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Arc-consistency and linear programming duality:

an analysis of reduced cost based filtering

Guillaume Claus 1, Hadrien Cambazard1, and Vincent Jost1

1 Univ. Grenoble Alpes, CNRS, Grenoble INP G-SCOP, 38000 Grenoble, France

Abstract. In Constraint Programming (CP), achieving arc-consistency
(AC) of a global constraint with costs consists in removing from the
domains of the variables all the values that do not belong to any solu-
tion whose cost is below a fixed bound. We analyse how linear duality
and reduced costs can be used to find all such inconsistent values. In
particular, when the constraint has an ideal Linear Programming (LP)
formulation, we show that n dual solutions are always enough to achieve
AC (where n is the number of variables). This analysis leads to a sim-
ple algorithm with n calls to an LP solver to achieve AC, as opposed
to the naive approach based on one call for each value of each domain.
It extends the work presented in [German et al., 2017] for satisfaction
problems and in [Claus et al., 2020] for the specific case of the minimum
weighted alldifferent constraint. We propose some answers to the follow-
ing questions: does there always exists a dual solution that can prove a
value consistent/inconsistent ? given a dual solution, how do we know
which values are proved consistent/inconsistent ? can we identify simple
conditions for a family of dual solutions to ensure arc-consistency ?

1 Introduction

Mixed Integer Programming (MIP) and Constraint Programming (CP) have of-
ten been combined in the past to take advantage of the complementary strengths
of the two frameworks. Many approaches have been proposed to benefit from
their modelling and solving capabilities [Bockmayr and Kasper, 1998,Rodosek et al., 1999,
Refalo, 2000,Aron et al., 2004,Achterberg et al., 2008]. A typical integration of
the two approaches is to use the linear relaxation of the entire problem in ad-
dition to the local consistencies enforced by the CP solver. The relaxation can
detect infeasibility and is often added to provide a bound on the objective.

A number of previous works have also proposed to use the linear relaxation
for filtering the domains in a constraint programming framework [Refalo, 1999,
Refalo, 2000,Aron et al., 2004,Achterberg et al., 2008,Focacci et al., 2002]. Based
on the relaxation, filtering can be performed using a technique referred to as re-
duced cost based filtering [Focacci et al., 2002,Hooker, 2006]. It is a specific case
of cost-based filtering [Focacci et al., 1999] that aims at filtering out values lead-
ing to non-improving solutions. It originates from variable fixing [Nemhauser and Wolsey, 1988]
which is performed in MIP to detect some 0/1 variables that must be fixed to ei-
ther 0 or 1 in any solution improving the best known. Variable fixing relies on the



reduced costs of the variables given by an optimal dual solution of the linear re-
laxation. It is known to be incomplete because it strongly depends on the specific
dual solution used. Alternatively, it was recently shown in [German et al., 2017]
that a complete filtering, namely arc-consistency, can be achieved by solving a
single linear relaxation when the problem considered is a satisfaction problem
with an ideal integer programming formulation. Such formulations can be found
for a number of common global constraints such as Element , AllDifferent ,
GlobalCardinality or Gen-Sequence [Refalo, 2000, German et al., 2017].
The approach does not apply to global constraints involving a cost variable such
as MinimumWeightAlldifferent [Caseau and Laburthe, 2000,Focacci et al., 2002]
even though it has an ideal LP formulation. A natural extension to the work
[German et al., 2017] is to handle an objective function i.e. a cost variable from
the constraint point of view. We are therefore interested in the design of filtering
algorithms based on linear programming for polynomial global constraints with
a cost variable. Note that when an ideal LP formulation is available for the con-
straint, a naive approach, typically used in practice when checking or designing
propagators is to solve one LP for each variable-value pair.

Since the approach of [German et al., 2017] does not easily extend, we go
back to reduced cost based filtering to generalize the work of [Claus et al., 2020]
which was done in the case of the MinimumWeigthAllDifferent constraint.
We consider global constraints with assignment costs. More precisely, assigning
a value j to a variable Xi incurs a cost cij ∈ N and the overall cost is the sum of
all individual assignment costs. The optimal (minimal) overall cost, with respect
to the constraint, is denoted z∗. Note that soft global constraints might have
alternative costs definition but assignment costs are very common. In general,
the consistency of a given value j of a variable Xi is established by computing the
minimum value of the problem restricted with Xi = j which is referred to as the
ij-optimal value and denoted z∗

|ij . Value j of Xi is inconsistent if z∗
|ij is greater

than the maximum cost allowed denoted Z. A typical lower bound of z∗
|ij is given

by the LP reduced cost, rij,u∗ available from an optimal dual solution u∗ of the
linear relaxation (namely z∗+rij,u∗ ≤ z∗

|ij). It was used to perform an incomplete

filtering in [Focacci et al., 2002] for the assignment problem. However, the value
of rij,u∗ depends on the dual solution u∗ found and greatly varies in practice
from one solution to another. We prove that there always exists an optimal dual
solution u∗ such that the reduced cost rij,u∗ provides the ij-optimal value (i.e.
such that z∗ + rij,u∗ = z∗

|ij). Multiple ij-optimal values can be provided by a
single optimal dual solution and we give a necessary and sufficient condition to
identify the ij-values that are optimal. Eventually, given a set S of variable-
value pairs, we give a sufficient condition for the existence of a single optimal
dual solution providing all ij-optimal values for S. This condition gives an upper
bound on the number of dual solutions needed to ensure AC.

The reasoning is illustrated with two global constraints : MinimumWeigh-

tAlldifferent (referred to as MinWAllDiff for short in the rest of the
paper), and ShortestPath . The first one enforces n variables to be assigned
to distinct values. This constraint is related to the assignment problem for which



a well-known LP ideal formulation is available. The second one, encodes a s-t-
path in an acyclic directed graph of n vertices using sucessor variables: each
variable is mapped to a variable whose value gives the index of the next vertex
in the path (or its self index if the vertex doesn’t belong to the path). In both
cases, the cost of the solution must be below a given upper-bound.

Finally, we propose a simple algorithm based on LP to enforce AC. This
generic algorithm applies to all global constraints with assignment costs that
have an ideal LP formulation. It requires a dual solution for each variable which
is significantly less than the naive solution that calls the simplex algorithm for
each possible value of each variable. This extends [German et al., 2017] that did
the filtering with a single simplex call for an unweighted constraint. Practically,
an optimal dual solution is updated in such a way that all the exact reduced
costs are enumerated to produce a filtering that can be interrupted even if it is
incomplete. We believe such an anytime algorithm is key for very costly global
constraints where arc-consistency is rarely worth a high runtime complexity such
as O(n3). See for instance the discussion in [Cauwelaert and Schaus, 2017] where
the arc-consistency algorithm for MinWAllDiff is found too costly and the
filtering of [Focacci et al., 2002] used as a baseline is too weak. Reduced costs
based filtering techniques could be a very good framework to design anytime
and adaptive consistency algorithms [Balafrej et al., 2016].

In section 2 we set the framework for our work and present the two constraints
we will use as examples. The LP formulations used in this document and the
relationship between filtering and reduced costs are explained in section 3. The
main results on the possibility to achieve AC with reduced costs and the number
of dual solutions needed to do so are detailed at section 4. Eventually our filtering
algorithm is stated in section 5. All the proofs of our results are gathered in the
annex to keep clear the thread of reasoning.

2 Arc-Consistency for global constraints with assignment

costs

A constraint satisfaction problem (CSP) is made of a set of variables, each
with a given domain i.e. a finite set of possible values, and a set of constraints
specifying the allowed combinations of values for subset of variables. In the
following, the variables, e.g. Xi, are written with upper case letters for the con-
straint programming models as opposed to the variables of linear programming
models that are in lower case. D(Xi) ⊆ Z denotes the domain of Xi. A con-
straint C over a set of variables 〈X1, . . . , Xn〉 is defined by the allowed combina-
tions of values (tuples) of its variables. Such tuples of values are also referred to
as solutions of the constraint C. Given a constraint C with a scope 〈X1, . . . , Xn〉,
a support for C is a tuple of values 〈a1, . . . , an〉 that is a feasible solution of
C and such that ai ∈ D(Xi) for all variable Xi in the scope of C. Consider a
variable Xi in the scope of C, the domain D(Xi) is said arc-consistent for C

if and only if all the values of D(Xi) belong to a support for C. A constraint C

is said arc-consistent if and only if all its variable’s domains are arc-consistent.



For a constraint C(X1, . . . , Xn) with an ideal LP formulation, arc-consistency
can be achieved by solving a single linear program [German et al., 2017].

A weighted constraint WC (X1, . . . , Xn, Z, c) is a constraint over 〈X1, . . . , Xn〉
that considers a cost cij ∈ N for assigning variable Xi to value j and Z is the
cost variable. The cost of a support 〈a1, . . . , an〉 is defined as

∑n

i=1 ci,ai
. The

constraint holds if 〈a1, . . . , an〉 is a support of the constraint without cost C and
its cost remains below Z. In other words, 〈a1, . . . , an〉 is a support for WC if
it is a support for C and

∑n

i=1 ci,ai
≤ Z.

A support of minimal cost is a support for C such that its cost is no more
than the cost of any other support for C. Such a support is also a support for
Z, a lower bound for Z in WC.

We consider here only constraint that have an ideal LP formulation i.e. an
LP formulation whose solutions are integer and so are the solutions of its linear
relaxation. More precisely, the problem of identifying a support can be stated
using such an ideal LP formulation.

Example 1.

MinWAllDiff (X1, . . . , Xn, Z, c)
is equivalent to:

AllDiff (X1, . . . , Xn)
n∑

i=1

ci,Xi
≤ Z

Where AllDiff ensures the X vari-
ables take distinct values.

(see [Sellmann, 2002])

ShortestPath (X1, . . . , Xn, Z, c) is
equivalent to

Path (X1, . . . , Xn)
n∑

i=1

ci,Xi
≤ Z

with Xi =

{
j if j is the successor of i

i if i is not in the path

and cii = 0, ∀1 ≤ i ≤ n.

Path ensures the X variables describe
a path from vertex 1 to vertex n + 1.

An other possible formulation for ShortestPath constraint is to use 0/1
variables, one for each possible arc. Each of these variables equals to 1 if and only
if the path pass through the corresponding arc.

In this paper, we will show that LP can be used to achieve arc-consistency
in the context of constraints with costs. In the next section, we state the LP
formulation used in our results and recall the link between dual formulations,
reduced costs and filtering.

3 LP formulations

We consider a general constraint with costs WC that has an ideal LP formulation.
In the scope of WC, the variables together with their domains can be represented



by a variable-value graph (U ∪ V, E) where U is the set of the variables and V

is the set of their possible values. Each edge ij expresses that value j belongs to
the domain of Xi and its assignment cost is cij .

A solution consists in choosing one edge for each vertex i ∈ U such that
the assignment satisfies the constraint. By extension, we call support the set of
chosen edges in a feasible solution and minimal cost support the set of chosen
edges in an optimal solution.

We assume that AC has been achieved on C (X1, . . . , Xn) (for instance using
[German et al., 2017]). In other words, any edge belongs to at least one support
of C (X1, . . . , Xn), ignoring the costs.

To find a support of minimal cost, the following LP can be used. It is formu-
lated with 0/1 variables xij such that xij = 1 ⇐⇒ Xi = j and the constraint
C is stated by a set Q of additional linear constraints :

(P)





min z =
∑

ij∈E

cij xij

s.t.
∑

ij∈E

aq,ij xij ≥ bq ∀q ∈ Q (uq) (1)
∑

j| ij∈E

xij = 1 ∀i ∈ U (ui) (2)

xij ≥ 0 ∀ij ∈ E (3)

Constraint (1) states the constraint C itself and constraint (2) enforces each
variable to take a single value. Since we only consider ideal formulation and we
have constraint (2), xij ∈ {0, 1} is relaxed to inequality (3). z is the cost of a
solution and this solution is feasible for WC if z ≤ Z.

Example 2 (continued: Linear Programs).
Formulation (P) is given below for MinWAllDiff and ShortestPath . In

both, recall the channeling between the CP variables/values and the LP variables:
xij = 1 ⇐⇒ Xi = j.

(PWAD )






min z =
∑

ij∈E

cij xij

s.t.
∑

j| ij∈E

xij = 1 ∀i ∈ U

∑
i| ij∈E

xij = 1 ∀j ∈ V

xij ≥ 0 ∀ij ∈ E

Where U is the set of the variables
and V the set of values, common for all
the variables.

This LP has O(|U |+|V |) constraints.

(PSP )






min z =
∑

ij∈A

cij xij

s.t.
∑

j| kj∈A

xkj −
∑

i| ik∈A

xik = 0 ∀k ∈ N \ {s, t}

∑
j| sj∈A

xsj = 1

xij ≥ 0 ∀ij ∈ A

Where N is the set of the vertices
and A is the set of the arcs. s and t

respectively denotes the source and the
sink (s = 1 and t = n + 1 to match
Example 1). This LP has O(|N |) con-
straints.



Both these LP formulations are known to be ideal.

Let’s denote
(
P|kl

)
the LP similar to (P) in which xkl is forced to 1 (i.e.(

P|kl

)
is the restricted problem with Xk = l), and z

∗
|kl

its optimal value. Note

that the domains are AC when z∗
|kl

≤ Z for each edge kl of E.

The dual of (P) is:

(D)






max w =
∑

q∈Q

bq uq +
∑
i∈U

ui

s.t. ui +
∑

q∈Q

aq,ij uq ≤ cij ∀ij ∈ E (xij) (4)

uq ≥ 0 ∀q ∈ Q

ui ∈ R ∀i ∈ U

Example 3 (continued: dual linear programs).
Formulation (D) is given below for MinWAllDiff and ShortestPath .

(DWAD )





max w =
∑
i∈U

ui +
∑

j∈V

uj

s.t. ui + uj ≤ cij ∀ij ∈ E

ui ∈ R ∀i ∈ U

uj ∈ R ∀j ∈ V

This LP has O(|E|) constraints.

(DSP )






max w = us

s.t. ui − uj ≤ cij ∀ij ∈ A, j 6= t

ui ≤ cit ∀it ∈ A

ui ∈ R ∀i ∈ V

This LP has O(|A|) constraints.

For the rest of this document, primal and dual solutions are called in reference
to (P) and (D). Moreover,we denote

(
D|kl

)
the dual of

(
P|kl

)
.

The reduced cost of an edge ij ∈ E is the slack of the corresponding dual
variable. For a feasible dual solution u, it is defined as :

rij,u = cij − ui −
∑

q∈Q

aq,ij uq

We define the exact reduced cost Rij of an edge ij ∈ E as follows :

Rij = z∗
|ij − z∗

Rij is the increase of the optimal value z∗ when forcing the edge ij in the
solution i.e when Xi is forced to take the value j of its domain.

Example 4 (Continued: Reduced costs).

For MinWAllDiff ,

rij,u = cij − ui − uj

For ShortestPath ,

rij,u = cij − ui + uj



Reduced costs provide lower bounds of the increase of z∗ when variable xij is
forced to one. Since this is a corner stone of the filtering techniques based on LP
and the present work, Property 1 states it explicitely.

Property 1. For any dual optimal solution u∗ and any edge kl ∈ E, we have

0 ≤ rkl,u∗ ≤ Rkl

Proof. – The first inequality is provided by the constraint (4) since u∗ is fea-
sible.

– Let x̃∗ be an optimal solution of
(
P|kl

)
, the problem restricted with Xk = l.

z∗ =
∑

q∈Q

bq u∗
q +

∑

i∈U

u∗
i

z∗ ≤
∑

q∈Q




∑

ij∈E

aq,ij x̃∗
ij



 u∗
q +

∑

i∈U

u∗
i (by constraint (1))

z∗ ≤
∑

ij∈E

x̃∗
ij




∑

q∈Q

aq,ij u∗
q + u∗

i



 (by constraint (2))

z∗ ≤
∑

ij∈E

x̃∗
ij (cij − rij,u∗ ) (from the definition of the reduced cost)

z∗ ≤ z∗
|kl −

∑

ij∈E

x̃∗
ij rij,u∗



∑

ij∈E

x̃∗
ij cij = z∗

|kl since x̃∗ is optimal for
(
P|kl

)



Recall that Rkl = z∗
|kl − z∗. Thus from the last inequality, we have :

Rkl ≥
∑

ij∈E

x̃∗
ijrij,u∗

Rkl ≥ rkl,u∗

(
since x̃∗

kl = 1 and ∀ij ∈ E, rij,u∗ ≥ 0 and x̃∗
ij ≥ 0

)
⊓⊔

Previous properties are the basis for variable fixing [Nemhauser and Wolsey, 1988]
which is performed in Mixed Integer Program (MIP) to detect some 0/1 variables
that must be fixed to either 0 or 1 in any solution improving the best known.
This detection relies on the reduced costs of the variables given by an optimal
dual solution of the linear relaxation. Since a reduced cost can be lower than
the exact reduced cost, this technique gives an incomplete filtering. Let’s give
an example of such an incomplete filtering for our two illustrative constraints.

Example 5 (continued: reduced cost filtering).
Consider Z = 1 and note that each edge is labelled with its original cost cij as

well as its reduced cost rij,u in the proposed dual solutions:

X0 0

X1 1

X2 2

0 0

1 −1

3 −3

(a)

Xiui
(cij , rij,u)

j vj

(0, 0)
(1, 2)

(2, 1)
(0, 0)

(1, 3)

(2, 0)

(0, 0)

(b)

iui j uj
(cij , rij,u)

s0

1

0

2

0

3

-1

4

1

t 0

(0
, 0

)

(2, 2)

(1, 0)

(2, 2)(0, 0)

(0, 2)

(0, 0)

(1
, 0

)



(a): r(0,1),u = 2 > Z and r(1,2),u = 3 > Z. Thus, there’s no assignment of cost

lower than Z containing one of the edges (0, 1) or (1, 2).
Remark 1: Note that, one of the reduced costs is exact (r(1,2),u = R(1,2)),
whereas one other is not (r(0,1),u < R(0,1) = 3).
Remark 2: R(1,0) = 3 thus edge (1, 0) is inconsistent event though its reduced
cost in u is not high enough to detect it.

(b): r(s,2),u = 2 > Z ; r(1,t),u = 2 > Z and r(3,4),u = 2 > Z. Thus there’s no

path of cost lower than Z passing through one of the arcs (s, 2), (1, t) or (3, 4).
Remark: R(s,3) = 2 thus the arc (s, 3) is inconsistent but r(s,t),u = 0 so this
dual solution doesn’t filter this value.

In the following, we show how to find a set of dual solutions that gives the
exact reduced costs, to perform a complete filtering (i.e. achieve AC).

4 Analysis

In [German et al., 2017], it was shown that AC can be achieved by solving a
single linear program (for a constraint without cost). At the opposite, for a
constraint with costs, AC requires identifying each edge kl for which all the
solutions of

(
P|kl

)
has a value greater than the fixed upper bound i.e. if z∗

|kl
is

greater than Z. Since z∗
|kl

can be computed as z∗ + Rkl, exact reduced cost of an
edge tells us if the corresponding value is consistent. In this section, we’ll prove
that for any edge kl, there exists an optimal dual solution for which the reduced
cost of this edge equals its exact reduced cost. Therefore, AC can be achieved
by computing such dual solutions. Moreover, we show how exact reduced costs
can be identified in a given dual optimal solution. Finally, some results about
the number of dual solutions needed are also given.

For the rest of the document, kl will denote an arbitrary edge and u∗ an
optimal dual solution.

Property 2 (Existence of an optimal dual solution u
∗ s.t. rkl,u∗ = Rkl).

For any edge kl ∈ E, that belongs to at least one feasible primal solution, there
exists an optimal dual solution u∗ such that rkl,u∗ = Rkl.

See proof.

This property justifies that a complete filtering (i.e. achieve AC) is possible
using reduced costs. Moreover, it’s not necessary to use one dual solution per
edge.

The previous property also gives a dual a point of view on the result of
[German et al., 2017]:

The constraint without costs C can be encoded as a constraint with costs
WC. Let Z be equal to 0. The domains of the variables in WC are defined with a
complete variable-value graph BG01 in which the edges of the original variable-
value graph of C are given a cost of 0 and the remaining edges (encoding values
not present in the initial domains of C) are given a cost of 1. An edge belong to



a solution of C if and only if it belongs to a support of cost 0 in BG01. Therefore
any positive reduced cost exhibits an inconsistent edge and a single dual solution
can rule out all inconsistent edges. Let F the set of inconsistent edges i.e. the
edges that does not belong to any support for C.

Property 3 (AC for C with one dual solution).

There exists an optimal dual solution ũ for WC in BG01 such that

∀ij ∈ F ⇐⇒ rij,ũ > 0

See proof.

Let’s go back to the weighted case WC. A single dual solution can exhibit the
exact reduced costs of many edges. The following property shows how to know
which reduced costs are exact given an optimal dual solution.

Property 4 (Characterisation of rkl,u∗ = Rkl).

For an optimal dual solution u∗ and an edge kl ∈ E, the following proposi-
tions are equivalent:

i. rkl,u∗ = Rkl ;

ii. kl belongs to a support of C for which all the other reduced costs, with
respect to u∗, are null. Moreover, this support has a minimal cost ;

iii. for any support of minimal cost that contains kl, the reduced costs of all
edges except kl, with respect to u∗, are null.

See proof.

Example 6 (Characterization of exact reduced costs).

Consider Z = 1. We apply the previous property by identifying the exact reduced
costs of a given dual optimal solution. The two cases of MinWAllDiff and
ShortestPath are illustrated.

(a)

X0 0

X1 1

X2 2

0 0

−1 1

0 0

Xiui
(cij , rij,u)

j vj

(0, 0)
(2, 1)(0,0)

(1, 2)

(0, 0)

(1, 2)(1, 0)

(0, 0)

(b)

s0

1

−1

2

−1

3

0

t 0

(1
, 0

)

(2, 1)

(0, 0)

(1, 2)(0, 0)

(1, 2)

(0, 0)

iui j uj
(cij , rij,u)



(a): S = {(X0, 0); (X1, 1); (X2, 2)} is a support of minimal cost (its cost is 0).
S′ = {(X0, 2); (X1, 0); (X2, 1)} is a support (of minimal cost) containing (X1, 0)
i.e. a perfect matching of minimum weight using edge (X1, 0). Moreover the re-
duced costs of two edges out of three are null: r(0,2),u∗ = r(2,1),u∗ = 0. Thus
r(1,0),u∗ is exact i.e. R(1,0) = r(1,0),u∗ = 2.

(b): S = {(s, 1); (1, 2); (2, t)} is a support (of minimal cost) containing (2, t) with
r(s,1),u∗ = r(1,2),u∗ = 0. Thus R(2,t) = r(2,t),u∗ = 2. In other words, a shortest
path using edge (2, t) has a cost of 2.

For the specific MinWAllDiff constraint, the conditions of the previous
property are met if and only if there exists a cycle, alternating with respect to a
support of minimal cost, such that all its reduced costs are 0 except one which is
exact. Similarly for ShortestPath , if a path from s to t can be built using the
arcs of the null reduced costs to the exception of a single additional arc, then
the reduced cost of this additional arc is exact.

Note that the optimality of the reduced cost is checked by solving a fea-
sibility problem. This latter problem is stated by distinguishing the edges of
null reduced costs from the remaining edges. In particular, it does not use the
precise value of the costs themselves. Very similarly, optimality is reached in
a primal dual algorithm when a feasible solution is obtained with the edges of
null reduced costs alone. For instance, the Hungarian algorithm stops when a
maximum matching of the graph of null reduced costs has a cardinality of n.
The costs are not used when checking this condition, they have been combina-
torialized as explain in [Papadimitriou and Steiglitz, 1998]. From this point of
view, we believe property 4 extends complementary slackness very naturally to
deal with arc-consistency.

For a given dual solution u, let’s denote by Ru = {ij ∈ E | rij,u = Rij}, the
set of edges whose reduce costs are exacts with respect to u. A set or a family
{ut}t∈T of dual solutions is said to be complete if

⋃
t∈T

Rut = E i.e. any exact

reduced cost is available from at least one solution of this family. To minimize
the number of calls to the simplex algorithm in order to compute arc-consistency,
we are interested in minimal complete set of dual solutions family T of minimal
cardinality. The next property exhibits sets of edges for which a single dual
solution provides all the exact reduced costs.

Two edges are said incompatible if they do not belong together to a feasible
primal solution.

Property 5 (Incompatible edges).
For any set I of pairwise incompatible edges, there exists an optimal dual

solution that provides the exact reduced cost of each edge of I.
See proof.

Domains are simple examples of sets of incompatible edges since, in a feasible
solution, a variable takes a single value. Therefore no two values of its domain
can be used together and from the variable-value graph point of view, for each
k ∈ U , the set Sk = {kj ∈ E} = {kj | j ∈ D(Xk)} is a set of incompatible edges.



Let u⋆
k be an optimal dual solution for which all reduced costs of Sk are exact.

Then, S = {u⋆
k | k ∈ U} is a complete set of dual solutions. This complete set

is simply based on the domains and referred to as S. Note that there might be
alternative ways to obtain a complete set of dual solutions and we illustrate it
below with the case of ShortestPath :

Example 7 (Sets of incompatible edges).

For MinWeightedAllDiff , the
sets Si are sets of incompatibles
edges:

S0

S1

S2

S3

X0 0

X1 1

X2 2

X3 3

For each Si there exists a dual solu-
tion ui that gives all the exact re-
duced costs for edges in Si. Thus
S = {ui | 0 ≤ i ≤ 3} is a complete
set of dual solutions of cardinality 4.

For ShortestPath , the topologi-
cal layers Ti are sets of incompatibles
edges:

T0

T1

T2

s

1

2

3 4

t

For each Ti there exists a dual so-
lution ui that gives all the exact
reduced costs for arcs in Ti. Thus
{ui | 0 ≤ i ≤ 2} is a complete set of
dual solutions of cardinality 3. Note
that the complete set S based on the
domains would require 5 dual solu-
tions.

In order to minimise the number of calls to the simplex algorithm, we are
interested in complete families of minimum cardinality. An upper bound and a
worst case lower bound of this cardinality are given in the following properties:

Property 6 (Complete set of n dual solutions).

There exists a complete set of n dual optimal solutions (the complete set S).

See proof.

This set is possibly not minimal as seen in example 7 for ShortestPath

where n = 5 and the set of layers {Ti} is a complete family of cardinality 3.
Finally, we can show that, in the worst case, the cardinality of such a family
is at least n. We use the MinWAllDiff to do the proof which was presented
in [Claus et al., 2020] but can now be simplified:

Property 7. In the worst case, for WC, n optimal dual solutions are needed to
obtain all exact reduced costs.



Proof. If we consider the MinWAllDiff constraint, and the instance where

cij =

{
0 if i ≤ j

1 otherwise

X0 0

X1 1

...
...

Xn−1 n − 1

Xn n

cij = 1 (continuous)

L (bold)

cij = 0 (dashed)

Let L = {(i, i − 1) | ∀ 1 ≤ i ≤ n}∪{(0, n)}. Let’s show that the reduced costs
of the edges of L can not be pairwise exact for the same dual solution.

For any edge kl ∈ L, Rkl = 1 and L is a support of minimal cost (its cost
is 1) containing this edge. From property 4 iii, if u∗ is an optimal dual solution
with rkl,u∗ = Rkl, the reduced costs for the edges of L \ {kl} must be null. Thus
only one exact reduced cost of L can be given by an optimal dual solution and
at least |L| = n dual solutions are needed to obtain all exact reduced costs. ⊓⊔

Since, for any edge kl and any optimal dual solution u∗, rkl,u∗ ≤ Rkl, for
a set of incompatible edges I, if we modify u∗ to maximize

∑
ij∈I

rkl,u∗ , keeping

u∗ optimal, we will obtain an optimal dual solution that provides the exact
reduced costs for all edges of I. This technique is the foundation of the algorithm
proposed in the next section.

5 An LP based algorithm

In [German et al., 2017], it was proved that arc-consistency can be reached by
solving only one LP for a constraint without cost. For constraints with costs, if
T = {Ii} is a set of sets of pairwise incompatible edges s.t. E = ∪i Ii , we have
shown that arc-consistency can be reached by computing |T | dual solutions.

For a given set of incompatibles edges, I, we can modify (D) to obtain such
a solution which is appropriate for filtering.

(Dz
I)






max
u

ωz
I =

∑
kl∈I

rkl,u

s.t. ui +
∑

q∈Q

aq,ij uq ≤ cij ∀ij ∈ E

∑
q∈Q

bq uq +
∑
i∈U

ui = z∗ (5)

uq ≥ 0 ∀q ∈ Q

ui ∈ R ∀i ∈ U



All the constraints of (D) are included in (Dz
I) and the additional con-

straint (5) ensure the D-optimality of the obtained solution. Property 5 shows
that there exists an optimal solution of (D) in which all exact reduced costs of
I are reached. Thanks to the property 1, the maximality of the objective func-
tion, which is the sum of the reduced costs of I, ensures that such a solution is
obtained.

A drawback of (Dz
I) is the preliminary computation of z∗ for constraint (5).

Constraint (5) also considerably changes the formulation of the original dual (D)
which might be inconvenient when a dedicated algorithm is available for solving
(D). But (Dz

I) can be upgraded to (DI) in which the sum of the reduced costs
for I and the objective function of (D) are gathered in a new objective function.
The preliminary computation of z∗ is no more necessary.

(DI)





max
u

ωI =
∑

q∈Q

bq uq +
∑
i∈U

ui + 1
|I|

∑
kl∈I

rkl,u

s.t. ui +
∑

q∈Q

aq,ij uq ≤ cij ∀ij ∈ E (xij)

rkl,u ≤ M ∀kl ∈ I where M > max
kl∈I

z∗
kl is fixed (x′

kl)

uq ≥ 0 ∀q ∈ Q

ui ∈ R ∀i ∈ U

Property 8 (Usefulness of (DI)).

If u∗ is an optimal solution for (DI), we have ∀ij ∈ I,

∑

q∈Q

bq u∗
q +

∑

i∈U

u∗
i + rij,u∗ = z∗

|ij

See proof.

Moreover, the original optimal value z∗ is available as a side product when a
set of incompatible edges is known to contain at least one edge of an optimal
solution.

Corollary 1. If I contains at least an edge belonging to an optimal solution
and u∗ is an optimal solution for (DI), then

z∗ =
∑

q∈Q

bq u∗
q +

∑

i∈U

u∗
i + min

ij∈I
rij,u∗

Property 8 and its corollary gives a simple algorithm to compute a lower
bound for Z and to achieve arc-consistency:



Algorithm 1 ACbyLP

1: Unmark all variable-value edges ij ∈ E

2: Zlb = +∞

3: let T be a complete family of sets with incompatible edges
4: for each I ∈ T do

5: if I has unmarked edges then

6: Compute ũ an optimal solution of (DI)
7: let w =

∑
q∈Q

bq ũq +
∑
i∈U

ũi

8: Zlb = min

{
Zlb ; w + min

ij∈I

rij,ũ

}

9: for kl ∈ E, kl unmarked do

10: if w + rkl,ũ > Z then

11: Mark kl as inconsistent.
12: for kl ∈ I, kl unmarked do

13: if w + rkl,ũ ≤ Z then

14: Mark kl as consistent.
15: Update Z with Zlb.

Algorithm 1 considers the sets I of incompatible edges, one by one. For
each I, (DI) is solved to get the exact reduced cost of the edges of I. Note
that the dual solution obtained is used to filter the entire domains. The set
of edges whose status consistent/inconsistent have been definitely established
are marked. Algorithm 1 does not specify how the family of incompatible sets
should be built but the set of domains can be used by default. Moreover, the
algorithm can be stopped at any time providing valid filtering for the whole
domains. The order to consider the sets of T is also left unspecified and many
strategies can be imagined. An instance of such an algorithm was experimented
in [Claus et al., 2020] for the MinWAllDiff constraint.

Conclusion

It was shown in [German et al., 2017], how arc-consistency could be achieved
for a global constraint without cost (a satisfaction problem) with an ideal LP
formulation by looking for an interior point. Such an interior point can be found
by solving a single linear program. The present work extends this analysis to
global constraints with assignment costs (an optimization problem) demonstrat-
ing that arc-consistency can be done by solving n linear programs in the worst
case, one for each variable.

The work of [German et al., 2017] had a primal view point and we chose to
take a dual view point to generalize it by revisiting reduced cost based filtering.
From this point of view, we established that the reduced cost of a single dual
solution are needed to get arc-consistency for a satisfaction problem whereas n

dual solutions are needed for an optimization problem (always assuming that
both have an ideal formulation). To our knowledge, it provides the first analysis



of reduced cost filtering which has often been used in the past starting with the
work of [Focacci et al., 1999].

This analysis established a number of basic results relating reduced costs and
arc-consistency by answering the following questions: does there always exist a
dual solution that can prove a value consistent/inconsistent (property 2) ? Given
a dual solution, how do we know which values are proved consistent/inconsistent
(property 3) ? Can we identify simple conditions for a family of dual solutions
to ensure arc-consistency (property 6) ? The key result of this paper is probably
the characterization given by property 3 which states a complementary slackness
condition for exact filtering (as opposed to just optimality). This might open a
way to design a generic primal/dual filtering algorithm for a large class of global
constraints with an ideal LP formulation. We intend to investigate further the
algorithmic side as future work.



Annex: proofs

Proof (Prop. 2: Existence of an optimal dual solution that gives Rkl).
Let’s build explicitly such a dual solution:
We call

(
P̃
)

the primal problem identical to (P) except for the cost of the
edge kl:

{
c̃kl = ckl − Rkl

c̃ij = cij ∀ij ∈ E \ {kl}

Since kl belongs to at least one primal solution, c̃kl is finite. Let z̃∗ be the
optimal value of

(
P̃
)
, and ũ∗ any optimal solution of

(
D̃
)
, the dual of

(
P̃
)
.

We show below that ũ∗ is also an optimal solution for (D) and gives the exact
reduced cost for kl:

– z∗
|kl ≥ z∗ implies Rkl ≥ 0 and c̃kl ≤ ckl.

Consequently,






ũ∗
k +

∑
q∈Q

aq,kl ũ∗
q ≤ c̃kl ≤ ckl

ũ∗
i +

∑
q∈Q

aq,ij ũ∗
q ≤ c̃ij = cij ∀ij ∈ E \ kl

and ũ
∗ is a feasible solution for (D).

– Since
(
P̃
)

is an ideal formulation, it has at least one optimal integer solution
x̃∗. Suppose that the value of this solution is lower than z∗ (z̃∗ < z∗) (it
can’t be greater since the costs are lower in

(
P̃
)
).

• On one hand if x̃∗
kl = 0, this solution would have the same cost z̃∗ in (P)

and that contradicts the optimality of z∗

• On the other hand if x̃∗
kl = 1, since c̃kl is the only modified cost and is

used exactly once in the objective function, the value of this solution in
(P) is z̃∗ + Rkl = z̃∗ + z∗

|kl − z∗

< z∗ + z∗
|kl − z∗

< z∗
|kl

and that’s in contradiction with the optimality of z∗
|kl

for a solution
containing kl.

Therefore z̃∗ = z∗ and ũ
∗ is an optimal solution for (D).

– Finally, an optimal solution for
(
P|kl

)
is a solution for

(
P̃
)

of value z∗
kl −

Rkl = z∗, thus it’s an optimal solution for
(
P̃
)

with xkl = 1. Thanks to the

complementary slackness theorem, the constraint associated with xkl in
(
D̃
)

must be tight.

Therefore uk +
∑

q∈Q

aq,kl ũ∗
q = c̃kl

⇐⇒ uk +
∑

q∈Q

aq,kl ũ∗
q = ckl − Rkl

⇐⇒ ckl − uk −
∑

q∈Q

aq,kl ũ∗
q = Rkl

That means exactly rkl,ũ∗ = Rkl.



⊓⊔

Proof (Prop. 3: AC for C with one dual solution).
Since the {0, 1} encoding of (P) implies Rij ≥ 1 ∀ij ∈ F , we can consider

a set of optimal dual solutions
{

ũij : ij ∈ F
}

with rij,ũij ≥ 1. One can remark
that ∀kl 6∈ F , Rkl = 0 and thus, ∀ij ∈ F , rkl,ũij = 0

Let ũ be the average solution of the previous set: ũ = 1
|F|

∑
ij∈F

ũij .

This solution is feasible, optimal, and rij,ũ

{
> 0 ∀ij ∈ F

= 0 ∀ij 6∈ F
⊓⊔

Proof (Prop. 4: Characterisation of rkl,u∗ = Rkl).

i. =⇒ ii.: Consider u∗, an optimal dual solution s.t. rkl,u∗ = Rkl.
We have Rkl = rkl,u∗ = ckl − u∗

k −
∑

q∈Q

aq,kl u∗
q .

Thus, with the notations from the previous proof,
c̃kl = ckl − Rkl = u∗

k +
∑

q∈Q

aq,kl u∗
q

Since the costs are unchanged for all other edges, u∗ respects the con-
straint (4) and is feasible for

(
D̃
)
.

Moreover, we have z̃∗ = z∗, and u∗ is optimal for
(
D̃
)
.

Let S be an optimal support for
(
P̃
)

that contains kl. From the complemen-

tary slackness theorem between
(
P̃
)

and
(
D̃
)
, we have r̃ij,u∗ = 0, ∀ij ∈ S

which implies rij,u∗ = 0, ∀ij ∈ S \ {kl}.
ii. =⇒ iii.: if there exists a support S containing kl such that all its reduced

costs are null except for kl, let
(
Ṗ
)

be the primal problem identical to (P)
except for the cost of the edge kl:

{
ċkl = ckl − rkl,u∗

ċij = cij ∀ij ∈ E \ {kl}

By construction, u∗ is feasible for
(
Ḋ
)
, the dual problem of

(
Ṗ
)

(and the

constraint (4) is tight for kl). In
(
Ḋ
)
, ṙij,u∗ = 0, ∀ij ∈ S and thus, u∗ is an

optimal dual solution for
(
Ḋ
)
. Therefore, S is an optimal support for

(
P|kl

)

and rkl,u∗ = Rkl.
Let S′ be an other optimal support for

(
P|kl

)
. Then it’s an optimal support

for
(
Ṗ
)

and so, ∀ij ∈ S′ \ {kl}, rij,u∗ = ṙij,u∗ = 0.

iii. =⇒ i.: Let S be a support of minimal cost z∗
|kl

for
(
P|kl

)
with all its

reduced costs null except those of kl. S is thus a support of minimal cost
for
(
Ṗ
)
. As we have shown previously, u∗ is optimal for

(
Ḋ
)
, and the cost

of S in
(
Ṗ
)

is z∗. The difference between the costs of S for (P) and
(
Ṗ
)

equals the difference between ckl and ċkl since it’s the only cost which differs.
Eventually we have Rkl = z∗

|kl
− z∗ = ckl − ċkl = rkl,u∗

⊓⊔



Proof (Prop. 5: Incompatible edges).
We explicitly build ũ∗

I , the optimal dual solution that gives all exact reduced
costs of the edges of I from the modified primal problem

(
P̃I

)
which is identical

to (P) to the exception of the costs related to the edges in I. More precisely,

c̃ij =

{
cij − Rij ∀ij ∈ I

cij ∀ij ∈ E \ I

Let ũ∗
I be an optimal solution for

(
D̃I

)
, the dual of

(
P̃I

)
, and z̃∗

I its value.
We must show that ũ∗

I is feasible and optimal for (D) while providing the exact
reduced costs of all edges connected to k. The proof is nearly identical to the
one of the property 2 :

– Feasibility of ũ∗ for (D): identical proof
– With lower costs in

(
P̃I

)
, z̃∗ can’t be greater than z∗. We suppose that

z̃∗ < z∗.
In any primal optimal solution x̃∗ of

(
P̃I

)
, since two edges of I can’t be-

long to such a solution, and in respect to constraint (2) all x̃∗
ij for ij ∈ I

are equal to zero except one, x̃∗
kl = 1. The value of x̃∗ in (P) is therefore

z̃k∗ + Rkl = z̃∗ + z∗
|kl − z∗

< z∗ + z∗
|kl − z∗

< z∗
|kl

That’s impossible by definition of z∗
|kl

and thus we have z̃∗ = z∗.

– ∀ij ∈ I, rij,ũ∗ = Rij : identical proof for each ij ∈ I, replacing
(
P̃
)

by
(
P̃I

)

and
(
D̃
)

by
(
D̃I

)

⊓⊔

Proof (Prop. 6: Complete set of dual solutions).
For each k ∈ U , we set Ik = {kj ∈ E}. Thanks to the constraint (2), two

edges of Ik can’t belong to the same primal solution. Therefore, the prop. 5
proves that there exists an optimal dual solution ũ∗

Ik
that gives all exact reduced

costs for the edges of Ik.
Since E =

⋃
k∈U

Ik,
{

ũ∗
Ik

}
k∈U

is a complete set of optimal dual solutions of

cardinality |U | = n. ⊓⊔

Proof (Prop. 8: Usefulness of (DI)).

– We firstly prove that ω∗
I = z∗ + 1

|I|

∑
kl∈I

Rkl:

• A Dz
I -optimal solution, u1, is also DI -feasible, and by construction,∑

q∈Q

bq u1q +
∑
i∈U

u1i = z∗ and ∀kl ∈ I, rkl,u1
= Rkj .

Therefore, ω∗
I ≥

∑

q∈Q

bq u1q +
∑

i∈U

u1i +
1

|I|

∑

kl∈I

rkl,u1

≥ z∗ +
1

|I|

∑

kl∈I

Rkl



• A DI -feasible solution, u2, is also D-feasible solution

Thus,
∑

q∈Q

bq u2q +
∑

i∈U

u2i + rkl,u2
≤ z∗ + Rkl ∀kl ∈ I

=⇒ |I|




∑

q∈Q

bq u2q +
∑

i∈U

u2i



+
∑

kl∈I

rkl,u2
≤ |I| z∗ +

∑

kl∈I

Rkl

=⇒
∑

q∈Q

bq u2q +
∑

i∈U

u2i +
1

|I|

∑

kl∈I

rkl,u2
≤ z∗ +

1

|I|

∑

kl∈I

Rkl

=⇒ ωI ≤ z∗ +
1

|I|

∑

kl∈I

Rkl

=⇒ ω∗
I ≤ z∗ +

1

|I|

∑

kl∈I

Rkl

Thus, ω∗
I = z∗ + 1

|I|

∑
kl∈I

Rkl

– We can now prove the property:

Let u3 be an optimal solution for (DI),

∀ij ∈ E,
∑

q∈Q

bq u3q +
∑
i∈U

u3i + rij,u3
≤ z∗ + Rij .

Suppose that ∃k̃l ∈ I s.t.
∑

q∈Q

bq u3q +
∑
i∈U

u3i + r
k̃l,u3

< z∗ + R
k̃l

.

Since |I| ω∗
I = |I| z∗ +

∑
kl∈I

Rkl,

that implies
∑

kl∈I\k̃l

(
∑

q∈Q

bq u3q +
∑
i∈U

u3i + rkl,u3

)
>

∑

kl∈I\k̃l

(z∗ + Rkl) which

is impossible.

Thus, ∀kl ∈ I,
∑

q∈Q

bq u3q +
∑

i∈U

u3i + rkl,u3
= z∗ + Rkl

= z∗
|kl

⊓⊔
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