All great masters are chiefly distinguished by the power of adding a second, a third, and perhaps a fourth step in a continuous line. Many a man had taken the first step.

With every additional step you enhance immensely the value of your first."

Introduction

This demonstration deliverable describes the initial version of a toolset for image and metadata enhancement and editing. The tools needed were identified in D7.1 [START_REF] Sojka | A State of the Art Report on Augmenting Metadata Techniques and Technology[END_REF] and their basic versions were developed and tested mostly at technology provider's sites.

The purpose of this demonstration is to verify and discuss functionality, usability, scalability, effectiveness and effectivity of every tool towards building a comprehensive workflow based on a series of data enhancers.

The handling and tools to cope with the [meta]data are quite different, depending on primary data origin. Figure 1 shows the top-level enhancement tool structure, with subsystems represented as edges.

The Toolset

The toolset consists of five subsystems: OCR, Extraction, Analysis, Conversion and Refinement, and a set of external tools offered to data providers (External). Subsystems are built based on the smaller bricks of softwareeutools -as defined in [START_REF] Sojka | A State of the Art Report on Augmenting Metadata Techniques and Technology[END_REF]Section 1.3]. At this stage, eutools are being developed and tested mostly at the technology providers' sites, with well defined interfaces allowing further integration into subsystems on the EuDML core system site. The toolset currently consists of the eutools listed in Table 1 on the facing page.

Structure of the Demo

The very important issue is the interface the eutools will communicate within WP7 with other eutools and with the EuDML core system. In the next section we do list possibilities of possible and preferred interfaces to be used within EuDML. Section 3 lists 13 eutools that have been prototypically implemented, together with the web pages that demonstrate their functionality. Section 4 sums up demoed tools, achievements and reviews future direction of development of EuDML enhancers and issues to be tackled soon.

API Definitions

An API (Application Programming Interface) is an interface that is used by programs to communicate with each other. There are several types of interfaces that can be used in EuDML.

We can distinguish tool interfaces by the number of documents they are applied to:

-

This class includes tools using OCR (e.g. PdfToTextViaOCR see 3.1), where it may be required to set the language for each of the documents.

-

Should it be possible to get required parameters dynamically, for example via some other tool, then the tool may be used for batch processing as well. Interface types can be based on how the main document or data type for processing are interchanged (e.g. PDFs, XML):

• Input/output streams (e.g. PdfJbIm)

• Files (used by, e.g. PdfJbIm, Pdfsizeopt, NLMTeX2TeX+MML)

• Java objects (e.g. PDFBox)

• Remote procedure calling (RPC), encoding parameters using XML. For example: RMI (Remote Method Invocation) or SOAP. • Using command line (e.g. MathML Extractor see 3.4) For correct usage some additional parameters are often required which modify the behavior of a tool. They can be given in one of a number of forms:

• A configuration file -the parameters are set in a specific file (usually XML). This approach is useful mostly for batch processing. • A set of arguments -put directly as additional parameters of a called method.

• An array of parameters -a keyword specifying a name of a parameter plus a value to be set (e.g. Pdfsizeopt). Within the EuDML project a number of different platforms (programming languages) are used whose interfaces can differ significantly. The most relevant platforms are:

• Java -using Java objects and Java interfaces.

• C/C++ (Tralics).

• Python -Jython (Java interpreter for Python) can be used from Java. (e.g. Pdfsizeopt) • Command line (Bash, Perl) • Lisp or OCaml (e.g. MathML Extractor) The most common formats for interchanging parameters between platforms are:

• JSON (JavaScript Object Notation)

• XML (e.g. NLM)

Because the core of the EuDML project is being developed in Java, it is preferred to use Java platform and interfaces. As many eutools and software libraries were already developed in other languages (OCaml, C, C++, Python,. . .) and it would be expensive to rewrite them in Java. That's why it is suggested for bigger tools, where the bottleneck of efficiency is not their invocation using Java system call, to encapsulate them and modify them for this kind of usage.

If this is too expensive (from efficiency point of view) there is possibility to use JNI (Java Native Interface). If the bottleneck is not communication through network RMI could be used as well.

Eutools

In this section basic information is provided for every tool, including their defined input and output interfaces, license information, programming language and evaluation, as well as the URL of the demonstration web site.

Several tools described in this section are so-called processing nodes, which can be chained together into so-called processes. The initial node in a process typically generates or otherwise obtains chunks of data which are consecutively processed by the following nodes. A node typically enhances the chunks that it receives on its input and sends the enhanced chunks to its output, possibly with side effects such as indexing the contents of the chunk. The final node in a process typically stores the enhanced chunk in a storage or discards it. There is a processing framework written in Java which orchestrates the flow of data chunks between nodes. Therefore, an author of an individual tool only needs to implement a processing node with well-defined inputs and outputs.

PdfToTextViaOCR

PdfToTextViaOCR is a tool written in Java which extracts images from a PDF document and uses an OCR engine to render text from them. The currently employed OCR engine is Tesseract [START_REF] Google | Tesseract[END_REF]. This tool is licensed under Apache License 2.0 http://www.apache.org/ licenses/LICENSE-2.0.

The process of extracting text from PDF documents using OCR consists of two steps:

1. Extract images from a PDF document.

2. Run Tesseract with appropriate parameters on the resulting images. In the future we intend to insert an image preprocessing step to improve quality of extracted images and prepare them for OCR analysis by Tesseract. Some additional parameters, such as the language of the text, should be set to achieve better output text quality. Since version 3.0, Tesseract supports a very large number of languages, some of which use a Cyrillic alphabet. If there is a language which is not supported yet, it is possible to train Tesseract and thus enhance its language support.

The main benefit of using Tesseract is its wide language support and that it is an open-source OCR with one of the highest accuracies. The disadvantage is lack of supporting OCR of math. In the future the intention is to use an OCR engine capable of handling mathematics as well.

PdfToTextViaOCR inputs a PDF document either as a file or as an input stream and renders text from the bitmap images stored in the PDF. The rendered text is then returned in set of files, one text file per image in PDF (usually each image represents a separate page).

PdfToTextViaOCR shall be used to extract text to be used mainly for indexing and searching inside EuDML, and to provide text to other WP7 or WP10 tools (Braille drivers etc.).

A demonstration version of this tool is available at http://nlp.fi.muni.cz/ projekty/eudml/eudmldemo.php.

PdfTester

PDFTester is a tool written in OCaml that determines how a given PDF file should be processed. The software requires an uncompressed PDF file which is currently created via a call to pdftk, which is licensed under the GNU General Public License Version 2. There are three possible outcomes of running the tester, namely;

• The PDF contains multiple layers which should be extracted automatically.

• The PDF contains sufficient information to automatically extract contents and generate MathML. • The PDF should be processed via rendering to an image and the use of OCR. The first check to identify multiple layers within the PDF is completed by reading the content streams within the file and searching for marked content. If marked content is found then the tool will return an integer indicating that the file has multiple layers.

The second check to identify the compatibility of the file with the PDF Text Extractor tool is completed by extracting the fonts and content streams from the file. If these can be parsed successfully, then an integer is returned indicating that the file is compatible.

If both of these checks fail, then the file is unsuitable for enhanced analysis by the current EuDML tool set. Therefore an integer is returned indicating it should be rendered to an image and processed via the PdfToTextViaOCR tool.

PDF Text Extractor

PDF text extractor is written in Java, and uses the Apache PDFBox library [START_REF]PDFBox[END_REF] to obtain plain text from a PDF document. PDFBox is an open source software distributed under Apache License Version 2.0.

It is implemented as a processing node, which effectively takes a document identifier on input and produces plain text on output.

The processing node works as follows. First, it fetches the corresponding PDF file from the content storage, or from a local cache, if present. Next, it uses PDFTextStripper from Apache PDFBox to extract plain text. Finally, the plain text is scheduled for addition to the content storage under a relevant identifier.

Text extraction from PDF files is a prerequisite for other tasks in the EuDML, including:

• extraction of bibliographic references from plain text;

• full-text indexing of the entire collection. A joint demonstration of text extraction from PDF documents, bibliographic reference extraction from plain text, and bibliographic reference parsing is available at http: //wysoka.icm.edu.pl:18190/EuDmlAnalysisDemo/.

MathML Extractor

MathML Extraction from PDF documents are handled by a tool written in OCaml that returns the mathematical expressions from a PDF as a list of MathML structures. The software requires an uncompressed PDF file which is currently created via a call to pdftk.

Given an appropriate PDF file, of which the suitability can be determined by running PDFTester, the expressions on either a single page or the whole document can be extracted. The tool works by extracting the fonts and content streams from a PDF which are then parsed by the MathML Extractor, producing a list of symbols and graphics for each page. These, in conjunction with a list of glyphs obtained via image analysis of the page images rendered from the PDF document, are used to split each page into a number of lines. Each line is parsed to create a parse tree, then processed by a driver that separates text from in-line math expressions and produces MathML markup for any formulae that occur on that line. The software is based upon the work described in [START_REF] Baker | Extracting Precise Data on the Mathematical Content of PDF Documents[END_REF][START_REF] Baker | Extracting Precise Data from PDF Documents for Mathematical Formula Recognition[END_REF][START_REF] Baker | A Linear Grammar Approach to Mathematical Formula Recognition from PDF[END_REF]. However, it features automatic segmentation, based upon spacing and font information, rather than requiring manual clipping of formulae as stated in those papers.

A limitation of the tool is that it can only work with PDF files making use of Type 1 fonts and embedded font encodings. This generally means that the file will have been generated from L A T E X, Troff or a number of other document production systems, which does limit the number of potential sources. Also, the segmentation process is still in development and may miss small inline formulae and will also split and not align larger, multiline formulae. This will be addressed in subsequent versions of the tool.

The URL of the demonstration web site is http://www.cs.bham.ac.uk/research/ groupings/reasoning/sdag/eudml-demo.php.

In future versions of the toolset, extraction eutools will be merged into one, and some eutools will become superfluous.

NLMTeX2TeX+MML

Most project partners are not able to provide metadata in NLM directly, including MathML for formulae. Based on the experience from CEDRICS [START_REF] Bouche | CEDRICS: When CEDRAM Meets Tralics[END_REF] and DML-CZ [START_REF] Michal | Scientific Journal Processing System with the Capability of Exporting to a Digital Library using MathML[END_REF], D7.2: Toolset for Image and Text Processing and Metadata Editing -Initial release, revision 1.0 as of 1st March 2011 two tools were designed and prototypes thereof were implemented using Tralics: NLM-TeX2TeX+MML, described in this section, and TeX2NLM, described in Section 3.6. The former tool adds math formulae in MathML from T E X strings in NLMTeX documents, the latter identifies and marks such T E X strings in a UTF-8 string.

NLMTeX2TeX+MML takes, as input, a valid XML file where mathematical formulas are enclosed in an <inline-formula> or <disp-formula> element with its internal EuDML v1.0 DTD structure [START_REF] Jost | The EuDML metadata schema[END_REF], containing a T E X-encoded version of the formula in the <tex-math> element. It returns the same file with unchanged content except that a <mml:math> element is added as an alternative within <*-formula>, with a MathML representation of the formula derived from the provided T E X version.

It is meant as a batch tool that will upgrade any existing metadata with (presentation) MathML for any properly tagged formula written in T E X. The tool's interface is written in PHP and Java and awaits a definitive API to be integrated in EuDML system through REST or SOAP calls.

At its core, NLMTeX2TeX+MML relies on Tralics [START_REF] Grimm | Tralics, a L A T E X to XML Translator[END_REF], which is a C++ program that reads a text file and writes an XML file. This needs to be configured in order to handle the standard mathematical constructs that are supported by the tool (macro namespace of plainT E X, base L A T E X with AMS-L A T E X extensions): a number of supporting macros and configuration files have to be known to the Tralics compiler, which are stored in a small disk space that Tralics must be able to access (paths can be given in the command line). Of course, if the tool is run on a dedicated server, these details can be hidden from the rest of the system.

Tralics is free software governed by the CeCILL license that can be found at http://www.cecill.info/. Tralics version 2.13.6 or higher is required, the more recent version 2.14.1 is under evaluation.

The assumptions for this tool are the following:

• It is applied to a well-formed XML file (it can be a valid XML file conforming to EuDML specification v1.0, but could also be just a fragment thereof). • In this XML file, all formulae are tagged with the NLM JATS basic structure:

a mandatory <inline-formula> (or <disp-formula> for displayed math), with a mandatory @id attribute (unique identifier); an optional <alternatives> element if the formula has variant encodings; a mandatory <tex-math> element holding valid T E X code (with & and < escaped using & and < entities); -

The T E X commands switching to math mode must be explicit in the T E X code as $ in the supplied example (it could also be \[..\], \begin{align}, etc.); -Once unescaped, the T E X code contains no unspecified macros and compiles with allowed and configured T E X commands.

</alternatives> </inline-formula>

An obvious limitation of this tool is that it assumes formulae to be clearly identified and tagged in the input files. Apart from generated T E X formulas, it is not likely that such structure will be present in existing metadata, and it is not easy nor reliable to produce such structure from generic T E X code (mixing text and math modes) without a fully-fledged T E X engine at hand.

An obvious advantage of the well-defined input format is that the tool is not likely to fail as it only has to support the subset of the T E X (and AMS-L A T E X) syntax dealing with mathematical formulas, which is much more constrained and predictible than T E X as a document processing system.

The demonstration version of NLMTeX2TeX+MML is available at http://thar. ujf-grenoble.fr/EuDML/demo/NLMTeX2TeX+MML/.

TeX2NLM

TeX2NLM takes, as input, a UTF-8 encoded CDATA string that is expected to be valid T E X code and returns the same content with formulas identified as such and conforming to EuDML NLM structure (a <*-formula> element for each formula, containing an <alternatives> element with a child <tex-math> element holding the original T E X code, <mml:math> element with a MathML representation of the formula derived from the provided T E X version.

This tool is meant for the (quite typical) case when a content provider has not identified formulas included in textual metadata fields such as titles, abstracts or keywords, and thus cannot make use of the NLMTeX2TeX+MML tool. The intended use of this tool is to process some fields that are known to contain unidentified T E X formulas so that the NLM representation can be made more usable. It is not yet obvious whether it can be integrated in some component of the EuDML enhancing workflow, or if it would be better used as an external preprocessor before the providers' metadata is converted to NLM and contributed to the EuDML system. The tool's interface is written in PHP and Java and awaits a definitive API to be integrated into the EuDML system through REST or SOAP calls. As the previous tool TeX2NLM relies on Tralics [START_REF] Grimm | Tralics, a L A T E X to XML Translator[END_REF]. The assumptions for this tool are the following:

• It is applied to a flat CDATA string (typically, the content of a childless XML element holding textual information with T E X-encoded mathematical formulas). • This string must be valid and self-contained T E X code, text being UTF-8 encoded (with & and < escaped using & and < entities). The tool identifies each included formula and generates a standard NLM structure for each of them.

Example: An input string with a T E X formula

The formula $J_k(n) := n^k \prod _{p \mid n}(1 -p^{-k})$ clearly defines nothing. As Tralics is a fully-fledged T E X engine, it should be able to handle reasonably many existing T E X metadata to convert them to NLM with both <tex-math> and <mml:math>. The big advantage of Tralics is that it will reliably identify all possible T E X math mode switching commands, thus generating clean and correct NLM structures for each formula encountered. The drawback is that the T E X code encountered must be very clean and D7.2: Toolset for Image and Text Processing and Metadata Editing -Initial release, revision 1.0 as of 1st March 2011 standard, as Tralics will compile it to generate the alternatives. Unknown macros, which are quite frequent when the source T E X code was produced by the original author, rather than a publisher, will make the string unprocessable at all.

The tool's output for this example

Another lightweight approach would be to use heuristics to detect formulae in the input string, generate the NLM structure and then pass the resulting XML to NLM-TeX2TeX+MML in order to get MathML. The drawback with this method is that heuristics are bound to be fooled by the full power of the T E X language. However, it might well be that this could succeed on the actual data to be processed. We will compare and assess the relative efficacy of both methods.

A demonstration version of TeX2NLM is available at http://thar.ujf-grenoble. fr/EuDML/demo/TeX2NLM/.

Plain Text Reference Segmenter

Some document metadata do not contain bibliographic references, yet it is valuable information that can be used, among others, for improved navigation in user interface, easy linking and, eventually, for further bibliometric analysis.

Plain Text Reference Segmenter extracts bibliographic references from plain text. From the system integration point of view, it is implemented as a processing node that takes, as input, the plain text of a document (from a cache or from the storage) and an NLM metadata record. The segmenter enhances the NLM record with bibliographic references by adding <mixed-citation/> tags and outputs the enhanced NLM record. The tool is written in Java and does not depend on any third-party libraries.

This implementation of bibliographic extraction is based on the observation that certain characters, such as: comma, dot, colon, or parentheses occur frequently in the bibliography, so abundance of such characters in a line is a hint that the line may be in the references section of an article. Therefore, the algorithm begins with "marking" the lines that might reside in the bibliographic references section of the document. Next, the region of the text with the largest concentration of such lines is assumed to be the references section. Finally, the section is split into individual references. To meet this end, several patterns are tested and line lengths are examined in order to deduce where one reference ends and another one begins. The current implementation is a proof-ofconcept prototype that needs additional tuning and evaluation. The tool is demonstrated at http://wysoka.icm.edu.pl:18190/EuDmlAnalysisDemo/.

Bibliographic Reference Parser

Metadata sources often provide bibliographic references in the form of raw, untagged text. In order to navigate the references in a user interface or to analyze the citation network, it is necessary to parse the raw texts of references into fragments such as: author, title, journal, volume, year, etc. For example, the following input text: Š. Višňovský, Czech. J. Phys. B 36, 625 (1986) should be parsed as follows (here in the RIS exchange format): TY -JOUR AU -Višňovský, Š. JO -Czech. J. Phys. B VL -36 SP -625 PY -1986 However, reference parsing is not a trivial task, for several reasons:

• There are dozens of established reference formats, and a great variety of formats "invented" by authors. • Reference texts are "noisy" due to: misspellings, OCR errors and imperfect transformations from one format to another (the latter especially affects characters with diacritical marks and mathematical formulas). • Interpretation of a reference is sensitive to punctuation: a single comma changed to a colon may alter the meaning of a whole citation.

A number of approaches to reference parsing have been developed. Template matching using regular expressions is arguably one of the earliest techniques. It is actively used to this day, for example in the ParaCite project [1]. The BibPro tool [START_REF] Chen | BibPro: A citation parser based on sequence alignment techniques[END_REF] uses sequence alignment algorithm BLAST [START_REF] Altschul | Basic local alignment search tool[END_REF] to find the best-fitting reference template. Several machine learning approaches exist, based on Hidden Markov Models [START_REF] Hetzner | A simple method for citation metadata extraction using Hidden Markov Models[END_REF], Conditional Random Fields [START_REF] Sutton | Introduction to Statistical Relational Learning[END_REF], and other probabilistic models. Last but not least, there are efforts to combine the above techniques [START_REF] Gupta | A New Approach towards Bibliographic Reference Identification, Parsing and Inline Citation Matching[END_REF].

In EuDML, the current implementation of reference parser is based on regular expressions (a future version may be based on Conditional Random Fields). It is implemented in Java, as a processing node which takes, as input, an NLM metadata record and returns a similar NLM record in which all the unparsed references are now parsed. The tool does not use any third-party libraries.

A joint demonstration of text extraction from PDF, bibliographic reference extraction from plain text, and bibliographic reference parsing is available at http://wysoka. icm.edu.pl:18190/EuDmlAnalysisDemo/.

ZBMATH Metadata Lookup

ZBMATH Metadata Lookup is a special online interface to the Zentralblatt MATH (ZBMATH) database [START_REF][END_REF] which, given a Zentralblatt MATH item identification number (ZblID), returns the metadata that are stored in the ZBMATH database for this publication.

Access to this interface is free for EuDML project partners. EuDML project partners may use metadata from ZBMATH to enhance or refine metadata for publications provided by them.

The tool provides a HTTP query interface that takes as input the ZblID of the item in question (URL encoded, see example below). The interface returns XML-encoded ZBMATH metadata for that item, MathML encoded where possible, and UTF-8 otherwise (i.e., no T E X is used). The question of whether the data exposed should be converted to the EuDML metadata format based on NLM JATS DTD [START_REF] Jost | The EuDML metadata schema[END_REF], or better delivered in a structure that closely reflects the ZBMATH internal data format has been discussed, and it was resolved that during the current stage of the project the latter option is more suitable. A processing node that fetches a Zentralblatt record whenever a ZblID is encountered in the EuDML metadata was written by ICM, as part of the EuDML workflow. ICM D7.2: Toolset for Image and Text Processing and Metadata Editing -Initial release, revision 1.0 as of 1st March 2011 has also written a processing node that calls a Zbl-to-EuDML metadata converter (to be implemented by IST) and stores the resulting EuDML metadata for further processing.

The tool is written in Python as part of the Zentralblatt MATH proprietary search engine. Access is possible via a HTTP interface. For example, http://www. zentralblatt-math.org/EuDML-test1?query=an:1163.57016 returns the following piece:

<result query="an:1163.57016" hits="1"> <item no="

PdfJbIm

PdfJbIm is a PDF enhancer written in Java which reduces the size of PDF documents containing bitonal images [START_REF] Hatlapatka | Recompression of Bitmaps in PDF using JBIG2 format[END_REF]. It takes advantage of the extremely high compression ratio of visually lossless JBIG2 compression [11]. For more information about PdfJbIm and the modification of jbig2enc see [START_REF] Hatlapatka | PDF Enhancements Tools for a Digital Library: pdfJbIm and pdfsign[END_REF][START_REF] Sojka | Document Engineering for a Digital Library: PDF recompression using JBIG2 and other optimization of PDF documents[END_REF] The PDF document input to PdfJbIm can be given either as a Java input stream or as a file. A path to the jbig2enc encoder executable must be set, which is used in the process of optimizing the PDF. It is possible to modify the behaviour of PdfJbIm by setting additional parameters. For example it is possible to specify whether or not non-bitonal images should be re-compressed as well. All images re-compressed by PdfJbIm are stored as bitonal in the output PDF. Output of PdfJbIm is a PDF file with reduced size but without visible loss of data. The output PDF is returned either as file or as an output stream.

On average it reduces the size of PDF originally compressed using Fax G4 by thirty percent. This statistic was found by running PdfJbIm on the journals stored at DML-CZ. The size of the journals was reduced from 20,593 MB to 14,653 MB. This result was presented also in [START_REF] Sojka | Document Engineering for a Digital Library: PDF recompression using JBIG2 and other optimization of PDF documents[END_REF]. Pdfsizeopt can be included in the workflow containing PdfJbIm, thus reducing PDF document sizes even further. For more information see Section 3.11. This tool can be used by content providers or in the EuDML core. In both cases it significantly reduces the storage size and, therefore, the time required to access and download a PDF document from a remote repository.

A demonstration version of PdfJbIm is available at http://nlp.fi.muni.cz/ projekty/eudml/eudmldemo.php.

Pdfsizeopt

Pdfsizeopt [START_REF] Szabó | Pdfsizeopt[END_REF] is not a tool in the classic meaning of the word. It is a collection of best practices and Unix scripts to optimize the size of PDF documents. It is being developed in Python by Peter Szabó with support of Google.

For optimization of each type of object in PDF, several methods are attempted and the one giving the best result is chosen. The disadvantage of this approach is longer runtime but it achieves better results.

Specific Unix tools are used for optimizing different parts of PDF documents. What can be optimized and how is based on which tools are installed. Most tools which are used by Pdfsizeopt can be disabled. Lots of PDF optimizing is done by Multivalent, which is therefore a primary tool that should be installed and enabled for use in Pdfsizeopt. On the other hand, it is better to disable pngout, because the improvement gained by using it is minimal compared to runtime.

Pdfsizeopt uses jbig2enc for optimizing bitonal images but uses generic coding even for a text region. Thus it does not achieve as high a compression ratio as if symbol coding were being used. Therefore it is better to disable it and use PdfJbIm instead, which uses symbol coding for text regions in the image and therefore achieves better compression ratio for images containing scanned text. For more information see [START_REF] Sojka | Document Engineering for a Digital Library: PDF recompression using JBIG2 and other optimization of PDF documents[END_REF].

Python must be installed to run Pdfsizeopt. It takes a PDF file as input and creates a new PDF file. It takes additional parameters which enables the specification of which tools should be used. These parameters are given in the format --use-${tool name}=${boolean value} where ${tool name} is the name of the tool in question and ${boolean value} is true or false to indicate whether the tool should be used. Default values are used if the parameter is not explicitly set for a tool.

For better integration with Java, thus simplifying usage by EuDML core system, it is possible to run scripts written in Python using Jython which is an interpreter of Python running under the JVM (Java Virtual Machine).

math_metadata_lookup

The math_metadata_lookup program [22] is a small open-source (GNU LGPL [START_REF]GNU Lesser General Public License[END_REF]) command-line utility implemented in Ruby. It searches through mathematical reviews databases and fetches metadata. Supported reviews databases are Mathematical Reviews [4] (MR licensed access is necessary) and Zentralblatt MATH [START_REF][END_REF] (full metadata set is available only if Zbl licensed access is used, otherwise results are suboptimal) but it should be easy to add another database when necessary.

The math_metadata_lookup utility provides their users with four different search options:

1. article search -Search and fetch article metadata from reviews databases according to title, authors, year, or ID parameters given by the user. 2. author search -Search reviews databases and fetch all the different name forms for given author name. The database author ID and preferred name form is also given. 3. heuristic search -This is similar to the article search but only one (the best) match from each database is returned. Moreover, similarity of given parameters (title, authors, year) and found records must be higher than a threshold given by the user.

Roadmap to Working Prototype

Analyzing subsystem components in Tables 2 and3, it seems inevitable, because of reasons of efficiency, overlapping functionality, etc., that current eutools will have to be integrated into bigger programs -one per subsystem. As a next step, eutools will be merged into bigger components (one enhancer per subsystem) and tested on the central EuDML site on real data from providers. The schedule to realize this will depend on the data collected and integration strategies developed by ICM. As a dozen programming languages, third-party tools and libraries must be collected and integrated, the scenario for integration is rather complicated -a set of rules for it has been written at https://wiki.eudml.eu/eudml/EuDML_System_Documentation for internal communication of developers.

Future Work

Before, and after, enhancement duplicate document items should be detected and/or merged. A strategy for metadata conflict resolution remains to be developed, e.g. when a paper is available from different sources and the same item has different/conflicting metadata, usually compared to those from Zentralblatt.

A policy might be as follows: when a metadata field is absent or empty in the provider's supplied metadata, and exists in the corresponding harvested Zbl record, then we should use the Zbl values. The paper might have keywords in various languages and lack English keywords: this is a typical added value/use case of enhancement expected from an enhancer, so the rule must take this kind of thing into consideration.

We could refine this policy on the basis of particular elements: • title, source, author, main language, English title: use original if present • MSC, English keywords: it could be added value to add those provided by Zbl if they do not match the original ones, even if the original ones exist! (that would make more links/associations between our articles).

These and other issues have to be decided before fully-fledged enhancing eutools reach their place in the EuDML system.

Figure 1 :

 1 Figure 1: Metadata processing

D7. 2 :

 2 Toolset for Image and Text Processing and Metadata Editing -Initial release, revision 1.0 as of 1st March 2011

Example 1 :

 1 An input formula with T E X-only encoding in NLM structure<inline-formula id="d18e3147"> <tex-math>$J_k(n) := n^k \prod _{p \mid n}(1 -p^{-k})$</tex-math> </inline-formula> Example 2: An input formula with T E X encoding and alternative image in NLM structure

14 D7. 2 :

 142 Toolset for Image and Text Processing and Metadata Editing -Initial release, revision 1.0 as of 1st March 2011

Figure 2 :

 2 Figure 2: Workflow of PdfJbIm

2 Table 1 :

 21 Eutools version 0.1 overview

	Subsystem Partner Eutool	Functionality
	OCR	MU	PdfToTextViaOCR	Basic plaintext extraction from bitmap
				images which are rendered from a PDF
				document
	Extraction UB	PDFTester	Tests whether a PDF document contains
				multiple layers, page bitmaps and/or is born-
				digital
	Extraction ICM PDF Text Extractor	Extracts plain text from a PDF document
	Extraction UB	MathML Extractor	Analyses a PDF document and extracts the
				mathematical expressions from it as a list of
				MathML structures
	Conversion CMD NLMTeX2TeX+MML	Takes an NLMTeX file and adds MathML
				translations for all mathematical expressions
				encoded as L A T E X sources in the file.
	Conversion CMD TeX2NLM	Identifies and tags T E X math in a CDATA
				UTF-8 string
	Analysis	ICM Plain Text Reference Segmenter Extracts bibliographic references from plain
				text.
	Analysis	ICM Bibliographic Reference Parser Parses a plain text bibliographic reference
				(extracts author names, title, publication
				year, etc.)
	Refinement FIZ	ZBMATH Metadata Lookup Get Zentralblatt MATH metadata for a
				publication given its Zentralblatt identifier
	Refinement MU	PdfJbIm	Recompress bitmap streams in a PDF docu-
				ment with JBIG2
	Refinement MU	Pdfsizeopt	Optimize PDF documents
	Refinement MU	math_metadata_lookup	MR/Zbl metadata search and fetch
	External MU	ME	Metadata Editor -standalone editing for
				use at providers' sites

D7.2: Toolset for Image and Text Processing and Metadata Editing -Initial release, revision 1.0 as of 1st March 2011

 J_k(n) := n^k \prod _{p \mid n}(1 -p^{-k})$</tex-math> D7.2: Toolset for Image and Text Processing and Metadata Editing -Initial release, revision 1.0 as of 1st March 2011

	<inline-formula id="d18e3148">
	<alternatives>
	<tex-math>$J_k(n) := n^k \prod _{p \mid n}(1 -p^{-k})$</tex-math>
	<graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="fors2682.f3">
	<object-id>463492</object-id>
	</graphic>
	</alternatives>
	</inline-formula>
	The tool's output for the first example
	<inline-formula id="d18e3147">
	<alternatives>
	<mml:math xmlns="http://www.w3.org/1998/Math/MathML">
	<mml:mrow>
	<mml:msub>
	<mml:mi>J</mml:mi>
	<mml:mi>k</mml:mi>
	</mml:msub>
	<mml:mrow>
	<mml:mo>(</mml:mo>
	<mml:mi>n</mml:mi>
	<mml:mo>)</mml:mo>
	</mml:mrow>
	<mml:mo>:</mml:mo>
	<mml:mo>=</mml:mo>
	<mml:msup>
	<mml:mi>n</mml:mi>
	<mml:mi>k</mml:mi>
	</mml:msup>
	<mml:msub>
	<mml:mo>?</mml:mo>
	<mml:mrow>
	<mml:mi>p</mml:mi>
	<mml:mo>∣</mml:mo>
	<mml:mi>n</mml:mi>
	</mml:mrow>
	</mml:msub>
	<mml:mrow>
	<mml:mo>(</mml:mo>
	<mml:mn>1</mml:mn>
	<mml:mo>-</mml:mo>
	<mml:msup>
	<mml:mi>p</mml:mi>
	<mml:mrow>
	<mml:mo>-</mml:mo>
	<mml:mi>k</mml:mi>
	</mml:mrow>
	</mml:msup>
	<mml:mo>)</mml:mo>
	</mml:mrow>
	</mml:mrow>
	</mml:math>
	<tex-math>$

Table 2 :

 2 WP7 Eutools integration summary -OCR, Extraction, Conversion, and Analysis Toolset for Image and Text Processing and Metadata Editing -Initial release, revision 1.0 as of 1st March 2011

		Output Main benefit for EuDML	OCR subsystem	Set of plaintext/text files OCR-ed text suitable for indexing		Extraction subsystem	Integer recording whether the file (a) has Indicates most suitable tool for PDF	an additional layer for extraction, (b) can analysis	be used with the MathML extractor or	(c) should be processed via OCR	Article fulltext Extracts text from born-digital PDF	(without using OCR)	List of MathML fragments for each formula Indexable, accessible MathML from a	within the file standard PDF	Conversion	XML with MathML for all tagged formulas Upgrades T E X encoding of NLM-tagged	formulas to MathML	UTF-8 encoded PCDATA with T E X formu-Upgrades untagged T E X formulas to full	las converted to NLM structure with T E X T E X+MathML NLM structure	and MathML alternatives	Analysis subsystem	segmented set of references Provides bibliographic references from	plain text	parsed reference in NLM XML Identifies author names, title, publication	year in a reference string
		Input		PDF with images as	input stream or file	(content/<file name>)	Any PDF file				Article PDF		Suitable PDF, as indic-	ated by PDFTester		XML file		UTF-8 encoded	CDATA string			article plain text part	with references	CDATA string of a	reference
		Tool name		PdfToTextViaOCR			PDFTester				PDFBox		MathML Extractor			NLMTeX2TeX+MML		TeX2NLM				Plain Text Reference Seg-	menter	Bibliographic Reference	Parser
	18	D7.2:																					

Table 3 :

 3 WP7 Eutools integration summary -Refinement and External

	Refinement subsystem

D7.2: Toolset for Image and Text Processing and Metadata Editing -Initial release, revision 1.0 as of 1st March 2011

D7.2: Toolset for Image and Text Processing and Metadata Editing -Initial release, revision 1.0 as of 1st March 2011

Parameters given by the user are not used directly but are preprocessed to increase the probability of a search hit. Similarity of found records and original user given search parameters is computed using a generalized Levenshtein edit distance [START_REF] Iosifovich | Binary codes capable of correcting deletions, insertions, and reversals[END_REF]. 4. reference search -In this mode, the math_metadata_lookup utility tries to parse a user given reference string and identify title, author and year fields. These parameters are then used for a heuristic search. A user specified threshold is used to filter out records with insufficient similarity to the original search parameters. Records found by the math_metadata_lookup utility are printed to the standard output in the desired format: plain text, HTML, XML, Ruby, or YAML.

A demonstration version of the tool is available at http://nlp.fi.muni.cz/ projekty/eudml/eudmldemo.php.

Metadata Editor

The Metadata Editor, ME, [2,[START_REF] Bartošek | Metadata Editor[END_REF] is an open-source (GNU GPL [START_REF]GNU General Public License[END_REF]) client-server web application implemented mainly in Ruby and Perl programming languages. It is designed to manage, edit and validate metadata and full texts of digital publications prior to their integration into a digital library.

The main input of ME is a collection of scanned pages of digitized publications. Once imported to ME the pages can be distributed among articles that themselves are assigned to issues, volumes and journals. On each level of the structure, ME provides their operators with visual presentation of the content and allows the operators to fill in description (metadata). An integrated search tool allows users to search through the Metadata Editor metadata repository. Automatic tests can be used to verify properties and completeness of the metadata. An integrated authority database allows unambiguous assignment of publications to particular people. ME can be used remotely and simultaneously by several operators. Access to ME functions and repository content can be restricted to particular users using an access rights system.

ME is not intended to be a part of the EuDML Core -it is a stand-alone application that enables EuDML data providers without their own solution to organize and annotate their digitized publications and prepare their data to reach at least the entry level (basic metadata in WP3 jargon) for the EuDML project.

A demonstration version of this tool, together with links to download it is available at http://nlp.fi.muni.cz/projekty/eudml/eudmldemo.php where it can be tried out (login/password: admin/admin).

Summary, Conclusions

A summary of the eutools prepared is shown in Tables 2 and3. Eutools now will be merged into larger components (e.g. one PDF reading tool) and tested on the central EuDML site on real data from providers.

Most enhancers will be used internally in the main EuDML architecture, with the exception of ME, which will be offered to potential partners. Enhanced PDFs might be offered to partners via agreed interfaces. Otherwise they will be used for EuDML internal purposes, mainly by WP7-WP10 toolsets.