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Psychophysiological dynamics of emotional reactivity: interindividual reactivity characterization and prediction by a machine learning approach
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Cross-correlations between RR and tonic electrodermal activity appear during emotion.

• Interindividual variability of these cross-correlations are observed.

• One cluster of stress vulnerability with cross-correlations independent of emotion.

• Cross-correlations of the stress vulnerability cluster are dependent of anxiety trait.

• Cluster membership prediction by a machine learning model.

Introduction

Emotional reactivity can be defined as the response of the autonomic nervous system (ANS) to an emotional stimulus. Typically, there is a joint reaction that involves both parasympathetic and sympathetic systems [START_REF] Mccraty | The effects of emotions on short-term power spectrum analysis of heart rate variability[END_REF]. Electrodermal activity (EDA) and heart rate (HR) are physiological indices of ANS activity: EDA is under the influence of the cholinergic sympathetic system, and HR is under the influence of both sympathetic and parasympathetic systems [START_REF] Kreibig | Autonomic nervous system activity in emotion: a review[END_REF]. These two branches of the ANS interact closely, and the activity of one modulates the activity of the other [START_REF] Thayer | Claude Bernard and the heart-brain connection: further elaboration of a model of neurovisceral integration[END_REF].

Examining moment-to-moment ANS responses during an emotional experience remains a methodological challenge [START_REF] Golland | Studying the dynamics of autonomic activity during emotional experience[END_REF][START_REF] Kettunen | Intraindividual analysis of instantaneous heart rate variability[END_REF]. Since emotion is defined as a phasic response, several theoretical models assume that multiple patterns of body responses succeed each other during an emotional event [START_REF] Scherer | Emotions are emergent processes : They require a dynamic computational architecture[END_REF]. Under this assumption, dynamic rather than steady point measurements are more informative. Findings from earlier studies support the idea that crosscorrelation analysis can provide relevant indices of ANS activity, by comparing the dynamics of activities in both branches during an emotional experience [START_REF] Golland | Studying the dynamics of autonomic activity during emotional experience[END_REF].

Cross-correlations between EDA and HR have been used as a simplified index of ANS functioning in the past [START_REF] Janig | Specificity in the organization of the autonomic nervous system: a basis for precise neural regulation of homeostatic and protective body functions[END_REF]. This approach reduces the number of dimensions to be considered, and enables a continuous assessment of the balance between the two branches [START_REF] Golland | Studying the dynamics of autonomic activity during emotional experience[END_REF]. Such an analysis is in line with the interest of nonlinear variables for each ANS signal. As there are several levels of regulation [START_REF] Thayer | Claude Bernard and the heart-brain connection: further elaboration of a model of neurovisceral integration[END_REF], ANS oscillation is nonlinear [START_REF] Basar | A breakthrough in neuroscience needs a "Nebulous Cartesian System" Oscillations, quantum dynamics and chaos in the brain and vegetative system[END_REF] and can be described by appropriate indices [START_REF] Reiter | Circadian disruption, melatonin rhythm perturbations and their contributions to chaotic physiology[END_REF]. These nonlinear variables provide an overview of the equilibrium of the system, describe its functioning and, more particularly, its flexibility [START_REF] Young | We should be using nonlinear indices when relating heart-rate dynamics to cognition and mood[END_REF].

ANS regulation can be estimated by the Lyapunov exponent (LE), which is correlated to the size of the active biological neuronal pathway [START_REF] Lajoie | Structured chaos shapes spike-response noise entropy in balanced neural networks[END_REF]. The LE is a numeric value that characterizes the ability of a signal to be influenced (Pilant, 2020). An increase in the size of the active neuronal network leads to it being more influenced and, therefore, the LE increases [START_REF] Lajoie | Structured chaos shapes spike-response noise entropy in balanced neural networks[END_REF]. The LE is usually correlated with the Hurst exponent (HE) [START_REF] Tarnopolski | On the relationship between the Hurst exponent, the ratio of the mean square successive difference to the variance, and the number of turning points[END_REF], which characterizes the ability of a signal to persist in the long term. This long-term memory appears to be a consequence of stability in the connectivity of an active neural network [START_REF] Taylor | Functional covariance networks: obtaining resting-state networks from intersubject variability[END_REF].

SD1 and SD2 Poincaré indices reflect, respectively, short-and long-term signal variability, and provide information about the type of neural activity. When applied to the R-peak (RR) interval, short-term variability is known to be a marker of the effects of parasympathetic activity on the sinus node, since vagal effects are known to be faster than sympathetic ones [START_REF] Hoshi | Poincare plot indexes of heart rate variability: relationships with other nonlinear variables[END_REF][START_REF] Mourot | Decrease in heart rate variability with overtraining: assessment by the Poincare plot analysis[END_REF]. SD2 is influenced by both tones [START_REF] De Vito | Effects of central sympathetic inhibition on heart rate variability during steady-state exercise in healthy humans[END_REF][START_REF] Hoshi | Poincare plot indexes of heart rate variability: relationships with other nonlinear variables[END_REF]. In the case of heart rate variability (HRV), the SD1/SD2 ratio, which represents the relationship between the two components has been shown to be correlated to the HE [START_REF] Hoshi | Poincare plot indexes of heart rate variability: relationships with other nonlinear variables[END_REF]. Nonlinear indices can, thus, indicate the dynamic functioning of the ANS [START_REF] Reiter | Circadian disruption, melatonin rhythm perturbations and their contributions to chaotic physiology[END_REF] and give a precise evaluation of system flexibility, in terms of variability, memory or control under stress [START_REF] Young | We should be using nonlinear indices when relating heart-rate dynamics to cognition and mood[END_REF].

Although dynamic approaches have been shown to be useful in reducing variability in ANS responses to emotion, interindividual variability remains significant, and appears to be a function of numerous historical, environmental, and biological factors [START_REF] Andrew | Police work stressors and cardiac vagal control[END_REF][START_REF] Boissy | Fear and fearfulness in animals[END_REF][START_REF] Fan | Heart rate variability and DNA methylation levels are altered after short-term metal fume exposure among occupational welders: a repeated-measures panel study[END_REF][START_REF] Golland | Studying the dynamics of autonomic activity during emotional experience[END_REF][START_REF] Hot | Diurnal autonomic variations and emotional reactivity[END_REF][START_REF] Huang | Serotonin receptor 1A promoter polymorphism, rs6295, modulates human anxiety levels via altering parasympathetic nervous activity[END_REF][START_REF] Von Holzen | Impact of endo-and exogenous estrogens on heart rate variability in women: a review[END_REF]. Furthermore, anxiety, mood, and alexithymia have been found to be associated with a lack of ANS flexibility [START_REF] Agorastos | Inverse autonomic stress reactivity in depressed patients with and without prior history of depression[END_REF][START_REF] Hoehn-Saric | Anxiety and arousal: physiological changes and their perception[END_REF][START_REF] Koschke | Autonomy of autonomic dysfunction in major depression[END_REF][START_REF] Lischke | Inter-individual Differences in Heart Rate Variability Are Associated with Inter-individual Differences in Empathy and Alexithymia[END_REF][START_REF] Udupa | Alteration of cardiac autonomic functions in patients with major depression: a study using heart rate variability measures[END_REF].

While overall, these differences have been described for each branch of the ANS [START_REF] Charkoudian | Sympathetic neural activity to the cardiovascular system: integrator of systemic physiology and interindividual characteristics[END_REF][START_REF] Kirstein | Autonomic nervous system pharmacogenomics: a progress report[END_REF][START_REF] Muhtadie | Vagal flexibility: A physiological predictor of social sensitivity[END_REF], to the best of our knowledge interindividual differences in dynamic interactions between the two branches of the ANS have not been explored. More specifically, questions remain not only about the functioning of each individual ANS branch, but also the dynamics of their interaction.

Hence, this exploratory study assesses the relevance and sensitivity of the combination of two methodological approaches: i) a cross-correlation analysis between the two branches of the ANS; and ii) the use of machine learning to identify profiles (clusters) of ANS reactivity. The first step was to identify the dynamic co-evolution of sympathetic and parasympathetic branches of the ANS during an emotional challenge (EC), and pinpoint clusters of inter-individual variability based on cross-correlations between EDA and RR intervals, measured as the tonic (e.g., skin conductance level) component of EDA.

Tonic and phasic components of EDA are underpinned by different neuroanatomical pathways and, therefore, different processes [START_REF] Nagai | Activity in ventromedial prefrontal cortex covaries with sympathetic skin conductance level: a physiological account of a "default mode" of brain function[END_REF][START_REF] Ozawa | Emotion-related cerebral blood flow changes in the ventral medial prefrontal cortex: An NIRS study[END_REF]. The tonic component covaries with ventromedial prefrontal and orbitofrontal cortex activities, while the phasic component is a function of activity in various regions of the brain, such as the hypothalamus, thalamus, striate and extrastriate cortices, anterior cingulate and insular cortices, and several lateral regions of the prefrontal cortex [START_REF] Nagai | Activity in ventromedial prefrontal cortex covaries with sympathetic skin conductance level: a physiological account of a "default mode" of brain function[END_REF][START_REF] Ozawa | Emotion-related cerebral blood flow changes in the ventral medial prefrontal cortex: An NIRS study[END_REF]. As a consequence, it is influenced by multiple inputs depending on the task, while the tonic component appears to be under the influence of attentional processes that are particularly enhanced in an emotional context [START_REF] Nagai | Activity in ventromedial prefrontal cortex covaries with sympathetic skin conductance level: a physiological account of a "default mode" of brain function[END_REF][START_REF] Ozawa | Emotion-related cerebral blood flow changes in the ventral medial prefrontal cortex: An NIRS study[END_REF]. These differences should make it possible to describe the ANS time course during an EC by capturing the degree of crosscorrelation as a marker of autonomic adjustment. Thus, as a first step, the combination of variation in tonic EDA and RR outputs during an EC may provide a fine-grained assessment of individual emotional reactivity. Variability was characterized using physiological, sociodemographic, and psychological variables.

The second step in our work used a machine learning analysis to assess resting state ANS indices that best-predict emotional reactivity patterns. This is a major challenge, as cross-correlations are not observed beyond the context of emotional events [START_REF] Golland | Studying the dynamics of autonomic activity during emotional experience[END_REF]. We used a Support Vector Machine (SVM) learning method as it can combine several parameters, improving prediction capacity. This technique is particularly useful in a context where there are at least two factors (such as the two branches of the ANS).

Materials and methods

Results presented in this article were collected from two successive studies. The first validated the EC (Study I), and the second analyzed the dynamic cross-correlation between the two branches of the ANS during the same EC (Study II).

Subjects

Study I was conducted with 58 participants (72.5% women; mean age = 20.84±0.49 (standard error of the mean [SEM])), and Study II with 66 participants (88.71% women; mean age = 20.52±0.55). No significant differences were found for sociodemographic parameters between the two groups (Supplementary Table 1). Both studies were approved by the Ethics Committee of Savoie Mont Blanc University, France (CEREUS_2017_13). Written informed consent was obtained from each participant.

Participants were recruited from among psychology students at Savoie Mont Blanc University and Grenoble Alpes University.

Procedure

Procedure common to both studies

Each participant was tested individually in an experimental room. Physiological sensors for the electrocardiogram (ECG) and EDA were attached. Recording was continuous throughout the experiment.

To obtain a baseline measurement, participants were asked to rest without moving, and let their mind wander with their eyes open for 10 minutes. This period was chosen in order to have enough time to calculate ANS signal parameters. Emotional state was assessed using the Affective Slider (AS) [START_REF] Betella | The Affective Slider: A Digital Self-Assessment Scale for the Measurement of Human Emotions[END_REF]. The AS assessment was performed before and after the 10-minute baseline phase (Figure 1). Then, participants watched a 24-minute video based on extracts from the movie The Conjuring [START_REF] Wan | The Conjuring In[END_REF]. This duration was chosen to ensure immersion. At the end of the video, the AS assessment was repeated. This was followed by a 15-minute recovery period, and another AS assessment. This period was chosen in order to have enough time to calculate ANS signal parameters and to observe a recovery of physiological parameters. Finally, participants were asked to report the degree to which the video they had just watched was unpleasant and scary, using two analogue scales ranging from -50 (not unpleasant/scary at all) to +50 (very unpleasant/scary), with 0 corresponding to a neutral state.

Differences between studies

While watching the video, participants in Study I used a potentiometer to continuously evaluate their instantaneous emotional state. This real-time assessment validated the intensity of the experience.

Because it was possible that this conscious activity would influence ANS reactivity [START_REF] Park | From the heart to the mind: cardiac vagal tone modulates top-down and bottom-up visual perception and attention to emotional stimuli[END_REF][START_REF] Park | Cardiac vagal tone predicts attentional engagement to and disengagement from fearful faces[END_REF], the same assessment was not performed during Study II, in which we aimed to assess dynamic ANS change.

Power analysis

The necessary number of subjects was calculated using BiostaTGV ("BiostaTGV,"), based on a similar previous study [START_REF] Golland | Studying the dynamics of autonomic activity during emotional experience[END_REF]. The earlier study recruited 27 subjects with the aim of observing significant cross-correlations. It found a correlation coefficient of around 0.6 during an emotional event, and standard deviation of around 0.1. In the present study, our goal was to observe at least two clusters, with a minimum difference of 15% and power of 90%, at a significance level of 0.05. The minimum number of subjects was identified as 52. This was increased by 10% for Study I (to compensate for technical problems in the emotional assessment system), and by 20% for Study II (to compensate for both technical problems and signal anomalies).

Study I: Validation of the emotional paradigm

A total of 58 participants were recruited. Of these, 37 provided an instantaneous emotional assessment of the movie and complete sociodemographic information; three provided an instantaneous emotional assessment and incomplete sociodemographic information (age, weight, and height were not recorded); and 18 only provided emotional assessment data.

Study II: The dynamic ANS model and the machine learning model

Among the 66 participants who were initially recruited, data from one was excluded due to a technical problem during the experiment (significant signal loss) and three were excluded due to a physiological anomaly (arrhythmia). 

Sociodemographic data

Sociodemographic variables included age, weight, height, tobacco use, consumption of caffeine and psychotropic substances, medical treatments, sleep habits and sports practice.

Psychological assessment

The psychological assessment was based on a set of standardized instruments that included the following three questionnaires: i.

The Spielberger Trait Anxiety Inventory (STAI): a 20-item assessment in which higher scores indicate more trait anxiety [START_REF] Spielberger | Manual for the State-Trait-Anxiety Inventory: STAI (form Y)[END_REF].

ii.

The Toronto Alexithymia Scale (TAS): a 20-item assessment in which higher scores indicate greater alexithymia [START_REF] Loas | Factorial structure and internal consistency of the French version of the twenty-item Toronto Alexithymia Scale in a group of 183 healthy probands[END_REF]. Three dimensions were evaluated: difficulty in identifying feelings, difficulty in describing feelings, and thoughts oriented toward external reality.

iii.

The Center for Epidemiologic Studies-Depression (CES-D) scale: a 20-item assessment in which higher scores indicate a higher level of depressive symptoms [START_REF] Fuhrer | The French version of the CES-D (Center for Epidemiologic Studies-Depression Scale)[END_REF]).

Affective Slider assessment

Participants' instantaneous emotional state was evaluated with the AS [START_REF] Betella | The Affective Slider: A Digital Self-Assessment Scale for the Measurement of Human Emotions[END_REF]. This assessment consists of two analogue scales, one addressing emotional valence, the other Arousal. In both cases, scales range from -50 (very negative) to +50 (very positive), with 0 corresponding to a neutral state. This measure was recorded between tasks (Figure 1).

Real-time emotional assessment

A real-time emotional assessment was carried out while participants watched the video in Study I.

Subjects continuously moved a linear home-made potentiometer. Values ranged from 0 (minimal intensity) to 40 (maximal intensity). The sampling frequency was 2 Hz. A higher sampling frequency would have been possible, but would not have been relevant, given that we were seeking to measure a conscious, explicit behavioral response. The response was then normalized for each subject as a percentage of maximum intensity.

Physiological measures

The ECG was recorded with sensors placed on the chest, according to the DII standard Einthoven derivation. EDA was recorded by placing electrodes on the last phalanx of the index and middle fingers of the non-dominant hand. The signal was acquired by ECG 100 and GSR 100 amplifier modules connected to a BioPac MP150 (BioPac Systems, Inc., CEROM, Paris, France). Acquisitions were performed with AcqKnowledge 4.1 software at a sampling frequency of 1000 Hz. ECG and EDA signals were recorded during the entire experiment and then transferred to MATLAB software (Mathworks, r2018a, Natick, Massachusetts, USA) for tonic and phasic EDA and RR post-acquisition processing.

Physiological signal preprocessing

R peaks were first detected automatically by an algorithm based on wavelet detection, and then comprehensively manually checked. In one case, peaks could not be manually identified, and the recording was considered artifacted and excluded. The EDA signal was first separated into phasic and tonic components by a validated algorithm [START_REF] Greco | cvxEDA: A Convex Optimization Approach to Electrodermal Activity Processing[END_REF], before being down-sampled from 1000 Hz to 2 Hz to allow it to be aligned with the interpolated inter-beat interval (IBI). Finally, it was smoothed by a moving median algorithm with a 10-point moving window, as previously reported [START_REF] Golland | Studying the dynamics of autonomic activity during emotional experience[END_REF]. Both components of the time series were then detrended and normalized as zscores, as recommended for cross-correlation analysis [START_REF] Box | Time series analysis : forecasting and control[END_REF][START_REF] Golland | Studying the dynamics of autonomic activity during emotional experience[END_REF].

Physiological signal analysis

2.9.1. IBI time series

Temporal analysis of RR intervals

The following temporal components of HRV were calculated from RR intervals: mean RR (the mean of RR intervals in ms); SDNN (the standard deviation of normal-to-normal RR intervals in ms); RMSSD (the root mean square of successive differences in ms); and HRV-TI (the Heart Rate Variability Triangular Index).

Frequency analysis of IBI time series

RR intervals were interpolated to a 2 Hz IBI time series that was then detrended. A fast Fourier transform using the Welch method with a moving window and an overlap of 50% was used to calculate spectral components of HRV parametric analyses: Very Low Frequencies (VLF): 0.002-0.04 Hz; Low Frequencies (LF): 0.04-0.15 Hz; and High Frequencies (HF): 0.15-0.5 Hz. VLF, LF and HF were calculated as a percentage of the sum of VLF+LF+HF.

HF time series

The 2 Hz detrended IBI time series was analyzed using a continuous wavelet transform. Following the method reported in the literature, a Morse wavelet with symmetry parameter equal to three, and timebandwidth product equal to 60 were used. HF power was extracted as a percentage of the sum of VLF+LF+HF, after exclusion of the cone of influence. The previously-described nonlinear algorithms were applied, and Poincaré indices, the HE, and the largest LE were calculated as described earlier. These nonlinear indexes of HF time series have previously been described [START_REF] Hoshi | Poincare plot indexes of heart rate variability: relationships with other nonlinear variables[END_REF][START_REF] Yeragani | Heart rate time series: decreased chaos after intravenous lactate and increased non-linearity after isoproterenol in normal subjects[END_REF].

Nonlinear analysis of HF time series

Poincaré indices SD1 and SD2, the HE, and the LE of the HF time series were calculated.

Poincaré indices

Nonlinear Poincaré indices SD1 and SD2 describe the variability of the Poincaré plot, and were calculated from RR intervals. SD1 and SD2 provide an estimate of the dispersion of points perpendicularly, and along the line of identity, respectively. They therefore represent short-and long-term variability in the analyzed signals, respectively.

The Hurst exponent

The HE evaluates the long-term memory of a process [START_REF] Tarnopolski | Correlation between the Hurst exponent and the maximal Lyapunov exponent: Examining some low-dimensional conservative maps[END_REF]. Its interpretation is a function of its value. A value above ½ suggests a persistent process that has long-term memory and a value below ½ suggests a non-persistent process with a short-term memory [START_REF] Tarnopolski | On the relationship between the Hurst exponent, the ratio of the mean square successive difference to the variance, and the number of turning points[END_REF]. The HE was calculated using a detrended moving mean algorithm, which was chosen because of its simple, closedform processing [START_REF] Tarnopolski | Correlation between the Hurst exponent and the maximal Lyapunov exponent: Examining some low-dimensional conservative maps[END_REF].

The largest Lyapunov exponent

The largest LE (λ) indicates the exponential divergence/ convergence of an initially-considered point in a dynamic system in its phase space, within a time limit of infinity (i.e., the degree of sensitivity to initial conditions) [START_REF] Tarnopolski | Correlation between the Hurst exponent and the maximal Lyapunov exponent: Examining some low-dimensional conservative maps[END_REF]. Considering two points close to the phase plane at times t=0 and t=t, and the distances between these points in the i th direction, the LE is estimated as follows:

where ||δxi(0)|| and ||δxi (t)|| are the Euclidean distances between the two points in the i th direction at times t=0 and t, respectively (Pilant, 2020;[START_REF] Tarnopolski | Correlation between the Hurst exponent and the maximal Lyapunov exponent: Examining some low-dimensional conservative maps[END_REF]. The limit t→∞ is replaced by t that is sufficiently large, leading to the finite time LE (Pilant, 2020;[START_REF] Roth | Slow wave sleep: does it matter?[END_REF].

LE values above 0 are associated with chaos, and correspond to a deviation that grows exponentially as the number of iterations increases. Values equal to 0 are associated with a periodic or quasiperiodic signal, and indicate that deviation from the orbit remains steady regardless of the number of iterations [START_REF] Dämmig | Estimation of Lyapunov exponents from time series: the stochastic case[END_REF]. Among the numerous algorithms used to estimate LE, we selected Pilant's algorithm because of its simplicity and the closed form processing (Pilant, 2020). Non-MATLAB users can download and read the algorithm using a standard text editor.

EDA time series

Poincaré indices, the HE, and the LE were calculated as described earlier for tonic EDA time series.

Correlation analysis

Sampling frequencies for the two signals were aligned. The 2 Hz detrended IBI time series was filtered below 0.04 Hz in order to remove low components insufficiently present in 60 s window. The last time series were then normalized as z-scores. A cross-correlation analysis between the IBI time series and the tonic EDA time series was performed for each subject using moving windows according to Golland et al. [START_REF] Golland | Studying the dynamics of autonomic activity during emotional experience[END_REF]. Briefly, the analysis is based on short (t=60 s) overlapping (Δt=30 s) time segments. For each segment, and for each individual the maximum correlation (within ± 5-s lags) was identified between the two series. In each case, a nonparametric bootstrapping procedure with surrogate data allowed us to control the statistical significance of the result. Surrogate data were obtained by randomizing segments in the time series. This procedure was repeated 1000 times. As described in previous work [START_REF] Golland | Studying the dynamics of autonomic activity during emotional experience[END_REF], the statistical likelihood of a cross-correlation in each time window was assessed nonparametrically using the Wilcoxon rank sum test against synthetic control data. Obtained p-values were corrected for multiple comparisons using the false discovery rate (FDR) procedure [START_REF] Benjamini | Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing Journal of the Royal Statistical Society[END_REF].

2.11.

Clustering

Evaluation of the optimal number of clusters

Clusters of subjects with the same emotional response were identified from cross-correlations between the RR interval and the tonic EDA signal observed during the eight, intensely emotional 60 s windows of the movie (4-5, 6-7, 8-9, 10-11, 12-13, 17-18, 19-20, and 21-22 min). Values were calculated for each individual. The clustering of subjects was performed on these last 8 variables by using the Calinski-

Harabasz algorithm for Gaussian model mixture distribution as available in MATLAB software. The Calinski-Harabasz non-supervised cluster solution algorithm was chosen as it uses clustering criteria based on the ratio of variances to provide a robust heuristic index [START_REF] Andrade | Robust Bayesian model selection for variable clustering with the Gaussian graphical model[END_REF]. Thus, a welldefined cluster has a large between-cluster variance and a small within-cluster variance. The optimal number of clusters is chosen according to a criterion based on these parameters. One to six cluster solutions were tested. The maximum number of iterations to reach convergence was set at 1000, and a diagonal covariance matrix was used. Solutions with the best fit were considered optimal. This solution without a priori has retrieved an optimal number of 2 clusters.

Cluster membership

Membership of one of the two clusters was determined from the eight cross-correlation values that determined the dynamics of each individual's responses using a Gaussian Mixture Model. This method was selected to study interindividual variability as, by definition, the latter follows a Gaussian distribution. MATLAB's cluster algorithm was used, with the maximum number of iterations to reach convergence set at 1000. Here again, a diagonal covariance matrix was used. The Gaussian model assigns query data points to the multivariate normal components that maximize the component posterior probability, given the data. The method established the following cluster membership: cluster 1 (n=30)

and cluster 2 (n=32).

Machine learning

The ability of baseline parameters to predict the distribution of subjects within clusters was trained and cross-validated using a linear kernel SVM model. The linear kernel is widely used due to its robustness.

To further increase robustness, a classical cross-validated model was used. First, data were randomly partitioned into 10 sets. Then, for each set, the algorithm reserved the set as validation data, and trained the model on the other nine sets. The out-of-sample misclassification rate was used to assess performance.

2.13.

Statistical analysis

Statistical analyses were performed with MATLAB, Cohen's effect sizes were calculated with G*Power.

One-way factorial analyses of variance (ANOVAs) were performed to compare means of the two clusters.

As the duration of baseline, EC, and recovery phases were different, repeated measures ANOVAs could not be used to compare HRV results because most parameters are a function of the sample size. Other, time-insensitive parameters were analyzed with repeated measures ANOVAs for Time and Group main effects, and their interaction. Time effects identified changes in measures between baseline, EC, and recovery. Group effects identified differences between clusters 1 and 2. Group×Time effects reflect the combined effects of Time and Group. When the ANOVA revealed a significant effect, partial eta squared and Cohen's f effect size were calculated to estimate its size. According to the work of Schäfer and Schwarz applied to psychology domain, we considerated that an effect size of 0.2 as small, higher than 0.4 as medium and higher than 0.6 as large [START_REF] Schafer | The Meaningfulness of Effect Sizes in Psychological Research: Differences Between Sub-Disciplines and the Impact of Potential Biases[END_REF]. Partial eta squared of 0.01 indicates a small effect, of 0.06 a medium effect and 0.14 a large effect. Clusters were characterized by the mean value of the cross-correlation during each window. This was linked to other psychological data using Pearson correlations for each cluster.

For categorical variables, Chi-Square independence tests were used. When significant, a Cohen's w effect size was calculated. According to basic rules for Cohen's w, a w of 0.10 indicates a small effect, of 0.30 a medium effect and 0.50 a large effect [START_REF] Cohen | Statistical Power Analysis for the Social Sciences[END_REF].

The predictive power of each variable was assessed with receiver operating characteristic (ROC) curves.

The cut-off was associated with an area under the curve (AUC) above 0.8. Significance was set at p<0.05.

As for cross-correlation, p-values were corrected for multiple comparisons using the FDR procedure [START_REF] Benjamini | Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing Journal of the Royal Statistical Society[END_REF]. Data are presented as mean ± SEM.

Results

Study I: Validation of the EC

As they watched the video, subjects evaluated real-time emotional intensity (Figure 2). Our result highlighted a progressive increase in global intensity as a function of time, along with a few bursts. As cross-correlations between EDA and the RR interval have previously only been observed during emotional bursts [START_REF] Golland | Studying the dynamics of autonomic activity during emotional experience[END_REF][START_REF] Hsieh | A Network Approach for Evaluating Coherence in Multivariate Systems: An Application to Psychophysiological Emotion Data[END_REF], this result confirmed that the EC was an efficient way to study cross-correlations between the two branches of the ANS. 

Study II: Evaluation of the autonomic dynamic during the EC

Physiological identification of emotional bursts during the EC

In order to align the self-reported emotion scores obtained in Study I (Figure 2) with cross-correlation results, we calculated mean self-reported emotion intensity for each 60 s window (Figure 3.A). This identified eight windows with peak emotional intensity (4-5, 6-7, 8-9, 10-11, 12-13, 17-18, 19-20, and 21-22 min; Figure 3.A). Significant negative cross-correlations between the RR interval and tonic EDA (i.e., low RR and high EDA) were only observed in two windows: 12-13 min (r=-0.36 ± 0.05, p <0.05);

and 12 min 30 s to 13 min 30 s (r=-0.35 ± 0.06, p <0.05; Figure 3.B).

As our earlier work had identified that significant cross-correlations are only observed during emotional events [START_REF] Golland | Studying the dynamics of autonomic activity during emotional experience[END_REF], we limited the search for interindividual variability in cross-correlations between the RR interval and tonic EDA to these eight bursts. An automated analysis of the optimal number of clusters for these eight cross-correlations identified two: cluster 1 (n=30); and cluster 2 (n=32).

Significant cross-correlations were found among individuals in cluster 1 during the EC, but not cluster 2 (Figure 3.C). Therefore, cluster 1 was labelled the "significant correlation cluster" (SCC), and cluster 2

the "non-significant correlation cluster" (NCC). Finally, no significant cross-correlation was observed for either cluster at baseline or recovery (Supplemental Figures 1A to D). 

Physiological characterization of clusters

No difference was observed between clusters at baseline or recovery. However, Table 1 shows that during the EC the SCC group was characterized by a less chaotic distribution (LE) of tonic EDA (F(1,60)=9.5, FDR-corrected p<0. 05,observed power=0.86,Cohen's f=0.53). Results for all tested physiological variables are reported in Supplementary Table 2.

Table 1: Physiological results as a function of cluster and measurement time. Results are expressed as mean (± SEM). As the three measurement periods (baseline, EC, and recovery) are not of the same duration, a repeated measures ANOVA cannot be used. Only significant results after FDR correction (q<0.05) for the one-way ANOVA for each period are shown.

Psychological characterization of clusters

Psychological characterization consisted of reported emotional intensity at different times of the procedure, and an initial psychopathological self-report questionnaire. Table 2 shows AS scores, and highlights that the NCC group perceived the EC less negatively than the SCC group (F(1,60) = 11.50, FDR-corrected p<0.01, observed power=0.92, partial eta-squared=0.16, Cohen's f=0.63).

LE tonic EDA 1.34 (± 0.07) 1.28 (± 0.07) F(1,60)=0.32; p=0. Table 3 highlights that the NCC group scored higher on the CES-D scale than the SCC group, indicating more depressive symptoms.

Table 3: Psychological indicators as a function of cluster. p-values were calculated using a one-way ANOVA. Results are expressed as mean (±SEM).

Health behavior in clusters

While no difference was found between the two clusters with respect to sociodemographic characteristics, health behaviors did differ (Table 4). Specifically, those in the NCC cluster were more likely to smoke than those in the SCC cluster. 

Functional patterns in clusters

To study each cluster individually, we summarized cross-correlation dynamics as the mean for each emotional burst for each participant (a cross-correlation reduction). This identified that (negative) crosscorrelation values were higher among the SCC cluster (r=-0.37±0.03) than in the NCC group (r=-0.07±0.03; F (1,60)=69.89, p<0.001, partial eta-squared=0.54, observed power=1.00, Cohen's f=0.85). This variable can be used to study functional correlates in each cluster by testing Pearson correlations between it and psychological variables or subjective emotion. In the following, only significant results are reported.

In the NCC cluster, no correlation was found between mean cross-correlations during emotional bursts and subjective emotion or psychological variables. However, in the SCC cluster, they were correlated with subjective valence after video recording (r=0.43, corrected p<0.05), unpleasant emotions (r =-0.49, corrected p<0.01), and feeling scared (r=-0.45, corrected p<0.05). This finding indicates that the stronger the negative cross-correlation between the RR interval and EDA while watching the movie, the greater the perception of unpleasantness and feeling scared.

3.2.6. Predicting clusters from baseline data with machine learning First, ROC curves were used to evaluate the predictive power of each baseline variable individually. The prediction of clusters using physiological variables or a single factor (identified by factor analysis) yielded AUCs no higher than 0.63. These values are considered poor, as good predictive power is associated with an AUC above 0.8. Then, a machine learning model was used to predict the distribution of subjects within the two clusters using baseline physiological variables. The machine learning algorithm automatically chose variables with the most predictive power. The search for new variables ended when no additional variable increased the predictive power of the model (the list of variables is given in Supplementary Table 2).

The cross-validated SVM model resulted in a prediction of 74.19% using only three baseline physiological variables: the HE of tonic EDA; the percentage of HF; and the LE of HF. Two nonlinear variables were automatically chosen by the model, suggesting that the nonlinear characteristics of both EDA and HF signals are important baseline characteristics in predicting cross-correlation ANS functioning during the EC. However, and interestingly, no difference between clusters was observed at baseline for these variables when they were considered independently (Supplementary Table 2).

Discussion

The goal of this study was to identify the dynamical coevolution of SNS and PNS during an EC and to describe clusters interindividual variability based on dynamical cross-correlations between EDA and RR intervals. Our study addresses two challenges. First, it is not possible to assess both moment-to-moment emotional state, and the true emotional level when attention is focused on the emotional event [START_REF] Park | From the heart to the mind: cardiac vagal tone modulates top-down and bottom-up visual perception and attention to emotional stimuli[END_REF][START_REF] Park | Cardiac vagal tone predicts attentional engagement to and disengagement from fearful faces[END_REF]. Second, the self-assessment of emotion can itself be considered as a cognitive regulation task that may reduce intensity. Thus, we ran two studies, one to assess subjective emotion (Study I), and the second to record objective emotion (Study II). Our results highlight crosscorrelations between tonic EDA and RR signals, and the existence of two profiles linking the two branches of the ANS during an EC. The first is characterized by sympathetic activation coupled with parasympathetic deactivation that marks the most emotionally-intense moments. The second is characterized by a lack of functional coupling within the ANS, associated with low emotional feeling during the EC and marked depressive symptomatology. Moreover, an exploratory machine learning analysis allowed us to categorize and predict these two clusters based on ANS measurements taken at rest.

Our study supports previous findings [START_REF] Golland | Studying the dynamics of autonomic activity during emotional experience[END_REF], which show that emotional arousal is associated with cross-correlations between HR and EDA signals. In the present study, a decrease in the RR interval duration was associated with a fast, transient disequilibrium between sympathetic and parasympathetic systems that favored the sympathetic system during an EC. The cross-correlation between these two variables underlies the functional coordination (or coupling) of the two branches of the ANS.

Interindividual variability in dynamic emotional reactions

At the same time, our study goes further, and demonstrates the existence of two clusters of crosscorrelations using a data-driven approach. These interindividual differences have not been reported

previously, probably because individuals with no significant cross-correlations were excluded in earlier studies, or were masked in a group analysis [START_REF] Golland | Studying the dynamics of autonomic activity during emotional experience[END_REF].

Specifically, the existence of two clusters suggests that there is a difference in ANS flexibility with respect to the interplay between its two branches [START_REF] Young | We should be using nonlinear indices when relating heart-rate dynamics to cognition and mood[END_REF]. Interindividual variability underlying variation in flexibility has already been identified using a clustering p-technique applied to cardiovascular activity [START_REF] Friedman | Idiodynamic profiles of cardiovascular activity: a Ptechnique approach[END_REF]. The two autonomic branches of the ANS are mutually inhibiting and globally antagonistic [START_REF] Burnstock | Unresolved issues and controversies in purinergic signalling[END_REF], and this can occur at different levels of regulation, highlighting the global flexibility of brain function [START_REF] Bornemann | Voluntary upregulation of heart rate variability through biofeedback is improved by mental contemplative training[END_REF][START_REF] Ondicova | Multilevel interactions between the sympathetic and parasympathetic nervous systems: a minireview[END_REF][START_REF] Young | We should be using nonlinear indices when relating heart-rate dynamics to cognition and mood[END_REF].

In the present study, the SCC cluster was characterized by greater chaos (higher LE) in tonic EDA compared to the NCC group, suggesting that the sympathetic nervous system has a more complex regulatory network [START_REF] Lajoie | Structured chaos shapes spike-response noise entropy in balanced neural networks[END_REF] and is more sensitive to initial recording conditions. Hence, this higher degree of chaos is consistent with a higher level of regulation. As tonic EDA is under the influence of both the ventromedial prefrontal and orbitofrontal cortices, one or both could account for this finding.

Medial orbitofrontal cortex activity, which is involved in subjective emotional experience, is lower in depressive patients, while activity in lateral orbitofrontal and ventromedial cortices is increased [START_REF] Koenigs | The functional neuroanatomy of depression: distinct roles for ventromedial and dorsolateral prefrontal cortex[END_REF][START_REF] Rolls | The orbitofrontal cortex and emotion in health and disease, including depression[END_REF]. These changes in the neural network could account for our observed changes in tonic EDA. Functional neuroimaging studies would supplement our initial cluster characterization and clarify the role of the cortices.

From a psychological point of view, those in the SCC cluster reported fewer depressive symptoms, suggesting good mental health. Furthermore, we observed an association between mean cross-correlations and emotional valence after the EC, notably with respect to unpleasant and scary variables, indicating congruency between the physiological reaction and emotional feeling as the movie was watched. These observations are in line with Thayer and Lane who reported that individuals with high resting HRV produce more context-appropriate emotional responses [START_REF] Thayer | Claude Bernard and the heart-brain connection: further elaboration of a model of neurovisceral integration[END_REF]. Furthermore, reduced HRV and flexibility have been associated with depression [START_REF] Sgoifo | Autonomic dysfunction and heart rate variability in depression[END_REF].

In contrast, members of the NCC cluster reported higher levels of depressive symptoms (on the CES-D).

Depressive symptoms difference between SCC and NCC was characterized by a medium effect size, nevertheless has to be considered since the mean level of NCC almost reached the threshold for depression [START_REF] Morin | Psychometric properties of the Center for Epidemiologic Studies Depression Scale (CES-D) in French clinical and nonclinical adults[END_REF]. This depressive dimension is consistent with their propensity to smoke [START_REF] Fluharty | The Association of Cigarette Smoking With Depression and Anxiety: A Systematic Review[END_REF], and a lack of autonomic flexibility reflected in an aberrant vagal response under challenge [START_REF] Agorastos | Inverse autonomic stress reactivity in depressed patients with and without prior history of depression[END_REF]. Depressive symptoms have long been associated with undifferentiated negative emotions [START_REF] Willroth | Depressive symptoms and deficits in stressreactive negative, positive, and within-emotion-category differentiation: A daily diary study[END_REF]. Overall, unlike the SCC cluster, we did not observe congruency between the autonomic dynamic and emotion.

Predicting emotional reactions

Predicting cluster membership on the basis of emotional regulation is not possible with a single variable.

Classic one-dimension methods using ROC curves are insufficient. Thus, we used a machine learning technique to aggregate the pertinent dimensions. This revealed that three physiological baseline variables (including nonlinear dimensions of both EDA and HF time series) were able to predict up to 74% of highand low-degree cross-correlation clustering and, therefore, the quality of emotional regulation under EC conditions. This prediction level is very close to the 80% threshold indicating good prediction ability. The fact that only three variables were used suggests good reproducibility. Moreover, these three variables appear to be important baseline predictors of the dynamics of parasympathetic activity (through the HF value), sympathetic persistence (through the HE of the tonic EDA), defined as the ability of the sympathetic system to maintain the same long-term kinetic, and parasympathetic determinism (through the LE of the HF), defined as the ability of the parasympathetic system to be exponentially disturbed.

While none of these baseline variables considered individually can identify the two clusters, their combination can. It should be noted that they reflect both sympathetic and parasympathetic markers, which is consistent with the idea of a co-dynamic ANS response to an EC.

Limitations

Our machine learning model is deliberately simplified to ensure its robustness and make it possible to draw conclusions. A better prediction level could be obtained with more a complex separation plan which could be justified in context of the use of nonlinear variables. However, any generalization would require a larger cohort to be valid. Second, this exploration of the characteristics of interindividual variability is a pilot study and although promising, our results must be confirmed by further work. Another study of interindividual variability based specifically on cardiovascular responsivity has identified a greater number of clusters (four or five) in the context of three other laboratory stressors, suggesting that the clustering solution might differ as a function of the stressor [START_REF] Allen | Cluster analyses of cardiovascular responsivity to three laboratory stressors[END_REF]. Finally, our study is limited by the fact that the majority of participants were young female students. It is possible that anxiodepressive factors are more frequent in this group than in the general population [START_REF] Dahlin | Stress and depression among medical students: a cross-sectional study[END_REF].

Conclusions

Despite the limitations noted above, our results are a promising step forward in the study of the psychophysiological processes that are involved in various chronic pathologies that affect both mental and somatic health.

Figure 1 :

 1 Figure 1: Experimental procedure for both studies. AS: Affective Slider assessment.

Figure 2 :

 2 Figure 2: Emotional intensity as a function of time. Emotional intensity was expressed as a percentage of individual feeling measured using a potentiometer (see Materials and Methods). The blue line represents the mean for all subjects. Black bars represent the 95% confidence interval.

Figure 3 :

 3 Figure 3: Cross-correlations between tonic EDA and the RR interval during the EC. A, B, C: Vertical gray zones represent the eight emotional peaks during the EC. Results are expressed as mean ± SEM. Dotted horizontal lines represent FDR-corrected upper and lower limits of significance

78 (± 0.04) 1.51 (± 0.08) F(1,60)=9.5; p=0.045 partial eta-squared=0.14 Cohen's f=0.53

  

			Baseline				EC				Recovery	
		Non-				Non-				Non-		
	Significant correlation cluster (SCC)	significant correlation cluster	p-Value corrected by FDR of 1-way ANOVA	Observed power	Significant correlation cluster (SCC)	significant correlation cluster	p-Value corrected by FDR of 1-way ANOVA	Observed power	Significant correlation cluster (SCC)	significant correlation cluster	p-Value corrected by FDR of 1-way ANOVA	Observed power
		(NCC)				(NCC)				(NCC)		
						EDA signal						
			80	0.09	1.0.86	1.41 (± 0.05) 1.33 (± 0.07) F(1,60)=0.77; p=0.71	0.14

Table 2 : Reported AS as a function of cluster

 2 . p-values are calculated with repeated measure ANOVAs of Valence and Arousal, and a one-way ANOVA with FDR correction (q<0.05) for the overall evaluation of emotion. Results are expressed as mean (± SEM).

,60)=11.50; p corrected=0.003; observed power=0.92 partial eta-squared=0.16; Cohen's f=0.63

  

			Significant correlation cluster (SCC)	Non-significant correlation cluster (NCC)	Statistics
	Valence	Before baseline After baseline After video After recovery	19.40 (± 2.16) 12.53 (± 2.37) -4.7 (± 3.66) 5.63 (± 1.98)	18.44 (± 2.97) 17.84 (± 2.60) 0.75 (± 3.31) 9 (± 2.63)	Repeated ANOVA: interaction F(3,180)=0.91; p=0.44; observed power=0.25 group effect F(1,60)=1.35; p=0.25; observed power=0.21
	Before baseline After baseline After video After recovery Unpleasant video feeling Scary video feeling Negative video feeling F(1Arousal -6.87 (± 2.93) 0.88 (± 3.31) -20.83 (± 3.25) -20.91 (± 3.68) 18.97 (± 3.11) 13.97 (± 3.75) -9.37(± 3.48) -13.13 (± 4.75) 10.43 (± 4.18) 4.53 (± 3.94) F(1,60)=1.06; p corrected=0.31; observed power=0.17 Repeated ANOVA: 1-way ANOVA: 18.7 (± 2.98) 9.47 (± 3.78) 1-way ANOVA: F(1,60)=3.62; p corrected=0.09; observed power=0.46 15.8 (± 3.23) -3.06 (± 4.46) 1-way ANOVA: interaction F(3,180)=1.61; p=0.19; observed power=0.42 group effect F(1,60)=0.01; p=0.93; observed power=0.05 Final evaluation
	STAI-Trait	44.87 (±1.86)	49.17 (±1.75)	1-way ANOVA: F(1,60)=2.82; p corrected=0.25; observed power=0.38
	CES-D		15.7		

(±1.73) 22.72 (±2.1) 1-way ANOVA: F(1,60)=6.53; p corrected=0.05; observed power=0.71; partial eta-squared=0.10; Cohen's f=0.41

  

		Significant correlation cluster (SCC)	Non-significant correlation cluster (NCC)	Statistics
	TAS-20: difficulties in identifying feelings	16.37 (±1.05)	18.28 (±1.27)	1-way ANOVA: F(1,60)=1.33; p corrected=0.31; observed power=0.21
	TAS-20: difficulties in describing feelings	13.47 (±0.93)	13.94 (±0.93)	1-way ANOVA: F(1,60)=0.13; p corrected=0.72; observed power=0.06
	TAS-20: thoughts oriented toward external reality	16.8 (±0.76)	15.47 (±0.66)	1-way ANOVA: F(1,60)=1.76; p corrected=0.31; observed power=0.25

Table 4 : Demographics and health behavior as a function of cluster

 4 . p-values were calculated using a one-way ANOVA or χ 2 test. Results are expressed as mean (± SEM).
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