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This work presents a control design method for linear sampled-data systems whose random sampling intervals form a Poisson process. Unlike a previous result in the literature, the proposed stabilization conditions, based on linear feedbacks of both the state and the past input values, are necessary and sufficient for the mean exponential stability of the system. Moreover, such non-conservative conditions correspond to linear matrix inequalities, implying then that the stabilization problem can be efficiently addressed through semidefinite programming. As a second contribution, the characterization and optimization of the mean exponential convergence rate of the closed-loop system is given in form of a generalized eigenvalue problem. A numerical example illustrates the theoretical results.

I. INTRODUCTION

I N many real-world applications, continuous-time plants are controlled by digital devices in a sampled-data fashion [START_REF] Aström | Computer Controlled Systems. Theory and Design, ser. Information and System Sciences Series[END_REF]. These sampled-data systems are often implemented through a network, where communication protocols are responsible for the transmission of data between computers, actuators and sensors [START_REF] Zhang | Stability of networked control systems[END_REF]. The use of a shared network for different purposes has several advantages, including flexibility and easy of maintenance [START_REF] Zhang | Stability of networked control systems[END_REF]. On the other hand, due to imperfections on the communication channels, the control loop is commonly subject to time-varying, uncertain, sampling intervals, i.e. aperiodic sampling [START_REF] Hespanha | A survey of recent results in networked control systems[END_REF].

In this context, the analysis and design of aperiodic sampled-data systems have been the focus of many works in the last years [START_REF] Hetel | Recent developments on the stability of systems with aperiodic sampling: An overview[END_REF]. In [START_REF] Fridman | A refined input delay approach to sampled-data control[END_REF], for instance, a time-delay method based on Lyapunov-Krasovskii funcionals is considered. A similar idea is developed in [START_REF] Seuret | A novel stability analysis of linear systems under asynchronous samplings[END_REF], where the looped-functional method is introduced. Alternatively, a discrete-time approach can be considered, where the behavior of the system's state at the sampling instants is modeled through difference inclusions [START_REF] Hetel | Discrete and intersample analysis of systems with aperiodic sampling[END_REF]- [START_REF] Huff | Stability and stabilization of aperiodic sampled-data systems subject to control input saturation: a set invariant approach[END_REF].

A common feature of the aforementioned references is that they consider a non-stochastic framework, where hard bounds are given for the time-varying sampling interval. However, taking into account that this assumption may not be realistic, some recent works have addressed the stability analysis and stabilization of linear sampled-data systems subject to a random sampling interval, where the corresponding distribution function has possibly unbounded support [START_REF] Tanwani | Stabilization of deterministic control systems under random sampling: Overview and recent developments[END_REF]- [START_REF] Sun | Analysis and synthesis of networked control systems with random network-induced delays and sampling intervals[END_REF]. In particular, the works in [START_REF] Shen | Stabilization for sampled-data systems under noisy sampling interval[END_REF]- [START_REF] Sun | Analysis and synthesis of networked control systems with random network-induced delays and sampling intervals[END_REF] address the stabilization problem (in a stochastic sense) of the discrete-time model that describes the evolution of the system's state at the sampling instants. However, even if closely related, the stability of this discrete-time model is not equivalent to the stability of the corresponding (continuous-time) sampled-data system, as remarked, for instance, in [START_REF] Tanwani | Stabilization of deterministic control systems under random sampling: Overview and recent developments[END_REF]Pg. 222] and [START_REF] Antunes | Volterra integral approach to impulsive renewal systems: application to networked control[END_REF]Pg. 610].

The aim of this work is to propose a control design method that guarantees the stabilization of the continuous-time system, as it is done for instance in [START_REF] Tanwani | Stabilization of deterministic control systems under random sampling: Overview and recent developments[END_REF]. Our approach is, however, based on a convex condition -a Linear Matrix Inequality (LMI). Moreover, compared to [START_REF] Tanwani | Stabilization of deterministic control systems under random sampling: Overview and recent developments[END_REF], our method provides a stabilization condition that is non-conservative with respect to the considered control law, which is also more general. To derive this condition, we use an instrumental result from [START_REF]Stability of networked control systems with asynchronous renewal links: an impulsive systems approach[END_REF], which deals with the stability analysis of impulsive renewal systems but does not consider the control design problem. As in [START_REF] Tabbara | Input-output stability of networked control systems with stochastic protocols and channels[END_REF] (which does not consider the control design problem either) and [START_REF] Tanwani | Stabilization of deterministic control systems under random sampling: Overview and recent developments[END_REF], we deal with the case of Poisson sampling, i.e. the sampling intervals form a sequence of independent and identically distributed (i.i.d.) random variables with exponential distribution. Furthermore, as a second contribution, we will show how to adapt the approach to optimize the speed of convergence of the trajectories of the closed-loop system to the origin. This is done through a generalized eigenvalue problem [20, Section 2.2.3], which can be efficiently solved numerically.

The paper is organized as follows. Section II contains basic definitions and the problem formulation. Section III presents the main results related to the necessary and sufficient stabilization condition and to the control design method. A detailed comparison between our approach and the one of [START_REF] Tanwani | Stabilization of deterministic control systems under random sampling: Overview and recent developments[END_REF] is presented in Section IV. Section V shows a numerical example. At last, some concluding remarks end the paper.

Notation. P[•] denotes probability and E

[•] expectation. For f : R → R n , f (t -) ≜ lim τ →t,τ<t
f (τ) if the limit exists. Given the square matrices A and B, λ max (A) (λ min (A)) is the maximal (minimal) real part of the eigenvalues of A and Diag(A, B) is a block diagonal matrix formed by A and B. The symbol ⋆ denotes a symmetric block when applied as an entry of a matrix and ≻ (⪰) characterizes positive (semi)-definiteness of a symmetric matrix. I n ∈ R n×n is the identity matrix. ∥ • ∥ denotes the induced 2-norm of a matrix or the Euclidean norm of a vector. Re(•) and Im(•) are, respectively, the real and imaginary parts of the argument. Given a matrix (or vector) A ∈ R m×n , A (i) is its i-th row and A T its transpose.

II. PROBLEM FORMULATION

Consider the continuous-time plant described by the following linear model:

ẋp (t) = A p x p (t) + B p u(t) (1) 
where x p ∈ R n p and u ∈ R m are the state and the input of the plant, respectively. Matrices A p and B p have appropriate dimensions and are constant. It is assumed that the control input is updated at the time instants t k and kept constant (by means of a zero-order-hold) for all t ∈ [t k ,t k+1 ), being given by:

u(t) = K p x p (t - k ) + K u u(t - k ), ∀t ∈ [t k ,t k+1 ), (2) 
where K p and K u are matrices of appropriate dimensions. Notice that the control law is based not only on the sampled value of the state x p but also on the value of the last control input applied to the plant. The term K u u(t - k ) has already showed its benefits in [START_REF] Huff | Stability and stabilization of aperiodic sampled-data systems subject to control input saturation: a set invariant approach[END_REF], where the stabilization problem is solved in a non-stochastic framework.

By convention t 0 = 0 and the difference between two successive sampling instants is denoted by δ k ≜ t k+1t k . It is assumed that {δ k } k∈N is a sequence of i.i.d. random variables with exponential distribution:

F(s) ≜ P[δ k ≤ s] = 1 -e -λ s , ∀k ∈ N, ∀s ≥ 0, (3) 
where λ > 0 and E[δ k ] = 1/λ . Thus, the sampling process

N t ≜ sup{k ∈ N : t k ≤ t} (4) 
is a Poisson process of intensity λ > 0, where [START_REF] Davis | Markov Models & Optimization[END_REF]Pg. 37]

P[N t = n] = e -λt (λt) n n! . ( 5 
)
The Poisson process has been successfully used in the literature to model the stochastic behavior of networked control systems under random sampling [START_REF] Tanwani | Stabilization of deterministic control systems under random sampling: Overview and recent developments[END_REF], [START_REF] Tabbara | Input-output stability of networked control systems with stochastic protocols and channels[END_REF]. It should be noticed that, since E[N t ] < ∞ (cf. [START_REF] Resnick | Adventures in stochastic processes[END_REF]Pg. 186]) and since

E[N t ] < ∞ only if P[N t = ∞] = 0 (cf. [22, Pg. 2]
), there is zero probability of an infinite number of samplings occurring in finite time (i.e. zero probability of Zeno behavior). Denoting x ≜ [x T p u T ] T ∈ R n , n ≜ n p + m, the dynamics (1)-(2) can be described by the following impulsive system [START_REF] Huff | Stability and stabilization of aperiodic sampled-data systems subject to control input saturation: a set invariant approach[END_REF]:

ẋ(t) = f (x(t)) ≜ A c x(t), ∀t ≥ 0,t ̸ = t k , x(0) = x 0 x(t k ) = g(x(t - k )) ≜ A d x(t - k ), ∀k ≥ 1 (6a) (6b)
where

A d ≜ A r + B r K and A c ≜ A p B p 0 0 ∈ R n×n , A r ≜ I n p 0 0 0 ∈ R n×n , B r ≜ 0 I m ∈ R n×m , K ≜ K p K u ∈ R m×n . (7) 
There are alternative impulsive system representations for (1)-( 2). The choice [START_REF] Seuret | A novel stability analysis of linear systems under asynchronous samplings[END_REF], different from the one of [START_REF] Tanwani | Stabilization of deterministic control systems under random sampling: Overview and recent developments[END_REF]Eq. 14], will play a fundamental role to obtain a necessary and sufficient convex condition for the stabilization of the system. Definition 1: The equilibrium point x = 0 of ( 6) is mean exponentially stable (MES) if there exist scalars c, γ 0 > 0 such that for every initial condition

x 0 = x(0) ∈ R n : E[∥x(t)∥ 2 ] ≤ ce -γ 0 t ∥x 0 ∥ 2 , ∀t ≥ 0 ( 8 
)
where γ 0 > 0 will be referred to as a decay rate of the trajectories of the system. In particular, it is possible to show that ( 6) cannot be MES if the pair (A p , B p ) in ( 1) is not stabilizable. Note that in this case the states corresponding to the uncontrollable part of (1) will behave deterministically.

We can now state the problem we focus on in this work. Problem 1 (Mean square stabilization): Given the intensity λ > 0 of the Poisson sampling process, characterize in a non-conservative way all the linear feedback gains K such that the resulting closed-loop system is MES.

Additionally, as a second contribution, constructive conditions will be provided to maximize the parameter γ 0 in [START_REF] Lombardi | A predictive control scheme for systems with variable time-delay[END_REF]. Moreover, the case where the intensity λ > 0 of the Poisson process is not perfectly known will also be addressed.

A. Piecewise deterministic Markov processes

System (6) has a deterministic behavior except for the jumps that occur at the random sampling times. From the memoryless property of the Poisson process [START_REF] Davis | Markov Models & Optimization[END_REF]Pg. 36], it follows that x(t) is a Markov process. More precisely, system (6) belongs to the class of piecewise deterministic Markov processes (PDMP) defined in [START_REF] Davis | Markov Models & Optimization[END_REF]Section 24]. This fact allows to establish the following key result, which is a particular case of [18, Theorem 1] and does not require the functions f (x) and g(x) in ( 6) to be necessarily linear.

Theorem 1: Assume that f (x) and g(x) in ( 6) are globally Lipschitz and consider V :

R n → R,V ∈ C 1 , such that E ∑ t k ≤p |V (x(t k )) -V (x(t - k ))| < ∞, ∀p ∈ N, ∀x 0 ∈ R n , (9) 
where x(t - 0 ) = x(t 0 ) = x(0) by convention. Then, for t ≥ 0,

E[V (x(t))] = V (x 0 ) + E t 0 UV (x(s))ds , ∀x 0 ∈ R n (10)
where

UV (x) ≜ ∇V T (x) f (x) + λ (V (g(x)) -V (x)) (11) 
and ∇V (x) is the gradient of V (x). Relation ( 10) is known as the Dynkin's formula [21, Pg. 31] and can be intuitively interpreted as a stochastic version of the fundamental theorem of calculus. Note that the first term of the right-hand side of ( 11) is the usual time derivative of V (x(t)) along the trajectories of ẋ(t) = f (x(t)) while the second term accounts for the jumps at the sampling instants. Theorem 1 will be later used in the proof of Lemma 2.

III. MAIN RESULTS

In order to solve Problem 1, we will use the following lemma, adapted from [START_REF]Stability of networked control systems with asynchronous renewal links: an impulsive systems approach[END_REF]Theorem 7] to the particular case of interest, i.e. model [START_REF] Seuret | A novel stability analysis of linear systems under asynchronous samplings[END_REF]. This result can be proved by applying Theorem 1 to a quadratic function of the state x(t).

Lemma 1: Assume that

2λ max (A c ) < λ (12) 
holds. Then system ( 6) is MES if and only if there exists P ∈ R n×n , P = P T ≻ 0, such that

A T c P + PA c -λ P + λ A T d PA d ≺ 0. ( 13 
) Remark 1: Since λ > 0, it follows from the particular structure of A c in ( 7) that ( 12) is equivalent to 2λ max (A p ) < λ .

Using Lemma 1, we derive next our main result. Theorem 2: There exists K ∈ R m×n such that the resulting closed-loop system ( 6) is MES if and only if there exist W ∈ R n×n ,W = W T ≻ 0, and Y ∈ R m×n such that

WA T c + A c W -λW ⋆ λ (A r W + B r Y ) -λW ≺ 0 (14) 
where K and Y are related by the equation

K = YW -1 .
Proof: The proof is divided into two steps: (I) show that the statement of Lemma 1 still holds even if assumption [START_REF] Tanwani | Stabilization of deterministic control systems under random sampling: Overview and recent developments[END_REF] is not imposed; (II) show the equivalence between ( 13) and ( 14) using reversible operations. The result of the theorem will then follow directly from (I), (II) and Lemma 1.

Step (I): For the sufficiency part of the result, it suffices to note that (13) directly implies that A T c P + PA cλ P ≺ 0 and, hence, (12) holds automatically.

For the necessity part of the result, we have to show that (13) holds if system (6) is MES. If assumption [START_REF] Tanwani | Stabilization of deterministic control systems under random sampling: Overview and recent developments[END_REF] holds, then it suffices to apply Lemma 1. Thus, let us focus on the nontrivial case where [START_REF] Tanwani | Stabilization of deterministic control systems under random sampling: Overview and recent developments[END_REF] does not hold. It turns out, however, that this case will never happen, as we will prove next. In other words, system (6) cannot be MES if 2λ max (A c ) ≥ λ . More precisely, we will show that

E ∥x(t)∥ 2 ̸ → 0 as t → ∞ (15) 
for an appropriately chosen initial condition x(0) if 2λ max (A c ) ≥ λ . Denote by σ = a + jb, a, b ∈ R, an eigenvalue of A c (possibly complex but not necessarily) which attains the maximum λ max (A c ), i.e. a = λ max (A c ), and by

v = v 1 + jv 2 , v 1 , v 2 ∈ R n
, a corresponding eigenvector. Consider, as initial condition of (6), x(0) = Re(v), where Re(v) ̸ = 0 without loss of generality. Then, recalling that t 1 is the first sampling instant, it follows that, for t ≥ 0:

E ∥x(t)∥ 2 = E ∥x(t)∥ 2 |t 1 > t P[t 1 > t] + E ∥x(t)∥ 2 |t 1 ≤ t P[t 1 ≤ t] ≥ E ∥x(t)∥ 2 |t 1 > t P[t 1 > t] = E ∥ Re(e σt v)∥ 2 |t 1 > t P[t 1 > t], (16) 
where the last equality follows from the fact that x(t) = Re(e σt v) before the first sampling instant t 1 , since it must satisfy (6a). Taking into account that the expression || Re(e σt v)|| 2 is deterministic for a fixed t, the expectation operator can be omitted and, then, after some algebraic manipulations, ( 16) becomes

E ∥x(t)∥ 2 ≥ ∥ Re(e σt v)∥ 2 P[t 1 > t] = e 2λ max (A c )t ∥ cos(bt)v 1 -sin(bt)v 2 ∥ 2 P[t 1 > t],
where we replaced a = λ max (A c ). At last, recalling that t 1 = δ 0 by definition and using (3), one concludes that P[t

1 > t] = 1 -P[δ 0 ≤ t] = e -λt , i.e. E ∥x(t)∥ 2 ≥ e (2λ max (A c )-λ )t ∥ cos(bt)v 1 -sin(bt)v 2 ∥ 2 t→∞ ̸ → 0,
which implies [START_REF] Hu | Stabilization of sampled-data systems with noisy sampling intervals and packet dropouts via a discrete-time approach[END_REF]. Therefore, [START_REF] Lombardi | A predictive control scheme for systems with variable time-delay[END_REF] does not hold for the chosen initial condition and system (6) cannot be MES if 2λ max (A c ) ≥ λ , as we wanted to show.

Step (II): Applying the Schur's complement to (13) and replacing A d = A r + B r K, one gets

A T c P + PA c -λ P ⋆ A r + B r K -(λ P) -1 ≺ 0 (17) 
Next, defining W ≜ P -1 and left and right multiplying the resulting inequality by Diag(W, λ I n ), one has

WA T c + A c W -λW ⋆ λ (A r W + B r KW ) -λW ≺ 0 (18) 
which corresponds to [START_REF] Shen | Quantized/saturated control for sampled-data systems under noisy sampling intervals: A confluent Vandermonde matrix approach[END_REF] with Y ≜ KW . Remark 2: The use of the feedback term K u u(t - k ) in (2) allows to obtain a LMI condition in [START_REF] Shen | Quantized/saturated control for sampled-data systems under noisy sampling intervals: A confluent Vandermonde matrix approach[END_REF] with the change of variable Y = KW , which would not be possible considering K u = 0 without imposing a particular structure on matrix W . However, this does not mean that the use of K u ̸ = 0 is necessary to stabilize the system, that is, it may exist stabilizing solutions with K u = 0 verifying [START_REF] Shen | Quantized/saturated control for sampled-data systems under noisy sampling intervals: A confluent Vandermonde matrix approach[END_REF].

Next we present some extensions of the main result.

A. Optimization of the decay rate

It is possible to adapt condition [START_REF] Shen | Stabilization for sampled-data systems under noisy sampling interval[END_REF] in order to ensure a decay rate γ 0 in [START_REF] Lombardi | A predictive control scheme for systems with variable time-delay[END_REF], according to the next lemma.

Lemma 2: System ( 6) is MES with decay rate γ 0 > 0 if

∃P = P T ≻ 0 : A T c P + PA c -λ P + λ A T d PA d ⪯ -γP (19) 
with γ = γ 0 . Moreover, ( 6) is MES with decay rate γ 0 > 0 only if [START_REF] Tabbara | Input-output stability of networked control systems with stochastic protocols and channels[END_REF] holds for all γ ∈ [0, γ 0 ). Proof: The proof, inspired by the reasoning in [START_REF]Stability of networked control systems with asynchronous renewal links: an impulsive systems approach[END_REF], is shown in the Appendix.

Remark 3: In the result above, if ( 6) is MES with decay rate γ 0 > 0, then [START_REF] Tabbara | Input-output stability of networked control systems with stochastic protocols and channels[END_REF] holds for all γ smaller than and arbitrarily close to γ 0 . The result does not guarantee that [START_REF] Tabbara | Input-output stability of networked control systems with stochastic protocols and channels[END_REF] holds with γ = γ 0 because the matrix P = P(γ) goes unbounded as γ → γ 0 (see the proof of the lemma for the details).

Using Lemma 2, we obtain the following result.

Theorem 3: There exists K ∈ R m×n such that the resulting closed-loop system (6) satisfies [START_REF] Lombardi | A predictive control scheme for systems with variable time-delay[END_REF] with decay rate γ 0 > 0 if there exist W ∈ R n×n ,W = W T ≻ 0, and Y ∈ R m×n such that

WA T c + A c W + (γ 0 -λ )W ⋆ λ (A r W + B r Y ) -λW ⪯ 0 ( 20 
)
where K and Y are related by the equation K = YW -1 . Proof: Considering now Lemma 2, it is analogous to the one of Theorem 2.

Using the result above, it is possible to stabilize system (6) and to maximize its decay rate through the following optimization problem: max W,R,γ 0 γ 0 subject to: (20) [START_REF] Davis | Markov Models & Optimization[END_REF] Note that ( 21) can be solved using the bisection method on γ, since ( 20) is a LMI for a fixed value of this parameter and since the values of γ for which [START_REF] Boyd | Linear Matrix Inequalities in System and Control Theory[END_REF] can be satisfied correspond to a convex subset (an interval) of the real line.

B. Uncertain sampling rate

In this section we assume that the intensity λ of the Poisson sampling process is not exactly known but satisfies

0 < λ lb ≤ λ ≤ λ ub (22) 
for some bounds λ lb and λ ub . Then, it is possible to provide sufficient, though not necessary, stabilization conditions for [START_REF] Seuret | A novel stability analysis of linear systems under asynchronous samplings[END_REF]. Consider the following corollary of Theorem 3.

Corollary 1: Assume that ( 22) holds. Then there exists K ∈ R m×n such that the resulting closed-loop system ( 6) is MES with decay rate γ 0 > 0 if there exist W ∈ R n×n ,W = W T ≻ 0, and Y ∈ R m×n such that 

WA T c + A c W + (γ 0 -λ )W ⋆ λ (A r W + B r Y ) -λW ⪯ 0, ∀λ ∈ {λ lb , λ ub } ( 

IV. COMPARATIVE ANALYSIS

The mean square stabilization problem of system (1) has already been dealt with in [START_REF] Tanwani | Stabilization of deterministic control systems under random sampling: Overview and recent developments[END_REF] considering the control law

u(t) = K p x p (t - k ), ∀t ∈ [t k ,t k+1 ), (24) 
which is a particular case of (2). It should be noticed that the results in [START_REF] Tanwani | Stabilization of deterministic control systems under random sampling: Overview and recent developments[END_REF] are derived from a different impulsive system, where the error e(t) ≜ x p (t)x p (t N t ) between x p (t) and its last sampled value until time t x p (t N t ) is considered as an additional state variable (see [START_REF] Tanwani | Stabilization of deterministic control systems under random sampling: Overview and recent developments[END_REF]Eq. 14]). In this case, due to a different problem structure, it is not possible to obtain non-conservative convex conditions for the computation of K p . In our method, this problem is overcome by considering a different impulsive representation and a more generic control law, which also depends on the past value of the control input. We briefly recall in this section the method of [START_REF] Tanwani | Stabilization of deterministic control systems under random sampling: Overview and recent developments[END_REF], which provides only a partial solution to the stabilization problem, since it is based on the assumption below.

Assumption 1: There exist positive definite matrices R = R T and P = P T which solve the algebraic Riccati equation

A T p P + PA p -2PB p R -1 B T p P = -αP, α > 0, (25) 
and such that (A p -B p R -1 B T p P) is Hurwitz. Moreover, the matrix P = P(α) has the property that for some p > 2 3 lim sup α↓0 λ max (P)

α p < ∞, (26) 
i.e. λ max (P) = O(α p ) as α ↓ 0.

This assumption is rather strong, as recognized in [START_REF] Tanwani | Stabilization of deterministic control systems under random sampling: Overview and recent developments[END_REF]Pg. 239]. Indeed, in general, Assumption 1 is not expected to hold for systems where A p has eigenvalues on the open righthalf complex plane (see Remark 6.4 in [START_REF] Tanwani | Stabilization of deterministic control systems under random sampling: Overview and recent developments[END_REF]). Note that even verifying Assumption 1 is not a simple task. It is necessary not only to solve the Riccati equation ( 25) to obtain the matrix P = P(α) ≻ 0, but also to analyze property (26). It is possible to get some insight about the behavior of the ratio λ max (P)/α p computing it for a grid of values of the pair (α, p) ∈ (0, ∞) × ( 23 , ∞). However, this numerical procedure does not formally guarantee that (26) holds.

In case Assumption 1 is satisfied, the stabilizing control law is given by the result below [START_REF] Tanwani | Stabilization of deterministic control systems under random sampling: Overview and recent developments[END_REF]Theorem 6.5].

Lemma 3: Suppose that Assumption 1 holds. Then there exists α > 0 (sufficiently small) such that the feedback gain

K p = -R -1 B T p P(α) (27) 
where P(α) solves (25) renders the closed-loop system composed by ( 1) and ( 24) mean exponentially stable. Notice that Lemma 3 is non-constructive in the sense that it does not provide a valid value for α > 0, which difficults the use of this result in practice. On the other hand, our method does not have this limitation and can be easily applied, since it relies on semidefinite programming problems. Moreover, the non-conservative result of Theorem 2 is valid in the general case and not only for the class of systems which satisfy Assumption 1.

V. NUMERICAL EXAMPLE

Consider the following system matrices taken from [START_REF] Huff | Stability and stabilization of aperiodic sampled-data systems subject to control input saturation: a set invariant approach[END_REF]:

A p = 0 1 1 0 , B p = 0 -5 , (28) 
where λ = 3. Assumption 1 was numerically tested and does not seem to hold, what is in accordance with Remark 6.4 of [START_REF] Tanwani | Stabilization of deterministic control systems under random sampling: Overview and recent developments[END_REF], since one of the eigenvalues of A p is equal to 1. Thus, the stabilization result of [START_REF] Tanwani | Stabilization of deterministic control systems under random sampling: Overview and recent developments[END_REF], i.e. Lemma 3, cannot be applied in this case. On the other hand, solving [START_REF] Davis | Markov Models & Optimization[END_REF], one obtains the following feedback gain:

K = 0.2536 0.2574 0.0032 , (29) 
which renders the closed-loop system mean exponentially stable with decay rate γ 0 = 0.49. The corresponding Lyapunov matrix P is given by:

P = W -1 =   0.0668 0.0665 -0.221 0.0665 0.0683 -0.222 -0.221 -0.222 0.885   . ( 30 
)
Figure 1 shows several trajectories of the closed-loop system in the x p -subspace for some realizations of the sequence {δ k } k∈N , where the initial conditions, depicted by blue circles, satisfy ∥x p (0)∥ = 1. Moreover, the control law ( 2) is initialized with u(0 -) = 0. As one should expect, the trajectories converge to the origin. We recall that x p (t) is continuous. On the other hand, its derivative is discontinuous at the sampling instants (represented by black circles) because of the update of the control input u(t) using the law (2). Trajectories of the closed-loop system (28)-(29) in the x psubspace, where the initial conditions x p (0) are depicted by blue circles and the sampling instants t k by black ones.

VI. CONCLUSIONS

A new control design method for linear sampled-data systems under Poisson sampling, which is based on semidefinite programming, was presented. As discussed above, unlike [START_REF] Tanwani | Stabilization of deterministic control systems under random sampling: Overview and recent developments[END_REF], this approach provides a necessary and sufficient stabilization condition for the system and can be easily implemented numerically. Moreover, unlike [START_REF] Shen | Stabilization for sampled-data systems under noisy sampling interval[END_REF]- [START_REF] Sun | Analysis and synthesis of networked control systems with random network-induced delays and sampling intervals[END_REF], which focus on the discrete-time trajectories of the system, we formally guarantee the stability of the continuous-time system.

An idea of future work consists in considering measurement noise as well as other (and more general) distribution functions for the sampling interval of the system. Besides that, the possibility of packet dropouts can also be explicitly considered, as in [START_REF] Hu | Stabilization of sampled-data systems with noisy sampling intervals and packet dropouts via a discrete-time approach[END_REF], and, in principle, it is also possible to extend the approach to cope with input nonlinearities, like saturation and quantization, as in [START_REF] Shen | Quantized/saturated control for sampled-data systems under noisy sampling intervals: A confluent Vandermonde matrix approach[END_REF].

APPENDIX: PROOF OF LEMMA 2

Since time-varying Lyapunov functions will be applied, it will be convenient to consider the augmented process x(t) ≜ (x(t), v(t)) ∈ R n × R ≥0 , where v(t) = 1, v(0) = v 0 ∈ R ≥0 and v(t) = v 0 +t, which also is a PDMP [START_REF] Davis | Markov Models & Optimization[END_REF]Pg. 84]. In particular, the dynamics of x(t) has the form (6) with f ( x) ≜ ( f (x), 1) = [(A c x) T 1] T and ḡ( x) ≜ (g(x), v) = [(A d x) T v] T . Thus, for a function

W (x, v) = x T Pxe γv , P = P T ⪰ 0, γ ≥ 0, ( 31 
)
the Dynkin's formula [START_REF] Fujioka | A switched Lyapunov function approach to stability analysis of non-uniformly sampled-data systems with robust LMI techniques[END_REF] (with the appropriate notation changes) holds with UW (x, v) = x T (PA c + A T c P + γP + λ A T d PA dλ P)xe γv (32) as long as ( 9) is satisfied. To show that (9) holds, notice first that x(t) can be written as

x(t) = Φ(t)x 0 ( 33 
)
where Φ(t) ≜ e A c (t-t N t ) A d e A c (t N t -t N t -1 ) . . . A d e A c (t 2 -t 1 ) A d e A c t 1 (34)

is the (random) transition matrix of the system and N t , defined in (4), counts the number of samplings until time t. From these relations, it follows that

∥x(t)∥ ≤ c N t 2 e c 1 t ∥x 0 ∥ (35) 
where

c 1 ≜ ∥A c ∥ ≥ 0 and c 2 ≜ ∥A d ∥ ≥ 1. Moreover, for k ≥ 1, ∥x(t k )∥ ≤ c k 2 e c 1 t k ∥x 0 ∥ ∥x(t - k )∥ ≤ c k-1 2 e c 1 t k ∥x 0 ∥ ≤ c k 2 e c 1 t k ∥x 0 ∥. (36) 
Thus, given p ∈ N and

(x 0 , v 0 ) ∈ R n × R ≥0 , one has E ∑ t k ≤p |W (x(t k ), v(t k )) -W (x(t - k ), v(t - k ))| ≤ E ∑ t k ≤p e γv(t k ) (x T (t k )Px(t k ) + (x T (t - k )Px(t - k )) ≤ (36) E ∑ t k ≤p e γv(t k ) 2∥P∥(c k 2 e c 1 t k ∥x 0 ∥) 2 ≤ E ∑ t k ≤p e γv(p) 2∥P∥(c k 2 e c 1 p ∥x 0 ∥) 2 = e γ(v 0 +p+2c 1 p) 2∥P∥∥x 0 ∥ 2 E N p ∑ k=0 c 2k 2 ≜ CE N p ∑ k=0 c 2k 2 = C ∞ ∑ j=0 P[N p = j] j ∑ k=0 c 2k 2 = C ∞ ∑ k=0 c 2k 2 ∞ ∑ j=k P[N p = j] = C ∞ ∑ k=0 c 2k 2 P[N p ≥ k] = C ∞ ∑ k=0 c 2k 2 P[t k ≤ p] < ∞
where the order of summation was changed in the third-to-last equality, and the last inequality follows from [ 

(x, v) ∈ R n × R ≥0 : x T (A T c P + PA c -λ P + λ A T d PA d )xe γv ≤ -γx T Pxe γv , which implies, according to (32), that UW (x, v) ≤ 0, ∀(x, v) ∈ R n × R ≥0 . Thus, applying Theorem 1, one has E[W (x(t), v(t))] = W (x 0 , v 0 ) + E t 0 UW (x(s), v(s))ds ≤ W (x 0 , v 0 ), ∀(x 0 , v 0 ) ∈ R n × R ≥0 . (37) Considering v 0 = 0 (which means that v(t) = t), (37) becomes E[x T (t)Px(t)e γt ] ≤ x T 0 Px 0 , ∀x 0 ∈ R n or, equivalently, E[x T (t)Px(t)] ≤ x T
0 Px 0 e -γt , ∀x 0 ∈ R n . Consequently, using the fact that P is positive definite, one concludes after some algebraic manipulations that E[∥x(t)∥ 2 ] ≤ λ max (P) λ min (P) e -γt ∥x 0 ∥ 2 , ∀x 0 ∈ R n , and the result follows.

(Necessity part) Given γ ∈ [0, γ 0 ), consider W : R n × R ≥0 → R ≥0 defined by W (x 0 , v 0 ) ≜ E (x 0 ,v 0 ) ∞ 0 ∥x(s)∥ 2 e γv(s) ds (38)

where E (x 0 ,v 0 ) emphasizes that the initial condition considered is (x(0), v(0)) = (x 0 , v 0 ) with probability one (the subscript will be omitted from now on). Since ( 8) holds (by assumption, ( 6) is MES with decay rate γ 0 ), W (x 0 , v 0 ) is indeed well defined (i.e. it is finite). More precisely, interchanging expectation with integral operations and, then, replacing v(s) = v 0 + s, one has where we used the fact that x(t) = e A c t x 0 before the first sampling time t 1 and applied Exercise 3.17 of [START_REF] Khalil | Nonlinear Systems[END_REF], which provides a lower bound for ∥x(t)∥. Fix now a constant (deterministic) value t * > 0 and observe that W (x 0 ,v 0 ) ≥ e γv 0 ∥x 0 ∥ where we applied (3) (recall that t 1 = δ 0 by definition) and L ≜ e -λt * t * 0 e -2∥A c ∥s ds > 0. Comparing (40) and (41), it follows that P ≻ 0, as claimed.

W (x 0 , v 0 ) =
Applying Theorem 32.2 of [START_REF] Davis | Markov Models & Optimization[END_REF] to (38), we conclude that UW (x 0 , v 0 ) = -∥x 0 ∥ 2 e γv 0 (42)

Combining (42) (with (x 0 , v 0 ) replaced by (x, v)) and (32) and since these eqs. hold for all x ∈ R n and v = 0, it follows that PA c + A T c P + γP + λ A T d PA dλ P = -I n ≺ 0, that implies [START_REF] Tabbara | Input-output stability of networked control systems with stochastic protocols and channels[END_REF].

  [START_REF] Khalil | Nonlinear Systems[END_REF] where K and Y are related by the equation K = YW -1 .

Fig. 1 .

 1 Fig. 1.Trajectories of the closed-loop system (28)-(29) in the x psubspace, where the initial conditions x p (0) are depicted by blue circles and the sampling instants t k by black ones.
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 000111 ∥x(s)∥ 2 e γv(s) ds = e γv 0 ∞ ∥x(s)∥ 2 e γs ds.(39)At last, applying (8) one getsW (x 0 , v 0 ) ≤ e γv 0 ∞ 0 ce -(γ 0 -γ)s ∥x 0 ∥ 2 ds = ce γv 0 γ 0γ ∥x 0 ∥ 2 < ∞.Moreover, note from (33) and (39) thatW (x 0 , v 0 ) = e γv 0 x T 0 ∞ [Φ T (s)Φ(s)]e γs ds x 0 ≜ e γv 0 x T 0 Px 0 (40)Let us find a lower bound for W (x 0 , v 0 ) to show that P = P T is positive definite. Consider again (39) and note thatW (x 0 , v 0 ) = e γv 0 E ∞ 0 ∥x(s)∥2 e γs ds ≥ e γv 0 E t ∥x(s)∥ 2 ds = e γv 0 E t ∥e A c s x 0 ∥ 2 ds ≥ e γv 0 ∥x 0 ∥ 2 E t -2∥A c ∥s ds

  Assume that[START_REF] Tabbara | Input-output stability of networked control systems with stochastic protocols and channels[END_REF] holds and define W (x, v) as above, i.e. W (x, v) ≜ x T Pxe γv . Left and right multiplying (19) by x T and xe γv , respectively, one gets, for all
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  -2∥A c ∥s ds t 1 > t * P[t 1 > t * ] ≥ e γv 0 ∥x 0 ∥ 2 E

			t 1	e -2∥A c ∥s ds
			0
	≥ e γv 0 ∥x 0 ∥ 2 E	0	t 1 e t * e -2∥A
		0	

2 E c ∥s ds t 1 > t * P[t 1 > t * ] = e γv 0 ∥x 0 ∥ 2 t * 0 e -2∥A c ∥s dse -λt * = Le γv 0 ∥x 0 ∥ 2 (41)
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