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Abstract: In this paper, we develop a reliable Linear Parameter-Varying (LPV) model of
the pitch channel dynamics of a fin-stabilized projectile. Among the available LPV design
approaches, the State Transformation is analyzed, being particularly suitable for a class of
systems defined as output nonlinear, and compatible with the projectile dynamics formulation.
The State Transformation provides a quasi-LPV representation, which corresponds to an exact
transformation of the original nonlinear model, preserving relevant couplings that are usually
lost through the classical approximation methods. Some important considerations regarding the
limitations of this approach are also discussed and verified in the missile dynamics. The accuracy
of the obtained quasi-LPV model is assessed by means of open-loop simulations, comparing the
performance to the original nonlinear model at selected flight conditions.

Keywords: Linear parameter-varying systems, Flight dynamics modeling, Model validation.

1. INTRODUCTION

In the field of aerospace applications, the Linear Parameter-
Varying (LPV) framework has already provided successful
results in terms of both system modeling and control de-
sign. However, it implies the nontrivial transformation pro-
cess of the original nonlinear system into the corresponding
LPV formulation, which requires an exhaustive investiga-
tion. A standard approach, especially for industrial set-
tings, is based on the Jacobian linearization (Theodoulis
et al. (2010), Prempain et al. (2001)). The LPV model
is obtained as a collection of linearized LTI plants, where
the investigated parameters are ”frozen” around specific
design values. Despite its feasibility, the main drawbacks
of this method rely on the inability to fully capture the
system dynamics away from the design points, potentially
neglecting important nonlinearities and coupling terms
that can affect the system behavior.

Several alternative approaches for LPV system derivation
have been proposed in the last years with successful ap-
plications, such as function substitution (Pfifer (2012),
and Marcos and Balas (2004)), velocity-based techniques
(Leith and Leithead (1998)), and State Transformation
(Shamma and Cloutier (1993), and Carter and Shamma
(1996)). In this paper, the latter method is investigated
to develop a reliable quasi-LPV model for a projectile
dynamics pitch channel autopilot. The structural configu-
ration of the projectile, and the Bank-To-Turn flight strat-
egy intended to be implemented, may generate relevant
nonlinear couplings in the projectile dynamics. The State
Transformation method provides an exact transformation

between the original nonlinear system and the obtained
quasi-LPV model, thus no approximations are involved in
the design, increasing its capability to represent the origi-
nal dynamics. A simplified version of the original nonlinear
model is first developed. This allows to respect the require-
ments imposed by the State Transformation technique
without penalizing the nonlinear coupling terms present
in the dynamics. The quasi-LPV formulation derived from
the simplified nonlinear model is strongly dependent on
the feasible trim map and presents an internal feedback
loop that updates in real-time the trimmed input at the
current flight conditions. In order to avoid any stability
and robustness issues, a second quasi-LPV model is gener-
ated by augmenting the system with an integrator at the
input. The performance of the two quasi-LPV models is
analyzed and compared with both the original nonlinear
dynamics and the simplified one to assess the impact of
the assumptions on the model reliability.

The investigated nonlinear model dynamics is discussed in
Section 2, together with some relevant insight related to
the projectile aerodynamic coefficients. Section 3 addresses
more in details the structure of the output nonlinear (or
output dependent) class of systems, as well as the State
Transformation approach employed for the derivation of
the quasi-LPV model. Important considerations are also
discussed, with the intention of reformulating the non-
linear model in a suitable form that respects the State
Transformation assumptions. Finally, in Section 4, open-
loop simulations are performed, aiming to compare the
time response of the nonlinear and quasi-LPV models and
to assess the accuracy of the latter.



2. PROJECTILE NONLINEAR MODEL

The investigated concept consists of a 155 mm fin-
stabilized guided projectile, equipped with a set of four
symmetrical rear fins, and two horizontal front canards, in
a non-coplanar configuration, as shown in Fig. 1.

Canards

Fins

Fig. 1. Projectile concept: details on the control surfaces.

The complete nonlinear reference model has been derived
in Vinco et al. (2022). The original equations of motion
describing the projectile translational dynamics in the
body coordinates (B) have been converted to the more
convenient stability coordinates, in terms of the angle-
of-attack, the sideslip-angle, and the true airspeed (zero
relative wind), respectively α, β, and V , as in Zipfel (2014).

2.1 Pitch Dynamics

The proposed study focuses on the pitch channel of the
projectile dynamics, intended to be analyzed in view of the
future autopilot design. The projectile behavior is modeled
through the dynamics of α, and the pitch rate, q:

α̇ =− X sinα

mV cosβ
+

Z cosα

mV cosβ

+
g

V cosβ
(sinα sin θ + cosα cos θ cosϕ)

+ q − p tanβ cosα− r tanβ sinα,

q̇ =
1

Iyy
[M − pr (Ixx − Izz)] ,

(1)

where m stands for the mass of the projectile, g is the
acceleration of gravity, Ixx, Iyy, and Izz refer to the
moments of inertia about the x, y, and z axes, respectively.
Additionally, p and r, correspond to the roll and yaw rates,
respectively, while ϕ and θ indicate the roll and pitch
angles. In particular, the air mass is assumed at rest, so
no relative wind contributions are modeled and, due to the
projectile planar symmetry with respect to the x − z and
x−y planes, the products of Inertia Ixy, Iyz, and Ixz result
to be negligible.

2.2 Aerodynamic Model

Concerning the projectile aerodynamics, the Simple Linear
aerodynamic model discussed in Vinco et al. (2022) is
here employed, in reason of the observed high fidelity level
and the lower mathematical complexity. Furthermore, the
influence of β on the pitch dynamics is expected to be
negligible. The longitudinal and vertical forces, X and Z,
and the pitching moment, M , are functions of the dynamic

pressure q̄ = 1
2ρ (h)V

2, the reference surface S and caliber
d, the air density ρ, and the altitude h, as follows:

X = q̄S
(
CXS

+ CXδeff

)
,

Z = q̄S

[
CZS

+

(
d

V

)
CZD

q + CZδq

]
,

M = q̄Sd

[
CmS

+

(
d

V

)
CmD

q + Cmδq

]
.

(2)

The projectile static coefficients, CXS
(M, α), CZS

(M, α),
and CmS

(M, α) were derived in the Simple Linear model
as a function of the Mach number, M, and the angle α.
Similarly, the virtual control coefficients CXδeff

(M, δeff),

CZδq
(M, δq), Cmδq

(M, δq) are expressed with respect to
the virtual pitch δq, and virtual roll δp control deflections,

their nonlinear combination δeff =
√

δ2p + δ2q , and the

Mach number.

CXδeff
= CXδ0

(M) + CXδ2
(M) sin2 δeff,

CZδq
= CZδ1

(M) sin δq + CZδ3
(M) sin3 δq,

Cmδq
= Cmδ1

(M) sin δq + Cmδ3
(M) sin3 δq.

(3)

In particular, the virtual deflections δp and δq, are gen-
erated by the mutual interactions between the individual
right and left canard deflections, δr and δl, respectively. As
shown in Figs. 2a - 2b, the virtual roll is defined by the
differential deflection δp = δl−δr

2 , while the virtual pitch

by the concurrent deflection δq = δl+δr
2 , respectively.

Right

Left

CZδr
(δr)

CZδl
(δl)

Clδp
(δp)

B

(a)

RightLeft

CZδr
(δr)CZδl

(δl)

Cmδq
(δq)

B

(b)

Fig. 2. Individual and virtual control deflections: (a) vir-
tual roll, (b) virtual pitch.

Coherently, the virtual control coefficients were modeled
as an approximation of the global coefficients:

CZδ
= CZδr

(M, δr) + CZδl
(M, δl),

Cmδq
= Cmδr

(M, δr) + CZδl
(M, δl),

(4)

generated by the linear superposition of the individual ca-
nard contributions. The derivation is extensively discussed
in Vinco et al. (2022). An interpolation analysis was con-
ducted to define the deflection range in which the canards
response results to be linear, motivating the superposition
of the individual deflections in a combined contribution.
The results exhibited a reliable level of accuracy for the
deflection range δr, δl ∈ [−25◦, 25◦].

Finally, the aerodynamic damping coefficients CZD(M, α)
and CmD(M, α) are also addressed in the model, aiming
to provide with an exhaustive characterization of the
projectile behavior.



3. QUASI-LPV MODELING

Linear Parameter-Varying refers to a class of systems
whose state space representation is defined as a continuous
function of a time-varying vector of scheduling parameters
ρ 1 , assumed to be measurable in real-time. For a detailed
definition, the reader can refer to Sename et al. (2013)
and Mohammadpour and Scherer (2012). When the state
of the system, x, is decomposed into a scheduling subset,
z(t), and a nonscheduling subset w(t), the system is specif-
ically indicated as quasi-LPV. Coherently, the scheduling
parameters are divided into an exogenous subset, Ω(t), and
an endogenous subset, z(t).

x(t) = [z(t) w(t)]T , ρ(t) = [z(t) Ω(t)]T .

3.1 State Transformation

The approach was first introduced in Shamma and
Cloutier (1993) and later further elaborated in Leith and
Leithead (2000). It consists of a state transformation
aimed to remove all the nonlinearities present in the model,
that do not depend on the scheduling variables. As exten-
sively discussed in Leith and Leithead (2000), the State
Transformation is suitable for a restricted class of systems,
defined as Output Nonlinear or Output Dependent, and
expressed in the generic form:

[
ż
ẇ

]
=

[
f1(ρ)
f2(ρ)

]
+

[
A11(ρ) A12(ρ)
A21(ρ) A22(ρ)

] [
z
w

]
+

[
B1(ρ)
B2(ρ)

]
u,

y = z, (5)

where u(t) ∈ Rnu represents the control input, and the
model nonlinearities f1(ρ) and f2(ρ), appear only as a
function of the measured output z(t) ∈ Rnz , and of a
selected set of exogenous parameters Ω(t).

The transformation is achieved by means of trimming
functions of the nonscheduling states w(t), and of the
control input, assuming that nz = nu. By considering
a feasible trim region of the flight envelope, where the
trimming functions weq(ρ) and ueq(ρ), respectively, are
continuously differentiable for every z and ρ, such that:

[
0
0

]
=

[
f1(ρ)
f2(ρ)

]
+

[
A11(ρ) A12(ρ)
A21(ρ) A22(ρ)

] [
z

weq(ρ)

]
+

[
B1(ρ)
B2(ρ)

]
ueq(ρ),

(6)

and by defining the new set of transformed entries:

ξ(t) := w(t)− weq(ρ(t)),

ν(t) := u(t)− ueq(ρ(t)),

Ã22(ρ) := A22(ρ)−
∂weq

∂z
A12(ρ),

B̃2(ρ) := B2(ρ)−
∂weq

∂z
B1(ρ),

E(ρ) := −∂weq

∂Ω
,

(7)

1 The scheduling parameters set ρ used in Sections 3 - 4 is different
from the air density, ρ(h), defined in Section 2.

the original nonlinear system in (5) can be reformulated
as a quasi-LPV model, in the form:

[
ż

ξ̇

]
=

[
0 A12(ρ)

0 Ã22(ρ)

] [
z
ξ

]
+

[
B1(ρ)

B̃2(ρ)

]
ν +

[
0

E(ρ)

]
Ω̇. (8)

In particular, the additional input term Ω̇ describes the
impact of the dynamics of the exogenous variables on the
system, through the trimming functions. For the current
analysis, this term can be assumed as a disturbance to be
rejected and thus neglected in the model, as discussed in
Balas (2002). However, it represents an interesting aspect
to be further investigated for future works.

The dependence of this formulation on the feasible trim
map can be inferred from (7). Indeed, the definition of
the deviated input ν depends on the selected equilibrium
condition ueq. From a stability and robustness perspective,
this internal feedback loop may affect the performance
of the system and the following control design. Thus,
a straightforward solution would be to require that the
trimmed input ueq(ρ) = 0, imposing a strong limitation to
the region of the trim map that respects this condition.

An interesting design alternative consists of adding an
integrator at the plant input. By defining, u =

∫
σ, we

can reformulate the system (8), as:

żξ̇
ν̇

 =

0 A12(ρ) B1(ρ)

0 Ã22(ρ) B̃2(ρ)

0 Ã32(ρ) B̃3(ρ)

[
z
ξ
ν

]
+

[
0
0
I

]
σ, (9)

with:

Ã32(ρ) := −∂ueq

∂z
A12(ρ); B̃3(ρ) := −∂ueq

∂z
B1(ρ). (10)

In this way, the new input is uniformly zero at every
equilibrium point and the feedback loop does not affect the
system anymore. Furthermore, this solution is motivated
by the assumption that the controller intended to be
designed contains pure integral action for steady state
tracking error elimination. Thus, the controller integral
action can be formally included in the system description.

The main advantage of the State Transformation approach
relies on the exact transformation between the original
nonlinear system and the obtained quasi-LPV model,
which avoids any form of approximation, as opposed to the
classical Jacobian linearization. Additionally, due to the
integration of the control input, the reliability of the quasi-
LPV model does not depend on the specific operating

point, and the term ẇeq =
∂weq

∂z ż, included in (7), allows
to account for any off-equilibrium conditions.

3.2 Pitch Channel quasi-LPV Model

As previously mentioned, the State Transformation ap-
proach results to be very suitable for aerospace appli-
cation. It is easy to observe how the pitch channel dy-
namics, presented in (1), is already formulated as the
Output Nonlinear system in (5). In particular, the state
variables [z, w]T = [α, q]T represent the measured and the



unmeasured output, respectively, while the set of varying
parameters intended to be investigated corresponds to
[z,Ω]T = [α, (V, h)]T , being α and [V, h] the endogenous
and the exogenous variables, respectively.

The reader can notice in the complete projectile nonlinear
model in Vinco et al. (2022), that the true airspeed V
was defined through its components along the main body
coordinates, [uB, vB, wB]

T, included in the model state.
Thus, V itself could be considered as a state for the
pitch dynamics, describing the long period longitudinal
dynamics (phugoid) of the projectile. However, because of
the lack of any relevant control authority on the projectile
longitudinal velocity, uB, V is addressed in this paper as an
exogenous scheduling variable. As implied by the Output
Nonlinear formulation, all the nonlinearities involved in
the model are expressed as a function of the measured
output. The only exceptions rely on the control coefficient
definitions in (3). Indeed, (CXδeff

, CZδq
, Cmδq

) are modeled
as nonlinear functions of the virtual control inputs δq and
δp. Consequently, the system is not affine with respect to
the control inputs.

In order to adjust the projectile dynamics into a suitable
form, a correction of the control terms is required. To avoid
any approximation through a standard Taylor expansion,
the aerodynamics data analyzed inVinco et al. (2022) have
been investigated with a lower order regression model. In
particular, in Figs. 3a - 3b, the vertical force, and pitching
moment canards coefficients (symmetrical for the individ-
ual right and left canard deflections, δr and δl) exhibit a
linear response for a bounded range of deflections. (The
reader should notice that all the presented data have been
normalized in reason of confidentiality.)
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Fig. 3. Canards response for deflection δi, i = r, l: (a)
vertical force coefficient, (b) pitching moment coef-
ficient. (All the data have been normalized in reason
of confidentiality.)

By restricting the analysis to the deflections range (nor-
malized) δr, δl ∈ [−0.7◦, 0.7◦], and by employing the first
order regression models CZδr

= CZδ1
δr, and Cmδr

=

Cmδ1
δr, the obtained accuracy results higher than 95% in

terms of Coefficient of Determination, for both the coef-
ficients. The same results are observed for the left canard
deflection. As discussed in Vinco et al. (2022), a second
analysis is then performed in order to model the resulting
global coefficients as in (4), into the corresponding virtual
formulations (CZδq

,Cmδq
).

The interpolation error is expressed in terms of the dif-
ference between the global coefficients and the virtual
ones, normalized by the value of the original aerodynamic
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Fig. 4. Interpolation error: (a) - (b) vertical force coefficient
at different Mach values; (c) - (d) pitching moment
coefficient at different Mach values. (All the data have
been normalized in reason of confidentiality.)

data. As shown in Fig. 4, both the vertical force and
the pitching moment exhibit an average error lower than
10% in the investigated deflection range. Thus, the control
coefficients can be reformulated in a way to be affine with
respect to the pitch dynamics. The longitudinal control
force, CXδeff

, nonlinear function of δp and δq, is neglected
for the purposes of this analysis. The choice is motivated
by the intent to operate in a gliding flight condition, a
subsonic regime, where the drag generated by the canard
deflections does not provide a relevant impact on the
projectile aerodynamics.

4. MODEL VALIDATION

In order to assess the reliability of the obtained quasi-
LPV model, a campaign of open-loop simulations has
been performed. The scheduling parameters investigated
during the analysis are ρ = [α, V ], while the altitude h is
assumed as constant. In particular, for each combination
of the parameters, the corresponding trimming functions
weq(ρ) = qeq(ρ) and ueq(ρ) = δq,eq(ρ) are evaluated to
define the initial equilibrium condition of the simulation.
The analysis shown in Figs. 5a - 5b provide a map of the
equilibrium points variation as a function of the scheduling
parameter.
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Fig. 5. Trimming functions analysis: (a) pitch rate equilib-
rium values; (b) control deflection equilibrium values.



The ranges of variation of the angle of attack correspond to
α ∈ [10◦,16◦], coherently with the assumption of a smooth
gliding flight strategy. The velocity range is expressed in
terms of the equivalent Mach values, since the intent is
to investigate the performance in the subsonic regime,
M ∈ [0.1, 1]. The conversion is based on the relation
V = Ma, where the speed of sound, a, is constant due
to the assumption of constant altitude. In reason of the
projectile stability limitations discussed inVinco et al.
(2022), and the lower equilibrium deflection commands
observed in Fig. 5b, the equilibrium conditions considered
for the following performance comparison are shown in
Tab. 1. Indeed, the low equilibrium deflection, δq,eq, allows
the employment of a larger input command as a form of
perturbation to the system, without exceeding the validity
range of the aerodynamic model.

Table 1. Trim point and equilibrium conditions.

α(deg) V (m/s) h(m) qeq(deg/s) δq,eq(deg)

14 158.026 6029 -1 0.6

In the following sections, both the quasi-LPV model for-
mulated as in (8), with the internal feedback loop affecting
the control input, and the Augmented quasi-LPV model
as in (9) assuming integral action on the input, are in-
vestigated. In particular, their open-loop responses are
compared to the ones of the original complete nonlinear
model (NL), including the aerodynamics in (3), and the
simplified one (NLsim), presenting the linear aerodynamic
model discussed in Section 3.

4.1 Quasi-LPV Model

Nonlinear

Dynamics

α

Aerodynamics
quasi-LPV

Output

Deviation

qdev
α

δq,dev

q
α

δqδq

α

Trimming
δq,eq

-

+

qdev
α

δq,dev

δq,dev

Fig. 6. Quasi-LPV model design scheme.

The simulation is performed assuming the initial equilib-
rium conditions in Tab. 1, and a set of input commands
corresponding to a first deflection δq1 = 20◦ at t1 = 5 s, and
second deflection of δq2 = −15◦ at t2 = 30 s. The results
in Fig. 7a - 7c show the open-loop time responses related
to the transformed states α(t) and qdev(t) = q(t)− qeq(t),
and to the transformed input δq,dev(t) = δq(t) − δq,eq(t),
respectively. In particular, the qdev(t) and the δq,dev(t) of
the nonlinear models, are obtained in post processing by
applying the transformation to the original state q(t), and
input δq(t), of the system, as shown in Fig. 6.

The curves describing the quasi-LPV (q-LPV) and the
simplified nonlinear model (NLsim) are perfectly over-
lapped since the former has been obtained through an
exact transformation of the latter. On the other side,
a small mismatch in the convergence values is observed
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Fig. 7. Simulation time responses: (a) angle-of-attack; (b)
deviated pitch rate; (c) deviated input deflections.

with respect to the full nonlinear model (NL), because of
the different aerodynamics. For the same reason, the NL
model shows some initial oscillations around the equilib-
rium conditions, which have been evaluated on the base of
the NLsim model. The results in Tab. 2 present the Root
Mean Square Error (RMSE) evaluated between the three
models for each of the state variables, and normalized by
the maximum variation range of each state variable related
to the NL model. In particular, the RMSE values obtained
between the NLsim and the q-LPV models are very small,
while the others are almost the same, coherently to what
previously observed in the simulation results.

Table 2. RMSE results: quasi-LPV model.

NL - qLPV NLsim - qLPV NL - NLsim

α 0.1302 0.0018 0.1310

qdev 0.1332 0.0020 0.1342

δq,dev 0.1352 0.0019 0.1361

The large oscillations characterizing all the three responses
can be associated with the stability of the projectile dy-
namics since, at the flight conditions in Tab. 1, the system
is near the limit of static stability.

4.2 Augmented quasi-LPV Model

The same simulation is performed on the Augmented
quasi-LPV model. The main difference consists of the
input commands (δq1 , δq2) that are injected into the

α

Aerodynamics

Integrator
δ̇q δq

qdev
α

δq,devOutput

Deviation

Nonlinear

Dynamics

qdev
α

δq,dev

quasi-LPV
Augmented

q
α

δq

Fig. 8. Augmented quasi-LPV model design scheme.
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Fig. 9. Simulation time responses: (a) angle-of-attack; (b)
deviated pitch rate; (c) deviated input deflections.

systems since the input now are integrated for both the
quasi-LPV and the nonlinear models 2 . In this context,
two pulses simulating the canards deflection rates (δ̇q1 ,

δ̇q2) are employed as perturbations. The deflection rates
are selected such that, once integrated, they provide the
same control deflection (δq1 , δq2), previously defined. The
curves in Figs. 9a - 9c, related to the Augmented q-LPV
and the NLsim models, present a mild difference due to the
way the integrator is implemented. Indeed, in the former
system, the deflection is accounted for as a state, thus the
integrator is part of the internal dynamics. Differently, in
the two nonlinear systems the integral action is applied to
the input before being injected into the system.

Table 3. RMSE results: Augmented quasi-LPV model.

NL - qLPV NLsim - qLPV NL - NLsim

α 0.0968 0.0373 0.0913

qdev 0.0341 0.0585 0.0805

δq,dev 0.1705 0.0655 0.1886

The main advantage of the Augmented formulation con-
sists in the removal of the internal loop updating the
trimming values. As previously discussed, it can be critical
in terms of performance since any forms of unmodeled
dynamics or approximation are injected as input distur-
bances. Additionally, the RMSE values in Tab. 3 show a
better accuracy between the Augmented q-LPV model and
the NL one with respect to the results in Tab. 2, confirming
the improvement of the augmented formulation. The dif-
ferences between the NL and the NLsim models, generated
by the aerodynamics approximations, appear to be re-
duced by the integration process. The only exception relies
on deviated deflection, δq,dev, where the integration tends
to increase the bias in the convergence values. Finally, it is
interesting to observe how the convergence values for the
three states are almost the same as the ones in Figs. 7a -
7c, but the oscillation amplitudes are way narrower.

2 An integrator is added at the nonlinear system input to be
consistent with the q-LPV formulation during the comparison.

5. CONCLUSION

In this paper, the pitch dynamics of a guided projectile in
investigated. The nonlinear model is converted through the
State Transformation approach into two quasi-LPV mod-
els. The first model, (quasi-LPV), presents a strong depen-
dence on the trim map due to an internal loop updating the
system input. In the second one, (Augmented quasi-LPV),
this issue is addressed by augmenting the system with an
integrator at the input. Open-loop simulation results and
RMSE analysis show higher accuracy in the case of the
augmented system. This model will be employed for the
development of a LPV-based pitch autopilot.
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