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Paris, France

* nadia.naffakh@pasteur.fr

Abstract

The development of safe and effective vaccines in a record time after the emergence of the

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a remarkable

achievement, partly based on the experience gained from multiple viral outbreaks in the

past decades. However, the Coronavirus Disease 2019 (COVID-19) crisis also revealed

weaknesses in the global pandemic response and large gaps that remain in our knowledge

of the biology of coronaviruses (CoVs) and influenza viruses, the 2 major respiratory viruses

with pandemic potential. Here, we review current knowns and unknowns of influenza viruses

and CoVs, and we highlight common research challenges they pose in 3 areas: the mecha-

nisms of viral emergence and adaptation to humans, the physiological and molecular deter-

minants of disease severity, and the development of control strategies. We outline

multidisciplinary approaches and technological innovations that need to be harnessed in

order to improve preparedeness to the next pandemic.

Introduction

The years 2020 to 2021 are characterized by an outstanding and worldwide research effort

aimed at mitigating the Coronavirus Disease 2019 (COVID-19) pandemic, leading to

>145,000 published articles and>2,900 completed or underway clinical trials (https://www.

covid-trials.org). Experience and research work related to previous outbreaks, including the

emergence of the H1N1pdm09 influenza virus in 2009, was also leveraged. As a result, safe and

effective vaccines [1] as well as monoclonal antibody–based treatments [2] have been devel-

oped in less than 1 year. At the same time, the COVID-19 crisis exposed the weaknesses of our

preparedness and response to pandemics and highlighted large gaps that remain in our knowl-

edge of the biology of coronaviruses (CoVs) and influenza A viruses (IAVs), the 2 major zoo-

notic respiratory viruses with pandemic potential. Here, we sought to identify common
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challenges of influenza virus and CoV research that should be addressed in order to become

better prepared for upcoming pandemics.

1. Emergence, transmission, and adaptation to humans

1.1. Mapping of animal reservoirs and intermediate hosts

Wild waterfowl are the main reservoir for IAVs, with poultry and swine being evolutionary

intermediaries and possibly “mixing vessels” for the transmission to humans [3]. Human

CoVs come from wild animal reservoirs as well, especially bats as in the case of Severe Acute

Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) or rodents [4,5]. They are thought to

emerge in humans through an intermediate mammalian host, possibly domesticated or tamed

or hunted, e.g., dromedary camels for Middle East Respiratory Syndrome Coronavirus

(MERS-CoV) and civets for Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV)

[4]. However, the direct animal progenitor of SARS-CoV-2 remains elusive to date [6].

Neither the emergence of H1N1pdm09 virus nor that of SARS-CoV-2, the viruses responsi-

ble for the 2 last pandemics (Table 1), were preceded by a disease outbreak in an animal popu-

lation. This fits with phylogenetic data suggesting that viruses potentially “preadapted” to

humans could have evolved and circulated undetected in wild or domesticated animals for

years [7,8]. This situation, along with the genetic plasticity of IAVs and CoVs, as well as the

diversity of animal species that could potentially represent prepandemic reservoirs, makes it

an unrealistic goal to identify all viruses with pandemic potential before they emerge in

humans.

However, once a cluster of human zoonotic cases has been detected, the capacity to rapidly

characterize the animal origin, route of transmission, and site of emergence of the pathogen is

essential for informed public health decisions and early control of the outbreak. Such a capac-

ity requires extensive and long-term surveillance data sets on the spatial and temporal dynam-

ics of viruses in their reservoir and intermediate host species. With regard to IAVs, major

progress has been achieved in recent years. Tracking of the epidemiology and evolution of

highy pathogenic avian IAVs has improved due to the rise in whole genome sequencing [9]

and initiatives on sharing sequencing data such as the GISAID database [10]. Genomic surveil-

lance was integrated with the collaborative expertise of virologists, ornithologists, ecologists,

and mathematical modelers to identify bird species, time periods, habitats, and geographies

that are associated with increased risks of transmission to humans and therefore require an

active surveillance of wild and domestic animals [11,12]. This approach should be further

developed and extended to CoVs. Zooanthroponosis, as exemplified by the transmission of the

H1N1pdm09 and SARS-CoV-2 human viruses back to animal species [13,14], should be

Table 1. Basic features of H1N1pdm09 and SARS-CoV-2 viruses.

H1N1pdm09 SARS-CoV-2

Family Orthomyxoviridae Coronaviridae

Genus Alphainfluenzavirus Betacoronavirus

Subgenus or subtype

Surface glycoproteins

H1N1

HA

NA

Sarbecovirus

S

Genome Single-stranded negative sense RNA, segmented Single-stranded positive sense RNA, linear

Genome size 13.5 kb 29.9 kb

Evolution processes Genetic drift (mutations) and shift (reassortments) Genetic drift (mutations) and shift (recombinations)

HA, hemagglutinin; NA, neuraminidase; S, Spike; SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2; H1N1pdm09, H1N1 pandemic 2009.

https://doi.org/10.1371/journal.ppat.1010106.t001
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closely monitored. Indeed, such spillover events can lead to the selection of variants at the time

of cross-species transmission, such as SARS-CoV-2 variants isolated in mink farms from the

Netherlands and Denmark, which showed amino acid substitutions in the spike protein possi-

bly increasing its affinity for the mink angiotensin converting enzyme 2 (ACE2) receptor [15],

or to the accumulation and fixation of mutations over time, as observed upon introduction of

the human H1N1pdm09 virus in swine [16]. Ultimately, these events can lead to the establish-

ment of novel animal virus lineages with subsequent risks for animal and human health [17].

To this end, taking advantage of recent developments in next generation sequencing technolo-

gies, such as the Oxford Nanopore MinION, in-field collection of genomic and metagenomic

data should be intensified and combined with complementary approaches such as syndromic

surveillance and serological surveys in farmed species [18–20].

Finally, research aiming at further understanding the molecular determinants for the host

range and host switching potential of IAVs and CoVs will help identify high-risk viruses. This

knowledge, together with surveillance data, should ultimately serve to feed and refine the risk

assessment tools that have already been implemented for IAVs, such as the World Health

Organization’s (WHO) Tool for Influenza Pandemic Risk Assessment (TIPRA) and the Cen-

ters for Disease Control and Prevention’s (CDC) Influenza Risk Assessment Tool (IRAT) [21],

and adapt them to CoVs.

1.2. Understanding how selective pressures are shaping viral evolution

IAVs and CoVs harbor single-stranded RNA genomes (negative or positive sense, respec-

tively). High mutation rates occur during replication, which allows them to evolve rapidly

[22,23]. There is much evidence that CoVs can limit their mutation rates due to a proofreading

mechanism of their polymerase [24,25]. However, it is unclear to what extent this proofreading

mechanism is limiting CoVs diversification in an epidemiological context [23,26]. Both viral

families also undergo evolutionary shortcuts (reassortment of genomic segments for IAVs and

homologous recombination for CoVs), which may favor the emergence of pandemic viruses.

For instance, the H1N1pdm09 virus was a complex reassortant harboring genomic segments

of swine, avian, and human IAVs origin [7]. SARS-CoV-2 is characterized by a polybasic cleav-

age site in the spike glycoprotein that was possibly acquired from another bat CoV through

recombination [27]. Interestingly, recurrent occurrence of short deletions are currently being

observed in the spike glycoprotein of SARS-CoV-2 [28,29] and in the hemagglutinin glycopro-

tein of H1N2 swine IAVs [30,31].

Depending on the nature of the host barrier and the level of preexisting immunity in the

human population, CoVs or IAVs transmitted from animals to humans can show different

patterns of pathogenicity and human-to-human transmissibility, which will result in different

evolutionary pressures acting on the viruses. For instance, the emerging SARS-CoV-2 and

H1N1pdm09 IAV were both less deadly and more transmissible among humans than the

SARS-CoV, MERS-CoV, and zoonotic H5N1/H7N9 IAVs, but SARS-CoV-2 and the 2009

influenza pandemic virus differed in that the mortality was the highest in people older than 70

years for the former but not the latter [32]. Improving the accuracy of phylogenetic methods

that infer the evolutionary history of the emerging viruses by sequence comparison with sam-

ples derived from the reservoir and intermediate hosts (see Section 1.1) will help characterize

the pattern of host species jump. For the H1N1pdm09 as well as the SARS-CoV-2 viruses, real-

time monitoring of the emerging virus evolution has been a key component of the pandemic

response, not only to track transmission chains and evaluate the reproductive number [33,34]

but also to infer the spatiotemporal spread of the virus country-wide or worldwide and evalu-

ate the efficacy of mitigation measures [35,36]. A major challenge is to ensure the
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representativeness of sequences and to improve the predictive value of data-driven mathemati-

cal models so that they accurately anticipate how the course of the pandemic will be affected

by the rise of new viral variants and by the implementation of mitigation measures [37,38].

Another challenge in the field is to combine phylogenetic and phenotypic data (e.g., virulence,

transmissibility, escape from the antibody or T-cell response), in order to better understand

how selective pressures and trade-offs are shaping viral evolution at both the intra- and inter-

host levels. For instance, the often mentioned hypothesis that virulence and transmissibility

are inversely correlated and that this trade-off determines evolutionary trajectories remain to

be verified for emerging IAVs and CoVs [39]. While the H1N1pmd09 remained genetically

stable several years after its emergence, it has taken less than 1 year to see SARS-CoV-2 vari-

ants with distinct phenotypes from the progeny virus emerge, possibly due to differences in

the nature and effects of cross-immunity. An hypothesis is that some early SARS-CoV-2 vari-

ants may have emerged from immunocompromised patients with long-lasting infection and,

possibly, treatment with plasma from convalescent patients or recombinant antibodies [40].

Which mutations are evolutionary neutral or are associated with immune escape, increased

replication, or increased transmissibility remains to be fully evaluated. Mutations on the viral

spike protein are best characterized so far. Notably, the N501Y mutation, shared by the 4 main

variants of concern (B.1.1.7, P.1, B.1.351 and B.1.1.529), increases the spike’s affinity of the

ACE2 receptor and could thereby increase transmissibility, whereas the E484K mutation,

found in the P.1 and B.1.351 variants, decreases binding of neutralizing antibodies and could

thereby favor immune escape (for a review, see [41,42]). Unraveling the evolutionary drivers

of IAVs and CoVs genetic diversity will help improve policy responses as well as the design of

vaccines and antiviral therapies in the future.

1.3. Investigating the mechanisms of transmission through aerosols

There is now much evidence for mid- to long-range (>2 m) airborne and direct contact trans-

mission of IAVs and CoVs [43,44]. Indirect contact transmission via contaminated surfaces or

objects, also called fomites, can occur according to environmental sampling data [43]. How-

ever, it remains unclear how efficiently it does occur in real-life situations [45,46]. By contrast,

the contribution of virus aerosolization to viral dissemination in the human population has

been largely documented mostly in indoor environments (e.g., [47,48]) and is considered less

likely in outdoor conditions [49]. The contribution of aerosols to the bird-to-bird spread of

highly pathogenic avian IAVs in poultry farms, with serious consequences for the poultry

industry, is also of great concern [50,51].

Transmission via aerosols remains poorly understood and largely understudied. A tradi-

tional distinction is made between large respiratory virus-containing droplets (>5 μm) that

usually fall to the ground within 2 meters and viral aerosols formed of droplets <5 μm in size,

which can be transported in the air up to 70 meters [43]. This distinction has been recently

challenged, as (i) droplets generated upon coughing, sneezing, talking, and breathing span a

continuous range of size from 0.01 to hundreds of microns [52]; and (ii) their size can vary

over time through evaporation, along with their composition and morphology [53]. There is

an urgent need to investigate the processes of aerosols production, dispersion in the air, depo-

sition on surfaces and decay, and to understand how the production, fate, and infectivity of

aerosols are affected by environmental, biological, and behavioral parameters (Fig 1). Studies

on the effect of temperature and relative humidity [54,55] should be pursued and extended to

other environmental parameters such as exposure to UV, chemical pollution, and ventilation.

In addition, methodological advances are needed regarding aerosol sampling and monitoring

[56,57], as well as aerosol reduction and inactivation. Finally, understanding what determines
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the extent to which asymptomatic individuals can transmit respiratory viruses will be essential

to guide nonpharmaceutical interventions and vaccination strategies. It was established as of

spring 2020 that asymptomatic SARS-CoV-2 carriers could transmit the virus [58,59]. This

question has long been understudied for influenza viruses; however, there is a recent report

that asymptomatic individuals can transmit seasonal influenza viruses to approximately 6% of

household contacts [60].

The environmental persistence and dissemination of IAVs have been shown to also depend

upon viral and host determinants [43,61]. Traits of the hemagglutinin surface protein that

increase receptor binding were found to increase the efficiency of IAV transmission between

mammals [62,63]. Similarly, changes in the spike surface protein of the SARS-CoV-2 that

increase receptor binding confer a higher human-to-human transmissiblity [64]. Mutations

resulting in an increased stability of the hemagglutinin were also found to increase the infectiv-

ity of viruses isolated from air exhaled by infected ferrets [65] and to increase ferret-to-ferret

transmission via the aerosol route [62]. The impact of other viral features, such as the mor-

phology of IAV and CoV particles, on aerosol transmission remains to be documented.

Regarding host factors, basic questions remain unanswered such as the impact of age (children

versus adults) and site of infection (upper or lower respiratory tract) on the characteristics of

aerosols in terms of size distribution, chemical composition, mucus/saliva/cell content, and

infectivity of the droplets. Investigations of superspreading events suggested that the nasal

Fig 1. Factors potentially affecting the production, fate, and infectivity of virus-laden aerosols. Only few (mostly environmental and viral factors) have been

documented so far. Multidisciplinary progress in this research field will help improve mitigation measures when a new pandemic respiratory virus emerges. Created with

BioRender.com. LRT, lower respiratory tract; URT, upper respiratory tract; UV, ultraviolet.

https://doi.org/10.1371/journal.ppat.1010106.g001
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microbiome and respiratory coinfections could influence the airborne transmission of IAVs

and SARS-CoV-2, which deserves further studies [66,67]. Age and obesity were found to be

associated with an increased release of SARS-CoV-2–laden aerosols [68] and could possibly

contribute to superspreading events along with other host and environmental conditions [66].

Epidemiological and viral shedding data suggest that obesity may play a role in influenza trans-

mission [69], a question that could be investigated further using the recently developed obese

ferret model [70]. There is evidence that host genetics can determine the susceptibility to

severe influenza [71] and COVID-19 [72,73]. However, evidence is so far lacking for a role of

host genetics in determining the route and propensity of transmission of respiratory viruses.

2. Determinants of viral load dynamics and disease severity

2.1. Deciphering how the immune and inflammatory responses contribute

to severe pathogenesis

In severe influenza and COVID-19 cases, elevated systemic levels of interferons, cytokines,

chemokines, and other inflammatory mediators are a major cause for fatal outcome [1,74,75].

They are usually associated with acute mononuclear/neutrophilic inflammatory infiltration in

the lower respiratory tract and with diffuse alveolar damage, which impair gas exchange and

blood oxygenation. In addition, patients with severe COVID-19 show vascular damage and

thrombosis according to autopsy findings [76] and dysregulated function of T cells [77,78].

Uncovering the multiple and complex mechanisms that control the innate and adaptative

responses to viral infection is paramount for the design of effective and safe immunomodula-

tory therapies (see Section 3.1). The hyperinflammatory profiles of influenza and COVID-19

patients show similarities, e.g., high serum levels of interleukin (IL)-6 and tumor necrosis fac-

tor (TNF) alpha, and also exhibit distinct features. Elevated levels of IL-18 or IFN-gamma are

specifically and most prominently observed in COVID-19 or influenza patients, respectively

[79,80]. Findings in COVID-19 patients still need to be consolidated. However, there is strong

evidence that a hallmark of severe COVID-19 infection is a delayed type I/III interferon

response [81]. It remains to be fully understood which molecules play a critical role in disrupt-

ing the balance between viral clearance and collateral lung damage and are good correlates of

disease severity. Serum levels may not accurately reflect the production of inflammatory mole-

cules in the lower respiratory tract. Therefore, it is important to study the viral-induced immu-

nopathology in the lung-specific microenvironment. COVID-19 has highlighted the major

contribution of lung endothelial cells to pathogenesis [82]. There is growing evidence that lung

epithelial and mesenchymal cells are also playing a regulatory role in the response to viral

infections (reviewed in [83]). A challenge will be to further define the role of cell-to-cell hetero-

geneity within each cell type through single-cell studies [84,85]. Another challenge will be to

identify and integrate the multiple cellular pathways that control the cellular response to viral

infection. Interestingly, there is increasing evidence for a cross-talk between metabolism and

hyperinflammation [86,87]. In line with these observations, obesity and diabetes are associated

with a higher risk of developing a severe form of COVID-19 and influenza pneumonia [88–

90].

Viral and host genetic determinants of the immune response remain largely unknown. Spe-

cific mechanisms evolved by highly pathogenic IAVs and CoVs to counteract the type I inter-

feron response have been described [91,92]. Loss-of-function mutations in interferon

induction or signaling genes, or the presence of autoantibodies with interferon neutralizing

activity, predispose patients to severe COVID-19 [93,94] or severe influenza [95]. An initiative

for genome-wide mapping of host genetic factors associated with COVID-19 was launched

recently [96] and would deserve to be extended to influenza disease.
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2.2. Elucidating the mechanisms for extrapulmonary tropism and/or

complications

Although SARS-CoV-2 infection affects primarily the respiratory tract, many extrapulmonary

dysfunctions have been reported in severe COVID-19 patients, especially in the central ner-

vous system (CNS), kidney, liver, gastrointestinal tract, and cardiovascular system [97,98]. The

most commonly reported extrapulmonary dysfunctions in influenza patients affect the CNS

and the cardiovascular system [99]. A vast majority of published observations focus on emerg-

ing zoonotic (SARS-CoV, MERS-CoV, and highly pathogenic IAVs of the H5 or H7 subtypes)

and pandemic (SARS-CoV-2 and H1N1pdm09) viruses. The extent to which infections with

seasonal viruses can lead to extrapulmonary complications might be underappreciated. One of

the most prominent extrapulmonary symptoms associated with SARS-CoV-2 is anosmia

[100], a feature also observed during influenza virus infections, but to a lesser extent [101].

Olfactory dysfunctions are related to the tropism of both viruses for the olfactory epithelium.

Infection of the olfactory epithelium induces direct (replication) or indirect (inflammation)

damage to olfactory neurons, leading to anosmia [102,103]. In the case of long-term persis-

tence of anosmia post-COVID-19, an anterograde propagation of the virus to the olfactory

bulb and CNS is suspected [104]. Influenza-associated encephalopathies are reported with a

relatively high incidence in Japan, which could be due to more reporting and/or to a genetic

predisposition [99,105].

The mechanisms underlying extrapulmonary manifestations remain largely unknown.

One of the proposed mechanisms is direct tissue damage caused by IAV or CoV infection

as there is evidence that the viral receptors (sialic acids and ACE2, respectively) and trans-

membrane protease serine 2 (TMPRSS2) protease, which cleaves the surface glycoproteins

(hemagglutinin and Spike, respectively), both required for viral entry, are expressed at

extrapulmonary sites [106,107]. Immunohistochemistry detection of viral nucleic acids or

antigens in extrapulmonary tissues has been reported on autopsy samples and in animal

models [99,108,109]. However, the robustness and clinical relevance of these findings

remains debatable. Moreover, there is no strong evidence for viremia in COVID-19 or

influenza patients, so the mechanisms for extrapulmonary spread of infectious viruses, if

any occurs, remain unclear. There is evidence for influenza virus CNS invasion via retro-

grade axonal transport in the olfactory nerve in an immunocompromised child [110] and

in animal models [108]. Whether CoVs and in particular SARS-CoV-2 could use this

route of neuroinvasion remains unclear [102,103,111].

Beyond direct viral toxicity, other proposed mechanisms for extrapulmonary pathology

include dysregulation of the immune response and endothelium inflammation and damage

[97,99,112]. It is important to determine to what extent viral replication, and possibly viral per-

sistence, can occur outside the lung, to understand organ-specific pathophysiologies and to

identify the viral and host (e.g., age, sex, comorbidities, and genetic traits) determinants

involved. This knowledge is needed to improve therapeutic interventions not only during the

acute phase of disease, but also in the longer term in patients that experience post-acute syn-

dromes [113].

2.3. Tackling the burden of bacterial coinfections and rethinking

antimicrobial stewardship

Bacterial coinfections and secondary infections are detected in severe influenza patients with a

high frequency (11 to 35% in most studies) and are a major cause of morbidity and mortality

[114]. Most reports indicate they are detected only in low proportions in severe COVID-19

patients [115–117], although there are contradictory observations [118]. For instance, the
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proportion was 2.3% in a large multicentre prospective cohort of patients hospitalized during

the first wave of the pandemic in the United Kingdom [117]. Different biases may have led to

underestimation of bacterial coinfections in COVID-19 patients, including the accelerated

patient flow, lack of microbiological diagnosis, effect of barrier measures, and, possibly, high

antibiotic use. Whether and how bacterial infections affect the outcome of COVID-19 remains

unclear so far [117,119]. It is essential to extend the clinical and basic knowledge in this field,

especially as there is evidence that treatments targeting immune and inflammatory responses

(e.g., corticosteroids and IL-6 inhibitors) could increase the risk of bacterial superinfections

[120,121].

The mechanistic understanding of how respiratory virus infections can favor bacte-

rial superinfection needs to be improved. Multiple mechanisms have been described in

the case of influenza infections, including facilitation of the attachment of bacteria to

the bronchopulmonary epithelium, impairment of the respiratory ciliary function, and

alterations of the innate immune responses (reviewed in [122,123]). Bacteria recovered

in influenza and COVID-19 patients are mostly gram-positive and gram-negative,

respectively, suggesting that distinct mechanisms could be involved. However, the lung

barrier damage resulting from interferon-λ signaling upon viral infection was recently

proposed to cause increased susceptibility to bacterial superinfections in both influenza

virus and SARS-CoV-2-infected mice [124,125]. There is growing evidence for bidirec-

tional interactions between respiratory viruses and bacteria and for a complex interplay

with the microbiome and the immune system [122,126]. So far, the mechanisms of

copathogenesis have been investigated mostly in animal models. They remain to be

explored in humans and to be taken into consideration in the development of clinical

practices.

A shared concern regarding management of influenza and COVID-19 infections is the

overuse of antibiotics (e.g., [127,128]), which might contribute to the emergence of multianti-

biotic-resistant strains. An important challenge is therefore to rethink antibiotic stewardship

and guidelines, to promote more systematic, early and rapid microbiological diagnostic

approaches on admission to hospital, and to consider less empirical and more tailored treat-

ments for each patient presentation.

3. Virus- and host-targeted therapies, vaccine development

3.1. Developing novel host-directed therapies

De novo drug development is notoriously a slow, expensive, and uncertain process. Drug

repurposing, i.e., using a drug that has been validated as toxicologically safe and approved for

another indication, represents a potentially time- and cost-effective strategy, especially in the

context of pandemic response. However, this strategy has so far not led to the identification of

any effective prophylactic or therapeutic treatment upon emergence of SARS-CoV-2 [129],

with the exception of dexamethasone [130] and IL6 receptor blockers [131]. Successful drug

repurposing against emerging respiratory viruses will require a better exploration of the drugs’

pharmacological and biodistribution properties and their suitability for lung delivery [132].

Being able to reliably evaluate which molecules are likely or unlikely to treat respiratory infec-

tions within approved therapeutic windows would allow to screen more effectively a larger

proportion of the pharmacopeia. Developing formulations and/or delivery procedures distinct

from the approved ones would minimize but not totally abrogate the benefits of repurposing

over de novo drug design.

Host-directed therapies, which target host proteins essential for the viral life cycle and/or

pathogenesis instead of viral proteins, can in principle provide the advantage of broad-
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spectrum efficacy and reduced antiviral resistance and can rely on the repurposing of approved

drugs [133]. Immunomodulatory therapies hold particular promises for treating severe cases

of influenza disease or COVID-19, which are frequently associated with an excessive and/or

imbalanced release of pro-inflammatory cytokines and chemokines [1,81,134]. Regarding

immunomodulatory treatment of the cytokine storm in severe influenza, published data based

on randomized controlled trials are limited, and the efficiency of immunomodulatory therapy

is still under debate [134]. Various immunomodulatory treatments, including corticosteroids,

interferons, antagonists of the IL-1 or -6 receptors, or Janus kinase inhibitors, have been

assessed clinically in severe COVID-19 patients with contrasting results (reviewed in [135]).

Immunomodulatory drugs can delay viral clearance if administered prematurely and can also

affect the course of tissue repair [83]. Therefore, a major challenge is not only to identify the

most relevant immunomodulatory pathways but also to establish the optimal timing of inter-

vention during the course of the disease. Drugs having immunoregulatory as well as antiviral

activities might show the strongest benefits.

The combination of host-directed and/or conventional antivirals is an additional avenue of

research, as it can potentially result in synergistic effects and prevent antiviral resistance [136–

138]. In a randomized clinical trial on hospitalized adults with COVID-19, the combination of

baricitinib and remdesivir was found to reduce the recovery time and to limit serious adverse

events [139]. However, drug combination therapy remains a challenging approach, as not only

the drugs biological activity but also their pharmacokinetics, biodisponibility, and mode of

delivery have to be addressed in order to optimize synergistic effects.

3.2. Leveraging cutting-edge technologies in structural biology and

computational tools to develop highly potent antivirals

Structural biology plays a major role in drug development. Knowledge of the tridimensional

(3D) structure of a target protein bound with a first ligand provides information that allows to

design chemical modifications in order to improve the affinity of the ligand for the target and

its biological activity, through iterative cycles of costructure determination/chemical optimiza-

tion. Influenza was one of the first infectious diseases for which a rationale structure-based

design of inhibitors led to the marketing of a drug [140]. More than 15 years of development

were required between determination of the viral neuraminidase X-ray structures of IAV in

1983 and influenza B virus in 1992 [141,142] and the Food and Drug Administration (FDA)

approval of the first neuraminidase inhibitors Relenza and Tamiflu in 1999 [143] (Fig 2).

Almost 10 years separate the X-ray structure of the influenza polymerase endonuclease

domain [144] and FDA approval of the endonuclease inhibitor Xofluza in 2018 [145]. A signif-

icant breakthrough occurred in the mid-2010s when new generation detectors enabled a tre-

mendous expansion of the electron microscopy (EM) techniques. Cryo-EM does not depend

on protein crystal formation and can unveil the flexibility inherent to the different conforma-

tional states of large complexes in the sample. As a result, the number of available 3D struc-

tures has been growing explosively, even for large or difficult-to-crystallize proteins such as

membrane proteins: >600 structures of influenza virus proteins have been deposited in the

Protein Data Bank between 2015 and mid-2021 and>1,200 structures of SARS-CoV-2 pro-

teins in only 1.5 year (Fig 2). For instance, cryo-EM has allowed to visualize the conforma-

tional dynamics of IAV polymerase during the complete transcription cycle [146], IAV

hemagglutinin along the process of membrane fusion [147], and SARS-CoV-2 spike protein at

the surface of virions [148], thus increasing the mechanistic understanding of these proteins

and opening new avenues for antiviral strategies. Cryo-EM was used to solve the structure of

several SARS-CoV-2 proteins complexed with ligands (e.g., [149,150]). To date, X-ray
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crystallography and NMR still remain more suitable than cryo-EM for the high-throughput

screening of small molecules libraries, an approach that was recently undertaken to identify

inhibitors of SARS-CoV-2 main protease [151]. The field will benefit from further improve-

ments of cryo-EM in terms of resolution and speed of data acquisition/processing and from

the development of emerging structural biology and microscopy methods that allow to capture

dynamic processes at the sub-nanoscale resolution and, for some, in native conditions

[152,153].

Efforts to push further the current limits of structural biology techniques need to be backed

up by advances in other disciplines, e.g., protein chemistry expertise for sample preparation,

protein-structure prediction tools, and computational chemistry tools. The artificial intelligence

program named AlphaFold represents a considerable leap in accurately predicting the 3D struc-

ture of proteins from their amino acid sequence [154]. Combined with extensive next genera-

tion sequencing, it will guide drug discovery and help understand the biological significance of

amino acid variations, in particular in the context of a viral pandemic. Advanced computational

and machine learning methods should also help improve the performance of in silico docking

programs, whose limitations have been highlighted by the COVID-19 pandemic [155].

3.3. Developing improved vaccines with well-defined correlates of protection

Influenza vaccines have been administered each year since the 1940s to protect against sea-

sonal influenza epidemics. Despite recent advances such as the development of live attenuated

Fig 2. Growing pool of structural data available for influenza viruses and coronaviruses. The number of 3D structures available in the Protein Data Bank

(https://www.rcsb.org, 17 October 2021) for each of the indicated category of viral proteins has been recorded separately for the 1981 to 2014 and the 2015 to 2021

period (the latter corresponding to an extended use of new generation detectors and cryo-EM, gray background). SARS-CoV-2 protein structures were counted

separately (inset on the right). The years when the Relenza, Tamiflu and Xofluza inhibitors were approved by the FDA are indicated. RdRp, RNA-dependent RNA

polymerase: PB1, PB2, and PA proteins of influenza viruses; nsp7, nsp8, nsp10, nsp12, and nsp14 proteins of corona viruses. Proteases: nsp3 and nsp5. �

corresponds to the publication years of the first HA and NA X-ray structure, which preceded by several years their deposition in the PDB. HA, hemagglutinin; NA,

neuraminidase; S, Spike; SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2.

https://doi.org/10.1371/journal.ppat.1010106.g002
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vaccines, current vaccines still show major limitations [156]. It has become a public health pri-

ority to develop next generation universal influenza vaccines capable to provide a more dura-

ble and broader protection, ideally against drifted seasonal viruses as well as against zoonotic

or pandemic viruses of any subtype. Several approaches that target conserved regions of the

virus such as the hemagglutinin stalk, or stimulate T cell–mediated immune responses, are

currently in preclinical development [157,158]. Other strategies to improve vaccine effective-

ness include a better understanding and forecasting of viral evolution, the optimization of

neuraminidase content, the use of novel adjuvants, and the development of more efficient,

nucleic acid–based, vector-based, or recombinant protein–based production platforms

[158,159]. Computation- or structure-based design of the hemagglutinin antigens and nano-

particle display are being used to enchance vaccine immunogenicity [160,161]. The first Phase

I clinical trial of a quadrivalent influenza nanoparticle vaccine candidate was launched by the

National Institute of Health in June 2021 (https://bit.ly/2Ua0Lw3).

In contrast to influenza, no vaccine has ever been approved for the prevention of seasonal

human CoV infection. However, vaccines are widely used to prevent CoV infections in domes-

tic animal species such as cats, swine, cattle, and poultry, although their effectiveness is limited

by a short duration of vaccine-induced immunity and by genetic drifting of the circulating

viral strains [162]. Knowledge gained from CoV veterinary vaccines and the initial develop-

ment of vaccines for SARS-CoV and MERS-CoV, combined with tremendous research efforts,

led to the development, trial, and approval of several safe and effective vaccines against SARS-

CoV-2 within 12 months [1,163]. Along with more traditional vaccine platforms, the mRNA

vaccine platforms from BioNtech/Pfizer and Moderna, previously developed for cancer treat-

ment and viral vaccines (e.g., Zika vaccine), were among the first to reach Phase I clinical trial

and to be approved. mRNA vaccines now appear as a technology of choice in the context of

pandemic response, owing to its simple and flexible manufacturing process and its safety pro-

file [164]. Multiplexed chimeric spike mRNA vaccines could possibly offer broad-range pro-

tection against SARS-like CoV infection [165]. Several companies have started to develop an

mRNA-based influenza vaccine. However, a number of challenges remain to be addressed.

The determinants of mRNA vaccine efficacy and tolerability need to be better understood

[166], while the cost-effectiveness of the manufacturing process and long-term storage stability

still need to be improved [167].

For the ongoing development of universal influenza vaccines and improved COVID-19

vaccines, a key research area is the identification of good immune correlates of protection

(CoP), which might then be used as a proxy of vaccine efficacy. The serum hemagglutination

inhibition (HAI) antibody titer has been largely used as a CoP for influenza vaccines. However,

its relevance and robustness to predict vaccine performance, especially for new universal vac-

cines, are subject to debate. Other potential immune CoP, such as CD8+ and CD4+ T-cell

counts, interferon gamma-secreting cells counts, neuraminidase inhibition titers, nasal IgA or

hemagglutinin-stalk antibodies titers, are currently under investigation [168,169]. In the case

of SARS-CoV-2, epidemiological studies and studies of vaccine-induced immunity in nonhu-

man primates identified neutralizing antibodies as a CoP (e.g., [170,171]). The ongoing large-

scale vaccination campaigns should allow the monitoring of multiple immune readouts and

their analysis for CoP, which hopefully will facilitate the optimization of vaccine dose and

schedule in the future. As with influenza viruses, a global monitoring of genetic and antigenic

changes that occur in circulating SARS-CoV-2 viruses will be required to inform whether

updating of the vaccine is required [172]. Finally, a number of important social issues, includ-

ing vaccine hesitancy, vaccine equity, and access to vaccination in low-to-middle income

countries, still remain to be tackled.
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Conclusions

Although influenza viruses and CoVs differ in many ways, several challenging research issues

are common to both. It is very likely that synergies and cross-fertilizing ideas between influ-

enza and CoV research will occur in the coming years. There is a “challenge in the challenge”

for most of the topics addressed above: the development of physiologically relevant cellular

and animal models (Fig 3). The cell lines that are widely used in influenza and CoV research

(e.g., MDCK, Vero-E6, and A549) bear very little resemblance to the human respiratory epi-

thelium, which can compromise the relevance and applicability of the findings. The use of pri-

mary cells, induced human pluripotent stem cells, and 3D lung-on-a-chip or organoid cultures

should be facilitated and developed, to provide more accurate models for the differentiated

respiratory epithelium or the microanatomy of the lung [173]. Likewise, it is crucial to set up

animal models that mimic more closely the physiopathology in human patients and can pro-

vide reliable information for fundamental research as well as preclinical testing of therapeutic

and vaccine candidates [106,174].

Each of the research topics mentioned above presents a breadth and level of complexity that

call for synergies and multidisciplinary approaches. For instance, progress in understanding

the complexity of airborne transmission will require a multidisciplinary approach that com-

bines virology and clinical medicine with aerobiology, biophysics, chemistry, mathematical

modeling, and engineering. Cooperation will also be required outside the field of life sciences,

e.g., with regulators and manufacturers for the development of novel vaccines and with the

socioeconomics and humanities fields when it comes to vaccine acceptance or to the impact of

human behavior (such as deforestation, intensive farming, consumption and trade of wild ani-

mals, or global traveling) on the risk of zoonotic viral emergences.

Fig 3. Cellular and animal models available for IAV and SARS-CoV-2 infections [174–176]. An estimation of the performance to the criteria indicated

on the left is provided with the following color code: dark blue (very good), light blue (good), orange (poor), red (very poor), gray (not documented), no

color (irrelevant). a All transmission routes including aerosol and direct contact routes. b NHP have been very rarely used in transmission studies; however,

it was reported that H1N1pdm09 influenza viruses can efficiently transmit between marmosets [177]. 2D/3D, two- or three-dimensional; HAE, human

airway epithelium; Hu mice, humanized mice (refers to mice grafted with human immune cells in the case of IAV and to mice grafted with human lung

tissue in the case of SARS-CoV-2); IAV, influenza A virus; NHP, nonhuman primate; SARS-CoV-2, Severe Acute Respiratory Syndrome Coronavirus 2; Tg

mice, transgenic mice.

https://doi.org/10.1371/journal.ppat.1010106.g003
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Finally, the global research ecosystem needs to be strengthened by consolidating and con-

necting to each other existing networks of expertise and by promoting rapid and effective data

sharing through the establishment of flexible platforms and rigorous guidelines.
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