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a b s t r a c t 

Language processing is a highly integrative function, intertwining linguistic operations (processing the language 
code intentionally used for communication) and extra-linguistic processes (e.g., attention monitoring, predictive 
inference, long-term memory). This synergetic cognitive architecture requires a distributed and specialized neural 
substrate. Brain systems have mainly been examined at rest. However, task-related functional connectivity pro- 
vides additional and valuable information about how information is processed when various cognitive states are 
involved. We gathered thirteen language fMRI tasks in a unique database of one hundred and fifty neurotypical 
adults ( InLang [Interactive networks of Language] database ), providing the opportunity to assess language features 
across a wide range of linguistic processes. Using this database, we applied network theory as a computational 
tool to model the task-related functional connectome of language (LANG atlas). The organization of this data- 
driven neurocognitive atlas of language was examined at multiple levels, uncovering its major components (or 
crucial subnetworks ), and its anatomical and functional correlates. In addition, we estimated its reconfiguration as 
a function of linguistic demand ( flexibility ) or several factors such as age or gender ( variability ). We observed that 
several discrete networks could be specifically shaped to promote key functional features of language: coding- 
decoding (Net1), control-executive (Net2), abstract-knowledge (Net3), and sensorimotor (Net4) functions. The 
architecture of these systems and the functional connectivity of the pivotal brain regions varied according to the 
nature of the linguistic process, gender, or age. By accounting for the multifaceted nature of language and mod- 
ulating factors, this study can contribute to enriching and refining existing neurocognitive models of language. 
The LANG atlas can also be considered a reference for comparative or clinical studies involving various patients 
and conditions. 
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. Introduction 

Language is optimized for human communication. It is an effi-
ient vector of information transmission, shaped under cultural and
nvironmental constraints to meet physical, technological, and social
eeds (e.g., Kirby et al., 2015 ; Lupyan and Dale, 2016 ; Millikan, 2005 ;
cott-Phillips, 2015 ; Tamariz and Kirby, 2016 ). Language is also
dapted to thinking and interpretation, playing a scaffolding role
n cognition (e.g., Carruthers, 2002 ; Chomsky, 2014 ; Clark, 2006 ;
ackendoff, 1996 ; Reboul, 2015 ), and is crucial in meta-cognition in-
luding self-evaluation, self-regulation and autonoetic consciousness
 Alderson-Day and Fernyhough, 2015 ; Perrone-Bertolotti et al., 2014 ). 

To combine both effectiveness ( Gibson et al., 2019 ) and utility
 Jaeger and Tily, 2011 ) of language production and comprehension,
∗ Corresponding author. 
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everal essential abilities are required. The first one, is the combina-
ory skill ( Boer et al., 2012 ; Friederici et al., 2017 ; Zuidema and de
oer, 2018 ). Language is compositional and recursive, implying spe-
ialized processing of intra-linguistic aspects (i.e., an aptitude to handle
arious combinatorics, perceptive, syntactic, or semantic/conceptual;
ylkkänen, 2019 ). A second important ability relates to multisen-
ory integration, which facilitates spoken communication and enhances
peech intelligibility ( Chandrasekaran et al., 2009 ; Ghazanfar and
chroeder, 2006 ; Luo et al., 2010 ; Noppeney et al., 2008 ; Schroeder and
oxe, 2005 ; Schwartz et al., 2004 ; Sumby and Pollack, 1954 ). Be-
ond the multisensory facilitation (or low-level multimodal integration;
oller and Levinson, 2019 ), high level cognitive abilities related to top-
own multimodal mechanisms have also been emphasized. A shared
nderstanding, a relevant and contextually-adapted discourse, requires
ligning the partners’ representations, considering shared knowledge,
ast experiences, or even making assumptions about the other’s perspec-
ives. Establishing “common ground ” between conversational partners
 Clark and Marshall, 1981 ) relies on a wide range of “high-level ” cogni-
er 2022 
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ive functions such as working memory (resonance-based theory of com-
on ground, Horton, 2007 ), long term memory ( Brown-Schmidt and
uff, 2016 ), theory of mind or mentalizing ( Vanlangendonck et al.,
018 ) processes. Language use is therefore adapted online, enabling
ommunication in a range of environmental and social contexts, meeting
arious cognitive demands and individual metacognitive needs. Given
he pressure exerted by communication, cognitive and metacognitive
emands, language has evolved as an adaptive and complex system,
hich requires considering external (context) and internal (individual
eeds and goals) signals while processing both intra- and extra-linguistic
ignals (e.g., Holler and Levinson 2019 , for a multimodal language-in-
itu framework). 

How are these various abilities integrated to sustain language func-
ions and how are they implemented in the brain? The exploration
f brain networks and their unique lens for understanding cogni-
ive function has become an important part of the cognitive neuro-
cience landscape ( Fornito et al., 2013 ). Brain network descriptions
ave revealed that the brain is organized as a “small-world ” network
 Achard and Bullmore, 2007 ), favoring optimization of information
ransfer ( Laughlin and Sejnowski, 2003 ). A balance between segregation
nd integration characterizes this organization, i.e., by short communi-
ation pathways creating specialized subsystems (segregation), whose
nterconnectivity is coordinated by distant, highly connected brain re-
ions (integration; van den Heuvel and Sporns, 2013 a). Functionally,
ocal systems or highly connected “modules ” for the processing of infor-
ation in a given modality (visual, auditory, etc.) are linked together

y sparse and specific fiber paths over long distances, according to
 connectivity principle of “local richness and long-range sparseness ”
 Pulvermüller, 2018 ). This organization allows efficient serial, parallel,
nd distributed brain activity ( Herbet and Duffau, 2020 ). Integrative ar-
as (sometimes referred to as connector hubs) at the interface between
ocal systems are significant for the multimodal neural integration of in-
ormation ( Cocchi et al., 2013 ; Fornito et al., 2015 ; van den Heuvel and
porns, 2013b ). Regarding language circuitry, integration/segregation
ubsystems and specific connector hubs have been previously identified
or both language production and comprehension (e.g., Friederici, 2012 ;
agoort, 2016 ; Hertrich et al., 2020 ; Roger et al., 2022 ). However, lan-
uage is multi-faceted, and a comprehensive analysis of the functional
roperties of the language connectome in a broader framework would
ontribute to a more accurate description. 

To fill the gap, we propose, in this study, to examine the functional
ttributes of language at the brain level through an integrative perspec-
ive, mixing several linguistic tasks explored in the light of graph the-
ry. This research is naturally framed within the substantial legacy of
he study of language and its brain foundations, whose growing and
iverse observations have been accompanied by the evolution of inves-
igative techniques. In the past decades, many authors have highlighted
rain function and structure associated with language through theoret-
cal neurocognitive models (e.g., Duffau et al., 2014 ; Friederici et al.,
017 ; Hagoort, 2016 , 2019 ; Hickok and Poeppel, 2007 ; Indefrey, 2011 ;
evelt, 1989 ; Price, 2012 ; Rauschecker and Scott, 2009 ). However, this
tudy, in direct continuation with past legacy, adds further value by
nvestigating functional cerebral connectivity (FC) based on task data.
he anatomo-functional substrates associated with language are indeed
ighly task-dependent ( Hickok and Poeppel, 2000 ). 

The task-based FC analyses presented here rely on an fMRI database
ompiling a broad spectrum of language-related tasks (Interactive net-
orks of Language database: InLang database). InLang comprises thir-

een language tasks, performed cross-sectionally by 150 right-handed
eurotypical adults. The database is unique in that it covers a broad
pectrum of language features: semantic and conceptual processing, de-
oding (phonology, sound), lexico-syntactic formulation (production),
ialogality (social aspects of language), monitoring of self and others,
nd unintentional speech ( Fig. 1 A; see also the Supplementary Material
or more details). Such a database is essential to uncover the functional
rchitecture of the multifaceted language processes in an integrative
2 
pproach. It makes it possible to model a comprehensive connectomic
tlas of language and to explore its fundamental properties in depth. To
his end, we analyzed task connectomes – where interregional FC was
stimated by beta-series correlations – using graph metrics applied at
ultiple scales. It allowed us to expose: (1) the overarching FC profile

f different language tasks and latent subprocesses; (2) the architecture
f the general language connectome (LANG); (3) the functional roles
f crucial language subnetworks and brain regions; (4) the anatomo-
unctional correlates; and (5) the flexibility and variability exerted on
he LANG connectome. In terms of interindividual FC variability, gender
e.g., Filippi et al., 2012 ; Zhang et al., 2018 ) or age (e.g., Edde et al.,
021 ; Jockwitz and Caspers, 2021 ) are potentially important criteria to
onsider. Without any a priori hypothesis on the pattern of potential
hanges related to these factors or their behavioral relevance, we have
ttempted to identify, in an exploratory way, the main variations in the
istribution of key regions belonging to the LANG connectome. 

Fig. 1 provides an overview of the InLang database and the method-
logy used to address these 5 main axes. 

. Materials and methods 

.1. Dataset 

The InLang database contains data of 13 different linguistic tasks
rom 7 previously published fMRI protocols ( Baciu et al., 2016 ;
anjac et al., 2020 ; Grandchamp et al., 2019 ; Haldin et al., 2018 ;
oyau, 2018 ; Perrone-Bertolotti et al., 2011 ; Perrone ‐Bertolotti et al.,
012 ; Perrone-Bertolotti et al., 2015 , 2017 ), as well as respective struc-
ural MRIs (T1w). In all, 359 functional scans have been acquired be-
ween 2010 and 2019 from 150 healthy adults (all right-handed accord-
ng to the Edinburgh Handedness Inventory (handedness score strictly
reater than + 80; Oldfield, 1971 ); 64 females: F/86 males: M; Table S1
ontains the subjects’ characteristics, by tasks). The database includes
14 “young/middle-aged adults ” (18–59: mean = 36.87; SD = 13.29;
0F/64M) and 36 “seniors ” (older adults from 60–85: mean = 70.3,
D = 5.87; 14F/22M) volunteers ( Fig. 1 ). The inclusion and exclusion
riteria for participants are described in the Supplementary Material.
MRI and T1w scans of all participants have been formatted in BIDS
tandard and preprocessed using conventional tools (see Appendix). 

.2. Task-based connectomes 

Regions of interest (ROIs) covering both the brain and the cerebel-
um were defined from 6 mm radius spherical regions built around
he 264 coordinates in MNI space proposed by Power et al. (2011) .
he images used for signal extraction (beta values) were the sta-
istical parametric maps containing the linear contrasts between
he HRF parameter estimates for the conditions of interest. Nilearn
 https://nilearn.github.io/stable/index.html ; Abraham et al., 2014 ) was
sed to delineate ROIs and extract the signal. The mean signal for each
f these ROIs was extracted by participant and task. Functional connec-
ivity (FC) between brain ROIs was derived from correlating (Pearson
orrelations) the extracted beta values across subjects, within a given
ask. The process was repeated for each of the tasks separately, al-
owing to obtain thirteen 264 ∗ 264 matrices of interregional FC based
n beta-series correlation. Codes and derivatives are available here:
ttps://osf.io/6xm8n/ ). These matrices of interregional FC were thresh-
lded to obtain the task-based connectomes. We applied a 5% threshold,
hich defines the 5% of the highest positive correlation values, con-

idered to represent non-spurious internodal connections. The matrices
ere binarized: 1 was assigned to internode connections that survived

o the given density threshold, and 0 was assigned otherwise. Task-
ased connectomes were built from these binarized matrices, reduced
o a fixed number of edges (top 5%, 3485 edges). Several graph met-
ics were computed on the task-based connectomes: global (network-
ide), intermediate (modularity), and local (nodal), using Networkx

https://nilearn.github.io/stable/index.html
https://osf.io/6xm8n/
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Fig. 1. Overview of the InLang database, and methodological outlines. 
(A ) The Interactive networks of Language database ( InLang database): the thirteen language tasks and the main dimensions manipulated by the protocols. The 
protocols have been previously published and the MRI data have been acquired between 2010 and 2019. InLang gathers, in a unique database, a cross-sectional 
cohort of 150 different healthy individuals and 359 functional scans (see Materials and Method, Section 2.1 and the Supplementary Material for more details about 
tasks and protocols). Table S2 contains the subjects’ characteristics, by tasks. 
(B) Summary of the steps performed to obtain the task connectomes. For a given task, we extracted the beta values from the individual functional activation maps, 
on a parcellation covering the whole brain ( Power et al., 2011 ). The beta values were then used to compute the task-specific connectivity matrix (correlation matrix). 
The same procedure was repeated for all tasks to obtain the respective functional matrices and connectomes. 
(C) Outline of the multi-level statistical analyses performed on functional connectivity (FC) measures (i.e., graph theory parameters) to address 5 main axes. 
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 https://networkx.org/ ). The metrics are described in the following sub-
ections and Fig. S2 (Appendix) shows the evolution of the main graph
etrics as a function of the density of connections included in the con-
ectomes (i.e., as a function of more or less permissive thresholding). 

.3. Network measures 

.3.1. Global connectivity profiles / Main FC parameters 

After having modeled the different task-based connectomes, we ex-
racted from these connectomes four main and complementary graph
arameters. These parameters were computed at the local level (i.e., at
he node or ROI level) and then averaged at the global level (i.e., at the
onnectome or graph level) allowing network-wide estimates. The four
ain global metrics used to describe each of the task-based connectomes
ere: 

- The mean global efficiency (E glob ) as proposed by Latora and Mar-
chiori (2001) , which is the average of the unweighted efficiencies
over all pairs of nodes: 

𝐸 𝑔𝑙𝑜𝑏 ( 𝐺 ) = 

1 
𝑁 ( 𝑁 − 1 ) 

∑
𝑖 ≠𝑗𝜖𝐺 

1 
𝑑 𝑖𝑗 

here N is the total number of nodes in the network G , the distance d( i,j )
orresponds to the number of edges in a shortest path between any two
odes i and j . E glob represents the capacity of a given network to effi-
iently integrate and transmit information between the network com-
onents or subnetworks (e.g., Bullmore and Sporns, 2012 ; Roger et al.,
019b ; Stanley et al., 2015 ). The higher the value, the more likely that
nformation transfer is fast. 

- The average local efficiency (E loc ) which is the average of the local

efficiencies of each node. s  

3 
Local efficiency of a node i corresponds to the average global effi-
iency of a subgraph induced by the neighbors of i ( Latora and Mar-
hiori, 2001 ): 

 𝑙𝑜𝑐 ( 𝐺 ) = 

1 
𝑁 

∑
𝑖𝜖𝐺 

𝐸 𝑔𝑙𝑜𝑏 

(
𝐺 𝑖 

)

The average E loc reveals the network’s tendency to effectively
hare information within immediate local communities or the capac-
ty of a given network to segregate the information processing (e.g.,
ullmore and Sporns, 2012 ; Roger et al., 2019b ; Stanley et al., 2015 ).
he higher the value, the more locally efficient the network is. 

- The mean integration–segregation balance (I:S) as expressed by the
difference between E glob and E loc (E glob – E loc ). 

The integration–segregation balance allows to estimate how the
unctional organization of a task promotes either (1) more independent
rocessing of specialized subsystems (i.e., segregation) or (2) coopera-
ion between different subsystems (i.e., integration; Wang et al., 2021 ).
 positive balance reflects a network with a general tendency toward

unctional integration (E glob > E loc ) while a negative balance reflects a
eneral tendency toward functional segregation (E loc > E glob ). 

- The mean geodesic cortical distance ( ̄𝑑 ) between functionally inter-
connected nodes ( ̄𝑑 (G)). 

We extracted the relative spatial layout of regions along the cor-
ical surface by using existing scripts ( https://github.com/margulies/
opography/tree/master/utils ), based on an algorithm developed to
pproximate the exact geodesic distance from triangular meshes
 Oligschläger et al., 2017 ). “Physical ” geodesic distances between pairs
f nodes, estimated in mm, were quantified from the Power’s nodes co-
rdinates projected onto a template surface mesh (fsaverage5). This re-
ulted in a node-by-node matrix of geodesic cortical distance. From the

https://networkx.org/
https://github.com/margulies/topography/tree/master/utils
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eodesic distance matrix, we averaged the distribution of distance-to-
onnected-areas of the relevant functional connections identified from
he thresholded FC matrices. We thus obtained the global geodesic dis-
ance of the functional connectivity for each of the task-related con-
ectomes. The higher the mean geodesic distance between functionally
onnected regions, the further apart the connected regions are on aver-
ge along the cortical surface. 

.3.2. General LANG connectome and subprocesses 

From the main global GT parameters described in the previous sec-
ion (extracted at the connectome-level, for each task), we assessed the
imilarity of the FC profiles of the language task connectomes. The sim-
larity was quantified using the Euclidean distance. We applied a data-
riven hierarchical clustering approach to the similarity matrix and esti-
ated the partitioning. Thus, we identified categories of tasks with sim-

lar FC profiles or global network topology. The internal composition
nd nature of the tasks assigned to each of the identified groups can re-
eal putative linguistic subprocesses that may be latent and common to
everal tasks (see also the Supplementary Material for a rationale and a
imilar method applied to functional activation maps). Starting from the
artitioning, we computed the FC matrices of each of these main task
roups – hereafter referred to as subprocess connectomes – from the
cans of the respectively involved tasks and using the same procedure
escribed above ( Section 2.2 .). In addition, and still following the same
rocedure, we generated the general task-based language connectome
abbreviated LANG – corresponding to the FC matrix derived from all

anguage tasks. The global FC parameters reported in the previous sec-
ion ( Section 2.3.1 ) were also extracted for the LANG and the respective
ubprocesses connectomes. 

Note that only scans corresponding to the young/middle-aged adults
f the InLang cohort ( n = 114) were considered for the calculation of the
C matrices (of the tasks, subprocesses, and the general LANG connec-
ome) and the main statistical analyses. Scans of "older" adults were
ncluded exclusively for statistics regarding the effect of age on LANG
ubs (see Section 2.4.5 . for a description of the age-related variability
nalysis). 

.3.3. Intermediate composition of LANG 

We performed modularity analyses to determine community struc-
ure of the general LANG connectome. We used the Louvain community
etection algorithm ( Blondel et al., 2008 ) implemented in Networkx.
ouvain’s method is widely used for community detection in neuro-
cience and has been previously shown to outperform other community
etection methods ( Yang et al., 2016 ). To ensure the stability of the fi-
al partition, we repeated the modular partitioning process 100 times
 Schedlbauer and Ekstrom, 2019 ) and we evaluated the best LANG par-
ition ( Aynaud, 2018 ) on the matrix averaging the results of all itera-
ions. Each ROI was assigned to a specific community (i.e., a subnet,
ere denoted LANG “Net ”). To facilitate subsequent analyses and inter-
retations, the Power’s coordinates of LANG ROIs were mapped to the
CP’s multimodal parcellation (version 1.0: HCP_MMP1.0 proposed by
lasser et al. 2016 ), which consists of 180 brain parcels. Cerebellum
oordinates were mapped to the probabilistic human cerebellum atlas
UIT ( Diedrichsen et al., 2009 ). 

Still concerning intermediate configurations between the global level
f the network and the nodal ROIs level, we focused on identifying
ensely interconnected subgraphs of LANG. Complete subgraphs, called
liques, are all-to-all connected sets of brain regions providing archi-
ecture that isolates information transmission processes ( Giusti et al.,
016 ) and supports efficient and specialized processing ( Sizemore et al.,
018 ). A maximal clique is one that includes the largest possible number
f nodes and to which no more nodes can be added. Using Networkx,
e estimated 𝜔 (G) which is the number of nodes in a maximal clique of
 and marked the relevant nodes. 
4 
.3.4. Nodal properties of LANG 

We calculated the degree centrality (DC; denoted k ) of each node i
s the number of adjacent edges to the node ( ki ), from the reduced and
nweighted adjacency LANG matrix. DCs are a convenient metric for
ighlighting brain regions with a high degree of connectivity or “hubs ”
nd form the basis for other measures of nodal graph theory. 

From the DCs (k), we computed the within-component degree z-score
 zi ), that expresses the extent to which node i is connected to other nodes
n its respective component and is calculated as follows ( Guimerà and
unes Amaral, 2005 ): 

𝑖 = 

𝑘 𝑖𝑆 − 𝑘 𝑆 

𝜎𝑆𝑖 

ith k iS the number of connections of node i to the other nodes in the
ubgraph component S (i.e., the Net) and k S and 𝜎Si respectively the
ean and SD of the within-component DC over all nodes in S . 

To quantify to what extent a node connects across all components,
e measured the participation coefficient ( PCi ). The following conven-

ional formula ( Guimerà and Nunes Amaral, 2005 ) was applied, with m
he set of components S or Nets (here 4): 

 𝐶𝑖 = 1 − 

𝑚 ∑
𝑆=1 

( 

𝑘 𝑖𝑆 

𝑘 𝑖 

) 2 

Following Schedlbauer and Ekstrom (2019) and because of the nar-
ow distribution of the PC s we z-scored the coefficients (zPCi) from each
etwork. 

The zi and zPCi values have enabled to assign a specific role to each
f the LANG ROIs. The nodes were classified according to their type of
unctional communication within the connectome as follows: connec-
or (high z i /high z PC i ; high intra-Net and high inter-Net FC); provincial
high z i /low z PC i ; high intra-Net FC); satellite (high z i /low z PC i ; high
nter-Net FC); or peripheral (low zi /low zPCi ; low inter-Net FC). We ap-
lied this classification as proposed in previous studies ( Bertolero et al.,
015 ; Cohen and D’Esposito, 2016 ; van den Heuvel and Sporns, 2013b )
nd with z i > 0 corresponding to “high z i ” and z PC i > 0 corresponding
o “high P i ”. 

Finally, we were interested in quantifying the rich club organization
f the networks. A rich club reflects a set of nodes in the network of
hose level of interconnectivity (i.e., richness) exceeds the level of FC

hat can be expected by chance. For each degree k, the rich-club coeffi-
ient ( 𝜙) is the ratio of the number of actual to the number of potential
dges for nodes with degree greater than k ( Colizza et al., 2006 ): 

( 𝑘 ) = 

2 𝐸 𝑘 

𝑁 𝑘 

(
𝑁 𝑘 − 1 

)

here Nk is the number of nodes with degree larger than k , and Ek is
he number of edges among those nodes. 

We compared and normalized the rich club coefficient to sets of
equivalent ” random networks. An empirical null distribution consti-
uted from the average of 1000 random networks of equal size and de-
ree distribution was generated ( 𝜙𝑟𝑎𝑛𝑑( 𝑘 ) ). 

The difference between 𝜙( 𝑘 ) and 𝜙𝑟𝑎𝑛𝑑( 𝑘 ) allowed us to obtain the
ormalized rich club coefficient 𝜙𝑛𝑜𝑟𝑚 ( 𝑘 ) : 

𝑛𝑜𝑟𝑚 ( 𝑘 ) = 

𝜙( 𝑘 ) 
𝜙𝑟𝑎𝑛𝑑 ( 𝑘 ) 

In line with previous work ( Colizza et al., 2006 ; Grayson et al., 2014 ;
an den Heuvel and Sporns, 2011 ), a network was considered to have
ich club organization when 𝜙𝑛𝑜𝑟𝑚 was greater than 1 for a continuous
ange of increasing k (rich club regime). Rich club nodes were brain
egions taking part in these densely connected networks (or rich clubs),
orming a functional unit. We considered as rich club hubs the nodes
aking part in the club at value k where the strongest rich club effect
as observed. 
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.4. Statistics 

.4.1. Hemispheric asymmetry 

The FC hemispheric asymmetry of the ROIs was estimated with the
Cs. We derived a connectivity-based lateralization index (LI), by con-

rasting the k values of homotopic nodes (comparison of FC between
irror areas), according to the following formula: 

𝐼 ( 𝑘 ) = 

𝐿𝐻 ( 𝑘 ) − 𝑅𝐻 ( 𝑘 ) 
𝐿𝐻 ( 𝑘 ) + 𝑅𝐻 ( 𝑘 ) 

With LH(k) being the DC for the ROI in left hemisphere, RH(k) the
C for the homolateral ROI in the right hemisphere. 

We also calculated global lateralization indexes at the connectome or
et level by averaging the corresponding nodal LIs. LI values can range
ontinuously from -1 to 1 and the following landmarks were considered
or interpretation: -1 = complete RH dominance; + 1 = complete LH dom-
nance and between -0.2 and + 0.2 = no clear dominance ( Roger et al.,
019 a; Rolinski et al., 2020 ; Seghier, 2008 ). 

.4.2. Functional and structural matching 

We used mappings provided by previously published tools to esti-
ate the spatial concordance between LANG and (1) the neurotrans-
itter pathways; or (2) the terminations of large white matter (WM)

undles. The “functional ” maps were issued from nuclear imaging-
erived neurotransmitter maps implemented in the JuSpace toolkit
 Dukart et al., 2021 ), specifically designed to link neuroimaging (MRI
ata) with underlying neurotransmitter information (as revealed by PET
nd SPECT tracers). The “structural ” maps came from the deep-learning
lgorithm TractSeg ( Wasserthal et al., 2018 ), which offers the segmenta-
ion of the main long-range WM brain bundles. It also allows the genera-
ion of grey matter masks that are linked by the bundles (ending masks).
hese ending masks were used here to define the structural connection
aps of each bundle or combination of bundles. 

The functional and structural maps were registered to the surface
emplate and binarized. Each parcel of the HCP_MMP1.0 template was
oded according to the presence/absence of map coverage, with 1 cor-
esponding to at least 40% coverage of the parcel surface ( > 40%); and
 to less than 40% coverage ( < 40%). 

We then used the simple matching coefficient (SMC; Boriah et al.,
008 ; Sokal and Michener, 1958 ) method to quantify the spatial concor-
ance between LANG and each of the functional and structural binary
aps. SMC indicates the coincidence ratio between the mutual pres-

nces (and absences) and the length of the binary sequences: 0% means
hat the labels have nothing in common and 100% that they have iden-
ical sequences. Only coefficients exceeding 2/3 of the total agreement
SMC > 0.67) were considered relevant. 

.4.3. Cross-processes flexibility 

We computed a flexibility index by using multilayer network model
nd with a method close to that of Betzel et al. (2017) . The layers of
he model were constituted from the matrices of the 5 groups of tasks
i.e., subprocesses) identified with data-driven clustering analyses (see
ection 2.3.2 ). To keep a common reference between layers, the matrices
ere restricted to the LANG 131 ROIs and re-estimated on this basis. We
pplied the generalized Louvain package ( Jeub et al., 2011 ), suited to
etermine community structure in multiplex graphs ( Bassett et al., 2011 ,
013 ; Mucha et al., 2010 ). This method has the advantage of preserving
he community labels consistently across layers (here the task groups),
voiding thus the issue of community matching ( Yang et al., 2021 ). 

From the communities assigned across layers, we calculated a flexi-
ility score as previously proposed by ( Bassett et al., 2011 ). The flexibil-
ty f i of a node corresponds to the number of times that a node changes
ts modular assignment between layers, normalized by the total num-
er of possible changes (i.e., the total number of layers minus 1, here
). In short, the f-score reflects the frequency a brain region changes its
ommunity assignment. It ranges from 0 to 1, where 0 corresponds to
5 
 region that never changes module whatever the subprocess/task in-
olved (stable on all layers); and 1 corresponds to a region that never
elongs to the same module on the 5 layers. We also calculated the
ean flexibility (F) over all nodes in the network to examine the global
exibility of the system. 

 = 

1 
𝑁 

− 

𝑁 ∑
𝑖 =1 

𝑓 𝑖 

.4.4. Inter-individual variability 

We assessed inter-subject variability by considering the individual
ignal values, extracted for each individual and on each of the LANG
OIs. To remove the variability induced by the task, we normalized the
eta values, considering the mean and standard deviation of the other
ubjects who performed the given task (z-score betas). When individu-
ls performed multiple tasks (for subjects enrolled in the same protocol),
e averaged the z score betas for these subjects to avoid accounting for
dditional intra-individual variability. We thus performed the measure-
ent of inter-individual variability by considering the subjects and not

he scans. In addition, we considered only the young/middle-aged co-
ort of participants in which LANG was modeled to (1) prevent a large
ask effect (older adults primarily performed the NAM object naming
ask); and (2) not overestimate the variability of LANG by adding older
articipants (seniors). The average and absolute z scores of each region
ere then divided into 3 bins of increasing interindividual variability. 

.4.5. Age effect 

To highlight LANG ROIs that are the most resilient/vulnerable to the
ging effect, we examined the subjects of the whole InLang cohort repre-
entative of a wide range of ages (young/middle-aged and older adults)
ho performed the same task (Object Naming: NAM). Age was consid-

red continuously in our statistical analyses, from age 20 to 85 ( n = 82).
e computed standard correlation coefficients (Pearson r ) between the

ge and DC (here estimated based on individual connectivity matrices).
his allowed us to observe a positive (positive and high r ) or negative
negative and high r ) age effect on task-based FC. 

.4.6. Gender effect 

We estimated the gender effect by generating the FC matrices re-
uced to the LANG ROIs for males (M) and females (F; self-reported gen-
er) separately. The average DCs obtained for each ROI were then com-
ared between the two groups. We estimated significant differences be-
ween the two populations by means of standard t tests. For illustrative
urposes, only the top 10% of the largest differences (Males > Females
nd Females > Males, independently) were retained to define the most
iverging ROIs. 

. Results 

.1. Towards a task-based connectomic atlas of language 

.1.1. Global profile of the tasks and latent subprocesses 

Data-driven clustering based on the similarity of global measures
cross conditions/tasks (the global efficiency: 𝐸 𝑔𝑙𝑜𝑏 , the average local
fficiency: 𝐸 𝑙𝑜𝑐 , the mean geodesic distance: 𝑑 , and the total number of
odes: N; Fig. 2 A) has revealed an optimal 5-cluster solution. This so-
ution was consistent with that obtained based on BOLD functional ac-
ivations (Fig. S1, Appendix). We used the internal composition of the
ve task groups to label them according to the underlying language sub-
rocess that might be primarily involved ( Fig. 2 A), namely: G1 = MON-
TORING (MS, MO, DO tasks); G2 = DECODING (PHON, RHYM and
ROS tasks); G3 = SEMANTIC (SEM and SP tasks); G4 = PRODUC-
ION (NAM, FLU, GENE, and REP tasks); G5 = WANDERING (VMW
ask). Indeed, the monologal and dialogal inner speech with own and
ther voices (MS, MO, DO) engage MONITORING processes (inner voice
ontrol ). Phoneme detection (PHON), rhyme judgment (RHYM), and
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Fig. 2. Global connectomic profiles of the tasks, the subprocesses and the LANG connectome. 
(A) Hierarchical clustering of parameters used to define global FC profiles ( 𝐸 𝑔𝑙𝑜𝑏 = global efficiency, 𝐸 𝑙𝑜𝑐 = average local efficiency, 𝑑 = mean geodesic distance; 
N = total number of nodes; top); and of individual tasks, to cluster them into groups of underlying subprocesses (bottom). See also the Supplementary Material for 
the rationale of the subprocesses labels (Table S1) and for the clustering applied to BOLD functional activations (Fig. S1). Table S3 summarizes the global measures 
for each task and subprocess. 
(B) Non-linear relationship between the integration/segregation balance (I:S) and the geodesic distance of the functional connections of the different connectomes. 
Plain dots correspond to the mean values of each task-related connectomes. Empty dots to the mean values of subprocess-related connectomes. The Kmean clustering 
revealed 3 distinct types of connectivity according to the I:S/geodesic distance profile (short-range, middle-range, and long-range). The colored lines come from the 
centroids (crosses) estimated from the observed data (at the level of brain region), in relation to the regression polynomial curve. 
(C) Global topology of the LANG task-based connectome. The 131 regions of interest (ROIs) of LANG ( Power et al., 2011 ; LH = 61%, RH = 35%, CER = 4%) are 
projected here in a reduced two-dimensional space (PCA layout) consisting of the first two components: PC1and PC2. The LANG atlas, node coordinates and properties 
are described in Table S4. The package including the atlas can be downloaded here: https://osf.io/6xm8n/ . 
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i  
rosodic detection (PROS) first involve phonology and/or prosody DE-
ODING (sound control ). Semantic categorization (SEM) and speech per-
eption (SP) respectively engage word and sentence comprehension.
hey both primarily require SEMANTIC processing (conceptual knowl-

dge ). Object naming (NAM), categorical fluency (FLU), sentence gener-
tion (GENE), and word repetition (REP) rely on lexical/lexico-syntactic
ormulation or word PRODUCTION (conceptual knowledge ). Finally, ver-
al mind wandering (VMW) involves spontaneous speech production
nderpinned by introspective WANDERING processes (or unintentional

hought). Details of the tasks and the language subprocesses theoreti-
ally and primarily targeted according to statistical fMRI contrasts per-
ormed are provided in the Supplementary Material (see also the sum-
ary Table S1, Appendix). 

Interestingly, language tasks and subprocesses can also be grouped
ccording to the physical distance of their functional connectivity within
he brain. By contrasting the nodal integration/segregation balance (I:S)
ith the nodal geodesic distance 𝑑 of each task and subprocess, we have
bserved a significant linear relationship between the two parameters
 r = 0.8, p < .001). However, the best-fit function indicated that the
elationship was slightly better described by a nonlinear relationship
i.e., a polynomial curve; Fig. 2 B). Furthermore, the unsupervised clas-
ification (k-mean method) applied to these data has identified 3 main
lusters, denoting a gradual organization of tasks and subprocesses ac-
ording to 3 canonical profiles of average connectivity that can be in-
erpreted as C1 = long-range connections; C2 = middle-range connec-
ions; C3 = short-range connections ( Fig. 2 B). Overall, the more task-
r process-based connectomes were segregated rather than integrated
n average (i.e., a negative difference in favor of 𝐸 𝑙𝑜𝑐 ), the shorter the
hysical internodal distance (short-distance functional connections, as
or the control tasks of language involving DECODING and MONITOR-
NG subprocesses). Conversely, the more task- or process-based connec-
omes were integrated rather than segregated on average (i.e., a posi-
ive difference in favor of 𝐸 𝑔𝑙𝑜𝑏 ), the longer the physical internodal dis-
ance (long-range functional connectivity, as for the WANDERING and
EMANTIC task groups). 
6 
.1.2. Global topology of the general LANG connectome 

After excluding irrelevant functional connections (see Material and
ethods, Section 2.2 .), LANG was composed of 131 non-isolated regions

f interest (ROIs; Power’s parcellation: Power et al. 2011 ), distributed
ver the two hemispheres (nLH = 80; nRH = 46) and the cerebellum
nCER = 5). Connectivity between LANG ROIs appeared balanced be-
ween integration and segregation (I:S = 0.049), associated with a rather
ong-range connectivity profile ( ̄𝑑 = 68.1). Table S3 (Appendix) summa-
izes the global network properties of the tasks, the subprocesses, and
f the general LANG connectome. Fig. 2 C shows the LANG connectome
s a graph projected into a reduced two-dimensional space based on
rincipal component analysis (PCA). 

.1.3. LANG partition and hubs (intermediate and local scale) 

Community-based detection applied to the LANG connectome has
efined 4 distinct components (or functional subnetworks, called Nets;
ee Fig. 3 A, for projection into the reduced PCA space). Fig. 3 B shows the
apping of the Nets onto the brain and cerebellum templates. Fig. 3 C
ighlights their internal composition in terms of discrete intrinsic net-
orks (as previously characterized by Ji et al. (2019) ; Cole-Anticevic
rain-wide Network Partition: CAB-NP). 

Considering the composition, Net1 could correspond to the core com-
onent of language, engaged in the coding-decoding of linguistic sig-
als of multiple nature: e.g., acoustic, syntactic, conceptual, articulatory
 Coding-Decoding system ). Net2 is represented by executive-attentional
unctional networks ( Control-Executive system ). Net3 is mainly composed
f regions of the default mode network (DMN) known to be involved in
igh-level cognitive abstraction and can thus be regarded as a "concep-
ual" knowledge network ( Abstract-Knowledge system ). Finally, Net4 in-
olves a large majority of perceptual and motor brain areas, suggesting
hat it is the " Sensori-Motor " system of language. A supported argument
nd in-depth discussion of the putative functional roles of these LANG
ets is raised in the discussion ( Section 4 ). 

The Nets’ composition, coupled with their topological organization
n the PCA reduced space, have provided evidence for the possible mean-

https://osf.io/6xm8n/
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Fig. 3. Global, intermediate and local connectomic features of the LANG connectome. 
(A) Reproduction of the LANG connectome in the 2D space of PC1/PC2 (cf. Fig. 2 C). Four main components identified within the LANG network (optimal partition, 
Louvain method). The components (Nets) are displayed on the connectome and the ROIs are colored according to these components. The number of ROIs per Nets 
(Power ROIs; including both hemispheres and cerebellum) was distributed as follows: Net1 = 54 (41.2%), Net2 = 28 (21.4%), Net3 = 26 (19.8%), Net4 = 23 (17.6%). 
ASSO = associative; EXE = executive; AUD = auditory; SMN = sensorimotor. 
(B) Illustration of the LANG connectome and its 4-Net functional brain subdivision. Distribution on a multimodal parcellation of the brain (HCP_MMP1.0; 
Glasser et al. 2016 ) and cerebellum (SUIT; Diedrichsen et al. 2009 ). Only the left hemisphere (LH) is represented here (see Fig. S3 for a complete representation of 
the connectomic atlas). 
(C) Intrinsic functional composition of LANG Nets (top), in accordance with the resting state networks (RSNs) proposed by Ji and collaborators (Cole-Anticevic 
brain-wide network partition; CAB-NP; Ji et al., 2019 ) on the same template (HCP_MMP1.0 borders). Nodal properties of LANG (bottom), showing the distribution of 
the main hubs, connector hubs as well as the regions belonging to the maximal clique (complete subgraph; diamond). Only the LH is represented here. The labelled 
ROIs correspond to the 5 left perisylvian hubs constituting the “rich-club ”: STGa = the anterior part of the superior temporal gyrus; 45 = area 45 (pars triangularis) 
of the inferior frontal gyrus; 55b = area 55b of the posterior middle frontal gyrus; PFm = inferior parietal cortex, supramarginal gyrus; STV = superior temporal 
visual area of the temporo-parieto-occipital junction. 
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ng of the 2 main PCA axes (i.e., the two principal components; PC1 and
C2 of Fig. 2 C). PC1 extended from auditory to sensorimotor compo-
ents of language and may reflect the axis of externally oriented cog-
ition (from verbal-specific to domain-general somatosensory systems).
C2 progressively involved control executive regions to semantic asso-
iative regions and may represent the axis of high-level internal cogni-
ion associated with language ( Fig. 3 A). 

Interestingly, the core Net1 was located at the crossroads of these
wo internal-external axes. Moreover, Net1 was the component with the
ighest portion of connector nodes (Net1 = 40.7%, distributed in both
emispheres; Table S4, Appendix) reflecting a high capacity to integrate
nformation from regions belonging to the same network (intra-FC), as
ell as to other specialized networks (inter-FC; high zi , high Pi class).
et1 also exhibited a “rich club ” organization (from a rich club regime
f k > 17 to k < 26; Φnorm(k) > 1, p < .001; 10.000 permutations). Re-
tricting to the level of k where the strongest rich club effect was ob-
erved (k = 24), we found a set of 5 left perisylvian hubs constituting the
rich-club ” of Net1 (areas: STGa, 45, 55b, PFm, STV; Fig. 3 C). These
odes also formed the maximal Net1 clique (i.e., the maximal complete
ubgraph; 𝜔 (LANG/Net1) = 5). 

Table S4 (Appendix) includes information about the LANG modules
nd hubs for each region. Fig. S3 (Appendix) presents the LANG con-
ectomic atlas including the right hemisphere (RH), as well as details
f its components. 

.2. Properties of the LANG connectomic atlas 

.2.1. Functional correlates 

On average, the LANG’s FC laterality index indicated a slight LH pre-
ominance (LI(LANG) = + 0.23), but hemispheric asymmetry was vari-
ble across the Nets. The proportion of nodes that were more strongly
onnected was higher in LH for Net1 (LI(Net1) = + 0.41) than for the
ther Nets ( Fig. 4 A). By comparison, the FC of the nodes belonging to the
sensory-motor component ” were bilaterally distributed (LI(Net4) = -
7 
.12). Overall, the FC asymmetry of LANG Nets (from bilateral to LH)
as arranged along the following gradient: Net4 < Net3 < Net2 < Net1.

In addition, some LANG Nets were spatially congruent with the map-
ing of neurotransmitter receptor pathways. In particular, the LH nodes
f Net2 and Net3 showed a high spatial matching with the serotonin
eceptors 5HT2a (SMC Net2/5HT2a = 0.68; SMC Net3/5HT2a = 0.74).
hose of Net4 overlapped with the noradrenergic transporters NAT_MRB
SMC Net4/NAT_MRB = 0.7). However, based on the SMC relevance
riterion (SMC > 0.67), Net 1 did not show significant spatial corre-
pondence with any of the neurotransmitter maps. Fig. 4 B shows the
istribution of the LANG ROIs that matched (or did not match) with the
ET receptors (see also Fig. S5, Appendix). 

.2.2. Structural correlates 

The endings of some large white matter (WM) bundles were spa-
ially concordant with the LANG Nets ( Figs. 4 C, S4, Appendix). The best
verlap between the bundles and Net1 (LH ROIs) was obtained by com-
ining the ending masks of the left arcuate fascicle (AF), superior lon-
itudinal fascicle branch III (SLFIII), inferior longitudinal fascicle (ILF),
nd the thalamo-premotor (T_PREM) projections (SMC Net1/AF-SLFIII-
LF-T_PREM complex = 0.9). The concordance rate increased to 92%
hen the ending masks of the middle cerebellar peduncle (MCP) and

he cerebellar ROIs of Net1 were included. At a more restricted level,
he unique contribution of the left AF provided a high spatial concor-
ance with the Net1 lateral LH nodes (SMC Net1/AF = 0.72). Regarding
et2 (LH ROIs), the best matching was reached with the combination
f the left superior longitudinal fascicle branch II (SLF-II) and the cin-
ulum (CG) bundle (SMC Net2/SLFII-CG = 0.76). The concordance be-
ween the SLFII individually taken and the lateral LH Net2 ROIs was
lose to 70% agreement (SMC Net2/SLFII = 0.68). Net3 (LH ROIs) had
lmost complete coverage when considering the combination of CG, the
iddle longitudinal fascicle (MLF), and the fornix (FX; SMC Net3/CG-
LF-FX = 0.98). Finally, Net4 (LH ROIs) was spatially well covered by

he combination of the cortico-spinal (CST) and the striato-precentral
ST_PREC) tracts (SMC Net4/CST-ST_PREC = 0.78). 
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Fig. 4. Functional attributes and structural underpinnings of the LANG connectome. 
(A) Asymmetry of FC estimated on LANG ROIs and their distribution as a function of Nets. Left hemispheric FC dominance can be considered if IL > + 0.2 (see 
Method). 
(B) Spatial concordance with neurotransmitter receptors maps of serotonergic (5HT2a [F18]altanserin PET; Savli et al. 2012 ) and catecholaminergic/noradrenergic 
(NET (S,S)-[(11)C]O-methylreboxetine (MRB) PET; Hesse et al. 2017 ) pathways. All the neurotransmitters’ maps implemented in JuSpace ( Dukart et al., 2021 ) were 
tested, but only spatial matches considered significant are shown here (SMC > 0.67; see Method). LANG regions with sufficient coverage ( > 40% of overlap) are in 
red while those with no or insufficient coverage ( < 40%), in gray. 
(C) Structural concordance with large white matter (WM) bundle terminations provided by TractSeg ( Wasserthal et al., 2018 ). Only the best bundles combinations 
allowing for the highest match are displayed here. The red/gray color code corresponds to the same definition as for Panel B. 
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.2.3. Flexibility and variability 

The module assignments of LANG ROIs varied according to the lin-
uistic subprocesses involved. We have calculated the flexibility coeffi-
ients to capture the FC versatility of the ROIs engaged in the different
ets, depending on the subprocess at work. The average flexibility coef-
cients (F) were low for Net1 (F Net1 = 0.21) and Net4 (F Net2 = 0.32);
hile those for Net2 and Net3 were twice as high (F Net2 = 0.55; F
et3 = 0.64). Ordering LANG networks according to their functional
ersatility yielded: Net1 < Net4 < Net2 < Net3; from invariant to highly
exible ( Fig. 5 A). 

Although modest, there was also some inter-individual variability in
C when individuals performed the language tasks ( Fig. 5 B). We found
he highest inter-subject variability on Net3, but the variance remained
ow on average (mean z score = 0.56). FC variability between partici-
ants was more visible at the regional level than at the network scale.
n addition, we found a high matching coefficient between the “uni-
ersal language network ” (ULN; as proposed by Malik-Moraleda et al.,
022 and the lateral LH ROIs of Net1 (SMC Net1/ULN = 0.84; Fig. S5,
ppendix), suggesting some between-individual and cross-cultural con-
istency in key language network involvement. 

However, the LANG connectome underwent changes with age
 Fig. 5 D). We observed both positive and negative correlations between
8 
ge and degree centralities (DCs). Net3 and Net2 were the components
howing the most important modulations. More specifically, ROIs of
et2 were negatively correlated with age (mean r = -0.39); while ROIs
f Net3 were, on average, positively correlated with age (mean r = 0.31).
hus, the older the individuals, the less functionally connected the Net2
egions were (i.e., a decrease in functional hubs for this network in
ANG). By contrast, the Net3 regions tended to be more strongly in-
erconnected in LANG with age. 

Finally, gender also modulated LANG connectivity. The strongest
ANG ROIs for males compared to females (M > F) in terms of DCs
ere distributed between Net1 (62.5%) and Net2 (37.5%) in LH. The

trongest LANG ROIs for females compared to males (F > M) were prac-
ically all located in Net3 (91.67%). Fig. 5 C shows the LANG ROIs with
he most divergent FC. It is interesting to note that the top 10% were
ocated in LH but see also Table S5 (Appendix) for a complete picture
f statistical differences. 

. Discussion 

The main objective of this study was to provide an in-depth, multi-
cale view of the organization of brain function associated with lan-
uage from a connectomic perspective. We leveraged an extensive fMRI



E. Roger, L. Rodrigues De Almeida, H. Loevenbruck et al. NeuroImage 263 (2022) 119672 

Fig. 5. Variability of the functional attributes of the LANG connectome. 
A. Variability induced by linguistic demand (i.e., the linguistic subprocess involved in the task). Representation of the flexibility score of each of the LANG ROIs as 
well as their distribution in each of the Nets (see also Fig. S7). 
(B) Inter-individual variability. Representation of the betas z-scores estimated on the LANG ROIs and their distribution in each of the Nets (see also Fig. S8). 
(C) Variability determined by age. Illustration of the correlation coefficients between age and ROI DCs, as well as their distribution in each of the Nets. The correlations 
were performed on the naming task (NAM) that includes healthy participants over a wide age range: 82 subjects aged 18 to 84 years (see also Fig. S9). 
(D ) Variability induced by gender. Top 10% of the most different LANG ROIs between males (M) and females (F; self-reported gender). In cyan, the top 10% of ROIs 
where nodal connectivity (DC) was higher in males compared to females. In magenta, the top 10% of regions where nodal connectivity was comparatively higher in 
females than in males. See Table S5 for a detailed summary of significant differences. 
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atabase of multi-paradigm language tasks ( InLang [Interactive net-
orks of Language] database), and we applied a state-of-the-art func-

ional connectivity (FC) methodology that provided unique insights on
rain networks related to language. The central finding of this research
as that the general language connectome (LANG) could be objectively
artitioned into four main non-overlapping subnetworks (referred to as
Nets ”), possessing distinctive and marked features. Table 1 below pro-
ides a complete overview of these Nets. 

The most extensive subnetwork, Net1, appears to correspond to
 “specialized ” language system shaped for the encoding-decoding of
uditory-verbal signals. Indeed, Net1 consisted primarily of areas be-
onging to the intrinsic networks previously designated as “auditory ”
nd “language ” (CAB-NP RSNs: Ji et al. 2019 , Fig. 3 C). It included a
et of both primary, secondary, and associative areas, previously noted
s specialized for language (e.g., Labache et al., 2019 ; Price, 2012 ). In
ddition, a subset of Net1 composed of crucial brain regions densely
nterconnected formed a critical set for information integration and
ommunication during language tasks ( Fig. 3 C). These core network
tructures were inscribed in the left perisylvian zone, namely: the an-
erior part of the superior temporal gyrus (STGa), the posterior part of
he pars triangularis of the inferior frontal gyrus (pIFG, 45/44), pos-
erior middle frontal gyrus/premotor cortex (pMFG, 55b area), infe-
ior parietal cortex, supramarginal gyrus (PF/PFm,), temporo-parieto-
9 
ccipital junction (STV/TPOJ1). Our analyses to determine the func-
ional role of brain regions within networks had identified them all as
connector ” hubs, which is consistent with previous observations (e.g.,
FG/TPJ/STG: Goucha et al., 2017 ; Hagoort, 2016 ; PF/SMG: Braga et al.,
013 ; pMFG, 55b: Hazem et al., 2021 ). Connector hubs were located
t the contact points of several white matter (WM) fascicles, actively
upporting long-distance information transport and processing (e.g., at
he AF/SLF convergence areas for the IFG and TPJ; Roger et al., 2022 ).
ndeed, we observed a robust matching with the AF endpoints (whose
nvolvement in language has been widely and more directly reported;
.g., Forkel et al., 2022 , for a meta-analysis) and the lateral perisyl-
ian part of Net1. Nevertheless, more than a one-to-one relationship
etween structure and function, it was a combination of various WM
undle terminations that underlay the entire network ( Fig. 4 C). Beyond
he clique, Net1 embedded other connector areas. Some of which were
n the right hemisphere, others in the basal ganglia (the anterior parts
f the thalamus and the putamen) or in the right cerebellum (Crus I) as
ell (Table S4, Appendix). Large cortico-basal ganglia-cerebellar loops
ould be involved during language tasks, supporting a substantial role
f the subcortical structures in high-level cognition including language
 Murphy et al., 2022 ). 

Individually, brain areas have their own anatomical and microstruc-
ural properties (cytoarchitectonic features, Zilles and Amunts, 2010 )
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Table 1 

Summary of the properties associated with each of the language networks. 

LANG Nets Composition & key features Functional attributes Anatomical underpinnings 

Net1 

Coding-Decoding System - Language/auditory-verbal component 
(RSNs: LANG/AUD) 

- Strongly interconnected (perisylvian 
rich-club) 

- At the crossroads of the other Nets 
(Core) 

- Systematically engaged in language 
tasks (inflexible) 

- Compatible with the “universal 
language network ”

- LH lateralized 

- Supported by a complex 
of long-range fascicles 

- (AF-SLFIII-ILF-ST_PREM; 
lateral part: AF +++ ) 

Net2 

Control-Executive System 

Net3 

Abstract-Knowledge System 

- Associative regions involved in 
high-level cognition (RSNs Net2: 
CON/FPN; Net3: DMN) 

- Flexible according to the linguistic 
subprocesses involved (versatile) 

- Age-sensitive (Net2: DC ↓ with age; 
Net3: DC ↑ with age) 

- Serotoninergic pathway 

- Long-range associative 
WM fascicles (Net2: 
SLFII-CG; Net3: 
MLF-CG-FX) 

Net4 

Sensori-Motor System - “Grounded ” cognition (RSN: SMN) - Globally engaged in language tasks 
- FC bilaterally distributed 
- Resistant to aging 
- Noradrenergic pathway 

- Coupled with projection 
fibers (CST-ST_PREC) 
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nd may thus be biased – under normal conditions – to respond ef-
ciently and preferentially to certain input types. They can be tuned

or functional selectivity to linguistic phonological, syntactic, lexical,
r even semantic units ( Friederici 2011 ). However, the underlying
omputational processing (i.e., the functional role) of regions belong-
ng to the same Net could be deeply similar. Computational building
locks (called primitives: Poeppel, 2012 ; elementary linguistic opera-
ions: Hagoort, 2019 ; or neural operations: Buzsáki, 2020 ) of Net1 could
mply here the segmentation-fusion of the linguistic signal, yielding the
eneration of a verbal information stream of increasing and ordered
omplexity ( Zaccarella and Friederici, 2015 ). Multiple combinatorial
perations on different linguistic representations have already been re-
orted (e.g., the combinatorial network of language: Pylkkänen, 2019 ).
et1 and its constituents could represent the foundation of these com-
inatorics in the task. The modularity analysis we applied to multi-
le language tasks would indeed have captured a common “language
ombinatorial ” computational mechanism for Net1, making this net-
ork a cornerstone of a “language-specialized ” encoding-decoding sys-

em ( Hagoort, 2017 ). 
Consistent with a central system, Net1 was topologically situated at

he interface of the other components, between an internally and ex-
ernally oriented cognition ( Fig. 3 A). Moreover, Net1 was found to be
 globally inflexible (unchanged) configuration regardless of task and
inguistic demand ( Fig. 4 A). It also appeared spatially consistent with
he “universal language network ” proposed by Malik-Moraleda et al.,
022 as an invariant, cross-cultural, functional language network (see
ig. S5, Appendix). Several universals of language (apart from the “uni-
ersal grammar ”; Chomsky, 1995 , which is debated) have been reported
 Coupé et al., 2019 ) and concern both semantics ( Gibson et al., 2017 ),
yntax ( Futrell et al., 2015 ) or even pragmatics ( Piantadosi et al., 2011 ).
he constraints applied to shape languages seem to follow common
ules of optimization of coding and information transfer towards a fun-
amental principle of efficiency. The functional selectivity of Net1 re-
ions is likely to be inherited from our ancestors and to be part of a
anguage-ready brain ( Boeckx and Benítez-Burraco, 2014 ). They are also
upported by a specific brain architecture already present in children
 Friederici, 2017 ) whose functional connectivity is genetically encoded
 Mekki et al., 2022 , for the genetic regulation specifically involved in
he perceptual-motor and semantic pathways of language). 

At the boundaries of Net1, we also detected two networks that are in-
egral parts of the general LANG connectome (Nets2-3). Net2 was dom-
nated by intrinsic attentional and executive control networks (cingulo-
percular and frontoparietal networks; Fig. 3 C). First, the cingulo-
percular network (CON) is a superordinate system encompassing the
10 
alience network ( Ji et al., 2019 ), involved in external-signal-driven
ttentional control or top-down, “exogenous ” redirection of attention
 Matthen, 2005 ). The specialization of such a network in the actively
ontrolled integration of exteroceptive information may lead to the pro-
ision of appropriate information in working memory ( Parr and Fris-
on, 2017 ) in order to construct an internal representation of the ex-
ernal world relevant to the individual at a specific time. Second, the
rontoparietal network [FPN; close to the Multiple Demand Network
MDN): Smith et al. (2021) , or to the Central Executive Network (CEN);
oucet et al. (2019) ] is a network involved in all processing requir-

ng controlled attention directed toward internal cues and goals. This
etwork operates for endogenous and top-down attentional redirection
 Perrone-Bertolotti et al., 2020 ) and is engaged in verbal working mem-
ry and “fluid ” cognition ( Assem et al., 2020 ). Overall, Net2 is a con-
rolled executive language system that captures both endogenous and
xogenous attentional aspects. Net3, on the other hand, was almost ex-
lusively composed of DMN (Default Mode Network) regions ( Fig. 3 C).
t rest, the default state is thought to be involved in “random episodic
ilent thought, ” promoting creativity ( Andreasen, 2011 ). Previous stud-
es exploring intrinsic connectivity have shown that some components of
he DMN are tightly and specifically coupled with the language network
particularly the anterolateral subnetworks; Gordon et al., 2020 ). Task-
ased studies have also shown its involvement in natural language pro-
essing ( Simony et al., 2016 ). As a foundation of the episodic-semantic
emory spectrum (and more broadly, language-memory; Roger et al.,
022 ), the DMN is a multimodal experiential system ( Xu et al., 2017 )
hat fosters resonance and binding between environmental features and
hose derived from similar prior knowledge and states ( Binder and De-
ai, 2011 ; Constantinescu et al., 2016 ). For these reasons, Net3 has been
eferred to here as the “Abstract-Knowledge system ” of language. 

Even if their functional role in cognition was distinct, Net2 and
et3 were both involved in high-level cognition. They displayed sim-

lar network features in terms of hub properties, with a remarkably
igh proportion of “satellite ” key regions compared to other Nets (Table
4, Appendix). Satellite centers are regions whose functional commu-
ication supports dialogue between components ( van den Heuvel and
porns, 2013b ). In our case, they favor communication with regions
elonging to other Nets, facilitating multimodal integration or infor-
ation linking throughout the task. Moreover, we have observed in
et2 and Net3 a clear tendency to reconfigure. according to linguis-

ic demand (i.e., versatile networks with a flexible modular configu-
ation that depends on the language subprocesses involved; Fig. 4 A).
t is consistent with studies showing that these systems are auxil-
ary and differentially involved depending on the nature of the task
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a  
 Fedorenko and Thompson-Schill, 2014 ). For instance, FPN/MDN is
unctionally active in controlled and challenging semantic tasks but not
n less demanding linguistic tasks ( Diachek et al., 2020 ), which is con-
istent with the role of FPN in attentional processes and fluid cogni-
ion ( Assem et al., 2020 ; Perrone-Bertolotti et al., 2020 ). In the same
ine, the Net3 configuration was more likely to be engaged in tasks in-
olving the projection of spontaneous and self-oriented thoughts, such
s verbal mind wandering ( Andrews-Hanna et al., 2014 ; Binder et De-
ai, 2011 ; Humphreys and Lambon Ralph, 2015 ; Konishi et al., 2015 ;
au et al., 2013 ; Raichle, 2015 ; Wang et al., 2020 ). Interestingly, the
rain spatial distribution of Net2 and Net3 corresponded to the mapping
f the 5HT2A receptors ( Fig. 4 B) involved in serotoninergic transmission
 Savli et al., 2012 ; see also Beliveau et al., 2017 , for a high resolution
nd in vivo brain atlas of the serotoninergic system), capable of ampli-
ying or sustaining cortical excitation ( Puig and Gulledge, 2011 ). These
eceptors indeed modulate whole-brain connectivity and promote flex-
bility between brain states and processes ( Jancke et al., 2021 ). They
ould therefore be a relevant biomarker of the functional flexibility re-
ealed in Nets 2-3. 

However, the two networks were distinct, underpinned by specific
natomic connectivity ( Fig. 4 C). In addition, they were differentially
ensitive to gender ( Fig. 4 D). For example, some hubs in Net3 showed
igher FC during tasks in females compared to males, consistent with
ecent findings on differential DMN connectivity in resting state studies
 Liang et al., 2021 ). Finally, Net2 and 3 were both subject to the pres-
ures of age but here again differently ( Fig. 4 C). Net2 was negatively
mpacted by aging. The older the age, the less Net2 regions were func-
ionally connected. This reduction with age in attentional-controlled FC
as consistent with the alteration in executive functioning tradition-
lly observed in older subjects ( Reuter-Lorenz et al., 2016 ). Net3, on
he contrary, had a high share of hubs that were more densely con-
ected with age, which may reflect a compensatory pathway tradition-
lly observed in aging concerning language (i.e., a semantic strategy:
aciu et al., 2021 ). 

The last system, Net4, held bilateral sensorimotor cortico-subcortical
rain areas. This fourth component of the language connectome was
istinct from the perceptual and motor auditory-verbal structures in-
luded in Net1 ( Fig. 2 B) but could be an essential part of the action-
erception circuits of language. The brain regions involved in Net4 have
lready been described as engaged in several sensorimotor aspects re-
ated to language production, in particular: general action selection (pre-
otor); motor execution (supplementary motor area); orofacial motor

ctivity (precentral and postcentral language areas); or even timing of
otor outputs (putamen and cerebellum; Price, 2012 for an exhaus-

ive overview). Besides the primary and secondary sensorimotor regions,
et4 also encompassed a large part of the precuneus. Precuneus supports
 prominent level of interconnectivity with other brain regions, which
as led to the identification of functional subdivisions (posterior-visual;
entral-cognitive/associative; anterior-sensorimotor; Margulies et al.,
009 ) and has indeed been considered a crucial sensorimotor connector
ub of the LANG connectome (Table S4, Appendix). Importantly, it is an
mportant site of production-comprehension coupling in natural speech
 Silbert et al., 2014 ). In addition to speech production, Net4 can be en-
aged in language comprehension. Semantic grounding (i.e., the seman-
ic links between words and their actions, referent objects, and related
oncepts) appears to depend on semantic circuits that bring together
oth the circuits related to word form (perisylvian, Net1) and conceptual
ircuits that underlie, among other aspects, sensory-motor experience
extrasylvian, including Net4). The involvement of the motor system
n speech perception and understanding has been observed in various
ontexts ( Fernandino et al., 2022 ; Schomers and Pulvermüller, 2016 ;
kipper et al., 2017 ; and see Pulvermüller, 2018 for the hypothesis of
eural reuse of action perception circuits in language), which may ex-
lain why Net4 was globally engaged regardless of the subprocess in-
olved in the language tasks ( Fig. 4 A). Finally, several neurotransmit-
ers were involved in regulating the activity of sensorimotor regions.
11 
owever, we observed a specific spatial matching between the sensori-
otor language system and the noradrenergic receptor mapping (nora-
renaline transporter: Hesse et al., 2017 ; Fig. 4 B). Catecholamine nora-
renaline has substantial projections to somatosensory and motor areas,
ncluding primary cortices, and the modulatory effects of noradrenaline
n sensorimotor processing are diverse. While its contribution to modu-
ating arousal states ( Holland et al., 2021 ) and adapting sensory circuits
or optimal behavior in animals is well documented (see Jacob and Nien-
org, 2018 , for a review), its precise function in humans and in language
emains to be investigated. 

Overall, our observations reinforce and complement past obser-
ations about the neurocognitive architecture of language. For ex-
mple, the concept of multiple language networks ( Hagoort, 2019 )
r the “theoretical ” subdivision of the vast language network into a
ritical system accompanied by several additional systems (or mar-
ins; Hertrich et al., 2020 ) have been discussed. In an opinion article,
edorenko and Thompson-Schill (2014) have previously reconsidered
unctional specialization from the perspective of dynamic engagement
f interactive networks to support different goals and linguistic com-
lexity. Our observations about the flexibility of the different LANG
omponents are entirely in line with these considerations. For exam-
le, some networks may be central (i.e., they are composed of regions
hat maintain their allegiance through time such as Net1). In contrast,
thers are composed of peripheral regions that are not necessarily spe-
ialized for language but participate in its elaboration (such as Nets2-3).
n the same paradigm, Chai et al., (2016) studied the dynamic flexibil-
ty of language regions on a comprehension task. Beyond a core set of
egions in the left hemisphere – analogous to our perisylvan hubs be-
onging to the rich-club ( Fig. 3 C) – they observed flexible reconfigura-
ions of “peripheral ” regions, primarily located in the right hemisphere.

ithin this extended language network, the angular gyrus and the ante-
ior temporal lobe belonging to Net3 of the LANG atlas and assigned
o the DMN (e.g., Smallwood et al., 2021 ), exhibited a singular and
ighly flexible pattern of activity that may drive the functional inter-
emispheric coordination associated with language ( Blank et al., 2016 ;
hai et al., 2016 ; Mahowald and Fedorenko, 2016 ). Although other re-
ions demonstrated weakly lateralized FC in the left hemisphere within
he LANG atlas, these regions indeed showed more balanced connectiv-
ty between hemispheres ( Fig. 4 A). They are known to play an active
ole in the multimodal integration of information in semantic cognition
e.g., Lambon Ralph et al., 2017 ; Seghier, 2013 ), which is widely dis-
ributed in the brain ( Huth et al., 2016 ). 

Other data also support the proposal of a functional architecture
f language composed of multiple systems/subsystems that corroborate
ur observations on LANG of discrete language-related components via
he demonstration of specific signatures in terms of intrinsic connec-
ivity ( Labache et al., 2019 ) or of dissociated cortical distribution by
ntraoperative cortical stimulations allowing to go beyond the tradi-
ional correlational framework ( Corrivetti et al., 2019 ). These segre-
ated functional networks appear to dynamically integrate into larger
nteractive configurations ( Roger et al., 2022 ). This echoes the con-
ept of encapsulation or nested networks ( Hilgetag and Goulas, 2020 ),
here domain-specific and domain-general circuits interface to under-

ying a given mental process ( Fedorenko and Thompson-Schill, 2014 )
 Fedorenko and Thompson-Schill, 2014 ). Even if the number of pro-
osed networks varies according to methods used or primary theoreti-
al frameworks, the task-based networks or systems defined in the LANG
tlas were consistent with previous partitioning proposals. 

The great benefit of partitioning emerging directly from data is to
inpoint latent mechanisms that transcend our classical cognitive de-
criptions (see interesting discussions on the current problem of brain-
ehavior concordance or the blurriness and ambiguity associated with
erminology and definition of psychological constructs: Anderson, 2011 ;
uzsáki, 2020 ). Data-driven ontology provides an independent view,
ere from a neuro-centric perspective ( Roger et al., 2022 ), and can serve
s a “lingua franca across disciplines and theoretical gaps ” ( Eisenberg et al.,



E. Roger, L. Rodrigues De Almeida, H. Loevenbruck et al. NeuroImage 263 (2022) 119672 

2  

p  

l  

d  

r  

l  

t  

a  

v  

w  

c  

s  

g  

(  

w  

i  

(  

I  

w  

t  

A  

s  

i  

N
 

i  

S  

T  

a  

s  

r  

a  

f  

s  

n  

e  

o  

2
 

c  

k  

c  

l  

s  

a  

s  

m  

t  

W  

w  

t  

c  

t  

i  

a  

t  

a
 

a  

r  

fl  

L  

b  

t  

2  

w  

c  

H  

t  

t  

a  

g  

a  

c  

2  

i  

i  

r  

a  

e
 

o  

l  

w  

2  

t  

g  

m
t  

o  

m  

H  

s  

T  

L  

n  

i
 

t  

i  

a  

p  

M  

p  

e  

r  

i  

d  

s  

(  

a  

c  

t  

s  

p  

r  

d  

m
 

a  

c  

d  

H  

i  

c  

b  

fi  

y  

(  

a  

s  

t  
019 ). However, since they are derived from the observations, these
artitions depend directly on the quantity, quality, sensitivity, and va-
idity of the data used. This study has the advantage of being based on a
atabase including a rich diversity of fMRI protocols, varying in a wide
ange of language characteristics ( Fig. 1 ). However, task paradigms are
ess easy to implement than the resting state. They are typically very con-
rolled, require multiple repetitions to obtain a robust signal/noise ratio,
re more prone to movement artifacts, and induce higher interindividual
ariability ( Park et al., 2020 ). This often leads to smaller final samples,
hich may be a prominent issue for subsequent analyses. Taking into

onsideration the need to maximize observations to ensure robust re-
ults, we have focused most of our analysis on the investigation of the
eneral connectome or on the subprocesses common to several tasks
and not on individual tasks). The compilation of even larger databases
ill allow for broader and more detailed investigations. For example,

t would be important to consider the pragmatic aspects of language
 Rasgado-Toledo et al., 2021 ), which are not specifically valued in the
nLang database. Moreover, the current trend is to extend the frame-
ork of fMRI paradigms traditionally employed in “laboratory ” settings

o less controlled and more ecological protocols ( Verga and Kotz, 2019 ).
s evidenced by the recent Neuroimage Special Issue ( Finn et al., 2022 ),
everal initiatives and datasets are steering toward accounts of cognition
n more natural settings (e.g., Bhattasali et al., 2020 ; LeBel et al., 2021 ;
astase et al., 2020 for language). 

Similarly, (neuroimaging) multimodal initiatives have flourished
n recent years [e.g., HCP: Van Essen et al. (2013) ; UK Biobank:
udlow et al. (2015) ; ENIGMA: Thompson et al. (2020) ; CamCAN:
aylor et al. (2017) data collections]. Multimodal datasets would then
llow more direct confirmation of the neurofunctional relevance of the
patial correspondences we observed regarding anatomo-functional cor-
elates of LANG. In our study, analysis of the links between LANG and
natomical connectivity and neurotransmitter maps could not be per-
ormed in the same individuals. Multimodal data would provide more
ubtle indicators of the correspondence between structure, function, and
eurotransmitter pathways than the simple matching coefficient. It is
ssential when considering highly interactive complex networks where
ne-to-one relationships cannot be a viable principle ( Suárez et al.,
020 ). 

In addition, considering behavioral and cognitive performance is cru-
ial for a better description of the functional repertoire. We must ac-
nowledge that one of the main limitations of the proposed database
oncerns the cross-sectional aspect of the cohort and, consequently, the
ack of (homogeneous) behavioral/cognitive data (i.e., inconsistent re-
ponse modalities; some tasks were designed without directly measur-
ble behavioral output, without overt speech production or with inner
peech, depending on the targeted linguistic processes or to limit move-
ent artifacts). While databases built from pre-existing data are essen-

ial to address current data reuse concerns (see the FAIR principles;
ilkinson et al., 2016 ), building highly multimodal databases – coupled
ith improved methods of acquisition, processing, and statistical inves-

igation – is a practical approach to tackle the issue of brain-behavior
orrespondence more effectively. Such multimodal data acquired sys-
ematically across subjects would also limit the inter-subject variability
nherent in cross-sectional databases, which may lead to greater stability
nd accuracy of results. However, the presence of functional (language)
asks and/or behavioral data in the multimodal neurocognitive datasets
vailable to date is still generally limited. 

We have attempted to comply with the best practices mentioned for
nalyzing and sharing FC data following the guidelines of the COBIDAS
eport ( Nichols et al., 2017 ), but some methodological choices may in-
uence the estimation of FC and should be further emphasized. The
ANG atlas was selected on independent resting-state and multimodal
rain parcellations ( Glasser et al., 2016 ; Power et al., 2011 ), limiting
he circular analyses related to the ROIs selection ( Kriegeskorte et al.,
009 ). Furthermore, the regions belonging to the atlas were identified
ithout a priori, preventing here another bias that is a similar form of
12 
ircular logic in which assumptions are retrofitted to results (also called
ARKing; Button, 2019 ). However, it is essential to note that we es-

imated the FC through the correlation of interregional beta-series ex-
racted from the tasks rather than using time-series methods like those
pplied to resting-state data ( Cao et al., 2014 ). This approach of interre-
ional FC has been implemented, validated ( Göttlich et al., 2015 , 2017 ),
nd successfully applied in previous task-based fMRI studies (e.g., for re-
ent studies: Antonucci et al., 2020 ; Franzmeier et al., 2018 ; Pang et al.,
022 ). Nevertheless, as it has also been argued previously that removing
nter-event/block variance could help to reduce the chances of circular-
ty in the analysis ( Cole et al., 2019 ), replicating the LANG analyses by
emoving the average evoked responses from each task would thus be
n option to consider to measure the potential bias induced by the FC
stimation method. 

Finally, the matrix thresholding method is a well-known limitation
n resting-state FC. On binary networks, the inclusion of weaker corre-
ations as functional edges leads to the inclusion of noisier connections,
hich can significantly bias the graph metrics ( van den Heuvel et al.,
017 ). Including false-positive edges has a more deleterious effect than
he exclusion of false-negative connections ( Zalesky et al., 2016 ), sug-
esting that a restrictive threshold should be preferred over a more per-
issive one. The most widespread practice for choosing an “optimal ”

hreshold is to extract the parameters of interest over a given thresh-
ld range and estimate their change (a range between 5 and 25% for
ost studies, according to a recent methodological review; Hallquist and
illary, 2019 ) . In our case, the network parameters were robust and

table over a threshold range between 5 and 10% (Fig. S2, Appendix).
he chosen threshold of 5% of the highest positive correlations kept the
ANG network balanced, neither too sparse nor completely intercon-
ected and composed of relatively high correlation values limiting the
nclusion of false-positive connections. 

The present study offers a language atlas that relies on a thorough
opological (i.e., spatial) analysis of FC. One of the following steps is to
dentify the causal organization (e.g., effective hierarchies/heterarchies)
nd precise timeframes in which its components/regions engage de-
ending on subprocesses/mechanisms at work. MEG (such as in the
OUS dataset: Schoffelen et al. 2019 ) or electroencephalography (EEG;

laced on the scalp, the cortex, or intracranial) are valuable tools for the
valuation of such dynamics. To this end, and using intracranial EEG
ecordings, a recent study examined the dynamic organization of nam-
ng ( Forseth et al., 2021 ). They observed that regions were co-activated
uring extended periods, confirming that complex behaviors such as
peech production requires the coordination of discrete network states
defined as a set of reference dynamics that coordinate the generation
nd transmission of information throughout the cortex; see also the con-
ept of meta-networking of Herbet and Duffau (2020) ). They were able
o sequence, map, and identify the temporality of the different transient
tates; globally confirming the seminal model of word production pro-
osed by Indefrey and Levelt (2004) . The definition of a comprehensive
epertoire of language states and causal relationships (i.e., effective and
irected functional connectivity; e.g., Deco et al., 2021 ) in various tasks
ay extend our understanding of language functioning. 

Although we explored several modulators, such as age and gender,
 specific investigation of these factors remains to be done to gain a
omplete picture of the changes induced by these characteristics. As
iscussed above, we have observed a change in some hubs with age.
owever, the effect of age can be refined by attempting to capture crit-

cal evolutionary trajectories of the LANG networks. Establishing ac-
urate age-related benchmarks requires more representative databases,
oth in terms of age and tasks performed, but would mutually bene-
t models of language and aging. The sample of our cohort of so-called
oung or middle-aged adults ( < 60 years) includes a wide variety of ages
mean = 36.87; SD = 13.29), and it would be interesting to see if there
re already significant age-related changes in language networks in this
ample (i.e., before age 60). Studies of aging have indeed long shown
hat brain structure evolves with age and that certain regions – mainly
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rontostriatal – experience an early decline ( Buckner, 2004 ; Head et al.,
005 ; Raz et al., 2005 ; Raz and Rodrigue, 2006 ; Ziegler et al., 2011 ).
t could result in subtle but quantifiable neurofunctional changes in the
anguage networks. Exploring the LANG atlas from this angle would al-
ow age categories to be defined not by traditional "chronological age"
ut by observable differences in functional brain connectivity, which
onstitutes an exciting perspective. 

There are many opportunities for analysis and application of the
ANG atlas. It may also involve considering other quantitative metrics or
ethods for evaluating the properties of LANG Nets/ROIs and their syn-

rgies. Given the current view of brain functional organization as nested
ierarchies (e.g., Hilgetag and Goulas, 2020 , for a review), assessing the
coreness centrality ” property of brain networks is timely and of partic-
lar interest. Recently, Stanford and colleagues estimated the stability
nd resilience of brain networks by applying a sophisticated method of
ecomposing networks into hierarchically ordered subgraphs with pro-
ressively increasing connectivity ( Stanford et al., 2022 ), also known as
-core decomposition ( Batagelj and Zaversnik, 2003 ; Seidman, 1983 ).
his method has shown sensitivity, validity, and promise for assessing
igh-level neurocognitive functioning (see also Arese Lucini et al., 2019 ;
ahav et al., 2016 ; Li et al., 2020 ; Peng et al., 2019 ). Using diverse graph-
ased methods could lead to a comprehensive, multilevel evaluation of
he LANG atlas. Exploring a wide range of connectomic properties of
ANG, especially in populations where the importance of language is
entral – such as in multilingual individuals, in pediatric populations
or language acquisition, or in pathologies with aphasic manifestations
represents an additional avenue for a deep appreciation of the func-

ioning of language systems. 

. Conclusion 

Language is a multi-faceted cognitive function. To account for the
ultidimensionality of language, we performed functional connectiv-

ty analyses on a multi-paradigm fMRI database ( InLang [Interactive
etworks of Language] database), gathering thirteen different language
asks. It allowed us to inspect the language connectome in-depth, par-
icularly its spatial properties and functional attributes. This study reaf-
rms that high-level cognition, such as language, emanates from syner-
istic exchanges of external and internal information across specialized
ystems. Our results highlighted the involvement of essential discrete
etworks (or components) that are settled around a core “language-
elated ” system. Furthermore, the flexible engagement of some key re-
ions depending on several modulating factors, such as linguistic de-
and, pointed to the dynamic nature of language. Importantly, and from

ntology-based data integration, we have proposed a connectomic atlas
f the "language mosaic" (LANG atlas), which can be considered as a
eference for investigating additional conditions or pathologies altering
anguage functioning. 
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