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Abstract: This paper deals with the covariance control for discrete-time linear switched systems affected
by additive stochastic noises. Given any periodic stabilizing switching law for the deterministic system
associated to the stochastic one, a finite set of matrices is characterized that is an attractor for the system
state covariance matrix sequence. Moreover, upper and lower bounds on the covariance matrices of the
state are determined by the trajectories of one-dimensional linear systems.
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1. INTRODUCTION

Switched systems are a subclass of hybrid systems character-
ized by dynamics that evolves within a finite class of possi-
ble behaviors, Liberzon and Morse (1999); Liberzon (2003);
Sun and Ge (2011). The possibility of representing discontinu-
ity in the dynamics makes of switched systems the adequate
framework to model complex behaviors inherently present in
networked and interconnected systems, and to model the inter-
action between physical plants and digital devices, for instance
for cyberphysical systems. Examples of possible applications
of hybrid and switched models are power and communication
networks, embedded systems, air and traffic control, for in-
stance, Lin and Antsaklis (2009). As for classical continuous
or discrete time systems, the problems of stability analysis and
control design are central in the study of switched systems.
Even for the case of switched linear systems, the problems
of identifying constructive conditions for stability and stabiliz-
ability revealed nontrivial challenges. For instance, conditions
for stability of switched linear systems are given in Margaliot
(2006), based on a variational approach, and in Daafouz et al.
(2002), resorting to mode-dependent Lyapunov functions.

The issue of stabilizability, namely the existence of appropriate
switching sequences ensuring the asymptotic convergence, is
an even more involved problem, as it is necessary to resort
to nonconvex or time-varying Lyapunov functions to obtain
non-conservative conditions, as proved in Blanchini and Sa-
vorgnan (2008). Among the sufficient conditions for stabiliz-
ability of discrete-time switched linear systems there are those
based on Lyapunov-Metzler conditions Geromel and Colaneri
(2006b,a), on convex analysis Sun and Ge (2011); Fiacchini
et al. (2016, 2018), and on quadratic time-varying Lyapunov
functions Deaecto and Geromel (2018). Also necessary and
sufficient conditions for stabilizability have been given in Sun
and Ge (2011) and Fiacchini and Jungers (2014), based on non-
convex Lyapunov functions that provide a formal characteri-
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zation of the complexity of the the problem of stabilizability
itself. The stabilizability problem has been proved, indeed, to
be undecidable in Jungers and Mason (2017).

Conditions for the existence of finite sequences leading to
Schur matrices, referred to as uniform, consistent or periodic
stabilizability, have been given in the literature Stanford and
Urbano (1994); Sun and Ge (2011); Sun (2004); Fiacchini
et al. (2016); Heemels et al. (2016). The relations between this
weaker stabilizability condition and others from the literature
are given in Fiacchini et al. (2016).

Related to the necessity of representing the natural complex-
ity of the real world dynamics, the presence of stochastic
uncertainties on the model parameters and disturbances af-
fecting the systems has recently attracted the interest of the
automatic control community. Studies concerning the analy-
sis of stochastic switched systems appeared in the last years.
For instance, Chatterjee and Liberzon (2006) provides a gen-
eral framework for stability analysis of both deterministic and
stochastic continuous-time switched systems under fixed index
monotonicity and average dwell-time switching assumptions.
The paper Colaneri (2009) presents constructive conditions on
the dwell time for stability of continuous-time switched lin-
ear systems whose switching is modeled by a Markov chain.
In Feng et al. (2011) sufficient conditions are given for p-th
moment and sample path stability of a class continuous-time
stochastic switched systems under average dwell-time switch-
ing laws. In Zamani et al. (2015); Lavaei et al. (2018, 2020) and
related works, methods based on finite abstractions construction
are presented to design stabilizing switching laws in form of
Markov decision process with dwell-time bound for several
classes of stochastic switched systems.

This paper concerns the problem of covariance control for
discrete-time linear switched systems. Covariance control has
been addressed in the literature since the 80s, see Collins and
Skelton (1987); Hsieh and Skelton (1990), and regards the de-
sign of controllers such that the covariance matrix of the state of
linear systems affected by additive stochastic noises are steered
to the desired matricial value. Alternatively, the control aim is



to generate a sequence of covariance matrices that is optimal
with respect to a cost expressed in terms of expectation. Co-
variance control for stochastic linear systems has been studied
in presence of input constraints Bakolas (2018), under chance
constraints Okamoto et al. (2018), in continuous-time Sreeram
and Agathoklis (1992) and for uncertain systems Kotsalis et al.
(2021). Few works, though, concern the covariance control for
switched systems, a notable exception being Klett et al. (2020),
that considers systems driven by arbitrary switching sequences,
leading then to robust covariance bounds.

This work addresses the problem of covariance control for
discrete-time switched systems under a stabilizing switching
law, as presented in Section II. The practical interest of the
problem relies on the ability of modelling, for instance, the
covariance control for multi-sensor systems, whose state es-
timation evolution depends on the discrete selection of the
sensors, see for instance Kalandros (2002). The aim of this
paper is to determine upper and lower bounds of the covariance
matrices and the limiting covariance matrix under a stabilizing
switching sequence. Given a periodic stabilizing switching law,
a finite set of matrices is computed to which the time-varying
covariance matrix converges, see Section III.A. Moreover, two
methods for upper and lower bounding the covariance matrix
evolution are presented, one tighter, in Section III.B, and the
other monotonically convergent, in Section III.C, all given by
one-dimensional linear systems. The method is then illustrated
by a numerical example in Section IV.

Notation: Given n ∈ N, define Nn = { j ∈ N : 0 ≤ j ≤ n} and
N+

n = { j ∈ N : 1 ≤ j ≤ n}. Given P ∈ Rn×n such that P =

P> � 0 and c ∈ Rn, denote the ellipsoid E (P,c) = {x ∈ Rn :
(x− c)>P−1(x− c) ≤ 1}. Given y ∈ Y and z ∈ Z, the vector
[y>, z>]> ∈ Y ×Z is also denoted (y, z). Given a finite set I
and N,M ∈ N with 0 < N ≤ M, the set of all the possible se-
quences of length N of elements of I is I N = ∏

N
j=1 I , whose

cardinality is denoted N̄; define also I [N,M] =
⋃M

k=N I k. Given
the sequence s ∈I N denote |s| = N, denote si its i-th element
and As = ∏

N
i=1 Asi = AsN · · ·As1 . Given s = (s1, . . . ,sN) ∈ I N

with N ∈ N, define s[i, j] = (si, . . . ,s j) for all i, j ∈ N such that
1 ≤ i ≤ j ≤ N. If i > j define As[i, j] = I, for notational con-

venience. Moreover define s( j) = (s1+ j,s2+ j, . . . ,sN ,s1, . . . ,s j,)
for all j ∈ NN , that is the concatenation of the last N− j ele-
ments of s with the first j ones, i.e. s( j) = (s[1+ j,N],s[1, j]).

2. STOCHASTIC SWITCHED SYSTEMS

Consider the switched system
x(k+1) = Aσ(k)x(k)+wσ(k)(k), (1)

where x(k) ∈Rn is the state at time k ∈N, I =N+
m is the set of

m modes, wi(k) with i∈I is the disturbance at time k∈N if the
i-th mode is active and σ : N→ I is the switching sequence,
and the modes dynamics are given by {Ai}i∈I with Ai ∈ Rn×n

for all i ∈I .
Assumption 1. The disturbances wi(k), for i ∈I , are i.i.d. ran-
dom processes with zero mean and known covariance matrix:

E{wi(k)}= 0, E{wi(k)wi(k)>}= Σi, ∀i ∈I ,∀k ∈ N
with Σi � 0. Moreover, the random variable x0, representing the
initial state, is such that E{x0wi(k)>} = 0 for every k ∈ N and
every i ∈I , and

E{w j(k)wi(l)>}= 0, if k 6= l, ∀i, j ∈ N.

Assumption 1 implies that w j(k) are uncorrelated with the
previous and future realizations and with the initial condition.

A periodic switching law, with period length M ∈ N and cycle
p ∈I M , is given by σ(k) = pt(k) and t(k) = k−M bk/Mc+1,
which means that the sequence of modes given by p repeats
cyclically in time. Given a finite sequence of modes p ∈I M , p̂
is the switching sequence with cycle p, i.e. p̂ = (p, p, p, . . .).

Given the initial state x0 as a random variable with mean µ0 and
covariance Σx0 , and a switching sequence p∈I N , where N ∈N
or N =+∞, the state at time M, with M ≤ N, when applying p,
is a random variable denoted xp

M(x0), or xp
M for short, whose

mean and covariance are

µ
p
M = E{xp

M}=

{
Apx0 +

M

∑
j=1

Ap[ j+1,M]
wp j( j−1)

}
= Apµ0

(2)
and, from Assumption 1,

Σxp
M
= E{(xp

M−µ
p
M)(xp

M−µ
p
M)>}

= ApΣx0A
>
p +

M

∑
j=1

Ap[ j+1,M]
Σp jA

>
p[ j+1,M]

.
(3)

In this work some results on the stabilizability of deterministic
linear switched systems

x(k+1) = Aσ(k)x(k), (4)
will be used, in particular taken from Fiacchini and Jungers
(2014); Fiacchini et al. (2016).
Definition 1. The system (4) is globally exponentially stabiliz-
able if there are c ≥ 0 and λ ∈ [0,1) such that for all x0 ∈ Rn

there exists a switching law σ : N→I satisfying
‖xσ

M(x0)‖ ≤ cλ
M‖x0‖, ∀M ∈ N. (5)

The system (4) is periodic stabilizable if there exist c ≥ 0 and
λ ∈ [0,1) and a periodic switching law σ : N→ I , such that
(5) holds for all x ∈ Rn.

Periodic stabilizability implies the existence of an open-loop
switching law that stabilizes the system. Indeed, periodic sta-
bilizability is equivalent to the existence of an arbitrarily long
sequence p ∈I M such that ρ(Ap)< 1. It has been proved that
there exist systems (4) that are stabilizable but not periodically
stabilizable, see Sun and Ge (2011); Fiacchini et al. (2016).
Theorem 1. (Fiacchini et al. (2016)). The switched system (4)
is periodic stabilizable if and only if there exist N ∈ N, λ ∈
[0,1) and {ηs}s∈I [1:N] such that ηs ≥ 0, for all s ∈ I [1:N], and
∑s∈I [1:N] ηs = 1 and

∑
s∈I [1:N]

ηsA>s As � λ I, (6)

hold.

The period length M of the shorter periodic stabilizing sequence
might be arbitrarily bigger than N in (6). Condition (6) insures
the existence of an open-loop periodic stabilizing sequence
and also determines closed-loop stabilizing switching laws, see
Fiacchini and Jungers (2014); Fiacchini et al. (2016).

3. COVARIANCE EVOLUTION

To address the problem of characterizing the evolution of the
covariance matrices limits and bounds related to a stabilizing
switching law, we assume that the deterministic system (4) is
periodically stabilizable.



Assumption 2. Given the system (1), suppose that N ∈ N, λ ∈
[0,1) and {ηs}s∈I [1:N] exist such that ηs ≥ 0 for all s ∈ I [1:N]

and ∑s∈I [1:N] ηs = 1 and (6) hold.

First, the problem of characterizing the finite sequence of
covariance matrices to which the state covariance converges is
considered.

3.1 Covariance sequence limits

Given a finite sequence q ∈I M , define

Σw,q =
M

∑
j=1

Aq[ j+1,M]
Σq jA

>
q[ j+1,M]

(7)

that is the covariance matrix of the effect of the disturbance if
the sequence q is applied to the system.

Proposition 1. Suppose that Assumption 2 holds and p ∈ I M

is such that ρ(Ap)< 1. Then the limit Σx,p := lim
k→+∞

Σx p̂
kM

exists

and is given by

Σx,p = ApΣx,pA>p +Σw,p, (8)

with Σw,p as in (7).

Proof: The result follows directly from

x p̂
(k+1)M = Apx p̂

kM +
M

∑
j=1

Ap[ j+1,M]
wp j(kM+ j−1),

that implies

Σx p̂
(k+1)M

= ApΣx p̂
kM
A>p +Σw,p, (9)

with ρ(Ap) < 1, see the analogous property in Kofman et al.
(2012); Fiacchini and Alamo (2021).

A direct consequence of Proposition 1 can be stated.

Corollary 1. Suppose that Assumption 2 holds and p ∈I M is
such that ρ(Ap)< 1. Then Σx,p = Σx,p(M) and condition

Σx,p( j) = Ap( j)Σx,p( j)A>p( j) +Σw,p( j) , (10)

is satisfied for all j ∈ NM−1.

Proof: From the fact that AB and BA have the same
characteristic polynomial for all A,B ∈ Rn×n, it follows that
ρ(Ap) = ρ(Ap[1, j]Ap[ j+1,M]

) = ρ(Ap[ j+1,M]
Ap[1, j]) = ρ(Ap( j)) for

all j ∈ NM−1. Then Proposition 1 applies for every p( j) with
j ∈ NM−1. Finally Σx,p = Σx,p(M) since p(M) = p.

Proposition 1 and Corollary 1 substantially claim that, applying
a periodic stabilizing sequence p ∈ I M , the covariance of the
state converges to a cycle of M matrices Σx,p( j) with j ∈ NM−1

obtained by solving (8) for every p( j). This property implies
that, if the state has covariance Σx,p( j) and the mode p j+1 is
applied, then the successor has covariance Σx,p( j+1) , that is

Σx,p( j+1) = Ap j+1Σx,p( j)A>p j+1
+Σp j+1 (11)

for all p( j) with j ∈ NM−1, where p(M) is equal to p(0), from
periodicity.
Remark 1. Note that Σw,p( j) � 0 and Σx,p( j) � 0 for all j∈NM−1,
from Assumption 1.

3.2 Covariance sequence bounds

The objective of this section is to provide upper and lower
bounds on the covariance matrices along the system trajectory,
with no need of computing the covariance matrices themselves.

Given a periodic stabilizing switching law, with cycle p of
length M ∈ N, a set of M sequences of lower and upper
bounds can be determined, such that the whole sequence of
covariance matrices can be bounded. Moreover, the obtained
sequences converge to the limit matrices Σx,p( j) with j ∈ NM−1

satisfying (8), see also Corollary 1. The result is formalized in
the following theorem.
Theorem 2. Suppose that Assumptions 1 and 2 hold and p ∈
I M is such that ρ(Ap) ∈ (0, 1). Given non-negative α j and β j,
with j ∈ NM−1, satisfying

α jΣx,p( j) � Σxp
j
� β jΣx,p( j) (12)

then Σx p̂
kM+ j

, αkM+ j and βkM+ j are sequences such that

αkM+ jΣx,p( j) � Σx p̂
kM+ j
� βkM+ jΣx,p( j) (13)

for every k ∈ N and every j ∈ NM−1, with

α(k+1)M+ j =

{
(1−δ j)αkM +δ j, if α j ≤ 1,
(1− γ j)αkM + γ j, if α j > 1,

β(k+1)M+ j =

{
(1− γ j)βkM + γ j, if β j ≤ 1,
(1−δ j)βkM +δ j, if β j > 1,

(14)

where δ j and γ j, for all j ∈NM−1, are such that 0 < δ j ≤ γ j < 1
and

δ jΣx,p( j) � Σw,p( j) � γ jΣx,p( j) (15)
holds.

Proof: First note that δ j and γ j exist from Assumption
1, for all j ∈ NM−1, since Σw,p( j) � 0, Σx,p( j) � 0 and ρ(Ap) ∈
(0, 1). The proof proceeds by induction. Given a j ∈ NM−1,
consider first α j ≤ 1. Suppose that condition (13), satisfied for
k = 0 from (12), holds also for k ∈ N with αkM+ j ≤ 1. From
(8)-(10) and (13), it follows
Σx p̂

(k+1)M+ j
= Ap( j)Σx p̂

kM+ j
A>p( j) +Σw,p( j) � αkM+ jAp( j)Σx,p( j)A>p( j)

+Σw,p( j) = αkM+ jΣx,p( j) −αkM+ jΣw,p( j) +Σw,p( j) � αkM+ jΣx,p( j)

+(1−αkM+ j)δ jΣx,p( j) = (αkM+ j−δ jαkM+ j +δ j)Σx,p( j) ,

(16)
and then the lower bound in (13) is satified at k+1 with

α(k+1)M+ j = (1−δ j)αkM+ j +δ j, (17)
which is the asymptotically stable linear system (14) for α j ≤ 1.
The trajectory of (17) with α j < 1 is monotonically increasing
and converges to 1, then αkM+ j < 1 for all k ∈N. If α j = 1, then
the lower bound in (13) holds with αkM+ j = 1 for all k ∈ N.

Consider now α j > 1 and suppose that condition (13) holds at
time k with αkM+ j > 1. Since now 1−αkM+ j < 0, then

Σx p̂
(k+1)M+ j

= Ap( j)Σx p̂
kM+ j

A>p( j) +Σw,p( j) � αkM+ jAp( j)Σx,p( j)A>p( j)

+Σw,p( j) = αkM+ jΣx,p( j) +(1−αkM+ j)Σw,p( j) � αkM+ jΣx,p( j)

+(1−αkM+ j)γ jΣx,p( j) = (αkM+ j− γ jαkM+ j + γ j)Σx,p( j) ,

(18)
and then the lower bound in (13) holds with

α(k+1)M+ j = (1− γ j)αkM + γ j. (19)
From α j > 1 and γ j ∈ (0,1), then αkM+ j is the monotonically
decreasing sequence in k given in (14), that converges to one
and such that αkM+ j > 1 for all k ∈ N.



Consider β j ≤ 1, and note that the upper bound in (13) holds for
k = 0, from (12). Suppose that (13) is satisfied with βkM+ j ≤ 1
for k ∈ N, for the induction. Since 1−βkM+ j ≥ 0, then:

Σx p̂
(k+1)M+ j

= Ap( j)Σx p̂
kM+ j

A>p( j) +Σw,p( j) � βkM+ jAp( j)Σx,p( j)A>p( j)

+Σw,p( j) = βkM+ jΣx,p( j) −βkM+ jΣw,p( j) +Σw,p( j) � βkM+ jΣx,p( j)

+(1−βkM+ j)γ jΣx,p( j) = (βkM+1− γ jβkM+1 + γ j)Σx,p( j) ,

and then (13) holds also for k + 1 with β(k+1)M+ j = (1−
γ j)βkM+ j + γ j ≤ 1, thus given by (14). Analogously, if β j > 1
then the upper bound in (13) implies Σx p̂

(k+1)M+ j
� (βkM+ j −

δ jβkM+ j + δ j)Σx,p, and therefore the satisfaction of (13) with
β(k+1)M+ j > 1 given by (14).

Thus, by computing the sets Σx,p( j) and Σw,p( j) and the values
δ j and γ j satisfying (15), for every j ∈ NM−1, a sequence of
lower and upper bounds αi and βi on the covariance matrices
are directly given, for every i ∈ N, with i = kM + j, by the
trajectories of the one-dimensional systems (14).
Remark 2. The sequences αi and βi for i ∈ N defined in The-
orem 2 are such that the subsequences αkM+ j and βkM+ j with
k ∈N are exponentially decreasing or increasing, depending on
their initial value, sequences converging to 1. No monotonicity
can be ensured between two successive instants i and i+1.

3.3 Monotone bounds

It is possible, though, to give strictly monotonic bounding
sequences αi and βi, provided Al with l ∈I are non-singular.
Theorem 3. Suppose that Assumptions 1 and 2 hold, p ∈ I M

is such that ρ(Ap) < 1 and Al are non-singular for all l ∈ I .
Given α0 6= 1 and β0 6= 1 such that

α0Σx,p � Σx0 � β0Σx,p, (20)
and c j and d j such that 0 < c j ≤ d j < 1 and

c jΣx,p( j+1) � Σp j+1 � d jΣx,p( j+1) (21)

for all j ∈ NM−1, the sequences αi and βi given by

αi+1 =

{
αi(1−di)+di, if α0 > 1
αi(1− ci)+ ci, if α0 < 1 (22)

and

βi+1 =

{
βi(1− ci)+ ci, if β0 > 1
βi(1−di)+di, if β0 < 1 (23)

with ci = c j and di = d j for i = kM + j for every k ∈ N and
j ∈ NM−1, are strictly monotone sequences converging to one
and satisfying (13).

Proof: Consider the sequence βi with β0 > 1. It is proved
first that (20) implies that β j is such that β j > β j+1 > 1, for
all j ∈ NM−1, and satisfies (13). Note that c j and d j exist from
non-singularity of Al with l ∈I , (11) and Assumption 1. From
(11) and (20), it follows

Σxp
1
= Ap1Σx0 A>p1

+Σp1 � β0 Ap1Σx,p A>p1
+Σp1

= β0(Σx,p(1) −Σp1)+Σp1 = β0Σx,p(1) +(1−β0)Σp1

� β0Σx,p(1) +(1−β0)c0Σx,p(1) = (β0(1− c0)+ c0)Σx,p(1)

and then β1 = (β0(1− c0)+ c0) is such that β0 > β1 > 1 and
satisfies (12) and therefore also (13). Applying recursively the
reasoning given above for all i∈N proves that the upper bounds
(13) hold with βi as in (23), which are such that βi > βi+1 > 1.
The case of β0 < 1 is similarly proved, by using the upper bound
of (21), that leads to

Σxp
1
� (β0(1−d0)+d0)Σx,p(1)

and then (13) and β0 < β1 < 1 are satisfied with β1 = (β0(1−
d0) + d0). By recursion, βi given by (23) are such that βi <
βi+1 < 1 and satisfy (13) for all i ∈ N.

Analogously, it can be proved that, denoting i = kM+ j for all
j ∈ NM−1 and k ∈ N, then Σxp

i
� αiΣx,p( j) holds with αi given

by (22) being a strictly monotone sequence satisfying (13) for
all i ∈ N.

Thus, given α0 and β0 satisfying (20), the sequences αi and βi
for i∈N given by (22) and (23) are strictly monotone sequences
converging to 1 and such that the bounds (12) and (13) hold.
Clearly, if α0 = 1 then αi = 1 for all i ∈ N and if β0 = 1
then βi = 1 for all i ∈ N, leading to constant bounds on the
covariance matrices. Moreover, if Al is singular, for a l ∈ I ,
then the existence of d j < 1 might not be ensured, but only
d j = 1, potentially implying finite time convergence to 1, rather
than convergence with strict monotonicity.
Remark 3. Theorem 2 and 3 suggest two possible methods to
obtain the sequences αi and βi, with i ∈ N determining the
upper and lower bounds on the covariance matrices of xk. By
maximizing α j and δ j and minimizing β j and γ j with j ∈NM−1
satisfying (12) and (15) and employing (14), tight but non-
monotone bounds are obtained. Alternatively, by maximizing
c j and minimizing d j with j ∈NM−1 and using (22) and (23) to
compute αi and βi for i ∈ N leads to monotone, but less tight,
bounding sequences.

4. NUMERICAL EXAMPLE

Consider the system, inspired by the counterexample for stabi-
lizability in Fiacchini et al. (2016), given by (1) with 3 modes

A1 = 0.9AR(0), A2 = 1.1AR
(

2π

3

)
, A3 = 1.1AR

(
−2π

3

)
,

where

A =

[
0.6 0
0 0.6−1

]
, R(θ) =

[
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
,

that are such that only one eigenvalue has norm smaller
than one, in fact (0.54,1.5) are the eigenvalues of A1 and
(−0.6233±0.9063 i), with norm 1.1, those of A2 and A3. Con-
dition (6) holds for this system with N = 5 and λ = 0.7941.
Indeed, the periodic switching sequences p̂ with period p =
(1, 1, 2, 2, 1) and p = (1, 1, 3, 3, 1) leads to Schur matrices
with ρ(Ap) = 0.9341.

The disturbances wi with i ∈ I have normal distribution with
null mean and covariance matrices:

Σ1 = 10−2
[

1.25 0.33
0.33 1.18

]
, Σ2 = 10−2

[
2.72 0.42
0.42 1.13

]
,

Σ3 = 10−2
[

0.73 0.37
0.37 0.88

]
.

The initial state is supposed to have normal distribution
N (x0,Σx0) whose mean and covariance are given by:

x0 = (17.44, 15.25), Σx0 = σ ·
[

1.894 0.552
0.552 1.707

]
, (24)

and two values of σ have been used to obtain the evolutions
with α0 and β0 bigger and smaller than one, see below. The
values in (24) have been obtained by random generation.



Fig. 1. Sequences of ellipsoids E (Σx p̂
i
,µ p̂

i ) in black; ellipsoidal

bounds E (αiΣx p̂
i
,µ p̂

i ) and E (βiΣx p̂
i
,µ p̂

i ) in blue; and sets of

500 random points sampled with distribution N (x p̂
i ,Σx p̂

i
)

in red, for i ∈ N14, with x0 = (17.44, 15.25) and σ = 0.1
in (24).

To illustrate the inner and outer bounds with α0 < β0 < 1, the
value of σ in (24) has been chosen to be 0.1. Figure 1 depicts
the sets E (Σx p̂

i
,µ p̂

i ), that are the ellipsoids determined by the

covariance matrices of x0 and x p̂
i , for i ∈ N14 and the bounding

ellipsoids defined by αiΣx p̂
i

and βiΣx p̂
i
, with αi and βi based

on Theorem 2. Moreover the evolutions of the sequences αi
and βi, based on Theorem 2 and 3, see also Remark 3, have
been computed and depicted in Figure 2. Notice that, while the
sequences obtained by Theorem 3 are monotonicaly increasing,
the bounds are tighter with the those given by Theorem 2.
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i
Fig. 2. Sequences: αi, in blue, and βi, in red, based in The-

orem 2; and αi, in yellow, and βi, in purple, based in
Theorem 3, for i ∈ N35, with σ = 0.1 in (24).

The case of 1 < α0 < β0 is illustrated in Figures 3 and 4.
Figure 3 shows the ellipsoids related to the covariance matrices
of x p̂

i and with the bounds αkM+ jΣx,p( j) and βkM+ jΣx,p( j) where
i = 5k+ j with j ∈N5, satisfying (13). The sequences of αi and
βi obtained using Theorem 2 and 3 are depicted in Figure 4.

Finally, the limiting ellipsoids E (Σx,p( j) ,0), then defined by the
matrices toward which the covariance matrices converge, are
shown in Figure 5.

Fig. 3. Sequences of ellipsoids E (Σx p̂
i
,µ p̂

i ) in black; ellipsoidal

bounds E (αiΣx p̂
i
,µ p̂

i ) and E (βiΣx p̂
i
,µ p̂

i ) in blue; and sets of

500 random points sampled with distribution N (x p̂
i ,Σx p̂

i
)

in red, for i ∈ N14, with x0 = (17.44, 15.25) and σ = 10
in (24).
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Fig. 4. Sequences: αi, in blue, and βi, in red, based in The-

orem 2; and αi, in yellow, and βi, in purple, based in
Theorem 3, for i ∈ N35, with σ = 10 in (24).

Fig. 5. Limiting ellipsoids E (Σx,p( j) ,0) in blue and sets of 500
random points sampled with distribution N (0,Σx,p( j)) in
red, for j ∈ N5.



5. CONCLUSIONS

The paper presented the determination of limiting finite se-
quences of the covariance matrices of a stabilized linear
switched system affected by stochastic additive noises. More-
over, sequences of upper and lower bounding matrices are given
that are generated by a set of linear one-dimensional systems.
Two different bounding methods are presented, one monoton-
ically convergent to the limit sequence and a tighter one. As
future research lines, one can consider the design of optimal
time-varying switching laws, the extension of the methods to
more general stochastic frameworks, and the application to
practical problems like the covariance control of multi-sensor
systems.

REFERENCES

Bakolas, E. (2018). Finite-horizon covariance control for
discrete-time stochastic linear systems subject to input con-
straints. Automatica, 91, 61–68.

Blanchini, F. and Savorgnan, C. (2008). Stabilizability of
switched linear systems does not imply the existence of
convex Lyapunov functions. Automatica, 44, 1166 – 1170.

Chatterjee, D. and Liberzon, D. (2006). Stability analysis of de-
terministic and stochastic switched systems via a comparison
principle and multiple lyapunov functions. SIAM Journal on
Control and Optimization, 45(1), 174–206.

Colaneri, P. (2009). Dwell time analysis of deterministic and
stochastic switched systems. European Journal of Control,
15(3-4), 228–248.

Collins, E. and Skelton, R. (1987). A theory of state covariance
assignment for discrete systems. IEEE Transactions on
Automatic Control, 32(1), 35–41. doi:10.1109/TAC.1987.
1104443.

Daafouz, J., Riedinger, P., and Iung, C. (2002). Stability
analysis and control synthesis for switched systems : A
switched Lyapunov function approach. IEEE Transactions
on Automatic Control, 47, 1883–1887.

Deaecto, G.S. and Geromel, J.C. (2018). Stability and perfor-
mance of discrete-time switched linear systems. Systems &
Control Letters, 118, 1–7.

Feng, W., Tian, J., and Zhao, P. (2011). Stability analysis of
switched stochastic systems. Automatica, 47(1), 148–157.

Fiacchini, M., Girard, A., and Jungers, M. (2016). On
the stabilizability of discrete-time switched linear systems:
novel conditions and comparisons. IEEE Transactions on
Automatic Control, 61(5), 1181–1193.

Fiacchini, M. and Jungers, M. (2014). Necessary and sufficient
condition for stabilizability of discrete-time linear switched
systems: A set-theory approach. Automatica, 50(1), 75 – 83.

Fiacchini, M. and Alamo, T. (2021). Probabilistic reachable and
invariant sets for linear systems with correlated disturbance.
Automatica, 132, 109808.

Fiacchini, M., Jungers, M., and Girard, A. (2018). Stabilization
and control lyapunov functions for language constrained
discrete-time switched linear systems. Automatica, 93, 64–
74.

Geromel, J.C. and Colaneri, P. (2006a). Stability and stabiliza-
tion of continuous-time switched linear systems. SIAM J.
Control Optim., 45(5), 1915–1930.

Geromel, J.C. and Colaneri, P. (2006b). Stability and stabiliza-
tion of discrete-time switched systems. International Journal
of Control, 79(7), 719–728.

Heemels, W.P.M.H., Kundu, A., and Daafouz, J. (2016). On
Lyapunov-Metzler inequalities and S-procedure characteri-
zations for the stabilization of switched linear systems. IEEE
Transactions on Automatic Control, 62(9), 4593–4597.

Hsieh, C. and Skelton, R.E. (1990). All covariance con-
trollers for linear discrete-time systems. IEEE transactions
on automatic control, 35(8), 908–915.

Jungers, R.M. and Mason, P. (2017). On feedback stabiliza-
tion of linear switched systems via switching signal control.
SIAM Journal on Control and Optimization, 55(2), 1179–
1198.

Kalandros, M. (2002). Covariance control for multisensor
systems. IEEE Transactions on Aerospace and Electronic
Systems, 38(4), 1138–1157.

Klett, C., Abate, M., Yoon, Y., Coogan, S., and Feron, E.
(2020). Bounding the state covariance matrix for switched
linear systems with noise. In 2020 American Control
Conference (ACC), 2876–2881. IEEE.
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