
HAL Id: hal-03648497
https://hal.univ-grenoble-alpes.fr/hal-03648497

Preprint submitted on 21 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Advanced LPV-YK Control Design with Experimental
Validation on Autonomous Vehicles

Hussam Atoui, Olivier Sename, Vicente Milanes, John Jairo Martinez Molina

To cite this version:
Hussam Atoui, Olivier Sename, Vicente Milanes, John Jairo Martinez Molina. Advanced LPV-YK
Control Design with Experimental Validation on Autonomous Vehicles. 2022. �hal-03648497�

https://hal.univ-grenoble-alpes.fr/hal-03648497
https://hal.archives-ouvertes.fr


AdvancedLPV-YKControlDesignwithExperimental

Validation onAutonomousVehicles ⋆

Hussam Atoui a,b, Olivier Sename a, Vicente Milanes c, John J. Martinez a

aUniv. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, 38000 Grenoble, France

bResearch Department, Renault SAS, 1 Avenue de Golf, 78280 Guyancourt, France

cEngineering Division, Renault España SA, Av. Madrid, 72, 47008 Valladolid, Spain

Abstract

This paper presents and experimentally validates two new methodologies to perform a smooth switching between a set of
Linear Parameter-Varying (LPV) controllers that have been designed separately for different objectives. For a given partition
of the scheduling parameter region, a set of LPV controllers (polytopic and grid-based) are designed separately on each
subregion based on Youla-Kucera (YK) parameterization. Such kind of parameterization is beneficial to switch or interpolate
between multiple controllers without adding any constraints to the design of the local controllers and the switching signals.
The closed-loop system is proved to guarantee stability and performance under arbitrary switching in terms of a set of Linear
Matrix Inequalities (LMIs). An application to autonomous vehicle lateral control is chosen for its challenging objectives.
Experimental validation and comparison are depicted to illustrate the performance improvement compared to previous LPV
control approaches.
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1 Introduction

Linear Parameter-Varying (LPV) control techniques
are widely used in different applications as in aerospace
[18],[33], engine control [28], or autonomous vehicles
[4], [5]. [17] presents . The synthesis of an LPV control
can be formulated as a Linear Matrix Inequality (LMI)
optimization problem using a single Lyapunov function,
either quadratic [26] or parameter-dependent [35]. The
main applied LPV approaches are: 1) Polytopic [3];
2) Grid-based [34]; and 3) Linear Fractional Transfor-
mation (LFT) [2]. These LPV approaches have been
compared and experimentally validated on a real au-
tomated vehicle in our previous work [7]. On the other
hand, a single Lyapunov function for complex models
with large parameter variations may not exist, or if it
exists, it could be conservative.
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The current paper aims to solve some of the main limi-
tations of the polytopic and grid-based approaches, de-
tailed later, based on Youla-Kucera (YK) interpolat-
ing/switching techniques. The interest behind YK con-
cept is to parameterize a set of linear stabilizing con-
trollers K(Q) where each one is parameterized by its
corresponding YK parameter Q [25]. This kind of con-
figuration is structured by mapping a set of linear stabi-
lizing controllers onto a Q-based controller. The follow-
ing two sections discuss the limitations of both polytopic
and grid-based approaches, and some solutions that are
proposed in the literature.

1.1 Grid-based Approach

The grid-based approach uses a single parameter-
dependent Lyapunov function to solve a set of parameter-
dependent LMIs (pLMIs). Since a single parameter-
dependent Lyapunov function could not be efficient for
complex designs and large parameter regions, the first
solution has been proposed in [24]. The objective is
to design multiple LPV controllers based on multiple
parameter-varying Lyapunov functions, each suitable
for a specific parameter subregion, and switch between
them to achieve better performance. The switching
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stability has been studied for hysteresis switching and
switching with average dwell-time strategies. This
methodology enhances the use of the switched LPV
techniques in several applications, see for instance [9],
[22], [27] ,[13].

On the other hand, it has been stated in [24] that the
switched LPV controllers may not provide a smooth
transient response during switching, where aggressive
performance is obtained at switching instants. Such a
case may lead to mechanical damage, decrease mate-
rial lifetime, or signal saturation which is out of real
application objectives. Following this work, several re-
search studies have been involved in solving the switch-
ing smoothness. For instance, a bumpless transfer of
switching controllers is proposed in [14] followed by some
developments in [19], [12], and [31].

Finally, a smooth switching LPV controller has been
proposed first in [15]. It is designed in considering
adjustable interpolation functions and a higher order
differential control signal. An iterative descent algo-
rithm is applied to optimize three decision variables
(the parameter-dependent Lyapunov functions, the lo-
cal controllers, and the interpolation functions). It also
augments the problem to two dimensional parameter
regions. This concept is developed in the recent works
[33] and [16], however, it increases the complexity and
the design constraints of the local controllers to achieve
their objectives.

1.2 Polytopic Approach

The polytopic approach is the most popular among
the LPV control approaches. In many fields, especially
aerospace, engineers are interested in applying the
gain-scheduling method based on optimized designs at
different operating points [10]. On the other hand, it
is known to be the most conservative one [17]. One of
the main causes is that the polytopic LPV synthesis re-
quires a constant Lyapunov function to ensure quadratic
stability, which increases the problem conservatism.

Moreover, the overbounding of the parameter set is con-
sidered as a main cause of conservatism. The operat-
ing region of the underlying LPV model is defined by
a convex polytope containing the parameter trajecto-
ries. This convex parameter region may include vertices
that are not attained by the real plant, resulting in con-
servatism. The reason is that the construction of the
polytope is based on the assumption that all parame-
ters vary independently, whereas they could be related
to each other by inherent couplings. For example, the
known bicycle model describing the lateral dynamics of
an autonomous vehicle is parameterized by the schedul-
ing parameters ”vx” and ”1/vx” [7] (being vx the lon-
gitudinal speed). Such a situation might cause unstable
models at the polytopic vertices. In addition, the pa-
rameters could be physically correlated with each other,

such that some combinations of extreme values of the
parameters do not occur in real operation. For example,
an LPV model describing the vertical flight dynamics
of an aeroplane might be parameterized by the external
scheduling signals (i.e., parameters) “speed” and “alti-
tude.” But usually, the maximum speed is not reached
for minimum altitude and vice versa [21].

Several solutions have been investigated in the litera-
ture to find a reduced convex parameter region. Sev-
eral solutions has been investigated in the recent sur-
vey [23]. [8] suggests to construct convex polyhedrons
along given parameter trajectories, and solve the con-
trol design problem using affine parameter-dependent
LMIs. Unfortunately, these methods often result in a
huge number of vertices or nonconvex parameter sets and
thus in increased computational burden. Scheduling Di-
mension Reduction (SDR) approach is proposed in [21]
which reduces the parameter set based on experimental
data, and yields the benefit of tailoring a control design
to specific trajectories. In [20], a Deep Neural Network
(DNN) approach is used to develop the SDR methods
and achieve higher model accuracy under scheduling di-
mension reduction. In [38] and [37], authors develop an
LPV switching controller and prove its stability when
switching among the overlapped subsets of a polytopic
parameter region.

In [29], a YK configuration is proposed to improve the
performance of a polytopic LPV control. On the other
hand, [10] proposes a YK-based gain-scheduled con-
troller by interpolating LTI controllers designed sepa-
rately at the different vertices of a polytopic parameter
region. The interpolation is performed as a function of
the varying parameters of the LPV model. Closed-loop
quadratic stability and performance are guaranteed at
intermediate interpolation points of the convex domain.
In [11], a fixed pole-assignment application is intro-
duced using an LPV YK-based method to preserve the
closed-loop poles at the same location by interpolating
between different controllers. In addition, in our pre-
vious work [6], an LPV-YK control scheme has been
proposed to interpolate between two LPV controllers,
each one designed over a full polytopic region, to achieve
multiple control performances. On the other hand, all
the previous YK-based solutions are still conservative
for systems having overbounding polytopic parameter
region.

1.3 Motivation and Contribution

This paper proposes two advanced LPV-YK control ap-
proaches to improve the performance of the switched
LPV controllers, with lower conservatism and design
complexities. Among all the previous works which have
shown successful and smooth LPV switching controllers
as in [24], [12], and [15], all of them require the re-design
of the local LPV controllers using proposed LMIs, de-
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pending on the switching signals (e.g. hysteresis switch-
ing, switching with average dwell-time, etc.). It is worth
mentioning that the re-design of all the local LPV con-
trollers together may cause conservatism when increas-
ing the number of subregions or parameter dimensions.
The current paper proposes the YK parameterization to:

(1) Simplify the design of the LPV switching control
system by decreasing the complexity of the LMI
conditions (no need to re-design the local LPV con-
trollers)

(2) Avoid any limitation on the switching signals with-
out requiring constant Lyapunov function

(3) Smooth the control and state responses during the
switching instants

(4) Avoid the re-design of the switching control scheme
if one needs to add or remove any of the local LPV
controllers as Plug&Play

The general contributions of this paper are:

• Design two new LPV-YK control structures, grid-
based and partitioned polytopic-based LPV-YK
controllers. Their main objective is to switch
smoothly between local YK-based LPV controllers,
each is designed to be suitable over a certain pa-
rameter sub-region. Their interest is to decrease
the control design conservatism and limitations
compared to the standard LPV control approaches,
and improving the closed-loop performance.

• A switching scheme is drawn between multi-LPV
controllers based on YK parameterization which
guarantees the closed-loop stability and perfor-
mance under arbitrary switching signals.

• The two proposed LPV-YK controllers are applied
to lateral control of autonomous vehicles, on a real
RENAULT ZOE automated car, with experimental
validation and comparative analysis.

The paper is organized as follows: Section 2 designs the
new grid-based LPV-YK concept with its stability proof.
The partitioned polytopic-based LPV-YK control de-
sign with its stability proof is discussed in Section 3.
Section 4 implements and experimentally validates both
approaches on a real robotized RENAULT ZOE car. Fi-
nally, some concluding remarks are given in Section 5.

Notations in this paper are as follows. I[a, b] denotes
the integer set from a to b. R stands for the set of real
numbers. Rm×n is the set of real m × n matrices. The
transpose of a real matrix M is denoted by MT . I and
0 denote an identity matrix and a zero matrix, respec-
tively, of appropriate dimensions. diag(X1, X2, ..., XN )
denotes a matrix with matrices X1, X2, ..., and XN as
diagonal blocks. In the whole paper, the subscript i of
a system/matrix/variable of an LPV plant (e.g. G(ρ))
denotes the LPV system/matrix/variable of the plant
when the varying-parameter ρ ∈ Pi, where Pi is a subset
of the full parameter region P. In addition, the second

subscript j γ∞ corresponds to the known γ-performance
design, whereas γ is a switching signal.

2 Grid-based LPV-YK control design

The following section aims to design a grid-based LPV-
YK controller that switches between multiple LPV con-
trollers, each suitable for a specific parameter region.
The closed-loop system is proved to remain stable and
its performance is optimized over the whole gridded pa-
rameter subregions. This approach improves the smooth
LPV-switched control domain which has been already
studied in the pioneering works [24], [15], [33], and [16].

2.1 LPV Plant and Controllers Description

Consider a Multi-Input-Multi-Output (MIMO) LPV
system G(ρ) with m inputs and p outputs:

G(ρ)


ẋ(t) = A(ρ(t))x(t) +B1(ρ(t))w(t) +B2(ρ(t))u(t)

z(t) = C1(ρ(t))x(t) +D11(ρ(t))w(t) +D12(ρ(t))u(t)

y(t) = C2(ρ(t))x(t) +D21(ρ(t))w(t) +D22(ρ(t))u(t)

(1)
where x(t) ∈ Rnx , y(t) ∈ Rp, u(t) ∈ Rm, z(t) ∈ Rnz

are the state, output, input, controlled output vectors

respectively. w(t) =
[
r n d

]T
∈ Rnw contains the ex-

ogenous inputs of the tracking reference r, noise n and
input disturbance d. All the state-space data are contin-
uous functions of the parameter vector ρ. Assume that
ρ is in a compact set P ⊂ Rs with its parameter vari-
ation rate bounded by νk ≤ ρ̇k ≤ νk for k = 1, 2, ..., s.
Moreover, let us assume the following:

• (A(ρ), B2(ρ), C2(ρ)) triple is parameter-dependent
stabilizable and detectable ∀ρ ∈ P.

•
[
BT

2 (ρ) DT
12(ρ)

]
and

[
C2(ρ) D21(ρ)

]
have full row

ranks ∀ρ ∈ P.
• D22(ρ) = 0.

Suppose that the parameter set P is covered by a finite
number of closed subsets {Pi}i∈ZN

, where the index set
ZN = {1, 2, . . . , N}, and P =

⋃
Pi. At the boundaries

between each adjacent subsets, there exist at least a sin-
gle intersecting boundary or an intersecting surface.

Now, assume that
(A.3.1). There exists an LPV output-feedback controller
K(0)(ρ) which exponentially stabilizes G(ρ) at the full
parameter region P0 := P. (following the approach in
[35]),
(A.3.2). Over each parameter subset {Pi}i∈ZN

, there
exists an LPV controller Ki(ρ) pre-designed separately
and exponentially stabilize G(ρ) over {Pi}i∈ZN

. Each
Ki(ρ) is designed to achieve a suitable performance in its
corresponding parameter region {Pi}i∈ZN
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Fig. 1. LPV-YK gridded controller

The defined LPV controllersKi(ρ) (i ≥ 0) are described
over Pi as

Ki(ρ) :

Ak,i(ρ, ρ̇) Bk,i(ρ)

Ck,i(ρ) Dk,i(ρ)

 , i ∈ {0, ZN} (2)

where Ak,i(ρ, ρ̇) ∈ Rnk,i×nk,i , Bk,i(ρ) ∈ Rnk,i×mk ,
Ck,i(ρ) ∈ Rpk×nk,i and Dk,i(ρ) ∈ Rpk×mk . The closed-
loop system performance is achieved in each parameter
subregion and meanwhile maintains stability under any
switching behavior via YK parameterization concept.
The switching occurs when the parameter trajectory
hits one of the subsets boundaries. In our proposed
approach, the switching signal could be any continu-
ous/discontinuous switching signal γ. The LPV closed-
loop system for each pre-defined controller Ki(ρ) over
Pi can be described by

CLi(ρ) :

Acl,i(ρ, ρ̇) Bcl,i(ρ)

Ccl,i(ρ) Dcl,i(ρ)

 , i ∈ {0, ZN} (3)

where xT
cl,i =

[
xT xT

k,i

]
∈ Rnx+nk,i (i ≥ 0). Notice that,

for any i ∈ {0, ZN}, the closed-loop system (3) is re-
quired to satisfy the bounded real lemma over Pi with
a performance level γ∞,i, i.e. ∥z∥2 < γ∞,i ∥w∥2 and a
symmetric, positive definite matrix functions Xcl,i(ρ),
each Xcl,i(ρ) is smooth over its corresponding parame-
ter subset Pi, such that



{
AT

cl,i(ρ)Xcl,i(ρ) +Xcl,i(ρ)Acl,i(ρ)

+
s∑

k=1

±{νk, νk}
∂Xcl,i

∂ρk

}
Xcl,i(ρ)Bcl,i(ρ) CT

cl,i(ρ)

BT
cl,i(ρ)Xcl,i(ρ) −γ∞,iInw

DT
cl,i(ρ)

Ccl,i(ρ) Dcl,i(ρ) −γ∞,iInz

 < 0

(4)

2.2 Problem Definition

The objective of this work is to obtain exponential stabil-
ity of the closed-loop system based on YK parameterisa-
tion. Moreover, a smooth interpolation scheme K̃(ρ, γ)

is formulated between multiple pre-designed LPV con-
trollersKi(ρ) (i ∈ ZN ), using the switching vector signal
γ = [γ1, ..., γi, ..., γN ] , where each Ki(ρ) is designed to
be suitably used for a certain parameter subregion Pi.
This could be achieved by two steps:

(1) Parameterize each LPV controller Ki(ρ) (i ∈ ZN )
with respect to the nominal LPV controller K0(ρ),
by an LPV-YK parameter Qi(ρ).

(2) At each boundary of two adjacent subsets Pi and
Pi+1, the interpolating signals γi and γi+1 are ad-
justed in a way to switch from Ki(ρ) to Ki+1(ρ)
or vise-versa. As a result, the overall parameterized
LPV-YK controller K̃(ρ, γ) stabilizes G(ρ) ∀ρ ∈ P
and for every continuous/discontinuous interpolat-
ing signals γi, i ∈ ZN .

Figure 1 shows the partitioned parameter region P with
intersecting boundaries. The orange solid line represents
the chosen nominal LPV controller K0(ρ), as defined
by assumption (A.3.1). The blue solid lines represent
the local LPV controllers Ki(ρ) (i ∈ ZN ) as defined in
assumption (A.3.2). The overall switching controller is
performed using the interpolating signal γ = [γ1, ..., γN ]
(γi ∈ [0, 1] ∀i), and is represented by the LPV-YK con-

troller K̃(ρ, γ).

2.3 Main Results

Based on the statements on LPV concepts and YK pa-
rameterization, the overall interpolation scheme which
is referred to K̃(ρ, γ) (see Fig. 4) is designed based on a
Parametric Linear Matrix Inequality (PLMI) optimiza-
tion problem, where its state-space matrices are repre-
sented as

K̃(ρ, γ) :

 Ãk(ρ, γ) B̃k(ρ, γ)

C̃k(ρ, γ) D̃k(ρ, γ)

 (5)

being γ(ρ) the vector of the parameter-dependent
switching signals γi(ρ) (i ∈ ZN ) that are chosen here as
follows:

• if γi(ρ) = 0 ∀i, K̃(ρ, γ) ≡ K0(ρ).
• For any ρ ∈ Pm, γm(ρ) = 1 and γi(ρ) = 0

∀i ̸= m, which implies that K̃(ρ, γ) is equivalent to
Fl(J(ρ), Qm(ρ)) that recovers Km(ρ) (refer to Fig.
4).

Lemma 2.1. Assume that the matrices A11(ρ) and
A22(ρ) are exponentially stable, every continuous and
bounded block triangular matrix whose diagonal matrices
consist of A11(ρ) and A22(ρ) is also exponentially stable.

PROOF. Please see appendix A.
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The following theorem aims to prove that K̃(ρ, γ) expo-
nentially stabilizes G(ρ) for every ρ ∈ P and for every
continuous/discontinuous switching signals γi.

Theorem 2.1. Consider an LPV plant G(ρ) (1), and
that the assumptions (A.3.1) and (A.3.2) are satis-
fied. Let K0(ρ) be the nominal LPV controller designed
over the full parameter region P0. Then, the param-
eterized LPV-YK controller K̃(ρ, γ) (5)-(8) exponen-
tially stabilizes G(ρ), with an achieved performance
∥z∥2 < γ∞ ∥w∥2, where γ∞ = max{γ∞,i}i∈ZN

, for any
continuous/discontinuous bounded switching signals
γi ∈ [0, 1], if there exist symmetric, positive definite,
parameter-dependent matrix functionsXg(ρ) ∈ Rnx×nx ,
Xk,0(ρ) ∈ Rnk,0×nk,0 , and matrices V (ρ) and W (ρ) such
that for any ρ ∈ P:

A(ρ)Xg(ρ) +Xg(ρ)A
T (ρ) +

s∑
j=1

±{νj , νj}
∂Xg

∂ρj

+B2(ρ)V (ρ) + V T (ρ)BT
2 (ρ) < 0

(6)

Ak,0(ρ)Xk,0(ρ) +Xk,0(ρ)A
T
k,0(ρ) +

s∑
j=1

±{νj , νj}
∂Xk,0

∂ρj

+Bk,0(ρ)W (ρ) +WT (ρ)BT
k,0(ρ) < 0

(7)

And ∀ρ ∈ P, the state-space matrices of K̃(ρ, γ) in (5)
are

Ãk(ρ, γ) =


A(ρ) +B2(ρ)Fg(ρ)−B2(ρ)Dq(ρ, γ)C2(ρ) −B2(ρ)Dq(ρ, γ)Fk,0(ρ) B2(ρ)Cq(ρ, γ)

−Bk,0(ρ)C2(ρ) Ak,0(ρ) 0

−Bq(ρ)C2(ρ) −Bq(ρ)Fk,0(ρ) Aq(ρ)



B̃k(ρ, γ) =
[
B2(ρ)Dq(ρ, γ) Bk,0(ρ) Bq(ρ)

]T
C̃k(ρ, γ) =

[
Fg(ρ)− (Dk,0(ρ) +Dq(ρ, γ))C2(ρ) Ck,0(ρ)−Dq(ρ, γ)Fk,0(ρ) Cq(ρ, γ)

]
D̃k(ρ, γ) = Dk,0(ρ) +Dq(ρ, γ)

(8)
where

Aq(ρ) = diag(Aq,1, . . . , Aq,i, . . . , Aq,N ),

Bq(ρ) =
[
Bq,1 . . . Bq,i . . . Bq,N

]T
,

Cq(ρ, γ) =
[
γ1Cq,1 . . . γiCq,i . . . γNCq,N

]
,

Dq(ρ, γ) =
N∑
i=1

γiDq,i

, (9)

beingAq,i,Bq,i, Cq,i, andDq,i the state-space matrices of
Qi(ρ) ∀i ≥ 1 represented in (32), Fg(ρ) = V (ρ)X−1

g (ρ),

and Fk,0(ρ) = Wk,0(ρ)X
−1
k,0(ρ). Notice that X−1

g (ρ) and

X−1
k,0(ρ) are chosen to be smooth over the whole parameter

region P.

PROOF.

Fig. 2. Grid-based generalized LPV-YK configuration

According to YK concept, the parameterized controller
can be formulated as a Linear Fractional Transformation
(LFT) system [32], i.e. K̃(ρ, γ) = Fl(J(ρ), Q(ρ, γ)) (see
Fig. 4), where J(ρ) is defined as:

J(ρ) =


A(ρ) +B2(ρ)Fg(ρ) 0 0 B2(ρ)

−Bk,0(ρ)C2(ρ) Ak,0(ρ, ρ̇) Bk,0(ρ) 0

Fg(ρ)−Dk,0(ρ)C2(ρ) Ck,0(ρ) Dk,0(ρ) I

−C2(ρ) −Fk,0(ρ) I 0


(10)

and Q(ρ, γ) =
N∑
i=1

γi(ρ)Qi(ρ) (see Qi(ρ) in (32)). Specif-

ically, a defined LPV controller Km(ρ) (m ∈ [1, N ])
can be formulated as Fl(J(ρ), Qm(ρ))), i.e. Km(ρ) ≡
Fl(J(ρ), Q(ρ, γ)) for γm = 1 and γi = 0 ∀i ̸= m

The following proof is achieved by two steps: 1) Prove
that the LPV-YK parameter Q(ρ, γ) is exponentially
stable ∀ρ ∈ P and ∀γ; and 2) Prove the closed-loop
exponential stability, ∀ρ ∈ P, ∀γ, with γ∞-performance
level, where γ∞ = max{γ∞,i}i∈ZN

.

Step 1:

Considering that (A.3.2) and (7) are satisfied,the trian-
gular elements of Aq,i(ρ) are shown to be exponentially
stable ∀ρ ∈ {Pi}i≥1. Following Lemma 2.1, Aq,i(ρ),
consequently Qi(ρ), is exponentially stable over Pi ∀i ≥

1. As a result,Q(ρ, γ) =
N∑
i=1

γiQi(ρ) is exponentially sta-

ble over P =
⋃

Pi for every bounded signals γi ∈ [0, 1].

Step 2:

The LPV-YK closed-loop system CL(ρ, γ) is derived
from the LFT interconnection between G(ρ) (1) and

K̃(ρ, γ) (8) (see Fig. 2). The closed-loop state matrix
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Qi(ρ) =


A(ρ) +B2(ρ)Dk,i(ρ)C2(ρ) B2(ρ)Ck,i(ρ) B2(ρ)[Dk,i(ρ)−Dk,0(ρ)]Fk −B2(ρ)Ck,0(ρ)

Bk,i(ρ)C2(ρ) Ak,i(ρ, ρ̇) Bk,i(ρ)Fk,0

0 0 Ak,0(ρ) +Bk,0(ρ)Fk,0(ρ)

B2(ρ)[Dk,i(ρ)−Dk,0(ρ)]

Bk,i(ρ)

Bk,0(ρ)

D
(1)
k,iC2 − Fg,i Ck,i(ρ) [Dk,i(ρ)−Dk,0(ρ)]Fk,0(ρ)− Ck,0(ρ) Dk,i(ρ)−Dk,0(ρ)


(11)

Acl(ρ, γ) is exponentially stable if ∀ρ ∈ P, ρ̇ ∈ [ν, ν],
there exists a symmetric, positive definite matrix func-
tion Xcl(ρ) such that ∀γ:

AT
cl(ρ, γ)Xcl(ρ) +Xcl(ρ)Acl(ρ, γ) +

s∑
k=1

ρ̇k
∂Xcl

∂ρk
< 0

(12)

Now , let T =


I 0 0 0

0 0 0 I

I −I 0 0

0 0 I 0

 be a state transformation

matrix which is applied to CL(ρ, γ) without changing

its input-output nature, with T−1 =


I 0 0 0

I 0 −I 0

0 0 0 I

0 I 0 0

.

Due to the block-triangular form of Ācl(ρ, γ) (13), (12)
is satisfied if the following equations hold ∀ρ ∈ P (check
Lemma 2.1):

Yg(ρ)(A(ρ) +B2(ρ)Fg(ρ))
T + (A(ρ) +B2(ρ)Fg(ρ))Yg(ρ)

+

s∑
k=1

ρ̇k
∂Yg

∂ρk
< 0

(14a)

Yq(ρ)A
T
q (ρ) +Aq(ρ)Yq(ρ) +

s∑
k=1

ρ̇k
∂Yq

∂ρk
< 0 (14b)

AT
cl,0(ρ)Ycl,0(ρ) + Ycl,0(ρ)Acl,0(ρ) +

s∑
k=1

ρ̇k
∂Ycl,0

∂ρk
< 0

(14c)

where Yg(ρ) ∈ Rnx×nx , Yq(ρ) ∈ Rnq×nq and Ycl,0(ρ) ∈
R(nx+nk,0)×(nx+nk,0) are symmetric, positive definite
matrix functions withXcl(ρ) = TT diag(Yg, Yq, Ycl,0) T .

• Inequality (14a) can be deduced from (6) by choos-
ing Yg(ρ) = Xg(ρ) and considering that Fg(ρ) =
V (ρ)X−1

g (ρ) in (6).

• (14b) is satisfied since Q(ρ, γ) has been proved in
Step 1 to be exponentially stable over P.

• (14c) is fulfilled given that K(0)(ρ) exponentially
stabilizes G(ρ) according to (A.3.1).

Now, assume a sequence of finite switching time over
the interval [0, T ] is t0, t1, . . . , tN with t0 = 0, know-
ing that the closed-loop Lyapunov function is V (xcl) =
xT
clXcl(ρ)xcl. From the YK basic concept [32], a pa-

rameterized controller K̃ = Fl(J,Q) recovers the per-
formance of its actual controller K. Thus, the closed-
loop performance of Fl(G, K̃) is equivalent to the per-
formance of Fl(G,K). In the current work, it can be
deduced that the closed-loop performance of CL(ρ, γ)
is equivalent to that of CLi(ρ) (3) within each param-
eter subset Pi. Notice that according to (4), the fol-
lowing inequality describes the performance of CLi(ρ)
∀ρ ∈ {Pi}i∈ZN

d

dt
(xT

cl,iXcl,i(ρ)xcl,i) +
1

γ∞,i
zT z − γ∞,iw

Tw < 0 (15)

On the other hand, it is worth mentioning that Xcl(ρ) is
independent of the switching signal γ, so, for any switch-
ing time tk, V (xcl(tk)) = V (xcl(t

−
k )), and thus

V (xcl(tk)) ≤ V (xcl(t
−
k )) (16)

Given the initial condition xcl(0) = 0, from (15)-(16), it
can be shown that the inequality

V̇ (xcl)+
1

γ∞
zT z−γ∞wTw < 0, γ∞ = max{γ∞,i}i∈ZN

(17)
holds within each parameter subset. Integrate on both
sides, we get

V (xcl(T ))− V (xcl(0)) +
1

γ∞
∥z∥22 − γ∞ ∥w∥22 < 0

Since V (xcl(T )) ≥ 0 and V (xcl(0)) = 0, ∥z∥2 < γ∞ ∥w∥2
is achieved. Therefore, the closed-loop is exponentially
stable with an achieved performance ∥z∥2 < γ∞ ∥w∥2,
where γ∞ = max{γ∞,i}i∈ZN

.
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Ācl(ρ, γ) = TAcl(ρ, γ)T
−1 =


A(ρ) +B2(ρ)Fg(ρ) B2(ρ)Cq(ρ, γ) −B2(ρ)(Fg(ρ)− (Dk,0(ρ) +Dq(ρ, γ))C2(ρ)) B2(ρ)(Ck,0(ρ)−Dq(ρ, γ)Fk(ρ))

0 Aq(ρ, ρ̇) Bq(ρ)C2(ρ) −Bq(ρ)Fk(ρ)

0 0 A(ρ) +B2(ρ)Dk,0(ρ)C2(ρ) B2(ρ)Ck,0(ρ)

0 0 Bk,0(ρ)C2(ρ) Ak,0(ρ, ρ̇)


(13)

Fig. 3. Partitioned polytopic regions

3 Partitioned polytopic-based LPV-YK control
design

This section presents an LPV-YK control scheme which:
1) formulates a YK-based gain-scheduling between LTI
controllers that have been already designed separately
at the polytopic vertices of each parameter subset; and
2) switches between the formulated gain-scheduling con-
trollers over the partitioned polytopic subregions. The
closed-loop system is proved to guarantee the quadratic
stability for any continuous/discontinuous switching
signals in terms of a set of Linear Matrix Inequalities
(LMIs).

3.1 LPV Plant and Controllers Description

The following approach requires twomodel assumptions:
1) the system must be strictly proper (D22(ρ) = 0); and
2) the input and output matrices B2, C2, D12 and D21

must be parameter-independent [1]. From now on, we
assume, without loss of generality, that the LPV system
is given as:

G(ρ)


ẋ(t) = A(ρ)x(t) +B1(ρ)w(t) +B2u(t)

z(t) = C1(ρ)x(t) +D11(ρ)w(t) +D12u(t)

y(t) = C2x(t) +D21w(t)

(18)
Notice that the second assumption doesn’t impose any
serious constraints since, if needed, it can be fulfilled by
filtering the input u and output y (details are given in
[3]).

DefineP0 a convex polytope that contains all the param-
eter trajectories ρ ∈ Rnp . Let Pi, i ∈ ZN = {1, . . . , N},

be the convex polytopic subsets, that could intersect by
a boundary or surface, defined inP0 along the parameter
trajectories, i.e. ρ ∈ P =

⋃
i≥1

Pi ⊂ P0. Each Pi (i ≥ 0) is

defined as:

Pi := CO{wi1, ..., wi2np} (19)

where wij represent the polytopic vertices of Pi ∀j ∈
I[1, 2np ]. ρ is then scheduled as:

∀ρ ∈ Pi, ρ =

2np∑
j=1

αij(ρ)wij , (20)

where ∀i
2np∑
j=1

αij(ρ) = 1, αij(ρ) ≥ 0 ∀i, j, being αij(ρ)

the scheduling coefficients in the convex region Pi.

Fig. 3 shows an example of a convex parameter region
defined by two varying parameters ρ1 ∈ [ρ

1
, ρ1], and

ρ2 ∈ [ρ
2
, ρ2], with ρ2 = 1/ρ1. The convex region P0 is

represented in solid orange, and the convex subregions
Pi (i ≥ 1) are bounded within dashed green polygons.

The LPV representation of G(ρ) is defined over P0 as
a convex combination of the state-space realizations of
the local LTI systems G0j at the vertices w0j :


A(ρ) B1(ρ) B2

C1(ρ) D11(ρ) D12

C2 D21 0

 =
2np∑
j=1

α0j(ρ)


A0j B1,0j B2

C1,0j D11,0j D12

C2 D21 0


(21)

Notice that G(ρ) could be defined equivalently in terms
of the LTI plants Gij (at wij) as, for ρ ∈ Pi:


A(ρ) B1(ρ) B2

C1(ρ) D11(ρ) D12

C2 D21 0

 =
2np∑
j=1

αij(ρ)


Aij B1,ij B2

C1,ij D11,ij D12

C2 D21 0


(22)

Now, assume that

(A.4.1). There exists an LPV output-feedback controller
K0(ρ)which quadratically stabilizesG(ρ) (using the stan-
dard polytopic approach in [3]) over the full parameter
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region P0, defined as:

K0(ρ) :

Ak,0(ρ) Bk,0(ρ)

Ck,0(ρ) Dk,0(ρ)

 (23)

being,Ak,0(ρ) Bk,0(ρ)

Ck,0(ρ) Dk,0(ρ)

 =

2np∑
j=1

α0j(ρ)

Ak,0j Bk,0j

Ck,0j Dk,0j

 (24)

where Ak,0(ρ) ∈ Rnk,0×nk,0 , Bk,0(ρ) ∈ Rnk,0×mk ,
Ck,0(ρ) ∈ Rpk×nk,0 and Dk,0(ρ) ∈ Rpk×mk .

(A.4.2). At each vertex wij (j ∈ I[1, 2np ], i ≥ 1), a lo-
cal LTI controller Kij is designed separately to stabilize
the local plant Gij. It is worth mentioning that, at each
intersecting boundary, a unique LTI controller should be
designed at the intersecting extremums of the adjacent
subsets respectively.

Regarding the example in Fig. 3, the local LTI con-
trollers at the intersecting boundaries wi3 and w(i+1)2,
∀i ∈ I[1, N − 1], are designed similarly. Consequently,
the switching between two successive subsets (Pi and
Pi+1) undergoes using the same LTI controller (Ki3 ≡
K(i+1)2). In such a case, the state and control input ener-
gies,just before and just after switching, are not affected.

Fig. 3 represents an example of a convex parameter set
partitioning. The dashed black curve represents the ac-
tual operating conditions of the parameters (ρ2 = 1/ρ1).
The orange solid polygon represents the nominal LPV
controller K0(ρ) designed using standard polytopic ap-
proach over the convex region P0. The blue points repre-
sent the local LTI controllersKij (j ∈ I[1, 4], i ∈ I[1, N ])
designed separately to stabilize Gij at wij using any LTI
control approaches. The green dashed polygons are the
subsets chosen along the parameter trajectory. Over each
subset Pi, a gain-scheduled controller K̃i(ρ) is designed
based on the YK interpolation of the local LTI con-
trollers Kij . The overall switching scheme between the

K̃i(ρ) is represented by the LPV-YK controller K̃σ(ρ).

3.2 Problem Definition

The objective of this work is to:

(1) Design multiple YK-based gain-scheduled con-

trollers K̃i(ρ), i ∈ I[1, N ]. Each one is designed by
interpolating its corresponding LTI controllers Kij

(j ∈ I[1, 2np ]) based on YK concept (refer to Fig.
3).

(2) Create an overall switched LPV-YK controller

K̃σ(ρ) to switch between K̃i(ρ), such that K̃σ(ρ)

quadratically stabilizes G(ρ) ∀ρ ∈ P and for every
continuous/discontinuous switching signal σ(t).
The switched closed-loop system is represented as

C̃Lσ(ρ) :

 Ãcl,σ(ρ) B̃cl,σ(ρ)

C̃cl,σ(ρ) D̃cl,σ(ρ)

 (25)

3.3 Main Results

Based on the statements of LPV concepts and YK pa-
rameterization, the LPV-YK controllers K̃i(ρ) are de-
signed based on a Linear Matrix Inequality (LMI) opti-
mization problem, where they are defined as

K̃i(ρ) :

 Ãk,i(ρ) B̃k,i(ρ)

C̃k,i(ρ) D̃k,i(ρ)

 (26)

Lemma 3.1. Consider a set of matrices Ai correspond-
ing to each vertex of a convex hull J = CO{w1, ..., w2np},
The following statements are equivalent:

(i) Ai is Hurwitz ∀i ∈ I[1, 2np ]
(ii) there exist 2np transformation matrices Zi such that

the LPV matrix

Ā(ρ) =

2np∑
i=1

αi(ρ)Āi =

2np∑
i=1

αi(ρ)ZiAiZ
−1
i (27)

is quadratically stable ∀ρ ∈ J , where ρ =
2np∑
i=1

αi(ρ)wi such that
2np∑
i=1

αi(ρ) = 1, αi(ρ) ≥ 0 ∀i.

Proof details are in [10].

Theorem 3.1. Consider an LPV plant G(ρ) (18),
satisfying assumptions (A.3.1) and (A.3.2). Then, the

switched LPV-YK controller K̃σ(ρ) (26)-(30) quadrati-
cally stabilizes G(ρ) for any ρ ∈ P and for any continu-
ous/discontinuous switching signals γi ∈ [0, 1] (∀i ≥ 1),
if there exist symmetric, positive definite, constant ma-
trices Xg ∈ Rnx×nx , Xk,ij ∈ Rnk,ij×nk,ij , and matrices
Wj ∈ Rm×nx and Vij ∈ Rmk×nk,ij such that:

A0jXg +XgA
T
0j +B2Wj +WT

j BT
2 < 0 ∀w0j (28)

Ak,0(wij)Xk,ij+Xk,ijA
T
k,0(wij) +Bk,0(wij)Vij+

V T
ij B

T
k,0(wij) < 0 ∀wij

(29)

with the state-space matrices of K̃i(ρ) are
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Fig. 4. Partitioned polytopic-based generalized LPV-YK
configuration

Ãk,i(ρ) =

2np∑
j=1

αij(ρ)


Aij +B2Fg,ij −B2D̄q,ijC2

−Bk,0(wi,j)C2

−B̄q,ijC2

−B2D̄q,ijFk,ij B2C̄q,ij

Ak,0(wi,j) 0

−B̄q,ijFk,ij Āq,ij



B̃k,i(ρ) =
2np∑
j=1

αij(ρ)
[
B2D̄q,ij Bk,0(wi,j) B̄q,ij

]
C̃k,i(ρ) =

2np∑
j=1

αij(ρ) [Fg,ij − (Dk,ij +Dq,ij)C2

Ck,0(wi,j)−Dq,ijFk,ij C̄q,ij

]
D̃k,i(ρ) =

2np∑
j=1

αij(ρ)[Dk,0(wi,j) + D̄q,ij ]

(30)
∀i ∈ I[1, N ],

where Āq,ij = ZijAq,ij(Zij)
−1, B̄q,ij = ZijBq,ij, and

C̄q,ij = Cq,ij(Zij)
−1 ∀i, j, and Zij are state transforma-

tion matrices chosen, to satisfy Lemma 3.1, such that

Āq,i(ρ) =
2np∑
j=1

αj(ρ)ZijAq,ij(Zij)
−1 is quadratically sta-

ble ∀i ≥ 1. Aq,ij, Bq,ij, Cq,ij and Dq,ij are the state-
space matrices ofQi(ρ) (32) at the polytopic vertices wij.
In addition, Fg,j = WjX

−1
g , Fk,ij = Vij(Xk,ij)

−1, and
Fg,ij = Fg(wij).

PROOF. As mentioned in the previous proof,
each parameterized controller can be formulated as
a Linear Fractional Transformation (LFT) system
[32]. Each LPV-YK controller can be written as

K̃i(ρ) = Fl(J(ρ), Q̄i(ρ)) ∀ρ ∈ Pi (see Fig. 4), where
J(ρ) is represented in (10), and Q̄i(ρ) is the transformed

system of Qi(ρ) (32).

J(ρ) =
2np∑
j=1

αij(ρ)


Aij +B2Fg,ij 0 0 B2

−Bk,0(wij)C2 Ak,0(wij) Bk,0(wij) 0

Fg,ij −Dk,0(wij)C2 Ck,0(wij) Dk,0(wij) I

−C2 −Fk,ij I 0


(31)

The following proof is achieved by two steps: 1) Prove
that the LPV-YK parameter Q̄i(ρ) is quadratically
stable ∀ρ ∈ {Pi}i∈ZN

; and 2) Prove the closed-loop
quadratic stability ∀ρ ∈ {Pi}i∈ZN

, ∀σ.

Step 1:

Knowing that: 1)Kij stabilizes Gij ∀i ≥ 1,∀j ∈ [1, 2np ];
and 2) (29) is satisfied, it can be shown that the triangu-
lar elements of Aq,ij ∀i, j are Hurwitz, and consequently,
Aq,ij is Hurwitz ∀i, j. According to Lemma 3.1, for
any i ≥ 1, there exist transformation matrices Zij such
that the transformed system Q̄i(ρ) is quadratically sta-
ble ∀ρ ∈ Pi, choose Zij = (Xq,ij)

1/2. As a result, Q̄i(ρ)
is quadratically stable ∀ρ ∈ Pi.

3.4 Step 2:

The switched closed-loop system CLσ(ρ) is derived from

the LFT interconnection between G(ρ) and K̃σ(ρ) (see
Fig. 4).

The switched closed-loop state matrix Acl,σ(ρ) =
2np∑
j=1

ασj(ρ)Acl,σj is quadratically stable if:

(1) There exist symmetric, positive definite, constant
matrices Xcl,i such that ∀i ≥ 1

Xcl,iÃcl,i(ρ) + ÃT
cl,i(ρ)Xcl,i < 0 ∀ρ ∈ Pi (33)

(2) ∀tk ∈ [0, T ], V (xcl(tk)) ≤ V (xcl(t
−
k ))

Taking the same state transformation matrix T as in the
previous proof, the transformed close-loop state matrix
Ācl,i(ρ) is represented in (34). Due its block-triangular
form, (12) is then satisfied if the following equations hold
(check Lemma 2 in [36]):

2np∑
j=1

αij(ρ)(Yg,i(Aij +B2Fg,ij) + (Aij +B2Fg,ij)
TYg,i) < 0 (35)

2np∑
j=1

αij(ρ)(Yq,iĀq,ij + ĀT
q,ijYq,i) < 0 (36)
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Qi(ρ) =

2np∑
j=1

αij(ρ)


Aij +B2Dk,ijC2 B2Ck,ij B2[Dk,ij −Dk,0(wij)]Fk,ij −B2Ck,0(wij)

Bk,ijC2 Ak,ij Bk,ijFk,ij

0 0 Ak,0(wiij) +Bk,0(wij)Fk,ij

B2[Dk,ij −Dk,0(wij)]

Bk,ij

Bk,0(wij)

Dk,ijC2 − Fg,ij Ck,ij (Dk,ij −Dk,0(wij))Fk,ij − Ck,0(wij) Dk,ij −Dk,0(wij)

 (32)

Ācl,i(ρ) =
2np∑
j=1

αij(ρ)TAcl,ij(γ)T
−1 =

2np∑
i=1

αij(ρ)


Aij +B2Fg,ij B2C̄q,ij −B2(Fg,ij − (Dk,0(wij) + D̄q,ij)C2) B2(Ck,0j(wij)− D̃q,ijFk,ij)

0 Āq,ij B̄q,ijC2 −B̄q,ijFk,ij

0 0 Aij +B2Dk,0(wij)C2 B2Ck,0(wij)

0 0 Bk,0(wij)C2 Ak,0(wij)


(34)

2np∑
j=1

αij(ρ)(YiAij +AT
ijYi) < 0 (37)

where Yg,i ∈ Rnx×nx , Yq,i ∈ Rnq×nq and Yi ∈
R(nx+nk,0)×(nx+nk,0) are symmetric, positive definite,
constant matrices, with Xcl,i = TT diag(Yg,i, Yq,i, Yi)
T , and

Aij =

[
Aij +B2Dk,0(wij)C2 B2Ck,0(wij)

Bk,0(wij)C2 Ak,0(wij)

]
(38)

• Inequality (35) is equivalent to (28) by choosing
Yg,i = X−1

g and Wj = Fg,ijXg for every ρ ∈ Pi.

• Since Q̄i(ρ)) is proved to be quadratically stable ∀i,
inequality (36) is satisfied.

• (37) is fulfilled given that K0(ρ) quadratically sta-
bilizes G(ρ) over P0, and consequently over any
Pi ⊂ P0.

Therefore condition (33) is satisfied.

Assume a sequence of finite switching time over the
interval [0, T ] is t0, t1, . . . , tn with t0 = 0, knowing that
closed-loop Lyapunov function as V (xcl) = xT

clXcl,σxcl.
From the YK basic concept, the closed-loop is written
as Fl(G, J,Q). Consider a switching between any two
adjacent subsets Pi and Pi+1 ∀i ≥ 1 at time tk, then,
the closed-loop dynamics switches from Fl(G, Ji, Qi,3)
to Fl(G, Ji, Qi+1,2), or vise-versa. According to (A.4.2),
Ki,3 ≡ Ki+1,2 ∀i ≥ 1, consequently Qi,3 ≡ Qi+1,2.
Then, for any switching time tk, Fl(G, J,Qi,3) =
Fl(G, J,Qi+1,2), and thus V (xcl(tk)) = V (xcl(t

−
k )).

As a result, the switched closed-loop system CLσ(ρ)
is quadratically stable ∀ρ ∈ P, and for any continu-
ous/discontinuous switching signal σ.

Fig. 5. Generalized plant G(ρ)

4 Application to Autonomous Vehicles

The proposed method is applied to the lateral dynam-
ics of an autonomous vehicle, since it contains a non-
affine scheduling parameter which causes an overbound-
ing convex parameter region when implementing the
polytopic approach. Recently, the polytopic, grid-based,
and LFT approaches has been experimentally validated
for lateral control of an automated vehicle in [7]. The
lateral bicycle model is chosen, and taking into consid-
eration the steering actuator dynamics.

4.1 Modelling Step

In [7], the lateral bicycle model Σ(ρ) has been formulated
for gridded and convex parameter regions. The longitu-
dinal speed vx is the varying parameter that varies in
[5, 30] m/s. For the gridded parameter region, the state-
space representation of Σ(ρ) is written as:

Σ(ρ)

{
ẋ(t) = AΣ(ρ)x(t) +BΣu(t)

y(t) = CΣx(t)
(39)
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being

x(t) =

[
vy

w

]
, u(t) = δ, BΣ =

[
Cf

m
Cf lf
I

]
, CΣ =

[
0 1

]
,

AΣ(ρ) =

 −Cr+Cf

mρ −Cf lf−Crlr
mρ − ρ

−Cf lf−lrCr

Iρ −Cf l
2
f+l2rCr

Iρ

 ,

(40)

where vy and w are the lateral and rotational velocities
in the vehicle’s frame, respectively. δ is the control input,
the steering angle of the front tire. Cf and Cr represent
the stiffness of the front and rear wheel-tires. I, m, lf
and lr are the vehicle’s inertia, mass and the distance
from the center of gravity to the front and rear wheel
axes respectively.

On the other hand, to represent Σ(ρ) in a convex pa-
rameter region, the parameter-varying state-space ma-
trices (i.e. AΣ(ρ)) should be written in affine parameter-
dependency as:

AΣ(ρ) =

 −Cr+Cf

m ρ2 −Cf lf−Crlr
m ρ2 − ρ1

−Cf lf−lrCr

I ρ2 −Cf l
2
f+l2rCr

I ρ2

 , (41)

with ρ1 = vx and ρ2 = 1
vx
. Notice that, in the coming

control designs, (40) is used for the gridded parameter
regions and (41) is used for convex parameter regions.
Notice that the bicycle model is extended by considering
an identified steering actuator dynamics Σact.

4.2 Lateral Control Design

In this work, the LPV and LTI controllers are designed
using the H∞ concept. For control design purpose, two
weighting transfer functions We(s) and Wu(s) are de-
signed to present the tracking performance and the ac-
tuator limitations respectively. Then, the state-space
representation of G(ρ) is obtained from the generalized
plant shown in Fig. 5.

The longitudinal speed is assumed to vary within the
range ρ ∈ P = [5, 30] m/s, with a variation ρ̇ ≤ 5 m/s2.
Since the system dynamics changes significantly in this
speed range, it could be conservative to design a single
LPV controller over the full parameter region. Thus, the
parameter region is divided into 5 subsets as:

ρ ∈ [5, 10] ∪ [10, 15] ∪ [15, 20] ∪ [20, 25] ∪ [25, 30] (42)

Consider the following weighting functions to be used in
the control design:

We,0(s) =
s+2

2s+0.002 , Wu,0(s) =
s+5

0.01s+5
(43)

Fig. 6. Partitioned parameter region

We(s) =
s+2

2s+0.002 , Wu(s) =
s+10

0.01s+10
(44)

4.2.1 Grid-based control design

This section designs the proposed grid-based LPV-YK
controller accordingly to the next steps:

• The nominal controller K0(ρ) is designed using
We,0 andWu,0 over the full parameter region P sat-
isfying (A.3.1). Following (A.3.2), the controllers
Ki(ρ) are designed separately over Pi (i ∈ [1, 5]),
with the same weighting functions We and We.

• Following the conditions of Theorem 2.1, the
LPV state-feedback gains Fg(ρ) and Fk,0(ρ) are de-
signed using the LMIs (6)-(7), where the multiple
parameter-dependent Lyapunov functions at each
subset are specified as affine and smooth functions
of scheduling parameters. That is,

Xg(ρ) = X0
g +X1

g ρ, Xk,0(ρ) = X0
k,0 +X1

k,0 ρ,

where matrices Xj
g and Xj

k,0, j = 0, 1 are the opti-
mization variables to be determined.

• J(ρ) and Qi(ρ) (i ∈ [1, 5]) are obtained from (10)-
(32).

• Q(ρ, γ) =
5∑

i=1

γi(ρ)Qi(ρ), where γi(ρ) is switched

between {0,1} when ρ(t) touches the switching

instants. Then, the LPV-YK controller K̃(ρ, γ) is
ready to be implemented.

4.2.2 Partitioned polytopic-based control design

In this section, G(ρ) is written as a convex combina-
tion of the vertices of a triangular polytope P(0) =
CO{(ρ1, ρ2), (ρ1, ρ2), (ρ1, ρ2)} as shown in Fig. 6. The
following section aims to design proposed partitioned
polytopic-based LPV-YK control. Five triangular con-
vex subsets (P1 . . .P5) are chosen along the parameter
trajectory as shown in Fig. 6. At the polytopic vertices

11



wij ∀i ∈ I[1, 3],∀j ∈ I[1, 5], LTI controllers Kij are de-
signed separately using the same weighting functionsWe

and Wu. In addition, a polytopic LPV controller K0(ρ)
is designed, based on (A.4.1), using We,0 and Wu,0.

For the partitioned polytopic-based LPV-YK control de-
sign, the following steps are done:

• According to the method explained in Section 3.3,
the LPV polytopic-based state-feedback controller

Fg(ρ), and the LTI state-feedback controllers F
(0)
k,i ,

∀i ∈ I[1, 4], can be designed using an LMI-based
state-feedback approach (pole-placement con-
straints or Linear Quadratic Regulator).

• J(ρ) and Q̃(ρ, γ) are obtained from (31)-(32) and
as mentioned in the proof of Theorem 3.1.

As a result the partitioned polytopic-based LPV-YK
control scheme K̃σ(ρ) is designed, and σ switches when
ρ hits the subsets boundaries.

4.3 Experimental Results

The experiments shown here have been carried out on
a robotized electric Renault ZOE vehicle shown in Fig.
7. It is prepared for lateral and longitudinal controls by
computer-controlled steering and pedal actuators. Ve-
hicle speed and the global coordinates are measurable
using GPS and IMU. The vehicle is employed using a
dSPACEMicroAutoBox. The test results of the designed
controllers are discussed concerning their implementa-
tion and the analysis of the obtained performance.

In addition to the grid-based and partitioned polytopic-
based LPV-YK controllers, two more controllers are
tested for comparison purpose: 1) LPV-switched con-
troller designed using the Theorem presented in [24];
and 2) A gain-scheduled LPV-YK controller that is
designed by interpolating the LTI controllers at the ver-
tices of P0, as presented in [12]. These two controllers
are chosen to compare and show the improvement of our
proposed approaches. The tests are done in a private
test track in Satory (France) as shown in Fig. 8. This
track contains bad road conditions and road-inclinations
which allows to evaluate the controller robustness. The
first part of the test describes the response of the con-
trollers at a straight highway with high speeds. The
second part concerns the precision of lateral control at
optimal speeds chosen coherently depending on the road
curvature. The longitudinal speed is considered as an
external parameter of the LPV mode that is shown in
Fig. 9. Fig. 10 presents the operating parameter subset
that switches according to the speed evolution.

In the next two subsections, the vehicle performance is
analyzed and compared between the grid-based LPV-
YK controller and the LPV-switched controller [24], and

Fig. 7. Renault ZOE automated vehicle
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Fig. 8. Experimental planned and controlled trajectories
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Fig. 9. Experimental longitudinal speed vx (Kph)
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Fig. 10. Parameter subsets

between the partitioned polytopic-based LPV-YK con-
troller and the gain-scheduled LPV-YK controller. No-
tice that, in all the tests, a restarting mode of the naviga-
tion systems appears at the end of the highway. Conse-
quently, the results analysis doesn’t concern the boarded
part marked ”NAV”.

4.3.1 Grid-based LPV-YK control

Fig. 11a shows that both controllers achieve minimized
lateral error. However, Fig. 11b and 11c emphasize a
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Fig. 11. Grid-based LPV-YK control

clear difference in performances during switching from
one subset to another. The zoomed parts in Fig. 11c show
that the switching effect is negligible using the proposed
grid-based LPV-YK controller, which is not the case for
the switched LPV controller.

Moreover, it is worth mentioning that the control input
response at high speeds is not noisy. However, it has been
shown previously that designing a single LPV grid-based
controller over the whole parameter region could cause
noisy performance at high speed as discussed in [7].
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Fig. 12. Partitioned polytopic-based LPV-YK control

4.3.2 Partitioned polytopic-based LPV-YK control

It is shown in Fig. 12a that both controllers, the pro-
posed partitioned and gain-scheduled LPV-YK, could
successfully achieve lateral error minimization. On the
other hand, the gain-scheduled LPV-YK controller
leads to higher steering oscillations, compared to the
partitioned LPV-YK controller, as shown in Figs. 12b
and 12c. When t ∈ [28.3, 28.5]s, it is observed in Fig.
10 switches hysterically back and forth between the
subsets P(3) and P(4). However, the hysterical switch-
ing of the partitioned LPV-YK controller between both
subsets didn’t affect the performance of the steering
input and consequently the yaw rate (see the zoomed
part in Figs. 12c and 12b). This is expected since,
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at that instants, the operating controllers at that in-
tersecting boundary are dynamically equivalent, i.e.
Fl(G, J33, Q33) ≡ Fl(G, J42, Q42).

5 Conclusion

This work has proposed advanced LPV-YK switching
methods to obtain smooth switching between param-
eter subregions. The switching signal is parameter-
dependent which can be any continuous/discontinuous
signal. The main advantages behind these approaches,
compared to the previous LPV-switched controllers are:
1) The pre-designed LPV controllers are parameter-
ized with respect to a nominal LPV controller, instead
of requiring the redesign in new constrained LMIs; 2)
The design conditions proposed for LPV-YK switching
control are more smooth and can be satisfied assum-
ing the LPV stabilizability of the system; 3) The local
controllers can be designed using different control ap-
proaches, i.e. PID,H∞, etc; and finally 4) The proposed
LPV-YK control schemes doesn’t pose any conditions
or limitations on the switching signals.

As a future work, an interest appears to study the choice
of Q dynamics, i.e. how to choose the best design of the
state-feedback gains Fg and Fk,0, and how they affect
the closed-loop performance.
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A Proof of Lemma 2.1

PROOF. Consider an upper triangular matrix:

A(ρ) =

[
A11(ρ) A12(ρ)

0 A22(ρ)

]
(A.1)

According to the assumption, there exists bounded pos-
itive definite matrix functionsX1(ρ) andX2(ρ), positive
real numbers α1 and α2, satisfying the following inequal-
ities [30]:

Ẋ1(ρ) +X1(ρ)A11(ρ) +AT
11(ρ)X1(ρ) ≤ −α1I

−α2I ≤ Ẋ2(ρ) +X2(ρ)A22(ρ) +AT
22(ρ)X2(ρ) < 0

(A.2)
Since the off-diagonal matrix A12(ρ) is assumed to be
bounded, there exists a positive real number α3 satisfy-
ing

X1(ρ)A12(ρ) ≤ α3I (A.3)

A(ρ) is said to be exponentially stable if there exists a
positive definite matrix function X(ρ) such that

π = Ẋ(ρ) +X(ρ)A(ρ) +AT (ρ)X(ρ) < 0 (A.4)

Choose

X(ρ) =

[
X1(ρ) 0

0 λX2(ρ)

]

Then,

π =

[
Ẋ1(ρ) +X1(ρ)A11(ρ) +AT

11(ρ)X1(ρ) X1(ρ)A12(ρ)

AT
12(ρ)X1(ρ) λ

(
Ẋ2(ρ) +X2(ρ)A22(ρ) +AT

22(ρ)X2(ρ)
)]

Next, let us find a positive real number λ > 0 which sat-
isfies (A.4). Using Schur complement, inequality (A.4)
is equivalent to the following two inequalities:

π(2, 2) < 0

π = π(1, 1)− π(1, 2)π(2, 2)−1π(2, 1) < 0
(A.5)

The first inequality holds for any λ > 0 (from (A.2)).
Considering (A.2) and (A.3) in (A.5), then

π ≤ −α1I + λ−1α2π(1, 2)π(2, 1) ≤ −α1I + λ−1α2α
2
3I

(A.6)
Therefore, π < 0 for any λ > 0 satisfying α2α

2
3/λ < α1.

A similar proof could be deduced for the lower triangular
matrices.
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