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When my avatar’s movements make me feel I am moving: From 
natural-like stimuli to fully artificial ones in virtual reality 
Quand les mouvements de mon avatar me donnent l’impression que je 
bouge : des stimuli naturels à des stimuli entièrement artificiels en 
réalité virtuelle 
Marion Giroux, Julien Barra, Christian Graff, and Michel Guerraz 
Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LPNC, 38000 Grenoble, France 

Abstract. In virtual reality, users do not receive any visual information coming from their own body. Thus, 
avatars are often used, and they can be embodied which alters the body representation. We suggested that the 
perception of one’s own movements (i.e., kinaesthesia) can be altered as well. We investigated whether visual 
cues coming from an avatar can be used for kinaesthesia and to what extent such cues can deviate from 
natural ones. We used a paradigm in which the participant’s left forearm was moved passively, correlated 
with the movement of both forearms of the avatar. Such visuo-proprioceptive combination induces 
kinaesthetic illusions in the participant’s right forearm. The impact of the morphological similarity (semantic 
congruency) and of the visual perspective of the avatar (spatial congruency) was investigated. Results have 
indicated that avatar’s movements are processed as one’s own movements. Morphological similarity and 
first-person perspective were not necessary, but they reinforced the illusions. Thus, visual motion cues can 
strongly deviate from natural ones in morphology and perspective and still contribute to kinaesthesia. 

Résumé. En réalité virtuelle, les utilisateurs ne reçoivent aucune information visuelle de leur propre corps. 
Des avatars sont souvent utilisés pour combler ce manque. Ces avatars peuvent être incarnés et modifier la 
représentation que l’utilisateur se fait de son corps. Ainsi, si l'avatar peut être assimilé au corps de 
l’utilisateur, les mouvements de cet avatar pourraient également être assimilés à des mouvements du corps 
propre et ainsi affecter sa perception du mouvement. Nous avons utilisé un paradigme dans lequel le bras 
gauche du participant était déplacé passivement, en corrélation avec le mouvement des deux bras de l'avatar. 
Cette combinaison visuo-proprioceptive induisait des illusions de mouvement dans le bras droit du participant 
témoignant de l’impact de l’avatar sur la kinesthésie. Les importances respectives de la similarité 
morphologique et d’une perspective visuelle à la première personne de l'avatar ont également été étudiées et 
elles s’avèrent non nécessaires, même si elles renforcent les illusions. Ainsi, les informations visuelles de 
mouvement provenant de l’avatar peuvent grandement différer des informations naturelles liées au corps 
propre et néanmoins contribuer à la kinesthésie. 

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
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1 Avatar embodiment in virtual reality 
In virtual reality, a virtual environment is generated by a computer and displayed to the users through screens or Head 
Mounted Displays (HMD). The latter devices capture the movements of the users’ head which enables a natural-like 
exploration of the virtual environment in real time. When wearing an HMD, the only visual information received by 
users are artificial ones created by the computer. Thus, users do not receive any visual information coming from their 
own body which could lead to the feeling of not having a body, i.e., to be disembodied. Numerous set-ups in virtual 
reality choose to represent the user’s body in the virtual environment by an avatar to limit this possibly uncomfortable 
feeling since such avatar can be “embodied”. The feeling of embodiment has been defined by different authors in more 
or less specific situations. De Vignemont approached the question of embodiment in a general way and suggested that 
an "object E is embodied if some properties of E are processed in the same way as the properties of one’s body" (de 
Vignemont, 2011). Kilteni and colleagues (2012), for their part, considered that a feeling of embodiment towards a 
body B occurs if and only if, at least one of the following three feelings is felt with at least minimal intensity:  

• Feeling of being localised in the body B (Self-location);
• Feeling of being the agent of the movements of the body B (Agency);
• Feeling that the body B is one’s own (Ownership).

These three sub-components would be considered and combined into a general feeling of embodiment toward the body 
B. The resulting feeling could be represented on a continuous scale indicating various possible degrees ranging from an
“absence of feeling of embodiment” to a “maximal intensity of this feeling”, the latter being reached, a priori, only for
the real body (Kilteni, et al., 2012). Both definitions apply to the real physical body as well as to an avatar, a prosthesis,
a tool or fake body parts. In a more specific way, Gonzalez-Franco & Peck (2018) defined the embodiment of an avatar
as the “illusory feeling that the avatar has replaced one’s own body at a physical and/or functional level in the virtual
environment” which includes the sub-components described by Kilteni et al., (2012). These sub-components have been
highlighted by several studies dealing with embodiment illusions (i.e., illusory feeling to embody a fake or virtual
body). For example, Longo and colleagues used a principal component analysis to segregate ownership, agency and
self-location during the Rubber Hand Illusion (Longo et al., 2008). This illusion occurs when a fake hand and the real
hand of the participant are stroked synchronously while the latter is hidden from view. Such visuo-tactile stimulation
leads to a feeling of embodiment toward the rubber hand that is notably objectivised by a real hand-withdrawal reflex
when the rubber hand is struck with a mallet (Botvinick et Cohen, 1998).
In a typical way, embodiment is felt toward one’s own body but it can be affected in some pathologies (i.e., some body 
parts or the whole body felt like they are no longer part of oneself) (Barra et al., 2020 for a review) or, as explained 
above, it can stretch to external objects like a rubber hand or an avatar. Many studies reported the occurrence of a 
feeling of embodiment toward a first-person perspective avatar (e.g., Normand et al., 2011; Slater et al., 2010). For 
example, in the experiment conducted by Slater and colleagues (2010) with adult participants, a feeling of ownership 
towards a little girl avatar seen at the first-person perspective, was observed. The participants could also see their avatar 
being touched on the shoulder and feel the corresponding touch on their own shoulder. Such synchronous visuo-tactile 
stimulation also enhanced the feeling of ownership towards the avatar (Slater et al., 2010). Likewise, a study from 
Lugrin et al. (2015) reported high level of illusion of virtual body ownership towards first-person avatars with different 
levels of anthropomorphism. In this experiment, the avatar replicated in real time every movements of the participant’s 
body (Lugrin et al., 2015). Our own studies also showed the embodiment of first-person perspective avatars whose 
forearms could be moved in real time by the participant (Giroux et al., 2018, 2019).  
It is important to note that in the experiments evoked above, synchronous multisensory or sensorimotor stimulations 
(visuo-tactile: Slater et al., 2010; visuomotor: Lugrin et al., 2015 and Giroux et al., 2018; 2019) were at the root of the 
avatar’s embodiment or, at the very least, increased such feeling. Moreover, the first-person perspective itself can be 
enough to induce a feeling of embodiment (when the avatar is sufficiently realistic) since there is still a congruent 
visuo-proprioceptive stimulation. Indeed, at the first-person perspective, there is, with some exceptions, a congruency 
between visual information coming from the avatar’s body and proprioceptive information about the real body posture 
(Maselli et Slater, 2013). Furthermore, most of head-mounted displays, used nowadays in virtual reality set-ups, can 
track in real-time users’ head movements. Such feature enables the participants to explore the virtual environment by 
naturally moving their head, but it can also be used to animate the avatar’s head in congruence with the users’ head, 
inducing a visuo-motor congruency when the users see their avatar in a mirror (e.g., Slater et al., 2010). Thus, the 
embodiment of first-person perspective avatars appears to be relatively straightforward provided that some multisensory 
or sensorimotor congruencies between the avatar and the real body are supplied. Moreover, the avatar does not have to 
be a realistic representation of the human body to be embodied, especially when it is induced by visuo-motor 
combination. Indeed, in the literature, there are many examples of embodiment of non-humanoid objects ranging from a 
cat’s paw (Zhang et Hommel, 2016) to dots placed at the fingertips’ locations (Schwind et al., 2018), including a 
wooden block (Lin et Jörg, 2016) or even a 2D square (Ma et Hommel, 2015). 
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2 The impact of avatar embodiment on mental body representations 
The embodiment of an avatar has many impacts on action and cognition, including the proteus effect. In the proteus 
effect, identity cues derived from the visual characteristics of the avatar alter the user’s behaviours and attitudes (Yee & 
Bailenson, 2007). For instance, Beaudoin et al. (2020) showed that embodiment of an avatar resembling an elderly adult 
by young adult participants can change mentally-represented physical activity in a motor imagery task. In addition, the 
more negative the participant's beliefs about motor activity in the elderly, the greater the impact of the avatar on motor 
imagery performance. Therefore, the knowledge about the characteristics of an embodied avatar can modify the 
participant’s level of mentally represented physical activity. In the same vein, the attractiveness of the embodied avatar 
impacts the degree of intimacy expressed by the participant’s behaviour towards confederates (Yee et Bailenson, 2007) 
and embodiment of a dark-skinned avatar leads reduced implicit racial bias in white-skinned people (Peck et al., 2013). 
More interestingly for our purpose, avatar embodiment can also impact our mental body representations. 
The fact that mental body representations exist is commonly accepted in the literature, although there are still many 
debates about the identity, denomination, and number of these representations. A relative consensus seems to admit the 
existence of an opposition between the body schema and the body image, which are multimodal representations of the 
body used for different purposes. These terms are widely used in the literature, not always with the same meaning. The 
body schema is mainly described as a global and modular representation of our body, its shape, its position and its 
movements that allows us to plan and execute our actions. This representation of the body is considered to be essential 
to enable us to act and is even considered as a representation of the body for action or motor control (Gallagher, 2005; 
Head et Holmes, 1911). Indeed, in order to perform an action, such as grasping a piece of cake, we need to know where 
the cake is located, but also where our arm and hand are in space, in what posture is our hand and what are the shape 
and size of our arm to determine whether or not we can reach the cake (e.g., too far away, in a box that is too small). All 
this information is necessary to determine what gestures we need to make to carry out our action and it would be the 
body schema that gather all this information received from multiple sensory receptors. In addition, the body schema 
would be constantly updated to consider changes in position but also changes in shape (e.g., weight gain or loss, 
surgery, amputation) and size (e.g., growth) of the different segments of our body. It would therefore be a real-time 
("Online") representation, constructed at each moment by sensory information (Carruthers, 2009). 
The question of the body image achieves less consensus than the body schema. Indeed, the unity of body image is 
greatly questioned because it is often thought of as "everything that is not the body schema" (de Vignemont, 2010). It is 
considered as a conscious system of perceptions, attitudes and beliefs about one's own body (Gallagher, 2005) and 
would thus group together perceptual, conceptual and emotional representations of the body (i.e., body percept, body 
concept and body affect). When the body schema is exclusively a real-time representation, the body image would be 
composed of both real-time and offline representations. It would therefore include elements constructed in real time 
using sensory information (e.g., the vision of a bruise on a part of the body) but also more durable elements, which 
would not be updated easily nor quickly, on what the body usually looks like (e.g., the fact that one has two hands). 
Body image would not be involved in action in contrast to the body schema. 
Therefore, the body schema as well as the body image rely on multisensory information and many studies demonstrated 
the implication of different sensory signals on body representations, such as visual, tactile or proprioceptive signals 
(Röder et al., 2013), but also vestibular (Lopez et al., 2012) or auditive (Tajadura-Jiménez et al., 2015) ones. However, 
it is often not easy to determine which of the body image or body schema is affected by such stimulations mostly since 
they are probably both. Another way to alter these mental body representations is through embodiment or ownership 
illusions, which consist in the illusory feeling of embodiment toward external body or body parts. As previously 
explained, it is possible to have a feeling of embodiment toward virtual but also physical external objects provided that 
multisensory stimulations (e.g., visuo-tactile, visuo-motor) initiate it. When such an embodied external object differs on 
some characteristics from the real body, the mental body representations are modified. For example, when looking at a 
life-size picture of a face placed in front of their face and being touched simultaneously and at the same location (i.e., 
visuo-tactile stimulation) like if it were their face reflected by a mirror, participants see the mental representations of 
their face altered. The embodiment of the face seen is called the enfacement illusion (Sforza et al., 2010) and has 
consequences on the other/self discrimination. Indeed, participants attribute more facial features from the other face to 
their own in other/self discrimination and recognition tasks compared to a condition with incongruent visuo-tactile 
stimulation (i.e., without illusory embodiment) (Sforza et al., 2010; Tsakiris, 2008). In the same idea, the “very long 
arm illusion” used visuo-motor stimulation to induce an illusory feeling of embodiment toward a virtual arm, 
colocalised with the real arm of the participant. This virtual arm can slowly lengthen until it reaches twice, three or four 
times its original length. When the hand at the end of this very long virtual arm is threatened (by a virtual saw), 
participants have withdrawal hand movements. Thus, the mental representations of the arm have changed, lengthening 
with the virtual arm the participants see (Kilteni, Normand, et al., 2012). Similar results are found when, in virtual 
reality, participants embody a first-person perspective avatar with a larger belly than theirs. Indeed, after such 
embodiment, participants overestimate their own body size. The representations of their own body are altered by the 
embodiment of the large-belly avatar, including characteristics from the latter (Normand et al., 2011). 
To summarize, multisensory or sensorimotor stimulations can generate a feeling of embodiment towards an external 
body or body parts either virtual or physical. Such external objects can be processed as one’s own body as they impact 
mental body representations and, more precisely, the representation of the body shape and size. Some characteristics 
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from the embodied object are attributed to one’s own body. Thus, embodiment of external objects has consequences on 
the perception of one’s own body but also on the perception of one’s own movements as we will see below. 

3 Kinaesthesia 
Before exposing the consequences of embodiment on kinaesthesia, we must define and describe what we mean by 
kinaesthesia. Kinaesthesia consists in our ability to consciously perceive movements of our body parts in space. We 
have a conscious access to a kinaesthetic percept, that is a feeling of movement, and this percept results from the 
integration of different signals both peripheral (sensory) and central (motor). No specific sensory signal is devoted to 
kinaesthesia but all body sensory signals available contribute to the construction of the sense of movement. The 
implication of visual, proprioceptive, tactile, and auditive signals in kinaesthesia has been largely demonstrated through 
the existence of movement’s illusion induced by specific sensory manipulations. 
An illusory feeling of movement of one's own whole body can be induced by the vision of a moving visual flow in a 
static observer (Brandt et al., 1972; Guerraz et Bronstein, 2008; Harquel et al., 2020). Such visual illusion, called 
vection, can be experienced when we are in a train at a station stop and the train next to us starts moving. For a moment, 
it feels like our train is moving. In this situation, the visual flow we receive indicates a movement of almost our entire 
environment, which generally corresponds to a movement of our body in space. If, as we are experiencing this feeling 
of vection, we fix our gaze on the station platform (which is static) for example, it will immediately disappear, the 
ambiguity between movement of an external object and movement of our own body will be removed. Experimentally, 
there are different ways of generating these phenomena by scrolling or rotating a visual pattern (e.g., black dots on a 
white background) to create the illusion of linear displacement, called linear vection, in different directions in space 
(front-back; up-down; right-left), or rotation, called circular vection (Brandt et al., 1972). Nowadays, it is also possible 
to induce these vection phenomena through virtual reality. Indeed, it is possible to expose the participant to a more or 
less complex visual flow in order to induce feelings of vection (Gallagher et al., 2019; Kuiper et al., 2019). It is also 
possible to induce such a perception of movement of parts of the body on the same principle as that used for whole 
body. Indeed, the rotation of a visual pattern under a participant's hand (or arm) leads to the sensation of a rotating 
movement of the wrist (or elbow) in the opposite direction (Blanchard et al., 2013; Chancel et al., 2016; Tardy-Gervet 
et al., 1984).  
Vections can also be induced by auditory signal manipulations. Indeed, when blindfolded, the exposure to moving 
sounds or, more effectively, to a moving sound field leads to the feeling of being in motion, either in rotation (i.e., 
circular vection) when the sound field rotates or in translation (i.e., linear vection) when it moves linearly (Väljamäe, 
2009). In addition, sounds related to our actions and, even more effectively, the sonification of movements - which 
transforms movement characteristics (e.g., speed, spatial orientation) into an acoustic signal - can be used to improve 
motor performance (Effenberg, 2004), motor learning (Effenberg et al., 2015) or motor rehabilitation (Bevilacqua et al., 
2018; Maulucci et Eckhouse, 2001). Thus, these auditory stimuli influence the performance in these multiple motor 
tasks, suggesting that they may also contribute to limb movement perception, although no studies to our knowledge 
have directly addressed this issue.  
If the existence of illusory feelings of limb movement induced by auditive manipulation remains to be demonstrated, 
such illusion has been proven to be strongly induced by muscle proprioceptive signal (i.e., the signals coming from the 
muscles spindles) manipulations. For example, the vibration of the elbow flexor generates the illusion of an extension 
while the vibration of the elbow extensor generates the illusion of a flexion (Proske et Gandevia, 2012). Furthermore, 
the simultaneous vibration of two antagonistic muscles at the same frequency does not lead to any illusion of movement 
(Calvin-Figuière et al., 1999) but degrades or masks proprioceptive signals, resulting in impaired performance in 
sensorimotor tasks (e.g., wrist angle matching task, force production) (Bock et al., 2007; Brun et Guerraz, 2015). These 
proprioceptive afferences would be integrated between the hemispheres, at least with respect to the upper limbs, 
resulting in bimanual coupling. Indeed, the manipulation of proprioceptive information in one arm affects both the 
motor behaviour of the other arm (Brun et al., 2015; Brun et Guerraz, 2015) and its perceived movements and position 
(Guerraz et al., 2012; Izumizaki et al., 2010). For example, the speed of the Kohnstamm phenomenon - an involuntary 
motor response following a sustained and prolonged isometric contraction of the arm muscles - will match the speed of 
passive movement of the other arm unless the proprioceptive information of the other arm is masked by simultaneous 
vibration of the antagonistic muscles (Brun et Guerraz, 2015). Thus, ipsi- and contralateral muscle proprioception play 
an important role in kinaesthesia.  
Lastly, manipulations of tactile signal have also been proven to induce body illusions by rotating a platform or applying 
a specific tactile pattern to the foot sole (Lackner et DiZio, 1984; R. Roll et al., 2002). Similarly, the rotation of a 
textured disc under a participant's hand induces an illusion of wrist rotation in the opposite direction (Blanchard et al., 
2013; Chancel et al., 2016; Kavounoudias et al., 2008) and simple skin stretching lead to illusions of finger movements 
(Collins et Prochazka, 1996).  
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4 The impact of avatar embodiment on kinaesthesia 
As we just discussed, vision, hearing, muscle proprioception and touch contribute to movement perception, leading to 
illusions of movement when manipulated independently and artificially (e.g., visual and auditory vections, vibratory 
illusions). Thus, in the same way body perception results from multisensory integration, perception of one’s own 
movements is achieved by integrating multiple sensory inputs. That’s why, just like body perception, kinaesthesia can 
be influenced by external objects embodiment.  Indeed, when a rubber hand is slowly moved, either laterally or in the 
sagittal axis, illusions of movement in the same direction occurs in the participant’s static hidden hand. However, this 
illusion occurs only when the fake hand was previously embodied, by use of synchronous visuo-tactile stimulation (i.e., 
the Rubber Hand Illusion) in comparison to asynchronous stimulation (Metral et Guerraz, 2019). This result indicates 
that visual motion cues coming from the embodied fake hand were used to perceive one’s own movement. The same is 
true when a whole-body avatar is embodied. Indeed, we conducted a study in virtual reality in which a whole-body 
avatar seen from the first-person perspective had the appearance of a human body (Figure 1, A). Embodiment of this 
avatar was achieved by asking participants to move their arms into flexion or extension either in phase or antiphase, at a 
comfortable, self-paced rhythm. In this embodiment phase, the avatar’s arms faithfully reproduced the participant’s real 
movements. Such visuo-motor congruency enabled the embodiment into the avatar what is quite implicit in any first-
person video game. Once embodied, it occurred that passive displacement of one of the participant’s arms into flexion 
or extension by a motorized manipulandum, coupled with the displacement of both avatar’s arms (Figure 1) was 
effective in inducing illusions of movement in the participant’s static arm. In this virtual replica of the well-known 
mirror paradigm, the visual motion cues coming from both arms of the avatar were coupled with proprioceptive motion 
cues originating from the left participant’s arm. It is important to note that the illusion of movement in this bimodal 
stimulation condition was faster and lasted longer than those reported when the left participant’s arm was moved but the 
avatar’s forearms hidden from view (unimodal proprioceptive condition) (Giroux et al., 2018). In this experiment, the 
illusion was assessed by subjective reports on two parameters: speed and duration. Speed was estimated on a scale 
ranging from 0 (i.e., no illusion) to 10 (i.e., an illusion of movement as fast as the reference motion of the left arm). 
Duration, expressed in seconds, was based on the participant’s estimation of the beginning and the end of the illusion. 
Hence, visual motion cues coming from the first-person perspective avatar contributed to kinaesthesia since they 
enhanced the illusion of movement. Furthermore, the bimodal stimulation generated longer and faster illusions than the 
unimodal visual condition, in which both participant’s arm were static while both avatar’s forearms were moved. Thus, 
visual motion cues coming from the avatar were integrated with contralateral proprioceptive motion cues to create a 
percept of movement more salient than with any unimodal stimulation, in accordance with the probabilistic (or 
Bayesian) multisensory integration approaches of perception (e.g., Ernst et Banks, 2002). 

Figure 1. The experimental set-up with the participant wearing a Head-Mounted Display. The virtual reality view is shown on the 
screen and it differs depending on the experiment and condition. In Giroux et al, 2018, the avatar’s arms were represented 
realistically (A), in Giroux et al., 2019, they were represented by a kind of Point Light Display (B), and in Giroux et al, 2021, the 
avatar could be seen through a mirror, the 1st person perspective avatar being visible (C) or not (D) or it could be seen at the 3rd 
person perspective either facing the participant (E) or in profile on one side of the participant (F). Movement of the avatar’s forearms 
were coupled with the passive displacement of the left arm of the participant thanks to the motion sensors. 

To go further, the avatar does not have to be represented realistically to be embodied, as seen earlier, and the same 
applies to its contribution in kinaesthesia. Indeed, in an experiment very similar to the one previously described (Giroux 
et al., 2018), the avatar’s arms were, in some conditions, represented only by three red spheres, inspired by the well-
known Point-Light Displays (Figure 1, B). Embodiment was assessed on nine 7-point Likert scales grading assertions 
about the participant’s feelings. The nine scores were averaged for each participant. The assertions were selected - as 
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relevant to our paradigm - from extensive batteries developed by Gonzalez-Franco and Peck (2018). Three components 
of embodiment feeling were questioned: feeling the avatar’s body as one’s own (body ownership); feeling control on 
the avatar’s body as on one’s own (agency and motor control); feeling the avatar’s body located at the same place as 
one’s own (body location). Point-Light Displays are animations made of dots placed on the body key points, such as the 
joints, and they convey nearly exclusively motion information. Indeed, it is possible to identify many characteristics of 
the action and the actor when they are seen in motion, but they are incomprehensible when they are static. Thus, the 
avatar’s “Point-light” forearms were not realistic, but they still conveyed visual motion cues. Such avatar representation 
was enough to generate illusions of movement in the participant right arm. Moreover, a pattern of multisensory 
integration similar to the one observed with a realistic avatar was found with greater illusion speed and duration in the 
bimodal visuo-proprioceptive condition than in each unimodal condition (proprioceptive or visual). However, it should 
be noted that illusions were faster and longer with a realistic avatar than with the Point-Light one (Giroux et al., 2019). 
Such result indicates that visual motion cues coming from an avatar can still be used in kinaesthesia when there is no 
morphological correspondence between the avatar and a real human body. 
Finally, the avatar does not have to be seen at the first-person perspective, it could be seen through a mirror or at the 3rd 
person perspective and still contribute to the multimodal percept of movement. Indeed, the same pattern of multisensory 
integration reported previously was observed when the avatar was no longer seen directly at the first-person perspective 
but through a mirror facing the participant (Figure 1, D). This means that the kinaesthetic illusions were, once again, 
faster and longer in the bimodal visuo-proprioceptive condition than in the unimodal proprioceptive condition, even if 
to a lesser extent than when the first-person perspective avatar’s arm were visible (Figure 1, C). Therefore, visual 
motion cues do not need to be colocalised with the real body to contribute to kinaesthesia since visual information 
conveyed by a mirror is located inside the mirror. Furthermore, a similar pattern of multisensory integration was found 
when the avatar was seen at the third-person perspective facing the participant (Figure 1, E). However, it was less 
obvious when the third-person perspective avatar was seen in profile, on the left or on the right of the participant 
(Figure 1, F) (Giroux et al., 2021). Thus, visual motion cues do not need to come from a first-person perspective avatar 
although the contribution of a third-person perspective avatar depends on its location and/or orientation. 
Taken together, these results shed light on important features about multisensory integration of artificial visual motion 
cues in kinaesthesia. Indeed, in order to be integrated, signals from different modalities have to be interpreted as coming 
from the same source. To this aim, the system focuses on three congruencies, the temporal, the spatial and the semantic 
congruencies. This means that to be integrated, signals must occur simultaneously, at the same location in space and 
have to be semantically related (e.g., the sound of an engine and the vision of car). For example, a temporal 
incongruency between the tactile stimulation and the visual stimulation in the rubber hand illusion fails to induce any 
feeling of ownership toward the fake hand (Botvinick et Cohen, 1998) as well as a spatial incongruency (e.g., the fake 
hand being too far from the real one) (Lloyd, 2007; Preston, 2013) or a semantic one (e.g., a wooden block) (Tsakiris et 
al., 2010). However, these constraints or limits are not as strict as they may appear. Indeed, taking again the example of 
the Rubber Hand Illusion, some temporal incongruencies can be tolerated by the system. A delay of less than 300 ms 
between the visual feedback and the tactile stimulation will not prevent the illusory ownership feeling toward the rubber 
hand to occur (Shimada et al., 2014). The same applies for the spatial congruency, since the rubber hand have to be 
close but not exactly at the same place as the real hand to generate the illusion (Botvinick et Cohen, 1998; Preston, 
2013) and illusions only significantly decline for distance larger than 27.5cm (Lloyd, 2007). Also, the rubber hand does 
not have to be an exact replica of the real hand of the participant since it is a fake hand. Moreover, the illusion occurs 
even if the rubber hand has not the same skin colour than the participant’s (Farmer et al., 2012; Lira et al., 2017). Thus, 
temporal, spatial and semantic congruencies between sensory signals do not need to be strictly observed to allow 
multisensory integration. Furthermore, as seen earlier, the impact of incongruencies and more precisely of semantic 
incongruencies on multisensory integration depends on the modalities involved. Indeed, a wooden block is too far from 
a realistic hand to generate a feeling of ownership when visuo-tactile stimulation is used (Tsakiris et al., 2010) but the 
system can overcome such incongruency in condition of visuomotor stimulation (Lin et Jörg, 2016; Ma et Hommel, 
2015).  

5 Conclusion 
The results presented above suggest that multisensory integration follows similar rules for both body perception and 
movement perception. Firstly, an avatar, like a rubber hand, is a fake body. Even if it is a humanoid avatar, it does not 
look like a real body and, except perhaps in some very recent video games, it cannot be confused with a real human 
body. Besides, even if the avatar could be confused with a real body, it would not look like the user. Thus, its 
contribution to kinaesthesia (and its embodiment) attests that some semantic incongruencies do not hinder multisensory 
integration. It should be noted that in Giroux et al. (2018) kinaesthetic illusions were comparable to those observed in 
the traditional mirror paradigm (Guerraz et al., 2012; Metral et al., 2015), even though they were slightly less frequent 
(85% of trials compared to 96% in Guerraz et al., 2012 and Metral et al., 2015) and slower (mean estimated speed of 
6.3 compared to 7 in Guerraz et al., 2012 or 8.1 in Metral et al., 2015). In the traditional mirror paradigm, a mirror is 
placed in front of the participants, in its sagittal axis, in such a way that they can see the reflection of their left arm 
while their right arm is hidden behind the mirror. In this configuration, the reflection of the left arm appears to be the 
hidden right arm and when the left arm is passively moved, its reflection moves too and an illusion of movement can 
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appear in the right, static arm of the participants. The visual motion cues coming from the mirror are integrated with 
proprioceptive ones coming from the contralateral arm, like in our virtual mirror paradigm. In the mirror paradigm, the 
visual information comes from a realistic and very similar arm since it is the left arm reflection. Using an avatar, 
appears to generate comparable illusions of movement, the visual motion cues coming from the avatar being integrated 
with the contralateral proprioceptive motion cues like in the traditional mirror paradigm. Moreover, the avatar does not 
need to be morphologically similar to a human body since illusions still occur when its forearms are only represented by 
a point light display (Giroux et al., 2019).  
Secondly, when it comes to spatial congruency, the results presented earlier indicate that visual motion cues do not need 
to come from the same location in space to be integrated for kinaesthesia. Indeed, proprioceptive signals are coming 
from the real body of the participant and, visual motion cues coming from the first-person perspective avatar used in 
Giroux et al (2018, 2019) are, by definition, collocated with the real body. In our most recent studies (Giroux et al. 
2021), we showed that visual motion cues are integrated with the proprioceptive signals, even when they are only seen 
through a mirror facing the participant and no more directly from a first-person perspective avatar. This result is not 
very surprising when we think about our daily use of mirror for combing our hair, putting on makeup or shaving. Truly, 
the visual information conveyed by a mirror refers to our own body location in space. In this respect, the spatial 
incongruency may be limited in this condition, accounting for the multisensory integration between visual and 
proprioceptive signals. Nevertheless, the second experiment showed that visual motion cues coming from a third-person 
perspective avatar were also used for kinaesthesia even though they do not refer to the space of the body anymore. 
Quite important spatial incongruencies do not abolish the multisensory integration for kinaesthesia in this case. 
However, we have to note that when the third-person perspective avatar is seen in profile, on one side of the participant, 
the contribution of visual motion cues appears far less obvious. In addition, a first-person perspective avatar generates 
more intense illusions than when it is seen through a mirror or at the third-person perspective and it seems that the less 
spatial congruency there is, the less intense the illusions are. Although these studies cannot prove the existence of a 
continuum, they suggest that there are different degrees of congruency, either semantic or spatial, that have a different 
impact on kinaesthesia. In a probabilistic view of perception, in which the weight allocated to a sensory modality in 
multisensory integration depends on its reliability (Ernst et Banks, 2002), our results can be explained by a lower 
weight allocated to semantically or spatially incongruent visual information.  
In conclusion, all these results taken together indicate that any relevant signal which refers in some way or another to 
the body, as by the embodiment phenomenon, can be used to perceive one’s own movements. Nevertheless, the impact 
of such signal on the movement perception depends on its congruency with other bodily motion signals or similarity to 
natural and usual ones.   
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