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Abstract

Some computations can be elegantly presented as the parallel or simultaneous application of rules. This is the case
of cellular automata and of simultaneous assignments in Python. In both cases the expected result cannot be obtained
by a sequential application of rules. A general framework of attributed graph transformations is proposed where such
computations can be expressed and analyzed. Determinism is achieved by an exhaustive parallel application of rules, as
in cellular automata that are shown to have a straightforward representation in this framework. A more concise parallel
transformation is also proposed, where some applications of rules can be ignored thanks to their symmetries, while
preserving determinism. Parallel transformations are then used to characterize the property of parallel independence.

1 Introduction

Graph structures are widely used in many areas of computer science and well beyond (e.g., Biology, Chemistry, Physics).
Their visual appearance as well as their expressiveness give them an important place in the modeling of complex systems.
Computing with graphs as first-class citizens requires the use of advanced graph-based computation models. Several
approaches to graph transformations have been proposed in the literature, in particular those based on a variety of graph
transformation rules. There are two main streams of research, on one hand the algebraic approaches where transformations
are defined using notions borrowed from category theory and that apply to any suitable category, including the category
of graphs (see, e.g., [1, 2]), on the other hand the algorithmic approaches where graph transformations are defined by
means of the involved algorithms in the rewriting process (e.g., [3, 4]). In the present paper, an algorithmic framework is
introduced that is geared toward a notion of true parallelism of attributed graph transformations. By true parallelism we
mean simultaneous transformations acting over possibly overlapping parts of a subject graph as well as the simultaneous
changes of the attributes or values, attached to graphs items, i.e., nodes or edges.

The study of rule-based graph transformations turns out to be more difficult than other structures such as strings [5]
or terms [6]. A rule is usually expressed by means of a left-hand and a right-hand sides, L and R respectively, meaning
that any occurence of L should be replaced by R. When L and R are graphs, applying the rule to a graph G amounts to
(non-deterministically) finding a homomorphic image p(L) in G, thus expressing G as a context C[u(L)], and replacing
this image by p(R). The elementary way of performing this replacement consists in first removing (L) from G and then
adding a subgraph p(R) to obtain the transformed graph H = C[u(R)]. But this would sever all links between p(L) and
C[], thus leaving an isolated u(R) in H. In order to preserve at least some of these links, it is customary to add an interface
graph K between L and R, specifying which part of L is not to be removed (imagine K as a subgraph of both L and
R). Once the semantics of rules is defined, there are different ways to compute with graph rewrite systems. As confluence
property is seldom true even for orthogonal graph rewrite systems [7, 4, 8], the use of strategies is often advocated to ensure
unique results (see, e.g., GP system [9] or PORGY [10]).

Another way of specifying a deterministic graph transformation by means of rules is to apply all possible transformations
simultaneously, thus averting a non-deterministic choice. This is the case for example in cellular automata, where the next
generation is determined by applying a local rule simultaneously on all cells. It is well known that determinism cannot be
achieved by applying the rules sequentially, since the resulting states of cells may depend on the undetermined order in
which the cells would be considered.



In graph transformation theory, parallel transformations have so far been considered mostly under the interleaving
semantics, that led to the notion of parallel independence [11] (see Section 9). This condition restricts the amount of
overlap between images of left-hand sides in order to guarantee that a parallel rewrite step yields the same result as any
sequence of rewrite steps using the same rules. It is therefore unable to account for the kind of parallelism that is used in
cellular automata. For this, we need to allow the simultaneous applications of rules that are not parallel independent, i.e.,
that overlap in a parallel dependent way.

Yet not all overlaps can be allowed since the corresponding rules may then conflict with each other. For instance, a rule
may remove a part of the left-hand side of another rule, or they may give different values to a same variable (e.g., different
states to one cell). In order to preserve the semantics of all the rules involved in a parallel transformation, it is necessary
to avoid such conflicts.

But conflict-free overlaps may not yield a powerful notion of parallelism by themselves. The notion of conflict between
rules clearly depends on the semantics that is ascribed to the rules, i.e., to the graph rewrite relations that they are assumed
to define. A narrow definition may yield unnecessary conflicts. A wider definition may ease conflict-free parallelism, but
may also make determinism elusive.

We are therefore interested in defining a notion of rule-based graph transformation, with suitable rules, whose (conflict-
free but possibly dependent) parallelization yields an expressive notion of deterministic parallel graph transformation. The
expressiveness shall encompass cellular automata, but also possibly other examples of dependent parallelism.

The paper is organized as follows. We first introduce some basic definitions and notations in Section 2, including a
notion of attributed graphs where attributes are sets of values. This eliminates a source of conflict between rules in the
sense that such attributes always accomodate enough space for new data.

The algorithmic framework is introduced in Section 3, where unions and intersections of graphs are defined, and then
used to define a natural way of removing objects in an attributed graph.

The shapes of the rules as well as the notion of parallel graph transformations investigated in this paper are the subject
of Section 4. A simple example is introduced to motivate the necessity to generalize the standard notion of rules to triples
of graphs (L, K, R) where K is not required to be a subgraph of R. This simple extension supports a general definition of
parallel transformation that is not deterministic.

In Section 5, a specific graph transformation called parallel rewriting is defined under a condition called the effective
deletion property. It is proved to be both a most general instance of the general transformation and deterministic modulo
isomorphism when applied exhaustively. This transformation is further validated in Section 6 where it is shown to generalize
cellular automata. This is illustrated on John Conway’s Game of Life.

One then observes that the presence of symmetries in a rule induces matchings that yield similar transformations, if
taken individually. This suggests that determinism can be preserved by selecting only one matching among the similar
ones. A notion of automorphism group of a rule is thus introduced in Section 7, based on the symmetries of the graphs
L, K and R. The framework established in Sections 2, 3 and 4 allows a simple definition of this group as a permutation
group, and it is shown to be finite.

Based on these groups, a new parallel rewriting relation is proposed in Section 8 where the rules may not be applied in
an exhaustive way. By using only one matching in every equivalence class modulo the automorphisms of the corresponding
rule, it is shown that determinism modulo isomorphism is preserved.

Section 9 is devoted to parallel independence, i.e., to the condition on the overlaps between pairs of matchings of rules
that not only guarantees, but characterizes the fact that parallel rewriting yields the same result as (a restricted form of)
sequential rewriting, a condition known as sequential independence.

Concluding remarks and related work are given in Section 10, especially other notions of parallel graph transformations
are compared with the one proposed in this paper.



2 Preliminaries

In this section, we recall or define some basic notions that are used throughout the paper, such as X-algebras and attributed
graphs.

2.1 Signatures and X -algebras

A (many-sorted) signature is a triple X = (S, £2,7) where S and 2 are sets and 7 is a function from 2 to S* x S. The
elements of S are called sorts. For all f € {2 such that 7(f) = (s1:-sp,s), if n =0 then f is a constant of sort s, and if
n > 0 then f is a function symbol of type s1 x -+ x s, — s. We assume throughout this paper a fixed signature X; only
in some examples and in Section 6 will 2’ be narrowed down to some particular signatures.

A XY-algebra is a pair A = ((As)ses, (fa)ren) where (As)ses is a family of pairwise disjoint! sets, c4 € A for all
constants ¢ of sort s, and f4 is a function from A, x --- x A to A for all function symbols f of type s; x -+ x s, — s.
As (vesp. f4) is the interpretation of s € S (resp. f € 2) in A. The carrier set of Ais |A] ¥ Useg As. Note that every
element of |.A] belongs to a unique Aj, hence is implicitly typed? (by s).

A X-homomorphism from X-algebra A to X-algebra B is a function « from |A| to |B] such that a(A,) < Bs for all
sorts s, a(cq) = cg for all constants ¢, and a o fq(ay,...,a,) = fe(a(ar),...,a(a,)) for all function symbols f of type
s1 % - x 8, — s and all (ay,...,a,) € A, x --- x Ag, . If o is bijective then it is a X-isomorphism (and then o~ ! is a
Y-homomorphism from B to A), and if furthermore A = B then « is a X-automorphism of A. We write 14 for the identity
XY -automorphism of A.

We assume a set ¥ disjoint from 2, whose elements are called variables, and a function 7/ : ¥ — S. For any finite
X < ¥, the Y-algebra 7 (X, X) of X-terms on X is defined as usual. 7 (X, X) is free with generating set X in the class
of X-algebras, i.e., for all ¥-algebras A and all functions 6 : X — |.A| such that 6(v) € A, (. for all v e X, there exists a
unique X-homomorphism from (X, X) to A that extends . A Y-algebra A is reachable if the unique X-homomorphism
from 7 (X, ) to A is surjective (every element of |.A] has a denotation).

Sn

2.2 Attributed graphs

An attributed graph (or graph for short) G is a tuple (G,é,é7é,dg,é) where G, G are sets, G,G are the source and
target functions from G to G, g is a L-algebra and G is an attribution of G, i.c., a function from G U G to P (|#)).
We assume that G, G and |27 | are pairwise disjoint; their elements are respectively called vertices, arrows and attributes.
The carrier of G is the set |G] % G U G U |#g]. The underlying graph of G is (G, G, G, G) (this is a standard graph).
G is unlabelled if G(z) = @ for all z € G U G, it is finite if the sets G, G and G(x) are finite (note that |G| may still be
infinite).

A graph F is a subgraph of G, written F <1 G, if F < G, Fc@G, F= G|ﬁ’ F = G|ﬁ’ Ay = g and F(x) c G(ax) for
all z € U F. The relation < is a partial order on graphs.

In the subgraph relation the names of vertices and arrows are important, for this reason graphs will usually be depicted
with the names of the graph items, and their attributes will be listed after each name, separated from it by | (which is
omitted if the attribute is &). Since graphs may not be connected, they will be surrounded by a rectangle with rounded
corners, as in:

f —
3:/ \y\l |zl y|0,1 =z

\9‘0/

The arrows specify the source and target functions, and the associated X-algebra may be specified separately. Here, any
algebra containing 0 and 1 in its carrier set would do.

Given two attributions I, I’ of G, we write [ n I’ for the attribution that maps any = € G U G to I(z) n I'(z). The
attributions [ u I’ and I\l" are defined similarly.

Given F' < G and an attribution [ of F', we consider [ as an attribution of G by extending it implicitly with empty sets,
ie., for all z € (G U G)\(F U F) we let [(z) = @. Conversely, given an attribution I’ of G, the restriction of I’ to F' U F is
an attribution of F' that will be written I’ (by a slight abuse of notation).

1This condition is by no means essential; its aim is to simplify notations and definitions.
2This is particularly true for terms and would not be the case if the overloading of function symbols had been adopted, as in [12].



2.8 Morphisms

Morphisms between attributed graphs are needed for two reasons. The most obvious one is that graph rewriting rules
must be matched with the input graph and that a matching is a morphism, though a special one in the present framework.
Another, more fundamental reason is to compute not just with graphs, but with abstract graphs, e.g., in Graph Theory the
abstract graph K,, is any graph that is a clique with n vertices, independently of their names. This is similar to working
with A-terms modulo a-conversion but one can get away with it by using de Bruijn indices; nothing of the sort is available
on graphs. There is no other way than to consider the input graph as a representation of an abstract graph, and to use
tools® that do not depend on this particular representation. We therefore need the notion of isomorphism that links the
different representations of an abstract graph.

A morphism of attributed graphs is a standard graph morphism extended with a Y-homomorphism that preserves the
contents of the attributes. More precisely, given two graphs G and H, a morphism « from G to H, written o : G — H,
is a function from |G| to |H| whose restriction to |&%;|, denoted &, is a X-homomorphism from &/ to @7, such that
G H, a(G) S H aoG=Hoa, aoG = Hoa (ie., adjacencies are preserved) and & o G(z) = H o a(x) for all
z € GuG. Note that ¢ o G(z) = {&(a) | a € G(z)} and that & associates a value to all elements of |7, not just to those
occurring in (J, .o a G(;v) The underlying graph morphism of «, denoted « by abuse of notation, is the restriction of «
to GUG. A matching is a morphism whose underlying graph morphism is injective.

For instance, if G < H then |G| € |H| and the canonical injection j from |G| to | H| is a matching from G to H. Note
that j = 14,.

The image a(F) of a subgraph F' <1 G by « is the smallest subgraph of H (w.r.t. <1) such that oz|[FJ is a morphism
from F to a(F). It is easy to see that this graph always exists and that

Oé(F) = (OL(F), Oé(ﬁ), H|a(ﬁ)7 H‘a(ﬁ)a fQ/Ha l) where l(y) = U ODéOF(I’)

zea ' (y)

for all y € a(F) U a(F). In particular when « is a matching then I = & o F o a~!. We see that a(F) < a(G) < H. The
image of the underlying graph of F' by « is the underlying graph of a(F') (and is denoted similarly).

An isomorphism o from G to H, written « : G ~ H, is a bijective morphism « : G — H such that ™! : H — G is a
morphism, i.e., such that & o G=Ho «; « is an automorphism if G = H. We write G ~ H and say that G and H are
isomorphic if there exists an isomorphism « : G ~ H. We write 1¢ for the identity automorphism of the graph G. Note
that 1g = 1.

A binary relation = on graphs is deterministic up to isomorphism if, for all graphs G, G', H and H’, the relations
G~G',G= H and G’ = H' entail H ~ H'.

3 Operations on Graphs

In order to define parallel rewrite relations on graphs, it is convenient to take the union of possibly many different graphs
that have a common part. This operation can only be defined for graphs that are compatible on this common part, and
that we call joinable below. We start with a simpler notion of joinable functions. Basic properties are given without proofs.

Definition 3.1 (joinable functions). Two functions f : D — C and g : D' — C’ are joinable if f(x) = g(x) for all
xz €D n D, ie., both functions map common domain elements to same images.

If f and g are joinable, then the meet of f and g is the function f A g from D n D’ to C n C’ that is the restriction
of f (or g) to D n D', and the join f v g is the unique function from D u D’ to C'u C’ such that f = (f v ¢)|p and
g="(v9lp-

Similarly, given a set I, an I-indexed family (f; : D; — C;)es of functions is joinable if its elements are pairwise
joinable, and then let Y,; fi be the only function from |J,; D; to | J;c; Cs such that f; = (Y,c; fi)|Dj for all j € I.

For all sets of functions S and T, if the elements of S and T can be composed then we write SoT for {fog | f € S, g€ T},
and foT for SoT when S = {f}. Similarly, if these elements are joinable we write S v T for {f vg| f€ S, ge T}

In particular, functions with disjoint domains are joinable, and every function is joinable with itself: fv f= fA f = f.
More generally, any two restrictions f|, and f|g of the same function f are joinable, f|4 A flg = fla g and fl4 v flg =
f|AuB'

It is obvious that these operations are commutative. On triples of pairwise joinable functions, they are also associative
and distributive over each other.

If two joinable functions are injective then so is their meet; if they are surjective then so is their join. But the join of
injective functions may not be injective, and the meet of surjective functions may not be surjective.

3The tools of Category Theory have this property, but they are sometimes cumbersome.



Definition 3.2 (joinable graphs) Two graphs G and H are joinable if @ = oy, G H =Gn H =2 and the functions
G and H (and similarly G and H ) are joinable. We then define the graphs

GrnH ¥ (GmH,émﬁ,GAH,CAfI, ﬂg,éﬁﬁ),
GuH = (GUH7éuﬁ,évH7GvH, ﬂg,éuﬁ),

that we respectively call the intersection and union of G and H.
Similarly, for any set I an I-indexed family (G;);cs of graphs is joinable if its elements are pairwise joinable, and then
for any X-algebra A such that A = o/, for all i € I, let

|G = (|G, UG YGi YGi A |G

iel iel el el el el

Note that the algebra A is uniquely determined whenever I # &, and otherwise it will be obvious from the context. It is
easy to see that these structures are graphs: the sets of vertices and arrows are disjoint and the source and target functions
have the correct domains and codomains. Note that if G and H are joinable then GmH = HnG<G<Gu H =HudG.
Similarly, if (G;)er is joinable then G <1 | |, ; G; for all j € I. We also see that any two subgraphs of G' are joinable, and
that H < Giff GmH = H iff Gu H = G. As above, on triples of pairwise joinable graphs, these operations are associative
and distributive over each other.

These operations are convenient to define a natural way of removing objects (graph items and attributes) from a graph.

lgeﬁnition 3.3. For any graph G, sets V, A and _&}ttribution [ of G, we say that G is disjoint from V, A, if GV = a,
GnA=gand G(z)nl(z) =@ for all z € G u G. We write G\[V, A4,1] for the largest subgraph of G (w.r.t. <) that is
disjoint from V, A, .

Since for any two subgraphs F, F’ <1 G that are disjoint from V, A, [, the subgraph F 1 F’ of G is also disjoint from
V, A,l, then the graph G\[V, A, (] always exists: it is the union of all subgraphs of G disjoint from V, A,[. It cannot contain
dangling arrows; all arrows adjacent to an element of V' are necessarily removed, even if they do not belong to A. We will
therefore not be restricted by the gluing condition that is necessary in the algebraic Double-Pushout approach to graph
rewriting, see [2, p. 45]. Similarly, G\[V, A,[] cannot contain dangling attributes.

The rest of the section is devoted to proving some fundamental properties of the operations defined so far. It is easy to
see that removing objects is compatible with intersections, i.e., that (G m H)\[V, A,1] = (G\[V, A,1]) m (H\[V, A,1]). It is
less obvious that the same holds for unions.

Lemma 3.4. For all joinable families (G;)ier of graphs, all sets V, A and all attributions | of | |

(LG Al =@, A.0).
iel iel
Proof. Since Gj <1 | |;c; Gi forall j € I then G,\[V, A,1] < (|lic; Gi)\[V: A, 1], hence Ljer (GAIV, A, 1) < (Llic; Go)\IVZ A, 1].
Conversely, let H <1 | |,_; G such that H is disjoint from V, A,I. For all f € H and all a € H(f) there exists an i € I

such that f e G; and a € Gz(f) Let = H(f) and y = H(f), so that f is an arrow from & to y. Obviously f ¢ A, z,y ¢ V
and a ¢ [(f). Since z,y € G, then the graph

o1 Gi, we have

(or the corresponding unlabelled graph if there is no such a) is a subgraph of G; disjoint from V; A, [, hence is a subgraph
of Gi\[V. A, ] and therefore of | |;;(G;\[V,A,1]). Similarly, for all 2 € H and all a € H(z) the graph

zla
is a subgraph of | |;.;(G;\[V, A,1]). Since H is the union of all such graphs then H < | |;.;(G;\[V, A,l]), and this holds
for H = (|,e; Gi)\[V, 4, 1]. O

We now see that the removal of objects in a graph can easily be transported by isomorphism.

Lemma 3.5. For all isomorphisms oo : G ~ H, sets V. < G, A < G and attributions | of G, we have a(G\[V, A,1]) =
a(G\[e(V),a(A4),Goloat].



Proof. For any subgraph F' <1 G, the subgraph
a(F) = (a(F), a(F), aoFoa™', aocFoa™', B, doFoa™')

of H is disjoint from a(V),a(A),& ol oo™t iff F is disjoint from V, A, 1.
O

It is similarly easy to see that unions and intersections can be transported by a single isomorphism, i.e., if « : G ~ H
and F,F' Q G then a(F m F') = a(F) ma(F’) and o(F u F') = a(F) u o(F"). However, unions are not invariant
constructions since images of joinable graphs by different isomorphisms may not be joinable, and if they are joinable their
union may not be isomorphic to the union of the original graphs. To ensure that this is the case, we need some extra
conditions. We first see how to build new morphisms by joining existing morphisms.

Lemma 3.6. For all joinable families (cy; : Gi — H;)ier of morphisms such that (G;)ier and (H;)ier are joinable, then
Yier @i : Uies Gi = Lies Hi is a morphism and it is surjective if the a;’s are surjective.

Proof. Let o« = Y,.; 04, G = | ],c;Gi and H = | |,.; H;. For all f € G there is an i € I such that f € G;, hence
aoG(f) =a;0Gi(f) = H;ooi(f) = Hoa(f) and similarly a o G(f) = Hoa(f). Forall z € G u G,

& oGz —a(UG ) U%OG UH oai(z) = H o afx)

el el el
hence « is a morphism from G to H. The join of surjective functions is surjective. O
The following lemma provides the conditions required for building new isomorphisms by joining existing isomorphisms.

Lemma 3.7. For all joinable families (o; : G; ~ H;)ier of isomorphisms such that (G;)ier is joinable, if o; A is
surjective for all i,j € I then

1. (H;)ier is joinable,
2. a; A5Gy Gy~ Hym Hy foralli,jel,
3 Yier @t Lier Gi = Lier Hi-

Proof. For alli,j € I, let a; j = a; A 5. Since o and o are injective then «; ; is bijective from |G;| N |G;] to | H;| n | H;],
and ¢&; ; = &; = @&; is a Y-isomorphism.

hence there is a = € |G| N |G| such that y = () = oy(x) = a;j(z), hence = = a;*(y) € G; and z = oy L(y) e G,.

1. We first prove that H; ~H; = @. Assume this is not true, then thereis ay € H; " H; = ai(Gl) na,(G;) [Hlj N [Hjj,

But G; and G; are joinable, hence Gi n (_jj = @, a contradiction. By symmetry between i and j we also get
ﬁi M Hj =
For all g € H; n H., let f = Q; jl( ) e Gin éj, so that «;(f) = «o;(f) = g. Since G; and G; are joinable, then

Gi(f) = G;(f) e Gi n G, hence
Hi(g) = Hio ai(f) = a; 0 Gi(f) = a; 0 G(f) = Hj 0 a;(f) = Hj(g)-
Similarly we get H;(g) = H;(g), hence H; and H; are joinable.
2. For all f e Gin éj we have
o (Gi A GH)(f) = @i 0 Gi(f) = Hio ail(f) = (Hi A Hj) 0 i (f)
and similarly o ;o (G A Gj) = (H; & H]) oay; and @y ;o (Gin G, i) = (H; ~ H; i) oy j, hence o ; is an isomorphism.

3. Let @« = Y, 04, G = | |;c; Gi and H = | |,_; H;, then by Lemma 3.6 o : G — H is surjective. For all z,y € |G],
if a(x) = a(y) then there exist 7,5 € I such that a(x) = a;(x) = a;(y) = a(y) and this image therefore belongs to
|H;| n|H;]. Since a; ; is surjective there is a z € |G;| n |G| such that a;(x) = a; ;(2) = a;(y), hence z = z = y and
« is a therefore bijective. For all z € G U G we have

aoG —a(UG ) U%OG UH oz Hoa()
i€l el el

hence « is an isomorphism.



4 Parallel Transformations

The concept of rewrite rules and parallel transformations will be introduced and motivated on an example running through-
out the section. This example is the simultaneous assignment a,b := b,a from the programming language Python, that
specifies in a concise and elegant way the swapping of the contents of a and b. Our angle is to decompose this expression
as a = b || b= a and view it as the parallel application of two rules on an environment where a and b have values, say 0
and 1. This environment can be represented as an attributed graph, say in the following way:

G=[x\a,0 y\b,l]

where a and b are constants of sort idtf.

4.1  Rules for parallel transformations

Rewrite rules will be expressed by means of graphs attributed with sets of X-terms. We assume two variables u and v of
sort nat. As explained in Section 1, graph rewrite rules have a left- and a right-hand side L and R, and an interface K <1 L
specifying the part of L that should not be removed.

The left-hand side of a rewrite rule corresponding to a := b should match the relevant part of the environment, hence
it should be

L, = [x1|a,u yl\b,v]

Before replacing the value u of a by v it should be removed from a, and of course nothing else shall be removed, hence

K, = [:r1|a y1|b,v} NP

The right-hand side may now specify that the resulting environment should attribute the value v to a. The obvious choice
is the graph

[xl | a,v Y1 \b,v]

but then the rule would also state that b should keep its content v; this would obviously conflict with the rule representing
b = a. In order to consistently apply the rules in parallel, we need to scale down this right-hand side by dropping the

unnecessary reference to b. Hence

We end up with the rules ry = (L1, K1, Ry) for a == b and r9 = (La, K3, R2) for b == a, where

ng[xg\a,u Yo | bv K2=[a:2|a,u y2|b] Ry =

Thus K; and K, are not subgraphs of R; and Rs, and the intersections L; m Ry and Lo m Ry are strict subgraphs of
K, and K, respectively. These rules therefore have the shape pictured below.

Tk e wD

The semantics of such rules can be informally described by ascribing different roles to the four different areas. The
existence of a matching from L to some graph G is of course a necessary condition for the transformation of G. The images
(by this matching) of objects of L (vertices, arrows and attributes) that do not belong to K, i.e., the area L\K, have to
be removed from G. Then, in order to find an image of R in the result H of the transformation, the image of L m R in G
has to be preserved in H, and images of the objects of R\L have to be added to G to obtain H.

This leaves the area K\R of images of the objects of K that do not belong to R as “intermediate” objects that do
not have to be deleted nor have to be preserved, hence they are free to be either preserved or deleted. But this is not
deterministic, hence another semantic property is needed to determine the fate of these objects: the condition of locality.
More precisely, we formulate the condition of locality in the following way: every object of G that does not have to be
removed has to be preserved. Hence the intermediate objects will normally be preserved, unless they are explicitly removed
by some rule. This will be made precise in Section 4.2.

In the following definition we consider rules as finite syntactic objects, in conformity with the spirit of rule-based
programming frameworks where term algebras are often used. Terms on the left-hand side allow the selection of attributes,
and on the right-hand side they allow the computation of new attributes (this will be used in Section 6).




Definition 4.1 ((X, X)-graphs, rules, matchings). For any finite X < ¥, we call (¥, X)-graph any finite graph G such

that #c = 7 (X, X). Let
Var(G) = [ ( U Var(t)),

zeGUG \teC(z)

where Var(t) is the set of variables occurring in ¢, see e.g. [6, p. 37].

A rule r is a triple (L, K, R) of (X, X)-graphs such that L and R are joinable, L m R < K < L and Var(L) = X (see
Remark 4.2 below). If L m R = K then r is said to be standard.

A matching of r in a graph G is a matching p from L to G that is consistent, i.e., such that j(L(2)\K (z))n (K (z)) = @
(or equivalently fi(L(z)\K (z)) = a(L(z))\i(K (z))) for all z € K U K. We denote .# (r, G) the set of all matchings of 7 in
G (they all have domain |L]).

We consider sets R of rules with the following condition: for all pairs of rules r, 7' € R, if (L, K,R) =r #r' = (L', K', R')
then |L| # |L/| and hence .#(r,G) n .#(r',G) = @ for any graph G. Let .#(R,G) = \§),cr 4 (r,G), then for any
we M (R,G) there is a unique rule r, € R such that p € #(r,,G), and its components are denoted r, = (L,,K,,R,).

Remark 4.2. If X were allowed to contain a variable v not occurring in L, then v would freely match any element of 75
(that is possibly infinite) and the set .Z (r, G) would contain as many matchings with essentially the same effect. Also note
that Var(R) < Var(L) (since R is a (X, Var(L))-graph), R and K are joinable and R m K = L n R.

Also note that for any matching u from L to G, since i may be non-injective (thus allowing distinct variables to match
identical values), consistency is necessary to separate the attributes in G that should be removed from those that should
be preserved by a rewrite step.

On the running example we see that .#({r1,r2},G) = {u1,ue} where p; and ug are the matchings of vy and 7o
respectively in G given below.

T
a b

EPEN
p| x oy a b

U v U v
0 1 o ‘ T Yy 0 1
4.2 Semantics of parallel transformations

For any set M < #(R,G) of matchings in a graph G we now wish to define what is a parallel transformation from G to
some graph H by the simultaneous application of all the rules specified by M, without assuming any order, while preserving
the semantics of each of these rules. The set M of course provides the necessary condition for applying the rules (though
not a sufficient one as we will see).

A first obvious property is that there should be matchings from the right-hand sides of these rules to H, i.e., for all
p € M there exists a matching 4’ from R, to H. Since R, intersects L, this matching should agree with  on R, m K,
i.e., p and p' should be joinable. We therefore have 1/(R,) < H and /i’ = /1. On the running example let M = {1, o},
we see that p) and ph are given by

u v ‘yg
0 1 o |y

a b a b u w
| x a b a b 0 1

Note that Ry and Ry are (X, {u,v})-graphs. Thus

Hh(Ry) = 1o (Ra) =

The condition of locality now has to be interpreted for the whole of M. Therefore, the part of G that is not removed
by any application of the rules has to be preserved in H. The vertices removed by 1, for any u € M are the vertices of

G matched by L, but not by K,,, i.e., the elements of the set ;(L,\K,). Hence all the vertices in V = U enr (LK)

are removed by the transformation, and similarly all arrows in a set A < G and all elements of an attribution  on G. We
therefore have G\[V, A,1] <« H. Note that, due to possible overlaps, some “intermediate” objects of some rule may belong
to V, A or [, and should therefore be removed.

This can be illustrated on the running example, where V = A = & since no vertex or arrow is removed, only attributes
are removed; 0 is removed from G(z) through s and 1 is removed from G(y) through ps. The vertex y does not belong
to p1(Ly m Ry) and is therefore an intermediate object of py, as are its attributes b and 1. Among these, only 1 is removed
(by p2), b and therefore y are preserved. Symmetrically, « and its attributes a and 0 are intermediate objects of s, of
which 0 is removed by p;, while @ and x are preserved in the result H.



The previous conditions only provide lower bounds for H. But H need not contain anything else than what is preserved
from G and the images of the right-hand sides, hence H = G\[V, A,{] | |,cp, #'(Ry). Thus

= (2l ylb)u(zla,1]u(ylb0) = (zlal  ylb0)

As such, this equation does not guarantee the effective creation of new vertices and arrows corresponding to the vertices
or arrows in R,\K,,, hence the third item in Definition 4.3 below. This condition clearly depends on the images of the
right-hand sides, hence on (1) ear, and will be illustrated in Example 4.4 below. Since attributes are added by inclusion
the condition of effective creation does not apply to them.

This equation does not guarantee either the effective deletion of all objects in V, A, [, that depend on M, since some r,
may restore what was removed by r,, (if this objects belongs to (L, mR,)). Such conflicts should be avoided if the semantics
of the individual rules is to be respected. This leads to a further condition on M, the fourth item in Definition 4.3. However,
a distinction again has to be made between graph items and attributes. We see in our running example by examining the
result H that 0 has been removed from G(z) as required by 71 through py. But assume that the rules rq and ry are applied
to the graph

G' = (zla,0 y[b0)

through the matchings
u v ‘332 Yo a b u w
0 0 vz y a b 0 0

then the result of the transformation is H’ = G’ and we do not observe that 0 has been deleted from e (x) as required
by r1. Yet this result is correct since 0 has been added to G’(z) by the right-hand side of 3. Hence the values (through

matchings v € M) of terms ¢ € R, (2)\K, (z) for some z € R, UR,, should be allowed in H, even if they are deleted by some
rule. A formal definition can now be endeavoured.

Definition 4.3 (parallel transformation |y7). Let G, H be two graphs, R a set of rules and M < .#(R,G), there is a
parallel transformation from G to H by M, and we write G |-y H if for all p1 € M there exists a matching ¢/ from R, to
H such that

e 1/ and p are joinable for all y € M,
o H = G\[Va,An, O] |_| “/(Ru) where

pneM
Vi = U n(LN\K), Ay & U p(L\Ky), Oy = U fio (L\K,) ,
pneM peM pneM

o (effective creation) G is disjoint from Vj,;, A, @ where

Vir = U "R M\K ), Aj dif U M,(Ru\ﬁu)v

pneM pneM
o (effective deletion) H is disjoint from Vs, Apr, €ar\€}, where

by = U fro (Ru\Ku) o'~
pneM

We then say that H is obtained by (1) uen-

Note that £}, is only defined on the subgraph | | ¢, /(R m K,) of H; as mentioned in Section 2.2, £}, is implicitly
extended to the suitable domain by mapping other vertices and arrows to @.

Example 4.4. In order to illustrate the parallel deletion and creation of vertices and arrows, we consider only unlabelled
graphs, and therefore a rule r = (L, K, R) with no variable and

This is a standard rule that removes an arrow f and its target y, and creates a new vertex z and a new arrow g from z to
the source x of f. The input graph is

G = [alfflﬁb%fzf@}




There are exactly two matchings p; and ps of r in G, given by

|z y f |z y f
M1‘al b fi Hz‘az b fo

With M = {p1, 2} we easily see that Vay = p1(y) U pa(y) = {b}, Anr = pa(f) U pa(f) = {f1, fo} and £y = @, so that

G\[Var, A, ] = (a1 a2

A first possibility is to choose p} and uf that yield the following images:

i - i -

and are easily seen to be joinable with pu; and ps respectively. This yields

H, = [al <—g1—c—g2—>a2}

Since V}; = pi(2) u ph(2) = {c} and Al = pi(9) U p5(9) = {91, 92} do not occur in G, the property of effective creation
holds, and since H; is disjoint from {b}, {f1, fo}, @ then so does effective deletion. We conclude that G |y H;.
Another possibility is to choose uj and pf so that

i(R) = (@ —a—e | w(R) = [ —0—a)

and that are also joinable with py and po respectively. This yields

H2=[a1<—91701 CQ—Q2—>CL2}

Since Vy; = pi(2) uph(2) = {c1, 2} and Af, = 1 (g) v ph(g9) = {1, g2} do not occur in G, the property of effective creation
holds, and since Hs is also disjoint from {b}, {f1, f2}, @ then so does effective deletion. We conclude that G |-ps Hz. There
are no other possibilities than these two, up to isomorphism.

This example shows that the graphs ) (R) and p4(R) may or may not overlap. This is a situation similar to amalga-
mation (see Section 10); the result depends on the choice of p'’s hence the relation |-y, is not deterministic.

Example 4.5. We now apply the rule r of Example 4.4 to the graph

G = [a7f1%b7f24>8}

There are exactly two matchings py and po of r in G, given by

lz y f lz y f
pila b fi p | b ¢ fa
With M = {p1, po} we see that Var = pi(y) v pa(y) = {b,c}. However, since pug and p5 must be joinable then pf(x) =
pa(x) = b and therefore b belongs to p5(R) < H. This means that effective deletion cannot hold, hence there is no H such

that G Ip; H. The reason is that the two applications of r clash on b: it should be removed according to p; and preserved
according to po.

More generally, if there is a rule that removes a vertex (or an arrow), and a rule that preserves a vertex or an arrow,
it is easy to build a graph and two matchings that similarly clash. Note that in Example 4.5 the graph G can be obtained
by gluing together two copies of L.

5 Parallel Rewriting

In order to obtain a deterministic parallel transformation we need to determine the p'’s from M. In Example 4.4 we see
that H; can be obtained as a homomorphic image of Hy but not the reverse. It seems therefore reasonable to favour
H, over Hi, hence to minimize the amount of overlap among the images of right-hand sides. Such overlaps cannot be
completely avoided since these images may intersect with GG. But it is possible to define the images of the right-hand sides
(and the corresponding matchings) by ensuring that they only overlap in G. For this we create new vertices or arrows of
the form (z, ) for all ue M.
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Definition 5.1 (graph GL and matching pt). For any rule r = (L, K, R), graph G and matching p € #(r, G) we define a
graph G/TL together with a matching ut: R — G;Tu

Let GL LR AK) U ((R\K) x {u}) and é; LR AK) U ((R\K) x {u}). Then, let z} be defined by: it % /i and
the underlying graph morphism (also denoted uf) is the function from RUR to GL V) (?L such that for all z, if z € K U K

then pf () = pu(x) else pt () = (x, ).
Finally, let

GL= (Gl G, moRom™, ptoRom™", o, ioRomt™").

Obviously w1 is joinable with p and is a matching from R to G}L such that ut(R) = G’L. We now prove that the graphs
G and GL’S are pairwise joinable and examine their intersection.

Lemma 5.2. For every ruler = (L, K, R), graph G and u € 4 (r,G), the graphs G and GL are joinable, p(RMK) < GI_!GL
and G GL has the same underlying graph as (R m K).

Proof. Tt is obvious* that G n éL =Gn Gl = @ and Gn éL = u(R n K), hence for all g € G n @L thereisa fe Rn K
such that g = u(f) = p1(f), hence

Gllg) = Gl opt(f) = ut o R(f) = po K(f) = Gou(f) = G(g)

so that GL and G are joinable and similarly for GL and G, hence G’L and G are joinable.

We have p(Rm K) < w(K) < G and p(Rm K) = p}(Rn K) < ut(R) = GL, hence uy(Rm K) < G m GL. Besides,
for all y € G GL = (R n K) there exists a # € R n K such that u(z) = y, hence G n GL < u(R ~ K) and similarly
Gn éL c u(]:f N I?), hence G m GL and p(R m K) have the same underlying graph. O

is joinable and examine their intersections.

We next prove that (G;T)ueM

Corollary 5.3. For all u,v € M (R,G), the graphs GL and G}, are joinable and, if p # v then G|, m G} and p(R, mK,) r
v(R, mK,) have the same underlying graph.

Proof. If ;o = v this is obvious, hence we may assume that p # v so that éL nGl = ,u(f{# N K#) ~nv(R, nK,) c G,
and since GL and G are both joinable with G then they are joinable with each other and GL n Gl < G, so that
GL nG) =(Gn GL) m (G m G)), hence the result. O

We may therefore adopt the matchings ! as matchings u’, yielding the following graph transformation.

Definition 5.4 (G||,,, effective deletion property, =%, =>r). For any set R of rules, any graph G and any M <
M (R,G), let
Gllar = G\Var, Aur ] | ] G
pneM
with the same Vs, Ay and £y as above (see Definition 4.3). M has the effective deletion property if G||,, is disjoint from
VM, A]\/[, gM\ng/[, where
€1TVI = U fro (Ru\Ky) o T
pneM
Let =g be the relation of parallel rewriting defined by, for all graphs G and all M < .# (R, G) such that M has the
effective deletion property,
Let =>x be the relation of full parallel rewriting defined by, for all graphs G such that .#Z(R,G) has the effective
deletion property,
G =g G”J/((R,G)

Example 5.5. We consider the same graph G, rule r and matchings p1, po as in Example 4.4. We have # (r, G) = {u1, u2},
hence

G—=nr [ ar — (g,m) — (z,p1) (2, p2) — (g, p2) — az}

This graph is isomorphic to Hs.

4We assume that, as in the category Sets, functions are given with their codomains, so that u “contains” its codomain |G| and hence, by
the axiom of regularity, G cannot “contain” .
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The rest of the section is devoted to proving the properties of this particular transformation, in particular that it meets
the requirements of a parallel transformation given in Definition 4.3. We also see that it is a most general one in the sense
that, if M has the effective deletion property then any graph that can be obtained as a parallel transformation from G by
M can also be obtained as a homomorphic image of G||,,.

Theorem 5.6. For any graphs G, H and any M < .# (R, G) that has the effective deletion property, we have G I-ar G|,
and if G Iy H is obtained by (1) enm then there exists o : G||,;, — H surjective such that cco ut = p' for all pe M.

Proof. For all € M, pu! is a matching from R, to G||,, joinable with p. Effective creation holds since
MT(RM\KM) NG = ((Ru\Ku) x{u}) nG=2

and similarly uf (ﬁu\ﬁu) NG = @, hence G is disjoint from Vi, Ay, @ (with g/ = pt). Effective deletion holds by
hypothesis, hence G -y G| ;-
We now assume G Iy H where H is obtained by (1) enr, hence

Gl =G o | Gl and H =G0 || W(R,) where G’ = G\[Vir, Aur, ]
neM neM

According to Lemma 3.6, we can build a morphism from G||,, to H by joining suitable morphisms ¢, : GL — 1/(Ry,) for
all p € M, together with a morphism from G’ to itself; this will be 1¢.

Let o, have p o ,uT_l as underlying graph morphism and &, = lg,. This is a bijective function that preserves
adjacencies and such that

Gloay = (' o Ryop ™) oa, = fioRy, ot ™ = G = 4,0 G,

hence o, is an isomorphism. We now see that (1g/, a,)uenr is joinable.

For all p € M and all y € G/ N GL = M(Ru A Ku), there exists a = € Ru N Ku such that y = p(z) = pf(x), hence by
joinability of p and p’ we have o, (y) = p/(z) = p(x) = y. Similarly, a,(f) = f for all f e G A éL, hence 1¢ and o, are
joinable.

For all u,v € M such that y # v and for all y € GL A G, by Corollary 5.3 y € M(Ru N Ku) A v(R, n K,) hence
a,(y) = y = oy (y) and similarly for arrows, hence o, and «a,, are joinable.

Lemma 3.6 thus yields that 1o/ v Y ,cpr ap : Gy — H is surjective. O

The morphism that yields H as a homomorphic image of G||,, may not be unique, unless the algebra used in G and H
is reachable.

Corollary 5.7. If o/ is reachable then « is the unique morphism such that oo ut =y’ for all pe M.

Proof. The underlying graph morphism of « is determined by G, the p’s and p’s, hence it is unique. For all u e M, 1
is a X-homomorphism from .7 (X, Var(L,)) to @ that extends the unique X-homomorphism from .7 (X, &) to #;, that
is surjective by hypothesis, hence [ is surjective. But avo u = p’ entails & o i = fi, hence & = 14, and « is therefore
unique. O]

By analogy with a notion from category theory, we can say in this case that G||,, is the initial graph among those that
can be obtained as parallel transformations from G by M.

It is now possible to show that the construction of G||,, is invariant, in the sense that if & : G ~ H and M < # (R, G),
then Gy ~ Hponr (note that o M = {aop|pe M}y < #(R,H)).

Lemma 5.8. Ifa:G~H and M < A (R,G) then G||;; ~ H|l ,ons-

Proof. We are going to use Lemma 3.7 to build an isomorphism from G’ = G 1| | ,c), GL to H' = H u| |,y H(lou by
joining to a suitable isomorphisms a,, : G|, ~ HJo, for all p e M. Note that (G, G],)uen is joinable by Lemma 5.2 and
Corollary 5.3.

Let o, have (a0 p)t o p1 ™! as underlying graph isomorphism (from GL = ut(R,) to H(Itou = (ao p)1(R,,) underlying
graphs) and ¢, = &. Since

1

o oauz&oﬁoﬁuo(aoN)Ti oaH:&OﬁOf{#OMT_lzéuoéL

aop
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then «, is an isomorphism. It is joinable with « since for all vertices and arrows y of G m GL, by Lemma 5.2 there is a
vertex or arrow = of R, m K, such that y = pu(z) = pf(x), and we have

au(y) = ap o pl(z) = (@op)t(z) = aopu(z) = a(y).

Besides, it is easy to see that (G n G) = a(G) ma(G],) = H HJ., hence a A o, is surjective.
For all v € M such that v # p and for all vertices and arrows y of GL 1G], by Corollary 5.3 y belongs to (R, mK,)m
v(R, mK,) hence a,(y) = a(y) = au(y), so that a,, and «, are joinable. Since

(ap A ) (G NGl =Gl nGl)=H],, nH]

aop aov?

then a;, A @, is surjective. Lemma 3.7 thus yields 8 = a v Y 5, a1 G' >~ H'. We also see that

a(Var) = o | wlL\K) = J a0 n(L\Ky) = Vaour

(note that raey, = 1, since aop € A (r,, H)) and similarly a(Apr) = Aponsr and aolp oot = loops. Hence by Lemma 3.5

B(Glly) = a(G\[Var, Anr, bar]) L | | (@)

pneM

= H\[VOLOMaAonMa‘gaoM] [ |_| H;oy
pneM

= HHaoM'

It is then easy to see that the exhaustive application of rules entails the expected determinism property.
Theorem 5.9. The relation =>5 is deterministic up to isomorphism.

Proof. Let G and H be graphs and o : G ~ H, then #(R,H) = a0 #(R,G), hence H|| 4z 11y = Hloonr(r,cy =
Gll.#(r,c) by Lemma 5.8. O

6 Cellular Automata

As illustrated in Example 4.5, the effective deletion property in Definition 5.4 restricts, for most rules R, the graphs on
which the transformation =5 can be applied. The problem is therefore to examine what kind of parallelism can be
expressed under this restriction. The subject of the current section is to prove that the model of parallelism allowed for by
Definition 5.4 encompasses the popular model of cellular automata.

Definition 6.1. A cellular automaton is a tuple a = (S, f,v1,...,v,) where S is a finite set of states, n € IN, the local rule
f is a function from S"*! to S, and vy, ..., v, are n distinct elements of Z9\{(0,...,0)} called the neighborhood frame, for
some d > 1.

The elements of Z? are called cells. A configuration of a is a function ¢ from Z< to S, and we write €, for the set of
configurations. The global transition map of a is the function T4 from %, to %, that maps every configuration ¢ to the
configuration ¢ = Tq(c) defined by ¢ (v) = f(c(v), c(v + v1),...,c(v + v,)) for all v e Z4,

In this definition we have assumed w.l.o.g. that the local rule may always depend on the state of the local cell. An
algebra and a rule can now be associated to every cellular automaton a, and a graph to any configuration c € €.

Definition 6.2 (algebra S, rule rq, graphs G¢). For any cellular automaton a = (S, f,vy,...,v,), let X4 be the signature
with two sorts state and neighbour, with a constant s of sort state for every state s € S, with n constants ny,...,n, of
sort neighbour and with a function symbol ¢ of type state”*! — state. We also consider the set X = {ug,...,u,} of
n + 1 variables of sort state.

Let S, be the Y,-algebra where state is interpreted by S, neighbour by {ni,...,n,}, every constant by itself and ¢
by the local rule f.
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The rule associated to a is rq = (Lq, K4, Rq) with the (34, X)-graphs

( R e R\
x1 | ug 1| Uy

fiim

1|01 n

o Jilm

La = o | U . Ku = Zo
~

frn | np fnInn
~

/\

Ty | Un AT
L J L Y

R, = [130 | t(uo, - - - ,un)j

Note that ry is a non-standard rule.
Finally, for every configuration ¢ € €, let G¢ be the graph such that </g. = S, and that is the union for all v € Z¢ of
the graphs

( 7
v+v1 | c(v+ )
—7
/(’U71)‘n1
vle(v)

(v,n) | np

v+, | c(v+ o)
= J

Theorem 6.3. For any cellular automaton a, configuration c € €4 and graph H, we have
G =, H iff H=GT©,
Proof. Let M = . (r4,G®), for any cell v € Z? there is an obvious matching p,, of ro in G¢ defined by

‘ e} Z; fz () Uq
po | vovtv (0,0) c(v) clv+ )

for all 1 < i < n. There is no other matching that maps x¢ to v, hence M = {u, | v € Z?}. The rule r, only removes
the attribute of cells, hence Vyy = Ay = £p((v,i)) = @ and £y (v) = {c(v)} for all v € Z¢ and 1 < i < n. Hence
G\[Var, A, £as] has the same underlying graph and arrow attributes as G°, and its vertices are attributed with @. The
right-hand side R, adds to every vertex p,(xo) = v the attribute

J (o (o), - - - s fl (un))
(c(v),c(v+v1),...,c(v+vy))

c(v)

/ij (t(u()? oo aun))

where ¢ = Tq(c), hence G°||,;, = G\[Var, Anr, bar] U | yega 0T (Ra) = G¢'; this proves the only if part.
Finally, we have EJTV[(U) = {d(v)}, ie., the attribute added by p,1(Rq) for all v € Z? hence G¢ is disjoint from
Var, A, ﬂM\EILI. This proves that M has the effective deletion property and therefore that G¢ =, GTalo), O

Example 6.4. Conway’s Game of Life [13] is a 2-dimensional cellular automaton g with two states 0 (for dead) and 1
(for alive) and the Moore neighborhood frame, i.e., vy, ...,vs are the non-zero elements of {—1,0,1}2. The automaton is
defined by the local rule
1 it Y si=3
f(soy...,88) = so if 2?21 s =2
0  otherwise.

It can be translated into a single rule ry as above, with n = 8. However, most problems in computer science involving
the Game of Life are restricted to finite configurations, i.e., those configurations ¢ where ¢~!(1) is finite. Yet for all
configurations ¢ the set .#(ry, G¢) is infinite. For the sake of computability we therefore need a set R of rules with the
property that .# (R, G¢) is finite whenever ¢ is finite.

For any matching p of ry we write p(ry) for the triple (u(Lg), #(Ky), #(Rg)), that may or may not be a rule; note
however that p(Rg) is well defined even though Ry is not a subgraph of Lg. We use the fact that f(0,...,0) = 0, hence a
cell may become alive only if it is in the neighborhood of a live cell. It is therefore possible to use rules whose left-hand sides
match only those parts of ¢ that contain a live cell. We thus let R = {p(rq), ..., us(rg)} where po,. .., us are matchings
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such that fip is the substitution {ug — 1} and ji; is the substitution {ug — 0,u; — 1} for all 1 < ¢ < 8 (and such that R
is a valid set of rules, see Definition 4.1). It is obvious that every cell other than dead cells with a dead neighborhood are
matched by exactly one rule in R, hence .# (R, G¢) is finite if ¢ is finite, and these matchings always extend to matchings
of ry and hence yield the same transformation as rg.

Relying on further properties of f it is possible to achieve the same goal with fewer rules. More precisely, we use the
facts that f(0,s1,...,ss) does not depend on the order of the s;’s, and that a cell can only be born if it has 3 live and 5
dead neighbours. We thus consider the rule of birth v, = (Ly, Ky, Rp) where:

I N
x1]1 x4 |0
fi /f4
Ly=| z2|le—fo— 0|0
f3/ \fs
r3 |1 zs |0
N\ J
I N
1‘1‘1 l‘4‘0
fl\ /f4
Ky=| 22|l +—— fo — 2o
— ~
f3 fs
1‘3‘1 .%‘8‘0
L Y

Let R' = {uo(rq),1s}, it is easy to see that r; accounts for all births and po(ry) for all deaths (and survivals), so that
R’ again yields the same transformation as ry. However, there is no longer one matching of r, on each relevant cell, but
3! x 5! = 720, still finite but not quite optimal. This problem is addressed in Sections 7 and 8.

Compared to cellular automata, full parallel rewriting also allows to remove and create cells. The fact that graphs are
non-geometric in nature, since vertices are not attached to coordinates, enables the use of more exotic topologies than Z?,
e.g., the cells could be placed on a sphere or a torus. The topology defined by the neighborhoods need not be uniform and
it can evolve from one configuration to the next.

7 Automorphism Groups of Rules

In this section, the notion of automorphism group of a rule is introduced, that will be used later to define a new refined
parallel graph transformation. Indeed, using the full set of matchings might not be desirable in some cases, as illustrated
below.

Example 7.1. Consider the rule r = (L, K, R), where

( R
1,/
+
f/
[
x
/ \
R = ! h
/ \
Yy—9—2z_
/ h/
y/kg jzl
. J

Here, each edge f, g, h represents a pair of opposite arrows. We have L = K < R, hence L m R = K (this is a standard
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rule) and L u R = R. Obviously, this rule has six matchings in a triangle, hence

Thus the transformation of a simple triangle using the six matchings consists in adding to each vertex of the considered
triangle six new adjacent vertices. However, this transformation may be counterintuitive because one may expect to add
just one new adjacent vertex to each of the three vertices of the transformed triangle as depicted in the rewrite rule. To
obtain such a result one may exploit the symmetries that occur in the graphs L, K and R. These symmetries are actually
the automorphisms of the corresponding graphs. Indeed, for any graph G, the automorphisms « of G are the bijective
morphisms from G to G such that & o G = G o « (see Section 2), hence such that

(@) = (a(@), a(G), G, G, g, GoGoa™t) =G.

In group-theoretic terms (see, e.g., [14]), the set Aut(G) of automorphisms of G is the subgroup of the symmetric group

Sym(|G]) of all permutations « of |G| such that a(G) = G. But for all such « we have a(G) = G, a(G) = G and & is
a Y-automorphism of o7, i.e., an element of the set Aut(#/;) of Y-automorphisms of o7;, that is again a group. Hence

every a in Aut(Q) is the join & v @ v & of some & € Sym(G), some @ € Sym(G) and some & € Aut (). In other words,

Aut(G) is a subgroup of Sym(G) v Sym(G) v Aut (<), that is indeed a subgroup of Sym(|G|). For example, if we take «
such that & = (), @ = (f ¢), @ = () (in cycle notation), and apply it to the following graph, we get

a( Sy’ ) = |« 252y

that is just another way of drawing exactly the same graph, hence (f ¢) is an automorphism (a symmetry) of this graph.
Note that symmetries may not be apparent in the drawing of a graph.

We also need to examine how the symmetries of the left and right hand sides of a rule interact; this is not obvious
since the permuted sets are different and may intersect (as is the case in Example 7.1). To this purpose the notion of
automorphism groups of graphs is now extended to their subgraphs.

Definition 7.2 (groups Autg(Hy,...,H,) and S|;). For any n > 1 and any graphs H, Hy,...,H, < G, let

Autg(H) % {a € Sym(G) v Sym(G) v Aut (o) | a(H) = H}

and Aute(Hy, ..., H,) = (1) Aute(H;).
=1

def

For any o € Autg(H), we write afy for o ), and for any subgroup S of Autg(H), let S|y = {aly | o € S}; this is a
subgroup of Aut(H).

It is obvious that Autg(G) = Aut(G). We see that Autg(H) is a permutation group on |G|, but only the structure of
H is involved in the constraint a(H) = H, not the structure of G.

Example 7.3. Take for instance the unlabelled graphs

H=|z"7'=y andG—{xif\’yZZ:z}

We have
Aut(H) = {1g, (z)(y)(f 9)} and Aut(G) = {1c, (2)(y)(2)(f 9)(h)(k)}
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(we write fixpoints in order to make the domains explicit). However, in Autg(H) the permutations of objects that do not
belong to H are free, hence

Autg(H) = {1q, (@) () (2)(f 9)(h)(k), (2)(y)(2)(f)(9)(h k),
@) (W) ()(f 9)(h k)}
= Aut(H) v {(z)(h)(k), (z)(h k)}
= Aut(H) v {(2)} v {(R)(k), (h k)}
= Aut(H) v Sym(z) v Sym(h, k).

It is easy to see that Autg(H) = Aut(H)v Sym(G\H) v Sym(G\H) always holds and hence that Autg(H)|, = Aut(H).
This means that, compared to the elements of Aut(H) that are only permutations of | H|, the elements of Autg(H) are
all possible extensions of the elements of Aut(H) to permutations of |G|. This allows us to conveniently intersect the
automorphism groups of joinable graphs, as are the graphs L, K and R involved in a rule (see Definition 4.1).

One last point that should be accounted for is that we are interested in the matchings from L to G, hence the symmetries
of a rule are only relevant through their action on L. This leads to the following definition.

Definition 7.4 (group Aut(r)). For any rule r = (L, K, R), the automorphism group of r is
Aut(r) < Auty z(L, K, R)|;.
It is obvious that Aut(r) is a subgroup of Aut(L).

Example 7.5. Let r = (L, K, R) be the rule of example 7.1, where L = K < R, hence L u R = R. It is well-known
that the symmetric group Sym(1,2,3) has 6 elements and is generated by the permutations (1 2) and (1 3). Thus Aut(L)
is the group generated by the permutations (z y)(h g) and (z 2)(f g) (for the sake of simplicity the edges f, g, h are not
explicitly expanded as pairs of arrows), and has 6 elements. Hence Autg(L) is generated by (z y)(h g), (z 2)(f g), (' ¢'),
(' 2), (f' ¢') and (¢’ '); it has 63 elements. However, the group Aut(R) is generated by (x y)(2’ y')(h g)(f’ ¢') and
(x 2)(a" 2')(f ¢)(f' 1); it has 6 elements and is included in Autgr(L), thus Autgr(L, R) = Aut(R). Finally, the group

Aut(r) = Aut(R)|}, is generated by (z y)(z' y')(h 9)(f" 9|, = (z y)(h g) and (z 2)(z" 2')(f 9)(f" W)l = (= 2)(f 9),
hence Aut(r) = Aut(L).

In this example the groups are finite, but the possibly infinite algebra of terms that occur in a rule has not been
considered. It is however easy to see that these groups are always finite.

Lemma 7.6. For any (X, X)-graph G and rule r, the set 4 (r,G) is finite.

Proof. Let L be the left part of r and Y = Var(L). All elements of .#(r,G) can be obtained as u v fi, where p is an
injective morphism between the underlying graphs of L and G, and {1 a X-homomorphism from 7 (X|Y) to (X, X). u

belongs to the finite set of injections from LuULtoGuG. Since T(X,Y) is free with generatlng set Y in the class of
X -algebras, every Y- homomorphlbm £t is determined by fi|y. For every v € Y there is an z € LuLandate L( ) such
that v € Var(t), and since ji(t) € G(u(x)) then ji(v) belongs to the set of subterms of the elements of G(u(x)), that is finite.
Hence there is a finite set of possible functions il . O

Note that if there were a variable v in the term algebra of a rule that did not occur in its left hand side (see Remark 4.2),
then v could freely be matched to any element of the algebra of the input (X, X)-graph G, and .# (r,G) could then be
infinite.

Corollary 7.7. The group Aut(r) is finite.
Proof. Aut(r) is a subgroup of Aut(L) that is a subset of .# (r, L). O
Corollary 7.8. If R is finite and G is a (¥, X)-graph then such is G||,,; for all M < #(R,G).

Proof. M € 4, e # (r,G) is finite hence G|, = G\[Var, Anr, Ear]u e G, is obtained as a finite union of finite graphs,
it is therefore finite. O

If G is not a (X, X)-graph then the set .#(r, G) may not be finite, even if G is finite. In practice it is often necessary
to apply the rules of R to graphs G where /s is not an algebra of terms, e.g., the additive algebra of integers, but it is
then possible to recover finiteness by imposing ad-hoc restrictions on the terms that occur in the rules, e.g., the term u + v
(where u and v are variables) cannot be allowed since it has infinite matchings with any integer.

17



8 Parallel Rewriting modulo Automorphism

Considering again Example 7.1, we would like to consider rewrite steps in which only one matching is selected among the
6 possible ones ; and more generally to select a subset M of .#Z(R,G) for defining a rewrite relation that yields more
natural and concise graphs. The difficulty is to maintain determinism, i.e., to avoid an arbitrary choice of matchings. A
key point is that the elements of M need not be selected in a deterministic way. Indeed, if a non-deterministic procedure
for computing M < #(R,G) is used, and if it is guaranteed that G||,,, >~ G||,, for all possible output M’, then the
corresponding rewrite relation is deterministic up to isomorphism.

Definition 8.1 (equivalence relation ~, sets M, relation ==%). For any graph G, let ~ be the equivalence relation on
A (R,G) defined by
o~ vift poAut(r,) = voAut(r,).

(See Definition 4.1 for r, and r,). The equivalence class of p is denoted fi. For any subset M < .#(R,G) we write M for
the set (J,,cp/ -
For any set R of rules, let =% be the relation of (full) parallel rewriting modulo automorphism defined by, for all
graphs G,
GE=r Gy,

where M is any minimal set that has the effective deletion property and such that M = .Z(R,G).

The minimality of M means that it contains exactly one undetermined representative per equivalence class modulo ~.
These classes are described below.

Lemma 8.2. For any graph G and p e #(R,G) we have i = po Aut(r,).

Proof. For all v € i we obviously have v € v o Aut(r,) = o Aut(r,), hence @ < po Aut(r,).

Conversely, assume that v € o Aut(r,), i.e., that there exists a o € Aut(r,) such that v = 10 0. Since Aut(r,) is a
subgroup of Aut(L,,) then poo = v is a matching from L, to G. But v is also a matching from L,, to G, and according to the
convention on R given in Definition 4.1 this entails r,, = r,, and hence Aut(r,) = Aut(r,). Since u = voo~! € voAut(r,),
we have

voAut(r,) € poAut(r,) o Aut(r,) = po Aut(r,) < vo Aut(r,) = vo Aut(r,),

hence p1 ~ v and v € [r; this proves that o Aut(r,) < 7. O

Note that matchings p can only be ~-equivalent if they are matchings of the same rule and have the same image p(L,,)
in G. We also see that |fi| < |Aut(r,)| and that the equality holds if 4 is injective. The more symmetric a rule is, the more
matchings are likely to occur in the equivalence classes of matchings of this rule.

Example 8.3. Following Example 7.1, the 6 matchings from L to a triangle T are all equivalent, since for any such
matching p, T = p o Aut(r) has the same number of elements as Aut(r), because p is injective, and this number is 6 by
Example 7.5. Hence i = .#(r,T) and obviously {u} has the deletion property and is minimal, so that T' = T'||,-
Graphically,

L has 4 symmetries, generated by (z 2')(f f')(g ¢') and (y ¥')(f g)(f" ¢')(h I'). K has 4 symmetries, but Auty g(K) =
Aut(K) v Sym(z) v Sym(h, 1/, k) has 24 elements, generated by (z «')(f f')(g ¢"), (v ¥)(f ¢9)(f" ¢'), (h W) and (h k). R
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has two symmetries and Auty,z(R) = Aut(R) v Sym(h, k') has 4 elements generated by (y v')(f ¢)(f’ ¢') and (h h'). The
intersection of these groups is generated by (v v')(f ¢)(f' ¢')(h h') hence Aut(r) has only two elements.
The rule r has 4 matchings in the graph below (because of the 4 symmetries of L), divided in two equivalence classes,

]leIlCG
/ R /
':>7‘

Example 8.5. Following Example 6.4, and as above we see that Aut(r,) = Aut(L;) is the group generated by permutations
(1 22)(f1 f2), (w1 23)(f1 f3), (24 w5)(fa f5) and (w4 25 v6 w7 28)(fa f5 f6 f7 f3); it is isomorphic to the group Sym(1,2,3) x

Sym(1,2,3,4,5) and its cardinality is 3! x 5! = 720. For any finite configuration ¢, if there is a matching p € .# (rp, G°) then
ot = poAut(r,) S . (rp,G%). Since i = 17 (5 &) is injective, the set [z has 720 elements, i.e., all matchings v € .# (1, G¢)
such that v(xg) = p(xg) belong to the same equivalence class 7z; the 720 matchings per birth cell are reduced to one. Since
ry does not create or remove vertices or arrows, we see that G°([(,, = G°||;. Hence G* =/ GTe(©) with the same number

of matchings as G¢ =5 GTe(®),

If, as is the case in Example 8.5, the transformations =>% and =5 yield the same result, then rewriting modulo
automorphism may improve the efficiency of the transformation compared to full parallel rewriting, since performance
depends on the number of matchings. Other factors affecting performance are obviously the size of the input graphs and
the number and size of rules, but also the complexity of computing and applying matchings. This cannot be determined
in the present framework since the functions possibly involved in the X-algebra of the input graph are not even assumed
to be computable.

The rest of the section is devoted to proving the properties of parallel rewriting modulo automorphism. We first examine
the differences in rewriting a graph by M or by M. As shown by Example 7.1, the graph G||q7 may be quite different
from (much bigger than) G||,,. However, some objects relevant to computing G/||37 can be shown to depend only on the
equivalence classes represented in M.

Lemma 8.6. For any graph G and set M < .# (R, G) we have
1. V37 = Vi, A = A, b7 = U,
2. b\ = L\,
3. Gn G|z =Gn G|y,

Proof. For all 4 € M and v € i, by Lemma 8.2 there exists a ¢ € Aut(r,) such that v = p oo, thus r, = r, and
o € Aut(Ly) n Auty, (K,). By definition of Aut(r,) there also exists a 7 € Auty,,ur,, (L, Kpi, Ry) such that o = 7{;, , and
let p = 7|y, so that p € Aut(Ry,) and 6 = 7 = p is a X-isomorphism.

1. Since v and p are injective on L,, = LH then

V(LK) = v(L)\W(K,) = p(o(L)\o(K)) = p(,\K,)
Vir = | Uv@AK) = [ U w@\K) = Var,

pneM vep pneM ven

and therefore

and similarly Ag; = Apr and f57 = €y (using consistency, see Definition 4.1).

2. The function f¢; is an attribution on G hence is empty on all other vertices or arrows than those of G. For all

ye G UG, if y does not belong to G}, then o (Ru\Ku) o1 ! (y) = @, otherwise by Lemma 5.2 there is a vertex or
arrow « of R, m K, such that v(z) = y = v1(z). Hence

o (R\Kp) o1~} (y) = (/)OR (2)\6 0 K, (2))
(Ry. 0 p(2)\K,, 0 0 ()
(R,\K,) 0o (x)
(R\K) 0 1t~ (y)
since p(x) = o(z) belongs to R, m K, and uf(o(z)) = poo(z) =y. Thus
() ) = ) | U 7o AR, 0917 () = (ear\ ) ().

pneM vep

[Lo
=fi0
=fo0
=fo0
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3. By Lemma 5.2, G n G, has the same underlying graph as

V(R mKy) = plp(Ry) mo(Ky)) = p(Ry m Ky),

hence as G m GL. For any vertex or arrow y of this graph we have as above
Gl(y) =oRuov ' (y) = poRuop ' (y) = GlL(y)
hence G m G], = G n GL and therefore

GGl = A\, An bl o || | |GGl =G Gy,

pneM vep

Corollary 8.7. M has the effective deletion property iff M does.

Proof. Since Vi (resp. Apr, resp. £y) is a subset of G (resp. a subset of G, resp. an attribution on G) then G|,y is
disjoint from Vi, Ay, KM\EJLI iff such is G m G|, hence the result. O

Thus any minimal set M in Definition 8.1 has the effective deletion property if and only if .#(R,G) does; conflicts
cannot be eliminated by factoring out equivalent matchings.

The case of the graph G/||,, is more complicated, but it can be shown to depend only on the number of representatives
in M of each equivalence class.

Lemma 8.8. For any graph G and any M,N < # (R, G), if there is a bijection v from M to N such that ¢(u) ~ p for all
pe M, then Gy ~ G| -
Proof. We write ¢, for «(u). For all u € M, 1, ~ p entails r,, = r, and by Lemma 8.2 there is a 0, € Aut(r,) such
that ¢, = po oy, and then a 7, € Auty, g, (Ly, Ky, Ry) such that o), = 7|y, 5 let p, = 7y|g, so that p, € Aut(Ry) and
Pu =Ty =0p.

We are going to use Lemma 3.7 to build an isomorphism from F = G u |—|u€M GL to F/ = Gu l—lueM GI“ by joining to
1 suitable isomorphisms o, : GL o~ GIM for all pe M.

Let o, have ¢,1 Op;1 out ™! as underlying graph isomorphism (from GL = ut(R,) to GI“ = 1,1 (R,) underlying graphs)
and &, = ly,. We have

éfu ooy =iy OﬁM ot oay,
= th o 10{# op;1 o NT_l
=1,0 p;1 o f{u o™ (since ,0;1 e Aut(R,))
=1,0 &;1 o ﬁu o MT_l
o Ry o
= GL
=Gy 0 G’L,

hence a, is an isomorphism. We next prove that it is joinable with 1.

Let U, be the underlying graph of R, m K, then by Lemma 5.2 the underlying graphs of G n G}, and G n G} = are
respectively p(U,) and ¢, (U,). Since

ou(RymK,) =7,(RymKy) = pu(Ry) mou(K,) =R, n K,

then 0, (U,) = U, = 0,,*(Uy). For every vertex or arrow y of G m GJ, there exists x € Uu U ﬁ“ such that y = u(z) = pt(z),
thus

ap(y) = vl op, ot ™ (y) = vt op, (@) = oo, M (x) = px) =y

and hence 1 and o, are joinable. But

(I A ap)(u(Uy)) = tul o P;I(Uu) =ulo Ugl(Uu) = 1M (Un) = tu(Un),
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(and 1g A G, = 1u,) hence 1 A a,, is surjective.
For all v € M such that v # u and for every vertex or arrow y of GL 1 G}, by Corollary 5.3 y belongs to w(U,) mv(Uy)
hence o, (y) = y = a,(y), so that o, and «, are also joinable. The function a,, A «, is injective, hence

(A ) (p(Uy) mv(U)) = au(@Uy) maw(v(Us)) = 6u(Uy) 0 e (U),

but ¢ is also injective so that ¢, # ¢, hence by Corollary 5.3 this is the underlying graph of GIM M GIV. This proves that
a, A ay, is surjective.

Lemma 3.7 therefore yields a = 15 v YueM a, : F ~ F'. We finally see that M = N since ty ~ pforall pe M and . is
bijective from M to N, hence by Lemma 8.6 we have Viy; = Vi; = V5 = Vi and similarly Ay, = Ay and £y = £y. Hence

a(Glly) = 16(G\[Var, Anr, b)) 0 | ] (G
pneM

= G\[V~v, Ay, In]u | | G

pneM
= Glly-

We conclude with the expected determinism property.
Theorem 8.9. The relation =5 is deterministic up to isomorphism.

Proof. Let G and H be two graphs, a : G ~ H and M, N any two sets such that G = G||,, and H = H]|| . Since
aoM < #(R,H) = N then aoM = aoM < N. By symmetry we also have a=* o N € M hence N € oo M and
therefore a-o M = N. The minimality of M such that M = .#(R,G) obviously implies the minimality of a o M such
that « o M = .#(R,H) (since ao p ~ aov entails 4 ~ v), and since N is also minimal then each equivalence class of
M (R, H) is represented exactly once in « o M and once in N. Hence there exists a suitable bijection from awo M to N so

that H|,.,, ~ H| 5 by Lemma 8.8. By Lemma 5.8 we have G||,, ~ H||,,,,, hence G|, ~ H|| . O

9 Sequential and Parallel Independence

The parallel transformation defined as the graph G||,, in Definition 5.4 reduces to a standard notion of direct transformation
when M contains only one matching, and hence to sequential rewriting, see Definition 9.1 below. Note that all singletons
have the effective deletion property.

An obvious link between sequential and parallel rewriting is that when the matchings in M do not overlap, the graph
G|, can be obtained from G by sequential rewriting (up to isomorphism). In fact, it can be obtained in many different
ways, by applying in sequence the elements of M in any order. But this property may still be true when the matchings do
overlap. This is the case of the graph G’ from the running example in Section 4.2. Indeed, when a = b the assignments
a = b and b := a can be evaluated in any order, they will yield the same result as the simultaneous assignment a, b := b, a.
Yet v (L) = va(L2) = G'.

It is therefore possible for matchings in M to overlap and yet for the graph G||,, to be reachable from G by sequential
rewriting. Of course, if there is a rule in R that has the same effect as this particular transformation, this is not surprising.
In order to characterize the kind of overlaps that can be handled similarly by sequential and parallel rewriting, we need to
express the (sequential) reachability of G||,, by the matchings in M (no other rule is allowed) in any order. This is known
as sequential independence (see [11]).

One common difficulty with this notion is that the matchings applied in a sequence of direct transformations are
matchings of rules in many different graphs, which makes it difficult to recognize that two sequences correspond to the
same matchings in different order (see the notion of shift equivalence in [15, Section 3.5]). However, if this notion means
that sequential and parallel rewriting meet, then we may use parallel transformations to express the result of sequences of
direct transformations in any order. This leads to the following definition.

Definition 9.1 (sequential rewriting, sequential independence). For any finite set of rules R, we define the relation — g%
by stating that, for all graphs G and all pe #(R,G),

¢ —rdGl,

where G|, stands for G||;,;, and similarly we will write V), for Vy,;, etc.
We call sequential rewriting the relation —%, i.e., the reflexive and transitive closure of —x.
For any graph G and set M < .# (R, G), we say that M is sequential independent if for all M’ < M and all p € M\M’,
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e 1(L,) < G|, hence there is a canonical injection j : u(L,) — G|,

e there exists an isomorphism « such that a(G||M,u{/L}) = (G||M,) I and O“[GJ =1lq.

jou

The isomorphism « in Definition 9.1 is necessary to account for the difference between the isomorphic graphs pf(R,,)
and (j o u)1(R,). It is possible to define precisely this isomorphism, but there is no need to be more specific than « q) = la
in order to rule out any fortuitous isomorphism.

Note that this definition is designed so that any subset of a sequential independent set is obviously sequential inde-
pendent. This simply expresses the fact that sequential independence cannot be lost by discarding matchings. A more
surprising feature is that it tolerates infinite sets, although it is not generally possible to define infinite sequences of rewriting
steps.

It is easy to see that if M is sequential independent and finite then G||,, can be obtained by sequential rewriting.

Lemma 9.2. For all M < .#(R,G) finite and sequential independent there is a graph H such that G —J, H and
H =G|y

Proof. By induction on the cardinality of M. Tt is trivial for M = @. Assume that M = M’ w{u} then M’ is finite sequential
independent hence by induction hypothesis there exists H and 3 : G||,,, ~ H such that G —J, H. By Definition 9.1 there
is j: p(Ly) — Gl and a: Gy, ~ (Gllyp)ll,, where p/ = jo p. By Lemma 5.8 there exists v : (Gl )l =~ Hllgo,
hence v o a(G| ) = Y((Gllpp)l ) = Hll 5oy, hence G —% v 0 a(G|[,,) and the induction is complete. O

Of course there is usually more than one sequence of rewriting steps from G to the isomorphism class of G||,,, since
under the hypothesis of sequential independence these rewriting steps can be swapped; but without this hypothesis there
is generally no sequence of rewriting steps from G to GJ|,,. Besides, it remains to be seen wether G|,, may then also be
obtained by parallel rewriting.

Sequential independence is not obviously a condition on overlaps, it relies on properties of the results of many graph
transformations (exponentially many when M is finite). In order to characterize this property as a condition on overlaps, or
more precisely as a condition pertaining to pairs of matchings in M and known as parallel independence, a careful analysis
is required.

Parallel independence usually requires that the overlap of two matchings p, v € M, i.e., the graph p(L,) mv(L,) should
be preserved by both direct transformations r, and r,, since if an object in the overlap were removed say by r, then r,
would no longer match; this can be expressed as p(L,) mv(L,) < p(K,) mv(K,). Since this condition is required for all
pairs of matchings, including (u,v) and (v, ), then it is equivalent to the condition u(L,) mv(L,) < u(K,), i.e., that the
overlap is preserved by r,, for all u,v € M. However, this condition is not necessary for sequential independence, as the
example of Section 4.2 shows. Indeed, we see that 14 (L) mva(Ls) = G’ is not a subgraph of

n(Ky) = |zla y 0,0

Yet sequential independence holds because the object that is removed (the attribute 0 of z) is recovered by the right-hand
side of 1. It is therefore necessary to involve the graphs uf(R,,) and v1(R,) in the condition on overlaps.

A first approximation is to require p(L,) nv(L,) < u(K,) u pt(Ry) (an overlap object can be removed by r,, if it is
recovered by r,). This condition turns out to be necessary for sequential independence, but not sufficient. The reason is
that an attribute removed (and therefore matched) by p may not be matched by v but can still be matched by v1.

Example 9.3. Consider a rule r; that removes the attribute 1 to a vertex, and a rule ro that adds the attribute 1 to a

vertex.
n=(E1)®o)
G = H =
= (@@ (1)

The matchings of these rules in G are not sequential independent; if the first is applied before the second then the result
is G, but if they are applied the other way round the result is H. Yet the overlap of the left-hand sides (the graph H) is a
subgraph of the images of both right-hand sides.

It is therefore necessary to consider the overlap not only between left-hand sides but also with right-hand sides. Thanks
to the symmetry between p and v this can be expressed in the following way.
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Definition 9.4 (parallel independence). For any graph G and set M < .# (R, G), we say that M is parallel independent if
w(@Ly) m (L) urt(Ry)) < p(K,) upt(R,) for all g, v € M such that p # v.

It is easy to see that this condition is violated in Example 9.3. Note that we only consider pairs of distinct matchings.
The reason is that the parallel transformation does not allow to apply twice the same matching to a graph. It would of
course be possible to do so (by considering multisets of matchings) but this would obviously hinder determinism, since
there would be no limit to the number of applications of matchings. Thus any singleton is parallel independent.

Of course we expect to be able to rewrite in parallel with those sets of matchings that are parallel independent. But
this is not obvious and requires to be proved.

Lemma 9.5. For any graph G and set M < #(R,G) if M is parallel independent then M has the effective deletion
property.
Proof. Let H = G||,,. Since Vjy < G then by Lemma 5.2 we have

H ('WV]V[ = U I/(RU M Ky) F\VIW
veM

= U I/(Ry N Ku) N N(Lu)\ﬂ(K#)

w,veM

c U V(Ly)mH(Lu)\/’L(KM)v

pn#EveM

since (R, n K,) € v(K,) € v(L,).

Since M is parallel independent then u(L,) m (v(L,) u G]) < w(K,) u GL for all p # v, hence u(L,) mv(L,) <
w(K,) u (G, M G) and again by Lemma 5.2 (L) A v(ly) € p(K,) v (R, nK,) = u(K,). Hence H A Vy = @ and
similarly HnAy =0.

In order to prove that H is disjoint from Vas, Ay, EM\KITW it remains to prove that H(z) n £y (2)\};(x) = @ for all
@€ H U H. This is true if z ¢ G U G since then £);(z) = @, hence we assume that z € G U G, so that H(z) n £y (z) =
U em G Nl () = Upenr f0 f{# opu~1(x) nly(z) and we need to prove that fio 1—2{# ou~t(x) €M(x)\€;v[(x) = & for all
ne M, or equivalently

U froRyop ™ (x) nivoLl, ov Ha)\o K, ovHz) € 4], (2).
veM

For any sets A and B we have A = (A n B) u (A\B), hence for all v € M,
froRy 01 (2) Aoty ov (@)
— (jio (Ry nKy) o @) oLy 0 v ()
G oty or (@) m o (R\K,) o ! (2)
< (fio (R# N Ku) op~Hz)npoLyo v (z)) u 6114(.%)

If v # p, since M is parallel independent then

“z)nioL, (x)
@) uioR, 1(x>
gﬁof{,, 1(x)u o (R V\K) “(x)
<, o) L (),
hence i o 120{# opHaz)nvoL,ovl(z) € voK,ovt(z)u 61@[(@ We notice that this is also true when v = p since

L, R, <K, hence
froR,op t(x)nioL, ov Y a)\voK, o i(z) c 4], (x)
for all v e M. O
We now see that this notion of parallel independence is correct in the sense that it characterizes sequential independence.

Note that the following result does not assume that M is finite.
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Theorem 9.6. For any graph G and set M < #(R,G), M is parallel independent iff M is sequential independent.

Proof. Only if part. For all M’ € M and p € M\M’, let R = | |, G}, so that G||,;, = G\[Va, Apr, €ar] U R. For all
ve M’ we have u(L,) mv(L,) < v(K,) u GJ, and u(L,) mv(L,) < G, hence by Lemma 5.2

w(L,) nv(L,) < v(K,) ur(R, nK,) = v(K,)
or equivalently M(Lu) A v(L,)\w(K,) = @. Thus

) 0 Vi = | L)W(K,) = 2

eM’
and therefore u(L,) < G||M, Similarly we get u(L u) S é||M,. Then, for all x € ,u(LM) U u(fu), we have

,&0104” op~Yz)nvoL,ov Hz) S voK, o (z) uGl(x)

hence ) ) ) ) )
froLyop H(z) oL, ov H(z)\ oK, ov ! (z) € Gl(z) € R(z).
Thus o o o o o
fioLyop N (z) by (z) = U froLyop(z)ndoL,ov (2)\P oK, ov ! (z) S R(x)
veM’
and then

fio i,t op z) < o I:ﬂ o (2)\lar (@) U R(z) < GHM/(I)

Therefore, u(L,) < G|,

Let j : w(Ly) — G|, be the canonical injection and p' = j o p, so that p' € #(r,,G| ), ' (Ly) = p(L,) and
W (K,) = p(Ky), hence V,y =V, Ay = Ay and £,y =€, Let N = M'o{p}, H=GuRupl(R,)and H = GuRL/T(R,).
Note that G|y = G\[VN,AN,EN] u R pf( M) < H, and also that R,y = R, hence /T(R,) = (G||M,)L, and (using
Lemma 3.4)

(Gl = (G\Vars Aners bar] o || GOV Ay 6] 1 /1 (Ry)
veM'’

= G\[Vv, An, In] o || GINVi, Ay, 6] U 1 (Ry)
veM'’

< H'.

By Lemma 9.5 M has the effective deletion property, i.e., G||,, is disjoint from Var, Aar, Car\l 114 hence in particular
G] is disjoint from V,,, A, EM\KJL for all v € M’, so that

GINVis Aps 0] = GIN [V \ VL AM\Auagu\(Eu\KJL)] = GI\[2,9,0, N 5;/[]
For all z € G, UG), if 2 ¢ G UG then l,(x) = @, otherwise GL(m) =flo IQ%N o Y(z) = p' o IQ%MI o/ ~Y(x). Since
(L) n Gl < p(K,) u G, we have
El(w) oy o w7 (@) € oK, o w7 (2) U GL(2)

or equivalently G} (z) N lu(x) < GL(;U), and we therefore have

Gh(x)  Lu(x) n ] (x) € i o Ry o/~ ().

We thus see that GJ\[V,, A, ¢,] has all the vertices and arrows of G, and the attributes that are removed are all in
the graph p/1(Ry), hence
GZ\[VMaAwéu] LT (Ry) = G£ LT (Ry)
and therefore (G|l )|, = G\[Vn, AN, {n] 0 Ru p/T(Ry). In order to build an isomorphism o : H ~ H', let v, have
@1 oput™! as underlying graph isomorphism (from p (R,) to w1 (R,,) underlying graph) and ¢, = 1.,.. Since

ﬁ/of{uou'T_loauzﬁoﬁuouT_l=o°4uof1,of%uou]‘_l
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then o, : ph(Ry) > 1 (R,). -
We now see that 1,k and oy, are joinable. For all y € (GUR) Nt (R ), by Corollary 5.3 we have R n ul(R,,) < G,
hence y € G n ut(R x). By Lemma 5.2 there exists z € R A Ku such that y = p(x) = pl(x), hence a,(y) = p'1(x) =
p'(z) = p(x) = y. The same holds for arrows and trivially for attributes.
Since similarly Rn WTR,) € G it is easy to see that 1g,r A @, is surjective. By Lemma 3.7 o = lgup v oy, : H ~ H'.
Obviously O‘|[GJ = 1g, and

a(Glly) = a(G\[VNn, AN, In] 1 R u pt(Ry,))
= G\[VN, AN, In]u Ru p'1(Ry)
= (Gllas)
If part. For all 4, v € M such that g # v, we have
V(L) 9 Gll, = GV A 6] U G
Since pu(K,) < u(L,) < G, then

v(Ly) mp(Ly) <G, (L) = L)\ Vi Ay, £] 0 (Gl 1 (L)
= pu(Ky) 0 (G, mop(Ly)
< p(K,) udl

Besides, we also have u(L,) < G|/, let j : u(L,) — G|, be the canonical injection, ' = jop e A (ru, G|, ) (hence
V=V, Ay = Ay and l, = {,) and N = {u, v}, there is an isomorphism a such that o(G|| ) = (G|, )Hu’ and of g = 1e-

Let IE Glly mu(Ly,) and H' = (G|, )Hu’ m u(L,), since p(L,) < G then H = a(G||y) nlg(p(L,)) = a(H) = H. We
see that
H = p(Ku\[Vo, Ay, 6] 0 (G 1 (L)) u (G, (L))

and similarly (using Lemma 3.4) that

H' = p(K )\ [V, Au, 6] 0 (GIN Vs A, €] 1 oa(L)) o (W1 (Ry) 1op(Ly))
= (K )\[Vi, A, 6] 0 (G (K)o (01 (Ry) 1 (L))

By Lemma 5.2 we have G, m,u(L ) = v(R, nK,) np(L,) and /1(R,, ) A u(L,) = GT m,u( 2) = u(R, nK,) € u(K,).
Hence H'\u(K M) = @ and H\u(K u) = Gl A p(L u)\U( M). Since H = H' then G n u( u) S (Ku) Similarly, we get
Gl (L) < pl(Kp). : : o o 0 :
For all z € HUH we have G, (x) = fioR,op~ ! (x) = p/oR,0p' " (x), hence obviously H'(z)\(fioK op™" (z)uG](x)) = @
and
H(z)\(io Ky o p™H(z) v Gl(x)) = Gl(2) n fro Ly o p™H(@)\(o Ky 0 p ™t (2) U Gl (2)).

Since H(z) = H'(x) then Gl(z) M fio L op~Hz) < fio f(u op~Hz)u GL(J})
We conclude that G, m p(L,) < u(K,) u G O

Corollary 9.7. If M is finite and parallel independent then there exists a graph H such that G —3, H, G —=x G|,
and H ~ G||,,-

Proof. By Theorem 9.6 M is sequential independent, hence by Lemma 9.2 there exists H such that G —% H and
H ~ G||,,- By Lemma 9.5 M has the effective deletion property, hence G =—x G|, O

Hence parallel rewriting can always be applied with parallel independent sets, and then always yields a result reachable
by sequential rewriting. This can be interpreted as a result of correction of parallel rewriting w.r.t. sequential rewriting.

10 Related Work and Conclusion

The graphs considered in this paper are structures whose items, namely nodes and arrows, can be assigned with sets of
values (attributes). There exist different notions of attributed graphs in the literature. For example, in [16, 17], the authors
consider attributed graphs where graph items can hold at most one attribute. This is a particular case of the attributed
graphs considered in the present paper.

25



A notion of conditional rules has been introduced in [16] whose aim is to consider only matchings that satisfy a boolean
condition associated with the attributes of a rule. This notion could be included in our framework as a way to select
particular matchings. However, such conditions would have to be accounted for in the notion of automorphism group of a
rule.

In [18], a notion of attributed graphs has been used to define Dynamic Abstract Data Types. In that paper, an
attributed graph is defined as an algebra where graph items can be assigned, as in [16], with zero or one value in a given
carrier set.

In [2], the notion of E-graphs is introduced so that several values can be attached to graph items. These values are
considered as particular vertices, and are linked to standard graph items by means of dedicated edges. Thus E-graphs can
always accomodate enough space for new data, a feature convenient to parallelism (see Section 1). The notion of E-graphs
has been extended to symbolic graphs, see e.g.,[19] where E-graphs are endowed with variables constrained by a first-order
formula. Our definition of parallel graph rewriting could also be adapted to symbolic graphs, but again it would be more
difficult to adapt parallel rewriting modulo automorphism.

Parallel graph rewriting has already been considered in the literature. In the mid-seventies, H. Ehrig and H.-J. Kreowski
[11] tackled the problem of parallel graph transformations and introduced the condition of parallel independence under which
parallel graph transformations could be sequentialized and that of sequential independence under which a sequence of graph
transformations could be parallelized. This pioneering work has been considered for several algebraic graph transformation
approaches, see, e.g., [15, 20, 21] or the more recent contributions [22, 23, 24].

Another notion of non-independent parallelism has been considered in the Double-Pushout approach, see e.g. [25],
where rules can be amalgamated by agreeing on common deletions, preservations and creations. However, amalgamation
is restricted to standard rules and does not impose effective creation or deletion, i.e., amalgamated rules may not yield
parallel transformations in the sense of Definition 4.3.

A classical result that is related to non-independence is the Concurrency Theorem, see [2]. This theorem states that
a sequence of two rewrite steps with an overlap E between the right-hand side of the first and the left-hand side of the
second rule, can be represented as one rewrite step of a new rule, called an E-concurrent production. Applying this new
rule to a graph does not mean that the second rule can be applied to this graph, whether in parallel or not with the first.
The Concurrency Theorem refers to sequential dependence, not to parallel dependence.

Parallelism in graph rewriting has been considered in many other contexts. In [26, chapter 14], parallelism is used
to improve the operational semantics of the functional programming language CLEAN [27]. In that contribution, the
authors do not deal with true parallelism but rather have an interleaving semantics, hence their parallel rewrite steps can
be simulated by sequential ones. This is also the case for other frameworks where massive parallel graph transformations
is defined so that it can be simulated by sequential rewriting e.g., [28, 24, 29].

In [30], a framework based on the algebraic Single-Pushout approach has been proposed where parallel transformations
only involve matchings provided by a control flow mapping. The users can solve the possible conflicts between the rules
by providing the right control flow. More recently, a parallel graph rewrite relation has been defined in [31] for a special
kind of graphs called port-graphs. Unfortunately, such graphs are not closed under parallel graph transformation, in the
sense that a port-graph can be rewritten in a structure that is not a port-graph. Besides, conditions for avoiding conflicts
in parallel transformations have been defined over the considered rewrite rules rather than on the matchings they induce;
this limits drastically the shape of these rules.

Graph transformations have also been used to model distributed systems through the Hyperedge Replacement approach,
see [32, 33]. The parallel replacement of individual hyperedges by rooted hypergraphs is a natural way of avoiding conflicts
since overlaps are restricted to common nodes, but this supposes that at most one rule applies to every hyperedge. In [34]
these nodes represent communication channels between hyperedges (representing processes), and a synchronization algebra
is used to decide which hyperedges can be replaced simultaneously. By representing cells by hyperedges and neighborhoods
by their nodes it is then possible to represent cellular automata on finite configurations (the Game of Life however requires
29 rules due to the lack of variables, see [34, Example 5.2]).

An algebraic parallel transformation defined on production rules of the form L <« K <« I — R has been presented
in [35], where a notion of parallel coherence ensures that direct transformations of an object G do not conflict, and thus
enables a parallel coherent transformation. The characterization of parallel independence in this approach has been carried
out in [36].

Future work includes applications and implementation issues. The proposed rewrite relations may be used in several
contexts such as extensions of L-systems to dynamic graph structures, see [37]. The parallel rewrite relation up to auto-
morphism raises the question of using group-theoretic algorithms for efficiently computing and using generating sets for the
automorphism groups of the considered rules, see [14]. The present framework may also be enriched with extra features
such as node and edge cloning as proposed in [38, 39].
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