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Abstract: In this paper, the problem of stability, recursive feasibility and convergence
conditions of stochastic model predictive control for linear discrete-time systems affected by
a large class of correlated disturbances is addressed. Based on indirect feedback of the state, we
develop a stochastic model predictive control that guarantees convergence, average cost bound
and chance constraint satisfaction. The results rely on the computation of probabilistic reachable
and invariant sets using the notion of correlation bound. This control algorithm results from a
tractable deterministic optimal control problem formulation with a value function that upper-
bounds the expected quadratic cost of the predicted state trajectory and control sequence. The
proposed methodology only relies on the assumption of the existence of bounds on the mean
and the covariance matrices of the disturbance sequence distribution.

Keywords: Stochastic model predictive control, Probabilistic reachability, Probabilistic
invariance.

1. INTRODUCTION

Model predictive control (MPC) is a well established reced-
ing horizon control technique, particularly suitable to cope
with hard constraints on controls and states, see Mayne
et al. (2000); Camacho and Alba (2013); Kouvaritakis
and Cannon (2016); Rawlings et al. (2017) and references
therein. In particular, MPC strongly relies on a model to
make predictions and to ensure the stability of the closed-
loop behavior, while satisfying the constraints. Unfortu-
nately, dynamical models can never fully loyally represent
a real system. The mismatches between model and reality
can be a problem since they may lead to instability and/or
constraints violation, which represents a threat to systems
safety.
Indeed, deterministic formulations are inherently inade-
quate to systematically deal with uncertainties; see the
surveys Mesbah (2016); Farina et al. (2016). The worst-
case approach to deal with the unavoidable uncertainties
have been then employed, leading to robust MPC formu-
lations for regulation, Mayne and Langson (2001), and
tracking Limon et al. (2010). Although this approach is
very efficient to ensure robust stability and constraints
satisfaction, it suffers from some drawbacks as the con-
servatism of the resulting control or the often unrealistic
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assumptions on boundedness of the uncertainties. This
modelling framework, in fact, is not suitable to cope with
stochastic descriptions of uncertainty, which often provide
a better description of the probabilistic nature of real-
world systems.
These drawbacks have pushed the community to enquire
for another approach to account for the probabilistic oc-
currence of uncertainties in the control design, Mesbah
(2016), to deal with the stochastic nature of the uncertain-
ties and to reduce the conservativeness of the control. In-
deed, stochastic MPC (SMPC) has recently emerged with
the aim of systematically incorporating the probabilistic
descriptions of uncertainties into a stochastic optimal con-
trol problem.
An enormous amount of work has been done in this
area with results that are most often very conclusive. In
many works concerning SMPC, however, the stochastic
disturbance is modelled by an independent, identically
distributed sequence of random variables with known
mean and variance. This is the case, for instance, for
the methods concerning: stochastic tube MPC, Cannon
et al. (2010); Hewing and Zeilinger (2018); discounted
probabilistic constraints, Yan et al. (2021); SMPC for con-
trolling the average number of constraints violation, Korda
et al. (2014); probabilistic MPC, Farina et al. (2013); and
recursively feasible SMPC using indirect feedback, Hewing
et al. (2020). We can also cite Cannon et al. (2009a,b);
Bernardini and Bemporad (2011); Oldewurtel et al. (2013);
Zhang et al. (2014). The assumption of independence in
time, and thus uncorrelation between disturbance real-



izations, though, is in general unrealistic. In addition,
the disturbance distribution mean and covariance are in
general not accessible in practice, nor necessarily constant
in time.
In this work, we consider linear systems excited by dis-
turbances which realisations are correlated in time. Only
bounds on the mean and the correlation matrices are re-
quired to exist, even stationarity is not necessary. Based on
recent results on the probabilistic reachable and invariance
sets for correlated disturbances developed in Fiacchini and
Alamo (2021), we adapt the tube based SMPC formula-
tion in Hewing et al. (2020) and extend some results in
Hewing and Zeilinger (2018); Farina et al. (2013) to the
correlated disturbance case under analysis, based only on
the knowledge of bounds on its first and second moments.
Thus, under this ”weak” assumption we propose a tube
based SMPC algorithm and derive its nominal asymptotic
stability, recursive feasibility, in addition to the satisfac-
tion of the chance constraints and state convergence with
asymptotic average cost bound.

Notations: The set of natural numbers is denoted N,
the set of symmetric matrices in Rn×n is denoted Sn,
‖·‖M represents the norm weighted over the Rn×n positive
definite matrix M and Γ � 0 (Γ � 0) denotes that Γ
is a symmetric definite (semi-definite) positive matrix. If

Γ � 0 then Γ
1
2 is the matrix satisfying (Γ

1
2 )2 = Γ. For all

Γ � 0 and r ≥ 0, the ellipsoidal set E (Γ, r) is defined

by {x = Γ
1
2 z ∈ Rn : z>z ≤ r}; if moreover Γ � 0,

then E (Γ, r) = {x ∈ Rn : x>Γ−1x ≤ r}. The spectral
radius of P ∈ Rn×n is ρ(P ). Given two sets X,Y ⊆ Rn,
their Pontryagin difference is X 	 Y = {x ∈ X| x +
y ∈ X, ∀y ∈ Y }. The χ squared cumulative distribution
function of order n is denoted χ2

n(x). Probabilities and
conditional probabilities are denoted Pr{A} and Pr{A|B};
the expected value of A is denoted E{A}.

2. PROBLEM FORMULATION

Consider the discrete-time LTI systems given by

xk+1 = Axk +Buk + wk, (1)

where x ∈ Rn is the state, u ∈ Rm is the control input
and w ∈ Rn represents an additive disturbance given by
a sequence of random variables that can be correlated
in time. Throughout the paper, we make the underlining
assumption that perfect knowledge of the state is available
and that the pair (A,B) is stabilizable.
The objective is to design a stochastic model predictive
controller that stabilizes (1) and ensures the satisfaction
of chance constraints of the form

Pr{x ∈ X|x0} ≥ 1− px, Pr{u ∈ U|x0} ≥ 1− pu, (2)

where X and U are convex sets with the origin in their
interior and px and pu represent the tolerated violation
probability of each constraint. As in Hewing et al. (2020),
the probabilities are to be understood with respect to
knowledge at the initial time step t = 0.
Throughout the paper, no assumption on {wk}k∈N is posed
other than the existence of a bound on the mean and
correlation matrices and an exponentially vanishing cross-
correlation. Neither stationarity, i.i.d. assumption, nor the
knowledge of the mean or the variance of the {wk}k∈N
sequence are required in opposition with what done in
the literature Hewing et al. (2020); Hewing and Zeilinger

(2018); Farina et al. (2013); Yan et al. (2021). This is
crucial in practice, as no exact knowledge of the matrices
nor guarantee on the stationarity are often available.

Assumption 1. There exist m, b, γ ∈ R, with γ ∈ [0, 1),
such that the sequence wk satisfies

µ>k µk ≤ m, ∀k ∈ N, (3a)

‖cov(wi, wj)‖22 ≤ b γj−i, i ≤ j, (3b)

with µk = E{wk} and cov(wi, wj) = E{(wi − wj)(wi −
wj)
>}, for all k, i, j ∈ N.

3. PRELIMINARIES

In this section, we consider a system given by

ek+1 = AKek + wk (4)

where ek ∈ Rn, AK = A+BK ∈ Rn×n, wk is an additive
disturbance sequence similar to the one in (1) and K is
assumed to render AK Schur stable (i.e. ρ(AK) < 1).

3.1 Correlation bound

We first recall the following result, provided in Fiacchini
and Alamo (2021).

Proposition 1. If Assumption 1 is satisfied, then non-
negative α, β, γ ∈ R and Γ̃ ∈ Sn exist, with γ ∈ [0, 1)

and Γ̃ � 0, such that

Γk,k ≺ Γ̃, ∀k ∈ N, (5a)

Γi,jΓ̃
−1Γ>i,j � (α+ βγj−i)Γ̃, ∀i ≤ j, (5b)

hold, with Γi,j = E{wiw
>
j }, for all i, j ∈ N.

Note that only the bounds on the mean and the covariance
of {wk}k∈N are required to obtain the bounds (5).

We give here a notion that has been introduced in (Fiac-
chini and Alamo, 2021, Definition 1) and plays a key role
in the characterization and determination of probabilistic
reachable and invariant sets for the considered systems.

Definition 1. (Correlation Bound). The random sequence
{wk}k∈Z in (4) is said to have a correlation bound Γw for
matrix AK if the recursion (4), with e0 = 0, satisfies

E{ek+1e
>
k+1} � AKE{eke>k }A>K + Γw, ∀k ≥ 0. (6)

If (5a) and (5b) are satisfied, it is possible to obtain tight
correlation bounds, see Fiacchini and Alamo (2021).

3.2 Probabilistic reachable and invariant sets

We recall here the notion of probabilistic reachable set.

Definition 2. (Probabilistic reachable set). It is said that
Ωk ⊆ Rn with k ∈ N is a sequence of probabilistic
reachable sets for system (4), with violation level ε ∈ [0, 1],
if e0 ∈ Ω0 implies Pr{ek ∈ Ωk} ≥ 1− ε for all k ≥ 1.

A condition for a sequence of ellipoids to be probabilistic
reachable sets in terms of correlation bound, given in
Fiacchini and Alamo (2021), is presented below.

Proposition 2. Suppose that the random sequence {wk}k∈N
has a correlation bound Γw � 0 for matrix AK with



ρ(AK) < 1. Given r > 0, consider the system (4) with
e0 = 0, and the following recursion

Γk+1 = AKΓkA
>
K + Γw (7)

with Γ0 = 0 ∈ Rn×n. Then the sets E (Γk, r) are prob-
abilistic reachable sets with violation level n/r for every
r > 0, for k ∈ N. If, moreover, wk is a Gaussian process
with null mean, then E (Γk, r) are probabilistic reachable
sets with violation probability 1− χ2

n(r).

We recall now the notion of probabilistic invariant set

Definition 3. (Probabilistic invariant set). The set Ω ∈
Rn is a probabilistic invariant set for the system (4), with
violation level ε ∈ [0, 1], if e0 ∈ Ω implies Pr{ek ∈ Ω} ≥ 1−
ε for all k ≥ 1.

A constructive condition for an ellipsoid to be a probabilis-
tic invariant set is given in (Fiacchini and Alamo, 2021,
Proposition 5). Notice that only an upper bound on the

covariance term Γ̃ that ensures the satisfaction of (5a) and
(5b) is required to determine a correlation bound, and then
to construct the probabilistic reachable and invariant sets.

4. MODEL PREDICTIVE CONTROL PROPERTIES

The different ingredients of SMPC are first presented.

4.1 Control policy and decoupled dynamics

As usual, the considered MPC controller relies on the
following dual control policy

uk = vk +Kek (8)

where v is the nominal control, e the bias between the
nominal state and the actual one and K a state feedback
gain such that A + BK is Schur. In particular, suppose
that S � 0 is such that the Lyapunov condition

(A+BK)>S(A+BK)− S � −Q−K>RK, (9)

holds. Notice that such S exists from ρ(A+BK) < 1.
Replacing (8) in (1) yields

zk+1 = Azk +Bvk, (10a)

ek+1 = (A+BK)ek + wk, (10b)

xk = zk + ek, (10c)

where z represents the nominal state, (10a) the nominal
dynamic, (10b) the error propagation dynamic. Since (10b)
is asymptotically stable, the SMPC aims at finding a
nominal control vk that steers the nominal state towards
the origin minimizing a quadratic criterion, and satisfying
the chance constraints and a given terminal constraint.

4.2 Cost function

The cost function used in the SMPC literature often
consists of a sum over the prediction horizon of weighted
quadratic terms of the state and control:

Ju = E
{
‖xN‖2S +

N−1∑
i=0

‖xi‖2Q + ‖ui‖2R
}
, (11)

with Q � 0, R � 0 and (Q
1
2 , A) an observable pair.

Matrix S � 0 should be appropriately chosen to guarantee
the stability of the system controlled by the MPC, for
instance satisfying (9). Such a cost function presents many

advantages, since it can be reduced to a deterministic
quadratic function in terms of mean and covariance of xi
and ui, when the disturbance sequence has zero mean, its
elements are i.i.d. and its second moment is known, as in
Hewing and Zeilinger (2018); Hewing et al. (2020); Farina
et al. (2013). Unfortunately, it is not possible to do that
under the assumption done in this paper, since we lack
information about mean and covariance of the disturbance
distribution and we do not impose i.i.d. assumptions on
the disturbances, which makes (11) hard to be dealt with.
Since it is not possible to directly deal with (11), we look
for a cost function that bounds it and which minimization
is tractable. Although this does not ensure the decrease of
(11), it provides a decreasing bound for it.
We introduce now results that are going to be later used.

Lemma 3. Given M � 0 we have ‖a + b‖2M ≤ 2(‖a‖2M +
‖b‖2M ), ∀a,∀b.

Proof. We notice that for every pair of vectors a and b

0 ≤ ‖a− b‖2M = ‖a‖2M + ‖b‖2M − 2a>Mb.

Thus, 2a>Mb ≤ ‖a‖2M +‖b‖2M . From here we finally obtain

‖a+ b‖2M = ‖a‖2M + ‖b‖2M + 2a>Mb ≤ 2(‖a‖2M + ‖b‖2M ).

Lemma 4. Let P ∈ Rn×n be some positive semi-definite
matrix and consider symmetric matrices M ∈ Rn×n and
M ∈ Rn×n such that M �M . Then

tr{PM} ≤ tr{PM}. (12)

Proof. Recall that M �M means that

y>My ≤ y>My (13)

for all y ∈ Rn. Since P is positive semi-definite, then there
exists a matrix N ∈ Rn×n such that P = N>N . Defining
y = N>x for all x ∈ Rn and considering (13) we have

x>NMN>x = y>My ≤ y>My = x>NMN>x

for all x ∈ Rn, which implies that NMN> � NMN>

and then also that tr{NMN>} ≤ tr{NMN>}. From the
property tr{AB} = tr{BA} and P = N>N then (12)
holds and the result is proved.

Another useful lemma follows.

Lemma 5. Given c ∈ Rp, D ∈ Rp×n, and F ∈ Rp×p � 0,
suppose that the sequence {wk}k∈N admits a correlation
bound Γw for matrix AK = A+BK. Assume also that Γk

is given by recursion (7) and consider ek given by (10b)
with e0 = 0. Then the following inequality holds

E{‖c+Dek‖2F } ≤ 2(‖c‖2F + tr{D>FDΓk}). (14)

Proof. First, we prove that if e0 = 0, then

E{eke>k } � Γk (15)

holds, where Γk is given by the recursion (7). We proceed
by induction, by noticing first that (15) holds trivially for
k = 0 from e0 = 0. Suppose now that (15) holds for a given
k ∈ N. Then, from the Definition 1 and (7) it follows that

E{ek+1e
>
k+1} � AKE{eke>k }A>K + Γw

� AKΓkA
>
K + Γw = Γk+1,

and hence (15) is satisfied for k+1 and, by induction, also
for all k ∈ N. Denote ψk = E{‖c + Dek‖2F }. With this
notation, and Lemma 3, we obtain

ψk = E{‖c+Dek‖2F } ≤ 2E{‖c‖2F + ‖Dek‖2F }
= 2‖c‖2F + 2E{e>k D>FDek}
= 2‖c‖2F + 2E{tr{e>k D>FDek}}.



From the well known identity tr{AB} = tr{BA} we have

ψk ≤ 2‖c‖2F + 2E{tr{D>FDeke>k }}
= 2‖c‖2F + 2tr{D>FDE{eke>k }}.

Since E{ekeTk } ≤ Γk, we finally conclude from Lemma 4:

ψk ≤ 2‖c‖2F + 2tr{D>FDΓk}.

The following proposition presents an upper bounding
function of the cost (11), that depends on the nominal
state and control input z and v and on the correlation
bound together with recursions (7).

Proposition 6. Consider the linear system (1), where the
disturbance admits the correlation bound Γw for matrix
AK = A + BK. Consider also the control policy (8), the
decoupling (10), the recursion (7), and the value function
(11). If z0 = x0 (i.e. e0 = 0), then (11) is bounded from
above by the following cost function

J = 2
(
‖zN‖2S +

N−1∑
i=0

‖zi‖2Q + ‖vi‖2R

+ tr{SΓN}+

N−1∑
i=0

tr{(Q+K>RK)Γi}
)
. (16)

Proof. By applying (14) to each term of (11) we get, for
all i = 0, . . . , N − 1, the following inequalities

E{‖xi‖2Q}= E{‖zi + ei‖2Q} ≤ 2(‖zi‖2Q + tr{QΓi}) (17)

E{‖xN‖2S}= E{‖zN + eN‖2S} ≤ 2(‖zN‖2S + tr{SΓN}) (18)

E{‖ui‖2R}= E{‖vi+Kei‖2R} ≤2(‖vi‖2R + tr{K>RKΓi}).
(19)

Summing (17) and (19) for each i = 0, . . . , N −1, together
with (18), the claim follows and the proof is established.

Since (10a) and (10b) are completely decoupled, the feed-
back K is known and (10a) depends on the nominal control
input v only. Thus, it is possible to ignore the correlation
bound propagation cost terms of (16) (i.e. tr{SΓN} +∑N−1

i=0 tr{(Q + K>RK)Γi})) on the MPC optimization
problem cost.

4.3 Deterministic formulation of chance constraints

The model predictive control algorithm that is to be built,
has to ensure the satisfaction of the chance constraints (2).
Instead of directly working on these constraints for the
intractability and non-convexity of the problem they pose,
we consider tightened hard constraints on the nominal
state and control which satisfaction guarantees the sat-
isfaction of (2) with at least the requested probability, as
often done, see Cannon et al. (2010); Farina et al. (2013);
Hewing and Zeilinger (2018); Hewing et al. (2020).
In our case, the tightening of the original constraints is
done by leveraging the sequence of reachable sets given by
Proposition 2, resulting in the following hard constraints
on the nominal state and control input

zk ∈ Zk = X	 E (Γk, rx), (20)

vk ∈ Vk = U	KE (Γk, ru), (21)

for all k = 0, . . . , N − 1, where rx and ru depend on
the violation probabilities tolerances px and pu. The sat-
isfaction of (20) and (21) is enough to guarantee (2). See
Proposition 2. The terminal set Zf has to be characterized
with some properties related to probabilistic invariance
ensuring that zN ∈ Zf implies the satisfaction of (2) with
x = xk and u = Kxk for all k ≥ N . For this, consider first
Xu := {x : Kx ∈ U} and the sets Zx and Zu defined by

Zu := Xu 	 E (Wru , 1),

Zx := X	 E (Wrx , 1),

where Wru and Wrx are given by Proposition by (Fiacchini
and Alamo, 2021, Proposition 5) with r = ru and r = rx,
respectively and AK = A + BK. The terminal set Zf is
the maximal positively invariant set, contained in Zx ∩
Zu, for system (10a) under the state feedback controller
vk = Kzk.

5. SMPC SCHEME

Combining all the ingredients, the resulting tractable
stochastic MPC optimization problem to be solved at any
time t for the linear discrete-time stochastic system (1) is
stated as follows:

min
v0,...,vN−1

{
‖zN‖2S +

N−1∑
k=0

‖zk‖2Q + ‖vk‖2R

}
(22)

subject to

zk+1 = Azk +Bvk, ∀k = 0, . . . , N − 1 (23)

Γk+1 = AΓkA
> + Γw, ∀k = 0, . . . , N − 1 (24)

zk ∈ Zk = X	 E (Γk, rx), ∀k = 0, . . . , N − 1 (25)

vk ∈ Vk = U	KE (Γk, ru), ∀k = 0, . . . , N − 1 (26)

zN ∈ Zf , (27)

(z0,Γ0) ∈ {(z1(t− 1),Γ1(t− 1)}, (28)

where z1(t− 1) and Γ1(t− 1) represent the nominal state
predicted one step ahead at t−1 and the correlation bound
propagated one step ahead at t− 1, if t ≥ 1, respectively,
i.e.

z1(t− 1) = Az0(t− 1) +Bv0(t− 1)

Γ1(t− 1) = (A+BK)Γ0(t− 1)(A+BK)> + Γw,

while (z1(t − 1),Γ1(t − 1)) = (x0, 0) if t = 0. The
feedback controller K and the terminal cost matrix S are
determined by solving an LQR problem (9) with weight
matrices Q and R.
Condition (28) has to be understood in the sense that we
set the initial value of the optimisation problem (22)-(28)
to the first element of the predicted trajectory sequence
z1(t− 1) and the propagation of the correlation bound of
the error between the real and predicted state Γ1(t − 1)
at every instant t ≥ 1. The choice of this strategy has
a direct consequence on the feasibility of (22)-(28) and
on the satisfaction of the chance constraints (2). These
details are also discussed in Farina et al. (2013); Hewing
and Zeilinger (2018); Hewing et al. (2020); Mayne (2018).
In what follows, we denote vk(t), zk(t),Γk(t), with k =
0, . . . , N−1 and zN (t) the input, trajectory and covariance
bounds obtained as solution of the problem (22)-(28) at
time t. The explicit dependence on t, though, is avoided
hereafter when clear from the context, to simplify the
notation.
We make the following assumption regarding the initial
feasibility of (22)-(28).



Assumption 2. We assume a perfect knowledge of the
initial state (i.e. z0 = x0 or e0 = 0) at t = 0 and that
the problem (22)-(28) is initially feasible for x0 = z0 at
t = 0.

The properties of the SMPC formulated in (22)-(28) in
terms of recursive feasibility, constraints satisfaction and
nominal asymptotic stability are summarized in the fol-
lowing proposition.

Proposition 7. If Assumption 2 is satisfied, then the prob-
lem (22)-(28) is recursively feasible, the chance constraints
(2) are satisfied and the nominal system described by (10a)
is asymptotically stable under the control actions that
result from solving (22)-(28).

Proof. Consider first the recursive feasibility of the prob-
lem (22)-(28) under Assumption 2, that is the condition
of its initial feasibility (i.e. at t = 0).
Assume that, at some given time instant t, a feasible
solution is available with the optimal sequence v(t) =
{v0(t), . . . , vN−1(t)}. Under this sequence, we have the sat-
isfaction of the constraints (25), (26) for all k = 0, . . . , N−
1 and the terminal constraint (27) for k ≥ N .
Given the optimal sequence v(t) at time t, and the invari-
ance properties of the terminal set, it is always possible to
build a control sequence v(t), feasible for the problem at
t + 1, that results from shifting the optimal sequence one
step back and adding the feedback term in zN (t) as the
last element i.e. v(t) = {v1(t), . . . , vN−1(t),KzN (t)}.
Indeed, being originated from the optimal sequence at
t, the first N − 1 elements of v(t) satisfy trivially the
constraints of the problem at time t + 1. The remaining
element KzN (t) of the shifted control sequence v(t) also
satisfies the constraints by construction, because we im-
pose zN (t) to be located in some positively invariant set
for the feedback controller K, inside on which all the state
and input constraints are satisfied. At last, we deduced
that v(t) is a feasible control sequence for the problem
at time t + 1, which guarantees the recursive feasibility
of the proposed MPC scheme if it is initially feasible at
time t = 0. Moreover, as proved in (Hewing et al., 2020,
Lemma 1), the predicted error has the same distribution as
the closed-loop error, which directly leads to chance con-
straints satisfaction in addition to the recursive feasibility.
Concerning the asymptotic stability result, consider the
MPC optimal cost value (22), with initial state z0 = z0(t),
as a Lyapunov candidate function for the nominal system
(10a) and denote it V (z0(t), t). Clearly, V (. , t) is a posi-
tive definite function and the optimization solution, given
by the control sequence v(t) = {v0(t), . . . , vN−1(t)} and
the predicted state trajectory z(t) = {z1(t), . . . , zN (t)},
satisfies all the constraints of the problem. Let

V (z0(t), t) =

N−1∑
k=0

‖zk(t+ 1)‖2Q + ‖vk(t+ 1)‖2R

+ ‖zN (t+ 1)‖2S
where zk(t + 1) = zk+1(t) for k = 0, . . . , N − 1 and
zN+1(t) = (A + BK)zN (t) is the state sequence obtained
by applying the shifted control sequence v(t) = {v0(t +
1), . . . , vN−1(t+1)} = {v1(t), . . . , vN−1(t),KzN (t)} to the
nominal system (10a) with initial state z0(t+ 1) = z1(t).
Note that because of (9), we have

(A+BK)>S(A+BK)− S +Q+K>RK � 0, . (29)

The optimality of V (z0(t+ 1), t+ 1) and (29) yield

V (z0(t+ 1), t+ 1) ≤ V (z0(t), t)

≤ V (z0(t), t)− ‖z0(t)‖2Q − ‖v0(t)‖2R,
which gives V (z0(t+ 1), t+ 1)−V (z0(t), t) ≤ −‖z0(t)‖2Q−
‖v0(t)‖2R < 0 for z0(t) 6= 0. Now, invoking the recur-
sive feasibility under Assumption 2 (which ensures the
existence of an optimal control sequence at any time t)
V (z0(t), t) is a Lyapunov function for system (10a) and
the asymptotic stability of (10a) follows.

6. AVERAGE COST BOUND AND STATE
CONVERGENCE

To evaluate the evolution of the cost function (16) along
the trajectory of the system under the optimal solution of
the problem (22)-(28), denote with J∗(t) the value (16)
for vk(t), zk(t) with k = 0, . . . , N − 1 and zN (t) solution
of (22)-(28) at t. Recall that the explicit dependence on t
is avoided in what follows, to simplify the notation, when
clear from the context. Then J∗(t) satisfies the following
proposition.

Proposition 8. Consider system (1) under the control law
(8) resulting from (22)-(28) and let S ∈ Sn satisfy (9). If
z0(0) = x0(0), then the optimal value J∗(t) of (16) satisfies

J∗(t+ 1)− J∗(t) ≤− E{‖x0(t)‖2Q} − E{‖u0(t)‖2R}
+ tr{2SΓw} (30)

for every t ∈ N.

Proof. Assume the existence of an optimal sequence
{v0(t), . . . , vN−1(t)} at time t that yields the optimal value
J∗(t). At time t+ 1, and considering the properties of the
terminal set Zf , we can observe that the shifted sequence
{v1(t), . . . ,KzN (t)} represents a suboptimal and feasible
sequence. Denoting with J(t+ 1) the cost induced by the
suboptimal sequence at t+ 1, we have

J(t+ 1) = J∗(t)− 2‖z0(t)‖2Q − 2‖v0(t)‖2R
− 2tr{(Q+K>RK)Γ0(t)}+ 2‖zN (t)‖2Q
+ 2‖KzN (t)‖2R − 2‖zN (t)‖2S + 2‖(A+BK)zN (t)‖2S
+ 2tr{Q+K>RK − S
+ ((A+BK)S(A+BK)>)ΓN (t)}+ 2tr{SΓw}.

From Lemma 4 with P = ΓN (t) and M and M given by
(29), it follows

J(t+ 1) ≤J∗(t)− 2(‖z0(t)‖2Q + ‖v0(t)‖2R
+ tr{(Q+K>RK)Γ0(t)}) + 2tr{SΓw}.

As J(t + 1) is suboptimal, we have J∗(t + 1) ≤ J(t + 1),
implying

J∗(t+ 1) ≤ J∗(t)− 2(‖z0(t)‖2Q + ‖v0(t)‖2R (31)

+ tr{(Q+K>RK)Γ0(t)}) + 2tr{SΓw}
that, together with (14) in Lemma 5, yields (30) and
concludes the proof.

Notice that the actual evolution of (16) is better repre-
sented by (31), as this inequality is sharper than (30)
(consequence of Lemma 5). In addition, we remind that
the result in Proposition 8 doesn’t hold for (11) but for its
bound given by (16) only.
The next proposition gives the average asymptotic cost



bound and is a direct extension to our case of a result
from Hewing et al. (2020).

Proposition 9. Consider system (1) subject to the distur-
bance sequence {wk}k∈N that admits a correlation bound
Γw for the matrix AK = A + BK, under the control law
(8) resulting from (22)-(28). Then we have

lim
N→∞

1

N

N∑
t=0

E{‖x0(t)‖2Q + ‖u0(t)‖2R} ≤ tr{2SΓw}. (32)

Proof. From Proposition 7 and (30) we have

J∗(N + 1)− J∗(0) ≤
N∑
t=0

(
− E{‖x0(t)‖2Q + ‖u0(t)‖2R}

+ tr{2SΓw}
)

From this, and since J∗(t) is finite for every t ∈ N, then

0 = lim
N→∞

1

N
(J∗(N + 1)− J∗(0))

≤ lim
N→∞

1

N

N∑
k=0

(−E{‖xk‖2Q + ‖uk‖2R}+ tr{2SΓw})

= tr{2SΓw} − lim
N→∞

1

N

N∑
k=0

E{‖xk‖2Q + ‖uk‖2R}

and the claim follows.

We state now a proposition about the convergence of state
x(t) of (1).

Proposition 10. Consider system (1) subject to the distur-
bance sequence {wk}k∈N that admits a correlation bound
Γw for the matrix AK = A + BK, under the control law
(8) where v results from (22)-(28) and where Assumption
2 is also satisfied. Then, we have

lim
t→∞

E{‖xt‖2} = E{‖e∞‖2} ≤ tr{Γ∞} (33)

where Γ∞ is the matrix that satisfies the Lyapunov dis-
crete equation Γ∞ = AKΓ∞A

>
K + Γw.

Proof. From Proposition 7 we have

lim
t→∞

zt = 0. (34)

From (15), we have

E{‖et‖2} = tr{E{ete>t }} ≤ tr{Γt} (35)

which implies, together with (34) and (10c), that

lim
t→∞

E{‖xt‖2} = lim
t→∞

E{‖zt + et‖2}

≤ lim
t→∞

{
‖zt‖2 + E{‖et‖2}

}
≤ lim

t→∞
tr{Γt} = Γ∞.

Since, as in (Kofman et al., 2012, Subsection 2.1), the
existence of Γ∞ is ensured by ρ(AK) < 1, the results is
proved.

7. SIMULATION EXAMPLE

We test the stochastic model predictive control scheme
(22)-(28) on a double integrator system

xk+1 =

[
1 1
0 1

]
xk +

[
0.5
1

]
uk + wk (36)

with initial state x0 = [−3.8 0]
>

. The state and input
stage costs are Q = diag([1, 10]) and R = 50, respectively.

figure MPC small avec gca.png

Fig. 1. Example of a stochastic tube with the nominal
trajectory in green, the state trajectory in blue, the
terminal set in black and the error expectation set
in red, generated by the MPC scheme (22)-(28) for
system (36) and for a violation probability of at
most 35% for the state x of system (36) under the
constraints (37).

The feedback controller K is designed as a discrete LQR
controller based on the same weights Q and R.

A correlated disturbance sequence, corresponding to the
output of a switched linear system excited with white noise
is generated and its correlation bound,

Γw =

[
0.0426 0.0014
0.0014 0.1088

]
,

is determined following the procedure detailed in Fiacchini
and Alamo (2021). We furthermore consider the following
chance constraints

Pr{|x1| ≤ 4, |x2| ≤ 1} ≥ 1− px, (37a)

Pr{|u| ≤ 1.1} ≥ 1− pu (37b)

with px = 0.35 and pu = 0.3. The prediction horizon N
is set to N = 13. The reachable sets for the nominal state
z and the input v are determined by tightening X and U,
respectively, using the sequence of probabilistic reachable
sets E (Γk, r), where Γk is given by the recursion (7) and r
is taken equal to rx = Invχ2

2(1 − px) and ru = Invχ2
2(1 −

pu), respectively. As a consequence, we end up with the
deterministic constraints

Zk =
{
y ∈ R2 : |y1| ≤ 4−

√
[1 0] rxΓk [1 0]

>
,

|y2| ≤ 0.75−
√

[0 1] rxΓk [0 1]
>
}

Vk =
{
v ∈ R : |v| ≤ 1−

√
KruΓkK>

}
.

The positively invariant set Zf is obtained by applying
the standard iterative procedure to compute the maximal
positive invariant set for the deterministic system zk+1 =
(A+BK)zk within the set Zx ∩ Zu.

Fig. 1 shows the stochastic tube, the nominal trajectory,
the terminal set, the state trajectory and the set where
the state converges in expectation. The nominal state
converges to the origin while the state realisations converge
inside the set E{‖e‖2} ≤ tr{Γ∞} ≈ 0.914 in expectation.
We can clearly see that the tube is stretching along the



trajectory, as expected, to maintain the propagating error
inside the reachable tube with the specified probability.

8. CONCLUSION

In this paper, we presented an indirect feedback tube
based stochastic model predictive control for LTI systems
affected by a large class of additive disturbances that can
be correlated in time and that don’t need to be stationary.
This MPC algorithm only relies on the assumption of
the existence of bounds on the mean and the covariance
matrices of the disturbance distribution and exploits the
notion of correlation bound to determine the probabilistic
reachable and invariant sets that shape the stochastic
tube.
Using tightening, chance constraints are reformulated into
hard constraints and a suitable quadratic function on the
nominal state, nominal control and the error correlation
bound propagation is determined so that it leads to a
tractable optimization problem. In addition, a nominal
state value function that is an upper bound of the expected
value of the quadratic cost on the true state and the true
control input is provided. Chance constraints satisfaction,
cost decrease, average cost bound and state convergence
are guaranteed. A numerical simulation example to illus-
trate the chance constraints satisfaction and convergence
results is provided.

REFERENCES

Bernardini, D. and Bemporad, A. (2011). Stabilizing
model predictive control of stochastic constrained linear
systems. IEEE Transactions on Automatic Control,
57(6), 1468–1480.

Camacho, E.F. and Alba, C.B. (2013). Model predictive
control. Springer science & business media.

Cannon, M., Kouvaritakis, B., and Ng, D. (2009a). Prob-
abilistic tubes in linear stochastic model predictive con-
trol. Systems & Control Letters, 58(10-11), 747–753.

Cannon, M., Kouvaritakis, B., Raković, S.V., and Cheng,
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