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Abstract – This paper focuses on studying the
complementarity between the spaces from hybrid cross-
modal state-of-the-art systems for video retrieval like [5].
We aim at investigating if these spaces really convey
different features, or if they are representing the same
things. We use PCA (Principal Component Analysis)
to study the optimal dimensions, CCA (Canonical
Correlation Analysis) to assess the similarity of the spaces,
and check if such approach is in fact similar to ensemble
learning. We achieve experiments on the MST-VTT
corpus, and show that in fact these two spaces are indeed
very similar, paving the way for new models that could
enforce more dissimilar spaces.

Keywords –Latent Space, Concept Space, Correlation,
CCA, Ensemble Learning, Cross Modal Retrieval

I. Introduction

Cross-Modal Video-Text retrieval makes use of both natural
language textual representations and video content. The
video and the textual parts are encoded into a powerful
representation of their own and are mapped to one common
space in which the similarity of different modalities reflects the
semantic closeness between them. The cross-modal retrieval
task is challenging due to the semantic gap between high
level semantics expressed in terms of textual query and low
level video features. The mainstream approaches for cross-
modal retrieval are Concept Based [9], [17], [22], [25]–[28] or
Concept Free [18], [24], [31], [33].

In a Concept Based approach, the textual query and videos
are mapped to visual concepts (actions, objects, places etc.)
using some linguistic rules and pre-trained Convolutional
Neural Networks (CNNs) respectively. The similarity between
videos and text is computed based on the similar visual
concepts between them. This similarity is able to support
explanation of retrieved results. Even though having the
advantage of explainability, these systems have a major
drawback, i.e. selection of concepts for queries and reliability
of concept classifiers used to index videos.

On the other hand, Concept Free approaches represent
videos and text into their respective features, and then map
those features onto the learned latent space for similarity
computation. The similarity between videos and textual
queries in this case is not explainable. Examples of
such models are Visual Semantic Embedding (VSE++) [8],
Word2VisualVec [23], Dual Encoding [4]. Most of the latent
space models are commonly trained using a pair-wise ranking

loss function [4], [19].
In addition to Concept Based and Concept Free models,

the late fusion of both spaces has become the norm in recent
state-of-the-art and TRECVid benchmarking [5], [10], [13],
[25], [29], [30]. The results of such hybrid approaches have
shown that the combination of concept free and concept based
achieves better performance [5],[30]. So, it is fair to assess that
Concept Based and Concept Free are complementary to each
other. However, to our knowledge, no specific study has been
done on the analysis of the complementarity or redundancy of
such hybrid approaches.

This paper presents a detailed analysis of hybrid
approaches, including various visual and statistical methods,
to explore the intra and inter relationship of latent space and
concept space. In Section II, we present related works on
concept based, concept free, and hybrid approaches, along
with some ways to explore single or multiple embedding
spaces. Section III lists the three research questions that we
are focusing on. Section IV describes the experiments we
performed. We present and discuss the results in section V
before concluding in Section VI.

II. Related Work

A. Cross-Modal Retrieval
A Cross-Modal retrieval system processes Text-to-Video

(TTV) tasks, where a textual query is used to retrieve the
videos, and Video-To-Text (VTT) tasks, in which the queries
are in the form of videos and text captions are retrieved.
Concept-Based approaches use concepts from large pre-
defined concept vocabularies for mapping visual concept to
a query and/or videos [9], [13], [17], [22], [25]–[29]. They
perform better in TTV tasks when the concepts are accurately
identified, but in practice, human intervention is often required
in-order to filter concepts after automatic mapping [15], [22].

To tackle the problem of concept ambiguity, Concept-Free
approaches map encoded videos and textual queries to high
dimensional latent spaces. They are effective [4], [18], [24],
[31], [33], but lack interpretability.

These latent spaces are trained using a pair-wise ranking
loss function, which yields latent spaces effective for
retrieval, and its optimization allows incorporation of domain
knowledge in the loss function. Yan et al. [34] introduced
Deep Canonical Correlation Analysis (DCCA) in order to
learn latent space, able to find low-level semantic correlation.

In [6], a pair-wise ranking loss function and DCCA were
combined in a way that maintains their strengths. The authors
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proposed the Canonical Correlation Analysis Layer (CCAL)
in a neural network to produce maximally correlated latent
representation of two modalities that lead to good results.

Hybrid approaches, that apply a late fusion of Concept-
Based and Concept-Free approaches, have become the norm
in TRECVid benchmarking [5], [10], [13], [25], [29], [30].
These approaches show that both concept free and concept
based are complementary to each other. Wu et al. [30]
proposed a hybrid model based on [4] for the training of
visual decoding network using the proposed class sensitive
binary cross entropy (BCE) loss function, and [5] extended [4]
to train the concept space using traditional BCE loss function.
Such a model is simple, effective and end-to-end. Besides the
increase in retrieval accuracy, the results of hybrid approaches
are interpretable.

B. Ensemble Learning
Ensemble learning [16], [35] is a general and reliable

technique, mostly used for classification, which co-ordinates
the outputs of multiple supervised learning algorithms with the
same architecture trained with different initializations using
diversified data. Different initializations allow the machine
learning models to have different learning paths, reducing
the overall error by averaging out the individual error due
to diversity of results and errors. There are two ways to
design ensemble learning algorithms. The first approach is to
train the machine learning models independently several times
in such a way that the resulting set of models are accurate
and diverse. The second approach [2] designs the ensemble
algorithm in a coupled fashion, where the models are trained
jointly and weighted scores for each model gives a good fit to
the data [7], [11]. As our analysis is based on a dual encoding
pipeline, which consists of CNN, hence, the ensemble learning
technique in our case is applied to CNN-based models.

C. Visual Analysis of High Dimensional Latent and Concept
Spaces
The video-text features extracted using neural networks

are not human-interpretable [12], [21]. However, In order to
interpret the latent space representation, many visual methods
are proposed. One of the widely used methods [21] is based on
Principal Component Analysis (PCA) for projection of a high
dimensional latent vector on low dimensional basis vector.
One can then observe if the properties of the high dimensional
latent vectors are preserved in the reduced dimensional latent
vectors. Domain specific methods may also be adopted
to visualize semantic meanings in latent space. Liu et al.
[20] maps attribute vectors created from opposing concepts,
whereas [14] clusters latent variables according to hierarchical
structures. In [1], the authors project both images and text on
the latent space to demonstrate the relationship between them.

III. Research Questions

We aim at studying to which extent the concept-
based and concept-free models, typically from [4], [5], are
complementary.

The first aspect of this study is related to the optimal
dimensions of each of these space, taken independently. The

point here is to investigate if these two spaces, when learned
independently, have similar optimal dimensions. If so, we
may consider that these two spaces have similar representation
capabilities, leading to consider that their complementarity
does not come from strong intrinsic differences. This leads
to our first research question:

R1: Is the number of optimum dimension the same in both
the concept and latent spaces for two subtasks, Text-to-
Video (TTV) and Video-to-Text (VTT)?

To answer R1, we will used side by side the initial spaces
learned. In a second study related to this question, we use
Principal Component Analysis (PCA) to explore the salient
linear dimensions of these high dimensional spaces, and to
study their variance.

Our other research questions are related to studying the
complementarity of these spaces taken together, from two
points of view:

R2: Do the latent and concept spaces represent
complementary information?

R3: Does ensemble learning exhibit complementarity on the
latent and concept spaces?

To answer R2, we study the correlation between spaces. We
know that the latent space has free axes in the former and
that the axes of the concept space are constrained by the
concepts: the analysis of correlation between two different
high dimension features spaces using Canonical Correlation
Analysis (CCA) will be able to answer this question. The
answer to question R3 will compare the performances of these
two spaces used jointly, using ensemble learning (cf. section
IV.D): if the results using ensemble learning are the same, then
the two spaces are in fact similar.

IV. Experiments

We describe here the context of our experiments, and the
experiments conducted (dimensions study, correlation study
using CCA and ensemble learning).
A. Experimental Context

1) Dataset: We performed all of our experiments on MSR-
VTT dataset [32]. It consists of 10K video clips, each being
described by 20 captions (in total of 200K natural language
sentences). In all the experiments reported here, we use the
official split of MSR-VTT i.e. 6,513 video clips for training of
the dual encoding model, 497 for validation, and 2,990 clips
for testing.

2) Evaluation Metrics: We report R@K (K = 1,5,10),
Median rank (Med r) and mean Average Precision (mAP),
where R@K is the percentage of test queries for which at least
one relevant item is found among the top-K retrieved results.
Med r is the median rank of the first relevant item in the search
results. The performance will improve as the value of R@K
and mAP increases, and the value of Med r decreases. All-
average mAP is the average of mAP in TTV and VTT. For
overall comparison, we also report the sum of all recalls in
some cases.

3) Implementation Details: We chose the dual encoding
model proposed by Dong et al. [5] for the mapping of visual
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and textual representation in hybrid space, i.e. shared latent
and concept space, as it achieves state-of-the-art performance.
We use the PyTorch code provided by the dual coding model1

to set up the basic architecture of a visual encoding network
and a textual encoding network. We employ the frame-
level video features of 4,096 dimensions for each video
frame provided by the authors, extracted using the pre-trained
ResNet-152 [3] and ResNext-101 [26]. For the video-text
concept features, the concept list is compiled from the training
set captions of MSR-VTT. We use a learning rate of 0.0001
and Adam optimizer to train the model, with the batch size of
128.

B. Optimal Dimensions Study
We explore the latent and concept spaces in order to

evaluate the number of optimum dimensions for both spaces
and their performances in their respective optimum regions.
The aim is to find the optimum regions by evaluating the
dual encoding model for varying numbers of dimensions in
latent space and concept space, and to compare both spaces in
order to see if both the spaces are similar with respect to their
optimum dimensions.

For the latent space, after the extraction of video and text
latent features using the dual encoding model [5], we map
different dimensional latent features to the latent spaces and
analyze the performance of the dual encoding model to explore
the optimum regions.

For the concept space, we studied the performance of dual
encoding model trained with concept space only while varying
the number of dimensions2. For that, we first extract video
and text concept features using the dual encoding model [5]
and map them onto latent space with varying number of
dimensions, in order to find the optimum regions for a concept
space.

C. Dimensionality Study using PCA
We study the dimensionality of latent space and concept

space using PCA to explore the distribution of data of these
high dimensional features space, in a way to explore the
salient linear dimensions of these high dimensional spaces.
We project the high dimensional latent features and concept
features onto low-dimensional space by employing PCA. By
estimating the variance of the top K principal components of
latent space, and concept spaces, we can estimate that whether
the optimum dimension for both spaces correspond to the
same number as the one obtained in the optimal dimension
study above in Section B..

D. Complementarity Study using CCA and Ensemble
Learning
We study here the complementarity between the latent

and concept spaces. This is done using two approaches.
The first one is to analyze the correlation between two
different high dimensional feature spaces using Canonical
Correlation Analysis (CCA). This will evaluate the similarity
in their representations. The second one is to compare the
performances of these two spaces used independently and

1https://github.com/danieljf24/hybrid_space
2The code provided by the authors was modified in order to do concept

space training/testing only

jointly, using ensemble learning: if the results using ensemble
learning are the same than assuming complementarity, this
will show that the two spaces are similar.

1) Correlation between Vector Spaces using CCA:
Using the notation of [5], consider the set of video features
f (v) and text features f (s) in latent space as Xl ∈ RN×p and
the set of video features g(v) and text features in concept space
g(s) as Xc ∈ RN×q, with dimensions p and q respectively,
with N number of videos and text/captions in the dataset. The
feature vector for ith video or text in latent and concept spaces
can be denoted as X i

l and X i
c respectively. In this section, we

investigate the relationships between the feature vectors of all
video-text in latent space(Xl) and in concept space (Xc) using
Canonical Correlation Analysis (CCA).

Consider M -Dimensional CCA transformed latent space
features X i

l ∈ Xl and concept space features X i
c ∈ Xc for

ith video-text as X̃ i
l ∈ RN×M and X̃ i

c ∈ RN×M respectively,
where M being chosen as minimum of the latent space
dimension p and concept space dimension q, mathematically
M = min(p,q). We define the highly correlated feature
vectors (X̃l ,X̃c) as the projection of Xl and Xc onto CCA
basis vectors, along with which the correlation was above the
threshold Th. Let us denote two linear transformation matrices
corresponding to these ith correlated basis vectors (X̃ i

l and
X̃ i

c ) by Ai
l and Ai

c respectively for latent space and concept
space. The correlated projections of X̃ i

l , and X̃ i
c are given

by:

X̃ i
l = Ai

lX
i

l

X̃ i
c = Ai

cX
i

c
(1)

Here X̃ i
l , and X̃ i

c can be considered as correlated components
embedded in X i

l , and X i
c . Hence, using these correlated

components, we want to observe the correlation measure
between variables of latent space vectors and concept space
vectors. If there are groups with high correlation amongst
variables which cover a good amount of variance, then
there might be overlapped feature representation amongst the
spaces, which answers R2.

2) Ensemble Learning:
We analyze in detail the model from [5] with ensemble

learning approaches. The analysis consists of training
the dual encoding model in three different ways: (i)
Homogeneous non-coupled model: where the latent space
model and concept space model are trained independently with
same configuration and hyper-parameters, then the retrieval
accuracy is combined using weighted average of two models;
(ii) Homogeneous coupled model: where the latent space and
concept space are trained jointly with same hyper-parameters;
and (iii) Heterogeneous coupled model: in which the latent
space and concept space are trained jointly with different
and the best chosen hyper-parameter for each (similar to the
hyper-parameter setting in baseline model [5]). Hence, with
all these model training scenarios, we want to observe the
differences in the behaviour of latent space and concept space
when learned in similar or different settings. We also want to
see if the performance gain in TTV and VTT task is either due
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Fig. 1. Optimum dimension study on MSR-VTT for latent and concept space. X-axis represents the number of dimensions in latent space
(a) and concept space (b, c) in log-scale, while Y-axis represents the mAP in %. Green line with bar represents the mean and standard deviation
in the stable region of the latent space. The mean and standard deviations in the optimal regions for concept space are shown red line and bar
for Text-To-Video (TTV) task, and cyan line and bar for Video-To-Text (VTT) task, respectively.

to ensemble learning or something else.

V. Results & Discussion

We answer here our three research questions.
R1: Is the number of optimum dimension the same in both

the concept and latent spaces for two subtasks, TTV and
VTT?

To evaluate the answer of this research question, we vary
the dimensions of latent space and concept space in order to
find the optimum regions (see Section B.). Figure 1(a) shows
the evolution of the average of the mAP for the TTV and
VTT retrieval tasks as a function of the number of latent
dimensions. This number is sampled from 16-D to 65536-
D on a log scale with 10 samples per octave (16, 17, 18, 19,
21, 22, 24, 25, 27, 29, 32, 34 . . . 46340, 49667, 53231, 57052,
61147, 65536). The same plots for the TTV and VTT tasks
separately are exactly similar (not shown). The performance
reaches a plateau around 200 dimensions, and it is then stable
until about 8000 dimensions, after which it decreases very
slowly (not shown).

Figure 1(b) shows the evolution of the average of the mAP
for the TTV and VTT retrieval tasks as a function of the
number of concept dimensions. This number is sampled
between from 16-D to 6983-D (i.e., the maximum number of
selected concepts), also on a log scale with 10 samples per
octave. This time, the same plots for the TTV and VTT tasks
are very different and are shown in Figure 1(c). There are
different optimal regions for the TTV and VTT tasks and these
optimal regions are much narrower, around 200 for the TTV
task and overall and beyond 500 for the VTT task.
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Fig. 2. PCA performance analysis for latent space. The X-axis
represents the number of principal components, whereas Y-axis
represents the normalized variance (top) and the all-average mAP in
% (bottom).
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TABLE I
Ensemble learning Experiments on MSR-VTT. Larger R@{1,5,10}, mAP and smaller Med r indicate better performance.

Method Text-to-Video Retrieval Video-to-Text Retrieval SumR
R@1 R@5 R@10 Med r mAP R@1 R@5 R@10 Med r mAP

Evaluation on a single space:
Latent independent 1536 (10) 10.94 29.12 39.73 19.30 20.21 19.00 42.60 54.81 8.10 9.26 196.20
Latent independent 512 (20) 10.88 29.06 39.73 19.25 20.15 19.42 42.91 55.20 7.95 9.30 197.21
Latent-latent coupled homogeneous (10) 11.17 29.83 40.58 18.10 20.63 19.95 43.77 56.31 7.60 9.57 201.61
Latent-latent coupled heterogeneous (10) 11.37 30.25 41.11 17.80 20.93 19.85 43.70 56.26 7.60 9.63 202.54
Latent-concept coupled heterogeneous (10) 11.42 30.29 41.16 17.70 21.00 19.65 43.24 55.84 7.90 9.57 201.60

Evaluation on two spaces:
Latent-latent indep. homogeneous (10) 11.50 30.30 41.22 17.55 21.04 20.92 44.78 56.99 7.25 9.89 205.71
Latent-latent coupled homogeneous (10) 11.41 30.31 41.16 17.70 20.98 20.30 44.57 56.85 7.10 9.80 204.60
Latent-latent coupled heterogeneous (10) 11.78 31.12 42.28 16.20 21.60 21.23 45.65 58.08 7.00 10.36 210.14
Latent-concept coupled heterogeneous (10) 11.76 30.98 42.10 16.40 21.52 20.25 44.74 57.48 7.10 10.09 207.31
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Fig. 3. CCA analysis: Top 256 canonical correlation of independent
(non-coupled), coupled homogeneous, coupled heterogeneous and
coupled heterogeneous concept training’s. Most correlated is coupled
homogeneous training of two spaces; whereas least correlated is
independent training of two spaces.

Discussion Overall, the optimum number of dimensions is
around 200 for both the latent and concept spaces, and this
is much lower than the numbers used in [5] (1536-D and
512-D). The performance using concepts is a bit lower, but
not much for the optimal values. The fact that the values are
lower and even more outside of the optimal region can be
explained by the fact that the classification task associated
with the concept space places strong constraints on it. The
asymmetry between the TTV and VTT behaviours can be
explained by the asymmetry in the ratio of captions to videos.
On all curves, fluctuations can be observed. These are due to
the effect of the random initialization in the training, and they
are at the same level as what is observed when running the
same experiments multiple times.

The research question R1 is also studied using PCA to re-
verify the number of optimum dimensions in latent space, as
mentioned in Section C.. For the sake of simplicity, we only
analyse here the latent space. Figure 2(top) shows the decrease
of the values of the normalized variances as a function of the
eigen dimensions for multiple latent space trainings with a
variable number of latent dimensions, ranging from 11 to 4096
on a log scale and with two samples per octave (11, 16, 22, 32,
45, 64 . . . 1024, 1448, 2048, 2896, 4096). Curves are shown

with different colors and the number of latent dimensions
used for training can be inferred from the point at which the
curve stops on the right side. As can be seen, whatever the
initial number of latent dimensions, there is no significant
variances beyond a few hundred eigenvalues (around 27 − 29

eigenvalues). The cumulative variance continues to increase
beyond (not shown) but this likely corresponds to noise.

Figure 2(bottom) shows the evolution of the performance
(all averag mAP) of the same multiple trainings when reducing
the size of the latent representations by keeping only the
components with the highest variances. The difference in the
initial performance (at the point which is most on the right for
each curve) likely comes again from the random initialization
and is also in the standard deviation obtained with multiple
identical experiments. However, the variation of performance
on each single curve corresponds to a same initialization and
is expected to be significant. We see that for those starting
with a high number of dimensions there is a slight increase
in performance, confirming that the components with lowest
variances contain mostly noise. The best performance seems
to be reached by training with a number of dimensions larger
than the optimum value found either directly (without PCA) or
indirectly (with PCA) and then reducing the space size using
PCA, e.g., 4096 → 256.

Discussion As the number of optimum dimensions with
and without PCA are very close for the latent space, these
experiments show that even with dimensionality reduction
of latent representation, the optimum regions of both spaces
are still the same with the slight increase in performance
due to noise reduction, which shows that (i) the properties
of original high dimensional latent space are preserved in
reduced dimensional space, and (ii) the observation holds that
these two spaces may have a lot in common, leading to answer
yes to R1.

R2: Do the latent and concept spaces represent
complementary information?

To answer this question R2, we rely on a CCA study, in
order to find out the correlation and complementarity between
two spaces. One large difference between the latent space
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and the concept space is that the concept space is associated
with a classification task, while the latent space is not. If
the classification task is removed, the concept space becomes
just a second latent space with different characteristics (e.g.,
using a Jaccard similarity instead of a cosine). So, in
our analysis, we consider four possible combinations of
latent and/or concept spaces: (i) two identical latent spaces
independently trained and lately fused (i.e., homogeneous
non-coupled), (ii) two identical latent spaces jointly trained
(i.e., homogeneous coupled), (iii) two different latent spaces
(respectively with cosine and Jaccard similarities) jointly
trained (i.e., heterogeneous coupled), and (iv) the same with
additionally a classification task on the second latent space,
which turns it into a concept space, and the overall system
as the regular hybrid one (coupled heterogeneous concept).
For better comparisons, we used 512 as the dimension for all
spaces.

Figure 3 plots the top-256 canonical correlations of
the latent-latent or latent-concept mappings in the four
configuration just mentioned. The correlations are all quite
high with similar profiles but still small differences. The
independent training is the least correlated, the coupled
homogeneous one is the most correlated, the other two,
coupled heterogeneous and coupled heterogeneous concept
(hybrid) are in between and almost identical, indicating that
the classification task makes no difference in the correlation.

R3: Does ensemble learning exhibit complementarity on the
latent and concept spaces?

To answer this question, we report quantitative evaluation
of the four combinations described above used in ensemble
learning experiments. The second part of table I shows
the performance of the four combinations on the fused
spaces using the standard MSR-VTT metrics, the last row
corresponding to the regular dual encoding hybrid system [5].
The values correspond to the average of 10 identical runs
with different random initialization so that we can get an
estimate of the statistical significance of the differences
between the experiments using a Z-test. When fused, there is
no statistically significant difference between the independent
and coupled trainings for the homogeneous latent spaces. The
main best performance is achieved by the latent-latent coupled
heterogeneous method that uses latent spaces of different types
(with cosine and Jaccard similarities). The experiments on
latent-latent coupled homogeneous underperform latent-latent
coupled heterogeneous: there is a decrease in performance if
cosine similarity is used in concept space. There is a slight
decrease in performance when adding the classification task
but the statistical significance is marginal. The first part of
the table shows the performance when performing the task
using the first latent space only and the first line is inserted
for showing that there is no statistically significant difference
between a 1536-D latent space and a 512-D one.

Discussion The experiments with CCA and ensemble
learning showed that there is high correlation between the
latent space and concept space when considering the same
hyperparameters, for instance same distance metrics for

calculating similarity in two spaces. There is the least
correlation when considering independent training of two
spaces, as the spaces are not optimized with the constraints
present in the other space. Overall, we can answer No to
R2. The ensemble learning experiments show that there is
no significance difference in performance of two independent
latent space with different dimensions. The significant
improvement in retrieval comes from training two latent
spaces with different similarity computation techniques. This
analysis leads us also to answer No to R3.

VI. Conclusion

In this paper, we explored the complementarity of the latent
and concept spaces of hybrid approaches for cross-modal
video search, achieving state-of-the-art retrieval performance
as well as providing some support for explanation. We reused
the framework proposed in [5] to explore this problem from
3 different perspectives: a) the dimensionality of these spaces
taken independently, b) their complementarity from the data
content using CCA, and c) their complementarity for retrieval
using ensemble learning. From these three perspectives, our
experiments show that they represent the same information
and the performance increase in retrieval is because of the
heterogeneity of the similarities used in two spaces, i.e.,
Cosine vs. Jaccard. To our knowledge, this is the first time
that such study is conducted. The side effect from our results is
that, even though these latent and concept spaces are supposed
to convey different information, they do not.

Our findings open the way for many future works. Among
them, the first one is to explore ways to inspect approaches
that may enforce stronger complementary of these spaces,
leading to new hybrid approaches. Another direction for
our work could concentrate on frameworks that support the
study of spaces complementarity, for hybrid spaces in other
contexts. Such framework could help the community to detail
the behaviours of any hybrid spaces. In future, we would
like to use the nonlinear decomposition for the analysis of
latent and concept space and correlation between the two,
considering the complexity of the inputs.
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