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Abstract  26 

The fast reaction of the autonomic nervous system (ANS) to an emotional challenge (EC) is the result of a 27 

functional coupling between parasympathetic (PNS) and sympathetic (SNS) branches. This coupling can 28 

be characterized by measures of cross-correlations between electrodermal activity (EDA) (under the 29 

influence of the SNS) and the RR interval (the interval between R peaks) (under the influence of the PNS 30 

and the SNS). Significant interindividual variability has previously been reported in SNS-PNS coupling 31 

in emotional situations, and the present study aimed to identify interindividual cross-correlation 32 

variability in ANS reactivity. We therefore studied EDA and the RR interval in 62 healthy subjects, 33 

recorded during a 24-minute EC. A Gaussian Mixture Model was used to cluster tonic EDA-RR cross-34 

correlations during the EC. This identified two clusters that were characterized by significant or non-35 

significant cross-correlations (SCC and NCC clusters, respectively). The SCC cluster reported higher 36 

negative emotion after the EC, while the NCC cluster reported higher scores on the Center for 37 

Epidemiologic Studies–Depression scale. The latter finding suggests that NCC is a pathological mood 38 

pattern with altered negative perception. Furthermore, a machine learning model that included three 39 

parameters indexing the functionality of both branches of the ANS, measured at baseline, predicted 40 

cluster membership. Our results are a first step in detecting dysfunctional ANS reactivity in general 41 

population. 42 
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1. Introduction 46 

Emotional reactivity can be defined as the response of the autonomic nervous system (ANS) to an 47 

emotional stimulus.  Typically, there is a joint reaction that involves both parasympathetic and 48 

sympathetic systems (McCraty et al., 1995). Electrodermal activity (EDA) and heart rate (HR) are 49 

physiological indices of ANS activity: EDA is under the influence of the cholinergic sympathetic system, 50 

and HR is under the influence of both sympathetic and parasympathetic systems (Kreibig, 2010).  These 51 

two branches of the ANS interact closely, and the activity of one modulates the activity of the other 52 

(Thayer & Lane, 2009).  53 

Examining moment-to-moment ANS responses during an emotional experience remains a methodological 54 

challenge (Golland et al., 2014; Kettunen & Keltikangas-Jarvinen, 2001). Since emotion is defined 55 

as a phasic response, several theoretical models assume that multiple patterns of body responses succeed 56 

each other during an emotional event (Scherer, 2009). Under this assumption, dynamic rather than steady 57 

point measurements are more informative. Findings from earlier studies support the idea that cross-58 

correlation analysis can provide relevant indices of ANS activity, by comparing the dynamics of activities 59 

in both branches during an emotional experience (Golland et al., 2014).  60 

Cross-correlations between EDA and HR have been used as a simplified index of ANS functioning in the 61 

past (Janig & Habler, 2000). This approach reduces the number of dimensions to be considered, and 62 

enables a continuous assessment of the balance between the two branches (Golland et al., 2014). Such an 63 

analysis is in line with the interest of nonlinear variables for each ANS signal. As there are several levels 64 

of regulation (Thayer & Lane, 2009), ANS oscillation is nonlinear (Basar & Guntekin, 2007) and can be 65 

described by appropriate indices (Reiter et al., 2020). These nonlinear variables provide an overview of 66 

the equilibrium of the system, describe its functioning and, more particularly, its flexibility (Young & 67 

Benton, 2015).  68 



ANS regulation can be estimated by the Lyapunov exponent (LE), which is correlated to the size of the 69 

active biological neuronal pathway (Lajoie et al., 2014). The LE is a numeric value that characterizes the 70 

ability of a signal to be influenced (Pilant, 2020). An increase in the size of the active neuronal network 71 

leads to it being more influenced and, therefore, the LE increases (Lajoie et al., 2014). The LE is usually 72 

correlated with the Hurst exponent (HE) (Tarnopolski, 2016), which characterizes the ability of a signal to 73 

persist in the long term. This long-term memory appears to be a consequence of stability in the 74 

connectivity of an active neural network (Taylor et al., 2012).  75 

SD1 and SD2 Poincaré indices reflect, respectively, short- and long-term signal variability, and provide 76 

information about the type of neural activity. When applied to the R-peak (RR) interval, short-term 77 

variability is known to be a marker of the effects of parasympathetic activity on the sinus node, since 78 

vagal effects are known to be faster than sympathetic ones (Hoshi et al., 2013; Mourot et al., 2004). SD2 79 

is influenced by both tones (De Vito et al., 2002; Hoshi et al., 2013). In the case of heart rate variability 80 

(HRV), the SD1/SD2 ratio, which represents the relationship between the two components has been 81 

shown to be correlated to the HE (Hoshi et al., 2013). Nonlinear indices can, thus, indicate the dynamic 82 

functioning of the ANS (Reiter et al., 2020) and give a precise evaluation of system flexibility, in terms of 83 

variability, memory or control under stress (Young & Benton, 2015). 84 

Although dynamic approaches have been shown to be useful in reducing variability in ANS responses to 85 

emotion, interindividual variability remains significant, and appears to be a function of numerous 86 

historical, environmental, and biological factors (Andrew et al., 2017; Boissy, 1995; Fan et al., 2014; 87 

Golland et al., 2014; Hot et al., 2005; Huang et al., 2018; von Holzen et al., 2016). Furthermore, anxiety, 88 

mood, and alexithymia have been found to  be associated with a lack of ANS flexibility (Agorastos et al., 89 

2020; Hoehn-Saric & McLeod, 2000; Koschke et al., 2009; Lischke et al., 2018; Udupa et al., 2007). 90 

While overall, these differences have been described for each branch of the ANS (Charkoudian & Wallin, 91 

2014; Kirstein & Insel, 2004; Muhtadie et al., 2015), to the best of our knowledge interindividual 92 

differences in dynamic interactions between the two branches of the ANS have not been explored. More 93 



specifically, questions remain not only about the functioning of each individual ANS branch, but also the 94 

dynamics of their interaction.  95 

Hence, this exploratory study assesses the relevance and sensitivity of the combination of two 96 

methodological approaches: i) a cross-correlation analysis between the two branches of the ANS; and 97 

ii) the use of machine learning to identify profiles (clusters) of ANS reactivity. The first step was to 98 

identify the dynamic co-evolution of sympathetic and parasympathetic branches of the ANS during an 99 

emotional challenge (EC), and pinpoint clusters of inter-individual variability based on cross-correlations 100 

between EDA and RR intervals, measured as the tonic (e.g., skin conductance level) component of EDA.  101 

Tonic and phasic components of EDA are underpinned by different neuroanatomical pathways and, 102 

therefore, different processes (Nagai et al., 2004; Ozawa et al., 2019). The tonic component covaries with 103 

ventromedial prefrontal and orbitofrontal cortex activities, while the phasic component is a function of 104 

activity in various regions of the brain, such as the hypothalamus, thalamus, striate and extrastriate 105 

cortices, anterior cingulate and insular cortices, and several lateral regions of the prefrontal cortex (Nagai 106 

et al., 2004; Ozawa et al., 2019). As a consequence, it is influenced by multiple inputs depending on the 107 

task, while the tonic component appears to be under the influence of attentional processes that are 108 

particularly enhanced in an emotional context (Nagai et al., 2004; Ozawa et al., 2019). These differences 109 

should make it possible to describe the ANS time course during an EC by capturing the degree of cross-110 

correlation as a marker of autonomic adjustment. Thus, as a first step, the combination of variation in 111 

tonic EDA and RR outputs during an EC may provide a fine-grained assessment of individual emotional 112 

reactivity. Variability was characterized using physiological, sociodemographic, and psychological 113 

variables.  114 

The second step in our work used a machine learning analysis to assess resting state ANS indices that 115 

best-predict emotional reactivity patterns. This is a major challenge, as cross-correlations are not observed 116 

beyond the context of emotional events (Golland et al., 2014). We used a Support Vector Machine (SVM) 117 



learning method as it can combine several parameters, improving prediction capacity. This technique is 118 

particularly useful in a context where there are at least two factors (such as the two branches of the ANS). 119 

2. Materials and methods 120 

Results presented in this article were collected from two successive studies. The first validated the EC 121 

(Study I), and the second analyzed the dynamic cross-correlation between the two branches of the ANS 122 

during the same EC (Study II).  123 

2.1.  Subjects 124 

Study I was conducted with 58 participants (72.5% women; mean age = 20.84±0.49 (standard error of the 125 

mean [SEM])), and Study II with 66 participants (88.71% women; mean age = 20.52±0.55). No 126 

significant differences were found for sociodemographic parameters between the two groups 127 

(Supplementary Table 1). Both studies were approved by the Ethics Committee of Savoie Mont Blanc 128 

University, France (CEREUS_2017_13). Written informed consent was obtained from each participant. 129 

Participants were recruited from among psychology students at Savoie Mont Blanc University and 130 

Grenoble Alpes University. 131 

2.2.  Procedure 132 

Procedure common to both studies 133 

Each participant was tested individually in an experimental room. Physiological sensors for the 134 

electrocardiogram (ECG) and EDA were attached. Recording was continuous throughout the experiment. 135 

To obtain a baseline measurement, participants were asked to rest without moving, and let their mind 136 

wander with their eyes open for 10 minutes. This period was chosen in order to have enough time to 137 

calculate ANS signal parameters. Emotional state was assessed using the Affective Slider (AS) (Betella & 138 

Verschure, 2016). The AS assessment was performed before and after the 10-minute baseline phase 139 



(Figure 1). Then, participants watched a 24-minute video based on extracts from the movie The Conjuring 140 

(Wan, 2013). This duration was chosen to ensure immersion. At the end of the video, the AS assessment 141 

was repeated. This was followed by a 15-minute recovery period, and another AS assessment. This period 142 

was chosen in order to have enough time to calculate ANS signal parameters and to observe a recovery of 143 

physiological parameters. Finally, participants were asked to report the degree to which the video they 144 

had just watched was unpleasant and scary, using two analogue scales ranging from −50 (not 145 

unpleasant/scary at all) to +50 (very unpleasant/scary), with 0 corresponding to a neutral state. 146 

Differences between studies 147 

While watching the video, participants in Study I used a potentiometer to continuously evaluate their 148 

instantaneous emotional state. This real-time assessment validated the intensity of the experience. 149 

Because it was possible that this conscious activity would influence ANS reactivity (Park & Thayer, 150 

2014; Park et al., 2013), the same assessment was not performed during Study II, in which we aimed to 151 

assess dynamic ANS change.  152 

Power analysis 153 

The necessary number of subjects was calculated using BiostaTGV ("BiostaTGV,"), based on a similar 154 

previous study (Golland et al., 2014). The earlier study recruited 27 subjects with the aim of observing 155 

significant cross-correlations. It found a correlation coefficient of around 0.6 during an emotional event, 156 

and standard deviation of around 0.1. In the present study, our goal was to observe at least two clusters, 157 

with a minimum difference of 15% and power of 90%, at a significance level of 0.05. The minimum 158 

number of subjects was identified as 52. This was increased by 10% for Study I (to compensate for 159 

technical problems in the emotional assessment system), and by 20% for Study II (to compensate for both 160 

technical problems and signal anomalies). 161 



Study I: Validation of the emotional paradigm 162 

A total of 58 participants were recruited. Of these, 37 provided an instantaneous emotional assessment of 163 

the movie and complete sociodemographic information; three provided an instantaneous emotional 164 

assessment and incomplete sociodemographic information (age, weight, and height were not recorded); 165 

and 18 only provided emotional assessment data. 166 

Study II: The dynamic ANS model and the machine learning model 167 

Among the 66 participants who were initially recruited, data from one was excluded due to a technical 168 

problem during the experiment (significant signal loss) and three were excluded due to a physiological 169 

anomaly (arrhythmia).  170 

 171 

Figure 1: Experimental procedure for both studies. AS: Affective Slider assessment. 172 

2.3. Sociodemographic data 173 

Sociodemographic variables included age, weight, height, tobacco use, consumption of caffeine and 174 

psychotropic substances, medical treatments, sleep habits and sports practice. 175 

2.4. Psychological assessment 176 

The psychological assessment was based on a set of standardized instruments that included the following 177 

three questionnaires:  178 



i. The Spielberger Trait Anxiety Inventory (STAI): a 20-item assessment in which higher scores 179 

indicate more trait anxiety (Spielberger, 1983).  180 

ii. The Toronto Alexithymia Scale (TAS): a 20-item assessment in which higher scores indicate 181 

greater alexithymia (Loas et al., 1995). Three dimensions were evaluated: difficulty in identifying 182 

feelings, difficulty in describing feelings, and thoughts oriented toward external reality.  183 

iii. The Center for Epidemiologic Studies–Depression (CES-D) scale: a 20-item assessment in which 184 

higher scores indicate a higher level of depressive symptoms (Fuhrer & Rouillon, 1989).  185 

2.5.  Affective Slider assessment 186 

Participants’ instantaneous emotional state was evaluated with the AS (Betella & Verschure, 2016). This 187 

assessment consists of two analogue scales, one addressing emotional valence, the other Arousal. In both 188 

cases, scales range from −50 (very negative) to +50 (very positive), with 0 corresponding to a neutral 189 

state. This measure was recorded between tasks (Figure 1). 190 

2.6.  Real-time emotional assessment 191 

A real-time emotional assessment was carried out while participants watched the video in Study I. 192 

Subjects continuously moved a linear home-made potentiometer. Values ranged from 0 (minimal 193 

intensity) to 40 (maximal intensity). The sampling frequency was 2 Hz. A higher sampling frequency 194 

would have been possible, but would not have been relevant, given that we were seeking to measure a 195 

conscious, explicit behavioral response. The response was then normalized for each subject as a 196 

percentage of maximum intensity. 197 

2.7.  Physiological measures 198 

The ECG was recorded with sensors placed on the chest, according to the DII standard Einthoven 199 

derivation. EDA was recorded by placing electrodes on the last phalanx of the index and middle fingers of 200 

the non-dominant hand. The signal was acquired by ECG 100 and GSR 100 amplifier modules connected 201 



to a BioPac MP150 (BioPac Systems, Inc., CEROM, Paris, France). Acquisitions were performed with 202 

AcqKnowledge 4.1 software at a sampling frequency of 1000 Hz. ECG and EDA signals were recorded 203 

during the entire experiment and then transferred to MATLAB software (Mathworks, r2018a, Natick, 204 

Massachusetts, USA) for tonic and phasic EDA and RR post-acquisition processing. 205 

2.8.  Physiological signal preprocessing 206 

R peaks were first detected automatically by an algorithm based on wavelet detection, and then 207 

comprehensively manually checked. In one case, peaks could not be manually identified, and the 208 

recording was considered artifacted and excluded. The EDA signal was first separated into phasic and 209 

tonic components by a validated algorithm (Greco et al., 2016), before being down-sampled from 210 

1000 Hz to 2 Hz to allow it to be aligned with the interpolated inter-beat interval (IBI). Finally, it was 211 

smoothed by a moving median algorithm with a 10-point moving window, as previously reported 212 

(Golland et al., 2014). Both components of the time series were then detrended and normalized as z-213 

scores, as recommended for cross-correlation analysis (Box et al., 2016; Golland et al., 2014). 214 

2.9.  Physiological signal analysis 215 

2.9.1. IBI time series 216 

2.9.1.1. Temporal analysis of RR intervals 217 

The following temporal components of HRV were calculated from RR intervals:  mean RR (the mean of 218 

RR intervals in ms); SDNN (the standard deviation of normal-to-normal RR intervals in ms); RMSSD 219 

(the root mean square of successive differences in ms); and HRV-TI (the Heart Rate Variability 220 

Triangular Index).  221 



2.9.1.2. Frequency analysis of IBI time series 222 

RR intervals were interpolated to a 2 Hz IBI time series that was then detrended. A fast Fourier transform 223 

using the Welch method with a moving window and an overlap of 50% was used to calculate spectral 224 

components of HRV parametric analyses: Very Low Frequencies (VLF): 0.002–0.04 Hz; Low 225 

Frequencies (LF): 0.04–0.15 Hz; and High Frequencies (HF): 0.15–0.5 Hz. VLF, LF and HF were 226 

calculated as a percentage of the sum of VLF+LF+HF. 227 

2.9.2. HF time series 228 

The 2 Hz detrended IBI time series was analyzed using a continuous wavelet transform. Following the 229 

method reported in the literature, a Morse wavelet with symmetry parameter equal to three, and time-230 

bandwidth product equal to 60 were used. HF power was extracted as a percentage of the sum of 231 

VLF+LF+HF, after exclusion of the cone of influence. The previously-described nonlinear algorithms 232 

were applied, and Poincaré indices, the HE, and the largest LE were calculated as described earlier. These 233 

nonlinear indexes of HF time series have previously been described (Hoshi et al., 2013; Yeragani et al., 234 

2002).  235 

2.9.2.1. Nonlinear analysis of HF time series 236 

Poincaré indices SD1 and SD2, the HE, and the LE of the HF time series were calculated. 237 

Poincaré indices 238 

Nonlinear Poincaré indices SD1 and SD2 describe the variability of the Poincaré plot, and were calculated 239 

from RR intervals. SD1 and SD2 provide an estimate of the dispersion of points perpendicularly, and 240 

along the line of identity, respectively. They therefore represent short- and long-term variability in the 241 

analyzed signals, respectively.  242 

The Hurst exponent 243 



The HE evaluates the long-term memory of a process (Tarnopolski, 2018). Its interpretation is a function 244 

of its value. A value above ½ suggests a persistent process that has long-term memory and a value below 245 

½ suggests a non-persistent process with a short-term memory (Tarnopolski, 2016). The HE was 246 

calculated using a detrended moving mean algorithm, which was chosen because of its simple, closed-247 

form processing (Tarnopolski, 2018).  248 

The largest Lyapunov exponent  249 

The largest LE (λ) indicates the exponential divergence/ convergence of an initially-considered point in a 250 

dynamic system in its phase space, within a time limit of infinity (i.e., the degree of sensitivity to initial 251 

conditions) (Tarnopolski, 2018). Considering two points close to the phase plane at times t=0 and t=t, and 252 

the distances between these points in the ith direction, the LE is estimated as follows: 253 

 254 

where ||δxi(0)|| and ||δxi (t)|| are the Euclidean distances between the two points in the ith direction at times 255 

t=0 and t, respectively (Pilant, 2020; Tarnopolski, 2018). The limit t→∞ is replaced by t that is 256 

sufficiently large, leading to the finite time LE (Pilant, 2020; Roth, 2009).  257 

LE values above 0 are associated with chaos, and correspond to a deviation that grows exponentially as 258 

the number of iterations increases. Values equal to 0 are associated with a periodic or quasiperiodic 259 

signal, and indicate that deviation from the orbit remains steady regardless of the number of iterations 260 

(Dämmig & Mitschke, 1993). Among the numerous algorithms used to estimate LE, we selected Pilant’s 261 

algorithm because of its simplicity and the closed form processing (Pilant, 2020). Non-MATLAB users 262 

can download and read the algorithm using a standard text editor. 263 



2.9.3. EDA time series 264 

Poincaré indices, the HE, and the LE were calculated as described earlier for tonic EDA time series. 265 

2.10.  Correlation analysis 266 

Sampling frequencies for the two signals were aligned. The 2 Hz detrended IBI time series was filtered 267 

below 0.04 Hz in order to remove low components insufficiently present in 60 s window. The last time 268 

series were then normalized as z-scores. A cross-correlation analysis between the IBI time series and the 269 

tonic EDA time series was performed for each subject using moving windows according to Golland et al. 270 

(Golland et al., 2014). Briefly, the analysis is based on short (t=60 s) overlapping (Δt=30 s) time 271 

segments. For each segment, and for each individual the maximum correlation (within ± 5-s lags) was 272 

identified between the two series. In each case, a nonparametric bootstrapping procedure with surrogate 273 

data allowed us to control the statistical significance of the result. Surrogate data were obtained by 274 

randomizing segments in the time series. This procedure was repeated 1000 times. As described in 275 

previous work (Golland et al., 2014), the statistical likelihood of a cross-correlation in each time window 276 

was assessed nonparametrically using the Wilcoxon rank sum test against synthetic control data. Obtained 277 

p-values were corrected for multiple comparisons using the false discovery rate (FDR) procedure 278 

(Benjamini & Hochberg, 1995). 279 

2.11. Clustering 280 

2.11.1. Evaluation of the optimal number of clusters 281 

Clusters of subjects with the same emotional response were identified from cross-correlations between the 282 

RR interval and the tonic EDA signal observed during the eight, intensely emotional 60 s windows of the 283 

movie (4–5, 6–7, 8–9, 10–11, 12–13, 17–18, 19–20, and 21–22 min). Values were calculated for each 284 

individual. The clustering of subjects was performed on these last 8 variables by using the Calinski–285 

Harabasz algorithm for Gaussian model mixture distribution as available in MATLAB software. The 286 



Calinski–Harabasz non-supervised cluster solution algorithm was chosen as it uses clustering criteria 287 

based on the ratio of variances to provide a robust heuristic index (Andrade et al., 2020). Thus, a well-288 

defined cluster has a large between-cluster variance and a small within-cluster variance. The optimal 289 

number of clusters is chosen according to a criterion based on these parameters. One to six cluster 290 

solutions were tested. The maximum number of iterations to reach convergence was set at 1000, and a 291 

diagonal covariance matrix was used. Solutions with the best fit were considered optimal. This solution 292 

without a priori has retrieved an optimal number of 2 clusters. 293 

2.11.2. Cluster membership 294 

Membership of one of the two clusters was determined from the eight cross-correlation values that 295 

determined the dynamics of each individual’s responses using a Gaussian Mixture Model. This method 296 

was selected to study interindividual variability as, by definition, the latter follows a Gaussian 297 

distribution. MATLAB’s cluster algorithm was used, with the maximum number of iterations to reach 298 

convergence set at 1000. Here again, a diagonal covariance matrix was used. The Gaussian model assigns 299 

query data points to the multivariate normal components that maximize the component posterior 300 

probability, given the data. The method established the following cluster membership: cluster 1 (n=30) 301 

and cluster 2 (n=32). 302 

2.12. Machine learning 303 

The ability of baseline parameters to predict the distribution of subjects within clusters was trained and 304 

cross-validated using a linear kernel SVM model. The linear kernel is widely used due to its robustness. 305 

To further increase robustness, a classical cross-validated model was used. First, data were randomly 306 

partitioned into 10 sets. Then, for each set, the algorithm reserved the set as validation data, and trained 307 

the model on the other nine sets. The out-of-sample misclassification rate was used to assess performance.  308 



2.13. Statistical analysis 309 

Statistical analyses were performed with MATLAB, Cohen’s effect sizes were calculated with G*Power. 310 

One-way factorial analyses of variance (ANOVAs) were performed to compare means of the two clusters. 311 

As the duration of baseline, EC, and recovery phases were different, repeated measures ANOVAs could 312 

not be used to compare HRV results because most parameters are a function of the sample size. Other, 313 

time-insensitive parameters were analyzed with repeated measures ANOVAs for Time and Group main 314 

effects, and their interaction. Time effects identified changes in measures between baseline, EC, and 315 

recovery. Group effects identified differences between clusters 1 and 2. Group×Time effects reflect the 316 

combined effects of Time and Group. When the ANOVA revealed a significant effect, partial eta squared 317 

and Cohen’s f effect size were calculated to estimate its size. According to the work of Schäfer and 318 

Schwarz applied to psychology domain, we considerated that an effect size of 0.2 as small, higher than 319 

0.4 as medium and higher than 0.6 as large (Schafer & Schwarz, 2019). Partial eta squared of 0.01 320 

indicates a small effect, of 0.06 a medium effect and 0.14 a large effect.  Clusters were characterized by 321 

the mean value of the cross-correlation during each window. This was linked to other psychological data 322 

using Pearson correlations for each cluster.  323 

For categorical variables, Chi-Square independence tests were used. When significant, a Cohen’s w effect 324 

size was calculated. According to basic rules for Cohen’s w, a w of 0.10 indicates a small effect, of 0.30 a 325 

medium effect and 0.50 a large effect (Cohen, 1988). 326 

The predictive power of each variable was assessed with receiver operating characteristic (ROC) curves. 327 

The cut-off was associated with an area under the curve (AUC) above 0.8. Significance was set at p<0.05. 328 

As for cross-correlation, p-values were corrected for multiple comparisons using the FDR procedure 329 

(Benjamini & Hochberg, 1995). Data are presented as mean ± SEM. 330 



3. Results 331 

3.1.  Study I: Validation of the EC 332 

As they watched the video, subjects evaluated real-time emotional intensity (Figure 2). Our result 333 

highlighted a progressive increase in global intensity as a function of time, along with a few bursts. As 334 

cross-correlations between EDA and the RR interval have previously only been observed during 335 

emotional bursts (Golland et al., 2014; Hsieh et al., 2011), this result confirmed that the EC was an 336 

efficient way to study cross-correlations between the two branches of the ANS. 337 

 338 

Figure 2: Emotional intensity as a function of time. Emotional intensity was expressed as a percentage 339 

of individual feeling measured using a potentiometer (see Materials and Methods). The blue line 340 

represents the mean for all subjects. Black bars represent the 95% confidence interval. 341 

3.2.  Study II: Evaluation of the autonomic dynamic during the EC 342 

3.2.1. Physiological identification of emotional bursts during the EC 343 

In order to align the self-reported emotion scores obtained in Study I (Figure 2) with cross-correlation 344 

results, we calculated mean self-reported emotion intensity for each 60 s window (Figure 3.A). This 345 

identified eight windows with peak emotional intensity (4–5, 6–7, 8–9, 10–11, 12–13, 17–18, 19–20, and 346 



21–22 min; Figure 3.A). Significant negative cross-correlations between the RR interval and tonic EDA 347 

(i.e., low RR and high EDA) were only observed in two windows: 12–13 min (r=−0.36 ± 0.05, p <0.05); 348 

and 12 min 30 s to 13 min 30 s (r=−0.35 ± 0.06, p <0.05; Figure 3.B).  349 

As our earlier work had identified that significant cross-correlations are only observed during emotional 350 

events (Golland et al., 2014), we limited the search for interindividual variability in cross-correlations 351 

between the RR interval and tonic EDA to these eight bursts. An automated analysis of the optimal 352 

number of clusters for these eight cross-correlations identified two: cluster 1 (n=30); and cluster 2 (n=32). 353 

Significant cross-correlations were found among individuals in cluster 1 during the EC, but not cluster 2 354 

(Figure 3.C). Therefore, cluster 1 was labelled the “significant correlation cluster” (SCC), and cluster 2 355 

the “non-significant correlation cluster” (NCC). Finally, no significant cross-correlation was observed for 356 

either cluster at baseline or recovery (Supplemental Figures 1A to D).  357 



  358 

359 
   360 

Figure 3: Cross-correlations between tonic EDA and the RR interval during the EC.  361 

A, B, C: Vertical gray zones represent the eight emotional peaks during the EC. Results are expressed as 362 

mean ± SEM. Dotted horizontal lines represent FDR-corrected upper and lower limits of significance 363 



(q<0.05). A: Mean emotional intensity as a percentage for overlapping windows (Study I). B: Cross-364 

correlation coefficients (r) for overlapped windows (window size = 60 s, with an overlap of 50% between 365 

two windows) for all subjects in Study II. C: Cross-correlation coefficients (r) for overlapped windows 366 

(window size = 60 s, with an overlap of 50% between two windows) for each cluster (Study II).  367 

3.2.2. Physiological characterization of clusters 368 

No difference was observed between clusters at baseline or recovery. However, Table 1 shows that during 369 

the EC the SCC group was characterized by a less chaotic distribution (LE) of tonic EDA (F(1,60)=9.5, 370 

FDR-corrected p<0.05, observed power=0.86, partial eta-squared=0.14, Cohen’s f=0.53). Results for all 371 

tested physiological variables are reported in Supplementary Table 2.  372 

Table 1: Physiological results as a function of cluster and measurement time. Results are expressed 373 

as mean (± SEM). As the three measurement periods (baseline, EC, and recovery) are not of the same 374 

duration, a repeated measures ANOVA cannot be used. Only significant results after FDR correction 375 

(q<0.05) for the one-way ANOVA for each period are shown. 376 

 377 

3.2.3. Psychological characterization of clusters 378 

Psychological characterization consisted of reported emotional intensity at different times of the 379 

procedure, and an initial psychopathological self-report questionnaire. Table 2 shows AS scores, and 380 

highlights that the NCC group perceived the EC less negatively than the SCC group (F(1,60) = 11.50, 381 

FDR-corrected p<0.01, observed power=0.92, partial eta-squared=0.16, Cohen’s f=0.63). 382 

LE tonic EDA 1.34 (± 0.07) 1.28 (± 0.07) F(1,60)=0.32; p=0.80 0.09 1.78 (± 0.04) 1.51 (± 0.08)

F(1,60)=9.5; p=0.045 

partial eta-squared=0.14           

Cohen's f=0.53

0.86 1.41 (± 0.05) 1.33 (± 0.07) F(1,60)=0.77; p=0.71 0.14

Non-

significant 

correlation 

cluster 

(NCC)

EDA signal

p-Value corrected by 

FDR of 1-way ANOVA

Observed 

power

Significant 

correlation 

cluster (SCC)

Non-

significant 

correlation 

cluster 

(NCC)

p-Value corrected by 

FDR of 1-way ANOVA

Observed 

power

Baseline EC Recovery

Significant 

correlation 

cluster (SCC)

Non-

significant 

correlation 

cluster 

(NCC)

p-Value corrected by 

FDR of 1-way ANOVA

Observed 

power

Significant 

correlation 

cluster (SCC)



Table 2: Reported AS as a function of cluster. p-values are calculated with repeated measure ANOVAs 383 

of Valence and Arousal, and a one-way ANOVA with FDR correction (q<0.05) for the overall evaluation 384 

of emotion. Results are expressed as mean (± SEM). 385 

   386 

Table 3 highlights that the NCC group scored higher on the CES-D scale than the SCC group, indicating 387 

more depressive symptoms.  388 

Table 3: Psychological indicators as a function of cluster. p-values were calculated using a one-way 389 

ANOVA. Results are expressed as mean (±SEM). 390 

   391 

3.2.4. Health behavior in clusters 392 

While no difference was found between the two clusters with respect to sociodemographic characteristics, 393 

health behaviors did differ (Table 4). Specifically, those in the NCC cluster were more likely to smoke 394 

than those in the SCC cluster. 395 

Before baseline 19.40 (± 2.16) 18.44 (± 2.97)

After baseline 12.53 (± 2.37) 17.84 (± 2.60)

After video -4.7 (± 3.66) 0.75 (± 3.31)

After recovery 5.63 (± 1.98) 9 (± 2.63)

Before baseline -6.87 (± 2.93) 0.88 (± 3.31)

After baseline -20.83 (± 3.25) -20.91 (± 3.68)

After video 18.97 (± 3.11) 13.97 (± 3.75)

After recovery -9.37(± 3.48) -13.13 (± 4.75)

Unpleasant video feeling 10.43 (± 4.18) 4.53 (± 3.94)
1-way ANOVA:                                                                   

F(1,60)=1.06; p corrected=0.31; observed power=0.17 

Scary video feeling 18.7 (± 2.98) 9.47 (± 3.78)
1-way ANOVA:                                                                                        

F(1,60)=3.62; p corrected=0.09; observed power=0.46 

Negative video feeling 15.8 (± 3.23) -3.06 (± 4.46)

 1-way ANOVA:                                                                        

F(1,60)=11.50; p corrected=0.003; observed power=0.92                                   

partial eta-squared=0.16; Cohen's f=0.63

Arousal

Repeated ANOVA:                                                                  

interaction F(3,180)=1.61; p=0.19; observed power=0.42                             

group effect F(1,60)=0.01; p=0.93; observed power=0.05

Final 

evaluation

Significant correlation 

cluster (SCC)

Non-significant correlation 

cluster (NCC)
Statistics

Valence

Repeated ANOVA:                                                              

interaction F(3,180)=0.91; p=0.44; observed power=0.25                          

group effect F(1,60)=1.35; p=0.25; observed power=0.21

STAI-Trait 44.87 (±1.86) 49.17 (±1.75)
1-way ANOVA:                                                                          

F(1,60)=2.82; p corrected=0.25; observed power=0.38

CES-D 15.7 (±1.73) 22.72 (±2.1)

1-way ANOVA:                                                                                                

F(1,60)=6.53; p corrected=0.05; observed power=0.71; 

partial eta-squared=0.10; Cohen's f=0.41

TAS-20: difficulties in identifying feelings 16.37 (±1.05) 18.28 (±1.27)
1-way ANOVA:                                                                                                          

F(1,60)=1.33; p corrected=0.31; observed power=0.21

TAS-20: difficulties in describing feelings 13.47 (±0.93) 13.94 (±0.93)
1-way ANOVA:                                                                               

F(1,60)=0.13; p corrected=0.72; observed power=0.06

TAS-20: thoughts oriented toward external reality 16.8 (±0.76) 15.47 (±0.66)
1-way ANOVA:                                                                                 

F(1,60)=1.76; p corrected=0.31; observed power=0.25

Significant correlation 

cluster (SCC)

Non-significant correlation 

cluster (NCC)
Statistics



Table 4: Demographics and health behavior as a function of cluster. p-values were calculated using a 396 

one-way ANOVA or χ2 test. Results are expressed as mean (± SEM).  397 

 398 

3.2.5. Functional patterns in clusters 399 

To study each cluster individually, we summarized cross-correlation dynamics as the mean for each 400 

emotional burst for each participant (a cross-correlation reduction). This identified that (negative) cross-401 

correlation values were higher among the SCC cluster (r=−0.37±0.03) than in the NCC group 402 

(r=−0.07±0.03; F (1,60)=69.89, p<0.001, partial eta-squared=0.54, observed power=1.00, Cohen’s 403 

f=0.85). This variable can be used to study functional correlates in each cluster by testing Pearson 404 

correlations between it and psychological variables or subjective emotion. In the following, only 405 

significant results are reported.  406 

In the NCC cluster, no correlation was found between mean cross-correlations during emotional bursts 407 

and subjective emotion or psychological variables. However, in the SCC cluster, they were correlated 408 

with subjective valence after video recording (r=0.43, corrected p<0.05), unpleasant emotions (r =−0.49, 409 

corrected p<0.01), and feeling scared (r=−0.45, corrected p<0.05). This finding indicates that the stronger 410 

Age (year) 20.73 (±1.08) 20.34 (±0.51)
1-way ANOVA:                                                                                                         

F(1,60)=0.11; p corrected =0.97; observed power=0.06

Height (cm) 166.37 (±1.13) 166.38 (±1.35)
1-way ANOVA:                                                                                                       

F(1,60)=0.00; p corrected =1; observed power=0.05

Weight (kg) 62.57(±2.32) 63.06 (±3.41)
1-way ANOVA:                                                                                        

F(1,60)=0.01; p corrected =0.98; observed power=0.05

Gender 3 men / 27 women (10%) 4 men / 28 women (12.5%) χ² p corrected =0.97; power (1-β)=0.06

Smoking 2 yes / 28 no (6.7%) 13 yes / 19 no (40.6%) χ² p corrected =0.03; power (1-β)=0.88; Cohen's w=0.55

Coffee or energy drink use 8 yes/ 22 no (26.7%) 14 yes / 17 no (45.2%) χ² p corrected =0.46; power (1-β)=0.32

Drug use 6 yes / 24 no (20%) 8 yes / 24 no (25%) χ² p corrected =0.97; power (1-β)=0.08

Regular sports 20 yes / 10 no (66.7%) 17 yes / 15 no (53.1%) χ² p corrected =0.56; power (1-β)=0.19

Slept well the previous night 21 yes / 9 no (70%) 25 yes / 5 no (83.3%) χ² p corrected =0.51; power (1-β)=0.23

Bedtime 11:55 p.m. (±19 min) 11:49 p.m. (±30 min)
1-way ANOVA:                                                                                                         

F(1,60)=0.02; p corrected =0.98; observed power=0.05

Waking hour 7:03 a.m. (±12 min) 7:49 a.m. (±19 min)
1-way ANOVA:                                                                                                          

F(1,60)=4.11; p corrected =0.22; observed power=0.51

Sleep duration (seconds) 25738 (±1575.2) 28800 (±1671.6)
1-way ANOVA:                                                                                                        

F(1,60)=1.77; p corrected =0.51; observed power=0.26

Sleepy today 12 yes / 18 no (40%) 15 yes / 17 no (46.9%) χ² p corrected =0.97; power (1-β)=0.08

Concentration difficulties 5 yes / 25 no (16.7%) 15 yes / 17 no (46.9%) χ² p corrected =0.07; power (1-β)=0.72

Significant correlation 

cluster (SCC)

Non-significant correlation 

cluster (NCC)
Statistics



the negative cross-correlation between the RR interval and EDA while watching the movie, the greater 411 

the perception of unpleasantness and feeling scared.  412 

3.2.6. Predicting clusters from baseline data with machine learning 413 

First, ROC curves were used to evaluate the predictive power of each baseline variable individually. The 414 

prediction of clusters using physiological variables or a single factor (identified by factor analysis) 415 

yielded AUCs no higher than 0.63. These values are considered poor, as good predictive power is 416 

associated with an AUC above 0.8. Then, a machine learning model was used to predict the distribution 417 

of subjects within the two clusters using baseline physiological variables. The machine learning algorithm 418 

automatically chose variables with the most predictive power. The search for new variables ended when 419 

no additional variable increased the predictive power of the model (the list of variables is given in 420 

Supplementary Table 2). 421 

The cross-validated SVM model resulted in a prediction of 74.19% using only three baseline 422 

physiological variables: the HE of tonic EDA; the percentage of HF; and the LE of HF. Two nonlinear 423 

variables were automatically chosen by the model, suggesting that the nonlinear characteristics of both 424 

EDA and HF signals are important baseline characteristics in predicting cross-correlation ANS 425 

functioning during the EC. However, and interestingly, no difference between clusters was observed at 426 

baseline for these variables when they were considered independently (Supplementary Table 2).  427 

4. Discussion 428 

The goal of this study was to identify the dynamical coevolution of SNS and PNS during an EC and to 429 

describe clusters interindividual variability based on dynamical cross-correlations between EDA and RR 430 

intervals. Our study addresses two challenges. First, it is not possible to assess both moment-to-moment 431 

emotional state, and the true emotional level when attention is focused on the emotional event (Park & 432 



Thayer, 2014; Park et al., 2013). Second, the self-assessment of emotion can itself be considered as a 433 

cognitive regulation task that may reduce intensity. Thus, we ran two studies, one to assess subjective 434 

emotion (Study I), and the second to record objective emotion (Study II). Our results highlight cross-435 

correlations between tonic EDA and RR signals, and the existence of two profiles linking the two 436 

branches of the ANS during an EC. The first is characterized by sympathetic activation coupled with 437 

parasympathetic deactivation that marks the most emotionally-intense moments. The second is 438 

characterized by a lack of functional coupling within the ANS, associated with low emotional feeling 439 

during the EC and marked depressive symptomatology. Moreover, an exploratory machine learning 440 

analysis allowed us to categorize and predict these two clusters based on ANS measurements taken at 441 

rest.  442 

Our study supports previous findings (Golland et al., 2014), which show that emotional arousal is 443 

associated with cross-correlations between HR and EDA signals. In the present study, a decrease in the 444 

RR interval duration was associated with a fast, transient disequilibrium between sympathetic and 445 

parasympathetic systems that favored the sympathetic system during an EC. The cross-correlation 446 

between these two variables underlies the functional coordination (or coupling) of the two branches of the 447 

ANS.  448 

4.1.  Interindividual variability in dynamic emotional reactions 449 

At the same time, our study goes further, and demonstrates the existence of two clusters of cross-450 

correlations using a data-driven approach. These interindividual differences have not been reported 451 

previously, probably because individuals with no significant cross-correlations were excluded in earlier 452 

studies, or were masked in a group analysis (Golland et al., 2014).  453 

Specifically, the existence of two clusters suggests that there is a difference in ANS flexibility with 454 

respect to the interplay between its two branches (Young & Benton, 2015). Interindividual variability 455 

underlying variation in flexibility has already been identified using a clustering p-technique applied to 456 



cardiovascular activity (Friedman & Santucci, 2003). The two autonomic branches of the ANS are 457 

mutually inhibiting and globally antagonistic (Burnstock, 2008), and this can occur at different levels of 458 

regulation, highlighting the global flexibility of brain function (Bornemann et al., 2019; Ondicova & 459 

Mravec, 2010; Young & Benton, 2015).  460 

In the present study, the SCC cluster was characterized by greater chaos (higher LE) in tonic EDA 461 

compared to the NCC group, suggesting that the sympathetic nervous system has a more complex 462 

regulatory network (Lajoie et al., 2014) and is more sensitive to initial recording conditions. Hence, this 463 

higher degree of chaos is consistent with a higher level of regulation. As tonic EDA is under the influence 464 

of both the ventromedial prefrontal and orbitofrontal cortices, one or both could account for this finding. 465 

Medial orbitofrontal cortex activity, which is involved in subjective emotional experience, is lower in 466 

depressive patients, while activity in lateral orbitofrontal and ventromedial cortices is increased (Koenigs 467 

& Grafman, 2009; Rolls, 2019). These changes in the neural network could account for our observed 468 

changes in tonic EDA. Functional neuroimaging studies would supplement our initial cluster 469 

characterization and clarify the role of the cortices. 470 

From a psychological point of view, those in the SCC cluster reported fewer depressive symptoms, 471 

suggesting good mental health. Furthermore, we observed an association between mean cross-correlations 472 

and emotional valence after the EC, notably with respect to unpleasant and scary variables, indicating 473 

congruency between the physiological reaction and emotional feeling as the movie was watched. These 474 

observations are in line with Thayer and Lane who reported that individuals with high resting HRV 475 

produce more context-appropriate emotional responses (Thayer & Lane, 2009). Furthermore, reduced 476 

HRV and flexibility have been associated with depression (Sgoifo et al., 2015). 477 

In contrast, members of the NCC cluster reported higher levels of depressive symptoms (on the CES-D). 478 

Depressive symptoms difference between SCC and NCC was characterized by a medium effect size, 479 

nevertheless has to be considered since the mean level of NCC almost reached the threshold for 480 



depression (Morin et al., 2011). This depressive dimension is consistent with their propensity to smoke 481 

(Fluharty et al., 2017), and a lack of autonomic flexibility reflected in an aberrant vagal response under 482 

challenge (Agorastos et al., 2020). Depressive symptoms have long been associated with undifferentiated 483 

negative emotions (Willroth et al., 2020). Overall, unlike the SCC cluster, we did not observe congruency 484 

between the autonomic dynamic and emotion.  485 

4.2. Predicting emotional reactions 486 

Predicting cluster membership on the basis of emotional regulation is not possible with a single variable. 487 

Classic one-dimension methods using ROC curves are insufficient. Thus, we used a machine learning 488 

technique to aggregate the pertinent dimensions. This revealed that three physiological baseline variables 489 

(including nonlinear dimensions of both EDA and HF time series) were able to predict up to 74% of high- 490 

and low-degree cross-correlation clustering and, therefore, the quality of emotional regulation under EC 491 

conditions. This prediction level is very close to the 80% threshold indicating good prediction ability. The 492 

fact that only three variables were used suggests good reproducibility. Moreover, these three variables 493 

appear to be important baseline predictors of the dynamics of parasympathetic activity (through the HF 494 

value), sympathetic persistence (through the HE of the tonic EDA), defined as the ability of the 495 

sympathetic system to maintain the same long-term kinetic, and parasympathetic determinism (through 496 

the LE of the HF), defined as the ability of the parasympathetic system to be exponentially disturbed.  497 

While none of these baseline variables considered individually can identify the two clusters, their 498 

combination can. It should be noted that they reflect both sympathetic and parasympathetic markers, 499 

which is consistent with the idea of a co-dynamic ANS response to an EC.  500 

4.3.  Limitations 501 

Our machine learning model is deliberately simplified to ensure its robustness and make it possible to 502 

draw conclusions. A better prediction level could be obtained with more a complex separation plan which 503 



could be justified in context of the use of nonlinear variables. However, any generalization would require 504 

a larger cohort to be valid. Second, this exploration of the characteristics of interindividual variability is a 505 

pilot study and although promising, our results must be confirmed by further work. Another study of 506 

interindividual variability based specifically on cardiovascular responsivity has identified a greater 507 

number of clusters (four or five) in the context of three other laboratory stressors, suggesting that the 508 

clustering solution might differ as a function of the stressor (Allen et al., 1991). Finally, our study is 509 

limited by the fact that the majority of participants were young female students. It is possible that anxio-510 

depressive factors are more frequent in this group than in the general population (Dahlin et al., 2005).  511 

4.4.  Conclusions 512 

Despite the limitations noted above, our results are a promising step forward in the study of the 513 

psychophysiological processes that are involved in various chronic pathologies that affect both mental 514 

and somatic health. 515 
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