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A B S T R A C T   

An accurate description of brain white matter anatomy in vivo remains a challenge. However, technical progress 
allows us to analyze structural variations in an increasingly sophisticated way. Current methods of processing 
diffusion MRI data now make it possible to correct some limiting biases. In addition, the development of sta
tistical learning algorithms offers the opportunity to analyze the data from a new perspective. We applied newly 
developed tractography models to extract quantitative white matter parameters in a group of patients with 
chronic temporal lobe epilepsy. Furthermore, we implemented a statistical learning workflow optimized for the 
MRI diffusion data – the TractLearn pipeline – to model inter-individual variability and predict structural 
changes in patients. Finally, we interpreted white matter abnormalities in the context of several other parameters 
reflecting clinical status, as well as neuronal and cognitive functioning for these patients. Overall, we show the 
relevance of such a diffusion data processing pipeline for the evaluation of clinical populations. The “global to 
fine scale” funnel statistical approach proposed in this study also contributes to the understanding of neuro
plasticity mechanisms involved in refractory epilepsy, thus enriching previous findings.   

1. Introduction 

Neurological disorders associated with white matter (WM) lesions 
include greater cognitive and behavioral deficits compared to isolated 
cortical damage, and WM impairments are often a sign of a worse 
prognosis for recovery (e.g., Duffau et al., 2014; Kiran & Thompson, 
2019; Lunven et al., 2015; Sidaros et al., 2008). Typically, neurosur
geons pay particular attention to preserving the connections of the major 
white matter networks, as the WM macrostructure is little subject to 
inter-individual variability and reorganization (Duffau, 2017; Ius et al., 
2011). However, there is some neuro-adaptability of the WM micro
structure. Several studies have indeed demonstrated that the density of 
myelinated axons or that the degree of myelination itself can vary 
depending on several factors and interactions (Walhovd et al., 2014). 
While structural connectivity supports functional wiring, the function 
also directly modulates certain properties of structural connections for 
example (Hervé et al., 2013). The WM microstructure has thus emerged 
as an important feature to consider when studying neuroplasticity, but 
an accurate quantification of its variations in neurotypical or neuro
pathological populations remains an ongoing challenge (Yang et al., 

2021). 
Temporal lobe epilepsy (TLE) is characterized by seizures arising 

from a dysfunctional temporal lobe epileptogenic region, typically 
located within temporal medial structures (Burianová et al., 2017). 
Changes in structural and functional networks in this form of epilepsy, 
which is particularly resistant to antiepileptic drugs, are based on 
complex intertwined neuroplasticity mechanisms (e.g., Englot et al., 
2016; Roger et al., 2019a; Roger et al., 2019b). Given the significant role 
of lateral and medial temporal regions in cognitive functions such as 
language and memory, recurrent seizures would modify in time the 
function and the structure of these high-level functional networks 
(Balter et al., 2019; Banjac et al., 2021a; Banjac et al., 2021b; Berg & 
Scheffer, 2011; Roger et al., 2019a; Trimmel et al., 2018). Foscolo and 
colleagues have studied in TLE patients, the anatomical structure of the 
uncinate and inferior longitudinal tracts given their important role in 
language and memory and the anatomical proximity to the epilepto
genic zone of patients. Consistent with the “minimal common brain” 
hypothesis (i.e., a fixed macrostructural connectivity, even in the case of 
severe brain damage; Ius et al., 2011), no anatomical differences were 
found between TLE patients and controls regarding the length or 
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direction of these tracts. However, the WM microstructural modifica
tions were detectable (Foscolo et al., 2007). Diffusion tensor imaging 
(DTI) studies performed in TLE patients indicate a global impairment of 
the WM microstructure, which may be driven by a progressive degen
erative process in response to chronic seizures (Chiang et al., 2016; 
Keller et al., 2012). Although epilepsy is classically considered a cortical 
disease, DTI studies showed that WM fascicles are also affected (van 
Eijsden et al., 2011), even at a distance from the primary epileptogenic 
region as in the contralateral non-epileptic hemisphere (Arfanakis et al., 
2002; Concha et al., 2005). DTI abnormalities are not confined to the 
epileptic temporal lobe but rather involve a large network of association, 
projection, and commissural WM fibers (Hatton et al., 2020). 

The methodological progress in terms of acquisition and processing 
of DTI-MRI data is also substantial and allows to refine the past findings. 
The transition from relatively simple processing models such as diffu
sion tensor imaging (DTI) to more complex models such as Constrained 
Spherical Deconvolution (CSD) has led to considerable advances, 
particularly concerning the problem of fiber crossings (Tournier et al., 
2007). The study of the topology, as well as the neurobiological nature 
of white matter damage in the pathological context (i.e., neurological 
disorders), directly benefits from these new approaches and techniques. 
Using the DTI model, Fractional Anisotropy (FA) reflects the WM 
microstructure, and its decrease indicates WM damage (Aung et al., 
2013; Zhang et al., 2012). However, when WM fibers are not aligned (i. 
e., crossing fibers, kissing fibers) the DTI model is not appropriate to 
make interpretations (Jones et al., 2013). Yet, the fiber crossing prob
lems may concern up to 90 % of brain voxels (Jeurissen et al., 2013). 
Overall, DTI has many advantages but is a too simple model to account 
for the neurobiological nature underlying WM changes. For example, 
patients with TLE exhibit aberrant neurogenesis in the vicinity of the 
seizure-generating region, resulting in atypical neoconnections or fiber 
sprouting (Ben-Ari et al., 2008; Cho et al., 2015). Beyond epileptic re
gions other structural changes are also frequently observed, such as the 
so-called “blurring phenomenon” (i.e., abnormalities in the boundary 
between gray and white matter; Naves et al., 2015). In these situations, 
interpreting WM abnormalities based on FA calculated with DTI models 
may be erroneous and underlines once again, the necessity of using more 
complex models to study WM microstructural changes induced by 
epilepsy. 

In this context, the main objective of this study was to accurately 
characterize the WM damages in TLE patients. We used the CSD model 
(Tournier et al., 2007) to minimize the limitation related to the fiber 
crossings problem. By employing state-of-the-art deep learning tools, we 
performed probabilistic tractography of each individual and we 
extracted several quantitative microstructural parameters. To identify 
WM changes in patients, we applied a combined “big-picture and fine- 
grain” funnel approach. We performed several methods of dimension 
reduction, using both conventional and (non-linear) manifold learning 
statistical analyses. We first describe the global (i.e., the entire structural 
connectome) and tract-specific profile of impairments in patients, using 
clustering analyses to extrapolate information based on average patterns 
(profiling). We then refine and complete our profiling analyses by 
modeling and quantifying the inter-group/inter-individual variability in 
a reduced and relevant manifold space with TractLearn, a statistical 
pipeline optimized for these purposes (Attyé et al., 2021). Manifold 
techniques allow us to map the high-dimensional image domain to the 
reduced latent space of brain fascicles, and to handle high-dimensional 
low-sample size data (HDLSS; Hall et al., 2005). We also leveraged the 
manifold learning pipeline in terms of local anomaly predictions to 
target structural damage in patients at a finer scale (voxel-level). 

As a second objective, we evaluated the effect of clinical, functional, 
and cognitive factors on WM reorganization. Current evidence con
verges on an association between the microstructural properties of white 
matter and cognitive deficits observed in patients with TLE (e.g., Leyden 
et al., 2015; Rodríguez-Cruces et al., 2020; Roger et al., 2018, for a re
view). However, the link between structural anomalies of WM and 

cognitive efficiency remains to be clarified given the high level of 
variability in TLE patients. Indeed, various degrees of cognitive deficits 
can be observed in these patients (Alessio et al., 2013; Hoppe et al., 
2007; Jaimes-Bautista et al., 2015; Metternich et al., 2014), and func
tional reorganization patterns can be more or less cognitively efficient 
(Roger, Pichat, Torlay, et al., 2019). To estimate in depth the links be
tween quantitative structural parameters, function, cognition, and 
clinical variables, we performed several correlational analyses on global 
and local estimates of structural changes identified in patients. 

2. Material and methods 

2.1. Populations 

MRI scans of 40 healthy controls (HC) and 25 matched drug-resistant 
epileptic patients presenting unilateral TLE have been initially exam
ined. We excluded subjects with movement artifacts making it impos
sible for DWI postprocessing (n = 3 HC; n = 7 TLE). In all, 37 HC (23 
males; age 38.3 ± 7.1 years) and 18 TLE patients (10 with left TLE 
[LTLE]: age 34.95 ± 9.6 years; 8 with right TLE [RTLE]: age 36.39 ±
9.4 years) were finally considered. Patients, as well as controls, have 
provided written informed consent for the study that was approved by 
the local ethic committee (CPP: 09-CHUG-14, 04/06/2009). 

Diagnosis of drug-resistant TLE was established by neurologists 
working in a specialized epilepsy care unit. This diagnosis follows the 
recommendations of the International League Against Epilepsy (ILAE) 
committee report (Wieser, 2004) and is based on the synthesis of several 
evaluations (clinical, intracranial EEG, MRI/PET scan). Patients enrolled 
in the study did not present other neurological comorbidities (traumatic 
brain injury, stroke, or tumors). One-third of them (35.6 %) had a febrile 
seizure history. They were candidates for future neurosurgery (temporal 
lobe resection) and have never had neurosurgery in the past, MRI 
evaluations were thus performed at the presurgical stage. 

2.2. Clinical and cognitive description 

Several demographic and clinical features were considered such as: 
age (AGE); gender (GEN); educational level (EDU); age of epilepsy onset 
(ASO); duration of epilepsy (DUR); seizure frequency (FRQ); number of 
daily-taken antiepileptic drugs (AED); hippocampal sclerosis reported in 
clinical neuroradiology reports (HS); and asymmetry between hippo
campi (ASY; estimated by the Volbrain protocol: https://volbrain.upv.es 
/; (Manjón & Coupé, 2016). On average, patients with LTLE and RTLE 
were matched regarding their clinical features: AGE (35,67 ± 9.5 years; 
U = 43.5, p =.5); ASO (14.7 ± 10.5; U = 37.5, p =.3); DUR (12.2 ± 10.3; 
U = 36.5, p =.3); FRQ (U = 37.5, p =.3) and AED (U = 36, p =.2). TLEs 
were in addition comparable regarding their absolute value of ASY (U =
45, p =.5; Fig. 1). 

We also included a hemispheric lateralization index (LI) derived 
from task-fMRI as these participants also underwent fMRI evaluation of 
language and memory networks. The LI is typically included in the 
clinical workup of drug-resistant epileptic patients at our Center. In 
practice, LIs were extracted from the functional activations during the 
sentence generation task with implicit encoding (language-memory 
task) of the GE2REC fMRI protocol (Banjac et al., 2020). They were 
measured based on frontal activation, owing to the very high level of 
congruence with the Wada lateralization test for language (Lehéricy 
et al., 2000). Operationally, we have used a mask based on symmetrical 
left–right anatomical frontal regions (Tzourio-Mazoyer et al., 2002, 
Tzourio-Mazoyer et al., 2017). We calculated frontal LIs for each patient 
and the control group, according to the method proposed by Seghier 
(2008). We used absolute LI values in this study, reflecting either no 
frontal specialization (LI close to 0) or left or right hemispheric 
specialization (LI above 0.4 and close to 1). 

In addition, all patients have undergone complete cognitive assess
ment including neuropsychological and language testing, carried out by 
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neuropsychologists and speech therapists from the neurology depart
ment. The following cognitive features were used as cognitive scores of 
interest: (a) general assessment: verbal comprehension index (VCI) and 
perceptual reasoning index (PRI; WAIS-IV, Wechsler, 2011); (b) lan
guage scores composed of naming (NAM; Deloche et al., 1997) as well as 
phonemic (PFL) and semantic (SFL) verbal fluency (Godefroy, 2008); 
and (C) memory scores composed of auditory memory index (AMI) and 
visual memory index (VMI) (WMS IV; Wechsler, 2012); (c) executive 
scores: Stroop test (STR) and trail making test (TMT; (Godefroy, 2008)). 
All raw scores were standardized into z scores by neuropsychologists; 
according to gender, age, and/or sociocultural level, as specified in 
respective manuals. We observed significant group differences at p <.05 
by using parametric testing (two-sample t-tests) for AMI (t(17) = -2.49, 
p =.02), VMI (t(17) = 2.56, p =.02), PFL (t(17) = -2.16, p =.05) & SFL (t 
(17) = 2.12, p =.05) respectively. However, these differences did not 
survive at either a corrected threshold for multiple comparisons or by 
using Mann-Whitney non-parametric tests. Distributions of the stan
dardized clinical and cognitive scores are presented in Fig. 1 below. 
Detailed descriptions of variables and statistical tables are included in 
supplementary materials (Appendix S1). 

3. Diffusion MRI 

3.1. Diffusion MRI acquisition 

MRI was performed on a Philips Achieva 3.0 T dStream (Philips 
Healthcare®, Best, The Netherlands) with a 32-channel head coil. For 
the diffusion-weighted acquisition, we used a b-value of 1000 s/mm2, 60 
diffusion-weighting non-collinear directions, and one b = 0 acquisition. 
Other parameters of the diffusion sequence were: TE/TR = 70 ms 
/11374 ms; Scan Time = 907 s (11′56′′). To minimize artifacts, two 
additional b = 0 s/mm2 images were acquired before each HARDI 
acquisition. Each of the additional b = 0 s/mm2 images had identical 
imaging parameters as above, but one had its phase encoding reversed to 
allow susceptibility distortion correction (Holland et al., 2010). T1- 
weighted anatomical images were acquired using a 3D T1-TFE 
sequence with the following parameters: 256 × 256 × 160 matrix; 1 
mm isotropic resolution; 256 × 256 within slice imaging matrix, TE/TR 
= 4.6 ms / 9.552 ms; flip angle 8◦. 

3.2. Diffusion MRI processing  

• Data pre-processing and tracts segmentation 

Preprocessing of diffusion-weighted images included denoising of 
data (Veraart et al., 2016); eddy current correction and motion 

Fig. 1. Clinical and cognitive features of TLE patients. Distribution of the LTLE (in red) and RTLE (in green) patients across several clinical (upper panel) and 
cognitive (lower panel) variables. For descriptive and comparative purposes, data from a previously published article aiming to identify cognitive fingerprint on a 
larger sample of TLE patients (left and right; n = 57; Roger et al., 2020) are projected in background (grey dots). Overall, patients included in this study present a 
similar profile to that of the larger TLE sample. LTLE/RTLE patients are matched on the clinical variables, also for the volume asymmetry between hippocampi (ASY; 
considering the absolute value). We observed significant differences at p <.05 on some cognitive variables (marked with a star, namely: AMI, VMI memory scores and 
SFL and PFL verbal fluency scores). However, these differences did not persist at a corrected statistical threshold. See main text for description of variables and 
associated statistics. 
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correction (Andersson et al., 2003) as implemented in FSL (topup 
command; Smith et al., 2004); bias field and Gibbs artifacts’ corrections 
(Tustison et al., 2010), and up-sampling DWI spatial resolution by a 
factor in all three dimensions using cubic b-spline interpolation, to a 
voxel size of 1 mm3 (Raffelt et al., 2012a). 

From the preprocessed data, we have estimated fiber orientation 
distributions using the Constrained Spherical Deconvolution model 
(CSD; Tournier et al., 2007) with the individual response function (RF) 
and by using multi-tissue (3-tissue) CSD variants (Dhollander et al., 
2019). We derived the SH peaks from the fiber orientation distribution 
function (FOD) maps. All preprocessing steps were conducted using 
MRtrix3 commands (https://www.mrtrix.org) or using MRtrix3 scripts 
that interfaced with external software packages. For an efficient, auto
matic, and fast tracts segmentation, we used TractSeg (Wasserthal et al., 
2018; openly available at: https://github.com/MIC-DKFZ/TractSeg). 
TractSeg algorithms propose to create bundle-specific tractograms by 
tracking directly on the tract orientation maps (probabilistic tracking) to 
perform tractography from original DWI data. Briefly, the authors have 
used convolutional neural networks for the tract segmentation, start/ 
end region segmentation, and tract orientation mapping, all based on U- 
Net (Ronneberger et al., 2015) that receives FOD peaks as input.  

• Quantitative parameters extraction 

Overall and using TractSeg, 71 tracts were successfully and auto
matically segmented in all subjects. Note that we considered the indi
vidual parts of the corpus callosum (CC) separately and not the CC as a 
whole because of observations from previous studies showing differen
tial alterations in subparts in patients with epilepsy (e.g., Weber et al., 
2007). 

From the segmented and binarized tracts, we extracted four quan
titative parameters via MRtrix. We extracted fractional anisotropy (FA) 
values from the individual FA maps. We have also computed the 
apparent fiber density (AFD) coefficients (Raffelt et al., 2012b) from the 
FODs-related maps and using the afdconnectivity command. In addition, 
we generated track-weighted imaging (TWI) maps, containing 
streamline-related information (Calamante, 2017; Pannek et al., 2011). 
This allowed us to (a) reduce errors related to coregistration between 
subjects and minimize highly variable and artifact-sensitive cortical 
endings by retaining only 80 % of the values (see Attyé et al., 2021); and 
(b) consider additional contrast parameters for quantitative analyses 
that were shown to be sensitive and clinically valid (Calamante, 2016; 
Willats et al., 2014). The first contrast was based on the FODs amplitude 
along the direction of the tract (TWI-FOD or TWI; Willats et al., 2014). 
The second was the track-weighted version of FA (TWI- FA; Calamante 
et al., 2015). All quantitative metrics (FA, AFD, TWI-FOD TWI-FA) were 
extracted for each voxel contained in the tractograms. 

3.3. Statistical analyses 

We applied a statistical funnel approach to identify significant 
structural changes in TLEs relative to HCs from a global to local scale. 
We consider the tracts with respect to the hemisphere involved in the 
onset of epileptic seizures, reasoning in ipsi-epileptogenic tracts (ipsi
lateral to the problematic hemisphere) and contro-epileptogenic tracts 
(in the hemisphere contralateral to the epileptogenic focus identified by 
intracranial electrodes). For left TLE patients (LTLE), left ipsi- 
epileptogenic tracts were compared to their left counterparts in HCs 
and vice versa for right TLE (RTLE). 

3.4. Estimation of global profiles 

We averaged the voxel-wise quantitative values of each metric 
(independently) and for every tract. In all, we thus obtained 71 tracts 
mean values for all subjects (HC and TLE) and metrics (FA, AFD, TWI, 
TWI-FA, respectively). We first applied bootstrapped two-sample t-tests 

between groups on each bundle to identify robust and significant 
modifications in TLE. The statistical threshold of p <.05 was corrected 
for multiple comparison issues (Bonferroni correction). Significantly 
affected tracts in TLE compared to HC (i.e., tracts with a significant 
reduction/increase) were used as fascicles of interest (FOIs) for subse
quent analyses. 

To identify clusters of tracts presenting similar WM changes in TLE 
(global patterns of change), we performed hierarchical clustering on the 
FOIs. The distance matrix was built from centered values (TLE-HC) and 
was based on Euclidean distance. Convergence of clusters across mea
sures was also tested by applying hierarchical clustering on the corre
lation matrices (Appendix S2, Figure S3). In addition, we carried out 
confirmatory analyses by using scikit (https://www.scikit-yb.org/en/ 
latest/api/cluster/index.html) to (i) validate the optimal number of 
clusters with the elbow method; and (ii) assess the consistency and 
robustness of identified clusters using silhouette and inter-cluster dis
tance analyses respectively (Appendix S2, Figure S2). 

3.5. Statistical learning to assess variability 

We applied a previously published manifold learning pipeline 
(TractLearn: Attyé et al., 2021; https://github.com/GeodAIsics/Tract 
Learn-WholeBrain). TractLearn used geodesic manifold learning as a 
data-driven learning task and allows a unified framework for brain 
fascicles quantitative analyses. As TractLearn is integrated into a Rie
mannian atlas framework, f(x) represents the local mean value (i.e., the 
mean value of the closest HC) in the manifold space (Lawrence, 2003; 
Titsias & Lawrence, 2004). This way, the TractLearn algorithm has 
strong advantages in the detection of both global and local variability 
(Attyé et al., 2021, for a demonstration and a comparison with classical 
GLM to detect subtle differences). 

As a first step of the pipeline, we reduced the dimensionality of all 
voxels contained in each tract to obtain one point per tract and per in
dividual in the manifold space. TractLearn uses U-map (McInnes et al., 
2018) as a dimension-reduction technique to preserve as much as 
possible the original structure of the data, in the reduced space (the 
points themselves and the euclidean/geodesic interpoint distances as 
well). An optimization-based method was applied to assess the optimal 
number of latent dimensions. Note that for illustrative purposes, how
ever, we used a systematic 2D representation. 

As a second step, we learn the manifold based on the HC data [Y = f 
(x) + ε]; where Y represents the patient in the “original” tract space (i.e., 
quantitative values extracted from each TractSeg tract), x the corre
sponding point in the HC reduced space, ε are the residuals and repre
sent the subjects’ variability. f is thus the regression equation between 
the reduced space and the real space. TLE patients were individually 
projected into the reduced space of HC (x) and then back-projected (f–1 
kernel regression) into the tract space (f(x)). 

Placed in the reduced manifold space, we have then computed the 
Kullback-Leibler divergence (DKL) measure between TLE and HC to 
assess statistical divergence (inter-group/ inter-individual variability). 
We used a bootstrap procedure and applied a Bonferroni-like correction 
to adjust the statistical threshold of significance for multiple comparison 
problems (p <.001). The pipeline also allows to posit one single patient 
relatively to others (HC and/or TLE) and to assess the inter-/intra-in
dividual variations of individual TLE patients, compared to HC. 

3.6. Statistical learning to predict local anomalies 

In addition to detecting inter-individual divergences, we used 
TractLearn to finely target WM abnormalities in TLE. We calculated 
residuals ε in the subject space to identify voxels with significant mod
ifications compared to the HC norm, employing z scores. ε was estimated 
for each patient using a leave-one-out strategy. Voxels with a z score 
greater/lower than a Bonferroni adjusted threshold (≅ ∓ 4.8 SD) were 
considered significantly deviant. 
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We used the thresholded z scores maps of alterations as an input to 
measure a relative percentage of “lesion” (%RL = number of deviant 
voxels / total number of voxels contained in the tract) for each tract and 
patient. We merged the respective tract-based maps to obtain whole- 
brain lesion maps for each individual. Individual maps were also sub
sequently aggregated to map the probability of WM lesions at the group 
level. 

3.7. Connecting structural metrics to clinical and cognitive features 

To identify the association between clinical/cognitive features to 
FOIs parameters at the global scale (connectome and tracts), we per
formed classical correlation analyses (Spearman correlations) and we 
used a conventional statistical threshold of significance of p <.05. We 
further estimate the associations between the global structural profile 

Fig. 2. WM microstructure changes and tract-based patterns of alteration A. At left, the TLE-HC comparisons on the 71-tract mean values (independently) 
estimated from the following metrics of interest: AFD, FA, TWI, TWI-FA. Significant differences between TLE-HC at p <.05 (with Bonferroni correction ≅ p <.001) are 
framed in red (See Appendix S2, Figure S1 for enlarged version of the plots.). We found FA and TWI-FA modifications in TLE compared to HC. TWI-FA identify more 
specifically the alterations than the traditional FA metric. At right, the line plot of the mean TWI-FA of tracts presenting significant differences between TLE and HC 
(fascicles of interest, FOIs). B. Hierarchical clustering of the FOIs based on the distance matrix of the centered TWI-FA values (dendrogram of Euclidean distance). 3 
main clusters of damage were identified at the second level of the dendrogram (C1: ipsilateral fronto-basal fascicles; C2: contralateral fascicles with posterior 
projections; C3: bilateral temporo-mesial tracts). 
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and clinical/cognitive factors by taking advantage of the manifold. 
Manifold analyses are particularly useful for observing and taking 
variability into account. Here, we have sought to make sense of the 
latent dimensions by using a similar approach to Renard et al., (2021). 
More specifically, logistic regression was applied in the reduced space 

produced by U-map to color-code the probability of belonging to a class 
of a given cognitive and/or clinical variable. The resulting projection 
provides insight into whether and how this variable describes the data in 
the reduced space. 

Finally, we used NiiStat scripts (https://github.com/neurolabusc/ 

Fig. 3. Manifold and voxel-wise approaches at the interface between group differences and individual alterations in patients.A. Altman plot, quantifying 
the agreement between two measures. The closer the difference is to zero, the better the agreement. The average difference between the t-values obtained from 
traditional statistics and the KL divergence values extracted from the manifold space is − 0.27 for TWI-FA. Note also that the average differences regarding the other 
parameters are: FA = 0.36; AFD = 0.24; TWI = -0.29.B. At left, the global 2D manifold based on the 25 FOIs (HCs in blue; RTLE in green; LTLE in red). The distance 
between controls and patients is significant at p <.05. At right, the map of lesions observed at the voxel level in the TLE group, using TractLearn. The map is projected 
on a WM template. Voxels with a significant reduction in TWI-FA after Bonferroni correction (z < -4.8) are displayed in purple.C. At left, the 2D manifold of a given 
FOI (Anterior Thalamic Radiation ipsi-epileptogenic: ATR_I) as an example, showing the relative position of individual patients (P01, P02) compared to the control 
group (in blue). At right, the lesion maps of these two patients projected on the template of the corresponding fascicle, highlighting both inter- and intra-individual 
variability. 
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NiiStat) to map the lesion-behavior correlations at a local scale (i.e., at 
the voxel level; VLBM). Bivariate testing was based on 5000 permuta
tions. We set the minimum of overlap at 6 – meaning that we considered 
only damaged voxels present in at least one-third of patients – ensuring 
that correlation analyses are performed in regions typically impaired in 
TLE and avoiding contamination by low-power voxels (Sperber & Kar
nath, 2017). All statistics of the multimodal investigations were sys
tematically adjusted for multiple comparisons. 

4. Results 

4.1. Structural modifications in patients 

4.1.1. General trends of structural damage 
We found significant differences between TLE and HC for two of our 

four quantitative metrics: the FA (44 tracts) and the TWI-FA (25 tracts). 
The TWI-FA measure being sensitive and more specific (Fig. 2), we 
focused the rest of our analyses on this metric. 

TLEs present a systematic decrease in TWI-FA when compared to HCs 
(no increase; see Fig. 2, panel B). Tracts presenting a significant reduc
tion in TWI-FA (p <.05 Bonferroni corrected) in TLE versus HC are the: 
uncinate fascicle (UF), cingulum (CG), superior longitudinal fascicle 
branch II (SLF_II), fronto-pontine tract (FPT), fornix (FX), anterior 
thalamic radiation (ATR), thalamo-prefrontal (T_PREF), striato- 
prefrontal (ST_PREF), thalamo-premotor (T_PREM), striato-premotor 
(ST_PREM), striato-postcentral (ST_POST), striato-fronto-orbital 
(ST_FO), for ipsi-epileptogenic tracts; the uncinate fascicle (UF), infe
rior longitudinal fascicle (ILF), inferior occipito-frontal fascicle (IFO), 
fornix (FX), middle longitudinal fascicle (MLF), striato-occipital 
(ST_OCC), thalamo-occipital (T_OCC), optic radiation (OR), for contra
lateral tracts; and the rostrum, genu, isthmus, splenium of the corpus 
callosum and the commissure anterior (CC1, CC2, CC6, CC7, CA 
respectively), for interhemispheric fibers. These 25 tracts are considered 
fascicles of interest (FOIs) in subsequent analyses (Fig. 2). 

The hierarchical clustering performed on the FOIs and based on the 
similarity of TWI-FA changes converge onto 3 main patterns of alter
ation in patients (Fig. 3, Panel B). Cluster reliability analyses (inter- 
cluster distance and internal consistency) were performed and are pre
sented in Appendix S2 (Figure S2). Overall, the 3-cluster solution cate
gorizes tracts according to the following scheme: fronto-basal fascicles 
(C1, mainly ipsilateral), bundles with posterior projections (C2, mainly 
contralateral), and temporo-mesial tracts (C3, bilateral); with C3 > C1 
> C2, from the most to the least severe alterations in TLE (Fig. 2). Hi
erarchical clustering based on correlation matrices yielded similar re
sults (Appendix S2, Figure S3). 

4.1.2. Interindividual variability 
We found a good agreement between the mean differences of TWI-FA 

extracted from traditional analyses and the KL mean distances deriving 
from manifold analyses, with a global difference close to zero (d = -0.27; 
Fig. 3, Panel A). Moreover, by using the KL divergence (p less than 0.05 
adjusted), we observe the same inter-group differences as those found 
with conventional tests (i.e., the 25 FOIs for the TWI-FA). It supports 
that the KL distance estimated in the reduced manifold space is a suit
able measure to estimate inter-group or individual differences. 

Manifold analyses complement conventional statistics. We found 
substantial changes in TWI-FA in TLEs compared to HCs, involving more 
than twenty WM tracts. The inter-group divergence, estimated in the 
manifold that includes the 25 FOIs (global manifold) is high (DKL =
0.68; Fig. 3 Panel B) but no longer significant after correction for mul
tiple comparisons (p <.001). There is indeed some interindividual 
variability that is finely captured by the manifold. In the reduced 
manifold space, some TLE patients deviate from the norm while others 
show an overall TWI-FA pattern similar to that of HCs, which limits 
conclusions at the group level. Even on a single FOI, i.e., on a specific 
tract detected as significantly affected, inter-individual divergences can 

be notable. Fig. 3 Panel C shows the example of one FOI – the ipsilateral 
anterior thalamic radiation (ATR_I) belonging to C1 (Fig. 2) – that 
demonstrates a robust and significant inter-group divergence (mean 
DKL = 0.86, p <.001). Again, we observe some quantifiable interindi
vidual variability in the ATR_I manifold space. For example, the RTLE 
patient P01 has a mean z-score of anomalies of − 0.07 and is globally 
among controls, whereas P02 (a patient with LTLE) deviates signifi
cantly from the norm with a mean z-score of − 2.56 for the same tract. 

4.1.3. Local structural anomalies 
Manifold analyses can also be used to target local structural anom

alies. The TWI-FA lesion map for the TLE group is projected in Fig. 3 
Panel B and shows the localization of anomalies calculated at the voxel 
level (per voxel z scores). For each FOI, the average relative percentage 
of lesions (TWI-FA) varies around 5 % of the total number of voxels 
contained in the given tract (statistical threshold z < -4.8). It involves 
contiguous voxels and generally less than 10 % of the FOIs (Appendix 
S2, Figure S4). Thus, it is more a certain part of the tract than the entire 
tract that is significantly affected. In addition, lesion z-score maps can be 
estimated at an individual level. Fig. 3 Panel C shows individual TWI-FA 
lesion maps (z-scores voxels for P01 and P02), projected onto the ATR_I 
tract for illustrative purposes. 

4.2. Link with cognitive and clinical data 

We found significant correlations between some clinical and cogni
tive variables and TWI-FA values of specific FOIs belonging to the cluster 
C1, C2 or C3. For the C1 FOIs (ipsilateral fronto-basal fascicles), AMI (r 
= 0.8) and PFL (r = 0.77) for cognitive indicators; EDU (r = 0.62), ASO 
(r = 0.66) and AED (r = 0.55) for clinical factors were significantly 
correlated (p <.05). Only some cognitive variables were significantly 
correlated with the C2 FOIs (contralateral tracts with posterior pro
jections), namely: SLF (r = 0.54), NAM (r = 0.48) and TMT (r = 0.63). 
Finally, we found significant relations between bilateral temporo-mesial 
tracts (C3 FOIs) and AMI (r = 0.46) or NAM (r = 0.46) cognitive scores; 
and ASY (r = 0.67) or HIP (r = 0.56) clinical attributes. Fig. 4 Panel A 
shows the specific relational links (significant correlations, p <.05) be
tween individual tracts belonging to the different FOIs clusters and 
cognitive/clinical features. 

Complementing traditional analyses, we observed a strong associa
tion between the global manifold (Fig. 3) and the absolute lateralization 
index (LI) of the fMRI activity of the frontal lobe during the sentence 
generation task. Fig. 4 Panel B illustrates the probability color-coded 
interpolation map deriving from the reduce manifold space. The lower 
the functional LI (i.e., the frontal hemispheric specialization), the more 
spatially distant patients tend to be from the HC norm. In particular, the 
latent dimension 1 of the reduced space is well organized by the gradient 
of the functional LI. TLEs presenting the largest structural deviations 
also tend to show a more bilateral frontal functional profile on the 
language task. Tract-specific analyses have revealed that the TWI-FA 
values of the genu of the corpus callosum (CC2) were significantly 
correlated with frontal LI (at a threshold corrected for multiple com
parisons; r = 0.78, p <.001). TWI-FA of the CC1 (the rostrum of the 
corpus callosum) and the ATR_I (the ipsilateral anterior thalamic radi
ation) also correlate with LI values but at an uncorrected p <.05 
threshold (r = 0.59; r = 0.57, respectively). Thus, the anterior part of the 
CC may be a determining anatomical region in the structure–function 
relationship observed here. 

Finally, we found an association between the voxels that signifi
cantly diverge in the global manifold space (Fig. 3 Panel B) and the AMI 
cognitive score (mean r = 0.61; Figure S7, Appendix S2). Fig. 4 Panel C 
illustrates the local spatial correlations or “lesion-behavior mapping” of 
affected voxel * AMI. 

Significantly correlated voxels were extracted and labeled according 
to the cluster they belong to (C1, C2, or C3). In agreement with the 
correlation analyses performed at the tract level, C1 is overrepresented 
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Fig. 4. Relationships between structural changes and clinical, functional and cognitive variables, at different levels A. Relational networks between 
clinical/cognitive data and tracts according to the main clusters (circular layout). The illustration shows thresholded correlations at p <.05. Only the connections 
between FOIs and clinical or cognitive variables are presented. Inter-connections between clinical and cognitive categories or within categories are not represented. 
The size of the nodes corresponds to the degree of interconnectivity (i.e. the number of connections between the node and the other nodes of the network). The larger 
the node, the more the variable is connected to other variables. Nodes are color-coded as follows: cognitive variables are in orange; clinical in red; and FOIs in their 
respective cluster colors (C1 = green, C2 = blue; C3 = purple; Fig. 2B). Labels for disconnected nodes (no significant connection in the network, degree = 0) are 
written in gray. Table S2 (Appendix S2) reports the correlation values (p <.05).B. Color-coded probability map of the functional lateralization index (LI) projected 
into the global manifold (see also Fig. 2B). The color gradient from blue to red corresponds to the probability of exhibiting a highly lateralized pattern of activations 
during the sentence generation task (left and right hemisphere predominance; values near 1) versus a weakly lateralized or bilateral pattern (values near 0).C. At left: 
voxel-based lesion-behavior statistical mapping (VLBM; altered voxels * AMI correlations), projected on a 3D WM template and multiplanar slices. Voxels that are 
significantly correlated with the auditory-verbal memory (AMI) scores after permutations and corrections are shown in yellow (r > 0.5). At right: distribution of the 
correlated voxels across the 3 main clusters. The bar plot represents the relative proportion of impaired voxels (z TWI-FA < − 4.8) correlating with AMI z scores, 
namely: C1 = 2581/4741 = 54.44 %; C2 = 410/5690 = 7.21 %; C3 = 66/811 = 8.13 %. The spider plot represents the distribution of altered voxels correlated to 
AMI (relative proportion), with a focus on the FOIs of the cluster 1 that is strongly related to AMI (see bar plot and Fig. 4 Panel A). 
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(in terms of the relative proportion of voxels) and some C1 tracts tend to 
be more involved than others (descriptively, UF_I, TPREF_I, ST_PREF_I, 
and STREM_I; Fig. 4 Panel C). 

5. Discussion 

In the present study, we aimed at assessing structural changes in WM 
tracts in a population of epileptic patients typically suffering from 
chronic damage to brain networks. Instead of using the classical DTI 
model for our tractographic analyses, we used an advanced CSD model 
to minimize the so-called “crossing fiber problem” (Schilling et al., 
2022; Tournier, 2010). In line with previous reports, our results indicate 
a widespread decrease in FA in patients compared to controls, involving 
a vast majority of their WM tracts (Fig. 2). For example, Hatton et al., 
(2020) have also recently shown a significant and global FA decrease in 
the hundreds of TLE patients comprising the ENIGMA cohort. It involved 
multiple association and interhemispheric tracts in both hemispheres, 
corresponding to the cortical changes described in the same patients 
(typically within temporo-mesial, superior frontal, pre- and post-central 
gyri, as well as thalamic regions; Whelan et al., 2018). Meta or mega- 
analyses using DTI-FA thus conclude to a systemic impairment of the 
connectomic microstructure, even though the seizures are initiated by a 
(more or less) focal point in the temporal lobe. 

However, more complex tractometric parameters considering fiber- 
related information (tract-weighted contrasts using for example the 
number of fibers contained in a voxel or the mean curvature; see Cala
mante, 2017), can be more sensitive and specific (see Fig. 2 Panel A). In 
this study, tract-weighted FA or TWI-FA has indeed shown a better 
specificity for the detection of WM abnormalities in patients compared 
to the traditional FA. Willats et al., (2014) demonstrated that TWI-FA 
provides a more realistic view of complex fiber architecture, where 
conventional FA measurement poorly reflects abnormalities within 
complex tracts. The clinical relevance of TWI-FA in reliably identifying 
severe (e.g., glioblastoma: Barajas et al., 2013) but also subtler brain 
damage (demyelination: Lyksborg et al., 2014) has also been demon
strated. Finally, we have previously observed a better agreement of 
test–retest measures at a one-year interval on the TWI-FA than on the FA 
in patients presenting mild traumatic brain injury (Attyé et al., 2021). 
Overall, several lines of evidence suggest that the TWI-FA contrast is 
useful for a finer and more reproducible detection of structural alter
ations in brain pathologies. However, the sensitivity of TWI-FA needs to 
be validated by specific studies. Indeed, as there is no gold standard to 
date, comparison of the predictive power of TWI-FA and FA to identify 
WM lesions on diverse populations is still needed. 

Regarding the topology and the intensity of WM damage in TLE 
patients, we observed a gradient of structural dysfunctions with a more 
pronounced TWI-FA decrease near the epileptogenic networks, typically 
the WM of temporo-mesial and fronto-subcortical ipsilateral regions 
(Fig. 2 Panel B). This result is consistent with previous DTI findings that 
described a centrifugal decrease in impairment relative to epileptogenic 
networks (i.e., the spatial proximity; Concha et al., 2012), and in line 
with the “initiation” theory (Riley et al., 2010). Interestingly, Ellmore 
et al., (2011) showed that despite a significant reduction in the number 
of fibers connected to the epileptogenic hippocampus, TLE patients 
exhibit long-lasting functional hyper-connectivity between the hippo
campus and the rest of the brain. The possible axonal loss in the 
temporo-mesial region remains to be further investigated with the 
recently developed tools and methodologies. Although the use of the 
CSD model minimizes the impact of fiber crossings in the tractogram 
study, the TWI-FA estimate does not allow a categorical conclusion 
about the neurobiological nature of the change (e.g., a decrease of TWI- 
FA may reflect demyelination but also axonal loss, or even mechanisms 
related to inflammation). It has been suggested, in animal models, that 
the ratio of axial to radial diffusion (AD/RD) might be sensitive enough 
to dissociate different types of damage (Zhang et al., 2012). Track- 
weighted versions of axial and radial diffusion maps could then 

provide an interesting future pathway to infer neurobiological mecha
nisms underlying WM changes using in vivo data. Preliminary analyses 
performed on our sample using AD and RD contrast maps (i.e., TWI-AD 
and TWI-RD) and focusing specifically on the temporo-mesial cluster of 
WM damage (cluster 3), might be in favor of “axonal degeneration” for 
proximal fibers (ipsilateral fornix and anterior commissure) and rather 
“demyelination” for contralateral fibers (contralateral fornix; see 
Table S3, Appendix S2 for statistical details). However, these first evi
dences remain to be confirmed by comparative studies jointly having 
anatomopathological data (i.e., surgical specimens from patients). 
Regardless of the nature of the damage, the “hippocampal paradox” (i.e., 
hyperfunctioning and/or hyper-connectivity despite damage; see Roger, 
Pichat, Torlay, et al., 2019), illustrates the great complexity of the 
structure–function relationship in epilepsy. 

The second objective of our study was to investigate this relationship 
more globally, from the structure to the behavior, through the 
involvement of some clinical variables associated with epilepsy. Overall, 
TLEs with the greatest alterations in WM jointly show a decrease in 
functional frontal hemispheric specialization associated with language. 
Indeed, we observed a gradual transition between specialized (typical 
left hemisphere or atypical right hemisphere) and non-specialized 
(bilateral) functional patterns depending on the degree of WM integ
rity (Fig. 4B). By refining the analysis, we have observed that this 
relationship is notably driven by the integrity of the corpus callosum 
(Section 3.2). Specifically, the more the anterior part of the corpus 
callosum is affected, the more the functional specialization tends to be 
atypical and especially bilateral. These results are consistent with those 
reported in patients with corpus callosum agenesis (Hinkley et al., 2016) 
but they also suggest that a complete callosal disconnection is not 
necessary to induce functional specialization changes. Such a relation
ship between the integrity of the corpus callosum and changes in 
interhemispheric asymmetry was also reported for several cognitive 
processes (Schulte & Müller-Oehring, 2010) and, altogether, these ob
servations support the idea that structural connectivity actively modu
lates functional wiring (Hervé et al., 2013). 

Several clinical and cognitive factors are respectively related to the 
identified clusters of microstructural impairment (Fig. 4 Panel A). The 
severity of the WM damage of the temporo-mesial cluster (C3), and 
especially of the fornix (Fig. 4 Panel A), was associated with hippo
campal volumes (HIP) and volume asymmetry between the two hippo
campi (ASY; see Section 3.2). Abnormalities of WM microstructure are 
indeed more important in TLE than in patients with other forms of drug- 
resistant epilepsy, mainly when they suffer from hippocampal sclerosis 
(Hatton et al., 2020). Moreover, we found a strong relationship between 
these fibers and the associative and declarative long-term memory index 
of the WAIS-IV (AMI; Wechsler, 2012). The relationships between long- 
term (declarative) memory performance and mesial temporal structures 
have been pointed out for a long time in patients with severe hippo
campal damage (see the pioneering work of Brenda Milner for example; 
Milner, 1966, 1970; Scoville & Milner, 1957), and the preservation of 
the MTL structural connectivity (the fornix in particular) plays indeed a 
crucial role in maintaining memory performances throughout life (e.g., 
Foster et al., 2019). WM changes of the fronto-subcortical cluster (C1) 
was related to the age of seizures onset (ASO), the number of antiepi
leptic drugs (AED), and the (phonological) verbal fluency (PFL). These 
are also classic observations in the epilepsy literature (Brissart & Mail
lard, 2018). The fact that these impairments were primarily related to 
the age of seizures onset but not to the duration of epilepsy suggests a 
developmental fragility of these structures (Lin et al., 2008) rather than 
a gradual pathological process related to the chronicity of epilepsy 
(Chiang et al., 2016; Keller et al., 2012), which should be further 
explored (Ashraf-Ganjouei et al., 2019). In addition, the relationship 
between frontal abnormalities, antiepileptic drugs, and verbal fluency 
may be intricate and it may be interesting to investigate whether 
medication mediates the relationship between cognition and the integ
rity of anterior structural connections. Finally, we found an interesting 
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relationship between the contralateral posterior cluster (C2) and se
mantic cognitive indicators. Indeed, the middle longitudinal fasciculus 
(MLF) was related to naming (NAM) and semantic fluency (SFL) per
formance, according to recent findings showing similar correlations in 
patients with primary progressive aphasia (Luo et al., 2020) or stroke 
(Blom-Smink et al., 2020). This result suggests that the focus should be 
made not only on the anteroposterior association pathways, such as 
classically admitted (Bullock et al., 2019) but also on transverse 
dorsoventral pathways which are only more recently studied and that 
offer new perspectives to apprehend language-and-memory interactions 
(Hula et al., 2020). 

From a methodological point of view, we used a funnel approach 
allowing us to investigate WM anomalies in a comprehensive and 
detailed manner. In this way, we observed that the bundles were not 
affected as a whole, nor homogeneously along the tract (Fig. 3 Panels B- 
C). Instead, we reported damage to segments or “portions” of tracts 
(Figure S5, Appendix S2). Some cognitive functions such as memory or 
functional networks such as the DMN (default mode network) do not 
engage entire anatomical tracts but rather specific fiber segments (Alves 
et al., 2019). Thus, accurate multimodal mapping between fibers and 
functional activity will provide greater insight into structure–function- 
cognition links (Nozais et al., 2021) and advance our understanding of 
neuroplasticity and its consequences in patients. 

We leveraged the benefits of statistical manifold learning algorithms 
to finely profile, model, and predict WM abnormalities in patients. A 
major interest in using such a statistical learning model is to explore 
inter-/intra-individual heterogeneity (Fig. 3 Panel C; see also Figures S5- 
S6 in Appendix S2 for an example of interindividual variability in our 
sample regarding the distribution of abnormalities). Indeed, rather than 
assuming that all patients are reliably represented by measures of cen
tral tendency and a priori-defined groups, these tools can be used to 
directly capture and analyze patient heterogeneity (Cearns et al., 2019; 
Marquand et al., 2016). TractLearn, such as other software and method 
based on artificial intelligence (Chamberland et al., 2019, Chamberland 
et al., 2021), is a promising tool for moving toward precision medicine 
(i.e., more personalized and individual-oriented medicine). It has a 
strong potential of application and has also been shown to be robust in 
other populations, such as patients with traumatic brain injury (Attyé 
et al., 2021). More generally, machine learning techniques minimize 
priors and “human” influence in data management and analysis. On the 
other hand, the lack of an explicit model can make it difficult to directly 
link machine learning solutions to existing biological knowledge (Bzdok 
et al., 2018). Promising avenues in the interpretability of models, 
however, allow to make sense of black-box models and to move towards 
“white-box” models (Molnar, 2018). In our study, the addition of a 
clinical variable in the manifold space, for example, made sense of the 
observed latent dimensions (Fig. 4 Panel B). 

6. Conclusions 

Diffusion MRI provides parameters that are good predictors of 
postoperative outcomes in refractory epilepsy patients (Keller et al., 
2017). In the presurgical stage, it can help to localize problematic net
works since there is an apparent centrifugal decrease in damage relative 
to epileptogenic foci. Previous studies have indicated that structural WM 
MRI may also have a plus value and help to localize functional areas that 
should be preserved (e.g., De Witte et al., 2014; Roger et al., 2019a). 
Despite its utility, diffusion MRI remains rarely performed in clinical 
routines related to epilepsy care. From a practical standpoint and until 
recently, data analysis remained time-consuming and expensive. The 
development of advanced tools related to artificial intelligence now al
lows fast and efficient segmentation that facilitates data processing (e.g., 
TractSeg: Wasserthal et al., 2018) or automatic statistical analyses for 
anomaly detection (e.g., TractLearn: Attyé et al., 2021; Detect: Cham
berland et al., 2021). Importantly, these tools – which are increasingly 
accurate, interpretable, and powerful compared to traditional models or 

human capabilities – are promising for bridging the gap between today’s 
and tomorrow’s personalized medicine. 
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