed later.

A well-known CNN example is VGG16 [10], used as an illustrative example
in the rest of this article. Visual Geometry Group (VGG) is a popular and clear-
in-structure CNN model that includes all mainstream layer types. VGG16 (cf.
Figure 1) is trained with 16 layers consisting of 13 convolution layers and three
fully connected layers.

VGG architecture has been retained in this article because it has proven to
be a reference in many complex tasks such as object detection, image recognition
and image classification. Noticeably, VGG16 achieves 92.7% top-5 test accuracy
in ImageNet [11], a dataset of over 14 million images belonging to 1000 classes.
We chose VGG16 as a representative architecture of CNN models. VGG16 rep-
resents a great potential for applications in several real-world use cases such as
smart factory [12] and autonomous vehicles [13]. Therefore, performing VGG16
inference at the edge can benefit to many IoT applications.

2.2 Context

The VGG16 model needs more than 520MB in memory and requires 15.5G
multiply-accumulate operations [14] to classify one image with a 224 *224 res-
olution. The training of a VGG model can require 2-3 weeks [15] on advanced



4 N. Kaboubi et al.

Fig. 1: VGG16 architecture.(Source: Researchgate.net)

GPUs. Because subsequent CO2 emissions have an impact on the environment
[16], the proposed approach aims at capitalizing on the AI models existing train-
ing without requiring any re-training phase. Even during inference, these pre-
trained models often present a high computational cost, that prevents their ex-
ecution on constrained devices. In this work, we will use a specific strategy that
allows performing inference of partitioned VGG16 on edge infrastructure while
minimizing induced overhead and solving resource constraints issue.

2.3 Objective: CNN Model Partitioning Strategies

CNN inference is usually computation-intensive, especially when CNN models
are large. They require a lot of memory to run inference calculations but many
edge devices do not have enough resources. To this, many previous works have
proposed strategies for deploying CNNs models on resource-constrained devices.
Besides following concepts and definitions, further details are given in the related
works section.

Among existing kinds of strategies,partitioning refers to the splitting of an
entire model on specific locations to obtain one or more partitions. A first par-
titioning strategy is data partitioning : dividing the input data given to every
CNN layer into several small partitions. Weight partitioning is not considered,
and each partition includes all layers of the CNN model. The input data to layer
Li of partition Pi may have to be shared with layers from other partitions. After
the computation of all partitions, outputs may be fused to get the final infer-
ence output. This does not decrease memory requirements and implies a high
complexity to synchronize all the inference.

A second partitioning strategy is vertical model partitioning which consists
in building partitions made of one or several complete layers named V-partition.
In Fig 2, partitions are represented by rectangles colored in blue, and each of
them includes one or a group of consecutive layers. Each layer keeps weights
and parameters fixed during the training phase. Going deeper into the network,



Hybrid Partitioning 5

the complexity increases, and filters are applied to identify more prominent ele-
ments. Vertical partitioning strategy is easier to deploy and run as pre-trained
models can be divided into multiple layer groups and distributed to different
edge nodes. Nevertheless, this strategy could not be sufficient to decrease the
memory footprints of partitions as they are a combination of entire layers.

Fig. 2: Vertical partitioning.

A third partitioning strategy is horizontal model partitioning which parti-
tions the weights across layers. A partition can include one or more units from
different layers. The input data are sent to all partitions. All partitions must
communicate and synchronize with each other because all the output data must
be concatenated with the output data from the different partitions to get the
final output. The horizontal strategy is efficient regarding memory footprint
limitation for each partition, but at the cost of a high complexity concerning de-
ployment and execution, as it requires more synchronizations than the vertical
strategy.

This article proposes to combine advantages of existing partitioning
strategies and more precisely to combine vertical and horizontal par-
titioning. Because only these two strategies can reduce memory requirements,
a heuristic is also proposed: it mainly consists in using vertical partitioning as
a bootstrap for distributed execution of CNNs and then horizontal partitioning
but only when needed and on a single partition at a time. As shown further in
this article, this approach permits to achieve good performances, enable reliable
execution of a CNN on a typical edge infrastructure and open new use cases.

2.4 Illustrative Real Life Use Cases

The hybrid partitioning strategy proposed in this article is helpful in several
real-life use cases. For example, consider an AI service company sells an image
recognition system linked to surveillance cameras. This system can be integrated
into any embedded device that composes a typical Telecommunication company.

For instance, an image recognition task can be performed on an internet
gateway. Such a device can not run many CNNs by itself without optimizations.
Our proposed strategy addresses resource constraints by distributing inference
in time on a single device or multiple devices. Model partitioning reduces the size



6 N. Kaboubi et al.

of the tasks assigned at a time to each device, reducing memory consumption
and avoiding calculation problems.

Because internet gateways can also be abruptly unplugged, all the processed
data can be lost, and the inference must then be restarted from scratch. In our
solution, intermediate inference outputs after each partition are saved, avoid-
ing restarting calculations from scratch. Interrupted calculations can thus be
resumed making inference more reliable on edge devices.

A second use case is that of a smart factory, a digitized manufacturing facility
that uses connected devices, machinery, and production systems to collect and
share data continuously. Image recognition models are used to improve the pro-
ductivity and detect defective pieces rapidly. This smart factory is composed of
different production areas. Each area takes charge of a part in the manufacturing
process. The available machines in the production are dedicated to do a specific
production task and are very constrained in memory and computing capacity.

Generally, the manufacturer wants to avoid buying more powerful machines
to classify images but instead takes advantage of their existing machines. These
machines must give a real-time response. So, running the whole AI model on one
machine can increase the computational load, cause memory saturation, and in-
crease subsequent response latency. HyPS solves this problem by sequentially
running a partitioned model on one or multiple machines. Indeed, the execu-
tion of one partition will be less expensive than the whole model in one block.
The collected data are used locally and are not accessible by other production
units. So, the proposed strategy helps the factory to improve the quality of con-
struction pieces without slowing the production process nor causing damages to
the machinery. It also permits to preserve data and model privacy since each
machine only deals with specific partitions of the global model. The following
sections present the proposed partitioning strategy and discuss the architecture
details for HyPS implementation.

3 Proposed Approach: Vertical, Horizontal, and Hybrid
Partitioning Strategies

The methods of partitioning a network have been already proposed in previous
papers, but the novelty here is the strategy of mixing two ways of partitioning
(vertical and horizontal). This technique aims at deploying trained CNN model
on edge device(s) without any modification in the entire architecture or loss in
accuracy while optimizing the computation time as much as possible.

The main objective of this contribution is to capitalize on the AI models
previous training phase, use it actively on inference and avoid the re-training
phase as much as possible. In section 3.1, the vertical partitioning method is
introduced and presented over different cases. In section 3.2 , a second existing
way of partitioning, namely horizontal partitioning, is presented. Finally, Section
3.3 contains the new partitioning strategy and the benefits behind coupling two
strategies of partitioning.



Hybrid Partitioning 7

3.1 Vertical Partitioning Strategy

Vertical partitioning is a valuable strategy that splits a large pre-trained CNN
structure so that each partition includes a set of consecutive layers. This strategy
does not divide the calculated weights for each layer. Each V-partition is defined
by a specific output layer and generates its feature map. Dimensions of feature
maps produced by the output layer can vary considerably, resulting in a possible
huge communication. Therefore, the choice of the output layer is essential. The
output layer is the decisive point in the dimensionality of the generated feature
map, which will be transmitted to the next partition. The feature map shape
through the CNN layers is irregular, and it depends on the filter size applied in
the layer, the input dimension or the feature map output of the prior layers, and
the type of the layer.

As mentioned in subsection 2.1, all layers in CNNs are arranged following a
specific pattern. The output feature map of a convolutional layer is a complex
matrix with high dimensions. After each convolution block, there is a pooling
layer. This layer performs the dimensionality reduction on the input by reducing
the number of parameters. V-partitions can be deployed separately on devices
with limited memory and low computation capacity. However, to get a final
inference response, it is necessary to ensure feature map transmission between
partitions. This process generates high communication costs if the transmitted
data are extensive and may increase latency. Fortunately, the communication
charge in a vertical partitioning strategy is less than the communication cost in
a horizontal partitioning strategy, as explained in the following subsection.

3.2 Horizontal Partitioning Strategy

As mentioned in the previous section, the vertical partitioning splits the DNN
model at the layer granularity while horizontal partitioning splits a DNN layer
at the neurons granularity. Horizontal partitioning is the thinnest way of par-
titioning. Inside a model, layers have different number of parameters and for
some layers this number of parameters can be very high. Those layers demand
a powerful computing capacity to generate feature map. For limited resources
devices, it could be impossible to perform calculations of complex layers in one
operation. So, vertical partitioning alone is insufficient to perform CNN inference
efficiently on edge devices.

For example, our experiments showed it was impossible to run the VGG16
model without horizontal partitioning on Raspberry Pi 3B+ with 1 GB of RAM.
This specific layer has a number of parameters that exceeds one hundred two
million (102 * 106) parameters which is too high for a device as a Raspberry
Pi. The horizontal partitioning strategy splits a given complex layer into small
groups of neurons, whereas the input data layer is not partitioned.

In Figure 3, the complex layer in the VGG16 structure is partitioned into
four H-partitions which are represented by a green rectangle (four H-partitions
are chosen to simplify the presentation in the figure). In this case, partitioning
one layer into H-partitions reduces the number of parameters, storage needs,



8 N. Kaboubi et al.

Fig. 3: Horizontal partitioning of the first fully connected layer in the VGG16
structure.

and the memory required to compute layer features. Therefore, the CNN layer
that includes intensive computations is divided into many H-partitions. Each
H-partition is only responsible for computing a part of the output of the current
layer. At the same time, a specific algorithm collects and merges all the output’s
H-partitions to get the full feature map before executing the next layer.

Partial features maps collection and merging is a synchronization process
that introduces a synchronization cost. This cost does not exist for vertical par-
titioning, so to preserve performance, horizontal partitioning must be used as
few as possible. The following section describes how HyPS takes the highest
benefits from both sorts of partitioning.

3.3 Hybrid Partitioning Strategy

Customers and industrial users need help choosing the best partitioning strat-
egy that enables large CNN model inference on resource-constrained device(s).
A preliminary decision support system that provides a guided partitioning strat-
egy strategy is proposed. HyPS takes input information about the global model
structure to be partitioned and the characteristics of the target edge infras-
tructure. Afterward, the proposed approach helps to identify the strategic split
points to get partitions and precise the type of partitioning to be applied.

Using either vertical or horizontal strategy could not solve entirely the prob-
lem of edge infrastructure incapacity to run a given model partition. For a large
CNN model like VGG16, vertical partitioning generates V-partitions that are
still computationally intensive and complex to be executed on a edge device(s).
On the other hand, horizontal partitioning splits the CNN layers into thinner
H-partitions. However, H-partitions must also be fused to obtain the final result
of the partitioned layer: this fusion increases both the communication and the
computing times.

In consequence, we argue that H-partitions must be restricted to avoid inef-
fective operations. The intended solution aims to minimize computational costs



Hybrid Partitioning 9

related to H-partitions synchronization and prevents any degradation in model
accuracy. The hybrid partitioning strategy provides a solution to identify manda-
tory partitioning points and optional partitioning points on the CNN structure.
HyPS prioritizes vertical partitioning and applies horizontal partitioning, if it is
mandatory, to perform the CNN partition execution on the target edge infras-
tructure. The proposed algorithm starts by going through all the model layers
one by one and checks if it is possible to run it on the edge device. The program
runs this process until reaching a complex layer which results in three verti-
cal partitions for one particular complex layer: one V-partition before the first
added mandatory split point, a second after the second mandatory split point
and a third constituted of the complex layer itself and alone. Then, the third
V-partition containing the complex layer is itself partitioned into H-partitions
as small as required to fit targeted execution infrastructure. HyPS operates H-
partitioning when required and on a single layer at a time, to preserve original
model performances. Algorithm 1 allows to identify the mandatory partition
points for an input CNN model.

Algorithm 1 Get mandatory split points
Require:
1: Model: CNN model
2: Threshold : maximum number of parameters supported by the device

Ensure: LM : list of total mandatory split points
3: for each layer in model do
4: if number of parameters > Threshold then
5: LM ← Mandatory Split Points
6: else if the last layer then
7: return LM
8: end if
9: end for

After a first step consisting in the identification of the possible mandatory
split points, HyPS identifies optional split points in a second step. Optional split
points are particular locations in the NN architecture where partitioning opera-
tion allows to obtain smaller V-partitions to cope with particular needs related
to the use of the NN (e.g. privacy concerns). HyPS identifies all pooling layers
as so called Optional Split Points. The benefits of using pooling layers include
reducing the complexity, speeding up the calculations, and improving the effi-
ciency of HyPS. Indeed, pooling layers are the most suitable output layer for the
model partitions. This type of layers reduces the dimension of the output fea-
ture map resulting in a minimal data transfer between consecutive V-partitions.
HyPS takes advantage of these layers to reduce the communication overhead of
feature map transmission between V-partitions.

On a CNN structure, there are two main scenarios. First, it is possible to
apply only vertical partitioning on the optional split point on the condition that



10 N. Kaboubi et al.

the generated V-partitions are uncomplicated and can be executed on edge de-
vice(s). Otherwise, applying vertical and horizontal partitioning is indispensable
enable the partitioned model inference.

The optional split points are helpful in several use cases, when the user
needs to distribute the partitioned model inference on multiple devices, and/or
wants to increase the number of V-partitions. According to the user objective,
HyPS provides final output partitions ready to be deployed on the target edge
device without any bottlenecks. HyPS can be used by a simple customer or can
be integrated into a software program that provides an automated deploying
solution of NN. Thanks to HyPS, the edge infrastructure can be covered more
easily. The model structure, in addition to edge infrastructure, should be known
before starting the partitioning process.

Identifying these optional split points leads to making several combinations.
In the case of the VGG16 structure, there are five strategic split points (five
pooling layers), so there are several possible V-partitions. The pooling layers
throughout the VGG16 model have different output dimensions. The pooling
layers’ output dimensions decrease when going closer to the final output layer.
For example, the VGG16 output feature map dimension passes from 112*112 in
the first pooling layer to 7*7 in the last. Theoretically, splitting the model on
the last strategic point, with the most miniature feature map, is more efficient
in minimizing communication overhead.

In this work, HyPS was applied to the VGG16 model to perform the model
inference on Raspberry PI 3 B+. The VGG16 model requires horizontal parti-
tioning on the first fully connected layer (fc6), which is very complex and cannot
be executed on the targeted infrastructure. Figure 4 shows the VGG16 struc-
ture with the positions of the mandatory partitioning locations represented by
continuous red lines and optional partitioning locations represented by dashed
green lines. Mandatory split points are located before and after the first fully
connected layer. So, VGG16 must be partitioned vertically on this position, and
the fc6 must be split horizontally. The optional split points bring the opportu-
nity to get more than three V-partitions, while minimizing the communication
overhead.

Fig. 4: Mandatory and optional split positions of VGG16 model structure.



Hybrid Partitioning 11

The generated partitions can be deployed separately and distributed either
over time, or spatially into multiple devices. The way how partitions are executed
is known as scheduling. Figure 5 reveals only one distribution scenario among
several, to illustrate the proposed contribution well. This figure reveals only one
distribution scenario among several to illustrate the proposed contribution well.
The cluster is composed of four edge devices. In this schema, T1, T2, T3, T4, and
T5 are consecutive partitions’ instantiation and execution times. In this case, the
VGG16 is partitioned into four V-partitions represented by blue rectangles. The
first fully connected layer (L19) is divided into four H-partitions: HP1, HP2,
HP3, and HP4, represented by green rectangles. Four is the minimum number
of H-partitions for which the number of parameters is sufficiently reduced to fit
a specific edge device, as discussed further in the evaluation part of this article.

The inference of the partitioned VGG16 is launched following a sequential
process. The V-partitions are executed one after the other. Only the H-partitions
of the fc6 can be performed in parallel, as shown in Figure 5. Besides this par-
ticular scenario, advanced scheduling possibilities exist and are led to further
publications. The next subsection describes HyPS architecture entities respon-
sible for partitioning and scheduling.

Fig. 5: hybrid partitioning of VGG16 model deployed on a cluster of four edge
devices.

3.4 Architecture Overview

A particular architecture is defined to distribute inference and run partitioned
model on edge infrastructure. This architecture is composed of two tree topolo-
gies: one for computations purposes and the other for related communications.
Each topology is formed through the instantiation of a hierarchical star pattern
at each level.

Computations Topology The computations topology comprises two types of
entities: one manager and multiple workers. The manager is responsible for the



12 N. Kaboubi et al.

AI model partitioning and the partition distribution on device nodes. A manager
can have workers that serve as sub-managers that manage a distinct group of
workers. Every manager manages the execution of a given AI model through
successive jobs, by scheduling the execution of partitions on different workers.
The different entities constituting the computations topology can be seen in
Figure 6. Figure 6 shows an example of a distributed inference of a partitioned
VGG16 that is used in an industrial use case inspired by [17]. The manager
is denoted "M1" while the workers are denoted "W machine". The manager
decides the number of partitions taken by every worker. To simplify, only one
manager and three workers are represented in Figure 6. Nonetheless, this number
can be significantly higher in reality. A worker can receive and execute one or
more partitions submitted by its direct manager. The dotted lines represent the
communication links between the entities.

Communications Topology The communications topology is an overlay of
the computations topology. It manages data exchanges between entities. A com-
munication hub (denoted "C1" in Figure 6) transmits data between the manager
and its workers.

Fig. 6: Example of distributed inference architecture of VGG16 model.



Hybrid Partitioning 13

The manager and the workers know how to contact the communication hub.
This one separates their communications thanks to a specific addressing policy.
The communication hub allows for a reactive approach for each worker, where
each starts computing only when data are effectively present at a given address.
For example, Worker W3 in Figure 6 does computations of V-partition 3 (Vp3)
only when the feature map coming from computations of V-partition 2 done by
worker 2 (Vp2) is returned to the communication hub.

The proposed architecture presents different advantages concerning edge in-
frastructure specificities, in particular resilience, reliability issues and also secrets
protection.

Resilience & Reliability In addition to limited computing and memory re-
sources, edge devices can suffer from many dysfunctions. Among them, energy
cutoffs can occur, as is the case with customers who abruptly unplug their in-
ternet gateway to save energy. HyPS offers resilience to NN inference execution
at the edge by enabling backups policies, such as those described and used for
the IoT in[18].

HyPS permits the recovery of already done computations because the com-
munication hub ensures the persistent storage of the intermediate data ex-
changed between workers. Such reliable storage is fundamental in case of a prob-
lem during the inference process. The stored data can then be used as backups
to resume the inference, without restarting from scratch. Furthermore, thanks to
distributed infrastructure, it is possible to run the same partition on several edge
devices. This redundancy guarantees a high quality of service for the user and
reduces the response latency in case of failure. Inference results of the same par-
titions can be done on multiple nodes for failure detection purpose [19], thanks
to a voting consensus.

Secrets protection Another concern, regarding edge infrastructure, relates to
secrets protection, and more precisely, to all possible information disclosures.
Possible disclosures comprise the data passed in input and obtained from the
output of a given NN, and the NN architecture itself. If data can unveil industrial
or private secrets, NN models are assets in which investments were made for their
design and training. Preserving both of them is an important concern that HyPS
addresses.

Each worker only knows its manager, the communication hub, a part of the
entire model, and the data it processes. Also, the manager knows all the archi-
tecture, all the workers, the communication hub, and the data processed. The
communication hub has the same knowledge as the manager. As a consequence,
two kinds of entities can be identified regarding secret protection. The manager
and the communication hub must be protected. They must be hosted on safe
devices that cope with strong security policy (represented in the green rounded
corner rectangle in Figure 6). The workers are considered "unsafe" (described in
the red rounded cornered rectangles in Figure 6). Regarding entities’ knowledge
about described secrets in the Figure 6 example:



14 N. Kaboubi et al.

– Only M1 and C1 know the full AI model,
– Only M1 and C1 know the entire data,
– Other entities only know a part of the AI model,
– Other entities only know a part of the data.

Thanks to these different roles, it is possible to manage not only the possible
data divulgation but also, the NN model divulgation. To the best of our knowledge,
the literature weakly covers this second aspect. Workers outside the safe zone will
receive only partial data already executed. HyPS uses the distributed inference
process to guarantee data privacy even when workers run on unsafe machines.
Indeed, only the manager and the communication hub have the actual image,
while related workers (including sub-managers) only have intermediate feature
maps. In the absolute, each manager is ensured neither to know the entire NN
nor the actual data because it could be a sub-manager. Therefore, revealing the
actual image after layers operations is difficult. It is demanding to interpret the
partial data since having undergone several unknown transformations.

HyPS architecture and principles have been implemented in a prototype that
permits a first round of experiments.

4 Implementation and Experimental Results

This section details the system setup, implementation of the proposed approach,
and interpretation of experimental results that show the behavior of HyPS exe-
cution, with a real use case on a practical testbed.

4.1 System Setup

The methodology used consists in two steps. First, partitioning the model into
sequential sub-networks which can then be sent to edge nodes. The partitioning
function is implemented in Python, using TensorFlow and Keras libraries. Sec-
ond, after the partitioning phase, the distributed inference process is executed on
a realistic collaborative edge computing testbed that consists of four Raspberry
Pi’s: 1 Raspberry PI 3 model B (ARM Cortex-A53 Quad-Core processor - 1 GB
RAM) and three Raspberry PI 3 model B+ (Broadcom BCM2837B0, Cortex-
A53 64-bit SoC @ 1.4GHz- 1 GB RAM). All devices are connected within the
same network via a LAN cable. The capabilities of those nodes represent typical
edge devices [17]. According to the official website of Keras, VGG16 is a large
model (528 MB) and it comprises 138.4 M of parameters. Experiments are done
using the VGG16 NN model that is specified by a chain topology, and trained
with the ImageNet dataset. In the following experiments, images of fixed size of
224x224 are used.

4.2 Experimental Results

In this section, experimental results are presented. It was not possible to achieve
direct comparison of performances between HyPS and other existing solutions,



Hybrid Partitioning 15

as it appears to be not relevant. As described further in this article, existing
solutions either imply to offload computations in the cloud, or do modifications
to the original NN resulting in accuracy loss. HyPS permits to process inference
at the edge, without requiring offloading or NN modification. These characteris-
tics cope with industry realistic use cases for which, strict performances must be
guaranteed To evaluate the proposed strategy, a set of experiments was carried
out to observe the effects of running inference of partitioned model on the infer-
ence time and the communication overhead. The following metrics are measured
for each experiment:

– Inference time: the time necessary for the whole inference. It includes both
the computation and communication time.

– Computation time: the duration for nodes to process an inference, excluding
communications.

– Communication time: the transfer time of intermediate feature map from
one partition to another.

Experiments are performed in two steps. The first step consists in the iden-
tification of both the mandatory and the best optional split points in this model
structure. For this purpose, the vertical partitioning is applied in different loca-
tions on the VGG16 structure to compare the quality of partitioning for each
case and the impact on communication overhead. After choosing the best po-
sitions to split the model, the horizontal partitioning is applied in the second
step to enable the execution of each complex layer. This second step is discussed
further, noticeably to measure the impact of the number of H-partitions on the
inference performances.

The first experimentation objective is to evaluate the impact of vertical par-
titioning and layer types on communication overhead and inference time.

Impact of the Vertical Partitioning on the Communication Overhead
The VGG16 model is partitioned vertically to get the smallest possible V-

partitions: one partition includes only one layer. 21 V-partitions are generated
since the model contains 21 successive layers. Figure 7 shows the positions of the
vertical partitioning.

Fig. 7: VGG16 model partitioned vertically on 21 partitions.



16 N. Kaboubi et al.

Fig. 8: Communication overhead of partitioned VGG16 model vertically on 21
partitions deployed on Raspberry Pi.

The next step is to distribute the partitioned model inference over time, and
execute partitions on the testbed. The execution of the whole VGG16 is done
on the Raspberry Pi with one exception: the V-partition that contains the first
fully connected layer. Because this layer in too complex, it cannot be executed
without a horizontal partitioning. This particular point is discussed further, but
for the present experiment, the problematic V-partition is simply offloaded onto
a PC. In this experimentation, the measures on the following figures related to
the offloaded partition (represented by a blue star) are ignored. Only measures
of the V-partitions executed on edge devices are under consideration. This ex-
perimentation allowed to precisely locate the layer that poses a problem when
running VGG16.

Figure 8 presents the communication overhead for the 20 V-partitions
runnable on a Raspberry Pi. The communication overhead decreases from one
layer to another. This decrease is explained by the reduction of the dimension of
the feature maps generated by the pooling layers. It appears that the commu-
nication overhead depends on the dimension of the feature map, the larger the
feature map, the slower it is transmitted. The number of parameters does not
impact the communication cost because the convolution layers with the lowest
communication cost are the layers with a high number of parameters Figure
9 presents the measured feature map size generated by each V-partition. The
measured size of data transmitted between V-partitions appears to be directly
correlated to the feature map dimensionality and by extension, to the communi-
cation overhead measured above. This chart shows local minima in the feature
map size map generated by the pooling layers.

Orange color arrows indicate these local minima in Figure 9 which correspond
to pooling layers in the VGG16 structure. To minimize the communication over-



Hybrid Partitioning 17

Fig. 9: Output feature map size per V-partition.

head, it is efficient to split the model after the pooling layers. This positions
represented the optional strategic split points. Besides, all the pooling layers do
not have the same impact on the communication overhead : the closer to the
output the pooling layer, the less the communication overhead. Therefore, the
optional split points that are close to the output layer should be favored.

Figure 10 shows a vertical partitioning on two different locations in the
VGG16 structure: (a) presents the VGG16 model partitioned on nine partitions,
the output layer of the first five partitions is a convolutional layer, (b) gives
the VGG16 model partitioned on nine partitions, the output layer of the first
five partitions is a pooling layer. The main goal of this experimentation is to
measure the communication overhead in the two cases and compare the results.
The difference between convolutional and pooling layers is that the convolutional
layer serves to detect patterns, in multiple sub-regions, in the input feature map,
using different filters. In contrast, the pooling layer progressively reduces the
representation’s spatial size, reducing the number of parameters and amount
of computations in the CNN. In the two ways of partitioning, the transmitted
feature map’s size differs because the output layer in the nine partitions is not
the same.

The box plots (a) and (b) in Figure 11 show, respectively, the overall com-
munication time when, the output layer in the partitions of the VGG16 are
either convolutional layers or, pooling layers. The values measured for the fc6
are ignored because it is offloaded on a PC. For the first five partitions, the
communication overhead, when the output layer is a pooling layer, is lower than
the communication overhead when the output layer is a convolution layer. For
the partition n°1 in graph (a), the communication time is two times higher than
the communication time in a graph (b). The difference between the cases is the
size of data transmitted between partitions because the pooling layers reduce



18 N. Kaboubi et al.

Fig. 10: (a) VGG16 model partitioned vertically on convolutional layers (b)
VGG16 model partitioned vertically on pooling layers.

Fig. 11: (a) Communication time of partitioned VGG16 on convolutional layers
(b) Communication time of partitioned VGG16 on pooling layers.

the shape of the feature map generated by the convolution layer just before. To
conclude, these experiments show that:

1. the best optional positions, to split the model and reduce commu-
nication overhead, are the pooling layers,

2. applying only vertical partitioning is not enough to deliver VGG16
inference on the testbed,

3. the V-partition that obstructs the inference process contains the first fully
connected layer, and this is why two mandatory split points are required:
after and before the fc6, to isolate this particular layer into a separated
V-partition that will be then H-partitioned. This demonstrates the rel-
evance of the proposed hybrid partitioning.

Next experiments aims determining the optimal number of H-partitions for
the particular case of the VGG16 that allows fc6 inference on edge device.



Hybrid Partitioning 19

Impact of the Hybrid Partitioning on the Inference Time and the
Communication Overhead VGG16 is partitioned first vertically, on the
mandatory split points and then, horizontally on the fc6 split point. Partitions
are executed on a single Raspberry Pi using a wide range of H-partitions num-
bers. During the inference executions, it appears that a too small number of
H-partitions leads Raspberry Pis to swap, resulting in very poor performances
due to Raspberry Pis ressources exhaustion.

The swap activation adds more virtual memory, allowing the system to deal
with more memory-intensive tasks without out-of-memory errors or, having to
shut down other processes. However, the downside is that accessing the swap
file significantly slows down the process and finally, increases the inference time.
Swapping is not satisfactory regarding devices efficiency. That is why, for next
experiments, we deactivate swap to ensure partitions are light enough.

Fig. 12: (a) Inference time of partitioned VGG16 with different number of H-
partitions. (b) Communication overhead of partitioned VGG16 with different
number of H-partitions.



20 N. Kaboubi et al.

VGG16 is partitioned on the mandatory split points identified by HyPS.
These points are shown in red lines in figure 4, then the complex layer fc6 is
partitioned horizontally into H-partitions. According to the memory constraints,
it is mandatory to split the fc6 at least into four H-partitions. With more than
four H-partitions, a Raspberry Pi is able to support the inference of the entire
VGG16. This number should not be too high to prevent from getting a huge
communication overhead.

The next step is to try a different number of H-partitions and to observe
if it impacts the inference time and the communication overhead. Figure 12
shows the results of testing VGG16 inference on a single device with different
H-partitions numbers. The box plots in graph (a) show that inference time is
relatively constant, until 8 H-partitions, and then, increases exponentially. For
50 H-partitions, the inference time is two times higher than partitioning the
fc6 into 4 H-partitions. The graph (b) in Figure 12 presents the communication
overhead for different numbers of H-partitions. To minimize the communication
overhead, four H-partitions is the optimal number.

These experimental and practical results ,based on the implemented pro-
totype, validate the proposed approach. Indeed, horizontal partitioning leads
to high communication overhead. All H-partitions need to be fused to obtain
the output feature map, which adds synchronization time to the computing
time of each H-partitions apart. Therefore, it is imperative to avoid non-
mandatory horizontal partitioning and use hybrid partitioning strat-
egy.

5 Related Work

This section discusses a variety of related approaches which perform DNN infer-
ence on resource-constrained edge devices. Existing solutions are classified into
two categories to address this issue. First, many works reduce the model size
using specific model compression techniques that modify the model architec-
ture, and make it lighter by reducing model parameters. There are four main
categories of model compression techniques: quantization [20] [21], pruning [22],
Knowledge Distillation(KD) [23], and low-rank factorization [24]. Model Com-
pression broadly reduces model size and latency overhead, and allows DNN in-
ference at the edge. However, these techniques reduce accuracy for large and
complex models, and require retraining to recover the model performance. The
proposed solution avoids the retraining step, and provides an inference response
with the original model accuracy.

Second, several approaches adopt different partitioning strategies to split
DNN structure into small partitions that can be distributed and deployed sepa-
rately on IoT devices. A lot of research consider DNN structure as a graph, and
use graph partitioning techniques to split the NN [25] [26][27]. Some researches
focus on DNNs with chain topology, and apply partitioning strategy according
to the characteristics of NN structure.



Hybrid Partitioning 21

In [28], Zhao et al. proposed DeepThings, a locally distributed and adap-
tive CNN inference framework in resource-constrained IoT devices. DeepThings
proposes a Fused Tile Partitioning (FTP) which consists in partitioning all con-
volutional layers horizontally into independent tasks. This approach allows to
minimize the RAM memory footprint by reducing the sizes of input and out-
put activations. However, its main drawback is the replication of the network’s
parameters on all the devices, thus increasing the memory footprint at system
level.The CNN layers with huge number of parameters (e.g., fully connected lay-
ers) are not partitioned, and they are deployed on powerful gateway device. In
contrast, our methodology focuses on partitioning large CNNs, and deploys all
model partitions on resource-constrained devices.

In [29], Mao et al. partitions layers horizontally and the layers’ input and out-
put data, using the Biased One-Dimensional Partition (BODP) method. MoDNN
treats each computing part of every single layer as an individual task, leading
to high synchronization costs among devices. The mutual waiting would also
greatly increase the inference latency. When the number of workers increases,
the latency of MoDNN increases rather than decreases. Due to the frequent
synchronization, MoDNN is sensitive to the network environment. In contrast,
horizontal partitioning is restricted as much as possible to a single layer. More-
over, increasing the number of workers reduces the inference time, thus reducing
latency.

Vertical partitioning has been used in many previous works. For example,
Tang et al. in [30] proposes a vertical partitioning strategy to split the CNN
model and perform inference at the edge. This work aims to reduce the memory
requirement per edge device. The algorithm used to do vertical partitioning is
not suitable for complex problems because it requires more significant amounts
of computing power and extremely complex fitness models. Also, this algorithm
is computationally expensive and time-consuming. On large CNNs, more than
vertical partitioning is needed to obtain inference response on the edge device.
The advantage of HyPS is the simplicity of the partitioning strategy, and the
coupling of both vertical and horizontal partitioning.

In the same direction, Kang et al. in [31] propose to partition a DNN model
vertically, and distribute partitions between cloud server and mobile device, ac-
cording to the network situation. Neurosurgeon is one of the first works to inves-
tigate layer-wise partitioning. The split point is decided intelligently depending
on the infrastructure network conditions and devices capacities.

In this work, partitioning at the layer granularity can provide significant la-
tency and energy efficiency improvements. Partitioning between the last pooling
layer (pool5), and the first fully connected layer (fc6 in Fig 1) of the Alex Net
architecture, achieves the lowest latency. In our work, we split the DNN model
systematically based on the layer’s type, and we distribute partitions across only
edge devices without any recourse to cloud servers. Authors in [32] proposed a
CNN splitting algorithm that efficiently splits CNN vertically, in exactly two
parts, between edge and cloud, and reduces bandwidth consumption. Various



22 N. Kaboubi et al.

parameters are considered, such as CPU/RAM load at the edge, input image
dimensions, and bandwidth constraints, to choose the best splitting layer.

F.Xue et al. in [33] proposed a locally distributed DNN inference framework
based on layer-wise and fused-layer parallelization. EdgeLD can dynamically and
flexibly partition a DNN model for parallel execution, to adapt to heterogeneous
computing resources and different network conditions. However, our strategy
enables sequential inference execution and aims to reduce communication costs.

6 Conclusion and Future Works

This article proposes a hybrid partitioning strategy that performs partitioning
of large CNNs thanks to the identification of the best split points. Large CNNs
can successfully be run on the resource-constrained device(s), while minimizing
inference time and communication overhead.

The main contributions of this paper are: i) a hybrid partitioning strategy for
running large CNN model inference on resource-constrained edge devices includ-
ing a method for identifying mandatory and optional split positions in a CNN
structure. ii) an architecture and a prototype (called HyPS) that implements
the proposed approach, and iii) first experiments and evaluation of HyPS on a
realistic testbed concerning a typical CNN.

Experimental results show that: i) the split point position impacts communi-
cation overhead, ii) the number of partitions from a horizontal partitioning influ-
ences the overall communication overhead, and iii) partitions can be scheduled
sequentially on a single device or distributed on multiple devices. Experiments
highlight that HyPS helps to choose the right partitioning, generates partitions
ready to be deployed separately at the edge, and schedules subsequent tasks
execution.

This work opens multiple perspectives. First, many other experiments have
been left for the future. For instance, it would be interesting to analyze the ex-
periment results of running a partitioned model on multiple devices. Another
promising direction could investigate batch inference, which would generate pre-
dictions on a batch of observations on single and multiple devices.

References

1. Raza, Muhammad Raheel, Asaf Varol, and Nurhayat Varol. "Cloud and fog com-
puting: A survey to the concept and challenges." 2020 8th International Symposium
on Digital Forensics and Security (ISDFS). IEEE, 2020.

2. Abdalla, Peshraw Ahmed, and Asaf Varol. "Advantages to disadvantages of cloud
computing for small-sized business." 2019 7th International Symposium on Digital
Forensics and Security (ISDFS). IEEE, 2019.

3. Krutz, Ronald L., Ronald L. Krutz, and Russell Dean Vines Russell Dean Vines.
Cloud security a comprehensive guide to secure cloud computing. Wiley, 2010.

4. Venugopal, Srikumar, et al. "Shadow puppets: Cloud-level accurate AI inference
at the speed and economy of edge." USENIX Workshop on Hot Topics in Edge
Computing (HotEdge 18). 2018.



Hybrid Partitioning 23

5. Deng, Shuiguang, et al. "Edge intelligence: The confluence of edge computing and
artificial intelligence." IEEE Internet of Things Journal 7.8 (2020): 7457-7469.

6. Ademola, Olutosin Ajibola, Mairo Leier, and Eduard Petlenkov. "Evaluation of Deep
Neural Network Compression Methods for Edge Devices Using Weighted Score-
Based Ranking Scheme." Sensors 21.22 (2021): 7529.

7. Berthelier, Anthony, et al. "Deep model compression and architecture optimization
for embedded systems: A survey." Journal of Signal Processing Systems 93.8 (2021):
863-878.

8. Kang, Yiping, et al. "Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge." ACM SIGARCH Computer Architecture News 45.1 (2017): 615-
629.

9. Zhang, Shuai, et al. "Deepslicing: collaborative and adaptive cnn inference with
low latency." IEEE Transactions on Parallel and Distributed Systems 32.9 (2021):
2175-2187.

10. Kim, Jung Hwan, Alwin Poulose, and Dong Seog Han. "The Customized Visual Ge-
ometry Group Deep Learning Architecture for Facial Emotion Recognition." Avail-
able at SSRN 4087604.

11. Russakovsky, Olga & Deng, Jia & Su, Hao & Krause, Jonathan & Satheesh, Sanjeev
& Ma, Sean & Huang, Zhiheng & Karpathy, Andrej & Khosla, Aditya &Bernstein,
Michael &Berg, Alexander & Fei-Fei, Li. (2014). ImageNet Large Scale Visual Recog-
nition Challenge. International Journal of Computer Vision. 115. 10.1007/s11263-
015-0816-y.

12. Althubiti, Sara A., et al. "Circuit Manufacturing Defect Detection Using VGG16
Convolutional Neural Networks." Wireless Communications and Mobile Computing
2022 (2022).

13. Khanum, Abida, Chao-Yang Lee, and Chu-Sing Yang. "Deep-Learning-Based Net-
work for Lane Following in Autonomous Vehicles." Electronics 11.19 (2022): 3084.

14. Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge intelligence: Paving
the last mile of artificial intelligence with edge computing,” Proc. IEEE, vol. 107,
no. 8, pp. 1738–1762, Aug. 2019.

15. Simonyan, Karen & Zisserman, Andrew. (2014). Very Deep Convolutional Net-
works for Large-Scale Image Recognition. arXiv 1409.1556.

16. Strubell, Emma & Ganesh, Ananya & Mccallum, Andrew. (2019). Energy and
Policy Considerations for Deep Learning in NLP. 3645-3650. 10.18653/v1/P19-1355.

17. L. Letondeur, F.-G. Ottogalli and T. Coupaye, "A demo of application lifecycle
management for IoT collaborative neighborhood in the Fog: Practical experiments
and lessons learned around docker," 2017 IEEE Fog World Congress (FWC), 2017,
pp. 1-6, doi: 10.1109/FWC.2017.8368526.

18. Umar Ozeer, Loïc Letondeur, Gwen Salaün, François-Gaël Ottogalli, Jean-Marc
Vincent, F3ARIoT: A framework for autonomic resilience of IoT applications in the
Fog, Internet of Things, Volume 12,2020, 100275,ISSN 2542-6605.

19. Chaurasia, Bhavana, and Anshul Verma. "A comprehensive study on failure de-
tectors of distributed systems." Journal of Scientific Research 64.2 (2020).

20. Gholami, Amir, et al. "A survey of quantization methods for efficient neural net-
work inference." arXiv preprint arXiv:2103.13630 (2021).

21. Garifulla, Mukhammed, et al. "A Case Study of Quantizing Convolutional Neural
Networks for Fast Disease Diagnosis on Portable Medical Devices." Sensors 22.1
(2021): 219.

22. Lin, Shaohui, et al. "Towards optimal structured cnn pruning via generative ad-
versarial learning." Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2019.



24 N. Kaboubi et al.

23. Wang, Guo-Hua, Yifan Ge, and Jianxin Wu. "Distilling knowledge by mimicking
features." IEEE Transactions on Pattern Analysis and Machine Intelligence (2021).

24. Noach, Matan Ben, and Yoav Goldberg. "Compressing pre-trained language models
by matrix decomposition." Proceedings of the 1st Conference of the Asia-Pacific
Chapter of the Association for Computational Linguistics and the 10th International
Joint Conference on Natural Language Processing. 2020.

25. Zhang, Beibei, et al. "Dynamic DNN Decomposition for Lossless Synergistic Infer-
ence." 2021 IEEE 41st International Conference on Distributed Computing Systems
Workshops (ICDCSW). IEEE, 2021.

26. Hu, Chenghao, and Baochun Li. "Distributed Inference with Deep Learning Models
across Heterogeneous Edge Devices." IEEE INFOCOM 2022-IEEE Conference on
Computer Communications. IEEE, 2022.

27. Jeong, Hyuk-Jin, et al. "IONN: Incremental offloading of neural network compu-
tations from mobile devices to edge servers." Proceedings of the ACM Symposium
on Cloud Computing. 2018.

28. Zhao, Zhuoran & Barijough, Kamyar & Gerstlauer, Andreas. (2018). DeepThings:
Distributed Adaptive Deep Learning Inference on Resource-Constrained IoT Edge
Clusters. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems.

29. J. Mao, X. Chen, K. W. Nixon, C. Krieger and Y. Chen, "MoDNN: Local dis-
tributed mobile computing system for Deep Neural Network," Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE), 2017, pp. 1396-1401, doi:
10.23919/DATE.2017.7927211.

30. Erqian Tang and Todor Stefanov. 2021. Low-memory and high-performance
CNN inference on distributed systems at the edge. Proceedings of the 14th
IEEE/ACM International Conference on Utility and Cloud Computing Compan-
ion. Association for Computing Machinery, New York, NY, USA, Article 26, 1–8.
https://doi.org/10.1145/3492323.3495629

31. Kang, Yiping & Hauswald, Johann & Gao, Cao & Rovinski, Austin & Mudge,
Trevor & Mars, Jason & Tang, Lingjia. (2017). Neurosurgeon: Collaborative Intelli-
gence Between the Cloud and Mobile Edge. ACM SIGARCH Computer Architecture
News. 45. 615-629. 10.1145/3093337.3037698.

32. Mehta, Rishabh, and Rajeev Shorey. "Deepsplit: Dynamic splitting of collabora-
tive edge-cloud convolutional neural networks." 2020 International Conference on
COMmunication Systems & NETworkS (COMSNETS). IEEE, 2020.

33. F. Xue, W. Fang, W. Xu, Q. Wang, X. Ma, and Y. Ding, “EdgeLD: Locally
distributed deep learning inference on edge device clusters,” in Proc. IEEE 22nd
Int. Conf. High Perform. Comput. Communications; IEEE 18th Int. Conf. Smart
City; IEEE 6th Int. Conf.Data Sci. Syst. (HPCC/SmartCity/DSS), Dec. 2020, pp.
613–619, doi: 10.1109/HPCC-SmartCity DSS50907.2020.00078.

3

3 ©Nihel Kaboubi. This work is licensed under a “CC BY-SA 4.0” license.


