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This paper deals with the covariance control for discrete-time linear switched systems affected by additive stochastic noises. Given any periodic stabilizing switching law for the deterministic system associated to the stochastic one, a finite set of matrices is characterized that is an attractor for the system state covariance matrix sequence. Moreover, upper and lower bounds on the covariance matrices of the state are determined by the trajectories of one-dimensional linear systems.

INTRODUCTION

Switched systems are a subclass of hybrid systems characterized by dynamics that evolves within a finite class of possible behaviors, [START_REF] Liberzon | Basic problems in stability and design of switched systems[END_REF]; [START_REF] Liberzon | Switching in Systems and Control[END_REF]; [START_REF] Sun | Stability Theory of Switched Dynamical Systems[END_REF]. The possibility of representing discontinuity in the dynamics makes of switched systems the adequate framework to model complex behaviors inherently present in networked and interconnected systems, and to model the interaction between physical plants and digital devices, for instance for cyberphysical systems. Examples of possible applications of hybrid and switched models are power and communication networks, embedded systems, air and traffic control, for instance, [START_REF] Lin | Stability and stabilizability of switched linear systems: a survey of recent results[END_REF]. As for classical continuous or discrete time systems, the problems of stability analysis and control design are central in the study of switched systems. Even for the case of switched linear systems, the problems of identifying constructive conditions for stability and stabilizability revealed nontrivial challenges. For instance, conditions for stability of switched linear systems are given in [START_REF] Margaliot | Stability analysis of switched systems using variational principles: An introduction[END_REF], based on a variational approach, and in [START_REF] Daafouz | Stability analysis and control synthesis for switched systems : A switched Lyapunov function approach[END_REF], resorting to mode-dependent Lyapunov functions.

The issue of stabilizability, namely the existence of appropriate switching sequences ensuring the asymptotic convergence, is an even more involved problem, as it is necessary to resort to nonconvex or time-varying Lyapunov functions to obtain non-conservative conditions, as proved in [START_REF] Blanchini | Stabilizability of switched linear systems does not imply the existence of convex Lyapunov functions[END_REF]. Among the sufficient conditions for stabilizability of discrete-time switched linear systems there are those based on Lyapunov-Metzler conditions Geromel and Colaneri (2006b,a), on convex analysis [START_REF] Sun | Stability Theory of Switched Dynamical Systems[END_REF]; [START_REF] Fiacchini | On the stabilizability of discrete-time switched linear systems: novel conditions and comparisons[END_REF][START_REF] Fiacchini | Stabilization and control lyapunov functions for language constrained discrete-time switched linear systems[END_REF], and on quadratic time-varying Lyapunov functions [START_REF] Deaecto | Stability and performance of discrete-time switched linear systems[END_REF]. Also necessary and sufficient conditions for stabilizability have been given in [START_REF] Sun | Stability Theory of Switched Dynamical Systems[END_REF] and [START_REF] Fiacchini | Necessary and sufficient condition for stabilizability of discrete-time linear switched systems: A set-theory approach[END_REF], based on nonconvex Lyapunov functions that provide a formal characteri- zation of the complexity of the the problem of stabilizability itself. The stabilizability problem has been proved, indeed, to be undecidable in [START_REF] Jungers | On feedback stabilization of linear switched systems via switching signal control[END_REF].

Conditions for the existence of finite sequences leading to Schur matrices, referred to as uniform, consistent or periodic stabilizability, have been given in the literature [START_REF] Stanford | Some convergence properties of matrix sets[END_REF]; [START_REF] Sun | Stability Theory of Switched Dynamical Systems[END_REF]; [START_REF] Sun | Stabilizability and insensitivity of switched linear systems[END_REF]; [START_REF] Fiacchini | On the stabilizability of discrete-time switched linear systems: novel conditions and comparisons[END_REF]; [START_REF] Heemels | On Lyapunov-Metzler inequalities and S-procedure characterizations for the stabilization of switched linear systems[END_REF]. The relations between this weaker stabilizability condition and others from the literature are given in [START_REF] Fiacchini | On the stabilizability of discrete-time switched linear systems: novel conditions and comparisons[END_REF].

Related to the necessity of representing the natural complexity of the real world dynamics, the presence of stochastic uncertainties on the model parameters and disturbances affecting the systems has recently attracted the interest of the automatic control community. Studies concerning the analysis of stochastic switched systems appeared in the last years. For instance, [START_REF] Chatterjee | Stability analysis of deterministic and stochastic switched systems via a comparison principle and multiple lyapunov functions[END_REF] provides a general framework for stability analysis of both deterministic and stochastic continuous-time switched systems under fixed index monotonicity and average dwell-time switching assumptions. The paper [START_REF] Colaneri | Dwell time analysis of deterministic and stochastic switched systems[END_REF] presents constructive conditions on the dwell time for stability of continuous-time switched linear systems whose switching is modeled by a Markov chain. In [START_REF] Feng | Stability analysis of switched stochastic systems[END_REF] sufficient conditions are given for p-th moment and sample path stability of a class continuous-time stochastic switched systems under average dwell-time switching laws. In [START_REF] Zamani | Symbolic models for stochastic switched systems: A discretization and a discretization-free approach[END_REF]; [START_REF] Lavaei | From dissipativity theory to compositional construction of finite markov decision processes[END_REF][START_REF] Lavaei | Compositional abstraction-based synthesis for networks of stochastic switched systems[END_REF] and related works, methods based on finite abstractions construction are presented to design stabilizing switching laws in form of Markov decision process with dwell-time bound for several classes of stochastic switched systems. This paper concerns the problem of covariance control for discrete-time linear switched systems. Covariance control has been addressed in the literature since the 80s, see [START_REF] Collins | A theory of state covariance assignment for discrete systems[END_REF]; [START_REF] Hsieh | All covariance controllers for linear discrete-time systems[END_REF], and regards the design of controllers such that the covariance matrix of the state of linear systems affected by additive stochastic noises are steered to the desired matricial value. Alternatively, the control aim is to generate a sequence of covariance matrices that is optimal with respect to a cost expressed in terms of expectation. Covariance control for stochastic linear systems has been studied in presence of input constraints [START_REF] Bakolas | Finite-horizon covariance control for discrete-time stochastic linear systems subject to input constraints[END_REF], under chance constraints [START_REF] Okamoto | Optimal covariance control for stochastic systems under chance constraints[END_REF], in continuous-time [START_REF] Sreeram | On covariance control theory for linear continuous system[END_REF] and for uncertain systems [START_REF] Kotsalis | Convex optimization for finite-horizon robust covariance control of linear stochastic systems[END_REF]. Few works, though, concern the covariance control for switched systems, a notable exception being [START_REF] Klett | Bounding the state covariance matrix for switched linear systems with noise[END_REF], that considers systems driven by arbitrary switching sequences, leading then to robust covariance bounds. This work addresses the problem of covariance control for discrete-time switched systems under a stabilizing switching law, as presented in Section II. The practical interest of the problem relies on the ability of modelling, for instance, the covariance control for multi-sensor systems, whose state estimation evolution depends on the discrete selection of the sensors, see for instance [START_REF] Kalandros | Covariance control for multisensor systems[END_REF]. The aim of this paper is to determine upper and lower bounds of the covariance matrices and the limiting covariance matrix under a stabilizing switching sequence. Given a periodic stabilizing switching law, a finite set of matrices is computed to which the time-varying covariance matrix converges, see Section III.A. Moreover, two methods for upper and lower bounding the covariance matrix evolution are presented, one tighter, in Section III.B, and the other monotonically convergent, in Section III.C, all given by one-dimensional linear systems. The method is then illustrated by a numerical example in Section IV.

Notation: Given n ∈ N, define N n = { j ∈ N : 0 ≤ j ≤ n} and N + n = { j ∈ N : 1 ≤ j ≤ n}. Given P ∈ R n×n such that P = P 0 and c ∈ R n , denote the ellipsoid E (P, c) = {x ∈ R n : (x -c) P -1 (x -c) ≤ 1}. Given y ∈ Y and z ∈ Z, the vector [y , z ] ∈ Y × Z is also denoted (y, z).
Given a finite set I and N, M ∈ N with 0 < N ≤ M, the set of all the possible sequences of length N of elements of I is I N = ∏ N j=1 I , whose cardinality is denoted N; define also

I [N,M] = M k=N I k . Given the sequence s ∈ I N denote |s| = N, denote s i its i-th element and A s = ∏ N i=1 A s i = A s N • • • A s 1 . Given s = (s 1 , . . . , s N ) ∈ I N with N ∈ N, define s [i, j] = (s i , . . . , s j ) for all i, j ∈ N such that 1 ≤ i ≤ j ≤ N. If i > j define A s [i, j] = I, for notational con-
venience. Moreover define s ( j) = (s 1+ j , s 2+ j , . . . , s N , s 1 , . . . , s j , ) for all j ∈ N N , that is the concatenation of the last Nj elements of s with the first j ones, i.e. s ( j) = (s [1+ j,N] , s [1, j] ).

STOCHASTIC SWITCHED SYSTEMS Consider the switched system

x(k

+ 1) = A σ (k) x(k) + w σ (k) (k), (1) 
where

x(k) ∈ R n is the state at time k ∈ N, I = N + m is the set of m modes, w i (k) with i ∈ I is the disturbance at time k ∈ N if the i-
th mode is active and σ : N → I is the switching sequence, and the modes dynamics are given by {A i } i∈I with A i ∈ R n×n for all i ∈ I . Assumption 1. The disturbances w i (k), for i ∈ I , are i.i.d. random processes with zero mean and known covariance matrix:

E{w i (k)} = 0, E{w i (k)w i (k) } = Σ i , ∀i ∈ I , ∀k ∈ N with Σ i 0.
Moreover, the random variable x 0 , representing the initial state, is such that E{x 0 w i (k) } = 0 for every k ∈ N and every i ∈ I , and

E{w j (k)w i (l) } = 0, if k = l, ∀i, j ∈ N.
Assumption 1 implies that w j (k) are uncorrelated with the previous and future realizations and with the initial condition.

A periodic switching law, with period length M ∈ N and cycle p ∈ I M , is given by σ (k) = p t(k) and t(k) = k -M k/M + 1, which means that the sequence of modes given by p repeats cyclically in time. Given a finite sequence of modes p ∈ I M , p is the switching sequence with cycle p, i.e. p = (p, p, p, . . .).

Given the initial state x 0 as a random variable with mean µ 0 and covariance Σ x 0 , and a switching sequence p ∈ I N , where N ∈ N or N = +∞, the state at time M, with M ≤ N, when applying p, is a random variable denoted x p M (x 0 ), or x p M for short, whose mean and covariance are

µ p M = E{x p M } = A p x 0 + M ∑ j=1 A p [ j+1,M] w p j ( j -1) = A p µ 0
(2) and, from Assumption 1,

Σ x p M = E{(x p M -µ p M )(x p M -µ p M ) } = A p Σ x 0 A p + M ∑ j=1 A p [ j+1,M] Σ p j A p [ j+1,M] . (3) 
In this work some results on the stabilizability of deterministic linear switched systems

x(k + 1) = A σ (k) x(k), (4) 
will be used, in particular taken from [START_REF] Fiacchini | Necessary and sufficient condition for stabilizability of discrete-time linear switched systems: A set-theory approach[END_REF]; [START_REF] Fiacchini | On the stabilizability of discrete-time switched linear systems: novel conditions and comparisons[END_REF]. Definition 1. The system (4) is globally exponentially stabilizable if there are c ≥ 0 and λ ∈ [0, 1) such that for all x 0 ∈ R n there exists a switching law σ :

N → I satisfying x σ M (x 0 ) ≤ cλ M x 0 , ∀M ∈ N.
(5) The system (4) is periodic stabilizable if there exist c ≥ 0 and λ ∈ [0, 1) and a periodic switching law σ : N → I , such that (5) holds for all x ∈ R n .

Periodic stabilizability implies the existence of an open-loop switching law that stabilizes the system. Indeed, periodic stabilizability is equivalent to the existence of an arbitrarily long sequence p ∈ I M such that ρ(A p ) < 1. It has been proved that there exist systems (4) that are stabilizable but not periodically stabilizable, see [START_REF] Sun | Stability Theory of Switched Dynamical Systems[END_REF]; [START_REF] Fiacchini | On the stabilizability of discrete-time switched linear systems: novel conditions and comparisons[END_REF]. Theorem 1. [START_REF] Fiacchini | On the stabilizability of discrete-time switched linear systems: novel conditions and comparisons[END_REF]). The switched system (4) is periodic stabilizable if and only if there exist N ∈ N, λ ∈ [0, 1) and {η s } s∈I [1:N] such that η s ≥ 0, for all s ∈ I [1:N] , and

∑ s∈I [1:N] η s = 1 and ∑ s∈I [1:N] η s A s A s λ I, (6) hold. 
The period length M of the shorter periodic stabilizing sequence might be arbitrarily bigger than N in (6). Condition (6) insures the existence of an open-loop periodic stabilizing sequence and also determines closed-loop stabilizing switching laws, see [START_REF] Fiacchini | Necessary and sufficient condition for stabilizability of discrete-time linear switched systems: A set-theory approach[END_REF]; [START_REF] Fiacchini | On the stabilizability of discrete-time switched linear systems: novel conditions and comparisons[END_REF].

COVARIANCE EVOLUTION

To address the problem of characterizing the evolution of the covariance matrices limits and bounds related to a stabilizing switching law, we assume that the deterministic system (4) is periodically stabilizable.

Assumption 2. Given the system (1), suppose that N ∈ N, λ ∈ [0, 1) and {η s } s∈I [1:N] exist such that η s ≥ 0 for all s ∈ I [1:N] and ∑ s∈I [1:N] η s = 1 and (6) hold.

First, the problem of characterizing the finite sequence of covariance matrices to which the state covariance converges is considered.

Covariance sequence limits

Given a finite sequence q ∈ I M , define

Σ w,q = M ∑ j=1 A q [ j+1,M] Σ q j A q [ j+1,M] (7) 
that is the covariance matrix of the effect of the disturbance if the sequence q is applied to the system. Proposition 1. Suppose that Assumption 2 holds and p ∈ I M is such that ρ(A p ) < 1. Then the limit Σ x,p := lim k→+∞ Σ x p kM exists and is given by

Σ x,p = A p Σ x,p A p + Σ w,p , (8) 
with Σ w,p as in ( 7).

Proof: The result follows directly from

x p (k+1)M = A p x p kM + M ∑ j=1 A p [ j+1,M] w p j (kM + j -1), that implies Σ x p (k+1)M = A p Σ x p kM A p + Σ w,p , (9) 
with ρ(A p ) < 1, see the analogous property in [START_REF] Kofman | Probabilistic set invariance and ultimate boundedness[END_REF]; [START_REF] Fiacchini | Probabilistic reachable and invariant sets for linear systems with correlated disturbance[END_REF].

A direct consequence of Proposition 1 can be stated.

Corollary 1. Suppose that Assumption 2 holds and p ∈ I M is such that ρ(A p ) < 1. Then Σ x,p = Σ x,p (M) and condition

Σ x,p ( j) = A p ( j) Σ x,p ( j) A p ( j) + Σ w,p ( j) , (10) 
is satisfied for all j ∈ N M-1 .

Proof: From the fact that AB and BA have the same characteristic polynomial for all A, B ∈ R n×n , it follows that

ρ(A p ) = ρ(A p [1, j] A p [ j+1,M] ) = ρ(A p [ j+1,M] A p [1, j] ) = ρ(A p ( j) ) for all j ∈ N M-1 . Then Proposition 1 applies for every p ( j) with j ∈ N M-1 . Finally Σ x,p = Σ x,p (M) since p (M) = p.
Proposition 1 and Corollary 1 substantially claim that, applying a periodic stabilizing sequence p ∈ I M , the covariance of the state converges to a cycle of M matrices Σ x,p ( j) with j ∈ N M-1 obtained by solving (8) for every p ( j) . This property implies that, if the state has covariance Σ x,p ( j) and the mode p j+1 is applied, then the successor has covariance Σ x,p ( j+1) , that is

Σ x,p ( j+1) = A p j+1 Σ x,p ( j) A p j+1 + Σ p j+1 (11) 
for all p ( j) with j ∈ N M-1 , where p (M) is equal to p (0) , from periodicity.

Remark 1. Note that Σ w,p ( j) 0 and Σ x,p ( j) 0 for all j ∈ N M-1 , from Assumption 1.

Covariance sequence bounds

The objective of this section is to provide upper and lower bounds on the covariance matrices along the system trajectory, with no need of computing the covariance matrices themselves.

Given a periodic stabilizing switching law, with cycle p of length M ∈ N, a set of M sequences of lower and upper bounds can be determined, such that the whole sequence of covariance matrices can be bounded. Moreover, the obtained sequences converge to the limit matrices Σ x,p ( j) with j ∈ N M-1 satisfying (8), see also Corollary 1. The result is formalized in the following theorem.

Theorem 2. Suppose that Assumptions 1 and 2 hold and p ∈ I M is such that ρ(A p ) ∈ (0, 1). Given non-negative α j and β j , with j ∈ N M-1 , satisfying

α j Σ x,p ( j) Σ x p j β j Σ x,p ( j) (12) then Σ x p kM+ j
, α kM+ j and β kM+ j are sequences such that

α kM+ j Σ x,p ( j) Σ x p kM+ j β kM+ j Σ x,p ( j) (13) 
for every k ∈ N and every j ∈ N M-1 , with

α (k+1)M+ j = (1 -δ j )α kM + δ j , if α j ≤ 1, (1 -γ j )α kM + γ j , if α j > 1, β (k+1)M+ j = (1 -γ j )β kM + γ j , if β j ≤ 1, (1 -δ j )β kM + δ j , if β j > 1, (14) 
where δ j and γ j , for all j ∈ N M-1 , are such that 0 < δ j ≤ γ j < 1 and

δ j Σ x,p ( j) Σ w,p ( j) γ j Σ x,p ( j) (15) holds. 
Proof: First note that δ j and γ j exist from Assumption 1, for all j ∈ N M-1 , since Σ w,p ( j) 0, Σ x,p ( j) 0 and ρ(A p ) ∈ (0, 1). The proof proceeds by induction. Given a j ∈ N M-1 , consider first α j ≤ 1. Suppose that condition (13), satisfied for k = 0 from (12), holds also for k ∈ N with α kM+ j ≤ 1. From ( 8)-( 10) and ( 13), it follows

Σ x p (k+1)M+ j = A p ( j) Σ x p kM+ j A p ( j) + Σ w,p ( j) α kM+ j A p ( j) Σ x,p ( j) A p ( j) +Σ w,p ( j) = α kM+ j Σ x,p ( j) -α kM+ j Σ w,p ( j) + Σ w,p ( j) α kM+ j Σ x,p ( j) +(1 -α kM+ j )δ j Σ x,p ( j) = (α kM+ j -δ j α kM+ j + δ j )Σ x,p ( j) ,
(16) and then the lower bound in ( 13) is satified at k + 1 with α (k+1)M+ j = (1δ j )α kM+ j + δ j , (17) which is the asymptotically stable linear system (14) for α j ≤ 1. The trajectory of ( 17) with α j < 1 is monotonically increasing and converges to 1, then α kM+ j < 1 for all k ∈ N. If α j = 1, then the lower bound in (13) holds with α kM+ j = 1 for all k ∈ N.

Consider now α j > 1 and suppose that condition (13) holds at time k with α kM+ j > 1. Since now 1α kM+ j < 0, then

Σ x p (k+1)M+ j = A p ( j) Σ x p kM+ j A p ( j) + Σ w,p ( j) α kM+ j A p ( j) Σ x,p ( j) A p ( j) +Σ w,p ( j) = α kM+ j Σ x,p ( j) + (1 -α kM+ j )Σ w,p ( j) α kM+ j Σ x,p ( j) +(1 -α kM+ j )γ j Σ x,p ( j) = (α kM+ j -γ j α kM+ j + γ j )Σ x,p ( j) ,
(18) and then the lower bound in (13) holds with α (k+1)M+ j = (1γ j )α kM + γ j .

(19) From α j > 1 and γ j ∈ (0, 1), then α kM+ j is the monotonically decreasing sequence in k given in (14), that converges to one and such that α kM+ j > 1 for all k ∈ N.

Consider β j ≤ 1, and note that the upper bound in (13) holds for k = 0, from (12). Suppose that ( 13) is satisfied with β kM+ j ≤ 1 for k ∈ N, for the induction. Since 1β kM+ j ≥ 0, then:

Σ x p (k+1)M+ j = A p ( j) Σ x p kM+ j A p ( j) + Σ w,p ( j) β kM+ j A p ( j) Σ x,p ( j) A p ( j) +Σ w,p ( j) = β kM+ j Σ x,p ( j) -β kM+ j Σ w,p ( j) + Σ w,p ( j) β kM+ j Σ x,p ( j) +(1 -β kM+ j )γ j Σ x,p ( j) = (β kM+1 -γ j β kM+1 + γ j )Σ x,p ( j) ,
and then (13) holds also for k + 1 with β (k+1)M+ j = (1γ j )β kM+ j + γ j ≤ 1, thus given by ( 14). Analogously, if β j > 1 then the upper bound in (13) implies Σ x p (k+1)M+ j (β kM+ jδ j β kM+ j + δ j )Σ x,p , and therefore the satisfaction of (13) with β (k+1)M+ j > 1 given by ( 14). Thus, by computing the sets Σ x,p ( j) and Σ w,p ( j) and the values δ j and γ j satisfying (15), for every j ∈ N M-1 , a sequence of lower and upper bounds α i and β i on the covariance matrices are directly given, for every i ∈ N, with i = kM + j, by the trajectories of the one-dimensional systems ( 14). Remark 2. The sequences α i and β i for i ∈ N defined in Theorem 2 are such that the subsequences α kM+ j and β kM+ j with k ∈ N are exponentially decreasing or increasing, depending on their initial value, sequences converging to 1. No monotonicity can be ensured between two successive instants i and i + 1.

Monotone bounds

It is possible, though, to give strictly monotonic bounding sequences α i and β i , provided A l with l ∈ I are non-singular. Theorem 3. Suppose that Assumptions 1 and 2 hold, p ∈ I M is such that ρ(A p ) < 1 and A l are non-singular for all l ∈ I . Given α 0 = 1 and

β 0 = 1 such that α 0 Σ x,p Σ x 0 β 0 Σ x,p , (20) 
and c j and d j such that 0 < c j ≤ d j < 1 and

c j Σ x,p ( j+1) Σ p j+1 d j Σ x,p ( j+1) (21) 
for all j ∈ N M-1 , the sequences α i and β i given by

α i+1 = α i (1 -d i ) + d i , if α 0 > 1 α i (1 -c i ) + c i , if α 0 < 1 (22) 
and

β i+1 = β i (1 -c i ) + c i , if β 0 > 1 β i (1 -d i ) + d i , if β 0 < 1 (23) 
with c i = c j and d i = d j for i = kM + j for every k ∈ N and j ∈ N M-1 , are strictly monotone sequences converging to one and satisfying (13).

Proof: Consider the sequence β i with β 0 > 1. It is proved first that (20) implies that β j is such that β j > β j+1 > 1, for all j ∈ N M-1 , and satisfies (13). Note that c j and d j exist from non-singularity of A l with l ∈ I , (11) and Assumption 1. From ( 11) and ( 20), it follows

Σ x p 1 = A p 1 Σ x 0 A p 1 + Σ p 1 β 0 A p 1 Σ x,p A p 1 + Σ p 1 = β 0 (Σ x,p (1) -Σ p 1 ) + Σ p 1 = β 0 Σ x,p (1) + (1 -β 0 )Σ p 1 β 0 Σ x,p (1) + (1 -β 0 )c 0 Σ x,p (1) = (β 0 (1 -c 0 ) + c 0 )Σ x,p (1)
and then β 1 = (β 0 (1c 0 ) + c 0 ) is such that β 0 > β 1 > 1 and satisfies (12) and therefore also (13). Applying recursively the reasoning given above for all i ∈ N proves that the upper bounds (13) hold with β i as in (23), which are such that β i > β i+1 > 1. The case of β 0 < 1 is similarly proved, by using the upper bound of ( 21), that leads to

Σ x p 1 (β 0 (1 -d 0 ) + d 0 )Σ x,p (1) 
and then (13) and β 0 < β 1 < 1 are satisfied with β 1 = (β 0 (1d 0 ) + d 0 ). By recursion, β i given by ( 23) are such that β i < β i+1 < 1 and satisfy ( 13) for all i ∈ N.

Analogously, it can be proved that, denoting i = kM + j for all j ∈ N M-1 and k ∈ N, then Σ x p i α i Σ x,p ( j) holds with α i given by ( 22) being a strictly monotone sequence satisfying (13) for all i ∈ N.

Thus, given α 0 and β 0 satisfying (20), the sequences α i and β i for i ∈ N given by ( 22) and ( 23) are strictly monotone sequences converging to 1 and such that the bounds ( 12) and ( 13) hold. Clearly, if α 0 = 1 then α i = 1 for all i ∈ N and if β 0 = 1 then β i = 1 for all i ∈ N, leading to constant bounds on the covariance matrices. Moreover, if A l is singular, for a l ∈ I , then the existence of d j < 1 might not be ensured, but only d j = 1, potentially implying finite time convergence to 1, rather than convergence with strict monotonicity. Remark 3. Theorem 2 and 3 suggest two possible methods to obtain the sequences α i and β i , with i ∈ N determining the upper and lower bounds on the covariance matrices of x k . By maximizing α j and δ j and minimizing β j and γ j with j ∈ N M-1 satisfying ( 12) and ( 15) and employing ( 14), tight but nonmonotone bounds are obtained. Alternatively, by maximizing c j and minimizing d j with j ∈ N M-1 and using ( 22) and ( 23) to compute α i and β i for i ∈ N leads to monotone, but less tight, bounding sequences.

NUMERICAL EXAMPLE

Consider the system, inspired by the counterexample for stabilizability in [START_REF] Fiacchini | On the stabilizability of discrete-time switched linear systems: novel conditions and comparisons[END_REF], given by (1) with 3 modes

A 1 = 0.9AR(0), A 2 = 1.1AR 2π 3 , A 3 = 1.1AR -2π 3 
,
where

A = 0.6 0 0 0.6 -1 , R(θ ) = cos(θ ) -sin(θ ) sin(θ ) cos(θ ) ,
that are such that only one eigenvalue has norm smaller than one, in fact (0.54, 1.5) are the eigenvalues of A 1 and (-0.6233 ± 0.9063 i), with norm 1.1, those of A 2 and A 3 . Condition (6) holds for this system with N = 5 and λ = 0.7941. Indeed, the periodic switching sequences p with period p = (1, 1, 2, 2, 1) and p = (1, 1, 3, 3, 1) leads to Schur matrices with ρ(A p ) = 0.9341.

The disturbances w i with i ∈ I have normal distribution with null mean and covariance matrices:

Σ 1 = 10 -2 1.25 0.33 0.33 1.18 , Σ 2 = 10 -2 2.72 0.42 0.42 1.13 , Σ 3 = 10 -2 0.73 0.37 0.37 0.88 .

The initial state is supposed to have normal distribution N (x 0 , Σ x 0 ) whose mean and covariance are given by:

x 0 = (17.44, 15.25), Σ x 0 = σ • 1.894 0.552 0.552 1.707 ,

and two values of σ have been used to obtain the evolutions with α 0 and β 0 bigger and smaller than one, see below. The values in (24) have been obtained by random generation. 24). To illustrate the inner and outer bounds with α 0 < β 0 < 1, the value of σ in (24) has been chosen to be 0.1. Figure 1 depicts the sets E (Σ x p i , µ p i ), that are the ellipsoids determined by the covariance matrices of x 0 and x p i , for i ∈ N 14 and the bounding ellipsoids defined by α i Σ x p i and β i Σ x p i , with α i and β i based on Theorem 2. Moreover the evolutions of the sequences α i and β i , based on Theorem 2 and 3, see also Remark 3, have been computed and depicted in Figure 2. Notice that, while the sequences obtained by Theorem 3 are monotonicaly increasing, the bounds are tighter with the those given by Theorem 2. The case of 1 < α 0 < β 0 is illustrated in Figures 3 and4.

Figure 3 shows the ellipsoids related to the covariance matrices of x p i and with the bounds α kM+ j Σ x,p ( j) and β kM+ j Σ x,p ( j) where i = 5k + j with j ∈ N 5 , satisfying (13). The sequences of α i and β i obtained using Theorem 2 and 3 are depicted in Figure 4.

Finally, the limiting ellipsoids E (Σ x,p ( j) , 0), then defined by the matrices toward which the covariance matrices converge, are shown in Figure 5. 

CONCLUSIONS

The paper presented the determination of limiting finite sequences of the covariance matrices of a stabilized linear switched system affected by stochastic additive noises. Moreover, sequences of upper and lower bounding matrices are given that are generated by a set of linear one-dimensional systems.

Two different bounding methods are presented, one monotonically convergent to the limit sequence and a tighter one. As future research lines, one can consider the design of optimal time-varying switching laws, the extension of the methods to more general stochastic frameworks, and the application to practical problems like the covariance control of multi-sensor systems.
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 1 Fig. 1. Sequences of ellipsoids E (Σ x p i , µ p i ) in black; ellipsoidal bounds E (α i Σ x p i , µ p i ) and E (β i Σ x p i , µ p i ) in blue; and sets of 500 random points sampled with distribution N (x p i , Σ x p i

  Sequences: α i , in blue, and β i , in red, based in Theorem 2; and α i , in yellow, and β i , in purple, based in Theorem 3, for i ∈ N 35 , with σ = 0.1 in (24).
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 3 Fig. 3. Sequences of ellipsoids E (Σ x p i , µ p i ) in black; ellipsoidal bounds E (α i Σ x p i , µ p i ) and E (β i Σ x p i , µ p i ) in blue; and sets of 500 random points sampled with distribution N (x p i , Σ x p i

Fig. 5 .

 5 Fig. 5. Limiting ellipsoids E (Σ x,p ( j) , 0) in blue and sets of 500 random points sampled with distribution N (0, Σ x,p ( j) ) in red, for j ∈ N 5 .