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Abstract

Human-Human and Human-Robot Interaction are known to be influenced by a
variety of modalities and parameters. Nevertheless, it remains a challenge to
anticipate how a given mobile robot’s navigation and appearance will impact how it is
perceived by humans. Drawing a parallel with vocal prosody, we introduce the notion
of movement prosody, which encompasses spatio-temporal and appearance dimensions
which are involved in a person’s perceptual experience of interacting with a mobile
robot. We design a novel robot motion corpus, encompassing variables related to the
kinematics, gaze, and appearance of the robot, which we hypothesize are involved in
movement prosody. Initial results of three perception experiments suggest that these
variables have significant influences on participants’ perceptions of robot socio-affects
and physical attributes.

Keywords: Corpus, HRI, Prosody of Movement
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1 Introduction

Mobile robots deployed during field tests tend to be met with mixed reactions
from the humans with which they share the environment, who may accept or reject the
robot through mechanisms whose details are not yet fully understood (Hebesberger
et al., 2017; Mutlu & Forlizzi, 2008). On the one hand, the technical complexity and
capabilities of a connected smart device and a robot are quite similar, so one may
expect robots to be treated and perceived similarly to machines. On the other hand,
some studies point to humans feeling some level of empathy towards robots (Menne &
Schwab, 2018; Rosenthal-von der Pütten et al., 2014), and some soldiers have been
burying their bomb disposal robots (Carpenter, 2013). At the same time, many
researchers and companies seek to deploy mobile robots into human environments to
accomplish useful tasks, but they often struggle to explain people’s reactions to their
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robots’ behavior. This could be explained by the lack of a unified theory on spatial
and navigation behavior in interactions, as pointed out in a recent Social Navigation
(SN) survey (C. I. Mavrogiannis et al., 2021) suggesting this lack may be due to the
vastness of the domain and fragmented literature focusing on specific sub-problems
and variables. This results in an inability to determine how a robot will be perceived
given the combination of the variables modulating its navigation.

Social Navigation works tend to perform experiments where participants
interact with a robot exhibiting a state of the art, complex robot behavior resulting
from navigation algorithms combined with the rest of the robot’s physical and
software design (Carton et al., 2017; Gil et al., 2021; Kamezaki et al., 2019).
Questionnaires and interviews allow researchers to perform an evaluation of the
complex behavior in terms of its acceptability and ability to accomplish a specific task
optimally (C. Mavrogiannis et al., 2019). This top-down approach enables the
evaluation of a given algorithm in a given context, however it makes it difficult to
determine which specific aspects of the robot’s navigation were responsible for each
aspect of the evaluation.

Other works in the field of HRI have explored other interaction modalities such
as voice (McGinn & Torre, 2019), gestures (Augustine et al., 2020; Saldien et al.,
2014; Zhou & Dragan, 2018), positioning (Brandl et al., 2016), as well as a few works
on navigation parameters such as (Saerbeck & Bartneck, 2010). These studies have
allowed researchers to determine that each of these modalities play a role in HRI,
however most of them consider each modality separately, which makes it difficult to
determine whether there are interactions between them when combined into a
human’s perception of a robot. Studies that consider combinations of modalities
typically do not include navigation as one of them (Dautenhahn et al., 2009).

One of the goals of our work is to gain an understanding of the holistic
perception mechanisms by which humans perceive the navigation of mobile agents
(humans, animals, or robots) by building a model linking a robot’s navigation and
appearance variables to the resulting human perceptions. Such a model could be
beneficial in several ways. Firstly, in order to properly integrate robots into their roles
and tasks we need to be able to control how they interact with people and how they
are perceived. Secondly, studying the underlying mechanisms of HRI could help us to
better understand human perception of mobile agents in general. In some sense,
robots can be used as a tool to enable systematic and repeatable experiments to
explore whether there are common principles in how humans perceive other humans,
animals, or robots.

In order to build this model, we take inspiration from prior works by Aubergé
et al. on vocal prosody. When considering the vocal interaction modality, most of the
communication channel’s bandwidth is used in order to convey semantic meaning.
But even when using exactly the same words, we can still modify how we say them by
using the remaining bandwidth and degrees of freedom of the vocal signal such as
changing pitch, rhythm, tone, or vocal effort. Prior studies (Sasa & Aubergé, 2017;
Tsvetanova et al., 2017) have aimed to study and characterize vocal prosody, and to
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understand its role in interactions and relations not only among humans, but also
between humans and robots.

We aim to expand on this by considering dimensions related to a robot’s
navigation, or in other words, spatio-temporal interaction. Similarly to the vocal
modality, a large part of the degrees of freedom available for navigation are used in
order to perform a practical navigation task (e.g. going from point A to point B, or
following a person), but there are still ways to modify how the task is performed by
changing the velocities and accelerations, the shape of velocity profiles, or by adding
pauses and saccades. Prosody has been explored in HRI through studies on emotional
music prosody (Savery et al., 2021) to generate emotionally expressive non-verbal
audio, as well as gestures in (Savery et al., 2019). The influence on perceptions of a
robot using voice and hand-over gestures with varying prosody was also studied in (Di
Cesare et al., 2017), indicating that this concept may carry over to other modalities.
Therefore, in addition to navigation factors, we also consider other dimensions that
intervene in the perceptual experience of being near a mobile robot by studying visual
appearance factors (presence and shape of eyes, head position, and stability of the
robot base) as well as auditive factors through the presence or absence of motor noise.
The combination of all of these is encompassed in our use of the term "prosody of
movement", describing how a navigation motion is performed.

We aim to characterize the prosody of movement by trying to discover and
formalize the navigation and appearance primitives which are involved in human
perception of this prosody. Here, "primitive" is not used in the sense of "simple", but
rather in the sense of a building-block or a fundamental notion upon which more
elaborate concepts are built. This is a bottom-up approach, where we start by
analyzing each of the basic fundamental parameters of the robot’s behavior, instead of
the top-down evaluation of a robot behavior generated by a complex state of the art
navigation algorithm.

In order to undertake the task of understanding movement prosody, we design
a corpus of robot motions which covers a large scope of feasible motions. We then film
a mobile robot performing a large number of movement trajectories with varying
movement prosody and appearance parameters selected according to the motion
corpus design. The parameters of the motion corpus are hypothesized to be
responsible for eliciting reactions in people, who tend to interpret robot motions in
terms of intentions or attitudes. We also believe that certain motion parameters are
analogous to vocal prosody parameters. The first goal of the corpus construction is to
systematically categorize and distinguish types of movement. The second goal is to
build and provide open access to a novel video corpus, which can be re-used by other
researchers to conduct their own studies. The third goal is to design experiments
using the robot motions as the stimuli in order to assess their impact on people’s
perceptions of the robot.

Our hypothesis is that people’s attributions of socio-affects and physical
attributes to a robot depend on its movement prosody. In this work, we take the
following steps to explore this idea:
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• we build a novel robot motion corpus encompassing variables derived from the
mechanical abilities of the robot, its appearance, and analogies to prior works in
vocal prosody (see Table 3);

• we publish and detail the construction of a video corpus representing the
combinations of variables of our motion corpus 1;

• we present ten perceptual scales (see Table 1) used to evaluate people’s
perceptions of robot socio-affects and physical attributes, derived from prior
studies on the role of vocal prosody in the construction of relations (Guillaume
et al., 2015; Sasa & Aubergé, 2016);

• we use our motion corpus and perceptual scales in three perception experiments,
and present preliminary results suggesting that several of the motion corpus
variables have significant influences on the perceptual scales.

2 Related works

In this section, we present similar works in the field of HRI and Social
Navigation which aim to study the impact of navigation and appearance variables on
people. Firstly, we discuss which navigation variables have been studied and how they
differ from ours. Secondly, we discuss the various approaches used for evaluating the
impact on people’s perceptions of robots, and describe the basis of our perceptual
scales. Thirdly, we discuss the holistic nature of human interactions and perception,
motivating our choice to include both navigation and appearance variables in our
corpus. Lastly, we motivate the decision to design a corpus of reference motions and
videos.

2.1 Exploring the variables of social navigation

In this section, we discuss how prior works select navigation parameters to
explore, and how the motions are generated. The methods of evaluating the
navigation’s impact on people and their perceptions of the robot are addressed in the
next subsection.

The first method is to develop a full Social Navigation algorithm, either based
on machine-learning methods which aim to imitate human navigation (Chen et al.,
2017; Ramirez et al., 2016), or by implementing models taken from social psychology
such as the Social Force Model (Shiomi et al., 2014). Spatial and proximity factors
are the most commonly addressed in earlier works (Rios-Martinez et al., 2015), often
being derived from the concept of proxemics (Hall et al., 1968). The algorithm can
then be used to control a real or simulated robot, in order to conduct experiments. In
(Honour et al., 2021) participants viewed top-down animations of robot trajectories

1 A video showing examples of the corpus videos can be viewed here https://youtu.be/EiH8o1PjlOw.
The full corpus and supplementary materials can be found on our project page https://osf.io/5csrg/

https://youtu.be/EiH8o1PjlOw
https://osf.io/5csrg/
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generated via a Socially Aware Navigation (SAN) planner and a traditional planner,
in order to compare them. This methodology enables the evaluation of one algorithm,
or comparisons between algorithms, but it becomes difficult to determine how each
aspect of the trajectories impacts the overall HRI and perception of the robot by
humans, regardless of what kind of questionnaire is used.

In (C. Mavrogiannis et al., 2019), participants performed a navigation task
while sharing the workspace with a mobile robot using one of three navigation
methods (two algorithms, one teleoperated). The authors computed metrics on the
robot’s trajectories: average acceleration, average energy (defined as the integral of
the squared velocity), minimum robot-human distance, path irregularity, efficiency,
and topological complexity. Describing the navigation resulting from applying each
algorithm may help to understand which variables are important, and what their
impact is, but these metrics are relatively global values describing an average measure
of the trajectory as a whole. When considering the inverse problem of how to generate
a motion that induces a specific perception of the robot, this becomes an issue since
the metrics might not uniquely control all of the robot’s degrees of freedom.

Other works such as (Sorrentino et al., 2021) take an existing algorithm and
alter some of its controllable variables. In this work, participants walked across a
room, passing by a robot moving in the opposite direction. The robot avoided the
collision using three different minimum obstacle distances and maximal velocities.
This facilitates the understanding of the impact of a given parameter which varies
systematically within this experiment, but comparisons with other algorithms will still
be difficult if there are interaction effects between the controllable variables and
non-controllable variables.

Lastly, some works opt to employ hand-crafted trajectories based on a small
number of variables, such as curvature and acceleration (Saerbeck & Bartneck, 2010)
or acceleration styles (Schulz et al., 2020), tested in basic navigation scenarios. This
approach tends to provide a clearer idea of the impact of a given navigation variable,
since only the variables of interest are directly manipulated. However each study only
deals with one or two variables, once again lacking the power to thoroughly explore
interactions between variables.

We take a similar approach by designing our hand-crafted trajectories based on
several variables which are systematically combined in order to cover the space of
possible trajectories, given our robot’s mechanical constraints and abilities. Another
principle that guides our corpus design is to select motions in order to be able to study
the movement analogs to the body and voice prosody dynamics which have been
shown by (Campbell & Mokhtari, 2003; Gobl & Ní Chasaide, 2003; Sasa & Aubergé,
2017; Tsvetanova et al., 2017) to be the support for social interaction dimensions. We
use velocity; acceleration; combinations of acceleration, constant, and deceleration
phases; as well as smooth, incremental, or saccadic accelerations in order to generate a
set of velocity profiles (see Sect.3 for details). These hand-crafted approaches have the
benefit of making the trajectory features explicit, and allowing analysis of interactions
between variables if they are all combined together when generating trajectories. The
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drawback is that designing a navigation algorithm capable of generating such
trajectories in dynamic environments becomes harder as one adds more variables.

We believe that formulating the social navigation problem in a modular
optimization framework similarly to (Khambhaita & Alami, 2020) would enable
exploration of the space of possible robot navigation styles though the cost functions
and constraints, capturing different metrics and variables involved in people’s
perception of the robot. Combining this type of modular framework with perception
and HRI experiments like ours could be a promising way of studying navigation
variables’ impact on people’s perceptions, as well as designing algorithms that are
able to implement navigation styles which generate a given perception of the robot.

2.2 Evaluating perceptions of robot socio-affects

Social Navigation studies that deal with evaluating user’s perceptions of robots
employ a variety of methods, one of which is to use established questionnaires such as
the Godspeed Questionnaire Series (GQS) (Bartneck et al., 2009) in (C. Mavrogiannis
et al., 2019; Sorrentino et al., 2021), Negative Attitudes towards Robots Scale
(NARS) (Nomura et al., 2006), Perceived Social Intelligence scale (PSI) (Barchard
et al., 2020) in (Honour et al., 2021), or Robot Social Attitudes Scale (RoSAS)
(Carpinella et al., 2017). The items on such scales are often derived from existing
theories and paradigms in social sciences.

In contrast, we base our selection of items on adjectives originating from
previous studies investigating human vocal and gesture prosody generated during
interactions with a robot (Guillaume et al., 2015; Sasa & Aubergé, 2016). The
adjectives used in our scales are derived from the participant’s self-annotations of
their own interaction data. Each scale opposes two adjectives, some related to the
physical impression of the motion, others related to perceptions of intentions or
attitudes (see Table 1). The adjectives represent vernacular terms that a person may
use in their everyday life, as opposed to terms derived from a scientific theory with a
specific interpretation within its field. In a sense, these adjectives on the perceptual
scales are the tools we are giving the participants in order for them to be able to
describe the impression they have of the robot. This is inspired by the impressionistic
paradigm, which has been used in prior works to study associations across modalities
such as between sounds and shapes in the "kiki, bouba" experiment (Drumm, 2012),
or between vocal prosody and colors in one of the series of works by Sagisaka et al.
(Watanabe et al., 2014). The experiments were conducted in French, hence the
adjectives have been translated to their closest vernacular equivalent in English.

Some SN works focus on the efficiency of the method (often applied to
navigating through dense crowds) rather than its impact on people’s perceptions of
robots (see (C. I. Mavrogiannis et al., 2021) for a recent survey). Other works
evaluate the impact of their navigation algorithms using concepts such as
acceptability, naturalness, comfort, likability or human-likeness (Kruse et al., 2013).
These concepts are important in HRI, however they are general concepts that we
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Aggressive
Agressif

Gentle
Doux

Sturdy
Solide

Frail
Fragile

Authoritative
Autoritaire

Polite
Poli

Strong
Fort

Weak
Faible

Seems Confident
A l’air confiant en
lui-même

Doubtful, Hesitant
Doute, Hesitant

Smooth
Lisse

Abrupt
Rude

Inspires confidence
Inspire confiance

Doesn’t inspire con-
fidence
N’inspire pas confi-
ance

Rigid
Rigide

Supple
Souple

Nice
Sympathique

Disagreeable
Antipathique

Tender
Tendre

Insensitive
Insensible

Table 1
Perceptual scales (original french wording in italic)

believe may depend on more specific perceptions such as those we propose to study.
Instead of a given style of navigation being inherently acceptable or unacceptable, we
explore how a style induces perceptions of robot socio-affects (attitudes, personality),
which may explain subsequent judgments on whether the navigation is acceptable
within a given task and human-robot relation.

2.3 Interactions between HRI modalities

Multimodal Human-Robot Interaction studies which consider the impact of the
robot on people such as (Dautenhahn et al., 2009; Saldien et al., 2014; Zecca et al.,
2008) have yet to include locomotion and navigation variables. Our aim is to
contribute to show that navigation is intrinsically social and is an ever-present and
unavoidable part of Human-Robot Interaction. In (Chan et al., 2021), the authors
designed multi-modal expressive behaviors for a small Cozmo robot, aimed at
expressing emotions in the arousal and valence space. The eyes, digger arm, and
locomotion modalities were used to design the behaviors. Participants viewed video
recordings of the behaviors online, and rated them according to their perception of
whether the behavior was energetic and pleasant. This study does integrate several
modalities, including locomotion, and evaluates their impact on people’s perceptions
of the robot. However the dimensions along which these perceptions are expressed
differ from ours, and the locomotion’s primary functionality is to express the desired
emotion. In contrast, we study situations where the robot’s primary functionality is to
perform a navigation task such as moving from point A to point B while generating a
certain impression as a secondary functionality. Combining stylized motion with task
execution was studied in (Zhou & Dragan, 2018), however their focus was on robot
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arms instead of navigation, and they explored a limited set of styles (happy, sad, and
hesitant).

Humans tend to perceive things in a holistic manner, with several studies
having found interactions between perception modalities such as audio and shape cues
in (Magnani et al., 2017), or speech and lip movement (McGurk effect) in (McGurk &
MacDonald, 1976). We believe the social navigation and HRI communities would
benefit from holistically considering the appearance of the robot alongside its
navigation style. By appearance, we refer to the robot’s general aspect (mechanical,
bio-evoking, human, animal, cultural references), as well as elements such as its size,
color, texture, and structural appearance (sturdy vs. frail). In our motion corpus, we
focus on the navigation variables for a given robot (RobAIR “RobAIR mobile robot,
designed and built by FabMSTIC, Grenoble,” 2021), on which we also have the ability
to vary the frail-sturdy appearance dimension, the shape of its eyes, and orientation of
its head. Therefore, these appearance variables are also included in the corpus and
combined with the navigation variables (see Section 4 for details).

2.4 Robot motion and video corpus

In this subsection, we discuss the motivations for building a corpus of motions,
and the accompanying video corpus. Designing a corpus of reference motions can help
to avoid a common pitfall in Social Navigation which is the dependence on a specific
robot platform or navigation algorithm, which makes comparisons between works
difficult. To the best of our knowledge, this corpus is the first of its kind. Other
researchers may choose to implement the same motions on their own robotic platform,
which could help to further study the influence of different robot platforms on HRI.
Furthermore, the video corpus allows researchers to conduct studies using exactly the
same stimuli, which could help reproducibility of HRI studies (Irfan et al., 2018), and
provide insights into the degree of cultural differences in HRI by running studies with
participants from different countries. Our video corpus represents a wide range of
robot motions, as well as various robot characteristics and motions which are not
directly related to navigation. This allows us to study the relations between various
perceptual stimuli and also to avoid ceiling effects, where one aspect of the robot’s
motion or appearance may dominate or nullify the effects of other aspects. The robot
is shown moving from left to right in a straight line, using different combinations of
acceleration, constant speed and deceleration phases. We take inspiration from
previous studies about vocal interactions by choosing to differentiate three different
energy levels with which the robot performs each motion. In the next section, we
detail how we designed the motions contained in the corpus.

3 Robot motion corpus design

In this section, we present the seven variables of our robot motion corpus. In
the first subsection, we describe the three variables used to define velocity profiles i.e.
curves giving the velocity of the mobile robot over time. In the second subsection, we
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describe the four variables related to the visual appearance and audio aspects of the
mobile robot.

3.1 Velocity profile design

The primary goal of the corpus is to enable the study of a robot’s motion and
kinematics parameters’ impact on people.Velocity profiles specify the robot’s
movement, and are built by combining the values of three corpus variables: the
motion sequence, kinematics type and variant. The motion sequence determines what
we could call the general "shape" of the motion, in terms of speeding up, slowing
down, maintaining speed. The kinematics type determines how abruptly the changes
in velocity occur, and how fast the robot moves. These dimensions are related to the
amount of kinetic energy required to perform the motion, hence the kinematics types
represent different energy levels. The variant determines the fine details of the robot’s
motion, in order to add certain characteristics to it.

In the following subsections, we present the variables which define the velocity
profiles, and discuss the factors which had to be accounted for in the design process.
These factors arose through five successive cycles of implementing and filming various
motions on the robot and testing them in order to determine how the motions looked
to a human bystander and on video.

3.1.1 Motion sequences

A motion sequence is a succession of motion phases, which can be acceleration
phases, constant velocity phases, or deceleration phases. This essentially describes the
type of motion performed by the robot. There are several choices for how to design
the motion in each phase, mostly in terms of the shape of the velocity curve over time,
which could be linear, exponential, logarithmic, sigmoidal, or other types of curves.
The impact of using a given type of curve on people’s perceptions of the robot has very
rarely been studied (see (Schulz et al., 2020) for a comparison of linear and slow-in,
slow-out velocity profiles). Ideally, we would compare the effect of different curve
types, however in this study we limit ourselves to linear curves. We chose to use linear
curves since they are the simplest type of curve, both to implement and to analyze.

The six motion sequences are illustrated in Fig. 1. Within the space of all
feasible kinds of motions, we aimed to identify the basic building blocks that are
representative of most mobile robot motions. The building blocks are:

1. accelerating from a standstill;

2. decelerating to a halt;

3. accelerating, constant velocity, then decelerating;

4. accelerating from a slower velocity;

5. decelerating to a slower velocity;
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6. decelerating, constant velocity, then accelerating;

7. accelerating then immediately decelerating;

8. decelerating then immediately accelerating;

9. accelerating from a standstill, then constant velocity;

10. constant velocity, then decelerating to a halt.

Figure 1
Illustrations of the six motion sequences (solid lines), and ten building blocks (dashed lines).

Once we had established the building blocks, we determined six motion
sequences (A, B, C, D, E, F) which contain the building blocks. Motion sequences A
and C are designed to introduce a notion of "pausing" between acceleration and
deceleration phases, by inserting small plateaus of constant velocity. The length of
these plateaus (300ms) was chosen as an analogy to other communication aspects
such as duration of a syllable, or of a sign in sign language. We chose a value within
this order of magnitude while also making sure that it was long enough to be
perceptible when viewing the robot’s motion. Motion sequences C and D incorporate
a low-velocity phase half-way through the sequence, which may evoke a form of
hesitation, as studied in the area of gestures in HRI (Moon et al., 2013).

Of course, choices have to be made regarding the duration of the acceleration
and deceleration phases, which we will detail in the following part.

3.1.2 Kinematic types

We use the term kinematic type to refer to the bounds which are set on the
robot’s velocity and acceleration. Velocity and variations of velocity over time
(acceleration) are the most basic descriptors of movement, that still allow us to
capture a wide enough range of robot motion. Jerk (the time-derivative of
acceleration) could be interesting to study, but it is a more advanced notion, and is
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typically non-trivial to account for in most current social navigation algorithms, so we
do not explicitly control or study it in our work. The relevance of acceleration as a
factor which influences people’s perceptions of robots was stated in a related work
(Saerbeck & Bartneck, 2010), which studied the impact of acceleration and curvature
on people’s attributions of emotions and affects to two different robots.

Our goal was to choose three sets of values of the velocities (vmin and vmax)
and accelerations a for the three values of the kinematic type variable. Given these
kinematics types are intended to correspond to low, medium or high-energy motion
styles, we chose to pair velocities and accelerations in a coherent way. For example, if
we choose a low acceleration value, we combine it with slow vmin and vmax. Pairing a
low acceleration value with a fast vmax could be feasible, but it introduces more
subtleties when trying to compare two kinematics types in terms of the energy
required to perform them.

The decision to use three kinematics types was made firstly for practical
reasons, given that using more would imply a much larger corpus. Secondly, in this
first study we aim to capture the extreme cases, which should provide us with the
most contrast. The low and high energy types are the extreme values, and the
medium type serves as a reference point between the extreme values.

In order to select the exact values to specify each kinematics type, there are
several aspects one needs to balance and compromise on. Firstly, we have to account
for the robot’s physical capabilities. Naively using the robot’s maximal velocity
(0.8m.s−1) and acceleration (2.6m.s−2) as the high-energy type means the robot
reaches its maximal speed within just 0.3s, far too short to be properly perceived.
Other aspects we had to balance were:

1. robot’s physical motor limits;

2. minimum perceivable duration of acceleration;

3. duration of the whole motion (impact of exposure time of a stimuli on people’s
perception);

4. maintain similar duration of acceleration phase;

5. distance traveled (camera field of view and room limitations);

6. distinctness of minimal and maximal velocities;

7. distinctness of kinematic types.

Given all the constraints above, we selected an acceleration time from vmin to
vmax of 1.0s, so the acceleration phases to or from a zero velocity were between 1.25s
and 1.5s, depending on the kinematics type. This gives the motion sufficient length to
be properly perceived by the viewer, while also allowing for a clear difference between
the three kinematics types. The final values describing the kinematics types are
shown in Table 2.
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Parameter Low Medium High
a 0.2m.s−2 0.35m.s−2 0.5m.s−2

vmin 0.05m.s−1 0.15m.s−1 0.25m.s−1

vmax 0.25m.s−1 0.50m.s−1 0.75m.s−1

0 to vmax 1.25s 1.42s 1.5s
vmin to vmax 1.0s 1.0s 1.0s

Table 2
Kinematics types parameters

3.1.3 Profile Variants

We designed two variants (incremental and saccade, illustrated in Fig.2),
which modify the shape of the velocity profile locally. Once again, the design process
for these variants has its roots in analogies to speech production variations which can
be used intentionally by people, or originate from health issues or as a consequence of
physical characteristics. When people manipulate their speech, it can become a means
for them to alter the way other people perceive them.

In this study we aim to evoke two speech variations, hesitant speech and jittery
speech. Hesitant speech could be observed when one is unsure of oneself, or not very
confident, whereas jittery speech could be associated with frailness due to old age or
health issues. Similar characteristics can be observed in people’s gestures, and
locomotion, which we aim to reproduce.

The saccade variant is an attempt to imitate jitter by introducing continuous
shaking or stuttering of the robot by rapidly increasing and decreasing the velocity
commands to the motors. There were two main conflicting aspects that had to be
balanced: on the one hand, the resemblance to the type of dynamics observed in
speech or human motion; and on the other hand, the reproducibility of the motion.
Applying random perturbations to the velocity profile results in slightly more
"natural" jitter, but it also means the motion sequence and kinematics type may
become unrecognizable. In order to combat this effect, we perturbed the velocity
commands in a deterministic, periodic fashion. Essentially, we determine a period and
amplitude of the oscillations of the perturbed velocity profile around the value of the
original profile. In our case, the period is 0.2s, and the amplitude is fixed to different
values according to the kinematics type (low: 0.044m.s−1, medium: 0.090m.s−1, high:
0.120m.s−1).

The incremental variant is an attempt to imitate hesitation by introducing
increments into the acceleration and deceleration phases, meaning that an acceleration
phase which is typically a single, constant acceleration applied for one second becomes
a succession of three acceleration phases of a third of a second, interleaved by two
constant velocity plateaus of 300ms. These plateaus are a means of conveying pauses
in the motion, in a similar fashion to motion sequences A and C, hence the same
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duration being used. Regarding the number of plateaus, we chose to use two plateaus
simply because it allows each acceleration phase to be long enough to be perceptible,
while provoking a big enough difference when compared to the original velocity profile.

Figure 2
Velocity profiles resulting from applying the incremental (top) and saccade (bottom) variants
to motion sequence A, with medium kinematics type.

In this subsection, we presented the corpus variables which define the velocity
of the robot during its movement. In the next subsection, we present the corpus
variables which define the audio and visual aspects of the robot.

3.2 Beyond Velocity: Robot Appearance and body Dynamics

Although our aim is to study the impact of motion parameters on human’s
perceptions, we need to keep in mind that other visual factors, as well as the sounds
produced by the robot could also have an impact.

People communicate and perceive things holistically, by using and considering
several modalities of expression. Therefore, if some variables other than the robot’s



Prep
rin

t
MOVEMENT PROSODY IN HRI 16

kinematics also affect people’s perceptions (which seems to be the case already for
some of them studied independently like gaze or appearance), then their effect will be
present in the results. This could become an issue if a variable has a ceiling effect,
which would make it difficult or impossible to observe the effects of the motion
variables we are interested in. We don’t know if there are ceiling effects, because
velocity, acceleration, hesitations, saccades, eyes, head motion, profile type, stability,
and sound have not been studied together yet. Hence, we also manipulate other
variables related to the robot’s appearance, body motion, and sound to be able to
detect and minimize any kind of bias or ceiling effect impacting people’s perceptions.

3.2.1 Frail or Robust robot

Typically, robots are designed with robustness in mind, which leads to robots
which are stable, with well-mounted parts that do not shake even when the robot is
under strain. The apparent physical stability and sturdiness of the mobile robot is an
aspect which is rarely investigated, yet it may have an impact on how people perceive
the robot’s motion. We used two different robots to film our corpus, one typical stable
robot and one modified, unstable robot. We modified an existing robot by loosening
the front and back balancing wheel assemblies, and by loosely mounting its head on
its body. The result is that the whole robot sways back and forth when changing
speeds, especially when using the high-energy kinematics type, and its head shakes
when using the saccade variant. This gives the robot body a different style of
movement dynamics.

3.2.2 Eye shape and head movements

When robot designers include characteristics associated to living beings in
their robot, it can impact how much people tend to anthropomorphize it, or how
people interpret or perceive the robot’s actions. Additionally, the exact shape of the
eyes can also convey meaning. We use three eye variants for this corpus: switched off,
round, and squinting. The round eye shape is part of the robot’s design after a study
where it was rated as the most "neutral" eye shape. The squinting eye shape was
designed for this corpus in order to convey a colder, more unsettling feeling.

Gaze is a relevant means of interaction for living beings, and studies such as
(Breazeal et al., 2005) have also shown it has an important role in HRI, due to its
relation to attention, and its implicit signaling of the robot’s perception capabilities.
Gaze direction can also be tied to navigation and has been used to make motion more
legible, as was studied in (Fischer et al., 2016). For these reasons, we complemented
the eye shape variants with four head settings: two settings where the head is
stationary (facing straight, or facing the side, towards the camera) and two where the
head moves during the robot’s motion (from the straight position to the side, and
vice-versa).
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3.2.3 Audio recording

Most motors used in mobile robot locomotion are noisy, so any variation in the
robot’s motion also carries an audio signal. In some cases, navigation and control
parameters do not cause a significant visual difference, but the change is still clearly
audible through the motor noise. Other than motor noise, the chassis and other parts
of the robot can also produce sounds which can give information about the structure
of the robot. If the robot makes creaking and knocking sounds whenever it moves a
bit too suddenly, we might deduce that the robot is not very well built. These types
of sounds are called consequential sounds and have recently been the object of studies
in HRI such as (Tennent et al., 2017) or (Robinson et al., 2021). In both studies,
different sounds lead participants to perceive the robot’s motion differently,
highlighting the necessity of taking sound into account even when studying other
dimensions of HRI.

The exposure to the sound produced by the mobile robot can therefore convey
information, or be interpreted in various ways by the viewers, even if these sounds are
simply direct consequences of the physical properties of the robot. Recording the
sound of the mobile robot was therefore necessary, and could be used to contrast
people’s perception of the same motion when played back with or without the sound.

3.3 Summary of corpus variables

In Table 3, we summarize the variables we manipulated in order to obtain each
video of the corpus, as well as the different values they can take. The audio variable is
adjusted as a post-processing step: we record a given stimuli with sound, duplicate
the video and mute one of them to obtain the silent version. In practice, we were
unable to include all combinations of the values of these variables due to several
limiting factors. Firstly, the stable robot’s head was unable to rotate, meaning it was
only filmed using the straight head setting. Secondly, due to time constraints on the
corpus acquisition, we decided to remove certain combinations of variables: the
saccades and incremental variants were not combined with round or squinting eye
shapes. The resulting corpus contains 450 videos, for a total of 900 combinations of
values of the seven corpus variables once we include the audio variable.

In the next subsection, we present the steps taken to ensure that we captured
the robot’s motion and appearance as faithfully as possible.

4 Video corpus acquisition

In the previous subsection, we detailed the design of the robot’s motions and
appearance variables which constitute the corpus. In this subsection, we detail the
considerations and precautions we took in order to produce a high-quality, exploitable
corpus of videos. Various prior works have used video-based stimuli for HRI
experiments involving moving robots (Carton et al., 2017; Chan et al., 2021; Knight
et al., 2016; Torre et al., 2021), some of which validated their results on subsequent
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Motion
sequence

Kin.
type

Profile
variant

Robot
type

Eye
shape

Head
setting

Audio

A low none stable none straight with
B medium saccades unstable round side without
C high increment squint straight to side
D side to straight
E
F

The first row lists the corpus variable names. Each column lists the values that each
variable can take.

Table 3
Robot motion corpus variables.

in-person experiments (Moon et al., 2013; Reinhardt et al., 2021). A recent study
compared video and in-person experimental settings in the context of gestures with
similar results, suggesting video studies may be appropriate (Honig & Oron-Gilad,
2020). Some of the variables explored in our corpus result in very slight visual
differences in the robot’s motion, such as the high-frequency stuttering and shaking
induced by the saccade variant, or the swaying of the whole robot body when using
the unstable base. For these reasons, we took extra precautions in order to capture
the robot’s movements as precisely as possible, and to make sure that they are well
represented in the videos. We also aim to avoid any differences in the recording
conditions that could introduce unwanted biases. All along the motion corpus design
and recording, we consulted two experts (a professional videographer and a
photographer) to discuss which parameters should be controlled in order to capture
the robot’s motion and appearance as precisely and truthfully as possible.

4.1 Robot Movement Consistency and Framing

In order to minimize differences between two videos showing the same velocity
profile, we implemented a method which allows us to execute a selected velocity
profile automatically on the mobile robot. This also reduces the chance for errors
during the corpus filming which is already a tedious and time-consuming process. In
addition, the whole control stack from the velocity profile control code down to the
low-level motor controller was analyzed and modified when necessary in order to
ensure the robot’s motion was as faithful as possible to the velocity profile.

Regarding the camera framing, filming the robot moving towards the camera
would give the impression of moving towards the viewer. In the end, we decided
against it due to the unclear effect of the lack of depth perception resulting from the
use of non-stereo video. Filming a robot motion parallel with the image plane should
conserve as much information about the robot’s motion as possible, unlike some prior
video-based studies which required motion with components which are perpendicular
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to the image plane (Carton et al., 2017; Knight et al., 2016; Torre et al., 2021). The
robot’s initial position was also considered, as it may have a priming effect on people’s
anticipation and interpretation of the robot’s motion. For example, if the robot starts
very far on the right hand side of the frame, facing right, people could assume the
robot will not travel very fast or far. In order to mitigate this, the robot starting
point was selected such that the total motion to be performed was centered in the
camera’s framing. The exact position depends on the motion sequence, kinematics
type, and variants; so in the interest of time, the initial positions were approximate
and the motions were not always exactly centered.

4.2 Environment Characteristics

Regarding the background, it is necessary to make sure that it is mostly
uniform in order to avoid visual distractions, although when trying to capture
movement it can help to have reference points such as vertical lines in order to better
perceive the velocity of the robot. The background color should provide a high
contrast with the robot’s color. The type of ground on which the robot moves should
also be considered in combination with the robot’s drive assembly, given that any
discontinuities in the ground could have repercussions on the robot’s motion, and
hence, visual appearance. Naturally, there should also be enough space in the
environment to perform the longest velocity profile (six meters in our case). We also
made sure there were no visible obstacles in the robot’s direction of travel, since one
could anticipate that the robot will start to slow down before reaching the obstacle.

The experts also highlighted the importance of lighting conditions to get the
clearest possible picture of the robot, which is dependent both on the natural and
artificial lighting of the room. In our case, strong natural light provided better
lighting conditions than indoor artificial lighting, although this meant camera
parameters had to be adjusted to compensate for the changing light throughout the
day. Good lighting allows the details to be visible, and helps to clearly distinguish
background from foreground.

4.3 Camera configuration and parameters

Initial filming tests revealed that smartphones are limited in terms of the field
of view, and action cameras cause too much distortion with their fish-eye lenses. The
experts informed us that the high-framerate recording action cameras provide is also
not necessary for our application. We also raised the question of shutter speed, which
is tied to the amount of motion blur in an image, but given the speeds of the robot we
were dealing with, standard shutter speed settings would suffice. The most important
parameters were:

1. lighting conditions to avoid shadows;

2. high resolution to capture details;
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3. stability of the camera.

One of the experts performed the final video recordings using a high-quality
camera (Canon EOS 5D Mark IV) and advised us on the final framing, positioning,
and lighting conditions. The camera and appropriate lenses and settings allowed us to
frame wide enough to capture the full movements, while maintaining a good size of
the robot in the frame, and high quality capture.

During the filming sessions, routine checks were made to ensure a consistent
image over all 450 videos, despite the varying lighting conditions. One adjustment
had to be made to the exposure settings of the camera in order for the robot’s LED
eyes to be clearly distinguishable. The resulting setting (under-exposure) was a
compromise between image quality and visibility of the eyes. The exposure also had
to be adjusted to compensate for the changing lighting conditions. We provide
additional details regarding the camera, lenses, settings, and subsequent video
post-processing, encoding, and formats as part of the motion corpus.

5 Perception Experiments

In order to analyze the effect of each variable of the corpus on the way in
which a mobile robot is perceived we ran a series of three experiments; two online
experiments where participants viewed videos of the robot and one embodied
experiment, where the robot moved towards the participant, stopping at a
pre-determined distance.

The goal of the online experiments was to collect participant’s perceptions of
the robot for the whole corpus, in order to establish a first baseline regarding which
variables had significant influences on how participants perceived the robot. The goal
of the embodied experiment was to attempt to replicate the findings of the online
experiments for a subset of the corpus containing the variables which were found to be
the most influential. All three experiments use similar methodologies.

5.1 First online experiment: likert scale

The corpus of 900 stimuli was split into groups of 45 videos within which each
value of each variable was represented. Thus, each participant viewed and rated all 45
videos of a given group, meaning they would see all values of all variables several
times, but not all combinations. The order of the videos was randomized for each
participant, and the number of participants for each video group was roughly
balanced. Participants viewed each video once before rating it and moving on to the
next. After viewing all of the videos, participants filled in a post-questionnaire, which
we do not report on in this paper due to space constraints. At the end of the
experiment, participants could choose to leave a free-form comment. In the first
online experiment, the rating scales were presented to participants as 5-point likert
scales, where the middle option signifies that neither of the adjectives correspond to
their perception of the robot. The 900 stimuli were split into 20 groups, half with
sound, and half without, meaning the sound variable was a between-subjects variable.



Prep
rin

t
MOVEMENT PROSODY IN HRI 21

5.1.1 Likert scale results

A total of n = 42 participants completed the first online perception
experiment. Participants of all ages were recruited via university mailing lists,
experiment recruiting lists, and social media. The first step in our analysis was to
determine whether certain corpus variables or certain scales showed wide ranges of
responses, or clear-cut bias to one of the opposing adjectives. For each value of each
corpus variable, we computed the distribution of participants responses on all videos
using that value. With 42 participants, each of the 900 unique combinations of values
of variables is only rated four times at most. However in the initial analysis presented
in this paper, we do not study unique combinations of values, but rather all
combinations that include a given value for a given variable such as all videos using
the high kinematics type. In this arrangement, there are at least 300 ratings of videos
using each value of each variable of the corpus. The responses followed normal
distributions, generally with high mass around the center value as seen in Fig.3. For
some scales, different values for certain corpus variables led to distributions that were
shifted towards one of the adjectives. For all scales, a high percentage of the responses
were on the neutral level (neither one nor the other end of a scale), with half of the
scales having 30 to 40% of neutral responses, and the other half having 40 to 45% of
neutral responses. Distributions for participants who had sound all showed lower
proportions of responses on the neutral level than those without sound.

We performed chi-square association tests to determine if there were significant
dependencies between each corpus variable and scale pairing. The resulting chi-square
statistic and significance levels are reported in Table 4, with a large proportion of the
pairings showing significant dependence.

5.1.2 Likert scale analysis

The results of the association tests suggest that people’s perceptions of a
mobile robot along these ten perceptual scales are dependent on several of the motion
corpus variables, most notably the kinematics and variant variables. The absence of
sound leading to more neutral responses could indicate that the sound was
informative and affected people’s responses.

The high proportion of neutral responses across most scales and variables could
indicate one of two situations:

1. neutral perception: the participant finds neither of the adjectives fitting to
describe their perception of the robot;

2. uncertainty: the participant feels unsure of their answer, and prefers to give a
neutral response rather than answer in a way that they perceive as random.

This was reflected in several participants’ comments, stating that they felt like
it was difficult to answer, or that they answered randomly. While the association tests
did report statistical significance of the dependencies, further investigation into the



Prep
rin

t
MOVEMENT PROSODY IN HRI 22

Figure 3
Response distributions in percentages for the likert scale online experiment. Columns
represent response levels for each perceptual scale. Rows represent corpus variable values by
which the video ratings are grouped to compute the percentage of responses.
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Aggressive Authoritative Confident Inspires Conf. Nice
Gentle Polite Doubtful Does not Disagreeable

Kinematics(2) 235 *** 198 *** 106 *** n.s. 19 *
Sequence(5) n.s. n.s. 221 *** 78 *** 33 *
Variant(2) 47 *** 33 *** 246 *** 178 *** 37 ***
Eyes(2) 53 *** 69 *** 145 *** 76 *** 118 ***
Head(3) n.s. n.s. 39 *** 28 ** 27 **
Base(1) n.s. n.s. 55 *** 47 *** n.s.
Sound(1) 68 *** 60 *** 107 *** 76 *** 25 ***

Sturdy Strong Smooth Rigid Tender
Frail Weak Abrupt Supple Insensitive

Kinematics(2) 50 *** 96 *** 59 *** 48 *** 44 ***
Sequence(5) 102 *** 90 *** 49 *** n.s. n.s.
Variant(2) 306 *** 203 *** 97 *** n.s. 24 **
Eyes(2) 113 *** 107 *** 33 *** n.s. 75 ***
Head(3) 35 *** n.s. n.s. n.s. 24 *
Base(1) 104 *** 53 *** 12 * n.s. n.s.
Sound(1) 115 *** 46 *** 86 *** 82 *** 47 ***

Table 4
Chi-square association test results between corpus variables and perceptual scales, for the
first online experiment. Reported as chi-square statistic, significance ∗p < 0.05, ∗∗p < 0.01,
∗∗∗p < 0.001.

underlying cause of the neutral responses could give a better idea of the robustness of
the associations. We designed the second perception experiment in order to explore
this phenomena.

5.2 Second online experiment: binary choice

The second online experiment uses the same stimuli with only slight differences
in methodology which we detail in this subsection. In this experiment, the rating
scales were presented to participants as simple binary choices between the two
adjectives. In perception tests involving subtle differences in stimuli, participants may
feel like they are answering at random, hence some could choose to respond with the
neutral value on the first experiment. If participants have consistent inclinations
towards certain perceptions for given variables, then forcing them to pick a side of the
scale would result in higher mass of responses on one end of the scale. However if the
perception of participants is truly not impacted by the variable, the responses may
become more random, and the mass equally spread to either side of the scale. We
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chose to use only stimuli with sound since they were more informative, reducing the
total number of videos to 450, split into 10 groups.

5.2.1 Binary choice results

A total of n = 65 participants completed the second online perception
experiment. Participants of all ages were recruited via university mailing lists,
experiment recruiting lists, and social media. When observing the distributions of
responses, the trends of the first experiment tended to be confirmed. Distributions
with an existing bias towards one side of a scale were shifted further towards that
side, and distributions with little to no bias remained similar (see Fig. 42).

As in the first experiment, we used chi-square association tests to study
dependencies between corpus variables and perceptual scales. Results are reported in
Table 5. The significant dependencies are similar to the first experiment, with just
nine out of sixty dependencies being significant in only one of the two experiments.
The kinematics, profile, variant and eyes variables have an impact on at least eight of
the ten scales, compared to only six and two for the base and head variables
respectively. Certain scales are dependent only on a few of the corpus variables such
as the Aggressive-Gentle, Rigid-Supple, and Tender-Insensitive scales which only
depend on the kinematics, variant, and eyes variables. The three most significant
dependencies are Aggressive-Gentle on kinematics, Sturdy-Frail on variant,
Authoritative-Polite on kinematics, and Confident-Doubtful on sequence.

In order to establish the relation between each value of the corpus variables
and response levels on the perceptual scales, we computed the standardized Pearson
residuals for each of the chi-square tests. For a given pairing of a variable value and a
perceptual scale level, the residual’s absolute value indicates whether the difference is
statistically significant, and its sign indicates whether there are more or fewer
responses than expected. In Table 6 we show only associations between corpus
variable values and adjectives having standardized residuals greater than 2, indicating
that the association is significant (Sharpe, 2015). The head variable is omitted from
the table since there were no significant dependencies between its values and the
scales.

5.2.2 Binary choice analysis

Once again, several participants commented about the difficulty in responding
due to videos seeming similar or even identical, and reported having answered at
random. Despite this, trends in participant response distributions were confirmed in
the second experiment, which suggests that participants mostly had a consistent
inclination towards certain sides of the scales when presented with similar videos.

When considering the influence of each corpus variable value (see Table6 ),
some variables stand out. The medium kinematics type does not influence any of the

2 This table is available on our project page https://osf.io/5csrg/ which will be updated as the
project continues.

https://osf.io/5csrg/
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Figure 4
Response distributions in percentages for the binary choice online experiment. Columns
represent response levels for each perceptual scale. Rows represent corpus variable values by
which the video ratings are grouped to compute the percentage of responses.
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Aggressive Authoritative Confident Inspires Conf Nice
Gentle Polite Doubtful Does not Disagreeable

Kinematics(2) 467 *** 298 *** 94 *** 21 *** 95 ***
Sequence(5) n.s. 30 *** 262 *** 51 *** 14 *
Variant(2) 45 *** 17 *** 267 *** 177 *** 31 ***
Eyes(2) 37 *** 20 *** 145 *** 97 *** 46 ***
Head(3) n.s. n.s. n.s. n.s. n.s.
Base(1) n.s. 5 * 35 *** 10 ** n.s.

Sturdy Strong Smooth Rigid Tender
Frail Weak Abrupt Supple Insensitive

Kinematics(2) 66 *** 138 *** 106 *** 83 *** 72 ***
Sequence(5) 111 *** 91 *** 13 * n.s. n.s.
Variant(2) 344 *** 212 *** 90 *** 57 *** 20 ***
Eyes(2) 136 *** 100 *** 48 *** 30 *** 64 ***
Head(3) 14 ** 9 * n.s. n.s. n.s.
Base(1) 69 *** 32 *** 5 * n.s. n.s.

Table 5
Chi-square association test results between corpus variables and perceptual scales, for the
second online experiment. Reported as chi-square statistic, significance ∗p < 0.05,
∗∗p < 0.01, ∗∗∗p < 0.001.

scales, whereas the low and high types are associated with opposite ends of every scale
except Inspires-Doesn’t inspire confidence. This could suggest that the medium
kinematics type acts as a reference point for the other two.

5.3 Embodied Experiment

The goal of the in-person experiment was to attempt to replicate the online
results in an embodied interaction. Participants were informed of the general goal of
the study prior to the experiment. Participants were asked to stand at a fixed
position facing the robot as it moved towards them using one of the combinations of
variables. The distance at which a mobile robot stops when approaching a person has
been investigated, usually to determine what people consider as an acceptable
distance (Brandl et al., 2016). In order to control for potential effects of different
stopping distances, we ensured that the robot would always stop at a distance of
50cm from the person by using the same hard-coded velocity profiles as were used to
film the video corpus.

We chose to focus on three variables, using two values for each: the kinematics
type (low/high), variant(smooth/saccade), and head position(straight/side). The
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Aggressive Authoritative Confident Inspires Conf Nice
Gentle Polite Doubtful Does not Disagreeable

Kin. low gentle polite doubtful inspires conf nice
Kin. medium n.s n.s n.s n.s n.s
Kin. high aggressive authoritative confident n.s disagreeable
Sequence A n.s n.s n.s n.s n.s
Sequence B n.s n.s n.s n.s n.s
Sequence C n.s n.s doubtful n.s n.s
Sequence D n.s n.s doubtful does not n.s
Sequence E n.s authoritative confident n.s n.s
Sequence F n.s n.s confident inspires conf n.s
Var. none n.s n.s confident inspires conf n.s
Var. saccade aggressive authoritative doubtful does not disagreeable
Var. increment n.s n.s doubtful n.s n.s
Eyes none n.s n.s doubtful does not disagreeable
Eyes round gentle n.s confident inspires conf nice
Eyes squint n.s authoritative confident n.s n.s
Unstable n.s n.s n.s n.s n.s
Stable n.s n.s confident inspires conf n.s

Sturdy Strong Smooth Rigid Tender
Frail Weak Abrupt Supple Insensitive

Kin. low frail weak smooth supple tender
Kin. medium n.s n.s n.s n.s n.s
Kin. high sturdy strong abrupt rigid insensitive
Sequence A n.s n.s n.s n.s n.s
Sequence B frail n.s n.s n.s n.s
Sequence C frail weak n.s n.s n.s
Sequence D frail weak n.s n.s n.s
Sequence E sturdy strong n.s n.s n.s
Sequence F sturdy strong n.s n.s n.s
Var. none sturdy strong smooth supple n.s
Var. saccade frail weak abrupt rigid insensitive
Var. increment frail weak n.s n.s n.s
Eyes none frail weak abrupt n.s n.s
Eyes round sturdy strong smooth supple tender
Eyes squint sturdy strong n.s n.s n.s
Unstable frail n.s n.s n.s n.s
Stable sturdy strong n.s n.s n.s

Table 6
Relative influence of corpus variable values on the perceptual scales
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kinematics and variant variables were selected since they had the most influence on
participant’s responses in the second online experiment. The head position variable
was selected since we aimed to test the hypothesis that gaze would be more influential
in an embodied interaction. Each participant saw all combinations of values, resulting
in 8 stimuli. The base variable was set to unstable, in order to make the saccade
variant more visible; eyes were set to round in order to better indicate gaze direction,
and the motion sequence was set to one of the shorter sequences (A) since it induced
the least variability on the distance to the participant upon stopping (±5cm). In
addition, sequence A was the only one to have no significant impact on any of the
scales in the second online experiment (see Table 6).

5.3.1 Embodied experiment results

A total of n = 22 participants completed the embodied experiment, consisting
of students recruited from our university, half of which were in the field of computer
science and applied mathematics.

As in the online experiments, we performed chi-square association tests,
reported in Table 7. Associations were found between most of the scales and the
kinematics and variant variables. As in the second online experiment, no association
was found between the head variable and any of the scales. Unlike in the second
online experiment, no association was found between variant and Authoritative-Polite,
nor between kinematics and Sturdy-Frail.

Aggressive Authoritative Confident Inspires Conf Nice
Gentle Polite Doubtful Does not Disagreeable

Kinematics(1) 87 *** 74 *** 18 *** 8 ** 47 ***
Variant(1) 4 * n.s. 57 *** 25 *** 4 *
Head(1) n.s. n.s. n.s. n.s. n.s.

Sturdy Strong Smooth Rigid Tender
Frail Weak Abrupt Supple Insensitive

Kinematics(1) n.s. 28 *** 22 *** 18 *** 31 ***
Variant(1) 51 *** 19 *** 35 *** 4 * 4 *
Head(1) n.s. n.s. n.s. n.s. n.s.

Table 7
Chi-square association test results between a subset of corpus variables and all perceptual
scales for the embodied, in-person experiment. Reported as chi-square statistic, significance
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.



Prep
rin

t
MOVEMENT PROSODY IN HRI 29

5.3.2 Embodied experiment analysis

While the results of the embodied experiment are not directly comparable to
the online experiments, the general trends seem to be confirmed. The hypothesis that
gaze would have an influence in the in-person experiment is not supported.

6 Discussion

6.1 Limitations

Firstly, a limitation of this preliminary statistical analysis is that interactions
between variables were not considered. As such, these results only indicate relative
impact of different values for a given corpus variable, not how the robot will be
perceived overall given a full specification of the corpus variables.

Secondly, our corpus videos show a robot moving in an empty environment
without any interaction with a person, whereas one could include a form of interaction
with a person, given we are studying HRI. This decision was taken since our first goal
is to isolate the physical navigation primitives from other factors that impact
interaction. We hypothesize that in addition to the physical properties of motion, the
relation between the robot and the person also plays a role in how a robot is
perceived, and how we interact with it. If we impose a relation by framing a specific
type of interaction in the experiments, it would be difficult to analyze whether a
person’s reaction to the robot was induced by motion and appearance primitives or by
the relation.

6.2 Implications

Our results show that the impressionistic adjectives used in our perceptual
scales are useful in aiding participants to distinguish and characterize various elements
of movement prosody in robot navigation. Furthermore, the typology of variables
proposed in the corpus can be used to establish socio-affective traits of expressive
navigation which exhibit significant contrasts between one-another. As such, even if a
given type of motion was chosen solely on the basis of practical considerations, our
work suggests that it will be perceived and interpreted by humans as socio-affective
expression, therefore impacting HRI. Thus, it is essential to take into account the fact
that navigating intrinsically entails communicating with the human. To achieve this,
we must understand and control what types of navigation profiles should be used to
generate elements of interaction, whose communicative and ethical effects also require
further rigorous study.

One of our perceptual scales is based on the concept of frailty, which has
already been found to have significant impacts on the people interacting with a frail
robot. In a prior work (Sasa & Aubergé, 2016), isolated elderly people interacted with
a small butler robot by giving it voice commands. During the experiment the authors
discovered by serendipity that when the robot showed signs of frailty by making
mistakes (bumping into a wall while moving), participants became more attached and
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changed their attitude towards the robot by starting to take care of the robot.
Similarly, in (Matsumoto, 2021) the authors compared a typical robot to a fragile
robot which broke, requiring participants to fix it; finding that participants reported
feeling more attached to the fragile robot, as well as finding it more pleasant, less
boring, and more interesting. The interest of this is not so much that participants are
attached, but rather that because they are attached, they tend to be more active in
their interactions with the robot, often helping it, which may have positive effects on
the person’s physical and mental health when compared to passively receiving care
(Takenaka, 2005; Tanaka, 1997). As such, the impact of the impressions generated by
robot navigation variables seems to go far beyond the issues of user preference,
usability or comfort.

6.3 Future work

The next step in our work is to integrate the results of these experiments into
the design of a navigation algorithm for mobile robots in human environments that
allows navigation tasks to be performed while generating a certain impression based
on our perceptual scales. Our study showed that all of our corpus variables which
define the velocity profile (kinematics type, motion sequence and variant) had
significant impacts on people’s perceptions of the robot, hence our navigation
algorithm should allow explicit control over these variables. These variables define the
strength of the acceleration, maximal velocity, smoothness of the motions, and style of
acceleration and deceleration (including hesitations and pauses).

We propose to control these dimensions through time-dependent constraints on
the velocity and acceleration values used when generating candidate trajectories for
the robot to follow. In our experiments, only straight-line motions were performed by
the mobile robot using hard-coded velocity profiles with fixed lengths. In order to
handle dynamic navigation in human environments, some assumptions have to be
made with respect to how one should modify a profile in order to travel different
distances while generating a similar impression. One possibility is to assume that
maintaining a constant velocity over different durations does not affect the person’s
perception, although this would require further experiments to be confirmed. Our
design and implementation of such an algorithm is ongoing, and is built as an
extension of our prior work (Scales et al., 2020).

Another important future work is to determine the effect of a combination of
these variables on a person’s perception of the robot, which requires further statistical
analysis of the interactions between variables and perceptual scales. Methods such as
linear mixed models (Bates et al., 2015) could be used in order to study the
interactions between corpus variables, enabling a full specification of the perceptions
generated by a given combination of our corpus variables. Additionally, we are
running another embodied experiment where the interaction between humans and the
robot takes place within and ecological context with a task to accomplish, as opposed
to the basic lab study presented in this paper.
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7 Conclusion

In this paper, we propose an incremental bottom-up approach to the
understanding of how fundamental properties of appearance and navigation impact a
person’s perception of a mobile robot. We constructed a novel holistic robot motion
corpus in order to study the impact of navigation and audio-visual cues on people’s
perceptions of robots, in contrast to the more specialized studies of previous works.
The variables contained in the corpus are hypothesized to be involved in what we
define as movement prosody, a concept we derive by analogy with vocal prosody. The
corpus was used in two online perception experiments (n = 42, n = 65) and one
in-person experiment (n = 22). Participants rated a robot performing a navigation
task along ten perceptual scales opposing adjectives describing physical aspects as
well as perceived intentions and attitudes of the robot, such as Frail-Sturdy,
Aggressive-Gentle or Confident-Doubtful. A statistical analysis of the dependencies
between each variable and scale showed that all scales had significant dependencies on
several corpus variables, and most corpus variables impacted several scales. This
includes variables related to the robot’s navigation such as its maximal velocity,
acceleration, smoothness, pauses and hesitations. These initial results show that this
experimental methodology can bring some insights into people’s perception of mobile
robots, and more generally, how humans process cues from various modalities in order
to build their perception of an agent.
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