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Abstract
Convolutional Neural Networks have been proven to
successfully capture spatial aspects of the speech sig-
nal and eliminate spectral variations across speakers
for Automatic Speech Recognition. In this study, we
investigate the Convolutional Neural Network with
Time Delay Neural Network for an acoustic model to
deal with large vocabulary continuous speech recog-
nition for Khmer. Our idea is to use Convolu-
tional Neural Networks to extract local features of the
speech signal, whereas Time Delay Neural Networks
capture long temporal correlations between acoustic
events. The experimental results show that the sug-
gested network outperforms the Time Delay Neural
Network and achieves an average relative improve-
ment of 14% across test sets.

Keywords Khmer ASR, Time Delay Neural
Network, Convolutional Neural Network, Low-
resource Language

1 Introduction

Google Assistant, Siri, Alexa, and Cortana are trans-
forming the way users interact with their devices,
homes, and automobiles. These voice assistants sim-
plify our lives, and many individuals become depen-
dent on them. A key aspect of that smart merchan-
dise is Automatic Speech Recognition (ASR). It per-
mits you to talk into your computer or tool, and it
translates your voice into textual information auto-
matically. At present, a variety of approaches includ-
ing conventional models [1, 2], hybrid models [3, 4]
and end-to-end neural models [5] are carried out in
almost ASR systems to achieve the state of the art
speech recognition accuracy. The rapid advancement
of ASR is heavily dependent on the massive amounts
of audio and annotated transcripts. Recognizing the
majority of languages having a rich resource gives a
very mature performance [6] when compared to low-

resource languages, which have so far achieved lim-
ited accuracy [7].
In a recent study [8], Khmer ASR was studied with
Deep Neural Network (DNN) versus Gaussian Mix-
ture Model (GMM), and the result showed that
the DNN outperformed by approximately 3.65% and
1.10% in the open test and close test, respectively.
However, when working in a language with limited re-
sources, DNN results in overfitting [9]. Furthermore,
the DNN can only acquire a limited amount of con-
textual information from the speech, limiting its abil-
ity to deal with long-range correlations in the speech
signal [10, 11]. In recent years, various novel networks
have been studied, and it has been discovered that
Time Delay Neural Network (TDNN) is one of the
potential neural networks for modeling the long tem-
poral information of the speech [12, 13]. The TDNN
is a stacked architecture that employs a modular and
progressive design to build a bigger network from the
sub-components. In the lower layers, it learns the
narrow context of the input features, whereas in the
top layers, it learns the larger context. Furthermore,
it is quicker to train TDNN and requires much less
training data compared to Recurrent Neural Network
(RNN) and Long Short-term Memory (LSTM) [14].
Speech can be regarded as an image because the spec-
tral properties of speech consist of two dimensions,
such as time and frequency. As a result, several
researches on Convolutional Neural Network (CNN)
has been conducted for speech recognition [15]. The
three critical components of CNN, including local re-
ceptive field, weight sharing, and sub-sampling, are
known to be capable of minimizing the variance of
translation, scaling, and distortion of the speech sig-
nal [16]. Therefore, CNN has additional advantages
for speech processing when dealing with diverse pro-
nunciations for different speakers. In this research,
we propose to investigate the benefits of combining
CNN and TDNN in dealing with large vocabulary
continuous speech recognition for Khmer. Our goal is
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to utilize the CNN as an extra function to the TDNN
to learn local features of the speech signal.
This research is structured as follows: the proposed
method is given in Section 2. Section 3 introduces the
experiments including the datasets, language model,
lexicon, and baseline model. The results and discus-
sions are presented in Section 4. Finally, Section 5
presents the conclusion and future work.

2 Proposed Method
In this investigation, the CNN-TDNN of Kaldi’s
Mini-LibriSpeech recipe [17] was adopted. The net-
work consisted of 6 convolutional neural network
blocks, followed by 9 delay neural network blocks,
and a fully connected block (Fig. 1). It took the
40-dimensional Mel-frequency Cepstral Coefficients
(MFCCs) and 100-dimensional i-vector as the input
features to estimate 2,976 states of the triphone Hid-
den Markov Model (HMM). The network contains
4.7 million parameters and can gather ±30 contex-
tual inputs from a particular acoustic frame.

Figure 1: Adopted architecture for CNN-TDNN

2.1 Feature Extraction

The speech signals were first split into short-time
frames of a length of 25ms with an overlap of 10ms.
A Hamming window, a pre-emphasis factor of 0.97,

a cepstral liftering coefficient of 22 and cepstral
mean normalization (CMN) were used. Finally, 40-
dimensional high resolution MFCCs were computed
and 100-dimensional i-vectors were extracted on top
of PCA-reduced spliced-MFCC features for speaker
adaptation.

2.2 Preprocessing Block

The input features were preprocessed before being
fed to the network as shown in Fig. 2. First,
mel-filterbanks were computed from 40-dimensional
MFCCs through inverse discrete cosine function
(MFCCs are more compressible, thus it is preferred to
dump them to disk rather than mel-filterbanks). Sec-
ond, batch normalization and SpecAugment were ap-
plied on the mel-filterbanks. In Kaldi, the SpecAug-
ment is implemented as a neural layer that does time
and frequency masking on-the-fly during the train-
ing. Third, 100-dimensional i-vectors were projected
to 200-dimensional vectors through a linear transfor-
mation, followed by a batch normalization. Finally,
40-dimensional mel-filterbanks and 200-dimensional
i-vectors were combined to produce 40x6 input fea-
tures.

Figure 2: Preprocessing block

2.3 Convolutional Neural Network Block

Our network employed 6 CNN blocks, each with a
convolutional layer followed by a rectified linear unit
(ReLU) activation function and a batch normaliza-
tion, to learn local spatial information and to elimi-
nate variations in inter-speaker spectra (Fig. 3). Each
convolutional layer took three consecutive outputs
from the preceding layer of time steps (t-1, t, t+1),
allowing the CNN blocks to gather information from
12 neighboring frames. During each convolution op-
eration, 3x3 filters with a strip size of 1 and a zero-
padding size of 1 were employed. The first three
convolutional layers use 48 filters; the next two lay-
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ers use 64 filters; and the last layer uses 128 filters.
Layers 3, 5, and 6 use a subsampling size of 2 to
lower the height dimension of the input feature. The
final outputs (1x5x128) were transformed into 640-
dimensional vectors and utilized as inputs to TDNN
sequence blocks.

Figure 3: Convolutional neural network block

2.4 Time Delay Neural Network Block

Our network was made up of 9 TDNN blocks, and
thus, it can extract information from the long tem-
poral context of the inputs. Each block begins with
a TDNN layer, followed by a ReLU activation func-
tion and a batch normalization function (Fig. 4). The
Factored Time Delay Neural Network (TDNNF) was
used in the network. It uses Single Value Decomposi-
tion (SVD) to improve matrix multiplication, result-
ing in fewer parameters and much less computation.
The first TDNNF layer has a dimension of 768 while
SVD has a dimension of 192. Time stride was not
applied in this layer. The subsequent TDNNF layers
consist of 768 dimensions and 96 dimensions for SVD.
Each layer took 6 consecutive outputs from ±3 con-
texts and concatenated them with the current out-
put from the previous layer. Therefore, the final out-
put from the TDNN blocks can capture information
from the previous and the prior 24 inputs. RestNet
connections were applied in TDNN layers to capture
information from the input from the previous layer.
Except for the first layer, the output from each layer
was summed with the output from the previous layer
with a scaling factor of 0.66.

2.5 Training Recipe

A context-independent (CI) model was first trained
on 13-dimensional MFCCs with their first and
second-order derivatives. MFCCs were computed us-
ing 23 Mel-filterbanks on overlapping frames of 25ms
with 10ms shift. A Hamming window, a pre-emphasis
factor of 0.97, a cepstral liftering coefficient of 22 and
CMN were used. The first context-dependent (CD)

Figure 4: Time delay neural network block. The
number n denotes the size of adjacent inputs to be
combined with the current input t.

was trained over 40 iterations using 2.5k states and
25k Gaussian distributions. Second CD training us-
ing 5k states and 50k Gaussians was performed by
concatenating ±4 contexts of 13-dimensional MFCCs
and projecting into a 40-dimensional subspace using
linear discriminant analysis (LDA), and the features
were decorrelated using maximum likelihood linear
transform (MLLT). Speaker-adaptive training (SAT)
was performed with the same configuration of 5k
states and 50k Gaussians to normalize the features
using feature space maximum likelihood linear regres-
sion (fMLLR). Note that the configurations of CD
models are based on [8].
Three data augmentations were used to expand the
amount of the training data and provide greater sig-
nal variability in speech. First, speed perturbation
with factors of 0.9, 1.0, and 1.1 was carried out, pro-
ducing 3 times the training data. Second, volume
perturbation was used to make the acoustic model
resilient to volume fluctuations by using random fac-
tors sampled from a uniform distribution of [1/8, 2].
Finally, SpecAugment [18] was conducted on the fly
in the neural layer of the network by masking the fre-
quency channels of at most 50% of the spectrum and
masking the time steps of the frames of at most 20%.
The 40-dimensional high-resolution MFCCs were ex-
tracted from the augmented training data, and half
of the data was used to train the i-vector extractor
[19], which was used to compute the 100-dimensional
i-vectors from speech signals. Finally, CNN-TDNN
was trained on the aligned training data from the
SAT model across 20 epochs with starting and final
learning rates of 0.002 and 0.0002, respectively, using
lattice-free maximum mutual information (LF-MMI)
[20].

3



Author version

3 Experiments
3.1 Datasets

In this study, the training set includes portions of
the Basic Travel Expression Corpus (BTEC) [21] con-
sisting of 47 speakers and 48,369 utterances. It is
a speech corpus that was produced from the previ-
ous work [8] and designed to cover the expressions in
the traveling domain. More data was collected from
the internet (online websites and YouTube) and com-
bined into the datasets to examine the performance
of Khmer ASR in several domains. Finally, the new
speech corpus, which is mostly in natural speech and
background noise, and contains 119 speakers, 73,660
utterances, and around 153 hours, was used during
the learning phase. Furthermore, we proposed to in-
vestigate the performance of CNN-TDNN in five do-
mains, including News, Law, Health, Daily life and
General. The specification of the training and test-
ing sets are given in Table 1.

3.2 Language Model

The language model is an essential component of the
ASR system. By estimating the likelihood of word
sequences, it is able to model how words are put to-
gether to form sentences. It can predict which words
will follow particular words and with what proba-
bility. A 3-grams language model was built using
SRILM [22]. A Witten-Bell Smoothing technique was
used to prevent assigning zero probability to the un-
known words and a pruning factor of 1e-8 was ap-
plied to reduce the size of the language model. Using
an in-house toolkit [23], the text of each dataset was
segmented into morphemes and subjected to punctu-
ation removal and numbers to text conversion. Ta-
ble 2 shows specification of the training and testing
datasets as well as their perplexities.

3.3 Lexicon

The lexicon is the pronunciation dictionary that con-
nects sub-word units (phonemes) to words. The
acoustic model uses it to learn mapping from se-
quence of phonemes to words. The corpus from [24]
was used to build a grapheme-to-phoneme (G2P)
model using Phonetisaurus G2P [25]. The dataset,
which included 57 phonemes and 34k words, was cre-
ated using the International Phonetic Alphabet (IPA)
standard. Finally, a new lexicon was constructed us-
ing the vocabulary of the language model, which con-
sists of around 100k words.

3.4 Baseline Model

In this study, we proposed using TDNN as the base-
line model. The suggested network design is given in
Fig. 5. It is made up of 15 TDNN blocks and is capa-
ble of capturing 30 adjacent contexts from a partic-

ular input feature. The network is similar to CNN-
TDNN except for the first six TDNN blocks. Our
idea is to investigate the performance of the acoustic
model when CNNs are utilized in the network while
maintaining the same configuration. Each TDNN ac-
cepts 3 successive input features (t-1, t, t+1), and
thus, the TDNN blocks can obtain information from
6 neighboring input features.

Figure 5: Proposed architecture for baseline model

3.5 Evaluation Method

Word Error Rate (WER) was used as the metric to
evaluate the accuracy of TDNN and CNN-TDNN. It
is a common measure for evaluating the performance
of an ASR system. The following is the formula:

WER =
S +D + I

S +D + C
(1)

Where S is the number of substitutions, D is the num-
ber of deletions, I is the number of insertions, and C
is the number of correct words. WER is between zero
and one. The lower the WER, the better performance
of the acoustic model.

4 Results and Discussions
Table 3 compares the performance of CNN-TDNN
with TDNN across the five test sets. TDNN performs
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Table 1: Dataset Preparation

Dataset Domain Hour Utterance Speaker

Train Set Multi-domain ∼ 153 73,660 57 males, 62 females

Test Set

News ∼ 4 970 2 males, 3 females
Law ∼ 3 1,035 2 males, 3 females

Health ∼ 4 1,399 2 males, 3 females
Daily Life ∼ 5 1,840 2 males, 3 females
General ∼ 4 1,474 2 males, 3 females

Table 2: Dataset Preparation for Language Model

Dataset Domain Vocabulary Sentence Average Word Perplexity

Train Set Multi-domain ∼ 100K ∼ 3M 53 036.42

Test Set

News ∼ 3K ∼ 3K 28 090.38
Law ∼ 2K ∼ 3K 20 158.29

Health ∼ 3K ∼ 3K 20 158.29
Daily Life ∼ 3K ∼ 4K 24 238.94
General ∼ 3K ∼ 3K 22 169.29

best in the News, with a WER of 11.53%, followed by
17.57% in the Health and Daily Life, and a WER of
roughly 19% in the Law and General. CNN-TDNN,
on the other hand, outperforms by a significant mar-
gin of 14.4% on average throughout the test sets. It
achieves the best WER of 11.53% in the News, fol-
lowed by 14.83% in the Daily Life and around 15.7%
in the Health and General. According to the exper-
imental results, introducing CNNs into the network
significantly improves performance when compared
to TDNN with the same configuration and capability
in capturing long temporal dependency of 30 adja-
cent contexts. Thus, CNNs enable the network to
efficiently learn representation of the speech signal.
In addition, error analysis was conducted to examine
the inaccuracy of the model in generating the hypoth-
esis by using SCLITE [26]. We discovered that the
majority of the problems were due to phonetic and
encoding issues. A phonetic mistake occurs when
the model estimates a word that sounds the same
as another word but has a different meaning (homo-
phones). When the model generates the same word
but with a different encoding, this is referred to as
an encoding error. We contend that these issues are
caused by the quality of the corpus used to build the
lexicon and the language model. Tables 4 and 5 show
the most common examples of phonetic and encoding
errors, respectively.

Phonetic error examples:

Scores: (#C #S #D #I) 20 1 0 0
REF: េដាយសារ ែត មុខ របរ ហ្នងឹ មាន ការ រកី ចេ្រមីន ខា្ល ងំ នាង
ខ្ញុ ំ ក៏ ព្រងីក សាខា េទ លក់ េន ក្នុង ខណ្ឌ ែសន (Due to the
rapid growth of this business, I expanded the branch
to sell in Sen district)
HYP: េដាយសារ ែត មុខ របរ និង មាន ការ រកី ចេ្រមីន ខា្ល ងំ នាង
ខ្ញុ ំ ក៏ ព្រងីក សាខា េទ លក់ េន ក្នុង ខណ្ឌ ែសន (Due to the
business and rapid growth, I expanded the branch to
sell in Sen district)

Scores: (#C #S #D #I) 19 1 0 0
REF: កាត់ បន្ថយ នូវ ការ ជួប ជំុ គា្ន ែដល បច្ចុប្បន្ន េយងី កំពុង
ែត ជួប នូវ បញ្ហ ជម្ងឺ ឆ្លង កូវដី ដប់ ្របាបំួន (Reducing the
gatherings when we are currently facing with Covid
19)
HYP: កាត់ បន្ថយ នូវ ការ ជួប ជំុ គា្ន ែដរ បច្ចុប្បន្ន េយងី កំពុង
ែត ជួប នូវ បញ្ហ ជម្ងឺ ឆ្លង កូវដី ដប់ ្របាបំួន (Reducing the
gatherings as well when we are currently facing with
Covid 19)

The first example of phonetic errors, the demonstra-
tive adjective "ហ្នងឹ" (“this” in English), was predicted
as the conjunction "និង" (“and” in English) when they
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Table 3: Experimental results in WER(%) on each test set

Model News Law Health Daily Life General

TDNN 11.53 19.18 17.57 17.57 19.17

CNN-TDNN 09.94
(↓13%)

16.02
(↓16%)

15.70
(↓10%)

14.83
(↓15%)

15.68
(↓18%)

Table 4: Phonetic Error

REF ⇒ HYP Freq

ហ្នងឹ⇒ និង 233
អ្នក⇒នាក់ 38
ែដល⇒ែដរ 28

are both homophones. Similarly, the particle "ែដល"
of adverb "បច្ចុប្បន្ន" in second example, was predicted
as adverb "ែដរ" and these two words have the same
pronunciation.

Table 5: Encoding Error

REF ⇒ HYP Freq
សេម្ដច⇒សេម្តច 32
ឧត្ដម⇒ឧត្តម 30

Encoding error examples:

Scores: (#C #S #D #I) 13 1 0 0
REF: ការ សេ�ងា្គ ះ ជាតិ ជា ្របវត្តិសា�ស្ត របស់ សេម្ដច អគ្គ មហា
េសនា បតី េតេជា ហុ៊ន ែសន (National salvation is the
history of Samdech Akka Moha Sena Padei Techo
Hun Sen)
(សេម្ដច ⇒ 179F 1798 17D2 178A 17C1 1785 )
HYP: ការ សេ�ងា្គ ះ ជាតិ ជា ្របវត្តិសា�ស្ត របស់ សេម្តច អគ្គ មហា
េសនា បតី េតេជា ហុ៊ន ែសន
(សេម្តច ⇒ 179F 1798 17D2 178F 17C1 1785)

Scores: (#C #S #D #I) 9 1 0 0
REF: រដ្ឋ ម�ន្តី ្រកសួង ការពារ ជាតិ រមួ ជាមួយ នឹង ឯក ឧត្ដម
(Minister of National Defense together with His
Excellency)
(ឧត្តម ⇒ 17A7 178F 17D2 178A 1798)
HYP: រដ្ឋ ម�ន្តី ្រកសួង ការពារ ជាតិ រមួ ជាមួយ នឹង ឯក ឧត្តម
(ឧត្តម ⇒ 17A7 178F 17D2 178F 1798)

In encoding error instances, coeng "ដ" (178A) was
predicted as coeng "ត" (178F). As a result, the word
"ឧត្ដម", and "សេម្ដច" were synthesized as "ឧ + ត + ◌្ + ត

+ ម" and "ស + ម + ◌្ + ត + េ◌ + ច" instead of "ឧ + ត + ◌្
+ ដ + ម" and "ស + ម + ◌្ + ដ + េ◌ + ច", respectively.

5 Conclusion
In this study, we reported the state-of-the-art for
dealing with Khmer ASR using CNN and TDNN.
The results reveal that integrating the CNNs into the
network of TDNN significantly improves the perfor-
mance of the model across all test sets. In future
work, a new acoustic modeling approach will be in-
vestigated to improve the overall performance of the
model in terms of accuracy and decoding speed. Fur-
thermore, due to the constrained variety of datasets
in comparison to different well-resourced languages,
a larger dataset is desired for future development of
Khmer ASR. More data needs to be acquired and
used for various data augmentation methods in order
to examine more environmental factors. Khmer en-
coding issues and discrepancies will also be studied
to eliminate encoding errors while building a corpus,
and it is widely assumed that different misspelling
errors are no longer a problem, as long as there is
a huge amount of correct data for speech and text
corpora.
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