
HAL Id: hal-03544717
https://hal.univ-grenoble-alpes.fr/hal-03544717v1

Submitted on 26 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Classifying and explaining defects with small data for
the semiconductor industry

Jean-François Boulanger, Franck Corset, Franck Iutzeler, Jérôme Lelong

To cite this version:
Jean-François Boulanger, Franck Corset, Franck Iutzeler, Jérôme Lelong. Classifying and explaining
defects with small data for the semiconductor industry. MathematicS In Action, 2022, 11 (1), pp.109-
114. �10.5802/msia.20�. �hal-03544717�

https://hal.univ-grenoble-alpes.fr/hal-03544717v1
https://hal.archives-ouvertes.fr


Classifying and explaining defects with small data for the
semiconductor industry

Jean-François Boulanger∗ Franck Corset† Franck Iutzeler‡

Jérôme Lelong§

January 26, 2022

Abstract

In this work, we present an automatic classifier of wafer defects for the semiconductor
industry. Hopefully defects are rare, but this puts the classifying problem in a small data
context. We propose a fast and fully reproducible approach based on decision trees. The
main interest of using decision trees lies in obtaining a highly explicable classifier, which
makes the origin of the defect easy to identify.

1 Introduction
In this note, we provide an overview of our work on the classification of wafer defects as part of
an industrial collaboration between Univ. Grenoble Alpes and UnitySC .

Context Maimosine (https://www.maimosine.fr/) is a federative research structure hosted by
Laboratoire Jean Kuntzmann, Université Grenoble Alpes and CNRS, that aims at promoting the
development of cross-disciplinary projects based on mathematical modelling and simulation. One
of Maimosine’s main goals is to boost collaborations between academic research and innovative
companies in the Grenoble area.

UnitySC develops and manufactures high precision tools for the semiconductor industry world-
wide. Research focused, the company’s strategy is to design and integrate cutting-edge optical
sensors and advanced algorithms to achieve the best measurement performance. The applications
of the company automatically detect and classify small-dimension defects on customer products
and measure feature sizes for process control.

The goal of this collaboration is to classify manufacturing defects on wafers from real data
provided by the company. The data comes from physical measurements and various quantities
automatically derived from proprietary image processing techniques. So far, this classification task
was performed manually by highly qualified engineers which was very costly and time-consuming;
in addition, the produced classification suffered from consistency issues depending on who was
in charge of the classification. This work aims at replacing the manual work by a supervised
learning approach of the defect classes based on data already labeled by experts. As an additional
requirement, the approach should return a set of constraint boxes on the input features, each

∗UnitySC , 611 rue Aristide Bergès, Z.A. de Pré Millet, 38330, Montbonnot-Saint-Martin, France.
Email : jf.boulanger@unity-sc.com

†Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK, 38000 Grenoble, France. Email : franck.corset@univ-grenoble-
alpes.fr

‡Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK, 38000 Grenoble, France. Email : franck.iutzeler@univ-
grenoble-alpes.fr

§Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK, 38000 Grenoble, France. Email : jerome.lelong@univ-grenoble-
alpes.fr

1



constraint box corresponds to the prediction of a given defect. This additional requirement has
emerged during preliminary discussions with the company, stemming from interpretability and
real-time needs on the prediction process.

Learning a classifier A classification problem consists in learning a mapping h from some
input space X to one of K possibles classes. To do so, from a data set consisting of n pairs of
example/class {xi, yi} ∈ X ×{1, ..,K}, i = 1, .., n, the objective is to find a mapping that fits well
the given data and also generalizes well to other pairs, provided that they are not too different
from the original data.1

Lots of models and associated algorithms exist to find such predictors (Nearest Neighbors,
Support Vector Machines, Logistic Regression, Random Forests, Neural Networks to name a few;
see [2, 3] for a review and [4] for a Python implementation and comparisons). Beyond their
performance, these models differ a lot in terms of prediction functions. Indeed, if a Neural Network
is trained, the prediction consists in feeding it the new example to classify, which can be costly
in terms of storage and prediction time on small processing units. Furthermore, these kind of
methods are sometimes decried in industrial applications for their lack of interpretation. Linear
methods such as SVM or logistic regression predict a class from a linear combination of the
input coordinates/features, which is easier to interpret in particular when K = 2, but may suffer
from performance limitations. Decision trees offer a good compromise between performance and
interpretability. These methods consist in sequentially partitioning the input space by finding the
feature and value that separate best the different classes.

Specificity of the task Interpretability was indeed a key concern in our work. The classifier
produced by the supervised learning approach had to be understandable by the senior engineers
at Unity who used to carry out this task manually. Thus, our goal was to output simple rules
in order to enable them to quickly identify the production step responsible for the defect in the
manufacturing process. Moreover, the classifier had to be encoded in XML using only boundary
constraints on the input features. Then, it was obvious that the classifier had to expressed in terms
of “boxes” written as a product of one dimension intervals. Decision tree classifiers are precisely
designed to produce such classification rules and were thus our workhorse in this collaboration.

2 Modelling and Methodology

2.1 Data set
The data provided by the company is a set of features obtained from a multi-stage image processing
on 1190 defective wafers, representing 13 common types of defects. Each wafer is photographed
using three acquisition modes leading to as many data layers. Then, these layers are analyzed to
detect potential defects. They are presented as small thumbnails from which a predefined set of
features are measured. Our features correspond to these 195 extracted values and the defect class
is annotated manually by a senior engineer.

Obviously, some defects may not be visible on all layers, which implies that the data set
obtained by aggregating the data from all the layers has a lot of missing data. Note that in this
context a missing data is actually very meaningful since a value is missing when the associated
feature could not be measured because it was not present in the thumbnail. As almost all the
features were actually representing lengths, it was crystal clear that missing data had to be set
to 0. Another possibility would be to add for every layer a Boolean variable stating the presence
of absence of the defect in the given layer in order to obtain a more easily readable classifier, but
this solution was found to be less robust while offering virtually the same performance.

1From a mathematical point of view, we can model the data set as a sampling from some unknown distribution.
Then, we expect our predictor to perform well on other pairs sampled from the same distribution.

2



Classification results highly depend on the training data. In particular, anyone who intends
to use a classification algorithm must be fully aware that any bias in the training data will au-
tomatically be passed to the classifier. This phenomenon is well-known by researchers working
on automatic classification and naturally tends to expand when using reinforcement learning as
the algorithm learns from its own decisions. As a guarantee against these bias issues or outliers,
we advise to remove from the input dataset any defect class with too few samples, which would
produce classification rules without any real foundation, especially since some of these defects were
flagged as borderline by the experts. In practice, we remove any defect class with less than 10
samples in our tests.

2.2 Supervised learning and decision trees
Consider a training set built of n labeled samples Dn = {(xi, yi) ∈ X × K, i = 1, . . . , n}, where
X is the feature space and K the types or classes of defects. A classification can be modeled as
a function h : X −→ K, which associates a defect class to an element of X (typically a subset of
Rp where p is the number of features). To measure the fitness of the classifier, we usually define
a merit function. For instance, it can be its accuracy defined as the fraction of correctly classified
data

M(Dn;h) =
1

n

n∑
i=1

`(xi, yi;h) where `(x, y;h) =

{
1 if h(x) = y
0 otherwise

In this work, a classifier can be identified to a partition of X in which every element of the
partition (referred to as a box) can be written as a product of intervals, ie. X is split into disjoint
sets B1, ..,Bb taking the form

Bj = {x ∈ X , j1 ≤ x[1] ≤ j1, . . . , jp ≤ x[p] ≤ jp}

where x[k] represents the k-th element of x (hence the k-th feature among the p features). Then, for
every j, Bj is associated to a given defect class. Let us denote this mapping by a : {B1, ..,Bb} → K.
In this context, the classifier h can be written

h(x) =

b∑
j=1

a(Bj)1x∈Bj
.

Decision Trees [1] are known to produce a partition of the feature space of the form {B1, ..,Bb}
along with the mapping a. Indeed, they consist in iteratively partitioning the input space along
one feature at a time, resulting in a tree-like structure whose leaves represent the boxes of our
classifier. Their main parameters are how to find the best possible splitting thresholds, which is
done by looking at the split that increases most the purity of the leaves measured in terms of Gini
coefficient or entropy; and how many leaves to output, which can be set by either constraining the
depth of the tree or its width. Although, decision tree classifiers are sub-optimal, their accuracy
is already very good and they are obtained using cross-validation.

The number of boxes b (or equivalently of leaves in our case) plays a major role in the balance
between goodness of fit and generalization. Indeed, with b sufficiently large, one can form a box
around every input point to achieve a perfect accuracy; however, the generalization to unseen
data can be arbitrarily bad. Thus, we fix a maximal number of boxes B by cross-validation before
finding the optimal classifier with at most B boxes on the full dataset. As an illustration, we
display in Figure 1 a decision tree for our problem with 6 boxes (the number of boxes is actually
much greater in practice).

2.3 Performance & Validation
Decision trees are prone to over fitting, that is why we cross validate the parameters of the tree
(maximal width, depth, minimal number of samples in a leaf, impurity measure) by performing
10-fold cross validation.

3



Figure 1: Example of a Decision Trees with 6 leaves/boxes

We compared the obtained accuracy to other classifiers in Table 1. We observe that the
Decision Tree offers a much better accuracy than the Logistic regression, this is mostly due to the
highly non-linear aspect of the problem.

Method Accuracy Commentsave. sdev.
Decision Tree 0.605 (0.083) method used

Logistic regression 0.420 (0.076) linear classifier minimizing the cross-entropy loss
Random Forest 0.635 (0.072) ensemble of 100 random decision trees

Gradient Boosting 0.720 (0.086) gradient boosted ensemble of 100 decision trees

Table 1: 10-fold cross validation performance of several methods. We display the average accuracy
on the 10 folds as well as the standard deviation.

We also compare decision trees to ensemble methods. These methods are based on the aggre-
gation of several trees and are known to overcome the tendency to over fitting of decision trees;
they also usually offer good performances. Thus, they can be seen as a performance target in
our case. Compared to decision trees, theses approaches perform respectively 3% and 11% better.
However, these methods aggregate several trees (usually 100) and thus produce decision frontiers
that are much less interpretable and implementable, making them unfit for our target problem.

3 Impact for the company
The method described above has been integrated in the processing tools of UnitySC . A learner
module is first presented to the operator to label imagelets of defects detected on a wafer like
represented on Figure 2. This process is done offline during the recipe creation. Then, from the
learned classification tree, an automatic classification module for production has been integrated.
It allows process engineers to see in a glance the results of defect classification as represented on
Figure 4 where the location and labels of defects are displayed on the wafer map. The graylevel
and binary mask imagelets of the defects are also accessible through that interface.

The example presented across the different figures corresponds to an automatic defect clas-
sification applied to data acquired by the edge inspection module developed at UnitySC . This
module composed of several cameras acquires graylevel images of the edge of wafers. Then, the
defects are detected through an automatic image processing framework.

For this example more than 80000 defects are detected on the edge of the test wafer (which
is a highly contaminated one compared to what is usually inspected). Depending on the nature
of defects, several classes are defined as represented on Figure 3. Defects of different nature are

4



Figure 2: Interface of the learner module interface. Example of learned defects: contaminant

(a) Contaminant (b) Particle (c) Stain

Figure 3: Image examples of 3 different defect classes.

present and correspond to process residue or contamination by the environment. Automatically
making the difference between the cases is often a key for the final customers.

When tackling application cases where many singularities (i.e. area on wafers declared as
defects on the detection phase) are present on the surface of wafers, the software module developed
during this project presents several advantages in terms of reliability and flexibility.

4 Conclusion
In this work, we have designed a reliable classification tree which reached the specified performance
in term of precision. The method allows us to save time and increases the reliability of the
classification process. The produced classification tree eases the work of application engineers and
avoids them to waste time on complex data visualization and manual classification tree set up.
The effort is actually focused on acquisition and labelling, which are straightforward tasks. The
result is also reproducible and maintainable since it does not depend on the subjective choice of
an operator on what feature to select and what threshold to set.

5



Figure 4: Interface of the classification presented to the final user. Locations and labels are
displayed on the wafer maps. Examples of defect grey image and binary mask are visible.

References
[1] Leo Breiman, Jerome H Friedman, Richard A Olshen, and Charles J Stone. Classification and

regression trees. Routledge, 2017.

[2] László Györfi, Michael Kohler, Adam Krzyżak, and Harro Walk. A distribution-free theory of
nonparametric regression, volume 1. Springer, 2002.

[3] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learning:
data mining, inference, and prediction. Springer Science & Business Media, 2009.

[4] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. Scikit-
learn: Machine learning in python. Journal of Machine Learning Research, 12:2825–2830, 2011.

6


