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ABSTRACT

The present research investigates the flight dynamics modeling of a new class of Long-Range
Guided Projectiles (LRGP), studied at the Institut Franco-Allemand de recherches de Saint-Louis
(ISL), and the development of a full 6-DoF nonlinear simulator. The LRGP concept consists of a
fin-stabilized projectile, having four rear fins and two horizontal front canards. The canards are
mounted in a non-coplanar fashion with respect to the rear fins, in a so-called ‘X’ configuration.
During the simulator design, the equations of motion describing the translational and attitude
dynamics & kinematics of the projectile are first illustrated. A major contribution relies on the
derivation of a new aerodynamic model based on an extensive regression analysis of the available
data. Two full Computational Fluid Dynamics (CFD) campaigns were performed, dealing first
with the static characterization of the projectile body, and later more specifically, with the con-
tribution of the canard deflections. For the static characterization of the body, we propose two
different regression approaches: a standard Simple Linear Regression based on polynomial fitting,
and a more advanced Multivariable Regression. These approaches are individually investigated,
and then cross-compared to assess which one provides with the most reliable results. A second
regression analysis is developed in order to model the aerodynamic control contributions given by
the canards deflections. The linearity of the canard response is investigated as a function of the
Mach variation and of the selection of the regression model complexity. Finally, some trajectory
simulations of the overall nonlinear simulator are proposed, as a model design validation.

Keywords: Flight Mechanics Modeling; Regression Analysis; Nonlinear Simulator; Guided Projectiles; Long-
Range Projectiles.
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1 Introduction
In the last decades, the interest in guided ammunition has grown wider due to the appealing im-

provements offered in terms of accuracy and operating range. Indeed, classical unguided munitions
are highly affected by several factors as launch conditions, wind turbulence and wind gusts, resulting
in collateral damages due to the consequent on-target dispersion. One of the main design approaches
for the development of guided munitions relies on the employment of aerodynamic control surfaces in
the form of nose-mounted canards and/or tail fins. This solution provides with higher control authority
for the autopilot design, as well as a continuous-time trajectory correction [1], in comparison to alter-
native approaches, such as inertial loads or jet thrusters. The airframe stability is generally addressed
at the design stage, through the selection between two possible technologies: spin-stabilization or fin-
stabilization. The former architecture takes advantage of the aerodynamic forces and moments generated
by the high spin rate characterizing the body roll axis, which is transmitted to the projectile at the firing
stage.

This particular technology has attracted a relevant interest, leading to the development of several
applications in different countries, as for the U.S. ATK’s M1156 Precision Guidance Kit (PGK) [2, 3],
the French Système à Précision Améliorée par CInémomètre DOppler (SPACIDO) and the U.K. Smart
Trajectory Artillery Round (STAR). Relevant research contributions have been carried out also at the
Institut Franco-Allemand de recherches de Saint-Louis (ISL), through the studies of Course Correction
Fuze (CCF) projectile systems [4–9]. Nevertheless, the spin-stabilized architecture presents also some
important drawbacks deriving from the high spin rate characterizing the projectile. Indeed, this effect
generates an undesired nonlinear coupling between the normal and the lateral axes dynamics [10], which
can represent a non trivial challenge to face during the flight control design. Additionally, spin-stabilized
projectiles generally suffer from a limited operating range, depending on the capability of the firing gun
and firing conditions.

The enhancement of the range performance, under the avoidance of any modifications of the firing
gun, implies the investigation of innovative aerodynamic configurations. A promising solution could be
identified in a novel fin-stabilized architecture with a reduced number of control actuators, investigated
at ISL, aiming to ameliorate the range capability through a gliding steered flight. Similar approaches can
be found in the U.S. M712 Copperhead [11, 12], in the more recent M982 Excalibur [13] and Vulcano.
The employment of a non-spinning concept reduces the highly nonlinear dynamics generated by the
aerodynamic coupling terms. Thus, the autopilot design can be performed separately for each single axis
[14], and the projectile aerodynamics is generally less affected by large and rapid variations of the flight
parameters. However, the absence of a high spin rate impacts also negatively on the projectile, requiring
specific tail-fins configurations for stability augmentation, and the design of robust autopilots capable to
handle the pitch and the roll dynamics.

In this context, the presented study intends to provide a complete description of a new Long-Range
Guided Projectile (LRGP) concept, studied at ISL, through the design of a full 6-DoF nonlinear sim-
ulator, which will be employed for the future autopilot design in the Linear Parameter Varying (LPV)
framework. The flight mechanics model of the projectile is first addressed in Section 2, through the pre-
sentation of the equations of motion, dealing with the translational and attitude dynamics & kinematics.
The main contribution is described in Section 3, namely the aerodynamic characterization of the LRGP
concept. Starting from a full Computational Fluid Dynamics (CFD) simulation campaign, we investigate
the static aerodynamic properties of the projectile body. To this end, we propose and compare two regres-
sion approaches: a Simple Linear Regression and a Multivariable Regression. A second analysis is later
performed in order to model the specific contributions related to the control surfaces deflections. Finally,
Section 4 presents the overall nonlinear simulator followed by some preliminary ballistic simulations in
the form of design and performance validations.
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Fig. 1 LRGP concept: (a) aerodynamic surfaces, (b) side and top views.

2 Flight mechanics nonlinear model
The LRGP concept consists of a 155 mm fin-stabilized projectile, mounting a set of four symmetrical

rear fins, and two horizontal front canards, in a so-called ‘X’ configuration, as shown in Fig. 1. This
architecture is expected to provide with a lower canard-fin aerodynamic interaction, and a generally
reduced angle-of-attack, α , aiming to improve the range performance of the projectile through a gliding
trajectory. The gliding phase occurs in subsonic regime conditions.

The 6-DoF nonlinear dynamics governing the LRGP behavior is derived from the standard flight
mechanics theory [15, 16], complying with the same notation. The formulation of the equations of mo-
tion relies on the definition of two main reference frames. Under the assumption of flat Earth conditions,
the Earth frame E, is selected as the inertial reference frame, identified by the triad of base vectors (⃗e1,
e⃗2, e⃗3), as in Fig. 2a. A body frame B, attached to the projectile center of gravity (CoG) and coherently
rotating with it, is then defined by the base vectors (⃗b1, b⃗2, b⃗3), as in Fig. 2b. In the latter figure, the
relative rotations between the airspeed v⃗A

B , and the body coordinates is defined through the aerodynamic
angle-of-attack and angle-of-sideslip, α and β respectively.

The translational and attitude equations are first derived in tensor form referring to the relative linear
and angular motions between the frames B and E, respectively. The dynamic equations in their compo-
nents form are then expressed with respect to a system of coordinates associated to the main axes of the
frame B (see Fig. 2b). Similarly, the kinematic equations are referred to a system of local-level coordi-
nates (North-East-Down, NED) associated to the frame E, but describing the projectile trajectory with
respect to a local plane tangent to the Earth surface, independently of its actual geographical longitude
and latitude designations.
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Fig. 2 Main reference frames and coordinate systems: (a) Earth frame, E, and Earth
and local coordinates; (b) body frame, B, and body coordinates.
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Starting from Newton’s and Euler’s laws, respectively, the translational and attitude dynamic equa-
tions of the projectile are first formulated in tensor form as:

mDBvE
B +mΩ

BEvE
B = faero + fctrl + fgrav, (1)

IB
B DB

ω
BE +Ω

BEIB
B ω

BE = maero +mctrl. (2)

where DB represents the rotational time derivative operator with respect to the frame B [15].

Equations (1) and (2) are then projected into the body system of coordinates. The resulting sets of
state variables for the translational and the attitude dynamic correspond, respectively, to the linear and
angular velocities of the frame B with respect to frame E:

[
vE

B
]B

=

uB

vB

wB

 ,
[
ω

BE]B
=

pB

qB

rB

 . (3)

Moreover, the skew-symmetric form of the angular velocity tensor, ωBE, and the moment of inertia
tensor (MoI), are expressed as:

[
Ω

BE]B
=

 0 −rB qB

rB 0 −pB

−qB pB 0

 ,
[
IB
B
]B

=

Ix 0 0
0 Iy 0
0 0 Iz

 . (4)

The derivation of the aerodynamic forces ( faero, fctrl), and moments (maero, mctrl), acting on the
projectile, is detailed in Section 3. The gravitational contribution, fgrav, is simplified to the standard
constant acceleration g = 9.80665 ms−2, projected from the local to the body system of coordinates, by
means of the transformation matrix [T ]BL.

Concerning to the kinematics computation, the projectile position, sBE, is expressed with respect
to the system of local coordinates (NED). To this end, the linear velocity vE

B, obtained through the
translational dynamics in equation (1) in the body coordinates, is first converted to the local coordinates:

[
vE

B
]L

= [T̄ ]BL [vE
B
]B

=

uL

vL

wL

 (5)

and then, the projectile local position can be obtained through time integration, since:[
dsBE

dt

]L

=
[
vE

B
]L

. (6)

In order to determine the projectile orientation, the rotation tensor approach is preferred [15, 16].
It is based on the formulation of the rotational time derivative of the Direction Cosine Matrix (DCM),
[T ]BL: [

dT
dt

]BL

=
[
Ω̄

BE]B
[T ]BL . (7)

The resolution of the set of differential equations (7), leads to the evaluation of the Euler angles, (φB, θB,
ψB), describing the projectile orientation.
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3 Aerodynamic model
This section investigates the aerodynamic characterization of the new LRGP concept through the

derivation of a suitable model to be included in the proposed nonlinear simulator. In the translational
dynamic equation (1), discussed in Section 2, the external forces acting on the projectile have been
approximated as the linear superposition of the gravity effect and two additional contributions:

• faero, which describes the static (XS,YS,ZS), and damping (YD,ZD) terms of the full body aerody-
namics, assuming zero canard deflections:

[ faero]
B =

XB

YB

ZB

= q̄S


CXS (M,α,β )

CYS (M,α,β )

CZS (M,α,β )

+
( d

2V

) 0
CYD (M,α,β )rB

CZD (M,α,β )qB


 . (8)

• fctrl, which models the additional control effects (XC,YC,ZC), generated by the local deflection
angles of the right and the left canards, δr and δl:

[ fctrl]
B =

XC

YC

ZC

= q̄S

CXδeff
(M,δeff)

0
CZδq

(
M,δq

)
 . (9)

Specifically, in equations (8) and (9), S represents the body reference surface, d the caliber, q̄ = 1
2ρV 2

the dynamic pressure, and M = V
a the Mach number. These quantities are defined as functions of the air

density ρ = ρ(h), and speed of sound a= a(h), depending on the altitude, h. Additionally, V corresponds

to the projectile velocity, evaluated as V =
√

u2
B + v2

B +w2
B, assuming the air mass to be at rest.

The reader can notice from equation (9) that the control terms are not defined as a function of the
individual canard deflection angles, (δr, δl), but as a function of a virtual set expressed in terms of the roll
and the pitch combined deflections, (δp, δq). Indeed, a Control Allocator has been implemented, in view
of the future autopilot design, to target a selected flight strategy, by converting the real control deflections
into the more suitable virtual set. The availability of two horizontal front canards, aligned with the intent
of improving the range capability of the projectile, suggested the employment of a Bank-To-Turn (BTT)
control strategy, leading to the definition of the allocation matrix, TCA:[

δp

δq

]
=

[
−1

2 +1
2

+1
2 +1

2

][
δr

δl

]
= [TCA]

[
δr

δl

]
. (10)

Additionally, the longitudinal control term, CXδeff
, is affected by the combined nonlinear contributions of

roll and pitch, defined as δeff =
√

δ 2
p +δ 2

q .

Similarly, the aerodynamic moments in equation (2) are also approximated as the sum of a static
and damping full body term, maero, and a control contribution, mctrl:

[maero]
B =

LB

MB

NB

= q̄Sd


ClS (M,α,β )

CmS (M,α,β )

CnS (M,α,β )

+
( d

2V

) 0
CmD (M,α,β )qB

CnD (M,α,β )rB


 , (11)

[mctrl]
B =

LC

MC

NC

= q̄Sd

Clδp
(M,δp)

Cmδq

(
M,δq

)
0

 . (12)
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The global coefficients defining the body and control terms of the aerodynamic forces (CXS , CYS , CZS ,
CXδeff

, CZδq
), and moments (ClS , CmS , CnS , Clδp

, Cmδq
), have been modeled through an extensive regression

analysis based on two datasets of Computational Fluid Dynamics (CFD) simulations.

• The first simulation campaign, analyzed in Section 3.1, is intended to characterize the static aero-
dynamics of the full projectile body, by measuring the global aerodynamic forces and moments
(XB, YB, ZB, lB, mB, nB). The non-dimensional coefficients were obtained through the normaliza-
tion of the measurements with respect to the projectile dimensions. The data were first acquired
as a function of the Mach number in the subsonic regime, M ∈ [Mmin, . . . ,Mmax], the aerodynamic
roll angle, φ ′ ∈ [0◦, . . . ,90◦], and the total angle-of-attack, α ′ ∈

[
α ′

min, . . . ,α
′
max

]
, more suitable

for the CFD environment and coherent with the actual wind tunnel test procedure. Thus once M,
and φ ′, were fixed, the coefficients were investigated across the variation of α ′. For modeling
coherence, the coefficients have been later converted to the Cartesian incidence angles, (α , β ):

α = arctan
(
tanα

′ cosφ
′) , β = arcsin

(
sinα

′ sinφ
′) . (13)

• The second simulation campaign is used in Section 3.2, and it is focused on the aerodynamic
contributions, (XC, ZC, LC, MC), generated by the canard local deflections, δr and δl. During the
analysis, the angles φ ′ and α ′ were set to zero, in order to avoid any undesired body interaction.
In particular, the data were acquired only with respect to the right canard through the investigation
of the same M range, and across the local deflection range, δr ∈ [0◦, . . . ,δr,max]. The aerodynamic
coefficients related to the left canard could be easily obtained by means of symmetrical consider-
ations. The modeling procedure that converts the real canard deflection coefficients, (CXδr

, CZδr
,

Clδr
, Cmδr

), measured by the CFD simulations, into the corresponding virtual counterparts, (CXδeff
,

CZδq
, Clδp

, Cmδq
), is based on equations (10) and later discussed in detail.

3.1 Body aerodynamic contribution
In order to properly model the static contribution of the projectile, the CFD dataset related to the first

simulation campaign has been investigated by means of two different regression approaches: a standard
Simple Linear Regression and a more sophisticated Multivariable Regression.

3.1.1 Simple Linear Regression
The first approach relies on the analysis of a reduced set of CFD data, and specifically, on the

measurements related to the extreme configurations where φ ′ = 0◦ or φ ′ = 90◦. According to equation
(13), in the former case the measured coefficients result to be inspected across the variation of α , without
any contribution deriving from β . The latter case addresses the completely opposite scenario, since the
aerodynamics of the projectile strictly depends only on the variation of β . These assumptions allowed the
employment of a standard polynomial regression with least-squares optimization. Several polynomial
models of increasing order have been investigated for each of the aerodynamic coefficients, aiming to
find the best compromise between regression accuracy and model complexity.

Depending on the selected configuration, the estimated regression parameters correspond either to
the set of α coefficient derivatives, or to the β ones. The analysis has been repeated for all the considered
Mach conditions, M ∈ [Mmin, . . . ,Mmax]. The accuracy is assessed by means of the standard statistical
indexes: Sum of Squared Errors (SSE), Root Mean Squared Error (RMSE), and Coefficient of Deter-
mination (R2). The R2 results obtained during the regression of the α derivatives are displayed in Fig.
31. In particular, for each of the aerodynamic coefficients, only the most relevant derivatives have been
included in the final model, meaning that either the α or β set of derivatives have been considered, to
reduce the overall mathematical complexity.

1The Mach number values have been rescaled for confidentiality reasons.
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Fig. 3 R2 results: (a) longitudinal force, (b) lateral force, (c) vertical force, (d) pitch-
ing moment, (e) yawing moment.

Based on the statistical results, the following Simple Linear Regression model is proposed:

CXS(M,α) =CXα0(M)+CXα2(M)sin2
α +CXα4(M)sin4

α,

CYS(M,β ) =CYβ1(M)sinβ ,

CZS(M,α) =CZα1(M)sinα,

CmS(M,α) =Cmα1(M)sinα +Cmα3(M)sin3
α +Cmα5(M)sin5

α,

CnS(M,β ) =Cnβ1(M)sinβ .

(14)

It is important to notice that the rolling moment coefficient, ClS , has not been included in the pro-
posed model, since its contribution is negligible in comparison to the other coefficients.

3.1.2 Multivariable Regression
The second approach relies on the analysis of all the available CFD data, addressing also the cou-

pling effects generated by the simultaneous variation of the angles α and β . Having to deal with several
variables, sets of multivariable models have been selected for the data regression. In particular, each of
the coefficients has been investigated through the comparison of three different models:

• Test Function: selected among a large set of trial models in the form of standard multivariable
polynomials with increasing order, in reason of the higher capability to fit the CFD dataset.

• Formula Function: derived from theoretical flight mechanics considerations [17]. It consists of
the theoretical formulation of the selected aerodynamic force/moment, expressed in its compo-
nents form with respect to the body coordinates system.

• Independent Function: intended to model the impact of the angles variation by means of inde-
pendent regression coefficients, each as a derivative of either α or β ; thus, no bilinear terms are
included in the model.
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Fig. 4 R2 results: (a) longitudinal force, (b) lateral force, (c) vertical force, (d) pitch-
ing moment, (e) yawing moment.

As for the Simple Linear Regression, the accuracy of the investigated models is assessed by means
of the statistical indexes (SSE, RMSE, R2). The complete set of R2 results is presented in Fig. 42.

As a general trend, the results show how the set of Formula Functions proposed below provides
the most reliable description of the projectile aerodynamics, based on the full CFD dataset. The pitch-
ing moment revealed to be the most difficult coefficient to be properly modeled because of the highly
nonlinear influence deriving from the β variation. The final model obtained through the Multivariable
Regression analysis corresponds to:

CXS(M,α,β ) =CX0(M)+CX2(M)cosα cosβ +CX4(M)cos2
α cos2

β ,

CYS(M,α,β ) =CY1(M)sinβ +CY2(M)sinα,

CZS(M,α,β ) =CZ2(M)sinα cosβ ,

CmS(M,α,β ) =Cm2(M)sinα cosβ +Cm4(M)sinα cosα cos2
β ,

CnS(M,α,β ) =Cn1(M)sinβ +Cn2(M)sinα.

(15)

Once again, the reader can notice how the rolling moment coefficient, ClS , has not been included in
the overall model for the same reasons previously discussed.

3.1.3 Regression approaches comparison
The analysis of the CFD data resulted in two different aerodynamic models: the Simple Linear

(equation (14)) based on the reduced set of data, and the Multivariable (equation (15)) relying on the full
dataset. Aiming to point out the limitations of the former approach, we developed a cross-comparison
between the two models. However, since the models have been derived from different datasets, the
previously obtained statistical results, (SSE, RMSE, R2), couldn’t be directly compared.

2The Mach number values have been rescaled for confidentiality reasons.
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As a consequence, an additional interpolation error analysis has been carried out. The value of each
aerodynamic coefficient is interpolated first directly on the CFD surfaces, as a ground truth reference.
Then, the same interpolation is performed on the modeled surfaces obtained through the two regression
approaches. The process is repeated across the full range of M, φ ′ and α ′ investigated during the CFD
simulation campaigns.

The interpolation error, e, is evaluated as the difference between the results provided by the CFD
coefficient interpolations, CCFD, and the selected model ones, C. Furthermore, the mean value of the
error is computed along the α ′ variation, by selecting iteratively a specific pair of (M, φ ′). These settings
allowed us to observe the variation of the interpolation error, as a function of the increasing roll configu-
ration, and consequently of the different (α,β ) combinations, as well as of the Mach number. The mean
error is normalized by the corresponding CFD mean value, as follow:

ēnorm
(
M,φ ′,α ′)= ē(M,φ ′,α ′)

C̄CFD(M,φ ′,α ′)
(16)

and we define

ē
(
M,φ ′,α ′)= ∑

n
i=1

(
Ci(M,φ ′,α ′)−CCFD,i(M,φ ′,α ′)

)
n

, (17)

C̄CFD
(
M,φ ′,α ′)= ∑

n
i=1CCFD,i(M,φ ′,α ′)

n
, (18)

where n is the dimension of the investigated α ′ range.

The results displayed in Fig. 53 give an example of the variation of the interpolation error related to
the pitching moment coefficient, as a function of the increasing roll configuration.

As expected, for an initial configuration of φ ′ = 0◦ (example in Fig. 5a), the Simple Linear Regres-
sion is in general capable to better describe the aerodynamics of the projectile, which depends only on
α . Nevertheless, as soon as the roll is increased (example in Figs. 5b-5c), the Simple Linear Regression
method does not compare any longer with the Multivariable Regression.

The same observations are confirmed in Fig. 64 from a graphical perspective. Indeed, the com-
parison between the two modeled interpolation surfaces, related to the pitching moment, shows how
the Multivariable model manages to fit the available CFD measurements with higher accuracy than the
Simple Linear one.
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Fig. 5 Pitching moment models: (a) interpolation error at φ ′ = 0◦; (b)-(c) interpola-
tion error for increasing values of φ ′.

3The Mach number values have been rescaled for confidentiality reasons.
4The aerodynamic angles and the coefficient values have been rescaled for confidentiality reasons.
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(a) (b)

Fig. 6 Pitching moment models: (a) Simple Linear interpolation surface; (b) Multi-
variable interpolation surface.

3.2 Canards aerodynamic contributions
The second campaign of CFD simulations focused on the characterization of the right canard local

deflection, δr. Dealing only with one angle variation, the standard polynomial regression approach
is enough accurate to provide with reliable models for CXδr

, CZδr
, Clδr

and Cmδr
. The corresponding

left counterparts, associated to δl, were inferred from symmetrical considerations. The overall control
contributions, generated by the canard deflections, could be computed by superposition, assuming the
aerodynamic response of the canards to be in a linear domain:

CXδ
(M,δ ) =CXδr

(M,δr)+CXδl
(M,δl) , (19)

CZδ
(M,δ ) =CZδr

(M,δr)+CZδl
(M,δl) , (20)

Clδ (M,δ ) =Clδr
(M,δr)+Clδl

(M,δl) , (21)

Cmδ
(M,δ ) =Cmδr

(M,δr)+Cmδl
(M,δl) , (22)

where the lateral and the yaw control coefficients, (CYδ
, Cnδ

), are ignored due to the absence of control
authority on the yaw plane.

However, as previously discussed, the control allocator embedded in the simulator converts the
individual deflections of the canards into a combined set of virtual contributions, δp and δq (equation
(10)). Coherently, the aerodynamic models have to address the virtual set of coefficients, (CXδeff

, CZδq
,

Clδp
, Cmδq

in Fig. 7), instead of the global contributions in equations (19-22). Nevertheless, no CFD data
related to the virtual deflections were available.

δr

α

1
B

�v
E
B

B

(a)

Right

Left

CZδr
(δr)

CZδl
(δl)

Clδp
(δp)

B

(b)

RightLeft

CZδr
(δr)CZδl

(δl)

Cmδq
(δq)

B

(c)

Fig. 7 Deflections: (a) individual; (b) virtual roll; (c) virtual pitch.
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Fig. 8 Pitching moment: el deriving from the (a) interpolation on the CFD surface;
(b) interpolation on a 5th order model; (c) interpolation on a 3rd order model.

A possible solution could be found in equation (10), through the definition of the virtual deflections.
Indeed, according to the linearity assumptions, the superposition results described in equations (19-22)
could be approximated as the direct interpolation of the corresponding virtual coefficients on the avail-
able regression surfaces. By referring to the vertical force coefficient as example, a linear aerodynamic
response can be assumed as:

CZδ
(M,δ ) =CZδr

(M,δr)+CZδl
(M,δl)

≃ 2 CZδq

(
M,δq

)
= 2 CZδq

(
M,

δr +δl

2

)
.

(23)

In order to verify in which deflection range the previous relation holds, a linearity error, el, is eval-
uated as the difference between the global coefficients, (CXδ

, CZδ
, Clδ , Cmδ

) and the virtual ones (CXδeff
,

CZδq
, Clδp

, Cmδq
), normalized by the corresponding CFD values. The analysis has been extended to the

entire deflection range and Mach values investigated during the CFD simulations. In particular, Fig.
85shows an example related to how the selection of the regression model complexity affects the linearity
error of the pitching moment coefficient, for a fixed Mach number.

The deflection range corresponding to a linearity error el ≤ 10% is wider when the coefficients are
interpolated directly on the CFD surfaces (Fig. 8a), but tends to decrease when interpolated on the
regression surfaces due to the limited accuracy, as the order of the polynomial models decreases (Figs.
8b-8c). Similar results can be observed in terms of Mach contributions. Indeed, Fig. 95 shows how the
same deflection range is highly affected by the increase of the Mach value, when a 3rd order polynomial
model is employed. As a global result, we could assess that the linear approximations formulated in
equation (23), provide with reliable modeling properties for canard deflections δr,δl ∈ [−25◦,25◦].
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Fig. 9 Pitching moment: el related to increasing values of the Mach number.

5The deflection angle values have been rescaled for confidentiality reasons.
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Fig. 10 Overview of the airframe nonlinear simulator scheme.

4 The ballistic simulator
After the derivation of the projectile flight mechanics (equations (1-2)), discussed in Section 2,

the allocation matrix TCA (equation (10)), and the investigation of the aerodynamic model, proposed
in Section 3, we can finally present the overall design of the 6-DoF nonlinear simulator for the LRGP
concept. The airframe block scheme shown in Fig. 10, provides an overview about the architecture of
the simulator, which has been realized by means of the System Modeling Ammunition Research Toolbox
(SMART), developed at ISL. More in details, it additionally includes:

• Environment Model: where the atmosphere is modeled following the International Standard
Atmosphere (ISA) 1975, ISO 2533 [18]. According to the flat Earth approximations, the gravity
is simplified to the standard constant acceleration along the normal axis direction. The wind
contributions are also modeled, including constant horizontal wind, wind gusts and turbulence.

• Aerodynamics Model: based on the results presented in Section 3, concerning the static and
control aerodynamic contributions, the following full model is implemented:

CX(M,α,β ,δeff) =CX0(M)+CX2(M)cosα cosβ +CX4(M)cos2
α cos2

β+

+CXδ0(M)+CXδ2(M)sin2
δeff,

CY (M,α,β ) =CY1(M)sinβ +CY2(M)sinα,

CZ
(
M,α,β ,δq

)
=CZ2(M)sinα cosβ +CZδ1(M)sinδq +CZδ3(M)sin3

δq,

Cl(M,α,β ,δp) =Clδ1(M)sinδp +Clδ3(M)sin3
δp,

Cm
(
M,α,β ,δq

)
=Cm2(M)sinα cosβ +Cm4(M)sinα cosα cos2

β+

+Cmδ1(M)sinδq +Cmδ3(M)sin3
δq,

Cn(M,α,β ) =Cn1(M)sinβ +Cn2(M)sinα.

(24)

Aiming to verify the reliability of the simulator in terms of aerodynamics and flight mechanics mod-
eling coherence, some ballistic simulations have been performed, neglecting any control deflections and
wind disturbances. To this end, Fig. 11 shows the trajectories related to some flight tests having the same
launch conditions, but with the progressive inclusion of the aerodynamic contributions. In particular, ‘G’
indicates a trajectory affected only by the gravity effect, ‘D’ assumes also the drag contribution, ‘L’ the
lift force, and finally, a 5-DoF simulation addresses all the aerodynamic forces and moments except for
the pitching moment, since it is expected to generate instability in the projectile dynamics.

More in details, Fig. 12 displays the curve related to the pitching moment generated during the
5-DoF simulation. It is possible to observe how, for positive values of α , and in a specific range of Mach
number, the pitching moment assumes positive values as well, leading to an unstable trajectory. Thus, it
is not possible to provide a clean open loop simulation addressing also this contribution. Nevertheless,
an important drawback deriving from the previous assumption, consists of the projectile elevation angle,
θB, imposed as initial condition, which remains constant during the entire trajectory.
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Fig. 11 Simulated trajectory results.

Due to the constant attitude of the projectile, α tends to increase as a function of the trajectory shape,
reaching very high values, (up to 100◦), during the gliding and the terminal phases of the flight.
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Fig. 12 5-DoF simulation: pitching
moment curve.

In this context, the main problem arises when α reaches
values that exceed the CFD dataset investigated during the
aerodynamic models regressions, leading to the extrapola-
tion of the aerodynamic coefficients. As a consequence, the
simulator is no longer capable to provide a reliable character-
ization of the projectile aerodynamic, and the resulting tra-
jectories become meaningless. To address this issue, a con-
stant stabilizing pitching moment has been imposed as initial
condition for the presented simulations, trying to force the
projectile orientation to follow the trajectory, thus ensuring
to maintain the variation of α in a reasonable range.

However, this expedient does not question the relevance
of the results in terms of design validation, especially keeping in mind that the projectile is intended to
be equipped with a pitch controller that will correct the unstable behavior observed in the simulations.

5 Conclusion and future works
In this article, a nonlinear airframe model describing the dynamics of the new 155 mm fin-stabilized

LRGP concept is investigated. The equations of motion are formulated from the standard flight mechan-
ics literature. A reliable aerodynamic model is successfully derived through the comparison between two
different regression approaches, from a full set of CFD data. A statistical and a graphical interpretations
of the interpolation results prove the higher fidelity of the Multivariable approach over the more standard
Simple Linear Regression. A second regression analysis on aerodynamic canard contributions, ensures
an interpolation error el lower than 10% inside a linear deflections range δr,δl ∈ [−25◦,25◦]. Finally, the
overall nonlinear model is implemented and tested in simulation showing an unstable behavior generated
by a destabilizing pitching moment, as expected from the analysis of the CFD measurements.

In terms of future efforts, the presented nonlinear model is intended to be used to develop a robust
control system, in view of the design of a pitch and roll channels autopilot. A BTT flight control strategy
is expected to be aligned with the aim of enhancing the range capability of the ammunition. Possible
model improvements will be also considered, concerning the extension of the equations of motion to the
elliptical Earth assumption, or the employment of advanced sensor and actuator models.
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