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Necessary and Sufficient Convex Condition for
the Stabilization of Linear Sampled-data

Systems under Poisson Sampling Process
Daniel Denardi Huff, Mirko Fiacchini and João Manoel Gomes da Silva Jr., Member, IEEE

Abstract— This work presents a control design method
for linear sampled-data systems whose random sampling
intervals form a Poisson process. Unlike a previous re-
sult in the literature, the proposed stabilization condi-
tions, based on linear feedbacks of both the state and
the past input values, are necessary and sufficient for the
mean exponential stability of the system. Moreover, such
non-conservative conditions correspond to linear matrix
inequalities, implying then that the stabilization problem
can be efficiently addressed through semidefinite program-
ming. As a second contribution, the characterization and
optimization of the mean exponential convergence rate of
the closed-loop system is given in form of a generalized
eigenvalue problem. A numerical example illustrates the
theoretical results.

Index Terms— Sampled-data control, random sampling,
mean exponential stability, Linear Matrix Inequalities.

I. INTRODUCTION

IN many real-world applications, continuous-time plants are
controlled by digital devices in a sampled-data fashion [1].

These sampled-data systems are often implemented through
a network, where communication protocols are responsible
for the transmission of data between computers, actuators
and sensors [2]. The use of a shared network for different
purposes has several advantages, including flexibility and easy
of maintenance [2]. On the other hand, due to imperfections
on the communication channels, the control loop is commonly
subject to time-varying, uncertain, sampling intervals, i.e.
aperiodic sampling [3].

In this context, the analysis and design of aperiodic
sampled-data systems have been the focus of many works in
the last years [4]. In [5], for instance, a time-delay method
based on Lyapunov-Krasovskii funcionals is considered. A
similar idea is developed in [6], where the looped-functional

This work was supported by the Coordenação de Aperfeiçoamento de
Pessoal de Nı́vel Superior - (CAPES, Brazil) - Finance Code 001, Con-
selho Nacional de Desenvolvimento Cientı́fico e Tecnológico - (CNPq,
Brazil) - PQ307449/2019-0, and by the French National Research
Agency in the framework of the “Investissements d’avenir” program
(ANR-15-IDEX-02). Corresponding author: D.D. Huff.

D.D. Huff and M. Fiacchini are with the GIPSA-Lab, Université
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method is introduced. Alternatively, a discrete-time approach
can be considered, where the behavior of the system’s state at
the sampling instants is modeled through difference inclusions
[7]–[11].

A common feature of the aforementioned references is that
they consider a non-stochastic framework, where hard bounds
are given for the time-varying sampling interval. However,
taking into account that this assumption may not be realis-
tic, some recent works have addressed the stability analysis
and stabilization of linear sampled-data systems subject to a
random sampling interval, where the corresponding distribu-
tion function has possibly unbounded support [12]–[16]. In
particular, the works in [13]–[16] address the stabilization
problem (in a stochastic sense) of the discrete-time model that
describes the evolution of the system’s state at the sampling
instants. However, even if closely related, the stability of
this discrete-time model is not equivalent to the stability of
the corresponding (continuous-time) sampled-data system, as
remarked, for instance, in [12, Pg. 222] and [17, Pg. 610].

The aim of this work is to propose a control design method
that guarantees the stabilization of the continuous-time system,
as it is done for instance in [12]. Our approach is, however,
based on a convex condition – a Linear Matrix Inequality
(LMI). Moreover, compared to [12], our method provides a
stabilization condition that is non-conservative with respect to
the considered control law, which is also more general. To
derive this condition, we use an instrumental result from [18],
which deals with the stability analysis of impulsive renewal
systems but does not consider the control design problem. As
in [19] (which does not consider the control design problem
either) and [12], we deal with the case of Poisson sampling,
i.e. the sampling intervals form a sequence of independent
and identically distributed (i.i.d.) random variables with expo-
nential distribution. Furthermore, as a second contribution, we
will show how to adapt the approach to optimize the speed
of convergence of the trajectories of the closed-loop system
to the origin. This is done through a generalized eigenvalue
problem [20, Section 2.2.3], which can be efficiently solved
numerically.

The paper is organized as follows. Section II contains
basic definitions and the problem formulation. Section III
presents the main results related to the necessary and sufficient
stabilization condition and to the control design method. A
detailed comparison between our approach and the one of



[12] is presented in Section IV. Section V shows a numerical
example. At last, some concluding remarks end the paper.

Notation. P[·] denotes probability and E[·] expectation. For
f : R→Rn, f (t−)≜ lim

τ 7→t,τ<t
f (τ) if the limit exists. Given the

square matrices A and B, λmax(A) (λmin(A)) is the maximal
(minimal) real part of the eigenvalues of A and Diag(A,B)
is a block diagonal matrix formed by A and B. The symbol
⋆ denotes a symmetric block when applied as an entry of
a matrix and ≻ (⪰) characterizes positive (semi)-definiteness
of a symmetric matrix. In ∈ Rn×n is the identity matrix. ∥ · ∥
denotes the induced 2-norm of a matrix or the Euclidean norm
of a vector. Re(·) and Im(·) are, respectively, the real and
imaginary parts of the argument. Given a matrix (or vector)
A ∈ Rm×n, A(i) is its i-th row and AT its transpose.

II. PROBLEM FORMULATION

Consider the continuous-time plant described by the follow-
ing linear model:

ẋp(t) = Apxp(t)+Bpu(t) (1)

where xp ∈ Rnp and u ∈ Rm are the state and the input of
the plant, respectively. Matrices Ap and Bp have appropriate
dimensions and are constant. It is assumed that the control
input is updated at the time instants tk and kept constant (by
means of a zero-order-hold) for all t ∈ [tk, tk+1), being given
by:

u(t) = Kpxp(t−k )+Kuu(t−k ), ∀t ∈ [tk, tk+1), (2)

where Kp and Ku are matrices of appropriate dimensions.
Notice that the control law is based not only on the sampled
value of the state xp but also on the value of the last control
input applied to the plant. The term Kuu(t−k ) has already
showed its benefits in [11], where the stabilization problem
is solved in a non-stochastic framework.

By convention t0 = 0 and the difference between two
successive sampling instants is denoted by δk ≜ tk+1 − tk. It is
assumed that {δk}k∈N is a sequence of i.i.d. random variables
with exponential distribution:

F(s)≜ P[δk ≤ s] = 1− e−λ s, ∀k ∈ N, ∀s ≥ 0, (3)

where λ > 0 and E[δk] = 1/λ . Thus, the sampling process

Nt ≜ sup{k ∈ N : tk ≤ t} (4)

is a Poisson process of intensity λ > 0, where [21, Pg. 37]

P[Nt = n] = e−λ t (λ t)n

n!
. (5)

The Poisson process has been successfully used in the liter-
ature to model the stochastic behavior of networked control
systems under random sampling [12], [19]. It should be
noticed that, since E[Nt ] < ∞ (cf. [22, Pg. 186]) and since
E[Nt ]< ∞ only if P[Nt = ∞] = 0 (cf. [22, Pg. 2]), there is zero
probability of an infinite number of samplings occurring in
finite time (i.e. zero probability of Zeno behavior).

Denoting x ≜ [xT
p uT ]T ∈ Rn,n ≜ np +m, the dynamics (1)-

(2) can be described by the following impulsive system [11]:{
ẋ(t) = f (x(t))≜ Acx(t), ∀t ≥ 0, t ̸= tk,x(0) = x0

x(tk) = g(x(t−k ))≜ Adx(t−k ), ∀k ≥ 1

(6a)

(6b)

where Ad ≜ Ar +BrK and

Ac ≜

[
Ap Bp
0 0

]
∈ Rn×n, Ar ≜

[
Inp 0
0 0

]
∈ Rn×n,

Br ≜

[
0
Im

]
∈ Rn×m, K ≜

[
Kp Ku

]
∈ Rm×n. (7)

There are alternative impulsive system representations for (1)-
(2). The choice (6), different from the one of [12, Eq. 14], will
play a fundamental role to obtain a necessary and sufficient
convex condition for the stabilization of the system.

Definition 1: The equilibrium point x = 0 of (6) is mean
exponentially stable (MES) if there exist scalars c,γ0 > 0 such
that for every initial condition x0 = x(0) ∈ Rn:

E[∥x(t)∥2]≤ ce−γ0t∥x0∥2, ∀t ≥ 0 (8)

where γ0 > 0 will be referred to as a decay rate of the
trajectories of the system.

In particular, it is possible to show that (6) cannot be MES
if the pair (Ap,Bp) in (1) is not stabilizable. Note that in this
case the states corresponding to the uncontrollable part of (1)
will behave deterministically.

We can now state the problem we focus on in this work.
Problem 1 (Mean square stabilization): Given the inten-

sity λ > 0 of the Poisson sampling process, characterize in
a non-conservative way all the linear feedback gains K such
that the resulting closed-loop system is MES.

Additionally, as a second contribution, constructive condi-
tions will be provided to maximize the parameter γ0 in (8).
Moreover, the case where the intensity λ > 0 of the Poisson
process is not perfectly known will also be addressed.

A. Piecewise deterministic Markov processes
System (6) has a deterministic behavior except for the jumps

that occur at the random sampling times. From the memoryless
property of the Poisson process [21, Pg. 36], it follows that
x(t) is a Markov process. More precisely, system (6) belongs to
the class of piecewise deterministic Markov processes (PDMP)
defined in [21, Section 24]. This fact allows to establish the
following key result, which is a particular case of [18, Theorem
1] and does not require the functions f (x) and g(x) in (6) to
be necessarily linear.

Theorem 1: Assume that f (x) and g(x) in (6) are globally
Lipschitz and consider V : Rn → R,V ∈ C 1, such that

E

[
∑

tk≤p
|V (x(tk))−V (x(t−k ))|

]
< ∞, ∀p ∈ N, ∀x0 ∈ Rn, (9)

where x(t−0 ) = x(t0) = x(0) by convention. Then, for t ≥ 0,

E[V (x(t))] =V (x0)+E
[∫ t

0
UV (x(s))ds

]
, ∀x0 ∈ Rn (10)

where

UV (x)≜ ∇V T (x) f (x)+λ (V (g(x))−V (x)) (11)

and ∇V (x) is the gradient of V (x).
Relation (10) is known as the Dynkin’s formula [21, Pg.

31] and can be intuitively interpreted as a stochastic version
of the fundamental theorem of calculus. Note that the first



term of the right-hand side of (11) is the usual time derivative
of V (x(t)) along the trajectories of ẋ(t) = f (x(t)) while the
second term accounts for the jumps at the sampling instants.
Theorem 1 will be later used in the proof of Lemma 2.

III. MAIN RESULTS

In order to solve Problem 1, we will use the following
lemma, adapted from [18, Theorem 7] to the particular case of
interest, i.e. model (6). This result can be proved by applying
Theorem 1 to a quadratic function of the state x(t).

Lemma 1: Assume that

2λmax(Ac)< λ (12)

holds. Then system (6) is MES if and only if there exists
P ∈ Rn×n,P = PT ≻ 0, such that

AT
c P+PAc −λP+λAT

d PAd ≺ 0. (13)
Remark 1: Since λ > 0, it follows from the particular

structure of Ac in (7) that (12) is equivalent to 2λmax(Ap)< λ .
Using Lemma 1, we derive next our main result.
Theorem 2: There exists K ∈ Rm×n such that the resulting

closed-loop system (6) is MES if and only if there exist W ∈
Rn×n,W =W T ≻ 0, and Y ∈ Rm×n such that[

WAT
c +AcW −λW ⋆

λ (ArW +BrY ) −λW

]
≺ 0 (14)

where K and Y are related by the equation K = YW−1.
Proof: The proof is divided into two steps: (I) show that

the statement of Lemma 1 still holds even if assumption (12)
is not imposed; (II) show the equivalence between (13) and
(14) using reversible operations. The result of the theorem will
then follow directly from (I), (II) and Lemma 1.

Step (I): For the sufficiency part of the result, it suffices to
note that (13) directly implies that AT

c P+PAc −λP ≺ 0 and,
hence, (12) holds automatically.

For the necessity part of the result, we have to show that (13)
holds if system (6) is MES. If assumption (12) holds, then it
suffices to apply Lemma 1. Thus, let us focus on the nontrivial
case where (12) does not hold. It turns out, however, that this
case will never happen, as we will prove next. In other words,
system (6) cannot be MES if 2λmax(Ac)≥ λ . More precisely,
we will show that

E
[
∥x(t)∥2] ̸→ 0 as t → ∞ (15)

for an appropriately chosen initial condition x(0) if
2λmax(Ac)≥ λ . Denote by σ = a+ jb,a,b ∈R, an eigenvalue
of Ac (possibly complex but not necessarily) which attains
the maximum λmax(Ac), i.e. a = λmax(Ac), and by v = v1 +
jv2,v1,v2 ∈ Rn, a corresponding eigenvector. Consider, as
initial condition of (6), x(0) =Re(v), where Re(v) ̸= 0 without
loss of generality. Then, recalling that t1 is the first sampling
instant, it follows that, for t ≥ 0:

E
[
∥x(t)∥2]= E

[
∥x(t)∥2|t1 > t

]
P[t1 > t]

+E
[
∥x(t)∥2|t1 ≤ t

]
P[t1 ≤ t]

≥ E
[
∥x(t)∥2|t1 > t

]
P[t1 > t]

= E
[
∥Re(eσtv)∥2|t1 > t

]
P[t1 > t], (16)

where the last equality follows from the fact that x(t) =
Re(eσtv) before the first sampling instant t1, since it must sat-
isfy (6a). Taking into account that the expression ||Re(eσtv)||2
is deterministic for a fixed t, the expectation operator can be
omitted and, then, after some algebraic manipulations, (16)
becomes

E
[
∥x(t)∥2]≥ ∥Re(eσtv)∥2P[t1 > t]

= e2λmax(Ac)t∥cos(bt)v1 − sin(bt)v2∥2P[t1 > t],

where we replaced a = λmax(Ac). At last, recalling that t1 = δ0
by definition and using (3), one concludes that P[t1 > t] =
1−P[δ0 ≤ t] = e−λ t , i.e.

E
[
∥x(t)∥2]≥ e(2λmax(Ac)−λ )t∥cos(bt)v1 − sin(bt)v2∥2

t→∞

̸→ 0,

which implies (15). Therefore, (8) does not hold for the chosen
initial condition and system (6) cannot be MES if 2λmax(Ac)≥
λ , as we wanted to show.

Step (II): Applying the Schur’s complement to (13) and
replacing Ad = Ar +BrK, one gets[

AT
c P+PAc −λP ⋆

Ar +BrK −(λP)−1

]
≺ 0 (17)

Next, defining W ≜ P−1 and left and right multiplying the
resulting inequality by Diag(W,λ In), one has[

WAT
c +AcW −λW ⋆

λ (ArW +BrKW ) −λW

]
≺ 0 (18)

which corresponds to (14) with Y ≜ KW .
Remark 2: The use of the feedback term Kuu(t−k ) in (2)

allows to obtain a LMI condition in (14) with the change of
variable Y = KW , which would not be possible considering
Ku = 0 without imposing a particular structure on matrix W .
However, this does not mean that the use of Ku ̸= 0 is necessary
to stabilize the system, that is, it may exist stabilizing solutions
with Ku = 0 verifying (14).

Next we present some extensions of the main result.

A. Optimization of the decay rate

It is possible to adapt condition (13) in order to ensure a
decay rate γ0 in (8), according to the next lemma.

Lemma 2: System (6) is MES with decay rate γ0 > 0 if

∃P = PT ≻ 0 : AT
c P+PAc −λP+λAT

d PAd ⪯−γP (19)

with γ = γ0. Moreover, (6) is MES with decay rate γ0 > 0 only
if (19) holds for all γ ∈ [0,γ0).

Proof: The proof, inspired by the reasoning in [18], is
shown in the Appendix.

Remark 3: In the result above, if (6) is MES with decay rate
γ0 > 0, then (19) holds for all γ smaller than and arbitrarily
close to γ0. The result does not guarantee that (19) holds with
γ = γ0 because the matrix P = P(γ) goes unbounded as γ → γ0
(see the proof of the lemma for the details).

Using Lemma 2, we obtain the following result.



Theorem 3: There exists K ∈ Rm×n such that the resulting
closed-loop system (6) satisfies (8) with decay rate γ0 > 0 if
there exist W ∈ Rn×n,W =W T ≻ 0, and Y ∈ Rm×n such that[

WAT
c +AcW +(γ0 −λ )W ⋆

λ (ArW +BrY ) −λW

]
⪯ 0 (20)

where K and Y are related by the equation K = YW−1.
Proof: Considering now Lemma 2, it is analogous to the

one of Theorem 2.
Using the result above, it is possible to stabilize system (6)

and to maximize its decay rate through the following opti-
mization problem:

max
W,R,γ0

γ0

subject to: (20)
(21)

Note that (21) can be solved using the bisection method on
γ , since (20) is a LMI for a fixed value of this parameter and
since the values of γ for which (20) can be satisfied correspond
to a convex subset (an interval) of the real line.

B. Uncertain sampling rate

In this section we assume that the intensity λ of the Poisson
sampling process is not exactly known but satisfies

0 < λlb ≤ λ ≤ λub (22)

for some bounds λlb and λub. Then, it is possible to provide
sufficient, though not necessary, stabilization conditions for
(6). Consider the following corollary of Theorem 3.

Corollary 1: Assume that (22) holds. Then there exists K ∈
Rm×n such that the resulting closed-loop system (6) is MES
with decay rate γ0 > 0 if there exist W ∈ Rn×n,W =W T ≻ 0,
and Y ∈ Rm×n such that[

WAT
c +AcW +(γ0 −λ )W ⋆

λ (ArW +BrY ) −λW

]
⪯ 0, ∀λ ∈ {λlb,λub}

(23)
where K and Y are related by the equation K = YW−1.

IV. COMPARATIVE ANALYSIS

The mean square stabilization problem of system (1) has
already been dealt with in [12] considering the control law

u(t) = Kpxp(t−k ), ∀t ∈ [tk, tk+1), (24)

which is a particular case of (2). It should be noticed that the
results in [12] are derived from a different impulsive system,
where the error e(t) ≜ xp(t)− xp(tNt ) between xp(t) and its
last sampled value until time t xp(tNt ) is considered as an
additional state variable (see [12, Eq. 14]). In this case, due
to a different problem structure, it is not possible to obtain
non-conservative convex conditions for the computation of Kp.
In our method, this problem is overcome by considering a
different impulsive representation and a more generic control
law, which also depends on the past value of the control input.
We briefly recall in this section the method of [12], which
provides only a partial solution to the stabilization problem,
since it is based on the assumption below.

Assumption 1: There exist positive definite matrices R=RT

and P = PT which solve the algebraic Riccati equation

AT
p P+PAp −2PBpR−1BT

p P =−αP, α > 0, (25)

and such that (Ap − BpR−1BT
p P) is Hurwitz. Moreover, the

matrix P = P(α) has the property that for some p > 2
3

limsup
α↓0

λmax(P)
α p < ∞, (26)

i.e. λmax(P) = O(α p) as α ↓ 0.
This assumption is rather strong, as recognized in [12, Pg.

239]. Indeed, in general, Assumption 1 is not expected to
hold for systems where Ap has eigenvalues on the open right-
half complex plane (see Remark 6.4 in [12]). Note that even
verifying Assumption 1 is not a simple task. It is necessary
not only to solve the Riccati equation (25) to obtain the
matrix P = P(α) ≻ 0, but also to analyze property (26). It is
possible to get some insight about the behavior of the ratio
λmax(P)/α p computing it for a grid of values of the pair
(α, p) ∈ (0,∞)× ( 2

3 ,∞). However, this numerical procedure
does not formally guarantee that (26) holds.

In case Assumption 1 is satisfied, the stabilizing control law
is given by the result below [12, Theorem 6.5].

Lemma 3: Suppose that Assumption 1 holds. Then there
exists α > 0 (sufficiently small) such that the feedback gain

Kp =−R−1BT
p P(α) (27)

where P(α) solves (25) renders the closed-loop system com-
posed by (1) and (24) mean exponentially stable.

Notice that Lemma 3 is non-constructive in the sense that it
does not provide a valid value for α > 0, which difficults the
use of this result in practice. On the other hand, our method
does not have this limitation and can be easily applied, since it
relies on semidefinite programming problems. Moreover, the
non-conservative result of Theorem 2 is valid in the general
case and not only for the class of systems which satisfy
Assumption 1.

V. NUMERICAL EXAMPLE

Consider the following system matrices taken from [11]:

Ap =

[
0 1
1 0

]
, Bp =

[
0
−5

]
, (28)

where λ = 3. Assumption 1 was numerically tested and does
not seem to hold, what is in accordance with Remark 6.4 of
[12], since one of the eigenvalues of Ap is equal to 1. Thus, the
stabilization result of [12], i.e. Lemma 3, cannot be applied
in this case. On the other hand, solving (21), one obtains the
following feedback gain:

K =
[
0.2536 0.2574 0.0032

]
, (29)

which renders the closed-loop system mean exponentially
stable with decay rate γ0 = 0.49. The corresponding Lyapunov
matrix P is given by:

P =W−1 =

0.0668 0.0665 −0.221
0.0665 0.0683 −0.222
−0.221 −0.222 0.885

 . (30)



Figure 1 shows several trajectories of the closed-loop system
in the xp-subspace for some realizations of the sequence
{δk}k∈N, where the initial conditions, depicted by blue circles,
satisfy ∥xp(0)∥ = 1. Moreover, the control law (2) is initial-
ized with u(0−) = 0. As one should expect, the trajectories
converge to the origin. We recall that xp(t) is continuous. On
the other hand, its derivative is discontinuous at the sampling
instants (represented by black circles) because of the update
of the control input u(t) using the law (2).

Fig. 1. Trajectories of the closed-loop system (28)-(29) in the xp-
subspace, where the initial conditions xp(0) are depicted by blue circles
and the sampling instants tk by black ones.

VI. CONCLUSIONS

A new control design method for linear sampled-data sys-
tems under Poisson sampling, which is based on semidefinite
programming, was presented. As discussed above, unlike [12],
this approach provides a necessary and sufficient stabilization
condition for the system and can be easily implemented
numerically. Moreover, unlike [13]–[16], which focus on the
discrete-time trajectories of the system, we formally guarantee
the stability of the continuous-time system.

An idea of future work consists in considering measurement
noise as well as other (and more general) distribution functions
for the sampling interval of the system. Besides that, the pos-
sibility of packet dropouts can also be explicitly considered,
as in [15], and, in principle, it is also possible to extend the
approach to cope with input nonlinearities, like saturation and
quantization, as in [14].

APPENDIX: PROOF OF LEMMA 2
Since time-varying Lyapunov functions will be applied, it

will be convenient to consider the augmented process x̄(t) ≜
(x(t),v(t)) ∈ Rn ×R≥0, where v̇(t) = 1, v(0) = v0 ∈ R≥0 and
v(t) = v0+t, which also is a PDMP [21, Pg. 84]. In particular,
the dynamics of x̄(t) has the form (6) with f̄ (x̄)≜ ( f (x),1) =
[(Acx)T 1]T and ḡ(x̄) ≜ (g(x),v) = [(Adx)T v]T . Thus, for a
function

W (x,v) = xT Pxeγv, P = PT ⪰ 0, γ ≥ 0, (31)

the Dynkin’s formula (10) (with the appropriate notation
changes) holds with

UW (x,v) = xT (PAc +AT
c P+ γP+λAT

d PAd −λP)xeγv (32)

as long as (9) is satisfied. To show that (9) holds, notice first
that x(t) can be written as

x(t) = Φ(t)x0 (33)

where

Φ(t)≜ eAc(t−tNt )AdeAc(tNt −tNt−1) . . .AdeAc(t2−t1)AdeAct1 (34)

is the (random) transition matrix of the system and Nt , defined
in (4), counts the number of samplings until time t. From these
relations, it follows that

∥x(t)∥ ≤ cNt
2 ec1t∥x0∥ (35)

where c1 ≜ ∥Ac∥ ≥ 0 and c2 ≜ ∥Ad∥ ≥ 1. Moreover, for k ≥ 1,

∥x(tk)∥ ≤ ck
2ec1tk∥x0∥

∥x(t−k )∥ ≤ ck−1
2 ec1tk∥x0∥ ≤ ck

2ec1tk∥x0∥.
(36)

Thus, given p ∈ N and (x0,v0) ∈ Rn ×R≥0, one has

E

[
∑

tk≤p
|W (x(tk),v(tk))−W (x(t−k ),v(t−k ))|

]

≤ E

[
∑

tk≤p
eγv(tk)(xT (tk)Px(tk)+(xT (t−k )Px(t−k ))

]

≤︸︷︷︸
(36)

E

[
∑

tk≤p
eγv(tk)2∥P∥(ck

2ec1tk∥x0∥)2

]

≤ E

[
∑

tk≤p
eγv(p)2∥P∥(ck

2ec1 p∥x0∥)2

]

= eγ(v0+p+2c1 p)2∥P∥∥x0∥2E

[
Np

∑
k=0

c2k
2

]
≜CE

[
Np

∑
k=0

c2k
2

]

=C
∞

∑
j=0

(
P[Np = j]

j

∑
k=0

c2k
2

)
=C

∞

∑
k=0

(
c2k

2

∞

∑
j=k

P[Np = j]

)

=C
∞

∑
k=0

(
c2k

2 P[Np ≥ k]
)
=C

∞

∑
k=0

(
c2k

2 P[tk ≤ p]
)
< ∞

where the order of summation was changed in the third-to-last
equality, and the last inequality follows from [22, Theorem
3.3.1]. Consequently, (9) holds, as we wanted to show, and
Theorem 1 can indeed be applied to function (31).

(Sufficiency part) Assume that (19) holds and define W (x,v)
as above, i.e. W (x,v) ≜ xT Pxeγv. Left and right multiplying
(19) by xT and xeγv, respectively, one gets, for all (x,v) ∈
Rn ×R≥0:

xT (AT
c P+PAc −λP+λAT

d PAd)xeγv ≤−γxT Pxeγv,

which implies, according to (32), that UW (x,v)≤ 0,∀(x,v) ∈
Rn ×R≥0. Thus, applying Theorem 1, one has

E[W (x(t),v(t))] =W (x0,v0)+E
[∫ t

0
UW (x(s),v(s))ds

]
≤W (x0,v0), ∀(x0,v0) ∈ Rn ×R≥0. (37)



Considering v0 = 0 (which means that v(t) = t), (37) becomes

E[xT (t)Px(t)eγt ]≤ xT
0 Px0, ∀x0 ∈ Rn

or, equivalently, E[xT (t)Px(t)] ≤ xT
0 Px0e−γt , ∀x0 ∈ Rn. Con-

sequently, using the fact that P is positive definite, one con-
cludes after some algebraic manipulations that E[∥x(t)∥2] ≤
λmax(P)
λmin(P)

e−γt∥x0∥2, ∀x0 ∈ Rn, and the result follows.
(Necessity part) Given γ ∈ [0,γ0), consider W : Rn×R≥0 →

R≥0 defined by

W (x0,v0)≜ E(x0,v0)

[∫
∞

0
∥x(s)∥2eγv(s)ds

]
(38)

where E(x0,v0) emphasizes that the initial condition considered
is (x(0),v(0)) = (x0,v0) with probability one (the subscript
will be omitted from now on). Since (8) holds (by assumption,
(6) is MES with decay rate γ0), W (x0,v0) is indeed well
defined (i.e. it is finite). More precisely, interchanging expecta-
tion with integral operations and, then, replacing v(s) = v0+s,
one has

W (x0,v0) =
∫

∞

0
E
[
∥x(s)∥2eγv(s)

]
ds = eγv0

∫
∞

0
E
[
∥x(s)∥2]eγsds.

(39)

At last, applying (8) one gets

W (x0,v0)≤ eγv0

∫
∞

0
ce−(γ0−γ)s∥x0∥2ds =

ceγv0

γ0 − γ
∥x0∥2 < ∞.

Moreover, note from (33) and (39) that

W (x0,v0) = eγv0xT
0

(∫
∞

0
E[ΦT (s)Φ(s)]eγsds

)
x0

≜ eγv0xT
0 Px0 (40)

Let us find a lower bound for W (x0,v0) to show that P = PT

is positive definite. Consider again (39) and note that

W (x0,v0) = eγv0E
[∫

∞

0
∥x(s)∥2eγsds

]
≥ eγv0E

[∫ t1

0
∥x(s)∥2ds

]
= eγv0E

[∫ t1

0
∥eAcsx0∥2ds

]
≥ eγv0∥x0∥2E

[∫ t1

0
e−2∥Ac∥sds

]
where we used the fact that x(t) = eActx0 before the first sam-
pling time t1 and applied Exercise 3.17 of [23], which provides
a lower bound for ∥x(t)∥. Fix now a constant (deterministic)
value t∗ > 0 and observe that

W (x0,v0)≥ eγv0∥x0∥2E
[∫ t1

0
e−2∥Ac∥sds

]
≥ eγv0∥x0∥2E

[∫ t1

0
e−2∥Ac∥sds

∣∣∣t1 > t∗
]

P[t1 > t∗]

≥ eγv0∥x0∥2E
[∫ t∗

0
e−2∥Ac∥sds

∣∣∣t1 > t∗
]

P[t1 > t∗]

= eγv0∥x0∥2
∫ t∗

0
e−2∥Ac∥sdse−λ t∗ = Leγv0∥x0∥2 (41)

where we applied (3) (recall that t1 = δ0 by definition) and L≜
e−λ t∗ ∫ t∗

0 e−2∥Ac∥sds > 0. Comparing (40) and (41), it follows
that P ≻ 0, as claimed.

Applying Theorem 32.2 of [21] to (38), we conclude that

UW (x0,v0) =−∥x0∥2eγv0 (42)

Combining (42) (with (x0,v0) replaced by (x,v)) and (32) and
since these eqs. hold for all x ∈ Rn and v = 0, it follows that
PAc +AT

c P+ γP+λAT
d PAd −λP =−In ≺ 0, that implies (19).
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