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Abstract How is orthographic knowledge acquired? In line with the self-teaching hypothesis, most com-

putational models assume that phonological recoding has a pivotal role in orthographic learning. However,

these models make simplifying assumptions on the mechanisms involved in visuo-orthographic processing.

Against evidence from eye movement data during orthographic learning, they assume that orthographic

information on novel words is immediately available and accurately encoded after a single exposure. In

this paper, we describe BRAID-Learn, a new computational model of orthographic learning. BRAID-

Learn is a probabilistic and hierarchical model that incorporates the mechanisms of visual acuity, lateral

interference and visual attention involved in word recognition. Orthographic learning in the model rests

on three main mechanisms: first, visual attention moves over the input string to optimize the gain of infor-

mation on letter identity at each fixation; second, top-down lexical influence is modulated as a function

of stimulus familiarity; third, after exploration, perceived information is used to create a new ortho-

graphic representation or stabilize a better-specified representation of the input word. BRAID-Learn was

challenged on its capacity to simulate the eye movement patterns reported in humans during incidental

orthographic learning. In line with the behavioral data, the model predicts a larger decline with exposures

in number of fixations and processing time for novel words than for known words. For novel words, most

changes occur between the first and second exposure, that is to say, after creation in memory of a new

orthographic representation. Beyond phonological recoding, our results suggest that visuo-attentional ex-

ploration is an intrinsic portion of orthographic learning, seldom taken into consideration by models or

theoretical accounts.
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1 Introduction1

Phonological decoding – the use of spelling-sound mapping knowledge to translate letter strings into2

phonemes – is a first major step of reading acquisition allowing beginning readers to decode the new3

words they encounter while reading. The laborious and serial phonological decoding of beginning and poor4

readers contrasts with the fluent and immediate recognition of individual words that characterizes expert5

reading. Moving from slow phonological decoding to fluent reading depends on orthographic learning6

skills (Castles et al., 2018). However, the mechanisms by which orthographic learning occurs and how7

they can be modelled remain under-specified.8

The self-teaching theory provided insights into one of the mechanisms at play (Share, 1995, 1999). The9

theory postulates that each successful decoding of a novel word provides an opportunity to learn the novel10

word orthographic form. Accordingly, phonological decoding is viewed as the primary cognitive mechanism11

involved in orthographic learning. Explicit learning of spelling-sound correspondences allows children12

to decode the novel word, which bootstraps orthographic knowledge acquisition. A few computational13

models have implemented the self-teaching mechanism (Perry et al., 2019; Pritchard et al., 2018; Ziegler14

et al., 2014). In these models, the phonemes corresponding to the stimulus letter-string are activated15

by application of grapheme-phoneme mappings, which in turn yields activation of the corresponding16

phonological word in long-term memory. Then, a new orthographic representation is created and the17

association of the new orthographic word representation with the phonological word can be learned.18

Ziegler et al. (2014) showed how word-specific orthographic knowledge might be successfully acquired19

while starting with limited knowledge of spelling-sound correspondences. Pritchard et al. (2018) showed20

how contextual and semantic information contributes to single word identification to facilitate irregular-21

word learning. However, both a force and a limit of these implementations of how children self-learn22

novel orthographic words is the emphasis on phonological decoding while avoiding explicit modeling of23

the visual mechanisms involved in novel word letter-string processing. In both computational models,24

a complete and immediate identification of the letters that compose the novel word is implemented,25

as if information on word-letter identity was fully available and memorized one-shot while reading. As26

acknowledged by the authors of these models themselves, such a simple one-shot approach to orthographic27

learning is not psychologically plausible.28

First, behavioral evidence from self-teaching studies, developmental dyslexia research and animal29

studies suggests that word orthographic learning is not based solely on phonological decoding. Second,30

experimental studies using eye tracking in conditions of incidental orthographic learning clearly show31

that orthographic information on novel words is not immediately available but accumulates gradually in32

memory across successive encounters with the novel word.33

Although the self-teaching theory ascribes a central role to phonological decoding in orthographic34

knowledge acquisition (Cunningham, 2006; de Jong et al., 2009; Kyte & Johnson, 2009; Nation et al.,35

2007; Share, 1999), there is evidence that orthographic learning is not fully explained by decoding ability36

(Castles & Nation, 2006, 2008). In particular, factors that relate to visual word processing, like “ortho-37

graphic processing” and “print exposure” have been identified as contributing to the development of38
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orthographic knowledge, beyond phonological skills (Cunningham et al., 2001; see Castles and Nation,39

2006 for a review).40

Further evidence against phonological processing as the unique basis of orthographic learning comes41

from developmental dyslexia. On the one hand, prototypical patterns of phonological dyslexia have been42

observed in patients who demonstrate fully developed word-specific orthographic knowledge despite ma-43

jor phonological deficit (Howard & Best, 1996). On the other hand, there are cases of surface dyslexia44

who show major deficits of irregular-word reading and spelling despite normal phonological skills (Inserm,45

2007; Romani et al., 2008; Romani et al., 1999; Valdois et al., 2003). This suggests that very poor phono-46

logical decoding skills do not necessarily prevent orthographic learning and that having good phonological47

decoding skills does not guarantee normal development of lexical orthographic knowledge. Of particular48

interest for the present purpose, search for the cognitive deficits associated with developmental surface49

dyslexia revealed that a selective orthographic deficit was associated with a deficit of the simultaneous50

processing of distinct visual elements, dubbed the visual attention (VA) span deficit (Bosse, 2005; Dubois51

et al., 2010; Valdois et al., 2003). Further evidence that VA span more specifically relates to reading sub-52

skills that reflect word-specific orthographic knowledge – like irregular word reading (Bosse & Valdois,53

2009), reading speed (Lobier et al., 2013; van den Boer et al., 2015; van den Boer & de Jong, 2018) or the54

length effect in word reading (van den Boer et al., 2013) – supports a potential contribution of VA span55

to word-specific orthographic knowledge acquisition. More direct evidence comes from studies showing a56

link between VA span and spelling acquisition (Niolaki et al., 2020; van den Boer et al., 2015) and from57

studies showing that VA span modulates novel word orthographic learning (Bosse et al., 2015; Chaves58

et al., 2012; Ginestet et al., 2020; Marinelli et al., 2020). Without minimizing the role of phonological59

skills in orthographic acquisition, these findings suggest that visual factors independently contribute to60

the development of word-specific orthographic knowledge. Data from animal studies further suggest that61

the contribution of visual processing skills to orthographic knowledge acquisition may have been under-62

estimated since animals can acquire impressive orthographic knowledge in the absence of language and63

phonological skills (Grainger et al., 2012; Rajalingham et al., 2020; Scarf et al., 2016). These findings64

highlight the urgency to better understand how visual processing and visual attention skills contribute65

to orthographic learning and self-teaching.66

Finally, recent exploration of eye movements in conditions of novel word incidental learning revealed67

that orthographic learning is modulated by complex visual processes. While incidental learning begins68

from the first encounter with the novel word (Bosse et al., 2015; Bowey &Muller, 2005; Cunningham, 2006;69

Nation & Castles, 2017; Share, 1999, 2004; Tucker et al., 2016), orthographic learning is not completed70

at the end of the first exposure but requires multiple encounters. Strong variations in eye movements due71

to repeated exposure with the same novel word are reported across the first two or three exposures, but72

learning effects can be observed later on and five successive exposures can be insufficient for the novel word73

(or rare words) to be processed as a known word (Ginestet et al., 2020; Joseph & Nation, 2018; Joseph74

et al., 2014; Nation & Castles, 2017; Pellicer-Sanchez, 2016). Clearly, orthographic processing affects75

incidental learning over multiple exposures; this contrasts with the simplified picture assumed by most76

computational models. Monitoring eye movements provided additional insights on the mechanisms at play.77
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Gradual decrease in processing time (gaze duration and fixation duration) with successive encounters is78

the main indicator of orthographic learning. The reduction in processing time across exposures, as assessed79

by measuring eye movements, is associated with increased performance on offline measures of novel word80

spelling knowledge. This suggests that letter identification is boosted from exposure to exposure through81

top-down influence due to gradual reinforcement of the novel word orthographic representation (see82

Ginestet et al., 2020; Joseph and Nation, 2018; Joseph et al., 2014 and, for qualitatively consistent83

observations, see, Pagan and Nation, 2019). Available data thus suggests that orthographic learning is a84

gradual, not an all-or-nothing, process that relies on close interactions between bottom-up processing for85

the extraction of letter information from the novel printed word and top-down lexical influences, including86

the influence of the orthographic representation of the novel word currently being acquired.87

Overall, current models of the self-teaching mechanism implement orthographic learning as a one-shot88

process allowing the immediate and accurate memorization of the whole orthographic form of a novel89

word as far as it has been accurately decoded and phonologically recognized. In contrast, behavioral90

data from eye movement studies show that the oculomotor pattern evolves across repeated exposures to91

the same novel word suggesting a gradual, not one-shot, acquisition of orthographic knowledge. Further-92

more, additional behavioral data suggest that, beyond phonology, visual attention might be involved in93

orthographic learning. Unfortunately, no current computational model implements all the mechanisms94

required to predict the evolution of eye movements during orthographic learning. On the one hand, mod-95

els of reading acquisition do not incorporate any of the mechanisms of visuo-orthographic processing that96

are postulated by models of orthographic word recognition. In particular, reading acquisition models do97

not implement the mechanisms of inter-letter visual similarity and lateral interference that are critical in98

word recognition models. On the other hand, models of eye movement control implement the visual acuity99

and visual attention components required to account for eye movements in reading but they incorporate100

none of the visuo-orthographic processes that are central for word recognition models and no mechanism101

of orthographic learning.102

Our main contribution in the present study was to implement a more integrated computational model103

and assess its ability to predict the evolution of eye movements during orthographic learning. For this pur-104

pose, we started from a recently developed word recognition model, the BRAID model (for Bayesian model105

of word Recognition with Attention, Interference and Dynamics; Phénix, 2018; Phénix et al., submitted),106

which includes not only the mechanisms of visual letter similarity and lateral interference classically found107

in word recognition models, but further the mechanisms of visual acuity and visual attention that are typ-108

ical of eye movement control models. We extended the BRAID model by adding learning mechanisms. As109

a result, the extended model, called BRAID-Learn, features simultaneously the properties of an efficient110

word recognition model, some of the processes involved in eye movement control, and the mechanisms111

required for orthographic learning. We then used the BRAID-Learn model to predict the evolution of112

eye movement patterns when being repeatedly exposed to the same set of novel words. A main challenge113

here was to use the same set of default parameter values that was previously used to simulate a variety of114

word recognition effects (like frequency and neighborhood effects (Phénix, 2018; Phénix et al., submitted;115

Phénix et al., 2018), the word superiority or the OVP effect (Phénix, 2018; Phénix et al., submitted; Val-116
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dois et al., submitted), or word length effects (Ginestet et al., 2019; Saghiran et al., 2020)), in an attempt117

to account for word recognition, orthographic learning and eye movement data in a single computational118

framework. Therefore, overall, our main objective was to explore to what extent a model that was not119

specifically designed to account for eye movement control while reading would generalize and predict the120

evolution of eye movement patterns during the orthographic learning of novel words.121

The rest of this paper is structured as follows. First, we propose a brief description of the BRAID word122

recognition model and describe the three mechanisms of orthographic learning that were implemented to123

develop the BRAID-Learn model. Second, we focus on an example to provide an in-depth illustration on124

how the learning mechanisms affect the processing of known words and novel words. Last, we confront125

the BRAID-Learn model to a set of known and novel words to evaluate its capacity to predict the eye126

movement patterns that characterize the orthographic acquisition of new words by humans while reading.127

2 The BRAID-Learn model128

In this section, we describe the BRAID-Learn model, as an extension of the BRAID word recognition129

model. Since both models are nested, we first provide a brief description of the BRAID model and, second,130

we present the mechanisms added to BRAID to model orthographic learning.131

2.1 The BRAID model132

A full description of the BRAID model is provided elsewhere (Phénix, 2018; Phénix et al., submitted),133

and beyond the scope of this paper. Instead, we briefly describe some salient features of the BRAID134

model that are relevant to understanding the proposed extension, BRAID-Learn.135

In a nutshell, BRAID is a probabilistic, hierarchical model of visual, attentional and lexical knowledge136

that allows simulating tasks such as letter recognition, word recognition and lexical decision. The BRAID137

model can be seen as building upon the three-layer architecture of previous models and extending them.138

In particular, the BRAID model features an original visual attention layer, that modulates letter and139

word perception.140

Mathematically, BRAID is defined by a joint probability distribution, linking sensory, perceptual141

and lexical probabilistic variables. This joint probability distribution is defined thanks to conditional142

independence hypotheses, which allow delineating five submodels and their connections; this forms the143

structure of the model (see Fig. 1). We now describe some features of each five submodels of the BRAID144

model, and how BRAID is then used, thanks to Bayesian inference, to simulate letter recognition, word145

recognition and lexical decision.146

2.1.1 The four submodels of the BRAID model147

The “Letter Sensory” submodel This submodel concerns low-level visual processing of letter stimuli, S1
1148

to ST
N , with subscripts 1 to N referring to spatial positions, and superscripts 1 to T referring to time149

instants (we will use S1:T
1:N as a shorthand for the whole set of these variables). From the stimulus, this150
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Fig. 1 Graphical representation of the structure of the BRAID model. Each of the four colored blocks represents a

submodel; each node of the graph represents a variable of the model; and each arrow represents a probability distribution of

the model. The graphical schema presented here corresponds to a time-slice, at time instant T (note the superscripts T − 1

and T in some nodes) of the BRAID model configured for a 5-letter stimulus (note the subscripts from 1 to 5, in variables

such as ST
1 to ST

5 ). See text for details.

submodel essentially infers “internal” representations of letter identity, in the form of discrete probability151

distributions, over variables I1:T1:N , with their domain the set of the 27 possible characters (26 letters plus152

a special character denoting an unknown or missing letter).153

The letter sensory submodel includes a confusion matrix, from stimuli to internal representations of154

letters, calibrated to match typical, expert reader performance in isolated letter recognition (Geyer, 1977).155

Several mechanisms modulate letter recognition at the sensory level. Gaze position within the input letter156

string is implemented (with variable G1:T ) together with an acuity gradient that increases uncertainty on157

letter identification as a function of eccentricity from gaze position. A mechanism of lateral interference158

from adjacent letters contributes to uncertainty on letter identity and letter position, yielding crowding159

effects.160

The “Visual Attentional” submodel Using intermediate variables and probability distributions – techni-161

cally, so called “coherence” (Bessière et al., 2008; Gilet et al., 2011) and “control” variables (Phénix,162

2018) –, the visual attentional submodel acts as a layer filtering the transfer of bottom-up information,163

i.e., from the “Letter Sensory” submodel to the “Letter Perceptual” submodel. This allows to modulate164
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Fig. 2 Illustration of the attention distribution over the letter string of the stimulus word IMAGE for a position of attention

µA = 3, and for different values of attention dispersion σA. The y-axis represents the attention quantity for each position,

and the x-axis represents letter positions. Left: σA = 0.5; Middle: σA = 1.75; Right: σA = 100.0.

letter information transfer differently for each position, depending on visuo-attentional distribution. To165

do so, the probability distribution P (At | µt
A σt

A) at time t characterizes the spatial distribution of visual166

attention by a discretized and truncated Gaussian probability distribution. Its mean µt
A represents the167

position of the attentional focus (which we assume, in all the simulations presented here, to coincide with168

gaze position Gt), and its standard deviation σt
A represents attentional dispersion.169

As Fig. 2 shows, the smaller the value of σA, the more attention is focused on a small number of letters.170

For instance, with σA = 0.5, attention is focused, enhancing the perceptual accumulation of information171

about the 3rd letter, mostly (in our example, µA = 3 and the stimulus is 5-letter long), to the detriment172

of external letters (e.g., the 1st and 5th are hardly processed). On the other hand, a large value of σA173

(for example, 100) simulates a uniform distribution of attention over the stimulus. In this case, the speed174

of perceptual information accumulation is equal for all letter positions. Finally, with σA = 1.75, the175

attention distribution allows to slightly modulate the information transfer speed over the five letters, in176

this example favoring the processing of central letters. The 1.75 value for attention dispersion σA is the177

default value, calibrated from independent data (Ginestet et al., 2019) from lexical decision mega-study178

(Ferrand et al., 2010).179

The “Letter Perceptual” submodel The third submodel we describe is the letter perceptual submodel, in180

which evidence about letter identity is accumulated, over time, into probabilistic variables P 1:T
1:N . It can181

be seen as a series of Markov chains, one for each position n. Each such Markov chain, in essence, is a182

temporally evolving probability distribution, here over the discrete space of all 27 possible characters.183

This probabilistic model both has intrinsic dynamics, according to which information gradually decays184

towards a resting state which is the uniform distribution, and input information from “neighboring”185

submodels (i.e., those linked to it by probabilistic dependencies, see Fig. 1). In the BRAID model, the186

letter perceptual submodel receives, on the one hand, perceptual information from the letter sensory187

submodel filtered by the visual attentional submodel, in a bottom-up manner, and on the second hand,188

lexically predicted information from the lexical knowledge submodel, in a top-down manner.189

The “Lexical Knowledge” submodel This submodel encodes, into the model, knowledge about a set of190

known words W , i.e., a lexicon. Over this space, a temporal model, again akin to a Markov chain, is191

defined. The initial state of this temporal model is the prior probability distribution P (W 0), that encodes192

the frequency of words of W , as in the Bayesian Reader model (Norris, 2006). The intrinsic dynamics of193

the distribution over W , as above for P , is also a gradual decay towards the initial state.194
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Words (w in W ) are associated with their corresponding letter sequence L1:T
1:N by a probabilistic model,195

such that, in each position, the correct letter at that position for this word has a high probability value196

(0.974), and all other alternatives have small probability values (0.001).197

Finally, a third and final Markov chain, over variable D, might be interpreted as a “lexical membership198

and word familiarity check”. Variable D is Boolean, with the “True” value representing that a word199

stimulus belongs to the known lexicon. The initial, prior distribution P (D0) is uniform, representing a200

50/50 chance that the input stimulus is a known word (a viable assumption to simulate many experimental201

setups, although surely not realistic in ecological situations). Variables D1:T are related to Boolean202

variables CD
1:T
1:N , in a probabilistic model that represents knowledge about whether a sequence of stimulus203

letters corresponds to a known word, or not: for a known word, all variables CD
1:T
1:N are assumed to be204

“True”; on the contrary, for a sequence of stimulus letters that is not a known word, at least one of the205

variables CD
1:T
1:N is assumed to be “False”. These patterns of values serve as templates, to be compared206

with values of the coherence variables between the perceptual evidence about letter identity P 1:T
1:N and207

letter sequence L1:T
1:N , so that “observing” the flow of information between these two variables allows to208

infer whether the input stimulus is a known word or not.209

2.1.2 Probabilistic questions to simulate cognitive tasks210

The BRAID model expresses, using probability distributions, knowledge related to letter identity, how211

known words are related to their corresponding letter sequences, and how to describe whether a sequence212

of stimulus letters corresponds to a word of the known lexicon. This knowledge is then used in several213

cognitive processes, which we simulate by computing probabilistic distributions of interest using Bayesian214

inference. We call this “asking a probabilistic question” to the model.215

For instance, the first cognitive task we consider is letter recognition. It is modeled by the following216

probabilistic question:217

QPT
n
= P (PT

n | [S1:T
1:N = s] [G1:T = g] µ1:T

A σ1:T
A [λP

1:T
1:N = 1] [λL

1:T
1:N = 1]) , (1)

which can be read as: What is the probability distribution over the perceived letter at position n, at218

time step T , given the stimulus letter sequence s, gaze position g, the current attentional distribution219

(µA, σA), and given that information is allowed to propagate from the stimulus to the lexical submodel220

([λP
1:T
1:N = 1], [λL

1:T
1:N = 1])?221

For lack of space, we do not provide here the mathematical expression that Bayesian inference yields222

as an answer to this question (Phénix, 2018). However, the resulting computation can be interpreted223

as in classical, three-layer models with lexical, top-down influence: the sensory letter submodel extracts224

information about letter identity from the sequence stimulus; part of this perceptual information, de-225

pending on the attentional distribution, is propagated and accumulated into the dynamic models of the226

perceptual layer submodel. These propagate to the lexical submodel, gradually changing the probability227

distribution over words which, in a feedback manner, informs the perceptual layer submodel.228

Fig. 3 (top) illustrates the temporal accumulation of perceptual information about letters composing229

the 8-letter long French word MENSONGE (LIE ), in a simulation where the eye position g and visual230
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Fig. 3 Evolution of inference for QPT
n

(top; Eq. (1)), QWT (middle; Eq. (2)) and QDT (bottom; Eq. (3)) as a function of

simulated time (x-axis) for the 8-letter stimulus MENSONGE (LIE), with g = µA = 4 (eye and attention are positioned over

letter “S”, indicated in red under each plot) and σA = 1.75 (default value for attentional dispersion). For letter recognition

(top plot), only the probability value of the correct letter at each position is shown. For word recognition (middle plot), only

the probability values of the three most probable words are shown (note that the third more probable competitor, word

PENSANTE (THINKING), is very close to 0, almost superposed with the x-axis). For lexical decision, for each time-step,

the whole probability distribution over the Boolean lexical membership variable DT is shown.

attention focus position µA are assumed to be on the fourth letter (“S”) for the whole simulation (and231

with attention dispersion at its default value, σA = 1.75). We see that perceptual information gradually232

accumulates towards the correct recognition of all letters, but that it does so slower as distance to the233

position of the eye and of the attentional focus increases (i.e., in this example, faster for central letters234

“N”, “S” and “O” under the attention focus than for external letters, that is, the initial “M” and the235

final “E”).236

The second task, word recognition, is modeled in a similar manner, by considering the probabilistic237

question:238

QWT = P (WT | [S1:T
1:N = s] [G1:T = g] µ1:T

A σ1:T
A [λP

1:T
1:N = 1] [λL

1:T
1:N = 1]) . (2)
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Contrary to letter recognition, in word recognition the “target space”, that is to say, the domain of the239

probability distribution of interest, is the word space W . The result of inference, in this case, is similar240

to the inference for letter perception, with the same flow of information, from the stimulus, up to the241

lexical submodel, with a feedback to the letter perception submodel.242

Coming back to the example of processing the stimulus MENSONGE, simulation of word recognition243

leads to the progressive activation of the corresponding word of the lexical space (W = MENSONGE) and244

its lexical competitors, such as W = PERSONNE (PERSON ) and W = PENSANTE (THINKING), as245

shown in Fig. 3 (middle). Comparing letter recognition and word recognition (respectively, top and middle246

plots of Fig. 3) shows that the probability converges in word space faster than in letter space; in other247

words, assuming identical decision thresholds for words and letters would yield faster word recognition248

than letter recognition: the word would be recognized faster than its letters. Such an observation is249

consistent with human observations (Phénix, 2018).250

The third and final cognitive task is lexical decision, that is to say, recognizing whether the input251

letter sequence matches that of a known word. The probabilistic question is:252

QDT = P (DT | [S1:T
1:N = s] [G1:T = g] µ1:T

A σ1:T
A [λD

1:T
1:N = 1] [λL

1:T
1:N = 1]) . (3)

As previously, a stimulus is given, gaze position and attention distributions are set, and information is253

allowed to propagate into the model. However, here, we do not assume that there is a match between254

the stimulus and a known word; instead, by involving the lexical membership variables (λD
1:T
1:N = 1), the255

probability distribution over variables λL
1:T
1:N is evaluated, in essence, performing error detection in the256

stimulus with respect to all possible known words. Here, information flows through the whole BRAID257

architecture: as previously, from the stimulus to the lexical submodel and back down to the perceptual258

letter submodel, with the added involvement of the lexical membership variable DT as an observer.259

We reprise once more our example where the stimulus MENSONGE is processed. Fig. 3 (bottom)260

illustrates the evolution of the probability distribution over variable DT as a function of time: we observe261

that the probability that DT is YES increases steadily, so that the model correctly identifies the input262

stimulus (W = MENSONGE) as a known word.263

2.2 The BRAID-Learn model264

The BRAID-Learn model is an extension of the BRAID model, that incorporates three new mechanisms265

allowing learning the orthographic representations of visually presented new words. Its main assumption266

is that the model’s aim is to accumulate efficient information about letters of the stimulus, so that,267

when faced with a novel word, this information can be learned as an orthographic trace paired with268

a newly allocated point of the lexicon W . Therefore, the three main mechanisms of the BRAID-Learn269

model concern how it accumulates information about letters, how novelty detection influences stimulus270

processing, and, finally, how the resulting perceived traces are used to learn a new orthographic trace or271

reinforce an already existing one. Fig. 4 shows a graphical representation of the BRAID-Learn model (to272

compare with the BRAID model, see Fig. 1).273
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Fig. 4 Graphical representation of the BRAID-Learn model. The four colored blocks are the same submodels as in the

BRAID model, with the same graphical convention (see Fig. 1). To this architecture, the BRAID-Learn model adds three

mechanisms, represented as colored ovals, that transfer and transform (colored and black arrows going through the ovals)

information contained in portions of the BRAID model.

2.2.1 Efficient accumulation of perceptual evidence about letters274

To model the accumulation of perceptual evidence about letters in a stimulus sequence, we consider the275

letter recognition task of Eq. (1). It is defined as a function of the current visual and visuo-attentional276

parameters, namely gaze position gT , the position of the attentional focus µT
A and the dispersion σ1:T

A277

of the visuo-attentional distribution. Of course, fixing a unique attentional distribution and gaze posi-278

tion throughout stimulus processing can yield inefficient processing. For long words (e.g., 8-letter long),279

concentrating attention leaves almost no perceptual processing available for some letters, and spread-280

ing attention maximally (i.e., distributing attention uniformly) yields massive, unrealistic length effects281

(Ginestet et al., 2019). Furthermore, and as described previously, it is well-known that eye-movements282

are observed in natural settings, for instance for long words and during new word processing (Lowell &283

Morris, 2014).284

Therefore, the first and main mechanism of BRAID-Learn is a visuo-attentional control mechanism,285

that is to say, the model controls and changes its attentional distribution and gaze position over time, so286

as to accumulate perceptual evidence efficiently. To describe the sequencing of several fixations, we refine287

our temporal notation. A simulation from time-steps 0 to T is broken down as a series of exposures to288

a stimulus letter sequence, e from 1 to E, each exposure consisting of a variable number of fixations f289

from 1 to F and each fixation being of variable length, from 1 to Tf time-steps (see Fig. 5).290

During one exposure, at the end of each fixation, the model selects the attentional distribution param-291

eters that would provide the most efficient accumulation of perceptual evidence to be yet gathered. The292



12

time1:Tf1 1:Tf2 1:Tf3 1:Tf4 1:Tf5 1:Tf1 1:Tf2 1:Tf3 1:Tf1 1:Tf2

f=1

Fixation Duration Tf

Fixation f

Exposure e

f=2 f=3 f=4 f=5

e=1

f=1 f=2 f=3 f=1 f=2

…

e=2 e=3

Fig. 5 Schematic representation of the time course of a sequence of several fixations and exposures. Each time a word is

encountered (each exposure e), it is fixated once or more times (fixations f), and each such fixation consists in a (variable)

duration Tf during which the eye position and the visuo-attentional distribution parameters are fixed. This results in a

varying total processing time for each exposure (sum of all Tf s).

classical mathematical measure of the information content of a discrete probability distribution P (X) is293

its entropy, noted H(P (X)) and defined by:294

H(P (X)) = −
∑
X

(P (X) logP (X)) . (4)

The lower the entropy of a probability distribution, the more it contains information: for a given variable295

X, entropy is maximal for the uniform distribution over X, which encodes maximal uncertainty, and 0 for296

Dirac distributions, which encode maximal certainty. Therefore, decreasing entropy amounts to gaining297

information.298

The BRAID-Learn model aims at optimizing information gain by maximizing entropy decrease. Math-299

ematically, before fixation f +1, we enumerate a range of possible values for upcoming attention position300

µT,f+1,e
A and dispersion σT,f+1,e

A ; for each such possible future attention distribution, and assuming that301

the input stimulus will not change during next fixation, we simulate letter recognition in each position n302

with303

Pnext(n, µ
f+1,e
A , σf+1,e

A )

= P (PT,f+1,e
n | [ST,f+1,e

n = s] [GT,f+1,e = gf+1,e] µT,f+1,e
A σT,f+1,e

A ) . (5)

Recall that we assume that gaze position and attention position coincide, so that gT,f+1,e = µT,f+1,e
A . We304

can then compute the entropy gain between the predicted and current distribution over letters, for all pos-305

sible attention distribution parameters and average it across positions; we note this∆H(µT,f+1,e
A , σT,f+1,e

A ).306

To model the physical “motor cost” of performing the visuo-attentional displacement to each enumer-307

ated future fixations, we use a straightforward measure, considering only the magnitude of the supposed308

displacements of gaze and attention: MC(µT,f+1,e
A ) = |µT,f+1,e

A −µT,f,e
A |. We use this measure to penalize309

large displacements of gaze and attentional positions, so that the overall gain measure TG that the model310

maximizes is a weighted combination of information gain penalized by motor cost:311

TG(µT,f+1,e
A , σT,f+1,e

A ) = (1− α)∆H(µT,f+1,e
A , σT,f+1,e

A )− αMC(µT,f+1,e
A ) . (6)

Finally, the model selects, for its next fixation, attentional parameters and gaze position that maximize312

measure TG.313

Having described how, at any point in time, the next fixation parameters are selected, we define the314

initial parameters and termination criterion. Whatever the stimulus, whether it is a word or not, and315
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since the model, at initialization, has no knowledge of the stimulus type, the parameters for the first316

fixation are identical.317

Therefore, in the context of current experiments, that only deal with 8-letter long stimuli, we assume318

that gaze and attention “land” at position µT,1,e
A = 3 whatever the exposure e. This initial position is the319

rounded value closest to the one from our previous experimental observations (3.01 across all item types,320

i.e., for words and pseudowords, and across all repetition exposures) in which expert readers had to read321

8-letter words and pseudowords (Ginestet et al., 2020). For the initial dispersion of visual attention, we322

apply the usual default value in the BRAID model: σT,1,e
A = 1.75.323

We define two termination criteria: the first defines how long each fixation is going to last, and the324

second is used to decide that no further fixations are going to be performed. Concerning fixation duration,325

we assume that the model aims at having as short fixations as possible (later on, during data analyses,326

back-to-back fixations on the same spatial position are aggregated and counted as a single fixation on this327

position; aiming for short fixations is not a theoretical claim, instead it just yields temporal granularity in328

our simulations). Initial simulations have shown that, in the first few iterations of the predictive evaluation329

of entropy gain, the “winning parameters” were numerically close, until a clear set of value emerged and,330

most of the time, stayed ahead until the maximal window of predictive computation. This maximal time331

is set, for current experiments, at T = 290 iterations, well above the average fixation duration reported for332

novel words in behavioral experiments (Ginestet et al., 2020; Joseph et al., 2014; Pellicer-Sanchez, 2016).333

We thus detect the time-step Tf for which the predicted winning parameter values have been stable for334

20 previous time-steps. Finally, we set the minimal duration Tf to be at 50 iterations. The upcoming335

fixation is then performed with these winning parameters for that duration.336

The second termination criterion prevents a further fixation when its expected information gain is337

below a threshold. Since fixations are of varying duration Tf , this is scaled as a function of Tf . We have338

empirically calibrated our stop criterion to correspond to 1 nat of information gain for the whole word,339

that is, 1/N nats for ∆H (recall that N is the length of the input word), for a fixation of 250 iterations340

(our simulations use natural base e for entropy calculation, which is therefore measured in nats instead of341

bits). Therefore, our termination threshold is Tf/(N×250); whenever a fixation is selected and associated342

to an information gain below this threshold, it is not performed by the model, and the current exposure343

e is considered terminated.344

2.2.2 Modulation of lexical influence during word learning345

The second main ingredient of the BRAID-Learn model is a mechanism to modulate the amount of346

top-down lexical information during word processing, as a function of word familiarity. An algorithmic347

description of the desired mechanism is as follows: if the input letter sequence is a known word, then348

strong top-down lexical information can be fed back to the letter perceptual sub-model, to speed up letter349

identification, in turn speeding up word recognition. On the other hand, if the input letter sequence is350

not a known word, then top-down lexical information should be diminished to try to avoid generalization351

toward the closest word in the lexicon, as it would yield illusory letter percepts, resulting in failure to352

veridically process the letters of the input novel word.353
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Fig. 6 Graph of the function of parameter γ (y-axis), that pilots the amount of top-down transfer of lexical information,

as a function of QDT , the probability that DT = true (x-axis), computed by Eq. (3), that represents probability of lexical

membership and word familiarity.

For the sake of brevity, we do not describe here the probabilistic model that allows modulating the354

top-down influence from the lexical knowledge sub-model to the letter perceptual model in BRAID-Learn.355

It involves building an asymmetric layer of coherence variables between these sub-models, and piloting,356

via control variables, the amount of information propagating top-down; this mechanism is mathematically357

similar to how we control, in the visual attentional sub-model, the amount of information propagating358

bottom-up from the letter sensory submodel to the letter perceptual sub-model. We note γ the parameter359

introduced by this mechanism; the higher γ, the more there is top-down lexical information transfer.360

Finally, we modulate γ as a function of how likely it is that the input letter sequence corresponds361

to a known word. In the model, this information is already represented, by the probability distribution362

over the lexical membership variable DT . Piloting γ as a function of DT can be interpreted as using the363

“lexical decision” variable space to modulate lexical influences over letter perception. Note that this does364

not mean that lexical decision is performed per se, as no decision threshold is involved, and the task does365

not consist in deciding whether the input is a word or not; instead, we assume that lexical membership is366

assessed in an on-going manner, even during letter and word recognition, and modulates the information367

flow of these tasks, at each instant. Here, the probability distribution over DT can be interpreted as an368

online evaluation of lexical membership and of word familiarity.369

To define the mathematical relationship between DT and γ, our main theoretical assumption is that370

top-down lexical influence increases for familiar words. In mathematical terms, this results in γ being a371

monotonously increasing function of the probability that DT = true. Furthermore, empirical exploration372

shows that γ needs to have small values; the lexical knowledge model contains a lot of information (it373

is of low entropy, as it consists of almost-Dirac distributions) and injecting it too fast into the letter374

perceptual letters results in trumping sensory evidence by lexical feedback. For instance, when γ = 1,375

and whatever the input letter sequence, the probability distributions over letters at the perceptual layer376

converge towards the letters of the most frequent word of the lexicon in a few iterations. We chose to377

implement the relation giving γ as a function of the probability that DT = true (as evaluated by Eq. (3))378

by a piece-wise, monotonously increasing constant function, shown Fig. 6.379
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We note that the chosen function includes a sudden increase for γ when the probability thatDT = true380

passes .95. When γ increases in such a manner, this increases the top-down lexical influence, so that the381

probability distribution over letters P t
n suddenly receives more lexical evidence. In our simulations, this382

results in noticeable increases in the slopes of curves representing the evolution of probabilities for letters,383

words and lexical membership (e.g., see Fig. 3 at iteration t = 291).384

2.2.3 Memorization and update of orthographic traces385

Finally, a third mechanism allows updating lexical knowledge; this is the last step in the learning process386

of BRAID-Learn. It takes effect once an exposure is considered terminated, that is, once one of the termi-387

nation criteria of visuo-attentional exploration is satisfied. The lexical knowledge sub-model is updated388

to learn the perceived letters, either integrating them into the already available probabilistic model for389

that word, if it was already known, or using them to create a new lexical trace, if the input sequence was390

detected as a new word by the lexical decision process (Eq. (3)).391

In the first case, that is, for updating a lexical distribution, at the end of exposure e, and for each posi-392

tion n, the complete probability distribution about the perceived letter, P (PT,f,e
n | [ST,f,e

n = s] [GT,f,e =393

g] µA σA), is combined with the previous probability distribution about the letter at that position,394

P (Le
n | [W e = w]), in the lexical sub-model, for the recognized word w:395

P (Le+1
n | [W e+1 = w]) = (7)[

P (Le
n | [W e = w]).(e− 1) + P (PT,f,e

n | [ST,f,e
n = s] [GT,f,e = g] µA σA)

]
/e

The model also increments by 1 (arbitrarily) the estimated frequency count of word w, in the prior396

probability distribution of the lexical sub-model.397

In the second case, that is, for creating a new lexical distribution when the input letter sequence was398

recognized as a new word by lexical decision, a new entry wnew is allocated in word space W , and the399

initial letter trace for that word is simply the probability distributions over its perceived letters after this400

first exposure.401

2.3 Summary402

The BRAID-Learn model includes three mechanisms that affect letter identification within strings during403

word recognition, namely an acuity gradient, a mechanism of lateral interference between adjacent letters404

and a visual attention filter. The model assumes that a novel word trace is created each time the input405

letter-string is detected as not belonging to the model lexical knowledge. Furthermore, detecting that the406

input is novel entails decreasing the top-down feedback from word knowledge to letter perception; this407

yields a relative increase in the effect of perceptual evidence about letters from bottom-up processing. In408

other words, bottom-up information is privileged as the principal source of information on letter identity.409

Visuo-attentional exploration during processing is defined by a mathematical principle of entropy gain410

maximisation. The entropy gain maximisation principle allows selecting the visuo-attentional distribution411
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parameters – attentional focus and dispersion – more likely to speed-up accumulation of perceptual infor-412

mation about letters. This mechanism leads the model to realize as many visuo-attentional displacements413

as necessary as long as perceptual information is not precise enough. Visuo-attentional exploration is414

further constrained by a motor-cost parameter that penalizes large displacements over the letter-string.415

When visuo-attentional exploration is terminated, lexical knowledge is updated. This final mechanism416

simulates either the reinforcement of the orthographic representation of a known word or the creation of417

a new lexical trace, both reflecting orthographic learning.418

Therefore, overall, we have devised a model that visually explores a string stimulus, judging whether419

it is novel or not, with a unique exploration criterion based on the goal to obtain good perceptual repre-420

sentations of letters. At this point, our aim is thus to first characterize the visuo-attentional trajectories421

predicted by the model, and second, to assess whether these predictions match with eye movement pat-422

terns behaviorally observed during novel word orthographic learning.423

3 Simulation of orthographic learning: the effect of repeated reading of novel words on eye424

movements425

We now present simulation results from the BRAID-Learn model. We first illustrate the model’s behavior426

on an example to detail how visuo-attentional exploration is performed and its consequences on letter427

identification and word processing. Then, we explore the model’s behavior over successive exposures to a428

set of known and novel words. A new word representation was expected to be created for each novel word429

that was recognized as such. We were specially interested in how the strengthening across exposures of the430

newly created word representations would affect the number and duration of visuo-attentional captures.431

As gaze position and the focus of visual attention were aligned in the model, the measure of the number432

of visuo-attentional captures can be compared with the number of fixations in behavioral experiments,433

and the duration of visuo-attentional captures to fixation duration. As known words had a fully specified434

lexical representation prior to the first exposure, a greater effect of the number of exposure on the two435

measures was expected for novel words than for known words. Last, to assess the model’s plausibility,436

we checked whether its output behavior mimicked the pattern of eye movements reported for humans in437

similar conditions of orthographic learning.438

3.1 Simulating orthographic learning: an illustrative example439

First, we applied the BRAID-Learn model on a word already part of the known lexicon, the word440

MENSONGE (LIE ), and second on a novel word to learn, SCRODAIN (pronounced / skrodẼ /). In441

both cases, we analyzed simulation results both in terms of the output behavior, that is to say, the visuo-442

attentional displacements generated during exploration of the letter-string, and further, by showing how443

internal probability distributions evolved dynamically during the course of the simulation.444
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3.1.1 Applying BRAID-Learn to a known word445

To illustrate orthographic learning on a known word, we re-used the same stimulus as when we illustrated446

the tasks of letter recognition, word recognition and lexical decision (see Fig. 3). However, here, instead447

of processing the stimulus with fixed central gaze and attention positions, we let the BRAID-Learn model448

select visuo-attentional parameters to optimize the accumulation of perceptual evidence over letters.449

The simulation yielded two fixations for processing the word MENSONGE. The first one was dictated450

by default parameters of the BRAID-Learn model: whatever the word type, the first fixation for an 8-451

letter long stimulus is at position g = µA = 3 (over the “N” of MENSONGE ), with attentional dispersion452

σA = 1.75, and lasts 290 iterations. The second fixation, selected by optimizing the predicted perceptual453

information gain, was at position 7 (over the “G” of MENSONGE ), with attentional dispersion σA = 2.0,454

and lasts 250 iterations.455

At the end of the second fixation, the termination criterion was met and the model proceeded to456

orthographic learning. In the present case, the stimulus was a word, and correctly corresponded to the457

one recognized by the model, so that the lexical representation for word W = MENSONGE was updated458

from the acquired perceptual representation over letters (note that the BRAID-Learn model performs459

this update irrespective of item type).460

The time-course evolution of probability distributions over letters, over words, and over lexical mem-461

bership during the simulation are shown in Fig. 7. We observe that the BRAID-Learn model had almost462

no effect on the dynamical evolution of word recognition (compare middle plots of Fig. 3 and Fig. 7)463

and lexical membership (compare bottom plots of Fig. 3 and Fig. 7), except for a slight increase in slope464

of probability curves at the beginning of the second fixation (iterations 290 to 310). This indicates that465

the selected fixation was slightly advantageous for word identification and lexical decision, as it slightly466

speeded up convergence toward high probability values.467

For letter recognition, in contrast, the effect of the BRAID-Learn model was more drastic (compare468

top plots of Fig. 3 and Fig. 7). The first fixation mostly allowed identification of the letter directly under469

the fixation position (the “N” at position 3). In contrast, the second fixation, at position 7, almost boosted470

all remaining letters. Indeed, letters “N” and “G” at positions 6 and 7 were rapidly identified. Finally,471

the remaining letters, even far from fixation, also saw their probabilities ramp up and converge to high472

values, thanks to lexical influence, at this stage in full effect, and to the very high probability value for473

the word MENSONGE in lexical space.474

3.1.2 Applying BRAID-Learn to a novel word475

We then applied the BRAID-Learn model to an 8-letter non-word stimulus, the letter sequence SCRO-476

DAIN. For the first exposure, the simulation yielded 5 different fixations before the termination criterion477

was met; for the second exposure, 3 fixations were needed; for the third and subsequent exposures, 2 fix-478

ations were needed, in positions 3 then 7, exactly as in the previous example MENSONGE, in which the479

stimulus was a known word. Details about fixations for the first three exposures to stimulus SCRODAIN480

are shown in Fig. 8.481
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Fig. 7 Evolution of inference for QPT
n

(top; Eq. (1)), QWT (middle; Eq. (2)) and QDT (bottom; Eq. (3)) as a function

of simulated time (x-axis) for the 8-letter stimulus MENSONGE, with fixations computed by the BRAID-Learn model.

Graphical representation is identical to the one of Fig. 3, with an added vertical, dashed line for delimiting different fixations.

Fig. 9 shows how Total Gain evolved as a function of exposures and fixations. We observe a stabilization482

of expected Total Gain after the third exposure, as the system converged towards a regime where stimulus483

SCRODAIN, having been already encountered three times, was associated with a lexical representation484

precise enough so that the stimulus was treated as a known word.485

However, the first exposure appears to be different, with a Total Gain inferior to that of subsequent486

exposures. Recall that the Total Gain measure mostly captures the expected information gain during487

stimulus processing. During the first exposure, SCRODAIN was correctly identified as being a non-word,488

which, via the modulation of γ, drastically reduced the top-down transfer of information from the lexical489

submodel to the perceptual letter submodel. Consequently, during the first exposure, the only source of490

information about letter originated from sensory processing, contrary to subsequent exposures, where491

it originated both from sensory processing and lexical feedback. Information gain during first exposure492

was therefore smaller, overall, than for further exposures; the termination criterion based on information493
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Fig. 8 Evolution of visuo-attentional parameters selected by the BRAID-Learn model during the first three exposures to

the 8-letter stimulus non-word SCRODAIN. Each plot represents the probability value QA attributed to each position by

the attentional model, following a Gaussian probability distribution. The mean value of each Gaussian distribution provides

the selected position for attention focus µT,f+1,e
A and gaze position gT,f+1,e: the first exposure (top left) yields 5 fixations

(positions 3, 4, 7, 6 then 1); the second exposure (top right) yields 3 fixations (position 3 then position 7 then back to

position 3); the third exposure yields 3 fixations (position 3 then 7 and 7 again), with the last two aggregated in our

analyses, as they coincide in position. The standard-deviation of each Gaussian distribution provides the selected value for

the dispersion of the visual attention distribution, σT,f+1,e
A .
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Fig. 9 Total Gain as a function of exposure number (noted E1 to E5) and fixation number (noted Fix 1 to Fix 5), during

the processing of the 8-letter stimulus non-word SCRODAIN. The dashed horizontal line represents subsequent fixations

that occur on the same spatial position, and are thus aggregated in following analyses.

accumulation speed was thus attained for higher values of remaining information. This explains how the494

first exposure had a smaller Total Gain value to reach before termination, compared to further exposures.495

Fig. 10 shows the time-course evolution of probability distributions over letters, over words and over496

lexical membership during the first exposure to stimulus SCRODAIN. We observe that, when processing497

terminated, the stimulus was correctly recognized as a new word (the probability that DT is false is high),498
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Fig. 10 Evolution of inference for QPT
n

(top; Eq. (1)), QWT (middle; Eq. (2)) and QDT (bottom; Eq. (3)) as a function

of simulated time (x-axis) for the first exposure to the 8-letter stimulus non-word SCRODAIN, with fixations computed by

the BRAID-Learn model. Graphical representation is identical to the one of Fig. 7.

and all its letters were correctly identified (each probability distribution over letters, at each position,499

had a high value on the correct letter identity).500

Since the stimulus was recognized as a new word, the probability distribution over words was switching501

between hypotheses, with no clear convergence to a single, winning hypothesis. This is the expected502

behavior, since, during first exposure to a novel word, the word space W does not contain a point503

corresponding to the stimulus. Instead, the most likely hypotheses in word space were close competitors504

to the stimulus, with the best one depending on processing stage, and more specifically, depending on505

current letter perception and fixation position. For example, consider iteration 401: few letters were well506

identified and gaze and attention were centered on the 4th position (the “O” of SCRODAIN ). At this507

point, the most probable word was PARODIAI (PARODIED), which shares with SCRODAIN the “R”,508

“O” and “D”, which were the best perceived letters.509
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3.2 Simulation of visual processing during orthographic learning510

Simulations were performed to, first, characterize the visuo-attentional trajectories predicted by the511

BRAID-Learn model, and, second, to assess how well predicted trajectories fit with the observed evo-512

lution of eye movement patterns during the orthographic learning of novel words. Only a few studies513

have reported the exposure-by-exposure evolution of eye movement patterns in conditions of incidental514

orthographic learning of novel words while reading (Ginestet et al., 2020; Joseph & Nation, 2018; Joseph515

et al., 2014; Pellicer-Sanchez, 2016). These studies consistently showed a decrease in reading times over516

exposures. The two studies that evaluated the effect of repeated exposures on both known words and novel517

words reported a decrease in reading times and number of fixations over exposures that was higher for518

novel words than for known words (Ginestet et al., 2020; Pellicer-Sanchez, 2016). The study of Ginestet519

et al. (2020) is singular in that it reported evidence on the evolution of eye movement patterns across520

exposures for items that were presented out of context. As the BRAID-Learn model only deals with521

isolated word processing, we assessed whether the model was able to simulate the effects reported for522

humans in the experimental study of Ginestet et al. (2020).523

3.2.1 Material and method524

Stimuli The set of items was the same as in Ginestet et al. (2020)’s study. It comprised 30 bisyllabic525

8-letter novel words (among which was our previous example pseudoword, SCRODAIN ) and 30 8-letter526

words (among which was our previous example word MENSONGE ). Novel words were constructed from527

existing trigrams in French; they were graphotactically legal, none was homophone to a real word and528

none had any orthographic neighbor (i.e., words that differ from them by a single letter). The thirty529

words had no orthographic neighbors and were of medium frequency (per million, mean fW = 35.57; SD530

fW = 18.86). The list of items (novel and known words) is provided in Appendix A.531

Method As participants of the behavioral experiment were adult French-speakers, the model was con-532

figured with lexical knowledge from the French lexicon Project (Ferrand et al., 2010), that is to say, its533

known words and frequency distribution were identified from that database of 38,840 French words. We534

first checked that all real words used in the experiment had a lexical entry in the model (and, of course,535

that the novel words did not). Then, the known words and novel words were presented five times to the536

BRAID-Learn model.537

We first checked the model’s capacity to recognize the input as either a known word or a novel word.538

Then, we assessed whether the model behavior across successive exposures exhibited the same main539

effects of item type and number of exposures, and the same item-type-by-exposure interaction as in the540

behavioral study. More specifically, novel word processing was expected to generate a higher number541

of fixations and longer fixation duration than the processing of known words. The two eye movement542

measures were expected to decrease as the number of exposures increased. Furthermore, the decrease of543

fixation number and fixation duration over exposures would be higher for the novel words. Last, as in544

Ginestet et al. (2020)’s and Pellicer-Sanchez (2016)’s study, the decrease of these two measures would be545

larger during the first exposures.546
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3.2.2 Simulated results547

Overall, the model correctly processed 91.7% (55/60) of the items. All of the 30 control words were548

accurately recognized as known words and most novel words (25 out of 30) were accurately recognized549

as unknown during the first exposure, so that a new trace corresponding to each of the novel words550

was created; during subsequent encounters, each novel word was recognized as a known word and the551

recently created trace was strengthened in the word space W . For the remaining 5 novel words, the model552

incorrectly identified the stimulus as being a previously known word (final probability of lexical familiarity553

above .90), so that no new trace was created for this novel word. Instead, the most probable word, in all554

cases a close competitor of the stimulus in W (e.g., CHANTANT (SINGING) for CHANQUET ), was555

chosen as the most likely hypothesis, yielding incorrect merging of the current perceptual trace with the556

lexical representation of the recognized word.557

For the correctly processed items, we empirically observed that the simulated behavior differed between558

known and novel words. Processing was highly systematic for the known words, which were always559

processed in two fixations, located at Position 3 (set by calibration), then Position 7 (chosen by the560

entropy gain maximization mechanism). This highly systematic behavior did not follow from a predefined561

property of the BRAID-Learn model, but resulted from the entropy gain maximization principle.562

In contrast, processing was far more variable for the novel words. Some novel words required five563

fixations at the first exposure, as in the above example for SCRODAIN, see Section 3.1.2). However, the564

number of fixations varied from three (e.g., for the novel word PHACRAIT ), to six (e.g., for PRIQUOIN )565

at the first encounter. More importantly however, the number of required fixations systematically de-566

creased for the novel words across exposures. In most cases, only two attentional fixations were predicted567

for the fifth exposure, which were located at position 3 then position 7, exactly as previously reported for568

words. Processing time (i.e., computed as the sum of all gaze durations on the input letter string) was569

shorter for known words than for novel words.570

The statistical analyses were limited to the correctly processed items (i.e., 25 novel words and 30571

words). We focused on the two measures of number of fixations and processing time, and on the item-572

type by exposure interaction, as in the experimental data. Results are presented in Fig. 11. An item-level573

analysis is presented in Fig. A.1 in Appendix B.574

The simulated Number of Fixation and Processing Time measures were both analyzed by means of575

generalized linear mixed effects models (glmer function; R Core Team, 2018; RStudio version 1.3.1073).576

We used the Poisson family and the identity link for the analysis of number of fixations and the Gamma577

family and the identity link for processing times. Initially, a maximal random effects structure was speci-578

fied including item random slope and intercept (Barr et al., 2013). While this full model converged for the579

analysis of processing times, it did not for the analysis of the number of fixations. Therefore, we followed580

the guidelines of Barr et al. (2013) and first removed correlations between random factors then random581

slopes, then random intercepts, to recover model convergence. Therefore, our analysis of the number of582

fixations ultimately amounts to using generalized linear model (glm function) instead.583
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Fig. 11 Number of fixations (top plots) and processing time (bottom plots), as a function of exposures, from the reading

aloud task in the experiment of Ginestet et al. (2020) (right plots) and simulated by the BRAID-Learn model (left plots),

for known word stimuli (dashed lines) and novel word stimuli (solid lines).

In all models, contrasts were specified as 0.5/-0.5 or 2/1/0/-1/-2 when independent variables have,584

respectively, 2 or 5 modalities. All statistical models and simulated results are provided in Supplementary585

Material1 (for a quick access, see the .html file from “Statistical files” folder).586

All statistical models included the number of exposures (from 1 to 5), item type (novel vs known587

words) and their interactions as fixed factors. Two post-hoc analyses were further conducted, first for588

local comparisons between the first and second exposures, and between the second and third exposures589

using similar models as previously described and, second, for comparisons of the two item type on the590

different measures (with the number of exposures as a fixed factor).591

We first report statistical analyses concerning the number of fixations. Results showed main effects592

of item type (β = −0.66, z = −3.57, p < .001) and number of exposures (β = 0.22, z = 3.37, p <593

.001) on the number of fixations. As in the experimental data, the number of fixations across exposures594

decreased faster for novel words than for known words (β = −0.44, z = −3.37, p < .001). Post-595

hoc comparisons showed that this decrease mainly occurred between the first and the second exposure596

(β = 2.12, z = 3.31, p < .001; non significant interaction between the second and third exposure:597

β = 0.24, z = 0.43, p = .669).598

We now turn to analyses of processing times. Results showed main effects of item type (β = −265.98, t =599

−17.56, p < .001) and number of exposures (β = 40.87, t = 9.40, p < .001). Processing time de-600

1 Open access availability for Supplementary Material files: https://osf.io/se645/?view only=

5d402ed3471f4492a4b12231f7ee7c09

https://osf.io/se645/?view_only=5d402ed3471f4492a4b12231f7ee7c09
https://osf.io/se645/?view_only=5d402ed3471f4492a4b12231f7ee7c09
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creased more rapidly for novel words than for words (β = −92.06, t = −10.72, p < .001). Post-hoc601

comparisons showed that this interaction mainly occurred between the first and the second exposure602

(β = 493.40, t = 14.85, p < .001), with no statistically significant interaction between the second and603

third exposures (β = 8.42, t = 0.33, p = .743).604

To summarize, as observed in human participants, the BRAID-Learn model successfully predicts605

different visuo-attentional trajectory characteristics for known words and novel words. The two main606

features of orthographic learning are reproduced in the simulations: a larger reduction in both processing607

time and number of fixations for novel words than for known words across the five exposures and a large608

decline between the first and the second exposure. Nevertheless, as shown in Fig. 11, there are some609

differences in magnitude between simulations and observations; in particular, for the first exposure, the610

number of fixations and processing time were far larger in the model than in experimental observations.611

4 Discussion612

The main contribution of the present study is the development and description of the BRAID-Learn613

model. The model makes original assumptions about the mechanisms allowing gradual extraction of614

visual information about letter identity during reading, how this information contributes to creating615

lexical orthographic knowledge and how each new exposition to the same word allows updating its lexical616

representation.617

A strong postulate of BRAID-Learn is that visual attention is a core mechanism of orthographic618

learning. Visual attention was here implemented as a dynamic perceptual filter that allows selecting619

where information on letter identity should be extracted from the input word to optimize the speed of620

perceptual evidence accumulation. This makes orthographic learning possible and efficient.621

Last, we have demonstrated through simulations that the model could successfully account for the622

overall shape of the evolution of eye movement patterns during orthographic learning. This is strong623

evidence in support of the model’s assumptions, all the more that BRAID-Learn was neither specifically624

designed nor precisely configured or calibrated to account for eye movements while reading.625

4.1 Theoretical contribution of the BRAID-Learn model626

Our main contribution in the present paper is to make new assumptions about the mechanisms involved627

in the acquisition of orthographic knowledge and describe BRAID-Learn, the first computational model628

where the central focus is orthographic learning. Although the models of reading acquisition developed629

within the self-teaching framework (Pritchard et al., 2018; Ziegler et al., 2014) were designed to be able630

to enrich their orthographic knowledge through the acquisition of new orthographic representations, they631

did not implement the visuo-orthographic mechanisms involved in novel word orthographic learning.632

These models were derived from models of reading aloud, thus placing emphasis on phonological skills. In633

contrast, BRAID-Learn is the extension of a word recognition model. As a result, BRAID-Learn is explicit634

on the mechanisms of visual and visual attentional processing that are involved in the identification of635

the input word letter-string. However, the model does not include any of the phonological components636
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usually postulated to account for reading aloud and reading acquisition. Thus, according to BRAID-Learn,637

orthographic learning is mainly conditional on the efficiency with which letters are identified within the638

novel word input string, while it is mainly conditional on successful phonological decoding according to639

self-teaching models.640

These two views of orthographic learning are in no way contradictory. Quite the opposite: it is likely641

that both approaches shed light on two complementary facets of a complex process. There is strong642

evidence that successful phonological decoding contributes to orthographic learning, but the additional643

involvement of mechanisms of orthographic processing is largely acknowledged, even by the proponents of644

the self-teaching hypothesis (Castles & Nation, 2006; Castles et al., 2018; Pritchard et al., 2018). In the645

same way, BRAID-Learn describes the mechanisms of visuo-orthographic processing that are involved in646

orthographic learning, without precluding that additional factors, like phonological decoding or semantic647

knowledge, further contribute to the acquisition of new orthographic knowledge. Overall, BRAID-Learn648

sheds light on a facet of orthographic learning that was largely ignored by previous computational models.649

In this respect, BRAID-Learn paves the way for the development of a new generation of reading acquisition650

models that would combine both the visual and attentional mechanisms of orthographic processing and651

the mechanisms of phonological processing in a single framework.652

It is further noteworthy that some of the assumptions of the BRAID-Learn model might be relevant653

to our conception of the reading system, in general. For example, the model postulates that familiarity654

judgment is assessed in an ongoing manner on input strings, and that the impact of top-down lexical655

knowledge on letter perception is modulated as a function of this lexical familiarity. This has a number656

of theoretical implications. First, if the pivotal role of the familiarity detector in orthographic learning657

is attested in future research, then this process should be considered as an integral part of the reading658

system, rather than being specific to the non-ecological experimental set-up of lexical decision tasks659

(Coltheart et al., 2001; Ginestet et al., 2019; McClelland & Rumelhart, 1981; Saghiran et al., 2020).660

Second, the hypothesis that top-down lexical knowledge influences letter processing is not new. This661

feedback loop was mainly introduced to account for the word superiority effect, namely the fact that662

letters are more accurately recognized within words than when presented in isolation or within an un-663

known letter-string (Coltheart et al., 2001; McClelland & Rumelhart, 1981; Perry et al., 2007). However,664

alternatives to the interactive explanation of the word superiority effect have been proposed (Grainger &665

Jacobs, 1994; Paap et al., 1982) and a debate persists, to this day, about the relevance of such feedback666

loops during sensory processing (see, e.g., Magnuson et al. (2018) contra Norris et al. (2018)). Beyond the667

word superiority effect, the current findings suggest that top-down lexical influence is critical to account668

for the effects of orthographic learning on processing time and eye movements while reading. Indepen-669

dent evidence that lexical knowledge contributes to letter perception provides support to the interactive670

account of the word superiority effect.671

Last, the online modulation of top-down lexical influence allowed configuring the model so that,672

from the same mathematical principle of perceptual evidence gain maximization, it would yield different673

oculomotor behaviors for known words and novel (or pseudo-) words. Evidence that different reading674

patterns can be generated for words and pseudo-words without any processing mechanism specific to the675
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input item type is new evidence that should contribute to the debate between the dual route versus single676

route account of the reading system (Ans et al., 1998; Seidenberg, 2012; Seidenberg & McClelland, 1989).677

A second postulate of the model of potential theoretical relevance is that visual attention appears678

as a core process of orthographic learning and word recognition. An overview of reading models shows679

that this is not consensual. In fact, many models of word recognition and reading aloud did not consider680

visual attention as part of the reading system (Coltheart et al., 2001; Davis, 2010; Gomez et al., 2008;681

McClelland & Rumelhart, 1981; Perry et al., 2007, 2010; Seidenberg & MacDonald, 1999; Whitney, 2001)682

and those that did were the exception (Ans et al., 1998; Ginestet et al., 2019; Mozer & Behrmann,683

1990). This is all the more confusing that visual attention is described as an integral part of models of684

eye movement control (Engbert et al., 2002; Engbert et al., 2005; Reichle et al., 1999, 2003; Snell et al.,685

2018). Although the debate, there, focuses on whether attention is allocated to only one word at a time or686

to multiple words in parallel, eye movement control models do agree that word recognition is performed687

under the focus of attention. Evidence for an involvement of visual attention in orthographic learning688

might be additional evidence for reconsidering the role of visual attention in word recognition models.689

4.2 The mechanisms of orthographic learning690

In BRAID-Learn, orthographic learning is described as involving two mechanisms that affect letter iden-691

tity processing, visual attention and lexical membership evaluation, along with a mechanism for ortho-692

graphic memorization. As in Pritchard et al. (2018)’s self-teaching based model, the memorization process693

in BRAID-Learn varies depending on the familiarity of the input letter-string. Perceptual information on694

letter identity is either used to create a new orthographic representation if the input string has never been695

seen before or it is integrated with previous lexical knowledge if the input corresponds to an already seen696

word. A particular feature of the BRAID-Learn memorization process is that orthographic learning is697

not triggered by spoken-word recognition, so that new orthographic information can be learned without698

previous knowledge of corresponding phonological features.699

In the model, we also assume that the top-down influence of word knowledge on letter perception is700

stronger when the stimulus appears to be a known word, than when it appears to be a novel word. At the701

first exposure with the novel word, lexical influence is decreased, so that most evidence that accumulates702

on letter identity at the perceptual level comes from bottom-up information. During orthographic learning,703

with successive exposures, the lexical representation of the novel word gets internalized, with probability704

distributions becoming less uncertain (i.e., their entropy decreases). The more the entropy of the newly705

created lexical representation decreases, the more it boosts letter identity information accumulation706

through top-down influence. Thus, modulation of lexical feedback depending on lexical familiarity is707

critical to avoid lexicalisation errors at the first exposure with a novel word and to successfully simulate708

the evolution of performance during orthographic learning. Although BRAID-Learn proposes a novel709

implementation of the familiarity detection mechanism and how it affects orthographic learning, Pritchard710

et al. (2018) also assumed that orthographic learning should be modulated depending on the visual711

familiarity of the input letter string.712
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The main originality of the BRAID-Learn model is to postulate that visual attention is at the core of713

orthographic learning. In BRAID-Learn, visual attention is conceived as a dynamic process that shifts over714

the input letter-string to try and allocate more attention to those letters that are more difficult to identify.715

In the original BRAID model (Phénix, 2018; Phénix et al., submitted), the parameters of the visuo-716

attentional distribution were fixed and their default values used in all simulations, independently of the717

input word characteristics (except for long words, see Ginestet et al. (2019)). In contrast, BRAID-Learn718

uses dynamic visuo-attentional parameters, and their values are computed online during processing with719

the purpose to optimize the gain of information on letter identity at each fixation. Although rarely applied720

to the modeling of reading (Bernard et al., 2008; Legge et al., 2002; Legge et al., 1997; Salvucci, 2001), the721

assumption that visual processing aims at optimizing the speed of perceptual evidence accumulation is722

common in a wide variety of domains, including computational modeling of oculomotor behavior during723

natural scene visual perception (Lee & Stella, 2000; Raj et al., 2005), visual search modeling (Colas724

et al., 2009; Friston et al., 2012; Najemnik & Geisler, 2005; Navalpakkam et al., 2010) and the modeling725

of visual exploration of objects (shape-matching, Renninger et al., 2007). In the Mr. Chips model of text726

reading (Legge et al., 2002; Legge et al., 1997), it is assumed that saccade length is selected to minimize727

uncertainty about the fixated word and that refixations occur until the fixated word is perfectly identified.728

Similarly, in their simulation of differences in reading strategies in normal readers and central scotoma729

patients during word recognition, Bernard et al. (2008) assumed that word recognition occurs through an730

optimal reading strategy, in which gaze fixation locations are selected in order to maximize information731

gain about letters. However, contrary to the BRAID-Learn model, these models did not represent visual732

attention.733

BRAID-Learn, for the first time, provides a description of the dynamics of visual attention for effi-734

cient letter perception and shows that flexibility in the visuo-attentional distribution over time makes735

orthographic learning possible and efficient. The key role of visual attention in orthographic learning that736

is predicted by BRAID-Learn contrasts with previous accounts by self-teaching based models. However,737

as noted in previous sections, these models made the simplifying assumption that complete informa-738

tion on the whole input letter string was available in a one-shot manner, from the first exposure with739

the novel word. In BRAID-Learn, orthographic learning is gradual and visuo-attentional captures over740

the letter string help gather information efficiently on letter identity; this improves perceptual evidence741

accumulation and stabilizes orthographic representations after a few exposures.742

Whether visual attention affects word recognition and orthographic learning is a controversial issue.743

Despite behavioral evidence that visual attention is involved in printed word recognition (Besner et al.,744

2016; Lachter et al., 2004; Risko et al., 2010; Waechter et al., 2011) and in reading acquisition (Bosse &745

Valdois, 2009; Valdois et al., 2019), most computational models of word recognition and the self-teaching746

models do not incorporate any visual attentional mechanism (Coltheart et al., 2001; Perry et al., 2007,747

2010; Pritchard et al., 2018; Seidenberg & McClelland, 1989; Ziegler et al., 2014). It is also quite puzzling748

that the critical role attributed to visual attention in the perceptual learning of new orthographic units,749

from letters to words, by Laberge and Samuels (1974) in the first model of reading acquisition ever750

proposed was largely ignored by subsequent modelling attempts. In the same way, very little systematic751
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research has been directed to the role of visual attention in orthographic learning. However, some recent752

behavioral evidence provides support to the BRAID-Learn predictions. Investigation of incidental learning753

while reading in adult skilled readers suggested that orthographic learning was more efficient in individuals754

who had a higher visual attention span (Ginestet et al., 2020). Higher visual attention capacity also755

accounted for better orthographic learning in typical children of opaque languages (Marinelli et al.,756

2020). These findings suggest that visual attention would modulate the orthographic learning behavior757

in humans. Assuming that orthographic learning is a foundation for both fast word recognition and word758

spelling, visual attention should further modulate these skills. This seems to be the case. Indeed, there is759

growing evidence that visual attention is a concurrent and longitudinal predictor of word reading fluency760

(Bosse & Valdois, 2009; Chan & Yeung, 2020; Valdois et al., 2019; van den Boer & de Jong, 2018) and761

word spelling acquisition (Niolaki et al., 2020; Valdois et al., submitted; van den Boer et al., 2015) and762

that individuals with reduced visual attention capacity are slow readers and poor spellers (Bosse et al.,763

2007; Chen et al., 2019; Valdois et al., 2011; Valdois et al., 2021; Zoubrinetzky et al., 2014). Evidence764

that BRAID-Learn can account for the evolution of eye movement patterns when repeatedly confronted765

to the same input strings is further evidence in support of its theoretical assumptions.766

4.3 Prediction of the evolution of eye movement patterns during orthographic learning767

Because it describes the dynamics of visual attention for letter identification within the input string and768

the evolution of lexical influence during processing, BRAID-Learn was expected to account for at least769

some of the changes that characterize eye movement patterns during the course of orthographic learning.770

Simulation results suggest that the model is rather efficient in doing so. First, the model predicts a771

larger number of fixations and longer processing time for novel words than for known word at the first772

encounter, well in line with the differential oculomotor patterns reported in humans when confronted to773

known words versus pseudowords or to words that drastically differ in frequency (Chaffin et al., 2001;774

Lowell & Morris, 2014; Rau et al., 2015; Wochna & Juhasz, 2013). Second, a decrease in number of775

fixations and processing time is predicted across exposures for the novel words, which again matches the776

oculomotor pattern changes reported in humans following multiple exposures to the same pseudowords777

(Gerbier et al., 2015, 2018; Joseph & Nation, 2018; Joseph et al., 2014). Last, in line with the behavioral778

data showing strong variation of oculomotor patterns between the first and the second exposure (Ginestet779

et al., 2020; Pellicer-Sanchez, 2016) and robust orthographic learning, after a single exposure (Bowey &780

Muller, 2005; Nation et al., 2007; Share, 2004), the model predicts a sharp decrease of the number of781

fixations and processing time, as early as the second exposure.782

BRAID-Learn provides an account on the way the mechanisms of orthographic learning may affect783

oculomotor behavior. During the first exposure to a novel word, visual attention moves over the input784

string to maximize information gain about letters while top-down lexical influence is decreased. High785

uncertainty on the identity of the letters within the novel word increases the probability of attention786

captures. The model is also more prone to focus attention over a subset of letters when identification is787

difficult, which is done to the detriment of the other letters’ identification, and again favors subsequent788
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attention captures, and thus refixations. This translates in a larger number of fixations and longer total789

processing time for novel words than for known words, since only the latter benefit from top-down lexical790

influence that boosts letter identification from the first encounter. However, top-down lexical information791

becomes effective from the second exposure to the same novel word. Information extracted on letter792

identity and memorized during the first exposure can then be used to speed-up letter processing. This793

positive effect of top-down influence from the newly acquired word orthographic representation results in794

large decreases of both number of fixations and processing time at the second exposure. Further exposures795

lead to further improvements of the orthographic representation of the word being acquired and variations796

in the strength of lexical feedback result in more gradual changes in eye movements. Overall, the model797

behavior is well in line with the empirical findings reported in humans, namely that the first exposure798

to a novel word is more critical than later ones for orthographic learning and that the orthographic799

representations of new words are stabilized, after only a small, single-digit number of exposures (Ginestet800

et al., 2020; Nation et al., 2007; Pellicer-Sanchez, 2016; Share, 2004).801

Nevertheless, adjusting the model parameters could improve the model’s predictions fit to data. In802

particular, the large number of fixations and long processing time generated at the first exposure with803

a novel word are rather unrealistic. This suggests that the termination criterion, based on the possible804

remaining entropy gain value, was underestimated. To recall, the corresponding threshold value was set805

to 1 nat of information gain for the whole word; this value was set arbitrarily, without calibration from806

empirical or experimental data. We observed that this arbitrary value yielded a “conservative” behavior,807

with the model terminating with “very certain“ perceptual information about all letters. An increase808

of this value would stop visuo-attentional exploration faster, and thus reduce the number of fixations809

and processing time, even at the first encounter with the novel word. Further, increasing this threshold810

would yield a more gradual evolution of information gain over time, leading the oculomotor patterns of811

word and pseudo-word processing to converge later on, more in line with the human data. However, in a812

more complete model, the interaction between orthographic and phonological processing could affect the813

dynamics of visuo-attentional exploration; furthermore, the model currently does not take into account,814

for instance, any time interval for performing saccades; therefore, we consider that a proper calibration815

of the model’s parameters to fit behavioral data is premature at this stage. A proper calibration of the816

model parameters to data would also entail collecting experimental data about visual exploration during817

orthographic learning of words of varying characteristics (such as, e.g., length, frequency, etc.); such data818

are currently not available.819

The simulations were carried out to assess to what extent a model limited to visual orthographic pro-820

cessing would account for the features of eye movement patterns reported in humans during orthographic821

learning. The good qualitative account of eye movement pattern changes across exposures suggests that822

the two mechanisms of visual attention and lexical feedback postulated by the model are critical factors823

for orthographic learning in humans, and may be also in animals (Grainger et al., 2012; Scarf et al.,824

2016). It is noteworthy that BRAID-Learn was not specifically developed to account for eye movement825

patterns while reading. As such, BRAID-Learn, for the first time, offers a unified account of three aspects826

of the reading system that are typically modelled independently, namely word recognition, eye movement827
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control and orthographic learning. Visual attention appears critical for an integrated account of these828

different dimensions of the reading process.829
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Appendix A: List of items841

Lists of Items used in simulations842

Pseudo-words : broufand, chaiquau, deinrint, faingion, gouciont, nauplois, ploitart, speirain, quinsard,843

tramoint, ceitteau, chanquet, coirtint, drottont, flommais, glounein, priquoin, quarlant, siampoie, trim-844

pond, bussiond, cherrein, ciercard, claffand, fentroit, phacrait, prinnant, tauppart, scrodain, trancare.845

Control words : uniforme, portrait, enceinte, mouchoir, surprise, complice, scandale, chanteur, immeu-846

ble, avantage, physique, revanche, horrible, boutique, sensible, fauteuil, chocolat, mensonge, solution,847

voyageur, prochain, grandeur, nocturne, lointain, religion, empereur, division, quartier, province, juge-848

ment.849

Appendix B: Item-level simulations850
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Fig. A.1 Number of Fixations (left plot) and Processing Time (right plot) reported as a function of exposures and for each

novel word learned by the BRAID-Learn model. Smaller dots and their vertical bars (standard errors) represent behavioral

data; larger dots represent simulated results.
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