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ABSTRACT

The Protein Ensemble Database (PED) (https://
proteinensemble.org), which holds structural ensem-
bles of intrinsically disordered proteins (IDPs), has
been significantly updated and upgraded since its
last release in 2016. The new version, PED 4.0, has
been completely redesigned and reimplemented with
cutting-edge technology and now holds about six
times more data (162 versus 24 entries and 242 ver-
sus 60 structural ensembles) and a broader represen-
tation of state of the art ensemble generation meth-
ods than the previous version. The database has a
completely renewed graphical interface with an inter-
active feature viewer for region-based annotations,
and provides a series of descriptors of the qualita-
tive and quantitative properties of the ensembles.
High quality of the data is guaranteed by a new sub-
mission process, which combines both automatic
and manual evaluation steps. A team of biocura-
tors integrate structured metadata describing the en-
semble generation methodology, experimental con-
straints and conditions. A new search engine allows
the user to build advanced queries and search all en-
try fields including cross-references to IDP-related
resources such as DisProt, MobiDB, BMRB and SAS-
BDB. We expect that the renewed PED will be useful
for researchers interested in the atomic-level under-
standing of IDP function, and promote the rational,
structure-based design of IDP-targeting drugs.

INTRODUCTION

Valuable mechanistic and functional information can be ob-
tained from protein structures modeled at atomistic reso-
lution (1–3). Due to the growth of experimentally deter-
mined structures deposited in the Protein Data Bank (PDB)
(4), currently there are >160 000 3D structures of macro-
molecules available in the database (4). As structural bi-
ology has mainly focused on determining the structure of
globular proteins until the recent past, the presence of in-
trinsically disordered protein (IDP) regions (IDRs) have
mostly been inferred either from unresolved or proteolyt-
ically digested tails or loops of these globular structures
solved by X-ray crystallography, or from shorter regions
yielding few structural constraints in nuclear magnetic res-
onance (NMR) spectroscopy measurements (5). The de-
pletion of long IDRs (LDRs) in PDB has been known
for a long time, and the tightening of the gap in this re-
gard has only become practical very recently (6). However,
this recent abundance of LDRs is predominantly due to
the context-dependent folding of proteins with conditional
disorder, such as pH sensitivity, PTM-dependent folding,
localization-dependent disorder and folding upon binding
to a partner (7–9).

Although conditionally folded IDRs provide important
structural insights, in-depth understanding of mechanis-
tic details of how IDPs function also requires knowledge
about the dynamic structures in the free state. By virtue of

their extreme conformational dynamics, ensemble descrip-
tion is often applied for structural modeling of IDPs. Con-
formational ensembles are representative sets of conform-
ers reflecting on the structural dynamics of IDPs sampling
the space. Ensemble modeling usually relies on experimen-
tal data originating from NMR spectroscopy (10–13) and
small-angle X-ray scattering (SAXS) data (14–18), Förster
resonance energy transfer (FRET) (19,20) circular dichro-
ism (CD) spectroscopy data (21) or a combination thereof
(22–25). These measurements are then used to define lo-
cal or nonlocal structural constraints for the computational
modeling of the conformational ensemble, such as for the
restraining or reweighting of a pool of statistical random
coils, or of molecular dynamics (MD) trajectories (22,26–
28).

Solving structural ensembles, however, is fraught with un-
certainties, because the number of degrees of freedom is
inherently much larger than the number of experimentally
determined structural restraints. As a result, determining
an ensemble is a mathematically ‘ill-posed’ or ‘underdeter-
mined’ problem that has more than one solution. We don’t
yet know how to select the ‘best’ ensemble from multiple
alternatives, neither can we be sure if an actual ensemble
is a faithful representation of the real physical state of the
IDP/IDR, nor is only a reasonable fit to experiment obser-
vations. To help address these issues, IDP/IDR ensembles
solved at the time were collected and made available in the
dedicated Protein Ensemble database (published as pE-DB
in 2014 (26), renamed as PED in later versions).

This first version was an ambitious attempt to fill the
niche in the deposition of ensembles of fully disordered pro-
teins and proteins with IDRs. At the time of the publica-
tion, it only stored data for a few dozens of ensembles for
a limited set of proteins, which increased very slowly in the
following years. Manual deposition and validation of entry
submissions used to hinder the smooth maintenance and
increment of the database. A lot has happened, however,
in the structural–functional characterization of IDPs/IDRs
since the inception of PED. For example, it has been proven
that structural ensembles can predict independent struc-
tural data (24,26), i.e. they are realistic and do have predic-
tive power. Based on novel, better suited force-fields (29–
32) the computational simulation of IDPs has also signifi-
cantly advanced (33,34). Influential IDP-related databases
have been either updated (e.g. DisProt (35) or MobiDB (36))
or created anew (e.g. MFIB (37) or DIBS (38)). Successful
targeting of IDPs/IDRs by small molecules offers hope for
a new class of effective drugs (39,40). A superposition-free
method for comparing alternative ensembles has also been
worked out (41), and allosteric regulatory mechanisms op-
erating in the heterogeneous ensemble of IDPs/IDRs (mul-
tistery) have been elaborated (42,43). The appreciation of
the importance of structural disorder in the novel field of
liquid–liquid phase separation (LLPS) is on the rise (44) and
persistent structural disorder of phase-separating proteins
even in the condensed state has been reported (45,46). Last,
but not least, many ensembles have been solved (24,47) but
not made publicly available.

This rapid progress in the protein disorder field mandates
a basic upgrade and significant update of PED. To meet this
goal, PED 4.0 was completely redesigned and extended with
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several new functionalities. To set a higher standard for the
quality of data, a new submission process is now carried out
through a web interface that enables automated validation
of the ensemble deposited by the authors and manual cu-
ration steps with the assistance of the database biocurators.
PED is now better cross-referenced with other IDP-related
databases such as BMRB (48), SASBDB (49), DisProt (35)
and MobiDB (36), and has a well-documented RESTful
API for programmatic access, search and download. In all,
the new PED has about six times more data than the previ-
ous version.

PROGRESS

Database structure and implementation

One of the major changes since the previous version is the
whole new deposition process, which includes an automatic
data validation step and a curation step. The validation
has been introduced to standardize the data and improve
its quality by providing a number of structural indicators,
while the manual curation step provides metadata for bet-
ter data accessibility. A team of biocurators standardize the
description of the experimental methodology using terms
from a controlled vocabulary and identify cross-references
to third-party databases. Curators also scan the literature
to collect ensembles that have not yet been deposited into
PED.

In PED, an entry is identified by the PED prefix and 5 dig-
its (e.g. PED00001), which corresponds to an experiment
on a protein (or protein complex), while a PED ensemble
(e.g. PED00001e001) is the set of conformations (or mod-
els) generated to fit the experimental data. Different ensem-
bles generated using the same proteoform (same sequence
construct and PTMs), the same experimental conditions
and the same experimental and computational methodol-
ogy, represent different replicas of the same experiment (al-
ternative solutions to the same set of structural restraints
determined) and are grouped together in the same PED en-
try.

PED also stores conformation weights as provided by the
authors. Weights represent the probability for each confor-
mation to populate the ensemble, however, since these are
not yet standardized and provided only for a limited num-
ber of entries, they have not been considered in the calcu-
lation of ensemble descriptors such as Rg, accessibility and
secondary structure propensities.

The backend of the PED server processes each entry sub-
mission. The server executes a collection of scripts devel-
oped in-house that generate summary statistics (solvent ac-
cessibility, secondary structure populations, radius of gy-
ration and maximum dimension). Secondary structure and
solvent accessibility are calculated by DSSP (50,51), while
MolProbity (52) provides quality descriptors (torsion-angle
outliers, covalent bond-length and angle outliers, beta-
carbon deviations and steric clashes). For each entry, the
pipeline generates a report, which can be used to assess a
submission. Since the same approach is used for all entries,
it is possible to make comparisons across the entire database
and generate meaningful statistics. The report is available
for download as a PDF document for all entries.

Figure 1. PED 4.0 entry statistics. Stacked histogram of models per ensem-
ble for different measurement methods in PED 4.0, binned based on the
number of the consisting conformer models.

Figure 2. Chain compactness of PED 4.0 entries. Radius of gyration of
protein chains plotted against their chain length. Each dot represents a
given chain in a given ensemble. The reference curves (54) represent val-
ues specific for folded proteins (purple), random coils (blue), denatured
proteins (green) and fully extended chains (red). Four long folded pro-
teins (PED00007, PED00010, PED00014 and PED00162) with over 300
residues are omitted, but fit well to the purple trend line.

DATABASE CONTENT

New entries

The number of entries in PED 4.0 has increased six-fold
compared to the previous release. Some entries have been
deposited after literature curation, while others have been
directly provided by the experimentalists who generated
the data (data owners). Previous entries were manually re-
viewed and re-annotated. Old entries that included differ-
ent experiments were split up. The mapping from old to
new identifiers is reported on the website (URL: https://
proteinensemble.org/help#mapping).

For new entries, PED curators focused on biologically
interesting protein regions with conformational ensembles,
or more often, a set of ensembles determined under differ-
ent conditions (different construct or mutant, different pH,
denaturants etc.) or using different types of experimental
datasets and modeling methodology. As sensitivity to con-
ditions is well-known for IDPs, these alternate ensembles
might provide very valuable insights into the conditional
disorder of these proteins (41). Furthermore, multiple en-
sembles for a region measured under very similar condi-
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Figure 3. Example for PED’s Protein page. Protein page P04637 summarizes the human p53 ensembles currently stored in PED for both the N-terminal
and C-terminal disordered region. The feature viewer also integrates intrinsic disorder evidence from DisProt.

tions may highlight the biases in the modeling protocols
and procedures (41). The curation efforts focused primarily
on the submission of larger conformational ensembles (min.
40 conformers for a given protein region) of preferentially
IDRs determined using experimental constraints. The Dis-
Prot database was harnessed to make sure many of the ad-
ditions correspond to bona fide experimentally determined
IDPs/IDRs. This was complemented by an analysis of the
radii of gyration (Rg) of the protein chains.

Statistics

Statistical analysis of the PED entries (Figure 1) shows an
increment in all classes of determination methods and in all
sizes of ensembles (i.e. number of models ranging from a
dozen to thousands). It also highlights that while NMR re-
mains as the most highly represented method used to model

ensembles of usually <100 conformers, other state-of-the-
art methods such as SAXS and smFRET are also repre-
sented in the new dataset. Large ensembles (number of con-
formers >50) determined by SAXS only are absent in PED,
as currently most SAXS-based ensemble modeling tools are
known to represent ensembles through several equivalent
data sets, reducing the number of representative models in
each set to a range of 10–50 (15,53). However, larger ensem-
bles generated by a combination of SAXS, smFRET and
molecular dynamics methods are present.

Protein compactness is often characterized by the Rg as a
function of the length of the polypeptide chain (Figure 2).
The Rg of folded proteins scales with chain length by follow-
ing a scaling law while, trivially, rigid rod-like chains follow
a linear trend. Disordered proteins, however, fall in between
these two extremes due to their propensities to form local
or nonlocal transient secondary (or tertiary) structure ele-
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Figure 4. Example for PED’s Entry page. Entry page is shown for the C-terminal disordered region of p53 in a tetrameric complex with Ca2+-bound S100B
(PED00063). The feature viewer shows chain-specific information, while molecular graphics, Ramachandran maps and Rg distribution are presented below.

ments. Figure 2 shows that the disordered proteins of PED
largely exhibit an Rg ranging from that of random coils to
that of denatured proteins (54) across a wide range of IDP
protein lengths (10–200 residues), implying that the IDPs in
PED represent the known variety of IDP compaction be-
havior. The points lying on the folded line correspond to
globular binding partners present in the ensembles that rep-
resent complexes of IDPs and folded proteins/domains.

NOVEL FEATURES

Now PED 4.0 has both a protein-centric and an experimen-
tal entry-centric view. In the protein-centric view (Protein
page), ensembles from different PED entries are grouped
based on their UniProt accession. In this way, it is possi-
ble to appreciate the differences between ensembles corre-
sponding to the same region on a single page, which may
arise from the use of different techniques and conditions.

The ‘Entry’ page provides details about the experimental
design and shows information on the complete make-up of
the ensemble, i.e. describes if a protein complex includes
nonpeptidic molecules or protein chains not mapping to
UniProt (55).

Figure 3 shows the ‘Protein’ page for human p53 with
multiple available ensembles for both the N-terminal and
C-terminal regions. By clicking on PED identifiers, it is
possible to open the corresponding Entry pages. For ex-
ample, PED00063 (Figure 4) corresponds to the p53 C-
terminal region folding upon binding to S100B. In sharp
contrast, PED00064 (not shown) is a disordered complex
of p53 binding to the CBP bromodomain.

Entry views

The Entry page (Figure 4) provides the title of the exper-
iment, authors, and the corresponding publication when
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available. PED does not include primary data, like struc-
tural constraints, but instead provides cross-references to
primary databases; when available (PDB (4), BMRB (48)
and SASBDB (49)). MobiDB (36) and DisProt (35) are
cross-referenced in order to link evidence about the intrinsic
disorder of the protein region.

For each entry, the PED biocurators generate a detailed
description of the ensemble determination. This description
about experimental and computational protocols is orga-
nized into three different blocks (experimental procedure,
structural ensemble calculation and, if applicable, MD cal-
culations), each including a narrative and a set of terms se-
lected from a controlled vocabulary (CV). The CV ensures
advanced accessibility and searchability and is constantly
updated to capture new developments of the field. The cur-
rent CV is available on the ‘About’ page of the PED website.

The rest of the Entry page provides a graphical view
of structural features of the ensemble. The Feature-Viewer
(56) component summarizes the make-up at the chain
level. It shows the protein construct, solvent accessibility,
secondary-structure populations and the respective vari-
ability (entropy or standard deviation) across ensemble
models. For each chain of the ensemble, the distribution
of the radii of gyration (Rg) is shown as a box plot, along
with the corresponding theoretical values (dashed lines) for
a protein chain of the same length if it was folded, random
coil-like or denatured, and expected Rg value for a rod-like
or fully extended chain of the same length. Torsion angles
are mapped to a Ramachandran plot to evaluate the struc-
tural preferences of the ensemble of the entire protein com-
plex (not chains) and the quality of backbone modeling. A
Quick view on the ensemble conformations (models) is pro-
vided by the MOL* structure viewer (57). The metadata,
ensemble coordinates and validation report are all down-
loadable.

Browse and search

Browse and advance search are implemented on the same
page. A customizable table lists all entries with informa-
tion about the protein, types of measurements, number of
ensembles and conformers. Each row represents a chain
of an ensemble or a fragment in cases when the ensemble
is calculated on an engineered construct. The correspond-
ing UniProt accessions are provided for the majority of the
PED entries. A search box allows the user to look up specific
words in a free-text form or to search PED and all cross-
referenced identifiers. Moreover, it is possible to search all
the terms from the controlled vocabulary and to build com-
plex queries or exploit regular expressions. Simple search is
also available on the Main page, while programmatic search
and data access (or download) is implemented via a REST-
ful API. An extended documentation and examples are pro-
vided on the Help page.

CONCLUSION

After several years of steadily diminishing activity, PED
has finally come to new life. First, it has been trans-
ferred to a stable location that ensures continuous main-
tenance and regular updates, hopefully stimulating the de-

velopment of novel approaches––experimental and com-
putational tools––for developing and depositing ever more
accurate ensembles. Second, it has been significantly ex-
tended in size and has a greatly improved representation
of ensemble-generation methodologies and of functionally
validated ‘bona fide’ IDRs, thanks to a community-wide cu-
ration effort. The number of entries has increased from 24
to 152, whereas the number of ensembles has grown from 60
to 215. In all, the total number of ‘conformers’ stored in the
database now exceed 290,532 PDB models (versus 24 615 in
the old PED).

PED has also been profoundly upgraded in a quest for
better consistency. The most important novel feature is the
implementation of a new deposition process aimed at im-
proving the quality of the entire database. PED now in-
cludes a web submission system. Each deposition is sub-
jected to an automatic validation step, which generates a
report on model quality, and a manual curation step, in
which a submission is manually evaluated and integrated
with structured metadata. The automatic validation step in-
cludes statistics on bond angles and lengths, backbone tor-
sion angles and steric clashes. Whereas statistics on ‘out-
liers’ in the various geometric categories do not entail the re-
jection of deposition, it gives the user the option of selecting
only ensembles that meet certain preset quality criteria. The
biocurator submission interface will soon be made available
to the public with the idea of providing a tool similar to the
OneDep system of the wwPDB (4) in the near future. Con-
tributing new ensembles is highly encouraged, and for that,
information about submission inquiries are available on the
Deposition page.

Additional novel features of PED 4.0 include a com-
pletely new implementation of the website and database
schema. PED stores ensemble weights representing confor-
mational probabilities. Even though these are not taken into
account in the calculation of ensemble properties due to a
lack of standardization, they will be extensively integrated
in the future. The web interface has both a protein- and
experiment-centric view, an advanced search engine and a
well-documented API for programmatic access.

The quick and significant growth of PED is due to the
steady activity of experimentalists generating disordered en-
sembles that accumulated large amounts of data in the past
years, and the perseverance of database curators. This sig-
nals the vitality of the concept of protein disorder and the
strength of the disorder community working on integrat-
ing structural, functional and medical aspects of structural
disorder. We expect that the new database will foster a sig-
nificant conceptual leap in the field. Even today, after more
than two decades of research that has brought solidification
of the basic concept, we still tend to perceive structural dis-
order as a binary classifier, thinking of proteins or protein
regions as either ordered or disordered. Structural disorder,
however, is not a simple, homogeneous structural state, it
rather represents a continuum of states from fully ordered
to fully disordered (58). PED is currently the only database
focused on representing the diversity of IDP protein ensem-
bles, which are not stored in databases focused on the de-
position of primary data (SASDB, BMRB, PDB), creating
an extremely valuable resource for the IDP community. The
analysis of ensembles in PED 4.0 will enable us to better un-

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/49/D

1/D
404/6030232 by guest on 18 N

ovem
ber 2021



D410 Nucleic Acids Research, 2021, Vol. 49, Database issue

derstand determinants of these various sub-states in terms
of compactness, secondary structure content and dynam-
ics, which will definitely help correctly interpret the func-
tional consequences of intrinsic structural disorder. Given
the prevalence of structural disorder in disease (59), the in-
sight expected from structural ensembles in PED 4.0 will
also give a new impetus to efforts of structure-based drug
discovery against IDPs.

The renewal and relocation of the database reflects on
the ambition of the IDP community to actively maintain
the database and, more ambitiously, also to integrate it
into DisProt’s IDP-specific complex ecosystem of databases
and computational tools (60). Significant further develop-
ments in the near future, such as mirroring the database
among multiple locations and contacting journals to rec-
ommend ensemble deposition into PED, are also planned.
Continuous maintenance and implementation of these and
other future plans are ensured by the IDPcentral, MSCA-
RISE IDPfun and ELIXIR IDP community groups. To en-
sure communication with users about recent growth of the
database and new features, PED now will have a more active
social media presence on Twitter with the original @Pro-
teinEnsemble Twitter account.
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