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Abstract. We define two graph transformations, one by parallelizing
graph rewrite rules, the other by taking quotients of graphs. The former
consists in the exhaustive application of local transformations defined
by graph rewrite rules expressed in a set-theoretic framework. Com-
pared with other approaches to parallel rewriting, we allow a substantial
amount of overlapping only restricted by a condition called the effective
deletion property. This transformation can be reduced by factoring out
possibly many equivalent matchings by the automorphism groups of the
rules. The second transformation is based on the use of equivalence rela-
tions over graph items and offers a new way of performing simultaneous
merging operations. The relevance of combining the two transformations
is illustrated on a running example.

1 Introduction

Graph structures play an important role in the modeling and construction of
complex systems in various disciplines including computer science, biology, chem-
istry or physics, as they provide natural and concise representation of many
data structures. Computing with graphs as first-class citizens requires the use
of advanced graph-based computational models. In contrast to term rewriting
[2], there are different ways, in the literature, to define graphs (e.g., simple or
multiple graphs, hyper-graphs, attributed graphs, etc.) as well as their transfor-
mations, see, e.g., [13, 15, 4].

In this paper, we are interested in parallel transformations of graphs which
yield deterministic computations. There are many situations where simultane-
ous graph transformations occur in practice such as social networks dynamics,
cell-phones connections, cellular automata or biological processes such as plant
growth. The need of using parallel graph transformations has been pointed out
since the 70’s, see e.g., [14, 17]. The main novelty of our proposal is twofold: first,
overlapping transformations can be handled in parallel under a suitable condi-
tion called the effective deletion property. This new condition makes it possible
to fire simultaneously two (or more) rules with a mild form of disagreement in
the sense that one rule can delete an item (i.e., node, arrow or attribute) while
this is not required by another rule. The second novelty of the paper consists
in proposing graph equivalences to formally describe parallel merging of graph



items or attributes’ expression evaluations. Furthermore, we introduce the no-
tion of automorphism groups associated to graph rewrite rules which induce a
substantial improvement of simultaneous graph transformations.

To motivate our purpose and to illustrate the introduced notions, we consider
a running example borrowed from the rules defining mesh refinements [1]. In the
following rule rm, a triangle is refined into four smaller triangles. Notice that
this example does not show all the expressiveness of the rules we consider but
illustrates sufficiently the investigated concepts.

rm :
‚ ‚

‚

Ñ

‚ ‚

‚

‚ ‚

‚

This geometric rule specifies a sequence of mesh refinements as depicted below :

‚ ‚

‚

G0

Ñ

‚ ‚

‚

‚ ‚

‚

G1

Ñ

‚ ‚

‚

‚ ‚

‚

‚ ‚

‚

‚ ‚ ‚ ‚

‚ ‚

G2

Ñ ¨ ¨ ¨

In this paper, we wish to view mesh refinement as a transformation of graphs,
and to propose methods that could achieve this purpose. One obvious point is
that rm has to be applied simultaneously to every triangle subgraph of Gi to
obtain Gi`1. However, if rule rm is applied sequentially, say, at the center triangle
subgraph of G1, we get :

‚ ‚

‚

‚ ‚

‚

G1

Ñ

‚ ‚

‚

‚ ‚

‚

‚

‚ ‚

G12

then it is no longer possible to obtain G2 from G12 since the side subgraph
triangles of G1 have been modified and cannot be matched anymore by the left-
hand side of the rule rm. In other words, the matchings of rm inG1 are not parallel
independent. We therefore need to define a general parallel transformation that
may yield a result unreachable by sequential rewriting. This will be achieved in
Sections 5 and 6.

Before that, we start by introducing the considered definition of attributed
graphs in Section 2, together with convenient notations. A set-theoretic frame-
work is developed starting from Section 3 that will enable us to define graph
transformations by an algebraic expression (Definition 6). Section 4 is dedicated
to defining the notion of rewrite rules, together with their matchings. In Sec-
tion 5, the general parallel graph transformations are defined and a central notion



of effective deletion property of sets of matchings is exposed, which guarantees
that graph objects are consistently deleted during the transformation. Section 6
is dedicated to a particular parallel rewrite relation where parallel matchings are
considered up to automorphisms, based on a notion of automorphism groups of
the considered rules. This section uses notions borrowed from group theory. In
Section 7, we introduce the notion of graph transformation as quotient graphs.
This is not rule-based but allows one to write fancy definitions of merge actions
over graphs that cannot be expressed with the rules above. Finally, related work
and concluding remarks are given in Section 8. These transformations are all
illustrated on the example of rule rm in quite some detail. The missing proofs
can be found in [5].

2 Preliminaries

We assume a many-sorted signature Σ and a set V of variables, disjoint from Σ,
such that every variable has a Σ-sort. For any finite X Ď V , T pΣ,Xq denotes
the algebra of Σ-terms over X.

An attributed graph (or graph for short) G is a tuple p 9G, ~G, Ǵ, G̀,AG, G̊q

where 9G, ~G are sets, Ǵ, G̀ are the source and target functions from ~G to 9G,
AG is a Σ-algebra and G̊ is an attribution of G, i.e., a function from 9G Y ~G to
PptAGuq (the carrier set tAGu of AG is the disjoint union of the carrier sets of

the sorts in AG). We assume that 9G, ~G and tAGu are pairwise disjoint; their
elements are respectively called vertices, arrows and attributes. G is unlabelled
if G̊pxq “ ∅ for all x P 9G Y ~G, it is finite if the sets 9G, ~G and G̊pxq are finite.

The carrier of G is the set tGu
def
“ 9GY ~GY tAGu.

A graph H is a subgraph of G, written H C G, if the underlying graph
p 9H, ~H, H́, H̀q of H is a subgraph of G’s underlying graph (in the usual sense),

AH “ AG and @x P 9H Y ~H, H̊pxq Ď G̊pxq.
A morphism α from graph H to graph G is a function from tHu to tGu such

that the restriction of α to 9H Y ~H is a morphism from H’s to G’s underlying
graphs (that is, Ǵ ˝ α “ α ˝ H́ and G̀ ˝ α “ α ˝ H̀, this restriction of α is
called the underlying graph morphism of α), the restriction of α to tAH u is a Σ-

homomorphism from AH to AG, denoted α̊, and @x P 9HY ~H, α̊˝H̊pxq Ď G̊˝αpxq.
This means that α is an isomorphism if and only if α is a bijective morphism
and α´1 is a morphism, hence if and only if the underlying graph morphism of
α is an isomorphism, α̊ is a Σ-isomorphism and α̊˝ H̊ “ G̊˝α. We write H » G
if there exists an isomorphism from H to G. For all F C H, the image αpF q
is the smallest subgraph of G w.r.t. the order C such that α|

tF u
is a morphism

from F to αpF q.
If the underlying graph morphism of α is injective then α is called a matching.

Note that the Σ-homomorphism α̊ need not be injective.
Given two attributions l and l1 of G we define lzl1 (resp. l X l1, l Y l1) as the

attribution of G that maps any x to lpxqzl1pxq (resp. lpxqX l1pxq, lpxqY l1pxq). If l
is an attribution of a subgraph H C G, we extend it implicitely to the attribution
of G that is identical to l on 9H Y ~H and maps any other x to ∅.



3 Joinable Graphs

In order to define parallel rewrite relations on graphs, it is convenient to join
possibly many different graphs that have a common part, i.e., that are joinable.
As a matter of fact, this notion also allows a simple definition of graph rewrite
rules, and is crucial in defining the automorphism groups of these rules. We start
with a simpler notion of joinable functions.

Definition 1 (joinable functions). Two functions f : D Ñ C and g : D1 Ñ
C 1 are joinable if @x P D XD1, fpxq “ gpxq. Then, the meet of f and g is the
function fNg : DXD1 Ñ CXC 1 that is the restriction of f (or g) to DXD1. The
join f O g is the unique function from DYD1 to C YC 1 such that f “ pf O gq|D
and g “ pf O gq|D1 .

For any set I and any I-indexed family pfi : Di Ñ CiqiPI of pairwise joinable
functions, let

b
iPI fi be the only function from

Ť

iPI Di to
Ť

iPI Ci such that
fi “

`b
iPI fi

˘

|Di
for all i P I.

If S and T are sets of functions, let S O T
def
“ tf O g | f P S, g P T u and

S ˝ T
def
“ tf ˝ g | f P S, g P T u, provided these operations can be applied. If f is

a function, let f ˝ T
def
“ tfu ˝ T .

In particular, functions with disjoint domains are joinable (e.g. 9α and ~α), and
every function is joinable with itself: f Of “ f Nf “ f . More generally, any two
restrictions f |A and f |B of the same function f are joinable, f |AN f |B “ f |AXB
and f |A O f |B “ f |AYB . Conversely, if f and g are joinable then each is a
restriction of f O g.

It is obvious that these operations are commutative. On triples of pairwise
joinable functions, they are also associative and distributive over each other.

Definition 2 (joinable graphs). Two graphs H and G are joinable if AH “

AG, 9H X ~G “ ~H X 9G “ ∅, and the functions H́ and Ǵ (and similarly H̀ and G̀)
are joinable. We can then define the graphs

H [G
def
“ p 9H X 9G, ~H X ~G, H́ N Ǵ, H̀ N G̀, AH , H̊ X G̊ q,

H \G
def
“ p 9H Y 9G, ~H Y ~G, H́ O Ǵ, H̀ O G̀, AH , H̊ Y G̊ q.

Similarly, for any set I, any I-indexed family of graphs pGiqiPI that are pairwise
joinable, and any Σ-algebra A such that A “ AGi

for all i P I, let
ğ

iPI

Gi
def
“ p

ď

iPI

9Gi,
ď

iPI

~Gi,
j

iPI

Ǵi,
j

iPI

G̀i, A,
ď

iPI

G̊i q.

It is easy to see that these structures are graphs: the sets of vertices and
arrows are disjoint and the adjacency functions have the correct domains and
codomains. If I “ ∅ the chosen algebra A is generally obvious from the context.
Note that if H and G are joinable then H[G “ G[H C H C H\G “ G\H.
Similarly, if the Gi’s are pairwise joinable then @j P I, Gj C

Ů

iPI Gi. We also
see that any two subgraphs of G are joinable, and that H C G iff H [G “ H iff
H\G “ G. As above, on triples of pairwise joinable A-graphs, these operations
are associative and distributive over each other.



Definition 3. For any graph G, sets V , A and attribution l, we say that G is
disjoint from V,A, l if 9G X V “ ∅, ~G X A “ ∅ and G̊pxq X lpxq “ ∅ for all

x P 9GY ~G.
We write GzrV,A, ls for the largest subgraph of G (w.r.t. C) that is disjoint

from V,A, l.

This provides a natural way of removing objects from an attributed graph.
It is easy to see that GzrV,A, ls always exists (it is the union of all subgraphs of
G disjoint from V,A, l), hence rewriting steps will not be restricted by a gluing
condition as in the Double-Pushout approach (see [13]).

4 Rules

We consider rules with three joinable graphs L, K and R as depicted below.

L[RKL R

The semantics of such rules is defined in Section 5. Informally, L shall be
matched in the input graph G, the region LzK (the items matched by L but not
by K) shall be removed from G, and the region RzL shall be added in order to
obtain an image of R in the output graph.

Definition 4 (rules, matchings). For any finite X Ď V , we call pΣ,Xq-
graph a finite graph G such that AG “ T pΣ,Xq. We define the set of variables
occurring in a pΣ,Xq-graph G as

VarpGq
def
“

ď

xP 9GY~G

˜

ď

tPG̊pxq

Varptq

¸

,

where Varptq is the set of variables occurring in t.
A rule r is a triple pL,K,Rq of pΣ,Xq-graphs such that L and R are joinable,

L[R C K C L and VarpLq “ X (see Remark 1 below). The rule r is standard
if L[R “ K.

A matching µ of r in a graph G is a matching from L to G such that

µ̊pL̊pxqzK̊pxqq X µ̊pK̊pxqq “ ∅ (1)

(or equivalently µ̊pL̊pxqzK̊pxqq “ µ̊pL̊pxqqzµ̊pK̊pxqq) for all x P 9K Y ~K. We
denote M pr,Gq the set of all matchings of r in G (they all have domain tLu).

We consider finite sets R of rules such that @r, r1 P R, if pL,K,Rq “ r ‰

r1 “ pL1,K 1, R1q then 9L Y ~L ‰ 9L1 Y ~L1, so that tLu ‰ tL1u hence M pr,Gq X
M pr1, Gq “ ∅ for any graph G; we then write M pR, Gq for

Ţ

rPR M pr,Gq. For
any µ P M pR, Gq there is a unique rule rµ P R such that µ P M prµ, Gq, and its
components are denoted rµ “ pLµ,Kµ,Rµq.



Remark 1. If X were allowed to contain a variable v not occurring in L, then
v would freely match any element of AG and the set M pr,Gq would contain as
many matchings with essentially the same effect. Note that matchings are only
injective on graph items (vertices and arrows), so that distinct variables may
match the same attribute, as is the case in term rewriting. However, condition
(1) restricts the possible matchings in order to distinguish the attributes intended
for deletion (those matched by L̊pxqzK̊pxq) from those that are not (matched by
K̊pxq).

Also note that VarpRq Ď VarpLq, R and K are joinable and R[K “ L[R.
The fact that K is not required to be a subgraph of R allows the possible deletion
by other rules of data matched by K but not by R, see Section 5.

Example 1. Let us consider the rule given in the introduction. It could be defined
as the standard rule rm “ pLm,Km,Rmq with

Lm “ h

f

g

‚
x

‚
y

‚
z

Km “

‚
x

‚
y

‚
z

Rm “

g2

f3

h1

h2

f1

g3 h3

f2

g1

‚
x

‚
y

‚
z

‚
x1

‚
y1

‚
z1

We assume, for the rule above, that all attributes are empty, hence Lm, Km

and Rm are pΣ,∅q-graphs. Each edge f , g, h represents a pair of opposite arrows;
for sake of simplicity they will be treated as single objects. Note that rm is a
standard rule. A matching µ of rm in the graph

G0 “ AB

BC

AC

‚
A

‚
B

‚
C

is given by µ “ tpx,Aq, py,Bq, pz, Cq, pf,BCq, pg,ACq, ph,ABqu. The Σ-algebra
AG0 and the Σ-morphism µ̊ are not relevant here, we can choose T pΣ,∅q and
its identity morphism (though other algebras and attributes will be adopted
later).

A rewrite step may involve the creation of new vertices in a graph, corre-
sponding to the vertices of a rule that have no match in the input graph, i.e.,
those in 9Rz 9L (or similarly may create new arrows). These vertices should really
be new, not only different from the vertices of the original graph but also differ-
ent from the vertices created by other transformations (corresponding to other
matchings in the graph). This is computationally easy to do but not that easy to
formalize in an abstract way. We simply reuse the vertices x from 9Rz 9L by index-
ing them with any relevant matching µ, each time yielding a new vertex px, µq
which is obviously different from any new vertex px, νq for any other matching
ν ‰ µ, and also from any vertex of G since µ depends on G.



Definition 5 (graph GÒµ and matching µÒ). For any rule r “ pL,K,Rq,
graph G and µ P M pr,Gq we define a graph GÒµ together with a matching µÒ of
R in GÒµ. We first define the sets

9GÒµ
def
“ µp 9RX 9Kq Z pp 9Rz 9Kq ˆ tµuq and ~GÒµ

def
“ µp~RX ~Kq Z pp~Rz ~Kq ˆ tµuq.

Next we define µÒ by: µ̊Ò
def
“ µ̊ and for all x P 9R Y ~R, if x P 9K Y ~K then

µÒpxq
def
“ µpxq else µÒpxq

def
“ px, µq. Since the restriction of µÒ to 9R Y ~R is

bijective, then µÒ is a matching from R to the graph

GÒµ
def
“ p 9GÒµ, ~GÒµ, µÒ ˝ Ŕ ˝ µÒ

´1, µÒ ˝ R̀ ˝ µÒ´1, AG, µ̊Ò ˝ R̊ ˝ µÒ
´1
q.

Example 2. Following Example 1, we get 9G0Òµ “ tA,B,C, px
1, µq, py1, µq, pz1, µqu,

~G0Òµ “ tpf1, µq, . . . , ph3, µqu, µÒ “ tpx,Aq, py,Bq, pz, Cq, px
1, px1, µqq, py1, py1, µqq,

pz1, pz1, µqq, pf1, pf1, µqq, . . . , ph3, ph3, µqqu. The graphG0Òµ is obtained as µÒpRmq.

By construction µ and µÒ are joinable and µN µÒ is a matching from R[K
to µpR[Kq. It is easy to see that the graph G and the graphs GÒµ are pairwise
joinable.

5 Parallel Rewriting

For any set M Ď M pR, Gq of matchings in a graph G we define below how to
rewrite G by applying simultaneously the rules associated with matches in M .

Definition 6 (graph G‖M). For any graph G, set M Ď M pR, Gq and match-
ing µ P M pR, Gq, let

G‖M
def
“ GzrVM ,AM , `M s \

ğ

µPM

GÒµ where

VM
def
“

ď

µPM

µp 9Lµz 9Kµq, AM
def
“

ď

µPM

µp~Lµz~Kµq and `M
def
“

ď

µPM

µ̊ ˝ p̊LµzK̊µq ˝ µ
´1.

If M is a singleton tµu we write G‖µ for G‖M , Vµ for VM , etc.

Note that `M is only defined on
Ů

µPM µpKµq; so `M is implicitly extended
to the suitable domain by mapping other vertices and arrows to ∅. G‖M is
guaranteed to be a graph since the \ operation is only applied on joinable
graphs.

The definition of G‖M bears some similarity with the double pushout di-
agram (see [13]), where GzrVM ,AM , `M s replaces the pushout complement of
G and

Ů

µPM GÒµ its pushout with the right hand side of the rule. But we are
not restricted by the gluing condition, and since we use a set of matchings the
pushout is actually a colimit. The case where M is a singleton defines the clas-
sical semantics of one sequential rewrite step.



It is obvious that G‖M contains images of the right hand sides of all the
rules involved (through the elements M). However it may be the case that some
elements of VM , AM or `M occur in

Ů

µPM GÒµ, hence also in the result G‖M ,
since any two matchings may conflict as one retains what another removes as
illustrated in the following example.

Example 3. Let us consider the (non standard) rule rc “ pLc,Kc, Rcq with

Lc “
h

f

g

‚
x

‚
y

‚
z

Kc “
h

f

‚
x

‚
y

‚
z

Rc “

f

‚
x

‚
y

‚
z

This rule removes g since g is in Lc but not in Kc , retains f (and all vertices)
since f is in Kc [ Rc, and does not care about h since h is in Kc but not in
Rc. Nothing is added since Kc [Rc “ Rc. We consider the same graph G0 and
matching µ as in Example 1. Let ν “ µ ˝ px yqpf gq (in cyclic notation), this
is obviously a matching of rc in G0. By µ we must remove AC and retain BC,
while ν asks exactly the opposite which means there is a conflict between the
application of the two matches. We easily see that the graph G0Òµ contains BC
and that G0Òν contains AC, so that G0‖tµ,νu “ G0, hence the instructions of
removing AC and BC have not been fulfilled. The reader may check that no
such conflict occurs between µ and µ ˝ py zqpg hq; they remove AC and AB.

Since the semantics of individual rules have to be preserved under paralleliza-
tion, we must avoid such conflicts by stating that any item deleted by any rule
should not occur in the result. We can however allow attributes to be removed
and yet restored: this is a situation similar to an assignment a :“ 1, where the
former value of a is deleted unless it is 1.

Definition 7 (effective deletion property). For any graph G, a set M Ď

M pR, Gq is said to satisfy the effective deletion property if G‖M is disjoint

from VM ,AM , `Mz`
Ò

M , where

` ÒM
def
“

ď

µPM

µ̊ ˝ pR̊µzK̊µq ˝ µ
´1.

We thus see in Example 3 that tµ, νu does not have the effective deletion
property, since G0‖tµ,νu (i.e., G0) is not disjoint from Atµ,νu “ tAC,BCu. The
following example illustrates the special treatment of attributes.

Example 4. Consider the assignment a– b where a and b are identifiers of type
nat. This expression can be represented as a graph transformation rule in the
following way. We assume a signature Σ with two sorts idtf and nat, and two
constants a, b of sort idtf. Let X “ tu, vu where u, v are two variables of sort
nat. A placeholder is represented as a vertex attributed by a set containing both
its identifier and its value. Thus the environment where, say, a has value 1 and b



has value 2 can be represented by the graph G “ ptx, yu,∅,∅,∅,AG, G̊q where
AG interprets the sort idtf by ta, bu (the terms of sort idtf) and the sort nat

by N, and where G̊pxq “ ta, 1u, G̊pyq “ tb, 2u. For the sake of conciseness this
graph can be represented by

G “ x, ta, 1u y, tb, 2u.

With these conventions the assignment a– b can be represented by the rule
r1 “ pL1,K1, R1q with

L1 “ x1, ta, uu y1, tb, vu K1 “ x1, tau y1, tb, vu R1 “ x1, ta, vu

that removes the value u of a before replacing it by the value v of b. Similarly
the assignment b– a is represented by the rule r2 “ pL2,K2, R2q with

L2 “ x2, ta, uu y2, tb, vu K2 “ x2, ta, uu y2, tbu R2 “ y2, tb, uu.

Note that these rules are non standard. There is exactly one matching µ1 of
r1 in G, and one matching µ2 of r2 in G, as given below.

x1 y1 a b u v
µ1 x y a b 1 2

x2 y2 a b u v
µ2 x y a b 1 2

These two matchings perfectly overlap since µ1pL1q “ µ2pL2q “ G. Let M “

tµ1, µ2u, hence VM “ AM “ ∅ (no vertex and no arrow is deleted), `M pxq “ t1u
and `M pyq “ t2u (the values 1 and 2 are removed from G̊pxq and G̊pyq respec-
tively), hence GzrVM ,AM , `M s “ x, tau y, tbu. We also have GÒµ1

“ µ1pR1q “

x, ta, 2u and GÒµ2
“ µ2pR2q “ y, tb, 1u, so that

G‖M “ px, tau y, tbuq \ px, ta, 2uq \ py, tb, 1uq “ x, ta, 2u y, tb, 1u.

Hence the parallel transformation of G by r1 and r2 yields the same result as the
simultaneous assignment a, b – b, a in Python: it swaps the values of a and b.
Besides, this transformation preserves the semantics of r1 and r2 since the initial
values of a and b have effectively been deleted from G̊pxq and G̊pyq respectively.

Indeed, `M pxqz`
Ò

M pxq “ t1uzt2u “ t1u and `M pxqz`
Ò

M pyq “ t2uzt1u “ t2u, hence

G‖M is disjoint from VM ,AM , `Mz`
Ò

M , and M therefore has the effective deletion
property.

Assume now that this transformation is applied to an environment where a
and b have the same value, say 1. This is represented by G1 “ x1, ta, 1u y1, tb, 1u,
and there are two obvious matchings µ11, µ12 of r1, r2 respectively in G1 (the
variables u and v are both matched to 1). Let M 1 “ tµ11, µ

1
2u,, we see that

G1‖M 1 “ px
1, tau y1, tbuq \ px1, ta, 1uq \ py1, tb, 1uq “ x1, ta, 1u y1, tb, 1u “ G1

as expected. But the initial values of a and b have not been deleted from G̊pxq
and G̊pyq respectively. Yet we have

`M 1px1qz` ÒM 1px
1q “ `M 1py1qz` ÒM 1py

1q “ t1uzt1u “ ∅,



hence G‖M is trivially disjoint from VM 1 ,AM 1 , `M 1z` ÒM 1 , and M 1 therefore has
the effective deletion property. Even in this case we agree that the semantics of
r1 and r2 has been respected by the parallel transformation, since 1 has been
deleted before it was restored.

We may ask wether it is possible to ensure from particular properties of R
that effective deletion holds for all G and M . It is however easy to see that,
given a rule that removes an object, say a vertex, and another (or the same) rule
that retains some vertex, there always exists a graph G and two matchings in G
that conflict on the same vertex, hence that do not have the effective deletion
property. The effective deletion property should therefore be checked for every
input G and M .

This naturally leads to the following definition.

Definition 8 (full parallel rewriting). For any finite set of rules R, we define
the relation ÑR of full parallel rewriting between graphs by stating that, for all
G such that M pR, Gq has the effective deletion property, GÑR G‖M pR,Gq.

It can be shown that ÑR is deterministic up to isomorphism, that is, if
GÑR H, G1 ÑR H 1 and G » G1 then H » H 1.

6 Parallel Rewriting modulo Automorphisms

Using the full set of matchings exceeds the needs of mesh refinement, see below.

Example 5. Following Example 1, we see that there are 6 matchings of rm in G0,
hence the relation Ñrm does not create 3 but 18 new vertices, not 9 but 54 new
edges, which is illustrated as gray areas below.

‚

‚ ‚‚
‚

‚‚‚‚

‚

‚ ‚

Ñrm

A A

B BC C

We therefore wish to select a subset M of M pR, Gq for defining a rewrite
relation that yields more natural and concise graphs.

In Example 5, the similarities between the 6 matchings clearly come from
the symmetries of rule rm. These depend on the automorphisms of the graphs
Lm, Km and Rm, i.e., on the groups commonly denoted AutpLmq, AutpKmq

and AutpRmq. We need to build a notion of rule automorphisms that properly
accounts for the interactions between these 3 groups. We first extend the notion
of automorphism groups of graphs to their subgraphs.



Definition 9 (groups AutGpH1, . . . ,Hnq and S|H). For all n ě 1, graph G
and subgraphs H,H1, . . . ,Hn C G, let

AutGpHq
def
“ tα P Symp 9Gq O Symp~Gq OAutpAGq | αpHq “ Hu,

AutGpH1, . . . ,Hnq
def
“

n
č

i“1

AutGpHiq.

For any α P AutGpHq, we write α|H for α|
tHu

, and for any subgroup S of

AutGpHq, let S|H “ tα|H | α P Su; this is a subgroup of AutpHq.

It is obvious that AutGpGq “ AutpGq. We see that AutGpHq is a permutation
group on tGu, but only the graph structure of H is involved in the constraint
αpHq “ H, not the structure of G.

Example 6. Take for instance

H “ x

f
((

g

66 y and G “ x

f
((

g

66 y
h
((
z

k

hh

with empty attributes. We have

AutpHq “ t1H , pxqpyqpf gqu and AutpGq “ t1G, pxqpyqpzqpf gqphqpkqu

We write non permuted points such as pxq in order to make the domains explicit.
However, in AutGpHq the permutations of objects that do not belong to H are
free, hence

AutGpHq “ t1G, pxqpyqpzqpf gqphqpkq, pxqpyqpzqpfqpgqph kq,

pxqpyqpzqpf gqph kqu

“ AutpHq O tpzqphqpkq, pzqph kqu

“ AutpHq O tpzqu O tphqpkq, ph kqu

“ AutpHq O Symtzu O Symth, ku.

Since AH “ AG, it is easy to see that AutGpHq “ AutpHq O Symp 9Gz 9Hq O

Symp~Gz ~Hq always holds and thus AutGpHq|H “ AutpHq. This means that,
compared to the elements of AutpHq which are only permutations of tHu, the
elements of AutGpHq are all possible extensions of the elements of AutpHq to
permutations of tGu. This allows us to conveniently intersect the automorphism
groups of joinable graphs.

Definition 10 (group Autprq, relation «). For any rule r “ pL,K,Rq, the

automorphism group of r is Autprq
def
“ AutL\RpL,K,Rq|L. For any graph G, let

« be the equivalence relation on M pR, Gq defined by µ « ν iff µ ˝Autprµq “ ν ˝
Autprνq. The equivalence class of µ is denoted µ̄. For any subset M Ď M pR, Gq
we write M̄ for the set

Ť

µPM µ̄.



Lemma 1. @µ P M pR, Gq, µ̄ “ µ ˝Autprµq.

Note that |µ̄| ď |Autprµq| and that the equality holds if µ is injective. The
more symmetric a rule is, the more matchings are likely to occur in the equiva-
lence classes of matchings of this rule. The definition of the automorphism groups
of rules has been crafted so that the isomorphism classes of the output graphs
do not depend on the choice of elements in the equivalence classes of matchings.

Theorem 1. For any graph G, any M Ď M pR, Gq and any minimal sets M,N
such that M “ M̄ “ N̄ , the graphs G‖M and G‖N are isomorphic.

This means that the following graph rewrite relation is deterministic up to
isomorphism.

Definition 11 (parallel rewriting modulo automorphisms). For any fi-
nite set of rules R, we define the relation ÙR of parallel rewriting modulo au-
tomorphisms between graphs by stating that, for all G and minimal set M such
that M̄ “ M pR, Gq and M has the effective deletion property, GÙR G‖M .

Example 7. Following Example 1, we see that the group AutpKmq is gener-
ated by tpx yq, px zqu (this is Symtx, y, zu), the group AutpLmq is generated
by tpx yqpf gq, px zqpf hqu, and AutpRmq is generated by tρ1, ρ2u where ρ1 “

px yqpx1 y1qph1 h2qpf1 g2qpf2 g1qpf3 g3q and ρ2 “ px zqpx
1 z1qpg1 g2qpf1 h2qpf2 h1q

pf3 h3q. We then use the facts that

AutLm\RmpLmq “ AutpLmqOSymtx1, y1, z1uOSymtf1, g1, h1, f2, g2, h2, f3, g3, h3u

AutLm\RmpKmq “ AutpKmq O Symtx1, y1, z1u O Symtf, g, h, f1, . . . , h3u

AutLm\RmpRmq “ AutpRmq O Symtf, g, hu

to see that AutLm\Rm
pLmq is a subgroup of AutLm\Rm

pKmq, and then we easily
see that AutLm\Rm

pLm,Km,Rmq “ AutLm\Rm
pLm,Rmq is generated by tρ1 O

pf gq, ρ2 O pf hqu. We thus obtain that Autprmq is the group generated by
tpρ1 O pf gqq|Lm

, pρ2 O pf hqq|Lm
u “ tpx yqpf gq, px zqpf hqu, i.e., Autprmq “

AutpLmq and this group has 6 elements. The 6 matchings of Lm in G0 are
therefore all equivalent by «. Similarly, the 24 matchings of Lm in G1 form 4
equivalence classes modulo «. This yields the following parallel rewrite steps
modulo automorphisms.

‚

‚ ‚‚

‚‚

‚

‚ ‚

Ùrm

A A

B BC C

Ùrm

A

B C

‚

‚ ‚‚

‚‚ ‚

‚ ‚

‚ ‚

‚

‚

‚

‚

‚

‚ ‚



7 Graph Transformations as Quotients

The last example shows that we still need to be able to merge graph items. In
this section, we propose to use equivalence relations to merge graph vertices or
edges as well as their possible attributes.

Definition 12 (Congruence on a Graph, quotient graph). For any graph
G, a congruence C on G is a tuple p„, », –q where – is a congruence on AG

(see [2, p. 45]) and „, » are equivalence relations on 9G, ~G respectively, such
that

@f, g P ~G, if f » g then Ǵpfq „ Ǵpgq and G̀pfq „ G̀pgq. (2)

C is neutral if – is the identity relation on AG.
The quotient of G by C is the graph G{C “ p 9G{„, ~G{», s, t, AG{–, lq where

9G{„ and ~G{» are the standard quotients (the sets of equivalence classes), AG{–

is the quotient algebra (see [2, p. 45]), and

– for any F P ~G{» and any f P F , spF q (resp. tpF q) is the class of Ǵpfq (resp.
G̀pfq) modulo „ (which by (2) depends only on the class F of f modulo »),

– for any C P p 9G{„q Y p~G{»q, lpCq
def
“

Ť

xPCtt̄ | t P G̊pxqu, where t̄ is the
equivalence class of t P tAGu modulo –.

Note that if C is neutral then AG{C is identified with AG.

Example 8. Let us consider the following graph Z consisting of six sticks. These
sticks could be thought, for example, as a furniture kit. Every stick can be con-
sidered as a pair of two opposite arrows attributed by its length (not depicted),
with tAZu “ R. Each end of a stick is a vertex whose attribute is ∅.

‚x3 ‚y3

‚x4 ‚y4

‚x1 ‚y1

‚x2 ‚y2

‚
x5

‚
y5

‚
x6

‚
y6

The instructions for assembling the kit can be given as the following equiv-
alence relation on vertices: x1 „ x3, x2 „ y3, y1 „ x4 „ x5, y2 „ y4 „ x6 and
y5 „ y6. We now consider the neutral congruence Z “ p„, “~Z , “AG

q, where “~Z

is the identity relation on ~G (so that condition (2) is obviously satisfied). The
reader can easily check that the quotient graph Z{Z is the following one.

‚x̄1 ‚ x̄2

‚ȳ1 ‚ ȳ2

‚
ȳ5



By definition, a congruence is specific to a particular graph, hence we need a
way to define a congruence from a graph in order to define a universal transfor-
mation by taking quotients of graphs. There are many ways this could be done,
and we only propose a solution relevant to mesh refinement.

Definition 13 (The localizing congruence). For any graph G, the localizing
congruence LG on G is the tuple p„, », “AG

q where

– for all x, y P 9G, x „ y iff G̊pxq “ G̊pyq,

– for all f, g P ~G, f » g iff Ǵpfq „ Ǵpgq and G̀pfq „ G̀pgq,
– “AG

is the identity relation on AG.

We write ÁL for the binary relation on graphs defined by G ÁL pG{LGq for all
graphs G.

In this transformation, the attributes of the vertices act as coordinates in
the sense that there can be only one vertex (or point) at each coordinate, and
only one arrow from one point to another. Note that, since LG is neutral, then
obviously AG “ AH whenever G ÁL H.

Example 9. In Example 1, it was not necessary to define precisely which algebra
was considered since all attributes were empty. We now give more substance to
the mesh graphs by assuming that every vertex is attributed with its coordinates
in the affine plane, i.e., by a singleton containing an element of R2. The only
operation we need is the function that returns the coordinates of the middle
of two points, hence we take Σ with a function symbol mid of arity 2, and we
consider the Σ-algebra P with carrier set R2 where mid is interpreted as the

function that to any px, yq P R2 and px1, y1q P R2 maps px`x
1

2 , y`y
1

2 q P R2. We

start with the graph G0 as in Example 1, but with AG0
“ P, G̊0pAq is a singleton

that contains the coordinates of A (an element of R2), and similarly for vertices
B and C.

In order to match these coordinates we also need to use variables in the rule
rm, hence we consider 3 distinct variables u, v, w P V and let X “ tu, v, wu. We
consider the graphs Lm, Km, Rm of Example 1 but with the algebra T pΣ,Xq
and with the following attributes on vertices:

– L̊mpxq “ K̊mpxq “ R̊mpxq “ tuu, L̊mpyq “ K̊mpyq “ R̊mpyq “ tvu and
L̊mpzq “ K̊mpzq “ R̊mpzq “ twu. These attributes are therefore not modified
by the rule.

– We must also compute the coordinates of the new vertices x1, y1, z1 created
by Rm. One difficulty is that in the algebra of terms midpu, vq is different
from midpv, uq, and if we choose one then we necessarily loose some auto-
morphisms of the rule. The solution is to take both, that is

R̊mpx
1q “ tmidpv, wq, midpw, vqu,

R̊mpy
1q “ tmidpu,wq, midpw, uqu,

R̊mpz
1q “ tmidpv, uq, midpu, vqu.



With these attributes it is easy to see that Autprmq is generated by the two
permutations px yqpf gqpu vq and px zqpf hqpu wq, and has 6 elements. The 6
matchings of Lm in G0 are all «-equivalent to the matching µ P M prm, G0q with
the same images of vertices and arrows as in Example 1, and where µ̊pxq is the
coordinate of A, and similarly for y and z. Hence we have G0 Ùrm G1, where
to every vertex is attributed the coordinate of the corresponding point of P.
Applying Ùrm still yields a graph with too many vertices and edges, though with
correct coordinates, hence quotienting this graph with its localizing congruence
yields the graph G2. We thus see that

‚ ‚

‚

Ùrm ˝ ÁL

‚ ‚

‚

‚ ‚

‚

Ùrm ˝ ÁL

‚ ‚

‚

‚ ‚

‚

‚ ‚
‚

‚ ‚ ‚ ‚
‚ ‚

Ùrm ˝ ÁL ¨ ¨ ¨

ad infinitum, as we expected (though these graphs contain attributes that are
not depicted). Note that Ñrm ˝ÁL yields the same result as Ùrm ˝ÁL , though
in a less efficient way since Autprmq needs only be computed once.

8 Related Work and Concluding Remarks

Parallel graph rewriting has already been considered in the literature. In the
mid-seventies, H. Ehrig and H.-J. Kreowski [14] tackled the problem of paral-
lel graph transformations and proposed conditions under which parallel graph
transformations could be sequentialized and how sequential independent graph
transformations could be parallelized. This pioneering work has been considered
for several algebraic graph transformation approaches, see, e.g., the most recent
contributions [9, 22, 21] or Volume 3 of the Handbook of Graph Grammars and
Computing by Graph Transformation [12]. However, this stream of work departs
drastically from our goal where parallel graph transformations are not aimed to
be sequentialized.

Non independent parallel graph transformations has been considered in the
Double-Pushout setting, see e.g. [24] where rules can be amalgamated by agree-
ing on common deletions and preservations. However, the amalgamation tech-
nique does not allow the amount of overlaps achieved in the present framework.
Indeed, the effective deletion property makes it possible for one rule to delete an
item that is matched but not deleted by another (non standard) rule. This is an
essential feature for instance in cellular automata where the state of a cell can
be modified by one rule and only consulted by others (see [5]).

In [19], a framework based on the algebraic Single-Pushout approach has been
proposed and where parallel transformations consider only matchings provided
by a control flow mapping. The users can solve the possible conflicts between the
rules by providing the right control flow. More recently, a parallel graph rewrite
relation has been defined in [11] for a special kind of graphs called port-graphs.
Unfortunately, such graphs are not closed under parallel graph transformation,



in the sense that a port-graph can be rewritten in a structure which is not a port-
graph. In addition, conditions for avoiding conflicts in parallel transformations
have been defined over the considered rewrite rules, which limits drastically the
class of the considered systems. The present framework provides more abstract
and more general conditions over matchings that ensure a correct definition of
parallel graph transformations for a large class of systems.

In [23, chapter 14], parallel graph transformations have been studied in order
to improve the operational semantics of the functional programming language
CLEAN [16]. In that contribution, the authors do not deal with true parallelism
but rather have an interleaving semantics. This particularly entails that their
parallel rewrite steps can be simulated by sequential ones. This is also the case
for other frameworks where massive parallel graph transformations is defined so
that it can be simulated by sequential rewriting e.g., [10, 21, 20].

Graph equivalence has already been used to encode vertex merging as in [3]
where the notion of e-graphs has been proposed. An e-graph is a pair pG,„q
of a hypergraph and an equivalence over vertices. Contrary to our framework,
quotient graphs are not used per se as objects to be transformed. Furthermore,
our notion of equivalence over graphs is more general since it can be defined
either on vertices, arrows or even attributes.

Transforming a graph by using simultaneously several rules in parallel is not
an easy task. As mentioned above, most of the proposals in the literature consider
parallel transformations that can be sequentialized. In this paper, we have de-
veloped a new framework where true parallel graph transformations are defined
following an algorithmic approach. We proposed deterministic parallel rewrite
relations, particularly one based on the notion of automorphism groups of rules.
Furthermore, we defined the notion of effective deletion property of matchings
which ensures that these relations are well-behaved, even when the overlappings
of matches forbids sequentialization, as illustrated by the mesh refinement rule
rm. The proposed rewrite relations may be used in several contexts such as ex-
tensions of L-systems to dynamic graph structures (see, e.g., [25, 17, 18]). For
the sake of simplicity we have not addressed here the problem of the finiteness
of the graphs obtained by parallel rewriting, see [5] for a discussion and results
on this subject.

The considered rewrite systems could be enriched by means of new features
such as vertex and edge cloning as proposed in [7, 8]. This is possible in an
algebraic framework, see [6]. Future work also includes implementation issues,
particularly for the parallel rewrite relation up to automorphisms. The present
framework has been designed so that the automorphism groups of rules are finite
permutation groups, thus paving the way to efficient implementations through
the methods of Algorithmic Group Theory.
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22. Löwe, M.: Characterisation of parallel independence in AGREE-rewriting. In: 11th
ICGT. LNCS, vol. 10887, pp. 118–133. Springer (2018)

23. Plasmeijer, R., Eekelen, M.V.: Functional Programming and Parallel Graph
Rewriting. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st
edn. (1993)

24. Taentzer, G.: Parallel high-level replacement systems. TCS: Theoretical Computer
Science 186, 43–81 (1997)

25. Wolfram, S.: A new kind of science. Wolfram-Media (2002)


