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Abstract. Cellular automata as well as simultaneous assignments in
Python can be understood as the parallel application of local rules to a
grid or an environment that can be easily represented as an attributed
graph. Since the result of such transformations cannot generally be ob-
tained by a sequential application of the involved rules, this situation
infringes the standard notion of parallel independence. An algebraic ap-
proach with production rules of the form L Ð K Ð I Ñ R is adopted
and a condition of parallel coherence more general than parallel indepen-
dence is formulated, that enable the definition of the Parallel Coherent
Transformation (PCT). This transformation supports a generalisation
of the Parallelism Theorem in the theory of adhesive HLR categories,
showing that the PCT yields the expected result of sequential rewriting
steps when parallel independence holds. Categories of finitely attributed
structures are proposed, in which PCTs are guaranteed to exist. These
notions are introduced and illustrated on several detailed examples.

1 Introduction

Graph transformations [28] constitute a natural extension of string rewriting [3]
and term rewriting [2]. Due to the visual and intuitive appearance of their struc-
tures, graph rewrite systems play an important role in the modeling of complex
systems in various disciplines including computer science, mathematics and bi-
ology.

Computing with graphs as first-class citizens requires the use of advanced
graph-based computational models. Several approaches to graph transforma-
tions have been proposed in the literature, divided in two lines of research: the
algebraic approaches (e.g. [28,16]) where transformations are defined using no-
tions of category theory, and the algorithmic approaches (e.g. [19,13]) where
graph transformations are defined by means of the involved algorithms.

In this context of graph transformations by means of production rules, par-
allelism is generally understood as the problem of performing in one step what
is normally achieved in two or more sequential steps. This is easy when these
steps happen to be independent, a situation analogous to the expression x –

z ` 1; y – z ` 2 that could be executed in any order, hence also in parallel,
yielding exactly the same result in each case. If the two steps are not sequen-
tially independent, it may also be possible to synthesize a new production rule



that accounts for the sequence of transformations in one step (see the Concur-
rency Theorem in, e.g., [16]). This parallel rule obviously depends on the order
in which this sequence in considered, if more than one is possible. As long as
parallelism refers to a sequence of transformations, this synthesis can only be
commutative if the order of the sequence is irrelevant, i.e., in case of sequential
independence.

We can also understand parallelism as a way of expressing a transformation
as the simultaneous execution of two (or more) basic transformations. To see
how this could be meaningful even when independence does not hold, let us
consider a transformation intended to compute the next item in the Fibonacci
sequence, given by un`1 “ un´1 ` un. Since it depends on the two previous
items un´1 and un, they need to be saved in two placeholders, say x and y
respectively. As the new value x ` y of y is computed the old value of y must
be simultaneously transfered to x. This can be elegantly specified as a multiple
assignment x, y – y, x ` y in Python, which can be understood as the parallel
evaluation

x – y || y – x` y (1)

It is clear that executing these expressions in sequence in one or the other order
yields two different results, hence they are not independent, and that both results
are incorrect w.r.t. the intended meaning. This notion of parallelism ought to be
commutative in the sense that (1) is equivalent to y – x` y || x – y, hence it
cannot refer to a sequence of transformations.

Of course (1) can be computed by a sequence of expressions using an extra
placeholder (though this breaks the symmetry between the two expressions), or
as a single graph transformation rule (see Section 6). The point of the present
paper is to define the simultaneous application of possibly non independent graph
transformation rules, and to identify the situations in which this is possible.

For the sake of generality a new algebraic approach based on enriched rules is
adopted. The motivation of this extension is demonstrated on a detailed example
in Section 2. In Section 3, the notion of parallel coherence is introduced, that
allows the construction of parallel coherent transformations (PCTs). Section 4
is devoted to the study of PCTs in the theory of adhesive HLR categories. In
Section 5, a family of categories is defined in which PCTs are guaranteed to exist.
In Section 6, all these notions are illustrated on detailed examples, including a
cellular automaton. Related work and concluding remarks are given in Section 7.
The missing proofs can be found in [5,6].

2 Weak Spans

In order to represent the expressions given in (1) as graph transformation rules,
the state of the system must be represented as some form of graph. Since we need
to hold (and compute with) natural numbers, this obviously requires the use of
attributes. A precise definition of attributed graphs is postponed to Section 6,
Example 2. Placeholders x and y may be represented as nodes with an arrow from
x to y, so that placeholder x is identified as the source and y as the sink, hence



no confusion is possible between the two. The contents of the placeholders are
represented as attributes of the corresponding nodes, e.g., 1 2 represents

the state px, yq “ p1, 2q. This state is correct in the sense that px, yq “ pun´1, unq
for some n.

The left-hand side of a production rule corresponding to y – x ` y should

then be the graph L “ u v , where u and v are the contents of placeholders

x and y respectively. The right-hand side should ideally be restricted to R “ ù v ,

to be matched to placeholder y, since y – x ` y has no effect on x; the only
effect is on y’s content, that should be replaced by u`v. In the Double-Pushout

approach [11,18], a rule is expressed as a span L
l
ÐÝ K

r
ÝÑ R, where l specifies

what should be removed and r what should be added. Obviously, the content of

y, and nothing else, has to be removed. This means that K “ u .

But then there is no morphism from K to R, hence if a span rule is used to

express y – x`y then its right-hand side has to be u ù v . Since there must

be a matching from the right-hande side of a production rule to the result of
the transformation, this means that the value of x cannot change and therefore
x – y cannot be applied simultaneously.

It is therefore necessary to express the lack of effect on x in a weaker sense
than as the lack of change (the preservation) of x’s content. Thus, the morphism
r should add the content u ` v to y, and say nothing of x’s content. This is

specified by making r match an intermediate graph I “ into R “ ù v . And

to make sure that I and R both match to placeholder y, a morphism i from I to
K that maps I’s node to K’s sink (that stands for y) is also needed. This leads
to the rule below, where i is specified by a dotted arrow in order to avoid any
ambiguity.

py – x` yq

L K I R

u v u ù v
l i r

We thus see that the part of K that is not matched by I, that can be informally
described as KzipIq, is not modified by this rule but can still be modified by
another rule, while the part of K that is matched by I, i.e., node y, is here
required to be preserved and therefore cannot be removed by another rule.

Similarly, the rule corresponding to the expression x – y should be

px – yq

L1 K 1 I 1 R1

u v v v
l1 i1 r1

where i1 maps the node of I 1 to the source node of K 1, that stands for x.

A general definition can now be ventured, assuming a suitable category C.



Definition 1. A weak span is a diagram L
l
ÐÝ K

i
ÐÝ I

r
ÝÑ R in C. Given an

object G of C and a weak span ρ, a direct transformation γ of G by ρ is a
commuting diagram

L K I R

G D H

PO

l i r

m k

f

k ˝ i

g

n

such that pg, n,Hq is a pushout of pI, r, k ˝ iq; we then write G
γ
ùñ H. The

object H is called the result and D the context of γ. Let ∆pG, ρq be the set of

all direct transformations of G by ρ. For a set R of weak spans, let ∆pG,Rq def
“

Ţ

ρPR∆pG, ρq.
If pf,m,Gq is a pushout of pK, l, kq, then γ is called Weak Double-Pushout.

Let ∆POpG,Rq be the set of Weak Double-Pushouts in ∆pG,Rq.

As ρ is part of any diagram γ P ∆pG, ρq, it is obvious that ∆pG, ρq X
∆pG, ρ1q “ ∅ whenever ρ ‰ ρ1. A span can be seen as a weak span where I “ K
and i “ idK , and then a Weak Double-Pushout is a standard Double-Pushout.

Not all elements of ∆pG, ρq are usually considered as valid transformations.
Many approaches exist to compute the context D from ρ, G and m, e.g. [18,10,8].
Each approach corresponds to a particular subset of ∆pG, ρq that confers a par-
ticular semantics to the production rule ρ. Since the parallel transformation de-
fined in Section 3 applies uniformly to all these approaches, it is simply assumed
that any element of ∆pG, ρq may participate in a parallel transformation.

In the rest of the paper, when we refer to some weak span ρ, possibly indexed
by a natural number, we will also assume the objects and morphisms L, K, I,
R, l, i and r, indexed by the same number, as given in the definition of weak
spans. The same schema will be used for direct transformations and indeed for
all diagrams given in future definitions.

3 Parallel Coherent Transformations

If we assume direct transformations γ1 of G “ 1 2 by px – yq and γ2 of

G by py – x`yq as in Figure 1, we may then refer to the objects and morphisms
involved as I1, I2, D1, D2, i1, i2, etc. As stated above, the node that is matched
by I2, i.e., node y, cannot be removed by another rule, hence must belong to
D1. A parallel transformation is not possible without this condition. This means
that there must be a morphism j12 : I2 Ñ D1 that maps I2’s node to the sink in
D1. Symmetrically, node x matched by I1 must belong to D2 and there must be
a morphism j21 : I1 Ñ D2 that maps I1’s node to the source in D2.

Definition 2. Given an object G of C, two weak spans ρ1 and ρ2, and direct
transformations γ1 P ∆pG, ρ1q and γ2 P ∆pG, ρ2q, we say that γ1 and γ2 are
parallel coherent if there exist two morphisms j21 : I1 Ñ D2 and j12 : I2 Ñ D1



pγ1q

L1 R1

G H1

K1 I1

D1

u v v v

1 2 2 2 2

pγ2q

L2 R2

G H2

K2 I2

D2

u v u ù v

1 2 1 1 3

j12

j21

Fig. 1. The direct transformations γ1 and γ2

such that the following diagram commutes, i.e., f2 ˝j
2
1 “ f1 ˝k1 ˝ i1 and f1 ˝j

1
2 “

f2 ˝ k2 ˝ i2.

L2 K2 I2 R2

G D2 H2

PO

l2 i2 r2

m2

k2

f2

k2 ˝ i2

g2

n2

L1K1I1R1

D1H1

PO

l1i1r1

m1

k1

f1

k1 ˝ i1

g1

n1

j21 j12

A parallel coherent diagram for G is a commuting diagram Γ in C constituted
of diagrams γ1, . . . , γp P ∆pG,Rq for some p ě 1, and morphisms jba : Ia Ñ Db

for all 1 ď a, b ď p.

Since γ1, . . . , γp are commuting diagrams, the commuting property of Γ
amounts to fb˝j

b
a “ fa˝ka˝ia for all 1 ď a, b ď p. Note that for any γ P ∆pG,Rq,

the diagram Γ constituted of γ and morphism j “ k ˝ i is parallel coherent. For
any parallel coherent diagram Γ , it is obvious that γa and γb are parallel coherent
for all 1 ď a, b ď p, and that

G

D1

Dp

Ia
...

f1

fp

j1a

jpa

is a sub-diagram of Γ for all 1 ď a ď p, hence commutes.
The transformation of an object by a parallel coherent diagram Γ may now

be endeavoured. In order to preserve the semantics of the rules, as defined by



G C H
...

...

L1

K1

D1

I1

R1

F1

Lp

Kp

Dp

Ip

Rp

Fp

PO

PO

l1

m1

k1

f1

i1

r1

o1

e1
s1 h1

d1

lp

mp

kp

fp

ip
rp

op

ep sp hp

dp

j11

jpp
j1p

jp1

limit colimit

Fig. 2. A parallel coherent transformation (or PCT)

the direct transformations in Γ , anything that is removed by some direct trans-
formation should be removed from the input G, and everything that is added to
G by some direct transformation should still be added to G.

Definition 3. For any object G of C and Γ a parallel coherent diagram for G, a
parallel coherent transformation (or PCT) of G by Γ is a diagram as in Figure
2 where:

– pC, e1, . . . , epq is a limit of pf1, . . . , fp, Gq; C is called the common context
of the PCT,

– for all 1 ď c ď p, dc : Ic Ñ C is the unique morphism such that for all
1 ď a ď p, jac “ ea ˝ dc,

– for all 1 ď a ď p, psa, oa, Faq is a pushout of pIa, ra, daq,
– ph1, . . . , hp, Hq is a colimit of pC, s1, . . . , spq; H is called the result of the

PCT.

If such a diagram exists we write G
Γ
ùùñ H.

It is easy to see that H can actually be defined as the colimit of the diagram

pC
da
ÐÝ Ia

ra
ÝÑ Raq

p
a“1, hence the objects Fa could be dispensed with.

If p “ 1 then C is isomorphic to D1 and therefore F1 and H are isomorphic
to H1 (the result of the direct transformation γ1). This means that the PCT is a
conservative extension of direct transformations, which is obviously a necessary
property of parallelism.



When p ą 1, the left part of the direct transformations γa are preserved,
but generally not their results Ha. This is not surprising since the results of the
direct transformations cannot generally be preserved in a parallel transformation
(unless they all yield the same result, a rather dull restriction). However, the
result H of a PCT does contain images of the right-hand sides Ra, and more
precisely of pushouts along morphisms ra, as is the case in direct transformations.
Hence the semantics of the individual rules is preserved as much as possible in
PCTs: this is why these rules can be said to be applied in parallel. This also
means that in practice it is not necessary to compute the pushouts Ha.

Example 1. Let us consider the following span in the category of graphs

L K R

x y x xz
l r

where the hooked arrows are canonical injections, x and y are vertices and
the graph arrows are not named since their image by graph morphisms will
be uniquely determined by the image of their adjacent vertices. As mentioned
in Section 2, this span is a weak span ρ with K “ I and i “ idK . The left-hand
side L has exactly two matches in the graph G “ b a c . Consider the
following direct transformation γ1 of G by ρ:

L1 K1 R1

x y x xz

b a c b c bd c

G D1 H1

where the dotted arrows indicate the images of vertices by the morphisms that
are not canonical injections, i.e., m1, k1 and n1. In the left part, the vertex a and
its two adjacent arrows are removed, in the right part a vertex d and an arrow
from d to b are added. This direct transformation is a Sesqui-pushout [10].

Let us next consider the following direct transformation γ2 of G by ρ:

L2 K2 R2

xy x x z

b a c b c b ec

G D2 H2

Let j21 : K1 Ñ D2 defined by j21pxq “ b, then f2˝j
2
1pxq “ b “ f1˝k1pxq. Similarly,

let j12 : K2 Ñ D1 defined by j12pxq “ c, then f1 ˝ j
1
2pxq “ c “ f2 ˝ k2pxq, hence

γ1 and γ2 are parallel coherent. The following diagram is a PCT of G by γ1, γ2.



L1

K1 I1

R1

b a c b c bd c e

x y

x

b c

x

xz

bd c

G

C

H

D1 F1

D2 F2xy

x

b c

x

x z

b ec

L2

K2 I2

R2

Since D1 “ D2 “ C then F1 “ H1 (the result of γ1) and F2 “ H2.

Note that in Definition 3, Γ being given, the existence of a PCT diagram
depends on the existence of the limit C, the pushouts Fa and the colimit H. Since
H may not exist, the existence of a parallel coherent diagram Γ is a necessary
but by no means a sufficient condition for the existence of a PCT. Two direct
derivations may be parallel coherent and still be incompatible, say by writing
two different labels on a node that can take at most one. Parallel coherence only
involves the left-hand parts of the input derivations.

4 PCTs in the Theory of Adhesive HLR Categories

In this section we assume a class of monomorphisms M of C that confers pC,Mq

a structure of adhesive HLR category. The rather long definition of this concept
is not given here; it can be found in [16]. In the results below only the following
properties of adhesive HLR categories are used. (Others are used in the missing
proofs that can be found in [5].)

1. M contains all isomorphisms, is closed under composition and under decom-
position, i.e., if g ˝ f PM and g PM then f PM.

2. There are pushouts and pullbacks along morphisms in M, and M is closed
under pushouts and pullbacks, i.e., if f PM then there is a pushout square

A B

C D

f

f 1

and for all such pushout squares we have f 1 P M; similarly if f 1 P M then
there is a pullback square and f PM for all such squares.



In this theory, the morphisms in production rules are elements of M, and
the direct derivations are Double Pushouts.

Definition 4. An M-weak span ρ is a weak span whose morphisms l, i, r belong
to M. Similarly, an M-span is a span where l, r P M. The associated span ρ̌

of ρ is the diagram L
l
ÐÝ K

r1
ÝÑ R1 where pi1, r1, R1q is a pushout of pI, i, rq.

The associated span always exists and is an M-span by the closure prop-
erties of M. This association is reflected in the following equivalence of direct
derivations.

Lemma 1. For all objects G,H of C and M-weak span ρ, we have

Dγ P ∆POpG, ρq s.t. G
γ
ùñ H iff Dδ P ∆POpG, ρ̌q s.t. G

δ
ùñ H.

Proof. Only if part. Since r PM there exists a pushout pg, n,Hq of pI, r, k ˝ iq,
then n ˝ r “ g ˝ k ˝ i, hence there is a unique morphism n1 : R1 Ñ H such that
n1 ˝ i1 “ n and n1 ˝ r1 “ g ˝ k. By pushout decomposition pg, n1, Hq is a pushout
of pK, r1, kq.

G

L K

D

I R

R1

H

l

i

r

m k

f g

n

i1

r1

n1

If part. Since r PM then r1 PM and hence there exists a pushout pg, n1, Hq of
pK, r1, kq, then by pushout composition pg, n1 ˝ i1, Hq is a pushout of pI, r, k ˝ iq.

[\

This lemma suggests that weak spans can be analyzed with respect to the
properties of their associated spans, on which a wealth of results is known.

Definition 5. For any M-weak span ρ, object G and γ P ∆POpG, ρq, let γ̌ P
∆POpG, ρ̌q be the diagram built from γ in the proof of Lemma 1.

Given M-weak spans ρ1 and ρ2, an object G of C and direct transformations
γ1 P ∆

POpG, ρ1q and γ2 P ∆
POpG, ρ2q, γ1 and γ2 are parallel independent if γ̌1

and γ̌2 are parallel independent, i.e., if there exist morphisms j1 : L1 Ñ D2 and
j2 : L2 Ñ D1 such that f2 ˝ j1 “ m1 and f1 ˝ j2 “ m2.

L2 K2 I2 R2

G D2 H2

l2 i2 r2

m2

k2

f2

k2 ˝ i2

g2

n2

L1K1I1R1

D1H1

l1i1r1

m1

k1

f1

k1 ˝ i1

g1

n1 j1j2



Given direct transformations γ1 P ∆
POpG, ρ1q such that G

γ1
ùùñ H1 and γ2 P

∆POpH1, ρ2q (with H1
γ2
ùùñ H2), γ1 and γ2 are sequential independent if γ̌1 and

γ̌2 are sequential independent, i.e., if there exist morphisms j11 : R11 Ñ D2 and
j12 : L2 Ñ D1 such that f2 ˝ j

1
1 “ n1 and g1 ˝ j

1
2 “ m2.

L2 K2 I2 R2

H1 D2 H2

l2 i2 r2

m2

k2

f2

k2 ˝ i2

g2

n2

R11K1

I1 R1

D1G

L1 r1
1

i11i1

r1

n1

k1

g1

l1

f1

m1 j1
2 j1

1

It is obvious that if γ1 P ∆
POpG, ρ1q and γ2 P ∆

POpG, ρ2q are parallel in-
dependent then they are also parallel coherent, and therefore there is a paral-
lel coherent diagram Γ corresponding to γ1 and γ2 with j21 “ j1 ˝ l1 ˝ i1 and
j12 “ j2 ˝ l2 ˝ i2. In the sequel, such diagram Γ will be written pγ1, γ2q.

Theorem 1 (Independent Parallelism Theorem). For any M-weak spans
ρ1, ρ2, objects G, H1, H and direct transformation γ1 P ∆

POpG, ρ1q such that

G
γ1
ùùñ H1, then

1. (analysis) to any γ2 P ∆POpG, ρ2q such that γ1, γ2 are parallel indepen-

dent and G
pγ1,γ2q
ùùùùùñ H, is associated a γ12 P ∆

POpH1, ρ2q such that G
γ1
ùùñ

H1

γ12
ùùñ H is sequential independent,

2. (synthesis) to any γ12 P ∆
POpH1, ρ2q such that G

γ1
ùùñ H1

γ12
ùùñ H is sequen-

tial independent is associated a γ2 P ∆
POpG, ρ2q such that γ1, γ2 are parallel

independent and G
pγ1,γ2q
ùùùùùñ H,

3. and these two correspondences are inverse to each other up to isomorphism.

This means that a PCT of G by two parallel independent direct transforma-
tions yields a result that can be obtained by a sequence of two direct transforma-
tions, in any order (they are sequential independent). This can be interpreted as a
result of correctness of PCTs w.r.t. the standard approach to (independent) par-
allelism of algebraic graph transformations. In this sense, parallel coherence is a
conservative extension of parallel independence. Note that Theorem 1 generalizes
the standard Parallelism Theorem [16] in two ways: it applies to Weak Double-
Pushouts and, by using PCTs rather than coproducts, it dispenses with the
hypothesis that C has coproducts compatible with M, i.e., such that f ` g PM
whenever f, g PM.



The next result is connected to the notions of derived span of a sequence of
direct transformations, that is a shortcut for the sequence (see, e.g., [11, Theorem
3.6.3]). Similarly, it is possible to give a shortcut for a PCT as defined below.

Definition 6. For all objects G, H and weak-spans ρ, we write G $ρ H if

there exists a diagram γ P ∆POpG, ρq such that G
γ
ùñ H. We write G ,R H if

there exists a parallel coherent diagram Γ with γ1, . . . , γp P ∆
POpG,Rq such that

G
Γ
ùùñ H.

Given a binary relation $ between objects of C and G, H such that G $ H,
we call $-derived rule of G,H any span σ in C such that G $σ H and for all
objects G1, H 1 of C, if G1 $σ H

1 then G1 $ H 1.

Note that if σ is an M-span then it is also an M-weak span since idK is an
isomorphism and hence belongs to M.

By Lemma 1, for every M-weak span ρ and every objects G,H such that
G $ρ H, the associated span ρ̌ is a $ρ-derived rule of G,H. The span ρ̌ does
not depend on G or H, but this is not generally true for derived rules.

Theorem 2. For all sets R of M-weak spans, all objects G, H, all parallel

coherent diagrams Γ and parallel coherent transformations G
Γ
ùùñ H, the M-

span G
f1˝e1
ÐÝÝÝ C

h1˝s1
ÝÝÝÑ H is a ,R-derived rule of G,H.

Hence to any Double-Pushout direct transformation of any object G1 by this
derived rule corresponds a PCT of G1 that yields the same result.

5 Finitely Attributed Structures

The problem of the construction of a category suitable for the example of Sec-
tions 1 and 2 is now addressed, and more generally the construction of categories
where PCTs are guaranteed to exist and can effectively be computed.

This example requires a category of graphs whose nodes can be labelled by
zero or one attribute, namely a natural number. More importantly, we saw in
Section 2 that morphisms l and r of both rules px – yq and py – x` yq map an
unlabelled node to a labelled node, hence the notion of morphism cannot be strict
on labels. This means that the notion of comma category, which is a standard
tool for building categories of attributed structures, cannot be used. Another
candidate is to use the notion of partially attributed structures, see [12], but
the resulting category has few pushouts or colimits. The notion of attributes as
special nodes of so-called E-graphs in [16] would better fit our purpose, but PCTs
may add an uncontrollable number of edges to an attribute. A more convenient
notion of labels as sets of attributes is therefore adopted. This notion encodes
in a natural way partial attribution as empty sets and ensures the existence of
pushouts and pullbacks (see Lemmas 2 and 3).

Another concern is the effective construction of PCTs, hence of finite limits
and colimits, which requires to be scrupulous about the finiteness of all structures



involved. This is particularly important since the attributes belong to infinite sets
(e.g. natural numbers), which means that pullbacks of finite attributed graphs
may require infinitely many nodes. The proofs of this section can be found in
[6].

Definition 7. Let F be a category with pushouts, pullbacks and a pushout-
preserving functor V : F Ñ FinSets, where FinSets is the category of finite
sets. Let A be a category with a functor U : A Ñ Sets. Let Păω : Sets Ñ
Sets be the functor which to every set maps the set of its finite subsets. Let
I : FinSets Ñ Sets be the canonical injective functor. We write E

def
“ I ˝ V

and S
def
“ Păω ˝ U .

A finitely attributed structure is a triple pF,A, fq where F,A are objects in
F ,A respectively and f : EF Ñ SA is a function (a morphism in Sets). A
morphism of finitely attributed structures from pF,A, fq to pG,B, gq is a pair
pσ, αq where σ : F Ñ G is a morphism in F and α : AÑ B is a morphism in A
such that @u P EF,Sα ˝ fpuq Ď g ˝ E σpuq; it is neutral if A “ B and α “ idA.
The identity morphism on pF,A, fq is the morphism pidF , idAq. The composition
of morphisms pσ, αq : pF,A, fq Ñ pG,B, gq and pτ, βq : pG,B, gq Ñ pH,C, hq is

pτ, βq˝pσ, αq
def
“ pτ ˝σ, β˝αq, that is easily seen to be a morphism from pF,A, fq to

pH,C, hq. We denote FinAttrpV,Uq the category of finitely attributed structures.

EF EG EH

SA SB SC

Ď Ď

E σ E τ

Sα S β

f g h

For all v P EG, we write E σ´1pvq
def
“ tu P EF | E σpuq “ vu.

For instance, F can be the category of finite graphs and V be the functor
that maps any finite graph G “ pV,E, s, tq to the direct sum V `E in FinSets,
hence EG is the set of “elements” of G. A can be the category of Σ-algebras for
some signature Σ, and U the functor that maps any Σ-algebra A to its carrier
set, hence SA contains the finite subsets of UA.

Lemma 2. Let pσ, idAq : pF,A, fq Ñ pG,A, gq be a neutral morphism and
pτ, αq : pF,A, fq Ñ pH,B, hq a morphism with the same domain, let pσ1, τ 1, Eq
be a pushout of pF, σ, τq in F , then ppτ 1, αq, pσ1, idBq, pE,B, eqq is a pushout of
ppF,A, fq, pσ, idAq, pτ, αqq, where for all x P EE,

epxq “

˜

ď

vPE τ 1´1pxq

Sα ˝ gpvq

¸

Y

˜

ď

wPEσ1´1pxq

S idB ˝ hpwq

¸

.

Corollary 1. For all integers p ě 1, if sa : C Ñ Fa is a neutral morphism for
all 1 ď a ď p, then there exists a colimit ph1, . . . , hp, Hq of pC, s1, . . . , spq such
that h1, . . . , hp are neutral morphisms.



Contrary to pushouts, the construction of pullbacks has to be restricted to
the case where both morphisms are neutral.

Lemma 3. Let pσ, idAq : pG,A, gq Ñ pF,A, fq and pτ, idAq : pH,A, hq Ñ
pF,A, fq be morphisms and let pE, σ1, τ 1q be a pullback of pσ, τ, F q in F , then
ppE,A, eq, pσ1, idAq, pτ

1, idAqq is a pullback of ppσ, idAq, pτ, idAq, pF,A, fqq, where
for all x P EE, epxq “ g ˝ E τ 1pxq X h ˝ E σ1pxq.

Corollary 2. For all integers p ě 1, if fa : Da Ñ G is a neutral morphism for
all 1 ď a ď p, then there exists a limit pC, e1, . . . , epq of pf1, . . . , fp, Gq such that
e1, . . . , ep are neutral morphisms.

With these constructions and their restrictions on morphisms, only transfor-
mations of finitely attributed structures that preserve the object A in which the
labels are chosen (e.g. the set of natural numbers) can be achieved. This is of
course convenient to the example of Section 2, and could be considered sensible
in practice.

Definition 8. A weak span ρ in FinAttrpV,Uq is neutral if its morphisms l,
i and r are neutral. For any object G, a direct transformation γ P ∆pG, ρq is
neutral if ρ and its morphisms f and g are neutral. Let ∆npG, ρq be the set of
neutral direct transformations of G by ρ.

Note that it is not required of l, i and r to be monomorphisms as in Section 4.

Theorem 3. For any set R of neutral weak spans in FinAttrpV,Uq, for any
object G and parallel coherent diagram Γ where γ1, . . . , γp P ∆npG,Rq, there

exists an object H, unique up to isomorphism, such that G
Γ
ùùñ H.

Proof. Let us prove that a PCT of G by Γ can be constructed (see Definition 3).
By hypothesis the fa’s are neutral for all 1 ď a ď p, hence by Corollary 2 there
exists a limit pC, e1, . . . , epq of pf1, . . . , fp, Gq, unique up to isomorphism. As ra
is neutral, by Lemma 2 there exist pushouts psa, oa, Faq of pIa, ra, daq where the
sa’s are neutral for all 1 ď a ď p, and they are unique up to isomorphism.
By Corollary 1 there exists a colimit ph1, . . . , hp, Hq of pC, s1, . . . , spq, and it is
unique up to isomorphism. [\

A related issue relevant to the Double-Pushout approach is the existence of
pushout complements. Provided that a pushout complement exist in F , it is easy
to compute at least one pushout complement in FinAttrpV,Uq, as seen in the
following result.

Theorem 4. Let pσ, idAq : pF,A, fq Ñ pG,A, gq and pτ 1, αq : pG,A, gq Ñ
pE,B, eq be two morphisms in FinAttrpV,Uq, if the left square below is a pushout
in F then so is the right square in FinAttrpV,Uq, where for all w P EH

hpwq “ pe ˝ E σ1pwqzkpwqq Y
ď

uPE τ´1pwq

Sα ˝ fpuq

with kpwq Ď
ď

vPE τ 1´1˝Eσ1pwq

Sα ˝ gpvq.



F G

H E

pF,A, fq pG,A, gq

pH,B, hq pE,B, eq

σ

σ1

τ τ 1

pσ, idAq

pσ1, idBq

pτ, αq pτ 1, αq

In practice it seems sensible to choose the smallest possible sets for hpwq,
and hence to take kpwq “

Ť

vPE τ 1´1˝Eσ1pwqSα˝gpvq. This result also shows that

FinAttrpV,Uq may not be an adhesive HLR category (where pushout comple-
ments are unique), hence that PCTs exist in a larger class of categories than
those considered in Section 4.

6 Examples

All the necessary tools are now available to develop in detail the example of
Sections 1 and 2.

Example 2. As suggested above, let F be the category of finite graphs and A be
the category of Σ-algebras, where Σ “ t`u and ` is a binary function symbol.
Among the objects of A only the standard Σ-algebra N and the algebra of Σ-
terms on the set of variables tu, vu, here denoted T , need to be considered. The
objects pF,A, fq of FinAttrpV,Uq will be depicted as graphs indexed by A, and
since the attributes of nodes will only be ∅ or singletons1, and the attributes of
arrows always ∅, nodes will be represented by circles containing either nothing
or an element of A (as in Section 2). The morphisms pσ, αq will only be specified
as α since the graph morphism σ from the domain to the codomain’s graphs will
either be unique or specified by a dotted arrow (except for the j morphisms).
Let m : T Ñ N be the morphism in A such that mpuq “ 1 and mpvq “ 2.

The finitely attributed graph G “ 1 2
N

corresponds to a correct state,

and the transformations γ1 and γ2 of Figure 1 can be interpreted as diagrams
in FinAttrpV,Uq. They are obviously parallel coherent, hence a PCT of G by
tγ1, γ2u can be constructed, as illustrated in Figure 3 top. The pushouts and
pullbacks are computed as in Lemmas 2 and 3. The result of this transformation

is the finitely attributed graph 2 3
N

that corresponds to a correct state.

Observe that these rules (weak spans) have the same left-hand side L. The
generality of the algebraic approach thus allows us to apply both rules to L,
which again yields parallel coherent direct transformations and hence the PCT
given in Figure 3 bottom (all morphisms are labelled by idT , hence are omitted,
as are dotted arrows since they are the same as above). From this PCT the
following derived rule can be extracted, which describes the PCT as a single
graph transformation rule, already mentioned in Section 1. Note however that
Theorem 2 has been proven in the theory of adhesive HLR categories and not
in FinAttrpV,Uq.

1 This property is not generally true, but happens to be true in this example.



1 2
N N

2 3
N

u v
T

v
T

2
N

T

v
T

2
N

u v
T

u
T

1
N

T
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Fig. 3. Two parallel coherent transformations
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idT idT

Another important class of examples is provided by cellular automata, where
the states of cells at a given generation are computed in parallel from the states
of the previous generation. The local transitions may not be independent from
each other, as the following example illustrates.

Example 3. The Hex-Ulam-Warburton automaton, see [22], has the same rule as
the Ulam-Warburton automaton, namely that a new cell is born if it is adjacent
to exactly one live cell, but it grows in the hexagonal grid. The first generations
are depicted in Figure 4, and give rise to nice fractal structures as shown in [22].

The six transitions that yield Generation 1 and the 24 that yield Generation
3 are not independent since they cannot be obtained sequentially. In contrast,



Fig. 4. Generations 0, 1, 2 and 3 of the Hex-Ulam-Warburton automaton

the 6 transitions that yield Generation 2 are independent and can be produced
in any order.

In this framework the dead cells are labelled by a singleton, say t0u (repre-
sented by ), live cells by another singleton, say t1u (represented by ), and
cells labelled by ∅ (represented by ) are also needed, hence let A be the cate-
gory with one object t0, 1u and its identity morphism (all morphisms of finitely
attributed structures are therefore neutral). Assuming for F a category of fi-
nite hexagonal grids where morphisms map adjacent cells to adjacent cells (or
equivalently, a morphism is a translation followed by a rotation of kπ

3 for some
k P Z6), the state transitions can be represented by the following weak span

l i r

where i maps the cell of I to the center cell of K. There are exactly 6 matchings
m1, . . . ,m6 of L in Generation 0, centered on the 6 cells adjacent to the live
cell and rotated by kπ

3 for k “ 0, . . . , 5 respectively. Hence there are 6 direct
transformations γ1, . . . , γ6 (not depicted) of Generation 0 that yield the PCT in
Figure 5 (where only the matchings m1 and m6 are depicted).

Note that morphism j61 maps the cell of I to the dead cell (not the empty
cell) of D6 adjacent to the east border of its live cell, and similarly j16 maps the
cell of I to the cell of D1 adjacent to the south east border of its live cell, which
proves that the pair γ1, γ6 is parallel coherent, and for reasons of symmetry the
diagram constituted of γ1, . . . , γ6 and the morphisms jba is parallel coherent.

Cellular automata are models of computation that involve infinite cells (lo-
cated on an infinite grid Zd) and each configuration involves infinite transitions.
Representing such transformations by means of PCTs implies infinite parallel
coherent diagrams. It is of course possible to extend Definition 3 accordingly
(see [1, 11.3] for the general definition of a limit). It would then be easy to prove
that cellular automata can be represented by PCTs, with a single production
rule (see also [4, Theorem 6.3]).

A similar idea has been proposed in [25] by using edge-labelled graphs and
rules with positive context where the state of cells are encoded by the label
of loops. Rules with positive context seem very close to weak-spans, the only
difference is the way direct transformations are defined. We consider here only
the DPO approach.



...
...

m1

m6

j11

j66
j16

j61

Fig. 5. The parallel coherent transformation of Generation 0

Definition 9. A rule with positive context (or PC-rule) is a diagram

P
p
ÐÝ L

l
ÐÝ K

r
ÝÑ R

in C. Given an object G of C and a PC-rule π, a direct transformation of G by
π is a commuting diagram

P L K R

G D H

PO PO

lp r

m1 km

f g

n

One benefit of PC-rules is that they can be seen as standard span rules
together with a very simple form of positive application condition, for which
a wealth of results are known, see, e.g., [16, chapter 7]. However, the positive
context P may prevent a pushout complement to exist, as we now illustrate.

Example 4. Consider the following weak span

x

y

z

x z x x



that deletes y (and its two adjacent arrows) and preserves x, leaving z to be
possibly deleted by another rule. The corresponding PC-rule should be

P L

K Rx

y

z x

y
x x

since the deletion of y is enforced by the middle morphism. But this PC-rule
can only be applied to a graph G that has an arrow leaving the node matched
to y, which therefore cannot be deleted according to the gluing condition (see
e.g. [16]) by which nodes can only be deleted if all adjacent arrows are explicitly
deleted. In fact, this PC-rule cannot by applied to P with the matching idP (for
lack of a pushout complement), a problem that never happens with weak-spans,
nor indeed with spans.

We therefore see that PCTs generalize cellular automata by allowing not
only to modify the state of cells but also their neighborhood frame, and also to
delete, merge, create cells, and even to clone cells, as we now illustrate.

Example 5. In the previous examples the morphisms involved in weak spans
are always monomorphisms. Non injective morphisms can be used for cloning
vertices, and this can also be parallelized as is now illustrated. Let γ1 be the
following direct transformation,

L1

K1 I1 R1

G

D1 H1

x y z x

y

y1
z

y

y1

y

y1

a b c a
b

b1
c a

b

b1
c

y1
ÞÑ y

b1
ÞÑ b

where canonical injections are extended by the indicated function, e.g., l1pxq “ x,
l1pyq “ y, l1pzq “ z and l1py

1q “ y. This transformation is a Sesqui-pushout, see

[10]: D1 is the final pullback complement of G
m1
ÐÝÝ L1

l1
ÐÝ K1, which means that

it is the largest graph such that the left square is a pullback.

Let γ2 be the following direct transformation of G.



L2
K2 I2 R2

G D2 H2

x y

x

x1
y

x

x1

x

x1

a b c

a

b c

a1

a

b c

a1

x1
ÞÑ x

a1
ÞÑ a

It is easy to see that there is no morphism j1 : L1 Ñ D2 such that f2 ˝ j1 “ m1,
hence γ1 and γ2 are not parallel independent. But they are parallel coherent: let
j21 : I1 Ñ D2 be defined by j21pyq “ j21py

1q “ b, and let j12 : I2 Ñ D1 be defined
by j12pxq “ j12px

1q “ a, we have f2 ˝ j
2
1 “ f1 ˝ k1 ˝ i1 and f1 ˝ j

1
2 “ f2 ˝ k2 ˝ i2. A

PCT can therefore be built from γ1, γ2, j
2
1 , j

1
2 . Since I1 “ R1 and r1 “ idI1 , then

o1 “ d1, F1 “ C and s1 “ idC . Similarly s2 “ idC and therefore H “ C; the
result of the PCT is the common context and is easy to compute as the pullback
of pf1, f2, Gq.

G

C

D1

D2

a b c

a
b

b1
c

a

b c

a1

a

a1

b

b1
c

b1
ÞÑ b

a1
ÞÑ a

a1
ÞÑ a

b1
ÞÑ b

We therefore see that the cloning of a performed by one rule and the cloning
of b performed by the other rule can be performed in parallel by means of a
PCT.

We also see that, with j2 : L2 Ñ D1 defined by j2pxq “ a and j2pyq “ b we
have f1 ˝ j2 “ m2. This means that the second rule can be applied to the result
H1 of γ1; this yields a direct transformation γ12. The reader may check that the
result of γ12 is exactly the result of the PCT. In this sense, this PCT yields a
correct result.



7 Conclusion and Related Work

Parallel graph rewriting has already been considered in the literature. In the
mid-seventies, H. Ehrig and H.-J. Kreowski [17] tackled the problem of parallel
graph transformations and introduced the notion of parallel independence. This
pioneering work has been considered for several algebraic graph transformation
approaches, see [15] as well as the more recent contributions [7,26,25]. At almost
the same period, parallel graph transformations has been used as an extension
of L-systems [29,31] as was proposed in, e.g., [21]. This stream of work departs
drastically from the present one, where parallel derivations are not meant to be
sequentialized.

In [27, chapter 14], parallel graph transformations have been studied in order
to improve the operational semantics of the functional programming language
CLEAN [20], where parallelism is considered under an interleaving semantics of
parallelism. Such is the case of other frameworks [14,25,24] where massive parallel
graph transformations are defined in order to simulate sequential rewriting.

Non independent parallelism has been considered in the Double-Pushout ap-
proach, see e.g. [30] where rules can be amalgamated by agreeing on common
deletions and creations. This approach is formulated on span rules where the
notion of parallel coherence loses much of its expressive power. Besides, amal-
gamation may not preserve the semantics of the rules that are amalgamated, in
the sense that an item that should be deleted according to an input rule and a
matching may not be deleted by an amalgamated rule.

In [23], a framework based on the algebraic Single-Pushout approach has
been proposed where conflicts between parallel transformations are allowed but
requires the user to solve them by providing the right control flow.

The present work stems from [4] where an algorithmic framework is proposed
for rule-based deterministic parallel transformations of graphs whose vertices and
arrows are mapped to sets of attributes. The rules are triples pL,K,Rq whereK is
a subgraph of L and the intersection of L and R (that stands for the object I in a
weak span) is a subgraph of K. Parallel coherence is replaced with a more general
effective deletion property that distinguishes graph items (vertices and arrows)
from attributes. It is shown that every cellular automaton can be represented by
a single rule and a class of infinite graphs that correspond to configurations of the
automaton (where cells are vertices attributed with a state), so that the parallel
transformations of these graphs is the transition function of the automaton.

The introduction of the notion of weak span is key in our contribution which
gives a new insight in the study of parallel graph transformation. Particularly,
the object D in Definition 1 could be constructed following different algebraic
methods such as DPO [18] or SqPO [10]. Extension to recent approaches such as
AGREE [8] or PBPO [9] is rather straightforward. This opens the possibility to
integrate, in one parallel step, rules written in different approaches. Future work
include further analysis of PCTs and particularly the development of dedicated
verification techniques.
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