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Abstract

Deep learning delivers remarkable results in a wide range of applications,
but artificial neural networks still suffer from catastrophic forgetting of
old knowledge as new knowledge is learned. Rehearsal methods overcome
catastrophic forgetting by replaying an amount of previously learned
data stored in dedicated memory buffers. Alternatively, pseudo-rehearsal
methods generate pseudo-samples to emulate previously learned data,
alleviating the need for dedicated buffers. First, we show that it is pos-
sible to alleviate catastrophic forgetting with a pseudo-rehearsal method
without employing memory buffers or generative models. We propose a
hybrid architecture similar to that of an autoencoder with additional
neurons to classify the input. This architecture preserves specific prop-
erties of autoencoders by allowing the generation of pseudo-samples
through reinjections (i.e. iterative sampling) from random noise. The
generated pseudo-samples are then interwoven with the new examples
to acquire new knowledge without forgetting the previous ones. Sec-
ond, we combine the two methods (rehearsal and pseudo-rehearsal) in
the hybrid architecture. Examples stored in small memory buffers are
employed as seeds instead of noise to improve the process of gener-
ating pseudo-samples and retrieving previously learned knowledge. We
demonstrate that reinjections are suitable for rehearsal and pseudo-
rehearsal approaches and show state-of-the-art results on rehearsal
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methods for small buffer sizes. We evaluate our method extensively
on MNIST, CIFAR-10 and CIFAR-100 image classification datasets.

Keywords: incremental learning, lifelong learning, continual learning,
sequential learning, pseudo-rehearsal, rehearsal

1 Introduction

Deep learning has yielded remarkable results in many applications; however,
artificial neural networks still suffer from catastrophic forgetting of old knowl-
edge as new information is learned [1–5]. Catastrophic forgetting prevents
artificial neural networks from acquiring new skills and evolving in non-
stationary environments (e.g. learning to classify a whole dataset class by class
instead of learning all classes together). Researchers have been studying this
problem since the 90s [6] by looking at the brain’s neurogenesis [7], synap-
tic consolidation [8] and replay systems (hippocampal-neocortex network) [9].
Indeed, modeling real continual learning (CL) as we humans do requires finding
appropriate solutions to this problem.

First, neurogenesis methods evolve the neural network architecture to
adapt to different training experiences using independent sets of parameters
[10–17]. Second, synaptic consolidation methods limit changes in important
parameters of previously learned tasks [18–25]. Thus new tasks will employ
neurons that are less useful for previous tasks.

It is possible to replay previously learned examples in two ways, with real
samples (rehearsal) or with synthetic samples (pseudo-rehearsal). Rehearsal
methods overcome catastrophic forgetting by replaying an amount from pre-
viously learned examples stored in dedicated memory buffers [26–35, 35].
Rehearsal methods replaying only a fraction of old samples have recently been
found to be one of the best solutions to alleviate the catastrophic forgetting
problem [3, 36, 37] due to their ability to successively integrate new memories
[3] and to their superior performance compared to other CL methods given a
similar amount of computational resources. Surprisingly, they still work well
when replying only a tiny fraction of the previous samples [36], which we denote
as tiny memory buffers. The small memory footprint of these solutions justifies
their eligibility for large scale datasets benchmarks. However, one of the biggest
problems of using small memory buffers is that old knowledge is sub-optimally
represented. The latter makes the parameters of the models more adjusted to
the new tasks. In the context of classification problems, a task describes cate-
gorizing a given set of data into classes. This phenomenon occurs because the
model has seen many different samples of the last task but few from previous
tasks [4, 26–28, 31, 32, 34, 38, 39]. As a result, the previously learned tasks
tend to be biased or misclassified into the most recently learned tasks.
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Alternatively, pseudo-rehearsal methods generate pseudo-samples that may
emulate previously learned data [40–47]. They were conceived to avoid the uti-
lization and storage of previously learned samples. Instead of replaying past
training data from buffers, a complementary learning system approximates
previous examples through another ANN (e.g. a generative neural network).
This second ANN generates pseudo-samples that , together with the new sam-
ples, become inputs during the incremental training. The term pseudo denotes
the fact that the samples representing previous knowledge are often artificially
generated by employing a sampling procedure and random noise.

Replaying what has been previously learned through examples or pseudo-
samples while learning new tasks allows adapting the global set of parameters
for past and new tasks —-overcoming catastrophic forgetting similarly to clas-
sical deep learning training when the entire dataset is present [48]. Thus, the
biggest challenge of replay methods is to represent correctly and globally what
has been previously learned [48], as they often rely on limited memory buffers
or roughly generative models.

In this work, we focus on incremental classification problems. We propose a
hybrid architecture that retrieve its knowledge by means of samples generated
through reinjections (i.e. iterative sampling [49, 50]) and allows for contin-
ual learning. Reinjections consists in injecting an input sample in a replicator
ANN (e.g. an autoencoder) and in reinjecting its output multiple times until
a stop condition is reached. The hybrid architecture consists of an autoen-
coder with additional neurons in the output layer to perform the classification
(i.e. auto-hetero encoder or auto-hetero associative neural network). The inter-
esting feature about this architecture is that it preserves the ability of the
autoencoder to memorize what it has previously learned [49, 51]. In addition,
the model generates pseudo-samples with their corresponding labels through
the reinjection mechanism. The obtained input-output pair is called knowl-
edge [50]. The goal is to retrieve the knowledge represented by the learned
classification function (i.e. the mapping function) to alleviate forgetting of ear-
lier tasks. More specifically, pseudo-samples are replayed by the model when
it learns a new task.

The proposed generic continual learning framework can be deployed for
several applications. First, the pseudo-samples (i.e. synthetic data) are gen-
erated with random noise and reinjections for retrieving previous knowledge.
Since the knowledge retrieval process does not employ a memory buffer, it is a
Data-free solution. This work exploits the Data-free approach to validate that
hybrid architectures perform continual learning. However, as shown in previ-
ous findings [4, 46], the Data-free solution struggles to scale on larger datasets.
Second, the Data-free solution is equipped with a memory buffer to increase
the efficiency of the acquired knowledge retrieval process. Instead of using ran-
dom noise in the reinjections, examples are used from tiny memory buffers,
which allows the hybrid model to cope with larger data sets. More specifically,
the hybrid model generates variations of the examples from the tiny memory
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buffers through reinjections. During training, these pseudo-samples are inter-
leaved with real samples of a new set of classes to incrementally integrate
new knowledge while consolidating the previous one. We show that the hybrid
model alleviates catastrophic forgetting and incrementally solves classification
problems without memory buffers or generative models. Next, we show that the
hybrid buffered model enables state-of-the-art results. Since the proposed solu-
tion combines the central ideas of the rehearsal and pseudo-rehearsal methods,
it is called Combined replay.

During the incremental learning step, the hybrid model minimizes a clas-
sification loss to integrate the new task and minimizes a distillation loss to
consolidate the previous tasks. The distillation loss exploits the pseudo-samples
obtained through reinjections. Overall, we show that the reinjection sampling
procedure in this hybrid architecture alleviates catastrophic forgetting with
pseudo-samples from Gaussian noise or real examples. In particular, Combined
replay improves the knowledge retrieval process and provides results compara-
ble to state-of-the-art approaches. We also show that Combined replay suffers
from bias problems like most rehearsal methods and that this can be alleviated
by training with larger learning batches for old tasks. To evaluate the impact
of the use of the proposed pseudo-samples vs the real-samples, we compare the
performance of existing replay models such as ICARL [26] and Tiny Episodic
Memory Replay (ER) [52] with our method (Combined replay). The experi-
ments focus on continual learning scenarios applied to classification tasks. The
Data-free solution is validated and then Combined replay is evaluated using
the classification accuracy in the following datasets: MNIST [53] , CIFAR-10
[54] and CIFAR-100 [54].

This work is structured as follows: Related work is presented in Section
2. The background on which we build our continual learning approaches is
presented in Section 3. The evaluation and results of Data-free experiments
are presented in subsection 4.4. The evaluation and results of Combined replay
experiments are presented in subsection 4.5. Our findings are discussed in
Section 5. Finally, the conclusion and the perspectives are drawn in Section 6.

2 RELATED WORK

Catastrophic forgetting was formalized for the first time by [6]. Between 1990
and 2010, catastrophic forgetting was initially studied by the cognitive sci-
ence community [55, 56]. Those pioneer works gave raise not only to actual
terminologies as rehearsal, pseudo-rehearsal [40] and complementary learning
system [57] but also to the solutions based on knowledge distillation [40], dual
networks [58] and reduced overlap representations [59]. These solutions were
mainly focused on shallow ANNs architectures trained on low dimensional
datasets learned with few incremental learning steps.

Nowadays, catastrophic forgetting is one of the most challenging prob-
lems when working with data streams in dynamic environments and real-world
scenarios. In these cases, ANNs learn to perform a task (e.g. the process of
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categorizing a given set of data into classes) by finding an “optimal” point in
the parameter-space. When ANNs subsequently learn a new task (e.g. the pro-
cess of categorizing a new set of data into a new class), their parameters will
move to a new solution point that allows the ANNs to perform the new task.
Catastrophic forgetting [6] arises when the new set of parameters is completely
inappropriate for the previously learned tasks. The latter is mainly a conse-
quence of the gradient descent algorithm that is typically used to find the ANN
parameters during training. Indeed, all ANN parameters are adapted for the
new task without taking into account previous knowledge. Catastrophic forget-
ting is related to the stability-plasticity dilemma [60], which is a more general
problem in neural networks, due to the fact that learning models require both:
plasticity to learn new knowledge and stability to prevent the forgetting of
previously learned knowledge. The objective, in CL, is to overcome the catas-
trophic forgetting problem by looking for a trade-off between stability and
plasticity.

The recent development of deep neural networks has led to a great deal of
interest in this field, which is now being addressed as continual learning [2, 42],
sequential learning [6, 61], lifelong learning [62–64] and incremental learning
[22, 26]. These fields aim at learning new information from a continuous stream
of data without erasing previous knowledge (i.e. the performance on previously
learned tasks must not be degraded significantly over time as new tasks are
learned). For clarity, we simplify the terminology by referring to these fields
as continual learning. Continual learning state-of-the-art approaches might be
divided into three paradigms [3]: regularization-based, parameter isolation and
replay methods. Figure 1 gives a brief overview of the CL methods regarding
their plasticity-stability abilities.

Regularization approaches are often associated with synaptic consolidation
in the brain, in which the simultaneous activation of cells leads to a pronounced
increase in synaptic strength between those cells (i.e. the more an activation
pathway is used in a neural network, the more stable the circuit becomes).
Synaptic consolidation enables continual learning and allows for the consoli-
dation of previously learned information because vital synapses of previously
learned experiences are maintained [65]. In this way, knowledge of previously
acquired information is durably encoded in a portion of synapses stabilized
over long time scales.

In continual learning, regularization-based approaches introduce an addi-
tional regularization term in the classification loss function to maintain
previous knowledge. The regularization term encourages the mapping func-
tion for the new task not to deviate too far from the mapping function
of the previous task. Depending on how the regularization term is imple-
mented, it is possible to distinguish between weight regularization and function
regularization approaches.

The main idea of function regularization approaches is to limit the drift
of the learned mapping function from previously learned tasks while learn-
ing new tasks. Thus, this approach maintains the mapping function from
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Fig. 1 Continual learning methods indexed regarding their plasticity-stability ability.

inputs to outputs (i.e. knowledge) of previous tasks by distilling the knowl-
edge [18, 26, 27, 62, 66, 67]. Weight regularization approaches introduce an
extra regularization term in the loss function [19–21, 68]. The regularization
term can be computed in an online [21, 69] or offline [19, 69] fashion. It is
implemented locally at each synapse by penalizing important changes in the
weights which were particularly influential in the past. In terms of storage,
weight and function regularization-based methods are not demanding because
they do not require memory buffers or a second ANN to maintain previous
knowledge. Nevertheless, a buffer can be used to alleviate forgetting further
[26, 27, 30]. When many tasks must be performed, the penalty introduced to
increase stability might not be sufficient to overcome catastrophic forgetting
as shown in previously published experiments [3, 70]. Thus, the major limita-
tion of regularization methods is to not efficiently compute the regularization
term that allows to preserve previous knowledge. Moreover, the main risk of
these approaches is to trade plasticity for stability. The plasticity is limited
when the parameters of ANNs are “frozen” to maintain previous knowledge
through the regularization term.

Parameter isolation approaches are often associated with neurogenesis in
the brain. Neurogenesis involves the growth of new neurons to assimilate and
consolidate new information while learning new patterns. In this way, new
information is associated with a specific set of neurons that specialize in an
input stimulus [71]. Recent studies suggest that neurogenesis in the brain
declines sharply in childhood and it is undetectable in adulthood [72, 73].
While those work may suggest that lifelong neurogenesis would not be the
main avenue for memory consolidation, several approaches in the continual
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learning literature mimic to some extent neurogenesis in the brain. Notably,
recent work argues the contrary, neurogenesis is maintained during ageing [74].

Parameter isolation methods aim to preserve and maintain previously
learned knowledge in a specific set of parameters. The previously learned
task-specific parameters are frozen at each incremental step while a new set
of parameters is adapted only for the new task. In this way, the specific
parameters of the previous task remain unchanged. These methods can be
sub-classified into dynamic [13–17] or static [10–12, 75, 76]. Dynamic architec-
tures add new parameters to the architecture of an ANN for each learned task.
They are stable enough in a system comprising large memory resources and
where high performance is the priority. Static architectures gradually reduce
the model plasticity by ”freezing” a set of parameters for each new learning
task. Regarding the memory footprint, deep and large models are often needed
to extend the number of tasks that can be learned. However, they only par-
tially circumvent the catastrophic forgetting problem since new architecture
is added/employed to learn new tasks. Thus, parameter isolation methods are
not designed to overcome catastrophic forgetting but to dodge it. Indeed, there
is no model with global structural plasticity for any of the tasks learned so far,
but small specific blocks for each learned task [13, 62, 77, 78]

Replay methods are often related to the theory of complementary learning
systems (CLS) [57] which involve two neural networks, the hippocampus and
the neocortex, to explain consolidation in the brain. At the brain level, recent
studies support that the hippocampal system exhibits short-term adaptation
that allows for rapid integration of new information [9]. More specifically, dur-
ing the sleep phase, the hippocampal system plays back recent memories to
the neocortical system for long-term retention and consolidation. Thus, the
hippocampal system is considered a fast learner, integrating new patterns with-
out disrupting the structure and minimizing interference. Complementarily,
the neocortical system is seen as a slow learner whose overlapping represen-
tations of new and old patterns are consolidated for continual learning. Such
a system suggests that the neocortex slowly uncovers the hidden structure
of experiences, which is crucial for finding regularities and specificities. In
this context, we use the term “consolidation” to describe the post-experience
memory stabilization processes that occur when memories are replayed.

In continual learning, replay-based methods encourage models to consider
previous knowledge by revisiting previously seen examples or approximation of
them. Replaying old examples when learning new ones encourages the mapping
function of new tasks to include the mapping function of previous tasks. It acts
as a spring that prevents the model from deviating too much from its correct
behaviour such as regularization loss in regularization-based methods. Replay
methods exploit the inner plasticity of ANNs by rehearsing old knowledge
when learning new tasks instead of diminishing this ability. Replay methods
can be sub-classified into rehearsal [3, 30, 36, 37, 79–83] and pseudo-rehearsal
[40–43, 46, 47, 84–86].
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Rehearsal methods [26, 27, 36] explicitly retrain on a subset of stored sam-
ples from previous tasks and the performance is usually constrained by a fixed
memory budget. The larger the memory buffer, the greater the stability, so the
lesser the forgetting. The parameters controlling the stability of old knowledge
is usually determined by the size of the memory buffer used to store the old
samples and how the old examples are exploited [87, 88]. The usual way to
exploit the memory buffers is to train the models on a new task along with old
samples from tiny buffers [36, 37]. However, the buffer size to store old data
and the way the data are used vary with each rehearsal CL implementation.
For example, ICARL [26] is a double-memory system that employs a memory
buffer size of 2000 samples and a second model to retrieve previously learned
knowledge. The captured knowledge is replayed when learning a new task.

Pseudo-rehearsal methods have been recently improved with the devel-
opment of powerful generative models capable of modeling complex data
distributions such as generative adversarial networks [89] and variational
autoencoders [90]. The performance of pseudo-rehearsal methods rely on both
the generative power and the quality of the synthetic data set provided by
the generative model. In fact, these two characteristics play a key role in the
stability of previously learned knowledge. Pseudo-rehearsal methods are often
outperformed by rehearsal methods when many tasks must be learned. Thus,
the main challenge facing pseudo-rehearsal methods is to be stable enough to
produce optimal pseudo-data as the ANN continuously learns a growing num-
ber of tasks. Among the generative models, auto-associative neural networks
(i.e. autoencoders) are often employed to generate samples from previous tasks
[45, 46, 91–93]. In these works, ancestral sampling is performed to generate
samples from the latent space of autoencoders. Alternatively, the approach in
[49, 50] differs from this research area because it does not sample from the
latent space of the autoencoder but from the input space. Their work gener-
ates pseudo-samples from the input space by performing a reinjection sampling
procedure (i.e. iterative sampling).

This paper presents a dual memory framework for continual learning based
on a hybrid architecture that performs iterative sampling to capture knowl-
edge. First, a Data-free solution using iterative sampling and random noise
is proposed for privacy-preserving applications. Second, a Combined replay
solution using iterative sampling and examples from small memory buffers is
proposed to improve the knowledge capture process. We show that the gen-
erated pseudo-samples improve the retrieval process of previously acquired
knowledge and compare it with state-of-the-art approaches. The dual memory
system adopted in this work is presented in the following section.

3 SET-UP

This study draws inspiration from some previously proposed continual learning
approaches employing two artificial neural networks (ANNs) as in [26, 41, 42],
which, for consolidation, rely on distillation.
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Fig. 2 Dual-memory system. Knowledge transfer: Net 2 acquires Net 1 knowledge by learn-
ing the pseudo-samples generated by Net 1. Consolidation: Net 1 searches for a parameter
set for new tasks and old tasks by replaying pseudo-samples from the previously learned
tasks.

Figure 2 illustrates the two ANNs and the two learning phases of our
approach. During the first learning phase 1○, the knowledge from the first
ANN, named Net 1, is “transferred” to the second ANN, named Net 2, through
pseudo-samples. That is, Net 2 is trained with the knowledge of Net 1, which is
the model used to generate a pseudo-dataset and that represents the knowledge
we want to transfer. As both ANNs are identical, we use an easy way to
transfer knowledge. We duplicate the parameters of Net 1 into Net 2 instead
of using pseudo-samples in phase 1○. It should be noted that if we need to
expand the neural network, we can use the pseudo-samples for the knowledge
transfer procedure. During the second learning phase 2○, new classes have to
be integrated without degrading previously learned knowledge. Net 1 learns
the new classes as well as the pseudo dataset generated by Net 2.

In this section, we present the ANN architecture employed in the dual-
memory system of Figure 2, the sampling procedure used to generate pseudo-
samples, the knowledge transfer procedure that employs distillation to transfer
the knowledge from one ANN to another and the incremental learning proce-
dure. In the subsection 3.5 we explained in detail the consolidation step 2○
and the mechanism for generating pseudo-samples for consolidating previous
tasks.

Since the dual-memory system described above consists of two identical
ANNs, the description that follows is of a single ANN. The employed hybrid
architecture is formally called Auto-Hetero (AH) associative ANN because it
is trained with a two-fold aim: replication and classification. The first aim
is referred to as “replication”, where for an input xi, the goal is to output
a x̂i as close as possible to the input xi. The second aim is referred to as
“classification”, where for the input xi, the goal is to output a label ŷi as
close as possible to the ground-truth label yi. Let us note that for a dataset
D with C classes, xi represents the ith sample and yi represents the ith label.
The ground-truth label yi is a one-hot C-dimensional vector and ŷi is a C-
dimensional vector whose values are in between 0 and 1. The samples xi and
x̂i are F -dimensional vectors also in between 0 and 1.The notation [., .] refers
to the concatenation of two vectors. For example, [xi, yi] is the P -dimensional
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vector (P = F + C) that concatenates the F -dimensional vector xi and the
C-dimensional vector yi.

3.1 The auto-hetero associative architecture

Fig. 3 Auto-Hetero associative architecture.

The architecture of the AH associative ANN comprises an input layer which
receives inputs xi, hidden layers which transform xi from the input layer and
an output sigmoid layer that delivers the P -dimensional vector ([xi, yi]). An
example of our AH associative ANN architecture is presented in Figure 3. The
proposed architecture fulfills three main procedures: the training, the inference
and the generation of pseudo-samples.

The first procedure, the training, is performed by minimizing the binary
cross-entropy loss between the output of the AH network [x̂i, ŷi] and the
ground-truth outputs [xi, yi] using gradient descent. Equation (1) defines this
binary cross-entropy loss.

`AH = −
∑

(xi,yi)∈D

`([xi, yi]p, [x̂i, ŷi]p) (1a)

= −
∑

(xi,yi)∈D[ 1

F

F∑
f=0

(
[xi]f log([x̂i]f ) + (1− [xi]f ) log(1− [x̂i]f )

)
(1b)

+[ 1

C

C∑
c=1

(
[yi]c log([ŷi]c) + (1− [yi]c) log(1− [ŷi]c)

)]
(1c)

where P is the dimension of the output of the neural network, [xi, yi]p rep-
resents the pth element of the P -dimensional ground truth vector [xi, yi] and
[x̂i, ŷi]p represents the pth element of the P -dimensional predicted vector
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[x̂i, ŷi]. F is the output dimension for replication and C is the output dimen-
sion for classification. We split the output of dimension P into two vectors,
one for replication loss ([xi]f ) (Equation (1b)) and the other for classification
loss ([xi]c) (Equation (1c)). In this way, the AH architecture is a hybrid model
that performs classification and replication.

The second procedure, the inference, employs the knowledge gained during
the training to infer the replication and the label of a given input. While the
auto-associative output indicates how well the model is capable of reproduc-
ing a given input, the hetero-associative output indicates how well the model
has built the decision boundaries for classification. Finally, the generalization
ability (i.e. classification on unobserved data) of the model is always measured
only by taking into consideration the hetero-associative output for the classifi-
cation task. That is, the accuracy of the model on the training and testing sets
is computed using the classification output. This the pseudo-sample generation
procedure is described in the next subsection.

3.2 Reinjection sampling procedure

The pseudo-sample generation procedure, referred to as reinjection [58] or
iterative sampling [49], employs the Auto-associative component of the AH
ANN to perform several inferences.

Fig. 4 Reinjection sampling procedure

The reinjection sampling procedure consists in creating a sequence of
pseudo-samples with the auto-associative output by following two steps: i.
injecting a random sample or an example (x0) into the input layer of the
auto-associative component to infer its replication vector x1; ii. reinjecting the
replication vector x1 in the input layer to infer the next replication vector x2.
The process of bringing the replication vector in the input layer is illustrated
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by the dot arrow in Figure 4 and it is referred to as reinjection. Therefore,
a sequence of length one consists in ((x0) → [x1, y0]), a sequence of length
two consists in ((x0) → [x1, y0] ; (x1) → [x2, y1]) and so on. Note that the
hetero-associative output provides only the label of each input sample. For each
reinjection, we gather three vectors: the starting point, its corresponding label
and the replication of the starting point. The reinjection sampling procedure
mimics a non-conditional generative process where the samples are not condi-
tioned by the labels but by the starting point of the generated sequence. After
each reinjection, the replication function corresponds, at first order, to a small
displacement towards higher densities in the training distribution [49, 50].

In the Data-free implementation, we burn-in the first samples of the begin-
ning of the sequence because the starting points are sampled from an isotropic
Gaussian distribution. Therefore, we discard the first point because it is not
approximated by the autoencoder to any interesting area.

Alternatively for Combined replay, we do not burn-in (i.e discard iterations)
the first samples of the beginning of the sequence because the starting points
are samples from the tiny memory buffers instead of random points. Thus, all
the generated pseudo-samples are gathered, hence generating a pseudo-sample
sequence.

3.3 Knowledge transfer

We employ the terminology introduced in [94] where the knowledge of a trained
ANN is defined by the mapping from input vectors to output vectors. This
abstract view of the knowledge is free from any particular ANN implementa-
tion. For instance, when an ANN classifier infers the soft label of an example,
the classifier delivers probabilities for all the classes. The information deliv-
ered by the probabilities of all the classes is useful because a new classifier
can build similar decision boundaries by learning the real samples and their
corresponding soft labels.

The knowledge transfer procedure is called distillation and it was originally
proposed to transfer the mapping function between different neural networks
[40, 41, 94]. Distillation in continual learning is a common practice that ensures
that the information previously learned is maintained during a new learning
step. In both approaches, Data-free and Combined replay, the set of generated
inputs (xi) and outputs [xi+1, yi] defines the knowledge of a trained AH ANN
(see Figure 4). This knowledge is used to reduce forgetting when learning a
new task as it is described in Subsection 3.5.

3.4 Fixed feature extractor

In this work, we use a pre-trained fixed feature extractor to extract features
from class images. It should be noted that this is only necessary for images with
more than one channel (e.g. CIFAR-10 and CIFAR-100). Instead of learning
to replicate and classify high-resolution images, the double memory system
receives features that are low-dimensional vectors. A fixed feature extractor
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allows us to obtain optimal representations of classes and it helps us to avoid
training a feature extractor incrementally as in [14, 17, 46, 50, 78, 91, 95, 96].
We employ a convolutional neural network named Resnet-50 [97] that extracts
the feature vectors. These features are transferred to NET 1 which infers the
class of the images. As it is illustrated in Figure 2, Net 1 is trained with the
features of the new class and pseudo-samples generated by Net 2. Once Net 1
learns the features of the new class, its parameters are duplicated into Net 2 .
In this way, the proposed double memory system allows incremental learning
without catastrophic forgetting in the fully connected layers benefiting from a
fixed feature extractor.

Algorithm 1 Continual learning algorithm

Require: xs, ..., xt // training image of classes s,...,t
Require: M // small memory buffer
Require: θ1 // NET 1 model parameter
Require: θ2 // NET 2 model parameter

1: for u = 0 to learning steps do
2: New task ← ∪y=s,...,t { (xi, yi) : xi ∈ xy }

3: if mode == ‘Data-free’ then
4: xold ← ∼ N (0, I)

5: end if

6: if mode == ‘Combined replay’ then
7: xold ← ∪y=1,...,s−1 { (xi, ·) : xi ∈ xy }
8: xold = xold + noise strength ∗ N (0, I)

9: end if
10: X = [xnew]
11: XY = [(xnew, ynew)]

12: for r = 0 to number of reinjections do
13: [xn+1, yn] ← AH(θ2, xn) for all (xi, ·) ∈xold

// store pseudo-samples and their outputs
14: X = X ∪ [xn]
15: XY = XY ∪ [(xn+1, yn)]
16: end for

// run network training with total loss function
17: ( eq.2 and distillation loss)

θ1 ← backprop(X,XY, θ1, lr)
18: end for
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Fig. 5 Data-free and Combined replay workflow

3.5 Consolidation step

In the proposed Data-free and Combined replay solutions, Net 1 learns a new
set of classes and its previous knowledge which is captured by Net 2 through
reinjections. Algorithm 1 lists the steps behind data-free and combined replay,
as shown in Figure 5. We consider that (“initially”) Net 2 has already been
trained on previous classes and we provide tiny memory buffer and the samples
of the new classes.

Data-free:

For Data-free 1a (mode == ‘Data-free’ in Algorithm 1), we randomly draw
samples from an isotropic Gaussian distribution xold ∼ N (0, I). That is, each
value of the sample input vector is drawn from a Gaussian distribution of
mean 0 and variance 1 which is classically used to generate synthetic samples
[42, 49, 90, 98].

Combined replay:

For Combined replay 1b (mode == ‘Combined replay’ in Algorithm 1), we
randomly draw samples from the tiny memory buffer xold. Before performing
the reinjections, random noise is added to the selected old samples (xold).
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Whether they come from, a Gaussian distribution ( 1a ) or a memory buffer

( 1b ), the samples are reinjected several times to generate the sequence of

pseudo-samples 2 . That is, Net 2 is evaluated in each reinjection for all the
samples in xold by delivering the “auto-hetero” output [xi+1, yi]. Then, we
randomly draw samples from the currently available training set New task
3 . The soft-labeled pseudo-samples are merged with the labeled real samples

Dnew resulting in an enhanced dataset 4 . Finally, the Auto-Hetero (Net 1)

parameters are updated by minimizing the total loss `(θ1) 5 that encourages
to learn the auto-hetero mapping for the new set of classes and to consolidate
the auto-hetero output of the previously learned classes (distillation loss). It
should be noted that the same total loss is employed to update the Net 1
parameters in the Data-free and Combined replay approaches.

Net 2 retains the previous model parameters which are not updated during
this phase. Note that the distillation loss is the same loss formalized above in
Equation (1) but the pseudo-samples and their inferred labels (i.e. from Net 2)
are employed instead of the true samples and their corresponding ground-truth
labels as in Equation 2.

`total =−
( ∑

(xi,yi)∈Dnew

`AH([xi, yi]p, [x̂i, ŷi]p)

New task Loss

+
∑

(x̄i,ȳi)∈Net 2(Xseed)

`AH([x̄i, ȳi]p, [x̂i, ŷi]p)

Distillation Loss

) (2)

where (xi, yi) ∈ Dnew are the examples and labels of the new task; (x̄i, ȳi) ∈
DXseed

are the synthetic samples and labels generated by Net 2 through rein-
jections; Xseed refers to the fact that it is possible to perform reinjections
with Gaussian noise (data-free) or examples from a memory buffer (Combined
replay) and [x̂i, ŷ] is the predicted vector of dimension P delivered by Net 1
for a given input (e.g. xi or x̄i).

Basically, the workflow of Figure 5 is similar to that in [26] where a buffer
and a pre-updated classifier are used to perform distillation to capture pre-
vious knowledge. There, the samples of the buffer and their distilled outputs
are jointly learned with the new samples and their ground-truth labels. The
classification loss encourages the classification of the newly observed classes
whereas the distillation loss ensures that the previously learned information
is not lost. The model architecture and the way the knowledge is captured is
different since we do no train a classifier; instead, we train an Auto-Hetero
associative ANN and we perform reinjections to capture previous knowledge
using random noise or samples from a memory buffer.

In this way, during the consolidation step of Figure 2, two losses are
employed to update the parameters of Net 1 through backpropogation.
The standard classification and the replication loss for the new samples of
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Equation (1) encourage classifying and replicating the new set of classes. The
distillation loss for the pseudo-samples and their corresponding soft-labels
(logits) ensure that the information previously learned is not lost during the
new learning stage.

4 EXPERIMENTS

This section describes the experiments carried out to evaluate the performance
of our approaches (Data-free and Combined replay). First, we validate the
generality of our approach and some optimization pathways with the Data-free
approach. Second, we compare Combined replay with current state-of-the-art
replay methods.

4.1 Datasets

We benchmark the beneficial effects of reinjections on three commonly used
datasets that differ in the number of classes and features. First, we study the
raw images from MNIST. Then, we extract the features from CIFAR-10 and
CIFAR-100 using a Resnet50 [97] pre-trained on ImageNet [99] as in Figure
??. The extracted features are also scaled between 0 and 1 using min-max
normalization. It is worth noticing that the maximum accuracy of a classifier
trained on the extracted features and their corresponding labels of CIFAR-
10 and CIFAR-100 datasets is around 92% and 75% respectively (i.e. offline
learning).

The MNIST and CIFAR-10 benchmarks consist of a total of 10 tasks where
each task contains one class. For CIFAR-100, we split the original CIFAR-
100 dataset into 20 disjoint subsets. Each subset is considered as a separate
task and each contains 5 classes from the total of 100 classes. While in the
literature dividing CIFAR-100 into 20 tasks with 5 classes is the standard way
to benchmark this dataset; instead, we use 100 tasks each containing one class
for the Data-free solution. We choose this way to see the limitations of the
Data-free approach more clearly in a finer-grained benchmark. Let us note
that T represents all the tasks to be learned. In this context, a task refers to
an isolated training phase defined by (Xt,Yt) such that Xt is a set of data
samples for task t and Yt the corresponding ground truth labels.

The three datasets, MNIST, CIFAR-10 and CIFAR-100, are complemen-
tary datasets widely used in the literature to compare continual learning
approaches. These datasets allow studying a model with increasing complex-
ity, from easiest to hardest. MNIST is a dataset with 60.000 samples of 784
features from 10 classes. CIFAR-10 is a dataset with 50.000 samples of 2048
features of 10 classes. The CIFAR-100 is a dataset with 50.000 samples of 2048
features from 100 classes. The main idea of using these datasets is to evalu-
ate the model by increasing the number of features and classes. The larger the
number of classes and features, the more difficult it is for the model to retain
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old tasks. An additional complexity when evaluating the model with CIFAR-
100 is the number of samples per class. For instance, MNIST and CIFAR-10
contain approximately 5000 training samples per class, while CIFAR-100 con-
tains only 500 samples per class. The latter means that when we benchmark
the model with all three datasets, we expose our approach to changes in the
number of classes, features and available training samples. Thus, the three
datasets are optimal choices for validating a continual learning approach.

4.2 Metrics

The performance of all our experiments are measured with a single-head eval-
uation metric. That is, we do not use a task identifier; instead, we identify
the class to which a sample belongs among all the classes learned so far inde-
pendently. We measure performance on the testing set using accuracy and
forgetting, consistently with our domain’s literature [22].

Accuracy : Let ak,j ∈ [0, 1] be the accuracy (fraction of correctly classified
data from tasks 1 to k after learning the task j). The higher the value of ak
the better the model performance on the classification task.

AT =
1

T

T∑
j=1

aT,j (3)

Forgetting : Let fi ∈ [−1, 1] be the forgetting on task i. It measures the
gap between the maximum accuracy obtained in the past and the current
accuracy about the same task. The lower the forgetting, the better the model
performance.

FT =
1

T − 1

T−1∑
j=1

(max
l∈1,...,i−1

al,j)− ai,j (4)

4.3 Architectures

We performed all experiments of the Data-free and Combined replay solutions
with the hyperparameters presented in Table 1 (see Table 1). For classifiers
and for Auto-Hetero ANNs, we maintain constant the parameters to compare
the outcomes of the model under test. We employ the Mish activation func-
tion for the hidden layer because it has proved to be more robust than the
relu activation function for classification tasks [100]. The models are trained
using the adam optimizer [101] with beta1=0.9 and beta2=0.5 and the learn-
ing rates of Table 1. When learning CIFAR-100 dataset, we only change two
hyperparameters: the epochs and the learning rate. This is due to the fact that
the AH architecture needs more learning steps and a smaller learning rate to
replicate and to classify CIFAR-100 correctly.

For the Data-free solution the size of the mini-batch for old samples (before
reinjections) is set to 256 and for new examples is set to 64 regardless the
dataset. Also, we employ 8 epochs per class in the 100 task benchmark (i.e.
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Data-free CIFAR-100). The values 64 and 256 were found empirically and they
are valid for the 3 benchmarked datasets. In general, the Data-free model needs
a large batch of old task samples to consolidate correctly. For Combined replay,
the size of the mini-batch of old and new samples is set to 10 irrespective of
the memory buffer size. The mini-batch of old samples is copied as described
below whenever reinjections are performed.

Table 1 MODEL HYPERPARAMETERS

Models #units/hidden layer
activ.

function
epochs
/class

Opt lr

MNIST
Auto-Hetero [784,200,200,794] Mish 5 Adam 0.0001
Classifier [784,200,200,10] Mish 5 Adam 0.0001

CIFAR-10/100
Auto-Hetero [2048,1000,1000,2058/2148] Mish 30 Adam 0.0001
Classifier [2048,1000,1000,10/100] Mish 2 Adam 0.001

4.4 EXPERIMENTS: Data-Free approach

The following experiments show that the Data-free solution works and learns
classification tasks incrementally without using any information from the
external world. They also aim to show that the auto-hetero model can con-
solidate previous knowledge thanks to the properties of autoencoders and the
reinjections.

4.4.1 Baselines

We illustrate the Data-free approach under the following references:

• All of the examples (upper-bound reference): An Auto-Hetero model without
reinjections trained with all the old examples of the dataset (i.e. the old
examples and their corresponding labels) allows us to observe the maximum
performance of our hybrid model when relying on an “infinite” memory
buffer. Examples of new and old tasks are employed to minimize a single
loss; the binary-cross entropy.

• Without dual memory systems (lower-bound reference): An Auto-Hetero
model without reinjections trained only with the examples from the new
task allows us to observe the minimum performance of our hybrid model
when performing incremental tasks. That is, this baseline does nothing to
alleviate catastrophic forgetting.

• Data-free (last R): An Auto-Hetero model that performs 5 reinjections but
it only takes the last generated samples to capture the knowledge of Net 2.
This experiment allows us to observe the importance of using all reinjections
to capture previous knowledge.
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• Data-free (0 R): An Auto-Hetero model that performs a single inference
with Gaussian noise to capture Net 2 knowledge. It does not burn-in the
Gaussian noise, nor does it perform reinjections to improve the samples.
This experiment allows us to observe the importance of making reinjections
when performing incremental tasks.

• Data-free (2-net) without regularization: An Auto-Hetero model that per-
forms reinjections and that captures the knowledge of Net 2 with the
generated sequence. However, during the first learning task, it does not per-
form reinjections to learn the initial state of Net 2. That is, the Data-free
solution always performs reinjections and captures the knowledge of Net 2
even when it learns the first task.

• Data-free (3-Nets): We observed that the Data-free solution alleviates catas-
trophic forgetting but its effectiveness decreases when many tasks have to
be learned incrementally. So, we integrated a third auto-hetero association
model into the system (Net 3).

4.4.2 Methodology

The Algorithm 1 is used to compare the performance of the Data-free
approach. Only three things are worth noting:

1. When the first task is learned, reinjections are performed on Net 2 to cap-
ture its knowledge. The latter is done always and mainly when Net 2 has
not learned anything yet. Learning the initial state of Net 2 when Net 1
learns the first task helps to stabilize future learning. If this is not done,
Net 1 overlearns the first task, which will never be forgotten because
Net 2 generates samples of the first task primarily. To prevent Net 1 from
overlearning the first task, we use Net 2 initialization knowledge as a
spring from the initial state. That is, Net 2’s knowledge prevents Net 1
from straying too far from its initial state and overlearning the first task.

2. When the Data-free approach takes a Gaussian noise batch of 256 samples
and performs 5 reinjections, it will produce 1,280 samples generating a
batch of significant size. This number of samples is necessary to capture
correctly the knowledge and to alleviate forgetting. It is crucial to perform
reinjections and to the generated sequence in order to consolidate.
When learning large datasets such as Cifar-100, the Data-free approach
performs poorly with the 2 networks. As our goal is to show the gener-
ality of our approach on small and large-scale datasets, we equip the 2
network framework with a third auto-hetero model called Net 3 as it is
shown in Figure 6. The reason for adding this third network is related to
a possible limitation of data-free when it learns more than fifteen classes
incrementally. In this setting, Net 2 will store short-term learned knowl-
edge while Net 3 will store long-term learned knowledge. Net 3 has the
same role as Net 2 in the workflow (Figure 5) but it does not immediately
maintain the previous state of Net 1; instead, it maintains the earlier
states. More precisely, if Net 1 learns task 10, Net 2 contains tasks 1 to 9
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and Net 3 will contain tasks 1 to 5. The weights of NET 1 are duplicated
into NET 2 after learning each new task and the weights of NET 2 are
duplicated into NET 3 every 5 new learning tasks. In this way, NET 3
maintains an early steady state of learning from distant tasks as it is
illustrated in Figure 6 (i.e. it is updated sporadically in order to have a
stable version of the past). We choose to update Net 3 every 5 learning
stages because we have empirically found that it works well; however,
weight duplication every 4,5,6,...,15 learning stages also works well. We
further discuss about the third neural network in section 5.

Fig. 6 Dual-memory system. Consolidation: Net 1 searches for a parameter set for new
tasks and old tasks by replaying pseudo-samples from Net 2 and Net 3.

4.4.3 Results

Figures 7 (a/b) and Figure 8 summarize the results obtained for the Data-
free approach. The following observations can be made.
First, Data-free solution alleviates catastrophic forgetting in all datasets
and outperforms the models that do one inference or take the last rein-
jection to capture Net 2 knowledge (Data-free (0R)/(last R)) as shown in
Figure 7(a/b). The Data-free curve in green is far superior to the catas-
trophic forgetting curve in orange (lower-bound reference ); however, it
shows a difference of 10% in MNIST, 15% in CIFAR-10 and 51% (2-Nets)
in CIFAR-100 with respect to having an infinite buffer (upper-bound refer-
ence) plotted by the blue curve. Although the Data-free solution does not
achieve a performance similar to one having an infinite buffer, it allows us to
obtain an optimal result without storing any information about the dataset.
These results show that our dual network framework with auto-hetero asso-
ciative networks alleviates catastrophic forgetting with the pseudo-samples
generated through reinjections and Gaussian noise.
Second, in Figure 7(a/b), the difference observed between the Data-free
(0R) curve in black, the Data-free (last R) curve in yellow and the Data-
free curve in green underlines the importance of reinjections to improve the
samples. (0R) and (last R) Data-free curves are quantitatively comparable
since they employ the same amount of pseudo-samples for the consolidation
step. However, when the model does not perform reinjections, the Gaussian
noise (0R) captures the knowledge of Net 2 less effectively, preventing Net 1
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from retaining what it has learned. This highlights the importance of using
pseudo-samples close to the learning distribution. The curves Data-free (0R)
in Figure 7(a/b) are indistinguishable from the catastrophic forgetting curve
in orange (lower-bound reference ). Their overlap indicates that this amount
of Gaussian noise is insufficient to consolidate previous tasks.
As already shown in [49, 50], reinjections have the property of displacing
the sample towards areas of high example density. Therefore, through rein-
jections, we can approximately sample from the training distribution. The
difference between performing no reinjections (Data-free 0R) and taking the
last reinjection (Data-free last R) is considerable but is overcome by using
the sequence of reinjections to consolidate, as the Data-free approach does.
The sequence of pseudo-samples captures more knowledge about the replica-
tion and classification function than a single pseudo-sample, so consolidating
the sequence of pseudo-sample alleviates forgetting efficiently.

(a) MNIST

(b) CIFAR-10
Fig. 7 Final avg.accuracy of the Data-free solutions

Third, learning the knowledge of Net 2 initialization regularizes the long-
term learning in Net 1 as indicated by the Data-free curve (2-Nets) in green
and the Data-free curve (2-Nets without regularization) in navy blue . A
difference of up to 10 % is observed between 15 and 25 tasks, which is
reduced to 7 % at the end of training. These two curves show that our reg-
ularization works when the Data-free solution works correctly (0-25 tasks)
and when the Data-free approach works poorly (30-100 tasks). The gain
obtained is always maintained. We can explain this effect intuitively through
the stability-plasticity dilemma. If Net 1 overfits the first task, its parame-
ters will adapt to replicate, classify and generate samples of that task. At
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each consolidation stage, these parameters will be consolidated through dis-
tillation, which will cause Net 1 to maintain the parameters of the first task
almost unchanged. We have empirically found that learning the initializa-
tion knowledge of Net 2 prevents Net 1 from overfitting the first task and
from becoming too stable in it. Thus, we can make the neural network more
plastic to learn future tasks with the initialization knowledge of Net 2. It
is worth noting that there are other types of regularizations for deep learn-
ing such as dropout, L1 and L2 so as to prevent overfitting. However, we
have found that the Net 2 initialization allows us to naturally regularize the
incremental process on the Data-free solution without diminishing sample
generation and knowledge consolidation. An easy way to avoid this step is
to simplify the incremental learning problem by training the neural network
with a couple of classes (e.g. half of the dataset) and then train the model
class by class.

CIFAR-100
Fig. 8 Final avg.accuracy of Data-free

Fourth, for CIFAR-100 the Data-free solution provides a suboptimal result
(19%). Despite the model performing satisfactorily for smaller datasets (83%
MNIST and 77% CIFAR-10), it has difficulties when scaling in CIFAR-
100. Advantageously, when the model is equipped with a third auto-hetero
model, the system becomes more stable and it reaches a final accuracy of
54% as shown by the Data-free curve (3-Nets) in figure 8. Due to the fact
that, during the consolidation process the generated pseudo-samples trans-
mit knowledge in an approximate form, this knowledge is not completely
transferred, creating a difference between NET 1 and NET 2. This differ-
ence causes long-term forgetting and it prevents the correct retention of
certain tasks. Although long-term forgetting can be beneficial for learning
new tasks because it provides constant plasticity, it is detrimental for the
CIFAR-100 benchmark. One way to avoid this long-term forgetting is to
reduce the error during the consolidation process by means of a third neural
network. Thus, NET 3 will store a stable state from the earlier tasks that
will be revisited several times by NET 1, decreasing the error during the
consolidation process.
In summary, the Data-free solution, employing Gaussian noise and reinjec-
tions, alleviates catastrophic forgetting in all datasets. For the dual network
system, our solution shows an optimal alternative for small datasets (10
classes) but it shows long-term forgetting as the information is lost for larger
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datasets. In this case, the knowledge captured with Gaussian noise and rein-
jections is suboptimal for consolidation. We observe that when Net 1 revisits
earlier knowledge several times through a third auto-hetero network (Net 3)
it is capable of scaling up. While more knowledge can be captured using
a third network, the computational cost and memory footprint increase
significantly. In terms of memory, a 2-layer auto-hetero model of 1,000 neu-
rons needs approximately 40 MB to be stored. We employ 3; so, 120 MB
of memory are required for the 3-Net solution. In terms of computation,
Net 2 performs 5 reinjections with a batch size of 256 samples which pro-
duces a final batch of 1,280 old samples. When the third network is used,
another batch of 1,280 old samples is produced. This means that the model
with 3 networks learns 64 examples of the new task and consolidates with
2,560 samples per learning batch. The computational cost for sample gen-
eration doubles, as does the computational cost of learning. If we extend
this approach to even larger datasets, the memory and the amount of com-
putation will likely continue to increase, making Data-free solutions very
expensive method to be implemented
As a result of these observations, we decided to exchange complexity and
memory for information from the environment. Combined replay stores real
examples of previous tasks in a small memory buffer, allowing us to per-
form reinjection with real examples instead of random noise. In this way,
the consolidation process can be stabilized at a very low cost in terms of
resources. We present the experiences carried out with Combined replay in
the following.

4.5 EXPERIMENTS: Combined Replay

This section describes the experiments carried out to evaluate the perfor-
mance of our approach against the current state-of-the-art replay methods.

4.5.1 Baselines

We compare our approach with the following references:

– Auto-Hetero with buffer (AHB): An Auto-Hetero model without reinjec-
tions, which is trained with copied mini-batches of old samples (i.e. the
old samples and the corresponding labels) to reveal whether the observed
beneficial effects are due to the hybrid architecture.

– Auto-Hetero with buffer noise (AHBN): An Auto-Hetero model with-
out reinjections, which is trained with copied mini-batches of noised old
samples (i.e. the noised old samples and the corresponding ground-truth
labels) to reveal if the observed beneficial effects are due to the added
noise in the hybrid architecture. Note that AHBN is very much akin to
a denoising autoencoder implementation with extra neurons for classifi-
cation. That is, the inputs are noised samples while the outputs are the
true samples with the corresponding ground-truth labels.
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Forgetting
Method MNIST CIFAR-10 CIFAR-100
CR(our) 0.7080 0.2603 0.3902
AHB 0.8137 0.4906 0.6957
AHBN 0.8044 0.5716 0.055
ICARL 0.8664 0.5040 0.7044
ER 0.8738 0.8664 0.7438

Table 2 Forgetting when using a tiny memory buffer of one sample per dataset class
taken. Table taken from [50].

– ICARL (Classifier-based distillation): A rehearsal method that saves a
pre-updated version of a classifier to capture previous knowledge by
employing a memory buffer. We implement the fully-connected version of
this method [91], which employs two classifiers with sigmoidal outputs and
binary cross-entropy loss for distillation. In the experiments, we take into
consideration this method due to its superior performance at the same
amount of available memory in a comparison to other CL methods [3].

– Episodic Replay (ER): A classifier that uses a tiny memory buffer as a
constraint to avoid catastrophic forgetting. It was recently stated that
CNN classifiers employing tiny memory buffers are less prone to catas-
trophic forgetting than other popular rehearsal methods [52]. In this work,
a fully-connected version of this method is implemented.

4.5.2 Methodology

We adapted the experimental setting proposed in Experience Replay [52]
(Alg. 1.) originally designed to benchmark rehearsal methods. The original
algorithm compares the final performance of continual learning approaches
by carrying out four main operations: i. the samples of the new set of classes
are learned only once. ii. the memory buffer of old samples is updated at
every learning step. iii. the mini-batch of new classes (new samples) is merged
with the mini-batch of old classes (old samples) randomly selected from the
memory buffer. iv. the parameters of the models under test are updated by
backpropagating the loss of the merged mini-batches.
We made three adaptations to this algorithm:

– The new samples from the new set of classes are learned several times.
– The memory buffer is updated after learning a new task to ensure that it

always contains only old samples.
– The mini-batch of old samples is copied as many times as reinjections are

performed to update all the methods with the same amount of old data.

In this way, after n reinjections, we obtain n∗mini-batch size pseudo-
samples. Mini-batch size refers to the size of the mini-batch of old samples.
To obtain the same number of old true samples and pseudo-samples for a fair
comparison, we copied the true samples n times. Therefore, if no reinjection
is performed, no compensation is needed – so the mini-batch is not copied.
If one reinjection is performed, the mini-batch of old samples is duplicated
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to obtain the same mini-batch size, and so on. Note that the interest behind
copying the old mini-batches is to update all the rehearsal methods with the
equivalent amount of old data employed by Combined replay.

4.5.3 Results

In all our Combined replay experiments, we perform 5 reinjections; thus,
the mini-batch is quintupled to update all the models with an equal num-
ber of samples. Furthermore, forgetting is not reduced and no detriment is
observed in the generalization ability when doing so. We employed the reser-
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Fig. 9 On the left side, the average accuracy over tasks when only 1 sample per class is
used. On the right side, the final average accuracy as a function of the buffer size.

voir sampling routine [52] to update the memory buffer since any sample
seen is equally likely to be stored. We consider that the buffer size is bounded
at (20 * #classes). For instance, on CIFAR-100, the largest buffer size is
equal to 2000, which is also a size utilized in the literature [4, 26, 27, 32].
We average accuracy over 3 runs on test sets during the learning steps. Figure
9 and Table 2 summarize the results of the comparison with state-of-the-art
approaches. The following observations can be made.
First, Combined replay greatly outperforms all the hybrid architectures that
do not perform reinjections (i.e. AHB and AHBN). Also, our approach
outperforms state-of-the-art replay methods relying on the same size of
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the memory buffers. Furthermore, for very tiny memory buffers, Combined
replay yields a higher performance at all benchmarks presented in Figure
9. On CIFAR-100 (Figure 9(c)(right), for a memory buffer of size 100, the
accuracy of Combined replay is about 20% higher than ER and ICARL. This
result is interesting considering that the performance of the CNN classifiers
in ER seems to be much higher than that of fully connected classifiers [52].
We explain this result as follows: i. the test set is drawn from already seen
examples of the training set in the original ER paper [52]; ii. the CNN used
for feature extraction might help retain previous knowledge avoiding catas-
trophic forgetting, iii. the main reason for this difference is perhaps that ER
evaluates its approach with an oracle and task identifiers while in this work
we employ global accuracy on classes. The difference in performance between
the methods gets smaller when the memory buffer size becomes larger. For a
memory buffer of 2000 samples (Figure 9(c)(right), the curves meet showing
a comparable performance. Moreover, ICARL delivers a slightly better per-
formance (52%) than the performance obtained in [26, 91]. This difference
might be due to the cloned mini-batches.
Second, it has already been observed that, often, the reservoir sampling rou-
tine can completely dislodge samples of the older classes when the memory
buffer is very small [52]. Even though representative memory samples and
balanced training set are not guaranteed with the reservoir update routine,
Combined replay can capture a considerable amount of knowledge from most
previously learned classes. The reinjections considerably alleviate the lack
of previous samples while other methods experiment higher forgetting as it
is shown in Table 2.
Third, the lowest value of forgetting for AHBN in Table 2, on CIFAR-100
dataset, suggests that the denoising implementation allows remembering
some classes quite well. However, the low values in the average accuracy
of Figure 9(left)(c) suggests that the denoising implementation struggles
to learn new tasks. Hence, the forgetting and the accuracy results taken
together indicate that AHBN suffers from lack of plasticity (i.e. the inability
to update its knowledge) after learning some tasks.
In summary, Combined replay, employing reservoir sampling and very small
memory buffers, outperforms all the presented replay methods in terms
of accuracy and forgetting. For the selected hyper-parameters (i.e. noise
strength and number of reinjections), our solution shows a less pronounced
slope as the memory becomes larger. This suggests that the knowledge cap-
tured through reinjections is mostly beneficial when a reduced set of samples
is available. We observe that the knowledge captured with our architecture
reaches an optimal performance when a memory buffer size of 10 samples per
class is employed. While more knowledge can be captured using larger mem-
ory buffers, the performance gain gradually decreases. This finding can be
further confirmed in Figure 9(c)(right) where ICARL, EM and our solution
yield a similar performance when a memory buffer of size 2000 is employed.
These observations are discussed in more detail in the following subsection,
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showing that the Combined replay suffers from a bias problem like most
replay-based methods [4, 26–28, 31, 32, 34, 38, 39].

4.5.4 Bias correction

When incrementally training a neural network, a major problem is the drift
of the weights from old to new tasks. This causes previously learned classes
to be biased towards the classes of the most recently learned tasks. This
phenomenon occurs because the model has seen many different samples of
the new task but none or a few from previous tasks. This detrimental effect
is also present in the classification layers (i.e. the fully connected layers
after the feature extractor) [32]. Combined replay is not exempt from this
problem, as can be seen in the confusion matrix of Figure 10(a).

(c) Combined replay + larg batch (LB)

(a) Combined replay (b) Combined replay + weigh alignment (WA)  

(d) Combined replay + LB + WA

Fig. 10 Confusion matrix of CIFAR-100 after learning the 100 classes in 20 learning steps.

Several continual learning approaches employ different techniques to pre-
vent such drift to new tasks [26–28, 31]. This work is interested in solving
the bias problem without involving additional memory [28, 38], fine-tuning
techniques [27] or extra loss functions [29, 30]. Weight Aligning (WA) [32]
is an approach that meets these requirements and gives results comparable
to state-of-the-art alternatives. In WA, it is observed that the norms of the
weight vectors of the new classes are more salient, leading to higher predic-
tions towards the new classes. As a result, the trained model predicts an
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input image as belonging to a new class instead of its corresponding class.
The paper concludes that the associated weights must have a similar norm
for the classes to be treated without bias and proposes a solution to nor-
malize such weights. WA consists in correcting the weights after learning
each task in the fully-connected layer with . To do so, WA aligns the norm
of the vectors of the new classes with those of the old classes as follows:
Ŵnew = γ ∗ ·Wnew where γ =

Mean(‖Wold‖2)

Mean(‖Wnew‖2) and Ŵnew are the corrected

weights, Wnew are the new task weights after training and Wold are the old
task weight. In this way, the average norm of the weight vectors of the new
tasks is the same as that of the old ones. Thus, the final effect of WA is
that the γ coefficient rescales the weights of the new classes, reducing bias
shift, as it is shown in the Figure 10(b) and Figure 11. WA adjusts the
bias towards the new classes, providing a 4% accuracy gain and reducing
catastrophic forgetting by 4%, as shown in Figure 11 and Table 3. WA alle-
viates the problems of bias shift by simply modifying the weights of the new
classes without changing the ratio between the pseudo-samples and the new
examples. However, we have empirically found that Combined replay can
also reduce the bias shift towards new classes by increasing the size batch
(LB for large batch) of old tasks to capture Net 2 knowledge, as shown in
Figure 11 and Table 3. Similarly to the Data-free solution, where the batch
of new tasks was smaller than the batch of old tasks, Combined replay also
benefits from this arrangement. So, we have employed a batch size of 100
examples instead of 10 to perform the reinjections. This batch configuration
provides a gain of 10% over previous Combined replay results and 6% over
WA. We also reduced forgetting by 21% over previous results and by 17%
over WA, as shown in Figure 11 and Table 3. Finally, as WA and LB are
different solutions, one changes the parameters of the new classes while the
other increases the batch of old tasks; we could think that they can comple-
ment each other. We therefore combine the two solutions and obtain results
similar to those obtained when only one large batch is employed for the old
tasks. WA is Combined with the batch size of 100 examples showing a sim-
ilar performance to that obtained using only the large batch, as it is shown
in Figure 11 and Table 3.

CIFAR-100
Fig. 11 Final average accuracy of the Combined replay in the CIFAR-100 dataset when
using a memory buffer size of 2000 examples.
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The present results indicate that Combined replay tends to be biased toward
the new class when it consolidates prior knowledge in an unbalanced way.
By providing more examples to consolidate through reinjections, Combined
replay is able to find a solution that comprises old and new tasks without
this issue. Indeed, Net 1 will be able to adapt the parameters correctly if the
pseudo-samples represent the overall knowledge previously learned. We have
empirically found that a batch size of 100 examples correctly represents the
learned knowledge and that the number of examples also corresponds to the
number of classes in the dataset. Note that 5 reinjections are performed; the
model learns 10 examples of the new task and consolidates with 500 pseudo-
samples at each learning stage. These sizes are static and are maintained
during the whole training.

Forgetting

Bias
correction

—–
Dataset

Combined
replay

(no correction)

Combined
replay
WA

(weight
aligning)

Combined
replay

LB
(large batch)

Combined replay
WA LB

(weight aligning
+ large batch)

CIFAR-100 0.21 0.17 0.09 0.08
Table 3 Forgetting score on the CIFAR-100 dataset when using a small memory buffer
size of 2000 examples.

The low forgetting values observed in Table 3 are very convenient but
not surprising. With larger batch sizes, the model becomes very stable,
preventing old tasks from being forgotten.
As the model is less plastic when using large bath sizes, it may not learn
new tasks with maximum precision. For example, when a batch of size 10 is
used to perform reinjections, the new task usually shows a maximum accu-
racy of about 90%. Task performance degrades through incremental learning
tasks that it generates a difference from the maximum value achieved. Since
a batch size of 10 examples partially represents previous knowledge, the
differences become more significant, which leads to a relatively high forget-
ting score. The high forgetting score is due to two factors: first, the model
learns the first class very well (about 90% of accuracy) without considering
the previous classes. Secondly, the model does not consolidate these classes
sufficiently in the following incremental steps. Hence the precision of those
classes decreases considerably and the model shows a high forgetting score.
In contrast, when Combined replay LB learns new tasks, it shows decreas-
ing accuracy (i.e. early tasks will reach a high accuracy of around 90% while
more distant tasks will have a maximum accuracy of 65-70%). Thus, new
classes are learned, but their performance is limited due to the consolidation
of the previous class, indicating restricted plasticity. The decreasing inaccu-
racy is due to fact that the model correctly fits most of the classes without
letting one class dominate over all the others. The difference between the
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maximum achieved accuracy and the degraded accuracy will not be signif-
icant because the knowledge is well consolidated with a batch size of 100
examples, so the forgetting score is low. Probably, the major problem in
using a large and constant batch over time is that there is a bias towards
new classes (in Figure 11 c/d, see pale blue on the left corresponding to
the first classes). Naturally, the first classes learned are revisited more often
than the intermediate classes. Thus, it can be seen that some examples of
intermediate and final classes are considered to be examples of initial classes.
By using a large batch for consolidation, we trade stability for plasticity.
For example, the model will learn the new task without any difficulty if it
consolidates previous tasks with few or no samples of old tasks. But, the
detrimental effect is that the model will forget the old task. Conversely,
the model will hardly learn the new task if it consolidates previous tasks
with several old task samples. In other words, the ratio between old and
new task samples is related to the trade-off between stability and plasticity.
We increase the number of samples the model replays for consolidating old
tasks (i.e. higher stability). Thus, the model has less freedom to change
weights and learn the new class (i.e. lower plasticity). In our model, the batch
size regulates the balance between stability (i.e. retaining old tasks) and
plasticity (i.e. learning new tasks). By reducing the plasticity of the model,
we obtain in parallel the desired outcome of reducing the bias towards new
tasks. In a nutshell, larger batch sizes allow the model to consolidate old
tasks and avoid overlearning new ones. Therefore, it achieves the desired
goal of reducing the bias toward new tasks.
Note that this finding is not a minor discovery since our model obtains a
gain of 10% just by using a larger batch size to consolidate old tasks for the
same memory buffer size. Although several approaches employ distillation
to consolidate old tasks, to the best of our knowledge, there is no mention of
using large batch sizes to increase stability. For instance, our finding does not
appear in the well-known framework that determines the stability-plasticity
trade-off of the continual learners [3].

Accuracy
Methods DMC GDumb EEIL BiC WA CR CR+LB
Cifar-100
(20 tasks)

56.8 45.2 63.4 63.8 62.6 55.5 65.0

Table 4 Cifar-100 state-of-the-art results. DMC:[67], GDumb: [102]; EEIL: [27], BiC: [28],
WA: [32], CR: [50], CR+LB: (ours)

Earlier, we compare our solution against ICARL and ER at identical con-
ditions (i.e. fixed feature extractor and similar architectures). Next, we
compare our solution against published results obtained from several replay
approaches on the same benchmark using the same memory buffer size. In
particular, we compare the results obtained after adjusting the bias, as pre-
sented in Table 4. Please note that the results shown in the Table 4 were
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extracted from the original works as in [32, 37, 78]. These baselines are
intended to highlight the results obtained in CIFAR-100 against approaches
that scale and perform well on the same dataset. We can observe that
our approach yields better accuracy than the state-of-the-art in CIFAR-100
when a memory buffer of 2000 examples is employed.

5 Discussion

Data-free and Combined replay highlight the importance of reinjections to
improve the information retrieval process for transferring knowledge between
two ANNs when memory buffer sizes are constrained or when they are not
available. Reinjections are performed in a hybrid architecture to generate
pseudo-data that captures previously acquired knowledge. The pseudo-data
can be generated through a reinjection sampling procedure with Gaussian
noise or with noised examples from tiny memory buffers. When incremen-
tally learning new tasks, the pseudo-data set is jointly learned with the
samples of a new task to overcome catastrophic forgetting. Previously, in
experiments without data, we have further investigated not performing rein-
jections and taking the last of the sequence. We have also analyzed the
instability of the Data-free solutions and the third neural network needed
to stabilize learning. Here, we discuss some common features of the Data-
free and the Combined replay solutions as well as their advantages and
disadvantages.
First, in this work, we have prioritized the average accuracy while tar-
geting minimal memory buffer sizes for embedded applications. Embedded
applications have limited available memory as well as a limited number of
operations. Data-free does not store data, so this is a critical point in applica-
tions where memory constraints exist. In the case of Combined replay, some
old examples are stored. However, the memory size is severely constrained
and the number of operations is reduced. Ideally, Data-free and Combined
replay are two different implementations that allow trading memory for
operations or vice-versa while providing similar performance.
Second, we investigated the quality of the pseudo-data set in terms of the
strength of added noise. Figure 12 presents the noise strength vs the average
accuracy for Combined replay and AHBN. On MNIST dataset, for a min-
imal memory buffer of size 10, the more noise is added before performing
reinjections, the better Combined replay captures previous knowledge. In
this case, the added noise can also improve the final performance in AHBN
as it is the case for a noise strength between 0.1 and 0.3. However, a nega-
tive effect of noise in AHBN reveals that the performance gain of Combined
replay is not due to a denoising effect but to reinjections. This finding sug-
gests that it might be possible to interpret it as a measure of the generative
capacity of the model. The more noise we add, the closer it is to the Data-
free option and, conversely, the less noise we add, the closer it is to a version
similar to Combined replay, a study beyond the scope of the present work.
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Fig. 12 Final avg.accuracy of Combined replay over noise strength for a memory buffer of
10 samples.

For simplicity, Combined replay employs an isotropic Gaussian noise N (0, I)
that is pondered by a noise strength of 0.05 in all experiences of Figure 9.
Third, regardless of their final performance, the Data-free and the Combined
replay solutions are conceived to alleviate catastrophic forgetting under dif-
ferent constraints. They are different because they capture the knowledge in
two different ways, that is the reason why they are suitable for different con-
tinual learning applications. On the one hand, it is possible to employ our
model for data-free applications where privacy issues are the primary con-
cern. Thus, knowledge is captured with random noise and reinjections. On
the other hand, we employ the hybrid model to improve the examples stored
in the memory buffer. Thus, knowledge is captured with real examples and
reinjections.
In a nutshell, the strength of the noise, the number of reinjections and the
old sample buffer size play a crucial role in retrieving previously acquired
knowledge. These parameters directly regulate the generation of pseudo-
samples that influence the preservation of old knowledge. In our view, these
two parameters can be considered as a function of the memory buffer size
and the properties of the dataset (e.g. the distance between classes, the
number of samples per class, etc.). However, in this work, we found it essen-
tial to balance training using a batch representing the previously learned
knowledge. Further research on Combined replay could lead to an improved
selection of examples for reinjections to consolidate correctly with even fewer
pseudo-examples.
Fourth, there is little or no research effort on how to forget what is unneces-
sary to remember. Replay methods “self-regulate” the learning capacity of
the model through the replay. If old memories are constantly replayed, mean-
ingful activation patterns will naturally appear, while unnecessary patterns
will be forgotten. The latter might be the case for our model that keeps only
the crucial patterns that allow efficient consolidation and active forgetting.
There are, to our knowledge, no proposals to model the forgetting mecha-
nism even though it seems to be a crucial key to continual human learning.
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To endow a learner with active forgetting would probably require identi-
fying what is necessary to consolidate and what makes sense to forget. In
our opinion, the mechanism of reinjections can be a first exploratory clue to
identify what needs to be remembered and forgotten in continual learning.
Fifth, the Data-free approach has the main characteristics of an ideal con-
tinual learning model since it is able to adapt to all circumstances. That is,
it does not need external information to operate and it is, therefore, easy to
deploy. Since this model does not store anything, it only needs to generate
pseudo-samples through reinjection and random noise, regardless of what it
has learned and what it will learn. These features make the Data-free model
ideal for applications where privacy is essential. However, we note that it
is unstable for large datasets and it requires generating large batches of
pseudo-samples to consolidate. Combined replay sacrifices the main advan-
tage of the Data-free solution by equipping the model with a memory buffer
that makes the model stable at a very low resource cost. For example, the
data-free version (3-Nets) employs an additional 40 MB neural network,
while the 2,000 memory buffer size requires only 15 KB memory, which is
2,600 times smaller than the data-free (3-Net) version. In terms of computa-
tion, Data-free (3-Nets) model employs 2,560 pseudo-samples to consolidate
while CR uses 50 and CR+LB 500, reducing 51.2 and 5.12 times the pseudo-
samples needed for consolidation. All this makes Combined replay faster,
more accurate and less costly to implement than Data-free alternatives.
The reason for adding this third network is related to a possible limitation of
data-free when it performs more than fifteen consolidation steps. In this sce-
nario, the performance of Data-free decreases, illustrating that it can forget
old tasks in the long run. Random noise and reinjections generate functional
samples for some consolidation steps; however, the quality of generated sam-
ples may vanish through consolidation steps. Combined replay prevents the
examples vanish over updates because the model reviews faithful samples
from the past. Data-free emulates this behavior by reviewing past samples
generated with a third neural network having undergone less vanishing (i.e.
performed fewer consolidation steps). Our implementation with three neural
networks allows the model to review more representative samples of the past,
thus reducing class forgetting. In our opinion, it would be like reviewing the
original snapshot of a vanished personal memory. Implementing three neu-
ral networks is attractive because it allows our model to provide a data-free
solution for large-scale datasets. However, it requires knowing the number
of classes the model will learn and could require extra neural networks from
even larger datasets to emulate that snapshot of the past.
The two models presented in this work are both based on the same fun-
damental ideas. However, they are two different models for different uses.
Data-free model does not need to store the training set data and is suitable
for privacy-preserving applications. Combined replay is a computationally
lighter version that allows for higher performance using memory buffers.
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Together, they show the generality of our approach and the beneficial effects
of reinjections for continual learning.

6 Conclusion

This work presents a novel approach for retrieving previously learned infor-
mation to reduce catastrophic forgetting in artificial neural networks. The
experimental results on MNIST, CIFAR-10 and CIFAR-100 presented in
this work lead to the following conclusions. First, our Data-free approach
is a privacy-preserving solution that alleviates catastrophic forgetting in
small datasets, extending to large datasets by duplicating the same princi-
ple. Second, the memory buffer employed by our Combined replay approach
allows for robust solution that outperforms state-of-the-art replay meth-
ods when relying on a minimal memory buffer. Third, our approach does
not require representative memory samples and a balanced training set to
be efficient, two mandatory conditions for other replay methods. Future
works will include determining the best examples to perform reinjections to
reduce memory and complexity. We would like to enable Combined replay
to provide better results in embedded applications.
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