
HAL Id: hal-03430149
https://hal.univ-grenoble-alpes.fr/hal-03430149

Submitted on 19 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Parallel rewriting of attributed graphs
Thierry Boy de La Tour, Rachid Echahed

To cite this version:
Thierry Boy de La Tour, Rachid Echahed. Parallel rewriting of attributed graphs. Theoretical Com-
puter Science, 2020, 848, pp.106 - 132. �10.1016/j.tcs.2020.09.025�. �hal-03430149�

https://hal.univ-grenoble-alpes.fr/hal-03430149
https://hal.archives-ouvertes.fr

Parallel Rewriting of Attributed Graphs

Thierry Boy de la Tour Rachid Echahed

Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG
38000 Grenoble, France

thierry.boy-de-la-tour@imag.fr rachid.echahed@imag.fr

Abstract

Some computations can be elegantly presented as the parallel or simultaneous application of rules. This is the case
of cellular automata and of simultaneous assignments in Python. In both cases the expected result cannot be obtained
by a sequential application of rules. A general framework of attributed graph transformations is proposed where such
computations can be expressed and analyzed. Determinism is achieved by an exhaustive parallel application of rules, as
in cellular automata that are shown to have a straightforward representation in this framework. A more concise parallel
transformation is also proposed, where some applications of rules can be ignored thanks to their symmetries, while
preserving determinism. Parallel transformations are then used to characterize the property of parallel independence.

1 Introduction

Graph structures are widely used in many areas of computer science and well beyond (e.g., Biology, Chemistry, Physics).
Their visual appearance as well as their expressiveness give them an important place in the modeling of complex systems.
Computing with graphs as first-class citizens requires the use of advanced graph-based computation models. Several
approaches to graph transformations have been proposed in the literature, in particular those based on a variety of graph
transformation rules. There are two main streams of research, on one hand the algebraic approaches where transformations
are defined using notions borrowed from category theory and that apply to any suitable category, including the category
of graphs (see, e.g., [1, 2]), on the other hand the algorithmic approaches where graph transformations are defined by
means of the involved algorithms in the rewriting process (e.g., [3, 4]). In the present paper, an algorithmic framework is
introduced that is geared toward a notion of true parallelism of attributed graph transformations. By true parallelism we
mean simultaneous transformations acting over possibly overlapping parts of a subject graph as well as the simultaneous
changes of the attributes or values, attached to graphs items, i.e., nodes or edges.

The study of rule-based graph transformations turns out to be more difficult than other structures such as strings [5]
or terms [6]. A rule is usually expressed by means of a left-hand and a right-hand sides, L and R respectively, meaning
that any occurence of L should be replaced by R. When L and R are graphs, applying the rule to a graph G amounts to
(non-deterministically) finding a homomorphic image µpLq in G, thus expressing G as a context CrµpLqs, and replacing
this image by µpRq. The elementary way of performing this replacement consists in first removing µpLq from G and then
adding a subgraph µpRq to obtain the transformed graph H “ CrµpRqs. But this would sever all links between µpLq and
Crs, thus leaving an isolated µpRq in H. In order to preserve at least some of these links, it is customary to add an interface
graph K between L and R, specifying which part of L is not to be removed (imagine K as a subgraph of both L and
R). Once the semantics of rules is defined, there are different ways to compute with graph rewrite systems. As confluence
property is seldom true even for orthogonal graph rewrite systems [7, 4, 8], the use of strategies is often advocated to ensure
unique results (see, e.g., GP system [9] or PORGY [10]).

Another way of specifying a deterministic graph transformation by means of rules is to apply all possible transformations
simultaneously, thus averting a non-deterministic choice. This is the case for example in cellular automata, where the next
generation is determined by applying a local rule simultaneously on all cells. It is well known that determinism cannot be
achieved by applying the rules sequentially, since the resulting states of cells may depend on the undetermined order in
which the cells would be considered.

1

In graph transformation theory, parallel transformations have so far been considered mostly under the interleaving
semantics, that led to the notion of parallel independence [11] (see Section 9). This condition restricts the amount of
overlap between images of left-hand sides in order to guarantee that a parallel rewrite step yields the same result as any
sequence of rewrite steps using the same rules. It is therefore unable to account for the kind of parallelism that is used in
cellular automata. For this, we need to allow the simultaneous applications of rules that are not parallel independent, i.e.,
that overlap in a parallel dependent way.

Yet not all overlaps can be allowed since the corresponding rules may then conflict with each other. For instance, a rule
may remove a part of the left-hand side of another rule, or they may give different values to a same variable (e.g., different
states to one cell). In order to preserve the semantics of all the rules involved in a parallel transformation, it is necessary
to avoid such conflicts.

But conflict-free overlaps may not yield a powerful notion of parallelism by themselves. The notion of conflict between
rules clearly depends on the semantics that is ascribed to the rules, i.e., to the graph rewrite relations that they are assumed
to define. A narrow definition may yield unnecessary conflicts. A wider definition may ease conflict-free parallelism, but
may also make determinism elusive.

We are therefore interested in defining a notion of rule-based graph transformation, with suitable rules, whose (conflict-
free but possibly dependent) parallelization yields an expressive notion of deterministic parallel graph transformation. The
expressiveness shall encompass cellular automata, but also possibly other examples of dependent parallelism.

The paper is organized as follows. We first introduce some basic definitions and notations in Section 2, including a
notion of attributed graphs where attributes are sets of values. This eliminates a source of conflict between rules in the
sense that such attributes always accomodate enough space for new data.

The algorithmic framework is introduced in Section 3, where unions and intersections of graphs are defined, and then
used to define a natural way of removing objects in an attributed graph.

The shapes of the rules as well as the notion of parallel graph transformations investigated in this paper are the subject
of Section 4. A simple example is introduced to motivate the necessity to generalize the standard notion of rules to triples
of graphs pL,K,Rq where K is not required to be a subgraph of R. This simple extension supports a general definition of
parallel transformation that is not deterministic.

In Section 5, a specific graph transformation called parallel rewriting is defined under a condition called the effective
deletion property. It is proved to be both a most general instance of the general transformation and deterministic modulo
isomorphism when applied exhaustively. This transformation is further validated in Section 6 where it is shown to generalize
cellular automata. This is illustrated on John Conway’s Game of Life.

One then observes that the presence of symmetries in a rule induces matchings that yield similar transformations, if
taken individually. This suggests that determinism can be preserved by selecting only one matching among the similar
ones. A notion of automorphism group of a rule is thus introduced in Section 7, based on the symmetries of the graphs
L, K and R. The framework established in Sections 2, 3 and 4 allows a simple definition of this group as a permutation
group, and it is shown to be finite.

Based on these groups, a new parallel rewriting relation is proposed in Section 8 where the rules may not be applied in
an exhaustive way. By using only one matching in every equivalence class modulo the automorphisms of the corresponding
rule, it is shown that determinism modulo isomorphism is preserved.

Section 9 is devoted to parallel independence, i.e., to the condition on the overlaps between pairs of matchings of rules
that not only guarantees, but characterizes the fact that parallel rewriting yields the same result as (a restricted form of)
sequential rewriting, a condition known as sequential independence.

Concluding remarks and related work are given in Section 10, especially other notions of parallel graph transformations
are compared with the one proposed in this paper.

2

2 Preliminaries

In this section, we recall or define some basic notions that are used throughout the paper, such as Σ-algebras and attributed
graphs.

2.1 Signatures and Σ-algebras

A (many-sorted) signature is a triple Σ “ pS,Ω, τq where S and Ω are sets and τ is a function from Ω to S‹ ˆ S. The
elements of S are called sorts. For all f P Ω such that τpfq “ ps1 ¨ ¨ ¨ sn, sq, if n “ 0 then f is a constant of sort s, and if
n ą 0 then f is a function symbol of type s1 ˆ ¨ ¨ ¨ ˆ sn Ñ s. We assume throughout this paper a fixed signature Σ; only
in some examples and in Section 6 will Σ be narrowed down to some particular signatures.

A Σ-algebra is a pair A “ ppAsqsPS , pfAqfPΩq where pAsqsPS is a family of pairwise disjoint1 sets, cA P As for all
constants c of sort s, and fA is a function from As1 ˆ ¨ ¨ ¨ ˆAsn to As for all function symbols f of type s1 ˆ ¨ ¨ ¨ ˆ sn Ñ s.

As (resp. fA) is the interpretation of s P S (resp. f P Ω) in A. The carrier set of A is tAu
def
“

Ť

sPS As. Note that every
element of tAu belongs to a unique As, hence is implicitly typed2 (by s).

A Σ-homomorphism from Σ-algebra A to Σ-algebra B is a function α from tAu to tBu such that αpAsq Ď Bs for all
sorts s, αpcAq “ cB for all constants c, and α ˝ fApa1, . . . , anq “ fBpαpa1q, . . . , αpanqq for all function symbols f of type
s1 ˆ ¨ ¨ ¨ ˆ sn Ñ s and all pa1, . . . , anq P As1 ˆ ¨ ¨ ¨ ˆ Asn . If α is bijective then it is a Σ-isomorphism (and then α´1 is a
Σ-homomorphism from B to A), and if furthermore A “ B then α is a Σ-automorphism of A. We write 1A for the identity
Σ-automorphism of A.

We assume a set V disjoint from Ω, whose elements are called variables, and a function τ 1 : V Ñ S. For any finite
X Ď V , the Σ-algebra T pΣ,Xq of Σ-terms on X is defined as usual. T pΣ,Xq is free with generating set X in the class
of Σ-algebras, i.e., for all Σ-algebras A and all functions θ : X Ñ tAu such that θpvq P Aτ 1pvq for all v P X, there exists a
unique Σ-homomorphism from T pΣ,Xq to A that extends θ. A Σ-algebra A is reachable if the unique Σ-homomorphism
from T pΣ,∅q to A is surjective (every element of tAu has a denotation).

2.2 Attributed graphs

An attributed graph (or graph for short) G is a tuple p 9G, ~G, Ǵ, G̀,AG, G̊q where 9G, ~G are sets, Ǵ, G̀ are the source and

target functions from ~G to 9G, AG is a Σ-algebra and G̊ is an attribution of G, i.e., a function from 9G Y ~G to PptAGuq.

We assume that 9G, ~G and tAGu are pairwise disjoint; their elements are respectively called vertices, arrows and attributes.

The carrier of G is the set tGu
def
“ 9G Y ~G Y tAGu. The underlying graph of G is p 9G, ~G, Ǵ, G̀q (this is a standard graph).

G is unlabelled if G̊pxq “ ∅ for all x P 9G Y ~G, it is finite if the sets 9G, ~G and G̊pxq are finite (note that tGu may still be
infinite).

A graph F is a subgraph of G, written F C G, if 9F Ď 9G, ~F Ď ~G, F́ “ Ǵ|~F , F̀ “ G̀|~F , AF “ AG and F̊ pxq Ď G̊pxq for

all x P 9F Y ~F . The relation C is a partial order on graphs.
In the subgraph relation the names of vertices and arrows are important, for this reason graphs will usually be depicted

with the names of the graph items, and their attributes will be listed after each name, separated from it by � (which is
omitted if the attribute is ∅). Since graphs may not be connected, they will be surrounded by a rectangle with rounded
corners, as in:

x y�1
f

C x�1 y�0, 1 z

f

g�0

The arrows specify the source and target functions, and the associated Σ-algebra may be specified separately. Here, any
algebra containing 0 and 1 in its carrier set would do.

Given two attributions l, l1 of G, we write l X l1 for the attribution that maps any x P 9G Y ~G to lpxq X l1pxq. The
attributions l Y l1 and lzl1 are defined similarly.

Given F C G and an attribution l of F , we consider l as an attribution of G by extending it implicitly with empty sets,
i.e., for all x P p 9GY ~Gqzp 9F Y ~F q we let lpxq “ ∅. Conversely, given an attribution l1 of G, the restriction of l1 to 9F Y ~F is
an attribution of F that will be written l1 (by a slight abuse of notation).

1This condition is by no means essential; its aim is to simplify notations and definitions.
2This is particularly true for terms and would not be the case if the overloading of function symbols had been adopted, as in [12].

3

2.3 Morphisms

Morphisms between attributed graphs are needed for two reasons. The most obvious one is that graph rewriting rules
must be matched with the input graph and that a matching is a morphism, though a special one in the present framework.
Another, more fundamental reason is to compute not just with graphs, but with abstract graphs, e.g., in Graph Theory the
abstract graph Kn is any graph that is a clique with n vertices, independently of their names. This is similar to working
with λ-terms modulo α-conversion but one can get away with it by using de Bruijn indices; nothing of the sort is available
on graphs. There is no other way than to consider the input graph as a representation of an abstract graph, and to use
tools3 that do not depend on this particular representation. We therefore need the notion of isomorphism that links the
different representations of an abstract graph.

A morphism of attributed graphs is a standard graph morphism extended with a Σ-homomorphism that preserves the
contents of the attributes. More precisely, given two graphs G and H, a morphism α from G to H, written α : G Ñ H,
is a function from tGu to tHu whose restriction to tAGu, denoted α̊, is a Σ-homomorphism from AG to AH , such that

αp 9Gq Ď 9H, αp~Gq Ď ~H, α ˝ Ǵ “ H́ ˝ α, α ˝ G̀ “ H̀ ˝ α (i.e., adjacencies are preserved) and α̊ ˝ G̊pxq Ď H̊ ˝ αpxq for all

x P 9GY ~G. Note that α̊ ˝ G̊pxq “ tα̊paq | a P G̊pxqu and that α̊ associates a value to all elements of tAGu, not just to those
occurring in

Ť

xP 9GY~G G̊pxq. The underlying graph morphism of α, denoted α by abuse of notation, is the restriction of α

to 9GY ~G. A matching is a morphism whose underlying graph morphism is injective.
For instance, if G C H then tGu Ď tHu and the canonical injection j from tGu to tHu is a matching from G to H. Note

that ̊ “ 1AG
.

The image αpF q of a subgraph F C G by α is the smallest subgraph of H (w.r.t. C) such that α|
tF u

is a morphism

from F to αpF q. It is easy to see that this graph always exists and that

αpF q “ pαp 9F q, αp~F q, H́|
αp~F q

, H̀|
αp~F q

, AH , l q where lpyq “
ď

xPα´1pyq

α̊ ˝ F̊ pxq

for all y P αp 9F q Y αp~F q. In particular when α is a matching then l “ α̊ ˝ F̊ ˝ α´1. We see that αpF q C αpGq C H. The
image of the underlying graph of F by α is the underlying graph of αpF q (and is denoted similarly).

An isomorphism α from G to H, written α : G » H, is a bijective morphism α : G Ñ H such that α´1 : H Ñ G is a
morphism, i.e., such that α̊ ˝ G̊ “ H̊ ˝ α; α is an automorphism if G = H. We write G » H and say that G and H are
isomorphic if there exists an isomorphism α : G » H. We write 1G for the identity automorphism of the graph G. Note
that 1̊G “ 1AG

.
A binary relation ùñ on graphs is deterministic up to isomorphism if, for all graphs G, G1, H and H 1, the relations

G » G1, G ùñ H and G1 ùñ H 1 entail H » H 1.

3 Operations on Graphs

In order to define parallel rewrite relations on graphs, it is convenient to take the union of possibly many different graphs
that have a common part. This operation can only be defined for graphs that are compatible on this common part, and
that we call joinable below. We start with a simpler notion of joinable functions. Basic properties are given without proofs.

Definition 3.1 (joinable functions). Two functions f : D Ñ C and g : D1 Ñ C 1 are joinable if fpxq “ gpxq for all
x P D XD1, i.e., both functions map common domain elements to same images.

If f and g are joinable, then the meet of f and g is the function f N g from D XD1 to C X C 1 that is the restriction
of f (or g) to D X D1, and the join f O g is the unique function from D Y D1 to C Y C 1 such that f “ pf O gq|D and
g “ pf O gq|D1 .

Similarly, given a set I, an I-indexed family pfi : Di Ñ CiqiPI of functions is joinable if its elements are pairwise
joinable, and then let

b
iPI fi be the only function from

Ť

iPI Di to
Ť

iPI Ci such that fj “
`b

iPI fi
˘

|Dj for all j P I.

For all sets of functions S and T , if the elements of S and T can be composed then we write S˝T for tf ˝g | f P S, g P T u,
and f ˝ T for S ˝ T when S “ tfu. Similarly, if these elements are joinable we write S O T for tf O g | f P S, g P T u.

In particular, functions with disjoint domains are joinable, and every function is joinable with itself: f Of “ f Nf “ f .
More generally, any two restrictions f |A and f |B of the same function f are joinable, f |A N f |B “ f |AXB and f |A O f |B “
f |AYB .

It is obvious that these operations are commutative. On triples of pairwise joinable functions, they are also associative
and distributive over each other.

If two joinable functions are injective then so is their meet; if they are surjective then so is their join. But the join of
injective functions may not be injective, and the meet of surjective functions may not be surjective.

3The tools of Category Theory have this property, but they are sometimes cumbersome.

4

Definition 3.2 (joinable graphs). Two graphs G and H are joinable if AG “ AH , 9GX ~H “ ~GX 9H “ ∅ and the functions
Ǵ and H́ (and similarly G̀ and H̀) are joinable. We then define the graphs

G[H
def
“ p 9GX 9H, ~GX ~H, ǴN H́, G̀N H̀, AG, G̊X H̊ q,

G\H
def
“ p 9GY 9H, ~GY ~H, ǴO H́, G̀O H̀, AG, G̊Y H̊ q,

that we respectively call the intersection and union of G and H.
Similarly, for any set I an I-indexed family pGiqiPI of graphs is joinable if its elements are pairwise joinable, and then

for any Σ-algebra A such that A “ AGi for all i P I, let

ğ

iPI

Gi
def
“ p

ď

iPI

9Gi,
ď

iPI

~Gi,
j

iPI

Ǵi,
j

iPI

G̀i, A,
ď

iPI

G̊i q.

Note that the algebra A is uniquely determined whenever I ‰ ∅, and otherwise it will be obvious from the context. It is
easy to see that these structures are graphs: the sets of vertices and arrows are disjoint and the source and target functions
have the correct domains and codomains. Note that if G and H are joinable then G[H “ H [G C G C G\H “ H \G.
Similarly, if pGiqiPI is joinable then Gj C

Ů

iPI Gi for all j P I. We also see that any two subgraphs of G are joinable, and
that H C G iff G[H “ H iff G\H “ G. As above, on triples of pairwise joinable graphs, these operations are associative
and distributive over each other.

These operations are convenient to define a natural way of removing objects (graph items and attributes) from a graph.

Definition 3.3. For any graph G, sets V , A and attribution l of G, we say that G is disjoint from V,A, l if 9GX V “ ∅,
~G X A “ ∅ and G̊pxq X lpxq “ ∅ for all x P 9G Y ~G. We write GzrV,A, ls for the largest subgraph of G (w.r.t. C) that is
disjoint from V,A, l.

Since for any two subgraphs F, F 1 C G that are disjoint from V,A, l, the subgraph F \ F 1 of G is also disjoint from
V,A, l, then the graph GzrV,A, ls always exists: it is the union of all subgraphs of G disjoint from V,A, l. It cannot contain
dangling arrows; all arrows adjacent to an element of V are necessarily removed, even if they do not belong to A. We will
therefore not be restricted by the gluing condition that is necessary in the algebraic Double-Pushout approach to graph
rewriting, see [2, p. 45]. Similarly, GzrV,A, ls cannot contain dangling attributes.

The rest of the section is devoted to proving some fundamental properties of the operations defined so far. It is easy to
see that removing objects is compatible with intersections, i.e., that pG[HqzrV,A, ls “ pGzrV,A, lsq [pHzrV,A, lsq. It is
less obvious that the same holds for unions.

Lemma 3.4. For all joinable families pGiqiPI of graphs, all sets V , A and all attributions l of
Ů

iPI Gi, we have

´

ğ

iPI

Gi

¯

zrV,A, ls “
ğ

iPI

pGizrV,A, lsq.

Proof. SinceGj C
Ů

iPI Gi for all j P I thenGjzrV,A, ls C
`
Ů

iPI Gi
˘

zrV,A, ls, hence
Ů

jPIpGjzrV,A, lsq C
`
Ů

iPI Gi
˘

zrV,A, ls.

Conversely, let H C
Ů

iPI Gi such that H is disjoint from V,A, l. For all f P ~H and all a P H̊pfq there exists an i P I

such that f P ~Gi and a P G̊ipfq. Let x “ H́pfq and y “ H̀pfq, so that f is an arrow from x to y. Obviously f R A, x, y R V
and a R lpfq. Since x, y P 9Gi, then the graph

x y
f �a

(or the corresponding unlabelled graph if there is no such a) is a subgraph of Gi disjoint from V,A, l, hence is a subgraph
of GizrV,A, ls and therefore of

Ů

jPIpGjzrV,A, lsq. Similarly, for all x P 9H and all a P H̊pxq the graph

x�a

is a subgraph of
Ů

jPIpGjzrV,A, lsq. Since H is the union of all such graphs then H C
Ů

jPIpGjzrV,A, lsq, and this holds

for H “
`
Ů

iPI Gi
˘

zrV,A, ls.

We now see that the removal of objects in a graph can easily be transported by isomorphism.

Lemma 3.5. For all isomorphisms α : G » H, sets V Ď 9G, A Ď ~G and attributions l of G, we have αpGzrV,A, lsq “
αpGqzrαpV q, αpAq, α̊ ˝ l ˝ α´1s.

5

Proof. For any subgraph F C G, the subgraph

αpF q “ p αp 9F q, αp~F q, α ˝ F́ ˝ α´1, α ˝ F̀ ˝ α´1, B, α̊ ˝ F̊ ˝ α´1 q

of H is disjoint from αpV q, αpAq, α̊ ˝ l ˝ α´1 iff F is disjoint from V,A, l.

It is similarly easy to see that unions and intersections can be transported by a single isomorphism, i.e., if α : G » H
and F, F 1 C G then αpF [F 1q “ αpF q [αpF 1q and αpF \ F 1q “ αpF q \ αpF 1q. However, unions are not invariant
constructions since images of joinable graphs by different isomorphisms may not be joinable, and if they are joinable their
union may not be isomorphic to the union of the original graphs. To ensure that this is the case, we need some extra
conditions. We first see how to build new morphisms by joining existing morphisms.

Lemma 3.6. For all joinable families pαi : Gi Ñ HiqiPI of morphisms such that pGiqiPI and pHiqiPI are joinable, thenb
iPI αi :

Ů

iPI Gi Ñ
Ů

iPI Hi is a morphism and it is surjective if the αi’s are surjective.

Proof. Let α “
b
iPI αi, G “

Ů

iPI Gi and H “
Ů

iPI Hi. For all f P ~G there is an i P I such that f P ~Gi, hence

α ˝ Ǵpfq “ αi ˝ Ǵipfq “ H́i ˝ αipfq “ H́ ˝ αpfq and similarly α ˝ G̀pfq “ H̀ ˝ αpfq. For all x P 9GY ~G,

α̊ ˝ G̊pxq “ α̊
´

ď

iPI

G̊ipxq
¯

Ď
ď

iPI

α̊i ˝ G̊ipxq Ď
ď

iPI

H̊i ˝ αipxq “ H̊ ˝ αpxq

hence α is a morphism from G to H. The join of surjective functions is surjective.

The following lemma provides the conditions required for building new isomorphisms by joining existing isomorphisms.

Lemma 3.7. For all joinable families pαi : Gi » HiqiPI of isomorphisms such that pGiqiPI is joinable, if αi N αj is
surjective for all i, j P I then

1. pHiqiPI is joinable,

2. αi N αj : Gi [Gj » Hi [Hj for all i, j P I,

3.
b
iPI αi :

Ů

iPI Gi »
Ů

iPI Hi.

Proof. For all i, j P I, let αi,j “ αiNαj . Since αi and αj are injective then αi,j is bijective from tGiuX tGju to tHiuX tHju,
and α̊i,j “ α̊i “ α̊j is a Σ-isomorphism.

1. We first prove that 9HiX ~Hj “ ∅. Assume this is not true, then there is a y P 9HiX ~Hj “ αip 9GiqXαjp~Gjq Ď tHiuXtHju,

hence there is a x P tGiuX tGju such that y “ αi,jpxq “ αipxq “ αjpxq, hence x “ α´1
i pyq P

9Gi and x “ α´1
j pyq P

~Gj .

But Gi and Gj are joinable, hence 9Gi X ~Gj “ ∅, a contradiction. By symmetry between i and j we also get
~Hi X 9Hj “ ∅.

For all g P ~Hi X ~Hj , let f “ α´1
i,j pgq P

~Gi X ~Gj , so that αipfq “ αjpfq “ g. Since Gi and Gj are joinable, then

Ǵipfq “ Ǵjpfq P 9Gi X 9Gj , hence

H́ipgq “ H́i ˝ αipfq “ αi ˝ Ǵipfq “ αj ˝ Ǵjpfq “ H́j ˝ αjpfq “ H́jpgq.

Similarly we get H̀ipgq “ H̀jpgq, hence Hi and Hj are joinable.

2. For all f P ~Gi X ~Gj we have

αi,j ˝ pǴi N Ǵjqpfq “ αi ˝ Ǵipfq “ H́i ˝ αipfq “ pH́i N H́jq ˝ αi,jpfq

and similarly αi,j ˝ pG̀iN G̀jq “ pH̀iN H̀jq ˝αi,j and α̊i,j ˝ pG̊iX G̊jq “ pH̊iX H̊jq ˝αi,j , hence αi,j is an isomorphism.

3. Let α “
b
iPI αi, G “

Ů

iPI Gi and H “
Ů

iPI Hi, then by Lemma 3.6 α : G Ñ H is surjective. For all x, y P tGu,
if αpxq “ αpyq then there exist i, j P I such that αpxq “ αipxq “ αjpyq “ αpyq and this image therefore belongs to
tHiuX tHju. Since αi,j is surjective there is a z P tGiuX tGju such that αipxq “ αi,jpzq “ αjpyq, hence x “ z “ y and

α is a therefore bijective. For all x P 9GY ~G we have

α̊ ˝ G̊pxq “ α̊
´

ď

iPI

G̊ipxq
¯

“
ď

iPI

α̊i ˝ G̊ipxq “
ď

iPI

H̊i ˝ αipxq “ H̊ ˝ αpxq.

hence α is an isomorphism.

6

4 Parallel Transformations

The concept of rewrite rules and parallel transformations will be introduced and motivated on an example running through-
out the section. This example is the simultaneous assignment a, b – b, a from the programming language Python, that
specifies in a concise and elegant way the swapping of the contents of a and b. Our angle is to decompose this expression
as a – b ‖ b – a and view it as the parallel application of two rules on an environment where a and b have values, say 0
and 1. This environment can be represented as an attributed graph, say in the following way:

G “ x�a, 0 y�b, 1

where a and b are constants of sort idtf.

4.1 Rules for parallel transformations

Rewrite rules will be expressed by means of graphs attributed with sets of Σ-terms. We assume two variables u and v of
sort nat. As explained in Section 1, graph rewrite rules have a left- and a right-hand side L and R, and an interface K C L
specifying the part of L that should not be removed.

The left-hand side of a rewrite rule corresponding to a – b should match the relevant part of the environment, hence
it should be

L1 “ x1 �a, u y1 �b, v

Before replacing the value u of a by v it should be removed from a, and of course nothing else shall be removed, hence

K1 “ x1 �a y1 �b, v C L1.

The right-hand side may now specify that the resulting environment should attribute the value v to a. The obvious choice
is the graph

x1 �a, v y1 �b, v

but then the rule would also state that b should keep its content v; this would obviously conflict with the rule representing
b – a. In order to consistently apply the rules in parallel, we need to scale down this right-hand side by dropping the
unnecessary reference to b. Hence

R1 “ x1 �a, v

We end up with the rules r1 “ pL1,K1, R1q for a– b and r2 “ pL2,K2, R2q for b– a, where

L2 “ x2 �a, u y2 �b, v K2 “ x2 �a, u y2 �b R2 “ y2 �b, u

Thus K1 and K2 are not subgraphs of R1 and R2, and the intersections L1 [R1 and L2 [R2 are strict subgraphs of
K1 and K2 respectively. These rules therefore have the shape pictured below.

L[RKL R

The semantics of such rules can be informally described by ascribing different roles to the four different areas. The
existence of a matching from L to some graph G is of course a necessary condition for the transformation of G. The images
(by this matching) of objects of L (vertices, arrows and attributes) that do not belong to K, i.e., the area LzK, have to
be removed from G. Then, in order to find an image of R in the result H of the transformation, the image of L[R in G
has to be preserved in H, and images of the objects of RzL have to be added to G to obtain H.

This leaves the area KzR of images of the objects of K that do not belong to R as “intermediate” objects that do
not have to be deleted nor have to be preserved, hence they are free to be either preserved or deleted. But this is not
deterministic, hence another semantic property is needed to determine the fate of these objects: the condition of locality.
More precisely, we formulate the condition of locality in the following way: every object of G that does not have to be
removed has to be preserved. Hence the intermediate objects will normally be preserved, unless they are explicitly removed
by some rule. This will be made precise in Section 4.2.

In the following definition we consider rules as finite syntactic objects, in conformity with the spirit of rule-based
programming frameworks where term algebras are often used. Terms on the left-hand side allow the selection of attributes,
and on the right-hand side they allow the computation of new attributes (this will be used in Section 6).

7

Definition 4.1 (pΣ,Xq-graphs, rules, matchings). For any finite X Ď V , we call pΣ,Xq-graph any finite graph G such
that AG “ T pΣ,Xq. Let

VarpGq “
ď

xP 9GY~G

˜

ď

tPG̊pxq

Varptq

¸

,

where Varptq is the set of variables occurring in t, see e.g. [6, p. 37].
A rule r is a triple pL,K,Rq of pΣ,Xq-graphs such that L and R are joinable, L [R C K C L and VarpLq “ X (see

Remark 4.2 below). If L[R “ K then r is said to be standard.
A matching of r in a graph G is a matching µ from L to G that is consistent, i.e., such that µ̊pL̊pxqzK̊pxqqXµ̊pK̊pxqq “ ∅

(or equivalently µ̊pL̊pxqzK̊pxqq “ µ̊pL̊pxqqzµ̊pK̊pxqq) for all x P 9K Y ~K. We denote M pr,Gq the set of all matchings of r in
G (they all have domain tLu).

We consider sets R of rules with the following condition: for all pairs of rules r, r1 P R, if pL,K,Rq “ r ‰ r1 “ pL1,K 1, R1q

then tLu ‰ tL1u and hence M pr,Gq X M pr1, Gq “ ∅ for any graph G. Let M pR, Gq def
“

Ţ

rPR M pr,Gq, then for any
µ P M pR, Gq there is a unique rule rµ P R such that µ P M prµ, Gq, and its components are denoted rµ “ pLµ,Kµ,Rµq.

Remark 4.2. If X were allowed to contain a variable v not occurring in L, then v would freely match any element of AG

(that is possibly infinite) and the set M pr,Gq would contain as many matchings with essentially the same effect. Also note
that VarpRq Ď VarpLq (since R is a pΣ,VarpLqq-graph), R and K are joinable and R[K “ L[R.

Also note that for any matching µ from L to G, since µ̊ may be non-injective (thus allowing distinct variables to match
identical values), consistency is necessary to separate the attributes in G that should be removed from those that should
be preserved by a rewrite step.

On the running example we see that M ptr1, r2u, Gq “ tµ1, µ2u where µ1 and µ2 are the matchings of r1 and r2

respectively in G given below.

x1 y1 a b u v
µ1 x y a b 0 1

x2 y2 a b u v
µ2 x y a b 0 1

4.2 Semantics of parallel transformations

For any set M Ď M pR, Gq of matchings in a graph G we now wish to define what is a parallel transformation from G to
some graph H by the simultaneous application of all the rules specified by M , without assuming any order, while preserving
the semantics of each of these rules. The set M of course provides the necessary condition for applying the rules (though
not a sufficient one as we will see).

A first obvious property is that there should be matchings from the right-hand sides of these rules to H, i.e., for all
µ P M there exists a matching µ1 from Rµ to H. Since Rµ intersects Lµ this matching should agree with µ on Rµ [Kµ,
i.e., µ and µ1 should be joinable. We therefore have µ1pRµq C H and µ̊1 “ µ̊. On the running example let M “ tµ1, µ2u,
we see that µ11 and µ12 are given by

x1 a b u v
µ11 x a b 0 1

y2 a b u v
µ12 y a b 0 1

Note that R1 and R2 are pΣ, tu, vuq-graphs. Thus

µ11pR1q “ x�a, 1 µ12pR2q “ y�b, 0

The condition of locality now has to be interpreted for the whole of M . Therefore, the part of G that is not removed
by any application of the rules has to be preserved in H. The vertices removed by rµ for any µ P M are the vertices of

G matched by Lµ but not by Kµ, i.e., the elements of the set µp 9Lµz 9Kµq. Hence all the vertices in V “
Ť

µPM µp 9Lµz 9Kµq

are removed by the transformation, and similarly all arrows in a set A Ď ~G and all elements of an attribution l on G. We
therefore have GzrV,A, ls C H. Note that, due to possible overlaps, some “intermediate” objects of some rule may belong
to V , A or l, and should therefore be removed.

This can be illustrated on the running example, where V “ A “ ∅ since no vertex or arrow is removed, only attributes
are removed; 0 is removed from G̊pxq through µ1 and 1 is removed from G̊pyq through µ2. The vertex y does not belong
to µ1pL1[R1q and is therefore an intermediate object of µ1, as are its attributes b and 1. Among these, only 1 is removed
(by µ2), b and therefore y are preserved. Symmetrically, x and its attributes a and 0 are intermediate objects of µ2, of
which 0 is removed by µ1, while a and x are preserved in the result H.

8

The previous conditions only provide lower bounds for H. But H need not contain anything else than what is preserved
from G and the images of the right-hand sides, hence H “ GzrV,A, ls \

Ů

µPM µ1pRµq. Thus

H “ x�a y�b \ x�a, 1 \ y�b, 0 “ x�a, 1 y�b, 0

As such, this equation does not guarantee the effective creation of new vertices and arrows corresponding to the vertices
or arrows in RµzKµ, hence the third item in Definition 4.3 below. This condition clearly depends on the images of the
right-hand sides, hence on pµ1qµPM , and will be illustrated in Example 4.4 below. Since attributes are added by inclusion
the condition of effective creation does not apply to them.

This equation does not guarantee either the effective deletion of all objects in V,A, l, that depend on M , since some rν
may restore what was removed by rµ (if this objects belongs to νpLν[Rνq). Such conflicts should be avoided if the semantics
of the individual rules is to be respected. This leads to a further condition on M , the fourth item in Definition 4.3. However,
a distinction again has to be made between graph items and attributes. We see in our running example by examining the
result H that 0 has been removed from G̊pxq as required by r1 through µ1. But assume that the rules r1 and r2 are applied
to the graph

G1 “ x�a, 0 y�b, 0

through the matchings
x1 y1 a b u v

ν1 x y a b 0 0
x2 y2 a b u v

ν2 x y a b 0 0

then the result of the transformation is H 1 “ G1 and we do not observe that 0 has been deleted from G̊1pxq as required
by r1. Yet this result is correct since 0 has been added to G̊1pxq by the right-hand side of r2. Hence the values (through

matchings ν PM) of terms t P R̊νpxqzK̊νpxq for some x P 9Rν Y ~Rν should be allowed in H, even if they are deleted by some
rule. A formal definition can now be endeavoured.

Definition 4.3 (parallel transformation ,M). Let G,H be two graphs, R a set of rules and M Ď M pR, Gq, there is a
parallel transformation from G to H by M , and we write G ,M H if for all µ P M there exists a matching µ1 from Rµ to
H such that

• µ1 and µ are joinable for all µ PM ,

• H “ GzrVM ,AM , `M s \
ğ

µPM

µ1pRµq where

VM
def
“

ď

µPM

µp 9Lµz 9Kµq, AM
def
“

ď

µPM

µp~Lµz~Kµq, `M
def
“

ď

µPM

µ̊ ˝ p̊LµzK̊µq ˝ µ
´1,

• (effective creation) G is disjoint from V1M ,A
1
M ,∅ where

V1M
def
“

ď

µPM

µ1p 9Rµz 9Kµq, A1M
def
“

ď

µPM

µ1p~Rµz~Kµq,

• (effective deletion) H is disjoint from VM ,AM , `Mz`
1
M where

` 1M
def
“

ď

µPM

µ̊ ˝ pR̊µzK̊µq ˝ µ
1´1.

We then say that H is obtained by pµ1qµPM .

Note that ` 1M is only defined on the subgraph
Ů

µPM µ1pRµ [Kµq of H; as mentioned in Section 2.2, ` 1M is implicitly
extended to the suitable domain by mapping other vertices and arrows to ∅.

Example 4.4. In order to illustrate the parallel deletion and creation of vertices and arrows, we consider only unlabelled
graphs, and therefore a rule r “ pL,K,Rq with no variable and

L “ x yf K “ x R “ z xg

This is a standard rule that removes an arrow f and its target y, and creates a new vertex z and a new arrow g from z to
the source x of f . The input graph is

G “ a1 b a2f1 f2

9

There are exactly two matchings µ1 and µ2 of r in G, given by

x y f
µ1 a1 b f1

x y f
µ2 a2 b f2

With M “ tµ1, µ2u we easily see that VM “ µ1pyq Y µ2pyq “ tbu, AM “ µ1pfq Y µ2pfq “ tf1, f2u and `M “ ∅, so that

GzrVM ,AM , `M s “ a1 a2

A first possibility is to choose µ11 and µ12 that yield the following images:

µ11pRq “ a1 cg1 µ12pRq “ a2c g2

and are easily seen to be joinable with µ1 and µ2 respectively. This yields

H1 “ a1 c a2g1 g2

Since V1M “ µ11pzq Y µ12pzq “ tcu and A1M “ µ11pgq Y µ12pgq “ tg1, g2u do not occur in G, the property of effective creation
holds, and since H1 is disjoint from tbu, tf1, f2u,∅ then so does effective deletion. We conclude that G ,M H1.

Another possibility is to choose µ11 and µ12 so that

µ11pRq “ a1 c1g1 µ12pRq “ a2c2 g2

and that are also joinable with µ1 and µ2 respectively. This yields

H2 “ a1 c1 c2 a2g1 g2

Since V1M “ µ11pzqYµ
1
2pzq “ tc1, c2u and A1M “ µ11pgqYµ

1
2pgq “ tg1, g2u do not occur in G, the property of effective creation

holds, and since H2 is also disjoint from tbu, tf1, f2u,∅ then so does effective deletion. We conclude that G ,M H2. There
are no other possibilities than these two, up to isomorphism.

This example shows that the graphs µ11pRq and µ12pRq may or may not overlap. This is a situation similar to amalga-
mation (see Section 10); the result depends on the choice of µ1’s hence the relation ,M is not deterministic.

Example 4.5. We now apply the rule r of Example 4.4 to the graph

G “ a b cf1 f2

There are exactly two matchings µ1 and µ2 of r in G, given by

x y f
µ1 a b f1

x y f
µ2 b c f2

With M “ tµ1, µ2u we see that VM “ µ1pyq Y µ2pyq “ tb, cu. However, since µ2 and µ12 must be joinable then µ12pxq “
µ2pxq “ b and therefore b belongs to µ12pRq C H. This means that effective deletion cannot hold, hence there is no H such
that G ,M H. The reason is that the two applications of r clash on b: it should be removed according to µ1 and preserved
according to µ2.

More generally, if there is a rule that removes a vertex (or an arrow), and a rule that preserves a vertex or an arrow,
it is easy to build a graph and two matchings that similarly clash. Note that in Example 4.5 the graph G can be obtained
by gluing together two copies of L.

5 Parallel Rewriting

In order to obtain a deterministic parallel transformation we need to determine the µ1’s from M . In Example 4.4 we see
that H1 can be obtained as a homomorphic image of H2 but not the reverse. It seems therefore reasonable to favour
H2 over H1, hence to minimize the amount of overlap among the images of right-hand sides. Such overlaps cannot be
completely avoided since these images may intersect with G. But it is possible to define the images of the right-hand sides
(and the corresponding matchings) by ensuring that they only overlap in G. For this we create new vertices or arrows of
the form px, µq for all µ PM .

10

Definition 5.1 (graph GÒµ and matching µÒ). For any rule r “ pL,K,Rq, graph G and matching µ P M pr,Gq we define a

graph GÒµ together with a matching µÒ : RÑ GÒµ.

Let 9GÒµ
def
“ µp 9R X 9Kq Y pp 9Rz 9Kq ˆ tµuq and ~GÒµ

def
“ µp~R X ~Kq Y pp~Rz ~Kq ˆ tµuq. Then, let µÒ be defined by: µ̊Ò

def
“ µ̊ and

the underlying graph morphism (also denoted µÒ) is the function from 9RY ~R to 9GÒµ Y ~GÒµ such that for all x, if x P 9K Y ~K

then µÒpxq
def
“ µpxq else µÒpxq

def
“ px, µq.

Finally, let
GÒµ

def
“ p 9GÒµ , ~G

Ò
µ , µÒ ˝ Ŕ ˝ µÒ

´1 , µÒ ˝ R̀ ˝ µÒ´1 , AG , µ̊ ˝ R̊ ˝ µÒ
´1
q.

Obviously µÒ is joinable with µ and is a matching from R to GÒµ such that µÒpRq “ GÒµ. We now prove that the graphs

G and GÒµ’s are pairwise joinable and examine their intersection.

Lemma 5.2. For every rule r “ pL,K,Rq, graph G and µ P M pr,Gq, the graphs G and GÒµ are joinable, µpR[Kq C G[GÒµ
and G[GÒµ has the same underlying graph as µpR[Kq.

Proof. It is obvious4 that 9GX ~GÒµ “ ~GX 9GÒµ “ ∅ and ~GX ~GÒµ “ µp~RX ~Kq, hence for all g P ~GX ~GÒµ there is a f P ~RX ~K
such that g “ µpfq “ µÒpfq, hence

ǴÒµpgq “ ǴÒµ ˝ µÒpfq “ µÒ ˝ Ŕpfq “ µ ˝ Ḱpfq “ Ǵ ˝ µpfq “ Ǵpgq

so that ǴÒµ and Ǵ are joinable and similarly for G̀Òµ and G̀, hence GÒµ and G are joinable.

We have µpR [Kq C µpKq C G and µpR [Kq “ µÒpR [Kq C µÒpRq “ GÒµ, hence µpR [Kq C G [GÒµ. Besides,

for all y P 9G X 9GÒµ “ µp 9R X 9Kq there exists a x P 9R X 9K such that µpxq “ y, hence 9G X 9GÒµ Ď µp 9R X 9Kq and similarly
~GX ~GÒµ Ď µp~RX ~Kq, hence G[GÒµ and µpR[Kq have the same underlying graph.

We next prove that
`

GÒµ
˘

µPM
is joinable and examine their intersections.

Corollary 5.3. For all µ, ν P M pR, Gq, the graphs GÒµ and GÒν are joinable and, if µ ‰ ν then GÒµ[G
Ò
ν and µpRµ[Kµq[

νpRν [Kνq have the same underlying graph.

Proof. If µ “ ν this is obvious, hence we may assume that µ ‰ ν so that ~GÒµ X ~GÒν “ µp~Rµ X ~Kµq X νp~Rν X ~Kνq Ď ~G,

and since GÒµ and GÒν are both joinable with G then they are joinable with each other and GÒµ [GÒν C G, so that

GÒµ [G
Ò
ν “ pG[G

Ò
µq [pG[G

Ò
νq, hence the result.

We may therefore adopt the matchings µÒ as matchings µ1, yielding the following graph transformation.

Definition 5.4 (G‖M , effective deletion property, ùñR, ZùñR). For any set R of rules, any graph G and any M Ď

M pR, Gq, let

G‖M
def
“ GzrVM ,AM , `M s \

ğ

µPM

GÒµ

with the same VM , AM and `M as above (see Definition 4.3). M has the effective deletion property if G‖M is disjoint from

VM ,AM , `Mz`
Ò

M , where

` ÒM
def
“

ď

µPM

µ̊ ˝ pR̊µzK̊µq ˝ µÒ
´1.

Let ùñR be the relation of parallel rewriting defined by, for all graphs G and all M Ď M pR, Gq such that M has the
effective deletion property,

G ùñR G‖M .

Let ZùñR be the relation of full parallel rewriting defined by, for all graphs G such that M pR, Gq has the effective
deletion property,

G ZùñR G‖M pR,Gq.

Example 5.5. We consider the same graph G, rule r and matchings µ1, µ2 as in Example 4.4. We have M pr,Gq “ tµ1, µ2u,
hence

G ZùñR a1 pz, µ1q pz, µ2q a2pg, µ1q pg, µ2q

This graph is isomorphic to H2.

4We assume that, as in the category Sets, functions are given with their codomains, so that µ “contains” its codomain tGu and hence, by
the axiom of regularity, G cannot “contain” µ.

11

The rest of the section is devoted to proving the properties of this particular transformation, in particular that it meets
the requirements of a parallel transformation given in Definition 4.3. We also see that it is a most general one in the sense
that, if M has the effective deletion property then any graph that can be obtained as a parallel transformation from G by
M can also be obtained as a homomorphic image of G‖M .

Theorem 5.6. For any graphs G, H and any M Ď M pR, Gq that has the effective deletion property, we have G ,M G‖M
and if G ,M H is obtained by pµ1qµPM then there exists α : G‖M Ñ H surjective such that α ˝ µÒ “ µ1 for all µ PM .

Proof. For all µ PM , µÒ is a matching from Rµ to G‖M joinable with µ. Effective creation holds since

µÒp 9Rµz 9Kµq X 9G “ pp 9Rµz 9Kµq ˆ tµuq X 9G “ ∅

and similarly µÒp~Rµz~Kµq X ~G “ ∅, hence G is disjoint from V1M ,A
1
M ,∅ (with µ1 “ µÒ). Effective deletion holds by

hypothesis, hence G ,M G‖M .
We now assume G ,M H where H is obtained by pµ1qµPM , hence

G‖M “ G1 \
ğ

µPM

GÒµ and H “ G1 \
ğ

µPM

µ1pRµq where G1 “ GzrVM ,AM , `M s.

According to Lemma 3.6, we can build a morphism from G‖M to H by joining suitable morphisms αµ : GÒµ Ñ µ1pRµq for
all µ PM , together with a morphism from G1 to itself; this will be 1G1 .

Let αµ have µ1 ˝ µÒ´1 as underlying graph morphism and α̊µ “ 1AG
. This is a bijective function that preserves

adjacencies and such that

G̊Òµ ˝ αµ “ pµ̊
1 ˝ R̊µ ˝ µ

1´1q ˝ αµ “ µ̊ ˝ R̊µ ˝ µÒ
´1
“ G̊Òµ “ α̊µ ˝ G̊

Ò
µ,

hence αµ is an isomorphism. We now see that p1G1 , αµqµPM is joinable.

For all µ P M and all y P 9G1 X 9GÒµ “ µp 9Rµ X 9Kµq, there exists a x P 9Rµ X 9Kµ such that y “ µpxq “ µÒpxq, hence by

joinability of µ and µ1 we have αµpyq “ µ1pxq “ µpxq “ y. Similarly, αµpfq “ f for all f P ~G1 X ~GÒµ, hence 1G1 and αµ are
joinable.

For all µ, ν P M such that µ ‰ ν and for all y P 9GÒµ X
9GÒν , by Corollary 5.3 y P µp 9Rµ X 9Kµq X νp 9Rν X 9Kνq hence

αµpyq “ y “ ανpyq and similarly for arrows, hence αµ and αν are joinable.
Lemma 3.6 thus yields that 1G1 O

b
µPM αµ : G‖M Ñ H is surjective.

The morphism that yields H as a homomorphic image of G‖M may not be unique, unless the algebra used in G and H
is reachable.

Corollary 5.7. If AG is reachable then α is the unique morphism such that α ˝ µÒ “ µ1 for all µ PM .

Proof. The underlying graph morphism of α is determined by G1, the µ1’s and µÒ’s, hence it is unique. For all µ P M , µ̊
is a Σ-homomorphism from T pΣ,VarpLµqq to AG that extends the unique Σ-homomorphism from T pΣ,∅q to AG, that
is surjective by hypothesis, hence µ̊ is surjective. But α ˝ µÒ “ µ1 entails α̊ ˝ µ̊ “ µ̊, hence α̊ “ 1AG

and α is therefore
unique.

By analogy with a notion from category theory, we can say in this case that G‖M is the initial graph among those that
can be obtained as parallel transformations from G by M .

It is now possible to show that the construction of G‖M is invariant, in the sense that if α : G » H and M Ď M pR, Gq,
then GM » Hα˝M (note that α ˝M “ tα ˝ µ | µ PMu ĎM pR, Hq).

Lemma 5.8. If α : G » H and M Ď M pR, Gq then G‖M » H‖α˝M .

Proof. We are going to use Lemma 3.7 to build an isomorphism from G1 “ G \
Ů

µPM GÒµ to H 1 “ H \
Ů

µPM HÒα˝µ by

joining to α suitable isomorphisms αµ : GÒµ » HÒα˝µ for all µ P M . Note that pG,GÒµqµPM is joinable by Lemma 5.2 and
Corollary 5.3.

Let αµ have pα ˝ µqÒ ˝ µÒ´1 as underlying graph isomorphism (from GÒµ “ µÒpRµq to HÒα˝µ “ pα ˝ µqÒpRµq underlying
graphs) and α̊µ “ α̊. Since

H̊Òα˝µ ˝ αµ “ α̊ ˝ µ̊ ˝ R̊µ ˝ pα ˝ µqÒ
´1
˝ αµ “ α̊ ˝ µ̊ ˝ R̊µ ˝ µÒ

´1
“ α̊µ ˝ G̊

Ò
µ

12

then αµ is an isomorphism. It is joinable with α since for all vertices and arrows y of G[GÒµ, by Lemma 5.2 there is a
vertex or arrow x of Rµ [Kµ such that y “ µpxq “ µÒpxq, and we have

αµpyq “ αµ ˝ µÒpxq “ pα ˝ µqÒpxq “ α ˝ µpxq “ αpyq.

Besides, it is easy to see that αpG[GÒµq “ αpGq [αpGÒµq “ H [HÒα˝µ hence αN αµ is surjective.

For all ν PM such that ν ‰ µ and for all vertices and arrows y of GÒµ[G
Ò
ν , by Corollary 5.3 y belongs to µpRµ[Kµq[

νpRν [Kνq hence αµpyq “ αpyq “ ανpyq, so that αµ and αν are joinable. Since

pαµ N ανqpG
Ò
µ [G

Ò
νq “ αpGÒµ [G

Ò
νq “ HÒα˝µ [H

Ò
α˝ν ,

then αµ N αν is surjective. Lemma 3.7 thus yields β “ αO
b
µPM αµ : G1 » H 1. We also see that

αpVM q “ α
`

ď

µPM

µp 9Lµz 9Kµq
˘

“
ď

µPM

α ˝ µp 9Lµz 9Kµq “ Vα˝M

(note that rα˝µ “ rµ since α˝µ P M prµ, Hq) and similarly αpAM q “ Aα˝M and α˝ `M ˝α
´1 “ `α˝M . Hence by Lemma 3.5

βpG‖M q “ αpGzrVM ,AM , `M sq \
ğ

µPM

αµpG
Ò
µq

“ HzrVα˝M ,Aα˝M , `α˝M s \
ğ

µPM

HÒα˝µ

“ H‖α˝M .

It is then easy to see that the exhaustive application of rules entails the expected determinism property.

Theorem 5.9. The relation ZùñR is deterministic up to isomorphism.

Proof. Let G and H be graphs and α : G » H, then M pR, Hq “ α ˝ M pR, Gq, hence H‖M pR,Hq “ H‖α˝M pR,Gq »

G‖M pR,Gq by Lemma 5.8.

6 Cellular Automata

As illustrated in Example 4.5, the effective deletion property in Definition 5.4 restricts, for most rules R, the graphs on
which the transformation ZùñR can be applied. The problem is therefore to examine what kind of parallelism can be
expressed under this restriction. The subject of the current section is to prove that the model of parallelism allowed for by
Definition 5.4 encompasses the popular model of cellular automata.

Definition 6.1. A cellular automaton is a tuple a “ pS, f, v1, . . . , vnq where S is a finite set of states, n P N, the local rule
f is a function from Sn`1 to S, and v1, . . . , vn are n distinct elements of Zdztp0, . . . , 0qu called the neighborhood frame, for
some d ě 1.

The elements of Zd are called cells. A configuration of a is a function c from Zd to S, and we write Ca for the set of
configurations. The global transition map of a is the function Ta from Ca to Ca that maps every configuration c to the
configuration c1 “ Tapcq defined by c1pvq

def
“ fpcpvq, cpv ` v1q, . . . , cpv ` vnqq for all v P Zd.

In this definition we have assumed w.l.o.g. that the local rule may always depend on the state of the local cell. An
algebra and a rule can now be associated to every cellular automaton a, and a graph to any configuration c P Ca.

Definition 6.2 (algebra Sa, rule ra, graphs Gc). For any cellular automaton a “ pS, f, v1, . . . , vnq, let Σa be the signature
with two sorts state and neighbour, with a constant s of sort state for every state s P S, with n constants n1, . . . ,nn of
sort neighbour and with a function symbol t of type staten`1 Ñ state. We also consider the set X “ tu0, . . . , unu of
n` 1 variables of sort state.

Let Sa be the Σa-algebra where state is interpreted by S, neighbour by tn1, . . . ,nnu, every constant by itself and t
by the local rule f .

13

The rule associated to a is ra “ pLa,Ka,Raq with the pΣa, Xq-graphs

La “ x0 �u0

x1 �u1

xn �un

...

f1 �n1

fn �nn

Ka “ x0

x1 �u1

xn �un

...

f1 �n1

fn �nn

Ra “ x0 � tpu0, . . . , unq

Note that ra is a non-standard rule.
Finally, for every configuration c P Ca let Gc be the graph such that AGc “ Sa and that is the union for all v P Zd of

the graphs

v�cpvq

v ` v1 �cpv ` v1q

v ` vn �cpv ` vnq

...

pv, 1q�n1

pv, nq�nn

Theorem 6.3. For any cellular automaton a, configuration c P Ca and graph H, we have

Gc Zùñra H iff H “ GTapcq.

Proof. Let M “ M pra,G
cq, for any cell v P Zd there is an obvious matching µv of ra in Gc defined by

x0 xi fi u0 ui
µv v v ` vi pv, iq cpvq cpv ` viq

for all 1 ď i ď n. There is no other matching that maps x0 to v, hence M “ tµv | v P Z
du. The rule ra only removes

the attribute of cells, hence VM “ AM “ `M ppv, iqq “ ∅ and `M pvq “ tcpvqu for all v P Zd and 1 ď i ď n. Hence
GczrVM ,AM , `M s has the same underlying graph and arrow attributes as Gc, and its vertices are attributed with ∅. The
right-hand side Ra adds to every vertex µvpx0q “ v the attribute

µ̊vptpu0, . . . , unqq “ fpµ̊vpu0q, . . . , µ̊vpunqq

“ fpcpvq, cpv ` v1q, . . . , cpv ` vnqq

“ c1pvq

where c1 “ Tapcq, hence Gc‖M “ GczrVM ,AM , `M s \
Ů

vPZd µvÒpRaq “ Gc1 ; this proves the only if part.

Finally, we have ` ÒM pvq “ tc1pvqu, i.e., the attribute added by µvÒpRaq for all v P Zd, hence Gc1 is disjoint from

VM ,AM , `Mz`
Ò

M . This proves that M has the effective deletion property and therefore that Gc Zùñra GTapcq.

Example 6.4. Conway’s Game of Life [13] is a 2-dimensional cellular automaton g with two states 0 (for dead) and 1
(for alive) and the Moore neighborhood frame, i.e., v1, . . . , v8 are the non-zero elements of t´1, 0, 1u2. The automaton is
defined by the local rule

fps0, . . . , s8q “

$

&

%

1 if
ř8
i“1 si “ 3

s0 if
ř8
i“1 si “ 2

0 otherwise.

It can be translated into a single rule rg as above, with n “ 8. However, most problems in computer science involving
the Game of Life are restricted to finite configurations, i.e., those configurations c where c´1p1q is finite. Yet for all
configurations c the set M prg,G

cq is infinite. For the sake of computability we therefore need a set R of rules with the
property that M pR,Gcq is finite whenever c is finite.

For any matching µ of rg we write µprgq for the triple pµpLgq, µpKgq, µpRgqq, that may or may not be a rule; note
however that µpRgq is well defined even though Rg is not a subgraph of Lg. We use the fact that fp0, . . . , 0q “ 0, hence a
cell may become alive only if it is in the neighborhood of a live cell. It is therefore possible to use rules whose left-hand sides
match only those parts of c that contain a live cell. We thus let R “ tµ0prgq, . . . , µ8prgqu where µ0, . . . , µ8 are matchings

14

such that µ̊0 is the substitution tu0 ÞÑ 1u and µ̊i is the substitution tu0 ÞÑ 0, ui ÞÑ 1u for all 1 ď i ď 8 (and such that R
is a valid set of rules, see Definition 4.1). It is obvious that every cell other than dead cells with a dead neighborhood are
matched by exactly one rule in R, hence M pR,Gcq is finite if c is finite, and these matchings always extend to matchings
of rg and hence yield the same transformation as rg.

Relying on further properties of f it is possible to achieve the same goal with fewer rules. More precisely, we use the
facts that fp0, s1, . . . , s8q does not depend on the order of the si’s, and that a cell can only be born if it has 3 live and 5
dead neighbours. We thus consider the rule of birth rb “ pLb,Kb,Rbq where:

Lb “ x0 �0

x1 �1

x2 �1

x3 �1

x4 �0

x8 �0

...

f1

f2

f3

f4

f8

Kb “ x0

x1 �1

x2 �1

x3 �1

x4 �0

x8 �0

...

f1

f2

f3

f4

f8

Rb “ x0 �1

Let R1 “ tµ0prgq, rbu, it is easy to see that rb accounts for all births and µ0prgq for all deaths (and survivals), so that
R1 again yields the same transformation as rg. However, there is no longer one matching of rb on each relevant cell, but
3!ˆ 5! “ 720, still finite but not quite optimal. This problem is addressed in Sections 7 and 8.

Compared to cellular automata, full parallel rewriting also allows to remove and create cells. The fact that graphs are
non-geometric in nature, since vertices are not attached to coordinates, enables the use of more exotic topologies than Zd,
e.g., the cells could be placed on a sphere or a torus. The topology defined by the neighborhoods need not be uniform and
it can evolve from one configuration to the next.

7 Automorphism Groups of Rules

In this section, the notion of automorphism group of a rule is introduced, that will be used later to define a new refined
parallel graph transformation. Indeed, using the full set of matchings might not be desirable in some cases, as illustrated
below.

Example 7.1. Consider the rule r “ pL,K,Rq, where

L “ K “

x

y z

f

g

h R “

x

y z

x1

y1 z1

f

g

h

f 1

g1 h1

Here, each edge f , g, h represents a pair of opposite arrows. We have L “ K C R, hence L [R “ K (this is a standard

15

rule) and L\R “ R. Obviously, this rule has six matchings in a triangle, hence

Zùñr

Thus the transformation of a simple triangle using the six matchings consists in adding to each vertex of the considered
triangle six new adjacent vertices. However, this transformation may be counterintuitive because one may expect to add
just one new adjacent vertex to each of the three vertices of the transformed triangle as depicted in the rewrite rule. To
obtain such a result one may exploit the symmetries that occur in the graphs L, K and R. These symmetries are actually
the automorphisms of the corresponding graphs. Indeed, for any graph G, the automorphisms α of G are the bijective
morphisms from G to G such that α̊ ˝ G̊ “ G̊ ˝ α (see Section 2), hence such that

αpGq “ pαp 9Gq, αp~Gq, Ǵ, G̀, AG, α̊ ˝ G̊ ˝ α
´1 q “ G.

In group-theoretic terms (see, e.g., [14]), the set AutpGq of automorphisms of G is the subgroup of the symmetric group

SymptGuq of all permutations α of tGu such that αpGq “ G. But for all such α we have αp 9Gq “ 9G, αp~Gq “ ~G and α̊ is
a Σ-automorphism of AG, i.e., an element of the set AutpAGq of Σ-automorphisms of AG, that is again a group. Hence

every α in AutpGq is the join 9αO ~α O α̊ of some 9α P Symp 9Gq, some ~α P Symp~Gq and some α̊ P AutpAGq. In other words,

AutpGq is a subgroup of Symp 9Gq O Symp~Gq OAutpAGq, that is indeed a subgroup of SymptGuq. For example, if we take α
such that 9α “ pq, ~α “ pf gq, α̊ “ pq (in cycle notation), and apply it to the following graph, we get

α

˜

x yf
g

¸

“ x y
g

f

that is just another way of drawing exactly the same graph, hence pf gq is an automorphism (a symmetry) of this graph.
Note that symmetries may not be apparent in the drawing of a graph.

We also need to examine how the symmetries of the left and right hand sides of a rule interact; this is not obvious
since the permuted sets are different and may intersect (as is the case in Example 7.1). To this purpose the notion of
automorphism groups of graphs is now extended to their subgraphs.

Definition 7.2 (groups AutGpH1, . . . ,Hnq and S|H). For any n ě 1 and any graphs H,H1, . . . ,Hn C G, let

AutGpHq
def
“ tα P Symp 9Gq O Symp~Gq OAutpAGq | αpHq “ Hu

and AutGpH1, . . . ,Hnq
def
“

n
č

i“1

AutGpHiq.

For any α P AutGpHq, we write α|H for α|
tHu

, and for any subgroup S of AutGpHq, let S|H
def
“ tα|H | α P Su; this is a

subgroup of AutpHq.

It is obvious that AutGpGq “ AutpGq. We see that AutGpHq is a permutation group on tGu, but only the structure of
H is involved in the constraint αpHq “ H, not the structure of G.

Example 7.3. Take for instance the unlabelled graphs

H “ x yf
g

and G “ x y z
f
g

h

k

We have
AutpHq “ t1H , pxqpyqpf gqu and AutpGq “ t1G, pxqpyqpzqpf gqphqpkqu

16

(we write fixpoints in order to make the domains explicit). However, in AutGpHq the permutations of objects that do not
belong to H are free, hence

AutGpHq “ t1G, pxqpyqpzqpf gqphqpkq, pxqpyqpzqpfqpgqph kq,

pxqpyqpzqpf gqph kqu

“ AutpHq O tpzqphqpkq, pzqph kqu

“ AutpHq O tpzqu O tphqpkq, ph kqu

“ AutpHq O Sympzq O Symph, kq.

It is easy to see that AutGpHq “ AutpHqOSymp 9Gz 9HqOSymp~Gz ~Hq always holds and hence that AutGpHq|H “ AutpHq.
This means that, compared to the elements of AutpHq that are only permutations of tHu, the elements of AutGpHq are
all possible extensions of the elements of AutpHq to permutations of tGu. This allows us to conveniently intersect the
automorphism groups of joinable graphs, as are the graphs L, K and R involved in a rule (see Definition 4.1).

One last point that should be accounted for is that we are interested in the matchings from L to G, hence the symmetries
of a rule are only relevant through their action on L. This leads to the following definition.

Definition 7.4 (group Autprq). For any rule r “ pL,K,Rq, the automorphism group of r is

Autprq
def
“ AutL\RpL,K,Rq|L.

It is obvious that Autprq is a subgroup of AutpLq.

Example 7.5. Let r “ pL,K,Rq be the rule of example 7.1, where L “ K C R, hence L \ R “ R. It is well-known
that the symmetric group Symp1, 2, 3q has 6 elements and is generated by the permutations p1 2q and p1 3q. Thus AutpLq
is the group generated by the permutations px yqph gq and px zqpf gq (for the sake of simplicity the edges f, g, h are not
explicitly expanded as pairs of arrows), and has 6 elements. Hence AutRpLq is generated by px yqph gq, px zqpf gq, px1 y1q,
px1 z1q, pf 1 g1q and pg1 h1q; it has 63 elements. However, the group AutpRq is generated by px yqpx1 y1qph gqpf 1 g1q and
px zqpx1 z1qpf gqpf 1 h1q; it has 6 elements and is included in AutRpLq, thus AutRpL,Rq “ AutpRq. Finally, the group
Autprq “ AutpRq|L is generated by px yqpx1 y1qph gqpf 1 g1q|L “ px yqph gq and px zqpx1 z1qpf gqpf 1 h1q|L “ px zqpf gq,
hence Autprq “ AutpLq.

In this example the groups are finite, but the possibly infinite algebra of terms that occur in a rule has not been
considered. It is however easy to see that these groups are always finite.

Lemma 7.6. For any pΣ,Xq-graph G and rule r, the set M pr,Gq is finite.

Proof. Let L be the left part of r and Y “ VarpLq. All elements of M pr,Gq can be obtained as µ O µ̊, where µ is an
injective morphism between the underlying graphs of L and G, and µ̊ a Σ-homomorphism from T pΣ,Y q to T pΣ,Xq. µ

belongs to the finite set of injections from 9L Y ~L to 9G Y ~G. Since T pΣ,Y q is free with generating set Y in the class of

Σ-algebras, every Σ-homomorphism µ̊ is determined by µ̊|Y . For every v P Y there is an x P 9L Y ~L and a t P L̊pxq such

that v P Varptq, and since µ̊ptq P G̊pµpxqq then µ̊pvq belongs to the set of subterms of the elements of G̊pµpxqq, that is finite.
Hence there is a finite set of possible functions µ̊|Y .

Note that if there were a variable v in the term algebra of a rule that did not occur in its left hand side (see Remark 4.2),
then v could freely be matched to any element of the algebra of the input pΣ,Xq-graph G, and M pr,Gq could then be
infinite.

Corollary 7.7. The group Autprq is finite.

Proof. Autprq is a subgroup of AutpLq that is a subset of M pr, Lq.

Corollary 7.8. If R is finite and G is a pΣ,Xq-graph then such is G‖M for all M Ď M pR, Gq.

Proof. M Ď
Ţ

rPR M pr,Gq is finite hence G‖M “ GzrVM ,AM , `M s\
Ů

µPM GÒµ is obtained as a finite union of finite graphs,
it is therefore finite.

If G is not a pΣ,Xq-graph then the set M pr,Gq may not be finite, even if G is finite. In practice it is often necessary
to apply the rules of R to graphs G where AG is not an algebra of terms, e.g., the additive algebra of integers, but it is
then possible to recover finiteness by imposing ad-hoc restrictions on the terms that occur in the rules, e.g., the term u` v
(where u and v are variables) cannot be allowed since it has infinite matchings with any integer.

17

8 Parallel Rewriting modulo Automorphism

Considering again Example 7.1, we would like to consider rewrite steps in which only one matching is selected among the
6 possible ones ; and more generally to select a subset M of M pR, Gq for defining a rewrite relation that yields more
natural and concise graphs. The difficulty is to maintain determinism, i.e., to avoid an arbitrary choice of matchings. A
key point is that the elements of M need not be selected in a deterministic way. Indeed, if a non-deterministic procedure
for computing M Ď M pR, Gq is used, and if it is guaranteed that G‖M 1 » G‖M for all possible output M 1, then the
corresponding rewrite relation is deterministic up to isomorphism.

Definition 8.1 (equivalence relation „, sets M , relation
„ZùñR). For any graph G, let „ be the equivalence relation on

M pR, Gq defined by
µ „ ν iff µ ˝Autprµq “ ν ˝Autprνq.

(See Definition 4.1 for rµ and rν). The equivalence class of µ is denoted µ. For any subset M Ď M pR, Gq we write M for
the set

Ť

µPM µ.

For any set R of rules, let
„ZùñR be the relation of (full) parallel rewriting modulo automorphism defined by, for all

graphs G,
G

„ZùñR G‖M
where M is any minimal set that has the effective deletion property and such that M “ M pR, Gq.

The minimality of M means that it contains exactly one undetermined representative per equivalence class modulo „.
These classes are described below.

Lemma 8.2. For any graph G and µ P M pR, Gq we have µ “ µ ˝Autprµq.

Proof. For all ν P µ we obviously have ν P ν ˝Autprνq “ µ ˝Autprµq, hence µ Ď µ ˝Autprµq.
Conversely, assume that ν P µ ˝ Autprµq, i.e., that there exists a σ P Autprµq such that ν “ µ ˝ σ. Since Autprµq is a

subgroup of AutpLµq then µ˝σ “ ν is a matching from Lµ to G. But ν is also a matching from Lν to G, and according to the
convention on R given in Definition 4.1 this entails rµ “ rν and hence Autprµq “ Autprνq. Since µ “ ν ˝σ´1 P ν ˝Autprµq,
we have

ν ˝Autprνq Ď µ ˝Autprµq ˝Autprνq “ µ ˝Autprµq Ď ν ˝Autprµq “ ν ˝Autprνq,

hence µ „ ν and ν P µ; this proves that µ ˝Autprµq Ď µ.

Note that matchings µ can only be „-equivalent if they are matchings of the same rule and have the same image µpLµq
in G. We also see that |µ| ď |Autprµq| and that the equality holds if µ is injective. The more symmetric a rule is, the more
matchings are likely to occur in the equivalence classes of matchings of this rule.

Example 8.3. Following Example 7.1, the 6 matchings from L to a triangle T are all equivalent, since for any such
matching µ, µ “ µ ˝ Autprq has the same number of elements as Autprq, because µ is injective, and this number is 6 by
Example 7.5. Hence µ “ M pr, T q and obviously tµu has the deletion property and is minimal, so that T

„Zùñr T‖tµu.
Graphically,

„Zùñr

Example 8.4. We consider the rule r “ pL,K,Rq with

L “

x

y

y1

x1

f

g

f 1

g1h

h1 K “

x

y

y1

x1

f

g

f 1

g1 R “

x

y

y1

x1

z
f

g

f 1

g1

k

L has 4 symmetries, generated by px x1qpf f 1qpg g1q and py y1qpf gqpf 1 g1qph h1q. K has 4 symmetries, but AutL\RpKq “
AutpKq O Sympzq O Symph, h1, kq has 24 elements, generated by px x1qpf f 1qpg g1q, py y1qpf gqpf 1 g1q, ph h1q and ph kq. R

18

has two symmetries and AutL\RpRq “ AutpRqOSymph, h1q has 4 elements generated by py y1qpf gqpf 1 g1q and ph h1q. The
intersection of these groups is generated by py y1qpf gqpf 1 g1qph h1q hence Autprq has only two elements.

The rule r has 4 matchings in the graph below (because of the 4 symmetries of L), divided in two equivalence classes,
hence

„Zùñr

Example 8.5. Following Example 6.4, and as above we see that Autprbq “ AutpLbq is the group generated by permutations
px1 x2qpf1 f2q, px1 x3qpf1 f3q, px4 x5qpf4 f5q and px4 x5 x6 x7 x8qpf4 f5 f6 f7 f8q; it is isomorphic to the group Symp1, 2, 3qˆ
Symp1, 2, 3, 4, 5q and its cardinality is 3!ˆ5! “ 720. For any finite configuration c, if there is a matching µ P M prb,G

cq then
µ “ µ ˝Autprµq ĎM prb,G

cq. Since µ̊ “ 1T pΣ,∅q is injective, the set µ has 720 elements, i.e., all matchings ν P M prb,G
cq

such that νpx0q “ µpx0q belong to the same equivalence class µ; the 720 matchings per birth cell are reduced to one. Since
rb does not create or remove vertices or arrows, we see that Gc‖tµu “ Gc‖µ. Hence Gc „ZùñR1 GTgpcq with the same number

of matchings as Gc ZùñR GTgpcq.

If, as is the case in Example 8.5, the transformations ZùñR and
„ZùñR yield the same result, then rewriting modulo

automorphism may improve the efficiency of the transformation compared to full parallel rewriting, since performance
depends on the number of matchings. Other factors affecting performance are obviously the size of the input graphs and
the number and size of rules, but also the complexity of computing and applying matchings. This cannot be determined
in the present framework since the functions possibly involved in the Σ-algebra of the input graph are not even assumed
to be computable.

The rest of the section is devoted to proving the properties of parallel rewriting modulo automorphism. We first examine
the differences in rewriting a graph by M or by M . As shown by Example 7.1, the graph G‖M may be quite different
from (much bigger than) G‖M . However, some objects relevant to computing G‖M can be shown to depend only on the
equivalence classes represented in M .

Lemma 8.6. For any graph G and set M Ď M pR, Gq we have

1. VM “ VM , AM “ AM , `M “ `M ,

2. `Mz`
Ò

M
“ `Mz`

Ò

M ,

3. G[G‖M “ G[G‖M .

Proof. For all µ P M and ν P µ, by Lemma 8.2 there exists a σ P Autprµq such that ν “ µ ˝ σ, thus rν “ rµ and
σ P AutpLµq XAutLµpKµq. By definition of Autprµq there also exists a τ P AutLµ\RµpLµ,Kµ,Rµq such that σ “ τ |Lµ , and

let ρ “ τ |Rµ so that ρ P AutpRµq and σ̊ “ τ̊ “ ρ̊ is a Σ-isomorphism.

1. Since ν and µ are injective on 9Lν “ 9Lµ then

νp 9Lνz 9Kνq “ νp 9Lνqzνp 9Kνq “ µpσp 9Lµqzσp 9Kµqq “ µp 9Lµz 9Kµq

and therefore
VM “

ď

µPM

ď

νPµ

νp 9Lνz 9Kνq “
ď

µPM

ď

νPµ

µp 9Lµz 9Kµq “ VM ,

and similarly AM “ AM and `M “ `M (using consistency, see Definition 4.1).

2. The function `M is an attribution on G hence is empty on all other vertices or arrows than those of G. For all

y P 9GY ~G, if y does not belong to GÒν then ν̊ ˝ pR̊µzK̊µq ˝ νÒ
´1
pyq “ ∅, otherwise by Lemma 5.2 there is a vertex or

arrow x of Rµ [Kµ such that νpxq “ y “ νÒpxq. Hence

ν̊ ˝ pR̊µzK̊µq ˝ νÒ
´1
pyq “ µ̊ ˝ pρ̊ ˝ R̊µpxqz̊σ ˝ K̊µpxqq

“ µ̊ ˝ pR̊µ ˝ ρpxqzK̊µ ˝ σpxqq

“ µ̊ ˝ pR̊µzK̊µq ˝ σpxq

“ µ̊ ˝ pR̊µzK̊µq ˝ µÒ
´1
pyq

since ρpxq “ σpxq belongs to Rµ [Kµ and µÒpσpxqq “ µ ˝ σpxq “ y. Thus

p`Mz`
Ò

M
qpyq “ `M pyqz

ď

µPM

ď

νPµ

ν̊ ˝ pR̊µzK̊µq ˝ νÒ
´1
pyq “ p`Mz`

Ò

M qpyq.

19

3. By Lemma 5.2, G[GÒν has the same underlying graph as

νpRµ [Kµq “ µpρpRµq [σpKµqq “ µpRµ [Kµq,

hence as G[GÒµ. For any vertex or arrow y of this graph we have as above

G̊Òνpyq “ ν̊ ˝ R̊µ ˝ ν
´1pyq “ µ̊ ˝ R̊µ ˝ µ

´1pyq “ G̊Òµpyq

hence G[GÒν “ G[GÒµ and therefore

G[G‖M “ GzrVM ,AM , `M s \
ğ

µPM

ğ

νPµ

G[GÒν “ G[G‖M .

Corollary 8.7. M has the effective deletion property iff M does.

Proof. Since VM (resp. AM , resp. `M) is a subset of 9G (resp. a subset of ~G, resp. an attribution on G) then G‖M is

disjoint from VM ,AM , `Mz`
Ò

M iff such is G[G‖M , hence the result.

Thus any minimal set M in Definition 8.1 has the effective deletion property if and only if M pR, Gq does; conflicts
cannot be eliminated by factoring out equivalent matchings.

The case of the graph G‖M is more complicated, but it can be shown to depend only on the number of representatives
in M of each equivalence class.

Lemma 8.8. For any graph G and any M,N Ď M pR, Gq, if there is a bijection ι from M to N such that ιpµq „ µ for all
µ PM , then G‖M » G‖N .

Proof. We write ιµ for ιpµq. For all µ P M , ιµ „ µ entails rιµ “ rµ and by Lemma 8.2 there is a σµ P Autprµq such
that ιµ “ µ ˝ σµ, and then a τµ P AutLµ\RµpLµ,Kµ,Rµq such that σµ “ τµ|Lµ ; let ρµ “ τµ|Rµ so that ρµ P AutpRµq and
ρ̊µ “ τ̊µ “ σ̊µ.

We are going to use Lemma 3.7 to build an isomorphism from F “ G\
Ů

µPM GÒµ to F 1 “ G\
Ů

µPM GÒιµ by joining to

1G suitable isomorphisms αµ : GÒµ » GÒιµ for all µ PM .

Let αµ have ιµÒ˝ρ
´1
µ ˝µÒ´1 as underlying graph isomorphism (from GÒµ “ µÒpRµq to GÒιµ “ ιµÒpRµq underlying graphs)

and α̊µ “ 1AG
. We have

G̊Òιµ ˝ αµ “ ι̊µ ˝ R̊µ ˝ ιµÒ
´1
˝ αµ

“ ι̊µ ˝ R̊µ ˝ ρ
´1
µ ˝ µÒ´1

“ ι̊µ ˝ ρ̊
´1
µ ˝ R̊µ ˝ µÒ

´1 (since ρ´1
µ P AutpRµq)

“ ι̊µ ˝ σ̊
´1
µ ˝ R̊µ ˝ µÒ

´1

“ µ̊ ˝ R̊µ ˝ µÒ
´1

“ G̊Òµ

“ α̊µ ˝ G̊
Ò
µ,

hence αµ is an isomorphism. We next prove that it is joinable with 1G.
Let Uµ be the underlying graph of Rµ [Kµ, then by Lemma 5.2 the underlying graphs of G [GÒµ and G [GÒιµ are

respectively µpUµq and ιµpUµq. Since

σµpRµ [Kµq “ τµpRµ [Kµq “ ρµpRµq [σµpKµq “ Rµ [Kµ

then σµpUµq “ Uµ “ σ´1
µ pUµq. For every vertex or arrow y of G[GÒµ there exists x P 9UµY ~Uµ such that y “ µpxq “ µÒpxq,

thus
αµpyq “ ιµÒ ˝ ρ

´1
µ ˝ µÒ´1

pyq “ ιµÒ ˝ ρ
´1
µ pxq “ ιµ ˝ σ

´1
µ pxq “ µpxq “ y

and hence 1G and αµ are joinable. But

p1G N αµqpµpUµqq “ ιµÒ ˝ ρ
´1
µ pUµq “ ιµÒ ˝ σ

´1
µ pUµq “ ιµÒpUµq “ ιµpUµq,

20

(and 1̊G N α̊µ “ 1AG
) hence 1G N αµ is surjective.

For all ν PM such that ν ‰ µ and for every vertex or arrow y of GÒµ[G
Ò
ν , by Corollary 5.3 y belongs to µpUµq[νpUνq

hence αµpyq “ y “ ανpyq, so that αµ and αν are also joinable. The function αµ N αν is injective, hence

pαµ N ανqpµpUµq [νpUνqq “ αµpµpUµqq [ανpνpUνqq “ ιµpUµq [ινpUνq,

but ι is also injective so that ιν ‰ ιµ, hence by Corollary 5.3 this is the underlying graph of GÒιµ [GÒιν . This proves that
αµ N αν is surjective.

Lemma 3.7 therefore yields α “ 1GO
b
µPM αµ : F » F 1. We finally see that M “ N since ιµ „ µ for all µ PM and ι is

bijective from M to N , hence by Lemma 8.6 we have VM “ VM “ VN “ VN and similarly AM “ AN and `M “ `N . Hence

αpG‖M q “ 1GpGzrVM ,AM , `M sq \
ğ

µPM

αµpG
Ò
µq

“ GzrVN ,AN , `N s \
ğ

µPM

GÒιµ

“ G‖N .

We conclude with the expected determinism property.

Theorem 8.9. The relation
„ZùñR is deterministic up to isomorphism.

Proof. Let G and H be two graphs, α : G » H and M,N any two sets such that G
„ZùñR G‖M and H

„ZùñR H‖N . Since
α ˝M Ď M pR, Hq “ N then α ˝M “ α ˝M Ď N . By symmetry we also have α´1 ˝ N Ď M hence N Ď α ˝M and
therefore α ˝M “ N . The minimality of M such that M “ M pR, Gq obviously implies the minimality of α ˝M such
that α ˝M “ M pR, Hq (since α ˝ µ „ α ˝ ν entails µ „ ν), and since N is also minimal then each equivalence class of
M pR, Hq is represented exactly once in α ˝M and once in N . Hence there exists a suitable bijection from α ˝M to N so
that H‖α˝M » H‖N by Lemma 8.8. By Lemma 5.8 we have G‖M » H‖α˝M , hence G‖M » H‖N .

9 Sequential and Parallel Independence

The parallel transformation defined as the graph G‖M in Definition 5.4 reduces to a standard notion of direct transformation
when M contains only one matching, and hence to sequential rewriting, see Definition 9.1 below. Note that all singletons
have the effective deletion property.

An obvious link between sequential and parallel rewriting is that when the matchings in M do not overlap, the graph
G‖M can be obtained from G by sequential rewriting (up to isomorphism). In fact, it can be obtained in many different
ways, by applying in sequence the elements of M in any order. But this property may still be true when the matchings do
overlap. This is the case of the graph G1 from the running example in Section 4.2. Indeed, when a “ b the assignments
a– b and b– a can be evaluated in any order, they will yield the same result as the simultaneous assignment a, b– b, a.
Yet ν1pL1q “ ν2pL2q “ G1.

It is therefore possible for matchings in M to overlap and yet for the graph G‖M to be reachable from G by sequential
rewriting. Of course, if there is a rule in R that has the same effect as this particular transformation, this is not surprising.
In order to characterize the kind of overlaps that can be handled similarly by sequential and parallel rewriting, we need to
express the (sequential) reachability of G‖M by the matchings in M (no other rule is allowed) in any order. This is known
as sequential independence (see [11]).

One common difficulty with this notion is that the matchings applied in a sequence of direct transformations are
matchings of rules in many different graphs, which makes it difficult to recognize that two sequences correspond to the
same matchings in different order (see the notion of shift equivalence in [15, Section 3.5]). However, if this notion means
that sequential and parallel rewriting meet, then we may use parallel transformations to express the result of sequences of
direct transformations in any order. This leads to the following definition.

Definition 9.1 (sequential rewriting, sequential independence). For any finite set of rules R, we define the relation ÝÑR
by stating that, for all graphs G and all µ P M pR, Gq,

G ÝÑR G‖µ

where G‖µ stands for G‖tµu, and similarly we will write Vµ for Vtµu, etc.
We call sequential rewriting the relation ÝÑ‹

R, i.e., the reflexive and transitive closure of ÝÑR.
For any graph G and set M Ď M pR, Gq, we say that M is sequential independent if for all M 1 ĎM and all µ PMzM 1,

21

• µpLµq C G‖M 1 , hence there is a canonical injection j : µpLµq Ñ G‖M 1 ,

• there exists an isomorphism α such that αpG‖M 1Ytµuq “
`

G‖M 1

˘

‖j˝µ and α|
tGu
“ 1G.

The isomorphism α in Definition 9.1 is necessary to account for the difference between the isomorphic graphs µÒpRµq

and pj ˝ µqÒpRµq. It is possible to define precisely this isomorphism, but there is no need to be more specific than α|
tGu
“ 1G

in order to rule out any fortuitous isomorphism.
Note that this definition is designed so that any subset of a sequential independent set is obviously sequential inde-

pendent. This simply expresses the fact that sequential independence cannot be lost by discarding matchings. A more
surprising feature is that it tolerates infinite sets, although it is not generally possible to define infinite sequences of rewriting
steps.

It is easy to see that if M is sequential independent and finite then G‖M can be obtained by sequential rewriting.

Lemma 9.2. For all M Ď M pR, Gq finite and sequential independent there is a graph H such that G ÝÑ‹
R H and

H » G‖M .

Proof. By induction on the cardinality of M . It is trivial for M “ ∅. Assume that M “M 1Ztµu then M 1 is finite sequential
independent hence by induction hypothesis there exists H and β : G‖M 1 » H such that G ÝÑ‹

R H. By Definition 9.1 there
is j : µpLµq Ñ G‖M 1 and α : G‖M » pG‖M 1q‖µ1 where µ1 “ j ˝ µ. By Lemma 5.8 there exists γ : pG‖M 1q‖µ1 » H‖β˝µ1 ,
hence γ ˝ αpG‖M q “ γppG‖M 1q‖µ1q “ H‖β˝µ1 , hence G ÝÑ‹

R γ ˝ αpG‖M q and the induction is complete.

Of course there is usually more than one sequence of rewriting steps from G to the isomorphism class of G‖M , since
under the hypothesis of sequential independence these rewriting steps can be swapped; but without this hypothesis there
is generally no sequence of rewriting steps from G to G‖M . Besides, it remains to be seen wether G‖M may then also be
obtained by parallel rewriting.

Sequential independence is not obviously a condition on overlaps, it relies on properties of the results of many graph
transformations (exponentially many when M is finite). In order to characterize this property as a condition on overlaps, or
more precisely as a condition pertaining to pairs of matchings in M and known as parallel independence, a careful analysis
is required.

Parallel independence usually requires that the overlap of two matchings µ, ν PM , i.e., the graph µpLµq[νpLνq should
be preserved by both direct transformations rµ and rν , since if an object in the overlap were removed say by rµ then rν
would no longer match; this can be expressed as µpLµq [νpLνq C µpKµq [νpKνq. Since this condition is required for all
pairs of matchings, including pµ, νq and pν, µq, then it is equivalent to the condition µpLµq [νpLνq C µpKµq, i.e., that the
overlap is preserved by rµ for all µ, ν P M . However, this condition is not necessary for sequential independence, as the
example of Section 4.2 shows. Indeed, we see that ν1pL1q [ν2pL2q “ G1 is not a subgraph of

ν1pK1q “ x�a y�b, 0

Yet sequential independence holds because the object that is removed (the attribute 0 of x) is recovered by the right-hand
side of r1. It is therefore necessary to involve the graphs µÒpRµq and νÒpRνq in the condition on overlaps.

A first approximation is to require µpLµq [νpLνq C µpKµq \ µÒpRµq (an overlap object can be removed by rµ if it is
recovered by rµ). This condition turns out to be necessary for sequential independence, but not sufficient. The reason is
that an attribute removed (and therefore matched) by µ may not be matched by ν but can still be matched by νÒ.

Example 9.3. Consider a rule r1 that removes the attribute 1 to a vertex, and a rule r2 that adds the attribute 1 to a
vertex.

r1 “

´

x�1 , x , x
¯

G “ z �1 H “ z

r2 “

´

y , y , y�1
¯

The matchings of these rules in G are not sequential independent; if the first is applied before the second then the result
is G, but if they are applied the other way round the result is H. Yet the overlap of the left-hand sides (the graph H) is a
subgraph of the images of both right-hand sides.

It is therefore necessary to consider the overlap not only between left-hand sides but also with right-hand sides. Thanks
to the symmetry between µ and ν this can be expressed in the following way.

22

Definition 9.4 (parallel independence). For any graph G and set M Ď M pR, Gq, we say that M is parallel independent if

µpLµq [pνpLνq \ νÒpRνqq C µpKµq \ µÒpRµq for all µ, ν PM such that µ ‰ ν.

It is easy to see that this condition is violated in Example 9.3. Note that we only consider pairs of distinct matchings.
The reason is that the parallel transformation does not allow to apply twice the same matching to a graph. It would of
course be possible to do so (by considering multisets of matchings) but this would obviously hinder determinism, since
there would be no limit to the number of applications of matchings. Thus any singleton is parallel independent.

Of course we expect to be able to rewrite in parallel with those sets of matchings that are parallel independent. But
this is not obvious and requires to be proved.

Lemma 9.5. For any graph G and set M Ď M pR, Gq if M is parallel independent then M has the effective deletion
property.

Proof. Let H “ G‖M . Since VM Ď 9G then by Lemma 5.2 we have

9H XVM “
ď

νPM

νp 9Rν X 9Kνq XVM

“
ď

µ,νPM

νp 9Rν X 9Kνq X µp 9Lµqzµp 9Kµq

Ď
ď

µ‰νPM

νp 9Lνq X µp 9Lµqzµp 9Kµq,

since νp 9Rν X 9Kνq Ď νp 9Kνq Ď νp 9Lνq.
Since M is parallel independent then µpLµq [pνpLνq \ GÒνq C µpKµq \ GÒµ for all µ ‰ ν, hence µpLµq [νpLνq C

µpKµq \ pG
Ò
µ [Gq and again by Lemma 5.2 µp 9Lµq X νp 9Lνq Ď µp 9Kµq Y µp 9Rµ X 9Kµq “ µp 9Kµq. Hence 9H X VM “ ∅ and

similarly ~H XAM “ ∅.
In order to prove that H is disjoint from VM , AM , `Mz`

Ò

M , it remains to prove that H̊pxq X `M pxqz`
Ò

M pxq “ ∅ for all

x P 9H Y ~H. This is true if x R 9G Y ~G since then `M pxq “ ∅, hence we assume that x P 9G Y ~G, so that H̊pxq X `M pxq “
Ť

µPM G̊Òµ X `M pxq “
Ť

µPM µ̊ ˝ R̊µ ˝ µ
´1pxq X `M pxq and we need to prove that µ̊ ˝ R̊µ ˝ µ

´1pxq X `M pxqz`
Ò

M pxq “ ∅ for all
µ PM , or equivalently

ď

νPM

µ̊ ˝ R̊µ ˝ µ
´1pxq X ν̊ ˝ L̊ν ˝ ν

´1pxqz̊ν ˝ K̊ν ˝ ν
´1pxq Ď ` ÒM pxq.

For any sets A and B we have A “ pAXBq Y pAzBq, hence for all ν PM ,

µ̊ ˝ R̊µ ˝ µ
´1pxq X ν̊ ˝ L̊ν ˝ ν

´1pxq

“
`

µ̊ ˝ pR̊µ X K̊µq ˝ µ
´1pxq X ν̊ ˝ L̊ν ˝ ν

´1pxq
˘

Y
`

ν̊ ˝ L̊ν ˝ ν
´1pxq X µ̊ ˝ pR̊µzK̊µq ˝ µ

´1pxq
˘

Ď
`

µ̊ ˝ pR̊µ X K̊µq ˝ µ
´1pxq X ν̊ ˝ L̊ν ˝ ν

´1pxq
˘

Y ` ÒM pxq.

If ν ‰ µ, since M is parallel independent then

µ̊ ˝ pR̊µ X K̊µq ˝ µ
´1pxq X ν̊ ˝ L̊ν ˝ ν

´1pxq

Ď µ̊ ˝ L̊µ ˝ µ
´1pxq X ν̊ ˝ L̊ν ˝ ν

´1pxq

Ď ν̊ ˝ K̊ν ˝ ν
´1pxq Y ν̊ ˝ R̊ν ˝ ν

´1pxq

Ď ν̊ ˝ K̊ν ˝ ν
´1pxq Y ν̊ ˝ pR̊νzK̊νq ˝ ν

´1pxq

Ď ν̊ ˝ K̊ν ˝ ν
´1pxq Y ` ÒM pxq,

hence µ̊ ˝ R̊µ ˝ µ
´1pxq X ν̊ ˝ L̊ν ˝ ν

´1pxq Ď ν̊ ˝ K̊ν ˝ ν
´1pxq Y ` ÒM pxq. We notice that this is also true when ν “ µ since

Lµ [Rµ C Kµ, hence

µ̊ ˝ R̊µ ˝ µ
´1pxq X ν̊ ˝ L̊ν ˝ ν

´1pxqz̊ν ˝ K̊ν ˝ ν
´1pxq Ď ` ÒM pxq

for all ν PM .

We now see that this notion of parallel independence is correct in the sense that it characterizes sequential independence.
Note that the following result does not assume that M is finite.

23

Theorem 9.6. For any graph G and set M Ď M pR, Gq, M is parallel independent iff M is sequential independent.

Proof. Only if part. For all M 1 Ď M and µ P MzM 1, let R “
Ů

νPM 1 GÒν so that G‖M 1 “ GzrVM 1 ,AM 1 , `M 1s \ R. For all
ν PM 1 we have µpLµq [νpLνq C νpKνq \G

Ò
ν and µpLµq [νpLνq C G, hence by Lemma 5.2

µp 9Lµq X νp 9Lνq Ď νp 9Kνq Y νp 9Rν X 9Kνq “ νp 9Kνq

or equivalently µp 9Lµq X νp 9Lνqzνp 9Kνq “ ∅. Thus

µp 9Lµq XVM 1 “
ď

νPM 1

µp 9Lµq X νp 9Lνqzνp 9Kνq “ ∅

and therefore µp 9Lµq Ď 9G‖M 1 . Similarly we get µp~Lµq Ď ~G‖M 1 . Then, for all x P µp 9Lµq Y µp~Lµq, we have

µ̊ ˝ L̊µ ˝ µ
´1pxq X ν̊ ˝ L̊ν ˝ ν

´1pxq Ď ν̊ ˝ K̊ν ˝ ν
´1pxq Y G̊Òνpxq

hence
µ̊ ˝ L̊µ ˝ µ

´1pxq X ν̊ ˝ L̊ν ˝ ν
´1pxqz̊ν ˝ K̊ν ˝ ν

´1pxq Ď G̊Òνpxq Ď R̊pxq.

Thus
µ̊ ˝ L̊µ ˝ µ

´1pxq X `M 1pxq “
ď

νPM 1

µ̊ ˝ L̊µ ˝ µ
´1pxq X ν̊ ˝ L̊ν ˝ ν

´1pxqz̊ν ˝ K̊ν ˝ ν
´1pxq Ď R̊pxq

and then
µ̊ ˝ L̊µ ˝ µ

´1pxq Ď µ̊ ˝ L̊µ ˝ µ
´1pxqz`M 1pxq Y R̊pxq Ď G̊‖M 1pxq.

Therefore, µpLµq C G‖M 1 .
Let j : µpLµq Ñ G‖M 1 be the canonical injection and µ1 “ j ˝ µ, so that µ1 P M prµ, G‖M 1q, µ1pLµq “ µpLµq and

µ1pKµq “ µpKµq, hence Vµ1 “ Vµ, Aµ1 “ Aµ and `µ1 “ `µ. Let N “M 1Ytµu, H “ G\R\µÒpRµq and H 1 “ G\R\µ1ÒpRµq.

Note that G‖N “ GzrVN ,AN , `N s \ R \ µÒpRµq C H, and also that Rµ1 “ Rµ hence µ1ÒpRµq “ pG‖M 1q
Ò

µ1
and (using

Lemma 3.4)

pG‖M 1q‖µ1 “
`

GzrVM 1 ,AM 1 , `M 1s \
ğ

νPM 1

GÒν
˘

zrVµ1 ,Aµ1 , `µ1s \ µ
1ÒpRµq

“ GzrVN ,AN , `N s \
ğ

νPM 1

GÒνzrVµ,Aµ, `µs \ µ
1ÒpRµq

C H 1.

By Lemma 9.5 M has the effective deletion property, i.e., G‖M is disjoint from VM , AM , `Mz`
Ò

M hence in particular

GÒν is disjoint from Vµ, Aµ, `µz`
Ò

M for all ν PM 1, so that

GÒνzrVµ,Aµ, `µs “ GÒνzrVµzVµ,AµzAµ, `µzp`µz`
Ò

M qs “ GÒνzr∅,∅, `µ X `
Ò

M s.

For all x P 9GÒν Y ~GÒν , if x R 9G Y ~G then `µpxq “ ∅, otherwise G̊Òµpxq “ µ̊ ˝ R̊µ ˝ µ
´1pxq “ µ̊1 ˝ R̊µ1 ˝ µ

1´1pxq. Since

µpLµq [G
Ò
ν C µpKµq \G

Ò
µ we have

G̊Òνpxq X µ̊ ˝ L̊µ ˝ µ
´1pxq Ď µ̊ ˝ K̊µ ˝ µ

´1pxq Y G̊Òµpxq

or equivalently G̊Òνpxq X `µpxq Ď G̊Òµpxq, and we therefore have

G̊Òνpxq X `µpxq X `
Ò

M pxq Ď µ̊1 ˝ R̊µ1 ˝ µ
1´1pxq.

We thus see that GÒνzrVµ,Aµ, `µs has all the vertices and arrows of GÒν , and the attributes that are removed are all in
the graph µ1ÒpRµq, hence

GÒνzrVµ,Aµ, `µs \ µ
1ÒpRµq “ GÒν \ µ

1ÒpRµq

and therefore pG‖M 1q‖µ1 “ GzrVN ,AN , `N s \ R \ µ1ÒpRµq. In order to build an isomorphism α : H » H 1, let αµ have

µ1Ò ˝ µÒ´1 as underlying graph isomorphism (from µÒpRµq to µ1ÒpRµq underlying graph) and α̊µ “ 1AG
. Since

µ̊1 ˝ R̊µ ˝ µ
1Ò
´1
˝ αµ “ µ̊ ˝ R̊µ ˝ µÒ

´1
“ α̊µ ˝ µ̊ ˝ R̊µ ˝ µÒ

´1

24

then αµ : µÒpRµq » µ1ÒpRµq.

We now see that 1G\R and αµ are joinable. For all y P p 9GY 9Rq X µÒp 9Rµq, by Corollary 5.3 we have 9R X µÒp 9Rµq Ď 9G,

hence y P 9G X µÒp 9Rµq. By Lemma 5.2 there exists x P 9Rµ X 9Kµ such that y “ µpxq “ µÒpxq, hence αµpyq “ µ1Òpxq “
µ1pxq “ µpxq “ y. The same holds for arrows and trivially for attributes.

Since similarly 9RXµ1Òp 9Rµq Ď 9G it is easy to see that 1G\RNαµ is surjective. By Lemma 3.7 α “ 1G\ROαµ : H » H 1.
Obviously α|

tGu
“ 1G, and

αpG‖N q “ αpGzrVN ,AN , `N s \R\ µÒpRµqq

“ GzrVN ,AN , `N s \R\ µ
1ÒpRµq

“
`

G‖M 1

˘

‖µ1 .

If part. For all µ, ν PM such that µ ‰ ν, we have

νpLνq C G‖µ “ GzrVµ,Aµ, `µs \G
Ò
µ.

Since µpKµq C µpLµq C G, then

νpLνq [µpLµq C G‖µ [µpLµq “ µpLµqzrVµ,Aµ, `µs \ pG
Ò
µ [µpLµqq

“ µpKµq \ pG
Ò
µ [µpLµqq

C µpKµq \G
Ò
µ.

Besides, we also have µpLµq C G‖ν , let j : µpLµq Ñ G‖ν be the canonical injection, µ1 “ j ˝ µ P M prµ, G‖M 1q (hence
Vµ1 “ Vµ, Aµ1 “ Aµ and `µ1 “ `µ) and N “ tµ, νu, there is an isomorphism α such that αpG‖N q “

`

G‖ν
˘

‖µ1 and α|
tGu
“ 1G.

Let H “ G‖N [µpLµq and H 1 “
`

G‖ν
˘

‖µ1 [µpLµq, since µpLµq C G then H 1 “ αpG‖N q [1GpµpLµqq “ αpHq “ H. We
see that

H “ µpKµqzrVν ,Aν , `νs \ pG
Ò
ν [µpLµqq \ pG

Ò
µ [µpLµqq

and similarly (using Lemma 3.4) that

H 1 “ µpKµqzrVν ,Aν , `νs \ pG
Ò
νzrVµ,Aµ, `µs [µpLµqq \ pµ

1ÒpRµq [µpLµqq

“ µpKµqzrVν ,Aν , `νs \ pG
Ò
ν [µpKµqq \ pµ

1ÒpRµq [µpLµqq.

By Lemma 5.2 we have 9GÒν X µp
9Lµq “ νp 9Rν X 9Kνq X µp 9Lµq and µ1Òp 9Rµq X µp 9Lµq “ 9GÒµX µp

9Lµq “ µp 9RµX 9Kµq Ď µp 9Kµq.

Hence 9H 1zµp 9Kµq “ ∅ and 9Hzµp 9Kµq “ 9GÒν X µp 9Lµqzµp 9Kµq. Since 9H “ 9H 1 then 9GÒν X µp 9Lµq Ď µp 9Kµq. Similarly, we get
~GÒν X µp~Lµq Ď µp~Kµq.

For all x P 9HY ~H we have G̊Òµpxq “ µ̊˝R̊µ˝µ
´1pxq “ µ̊1˝R̊µ˝µ

1´1pxq, hence obviously H̊ 1pxqzpµ̊˝K̊µ˝µ
´1pxqYG̊Òµpxqq “ ∅

and
H̊pxqzpµ̊ ˝ K̊µ ˝ µ

´1pxq Y G̊Òµpxqq “ G̊Òνpxq X µ̊ ˝ L̊µ ˝ µ
´1pxqzpµ̊ ˝ K̊µ ˝ µ

´1pxq Y G̊Òµpxqq.

Since H̊pxq “ H̊ 1pxq then G̊Òνpxq X µ̊ ˝ L̊µ ˝ µ
´1pxq Ď µ̊ ˝ K̊µ ˝ µ

´1pxq Y G̊Òµpxq.

We conclude that GÒν [µpLµq C µpKµq \G
Ò
µ.

Corollary 9.7. If M is finite and parallel independent then there exists a graph H such that G ÝÑ‹
R H, G ùñR G‖M

and H » G‖M .

Proof. By Theorem 9.6 M is sequential independent, hence by Lemma 9.2 there exists H such that G ÝÑ‹
R H and

H » G‖M . By Lemma 9.5 M has the effective deletion property, hence G ùñR G‖M .

Hence parallel rewriting can always be applied with parallel independent sets, and then always yields a result reachable
by sequential rewriting. This can be interpreted as a result of correction of parallel rewriting w.r.t. sequential rewriting.

10 Related Work and Conclusion

The graphs considered in this paper are structures whose items, namely nodes and arrows, can be assigned with sets of
values (attributes). There exist different notions of attributed graphs in the literature. For example, in [16, 17], the authors
consider attributed graphs where graph items can hold at most one attribute. This is a particular case of the attributed
graphs considered in the present paper.

25

A notion of conditional rules has been introduced in [16] whose aim is to consider only matchings that satisfy a boolean
condition associated with the attributes of a rule. This notion could be included in our framework as a way to select
particular matchings. However, such conditions would have to be accounted for in the notion of automorphism group of a
rule.

In [18], a notion of attributed graphs has been used to define Dynamic Abstract Data Types. In that paper, an
attributed graph is defined as an algebra where graph items can be assigned, as in [16], with zero or one value in a given
carrier set.

In [2], the notion of E-graphs is introduced so that several values can be attached to graph items. These values are
considered as particular vertices, and are linked to standard graph items by means of dedicated edges. Thus E-graphs can
always accomodate enough space for new data, a feature convenient to parallelism (see Section 1). The notion of E-graphs
has been extended to symbolic graphs, see e.g.,[19] where E-graphs are endowed with variables constrained by a first-order
formula. Our definition of parallel graph rewriting could also be adapted to symbolic graphs, but again it would be more
difficult to adapt parallel rewriting modulo automorphism.

Parallel graph rewriting has already been considered in the literature. In the mid-seventies, H. Ehrig and H.-J. Kreowski
[11] tackled the problem of parallel graph transformations and introduced the condition of parallel independence under which
parallel graph transformations could be sequentialized and that of sequential independence under which a sequence of graph
transformations could be parallelized. This pioneering work has been considered for several algebraic graph transformation
approaches, see, e.g., [15, 20, 21] or the more recent contributions [22, 23, 24].

Another notion of non-independent parallelism has been considered in the Double-Pushout approach, see e.g. [25],
where rules can be amalgamated by agreeing on common deletions, preservations and creations. However, amalgamation
is restricted to standard rules and does not impose effective creation or deletion, i.e., amalgamated rules may not yield
parallel transformations in the sense of Definition 4.3.

A classical result that is related to non-independence is the Concurrency Theorem, see [2]. This theorem states that
a sequence of two rewrite steps with an overlap E between the right-hand side of the first and the left-hand side of the
second rule, can be represented as one rewrite step of a new rule, called an E-concurrent production. Applying this new
rule to a graph does not mean that the second rule can be applied to this graph, whether in parallel or not with the first.
The Concurrency Theorem refers to sequential dependence, not to parallel dependence.

Parallelism in graph rewriting has been considered in many other contexts. In [26, chapter 14], parallelism is used
to improve the operational semantics of the functional programming language CLEAN [27]. In that contribution, the
authors do not deal with true parallelism but rather have an interleaving semantics, hence their parallel rewrite steps can
be simulated by sequential ones. This is also the case for other frameworks where massive parallel graph transformations
is defined so that it can be simulated by sequential rewriting e.g., [28, 24, 29].

In [30], a framework based on the algebraic Single-Pushout approach has been proposed where parallel transformations
only involve matchings provided by a control flow mapping. The users can solve the possible conflicts between the rules
by providing the right control flow. More recently, a parallel graph rewrite relation has been defined in [31] for a special
kind of graphs called port-graphs. Unfortunately, such graphs are not closed under parallel graph transformation, in the
sense that a port-graph can be rewritten in a structure that is not a port-graph. Besides, conditions for avoiding conflicts
in parallel transformations have been defined over the considered rewrite rules rather than on the matchings they induce;
this limits drastically the shape of these rules.

Graph transformations have also been used to model distributed systems through the Hyperedge Replacement approach,
see [32, 33]. The parallel replacement of individual hyperedges by rooted hypergraphs is a natural way of avoiding conflicts
since overlaps are restricted to common nodes, but this supposes that at most one rule applies to every hyperedge. In [34]
these nodes represent communication channels between hyperedges (representing processes), and a synchronization algebra
is used to decide which hyperedges can be replaced simultaneously. By representing cells by hyperedges and neighborhoods
by their nodes it is then possible to represent cellular automata on finite configurations (the Game of Life however requires
29 rules due to the lack of variables, see [34, Example 5.2]).

An algebraic parallel transformation defined on production rules of the form L Ð K Ð I Ñ R has been presented
in [35], where a notion of parallel coherence ensures that direct transformations of an object G do not conflict, and thus
enables a parallel coherent transformation. The characterization of parallel independence in this approach has been carried
out in [36].

Future work includes applications and implementation issues. The proposed rewrite relations may be used in several
contexts such as extensions of L-systems to dynamic graph structures, see [37]. The parallel rewrite relation up to auto-
morphism raises the question of using group-theoretic algorithms for efficiently computing and using generating sets for the
automorphism groups of the considered rules, see [14]. The present framework may also be enriched with extra features
such as node and edge cloning as proposed in [38, 39].

26

References

[1] G. Rozenberg (Ed.), Handbook of Graph Grammars and Computing by Graph Transformations, Volume 1: Founda-
tions, World Scientific, 1997.

[2] H. Ehrig, K. Ehrig, U. Prange, G. Taentzer, Fundamentals of Algebraic Graph Transformation, Monographs in The-
oretical Computer Science. An EATCS Series, Springer, 2006.

[3] J. Engelfriet, G. Rozenberg, Node replacement graph grammars, in: Rozenberg [1], pp. 1–94.

[4] R. Echahed, Inductively sequential term-graph rewrite systems, in: ICGT 2008, Vol. 5214 of LNCS, Springer, 2008,
pp. 84–98.

[5] R. V. Book, F. Otto, String-Rewriting Systems, Texts and Monographs in Computer Science, Springer, 1993.

[6] F. Baader, T. Nipkow, Term Rewriting and All That, Cambridge University Press, 1998.

[7] D. Plump, Confluence of graph transformation revisited, in: Processes, Terms and Cycles: Steps on the Road to
Infinity, Essays Dedicated to Jan Willem Klop, on the Occasion of His 60th Birthday, Vol. 3838 of LNCS, Springer,
2005, pp. 280–308. doi:10.1007/11601548 16.

[8] D. Plump, Checking graph-transformation systems for confluence, ECEASST 26. doi:10.14279/tuj.eceasst.26.367.

[9] D. Plump, From imperative to rule-based graph programs, J. Log. Algebr. Meth. Program. 88 (2017) 154–173.

[10] O. Andrei, M. Fernández, H. Kirchner, G. Melançon, O. Namet, B. Pinaud, PORGY: strategy-driven interactive
transformation of graphs, in: 6th International Workshop TERMGRAPH 2011, Vol. 48 of EPTCS, 2011, pp. 54–68.

[11] H. Ehrig, H. Kreowski, Parallelism of manipulations in multidimensional information structures, in: Mathematical
Foundations of Computer Science, Vol. 45 of LNCS, Springer, 1976, pp. 284–293.

[12] D. Sannella, A. Tarlecki, Foundations of Algebraic Specification and Formal Software Development, Monographs in
Theoretical Computer Science. An EATCS Series, Springer, 2012.

[13] M. Gardner, Mathematical games – the fantastic combinations of John Conway’s new solitaire game ”life”, Scientific
American 223 (1970) 120–123.

[14] C. M. Hoffmann, Group-Theoretic Algorithms and Graph Isomorphism, Vol. 136 of Lecture Notes in Computer Science,
Springer, 1982.

[15] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, M. Löwe, Algebraic approaches to graph transformation
- part I: basic concepts and double pushout approach, in: G. Rozenberg (Ed.), Handbook of Graph Grammars and
Computing by Graph Transformations, Volume 1: Foundations, World Scientific, 1997, pp. 163–246.

[16] D. Plump, S. Steinert, Towards graph programs for graph algorithms, in: Second International Conference, ICGT
2004, Vol. 3256 of LNCS, 2004, pp. 128–143.

[17] D. Duval, R. Echahed, F. Prost, L. Ribeiro, Transformation of attributed structures with cloning, in: S. Gnesi,
A. Rensink (Eds.), 17th International Conference FASE, Vol. 8411 of LNCS, Springer, 2014, pp. 310–324.

[18] H. Ehrig, M. Löwe, F. Orejas, Dynamic abstract data types based on algebraic graph transformations, in: E. Astesiano,
G. Reggio, A. Tarlecki (Eds.), COMPASS/ADT, Vol. 906 of LNCS, Springer, 1994, pp. 236–254.

[19] F. Orejas, L. Lambers, Symbolic attributed graphs for attributed graph transformation, ECEASST 30.

[20] H. Ehrig, M. Löwe, Parallel and distributed derivations in the single-pushout approach, Theor. Comput. Sci. 109 (1&2)
(1993) 123–143.

[21] H. Ehrig, H.-J. Kreowski, U. Montanari, G. Rozenberg (Eds.), Handbook of Graph Grammars and Computing by
Graph Transformations, Volume 3: Concurrency, Parallelism and Distribution, World Scientific, 1999.

[22] A. Corradini, D. Duval, M. Löwe, L. Ribeiro, R. Machado, A. Costa, G. G. Azzi, J. S. Bezerra, L. M. Rodrigues, On
the essence of parallel independence for the double-pushout and sesqui-pushout approaches, in: Graph Transformation,
Specifications, and Nets - In Memory of Hartmut Ehrig, Vol. 10800 of LNCS, Springer, 2018, pp. 1–18.

27

[23] M. Löwe, Characterisation of parallel independence in AGREE-rewriting, in: 11th ICGT, Vol. 10887 of LNCS,
Springer, 2018, pp. 118–133.

[24] H. Kreowski, S. Kuske, A. Lye, A simple notion of parallel graph transformation and its perspectives, in: Graph
Transformation, Specifications, and Nets - In Memory of Hartmut Ehrig, Vol. 10800 of LNCS, Springer, 2018, pp.
61–82.

[25] G. Taentzer, Parallel high-level replacement systems, TCS: Theoretical Computer Science 186 (1997) 43–81.

[26] R. Plasmeijer, M. V. Eekelen, Functional Programming and Parallel Graph Rewriting, 1st Edition, Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1993.

[27] S. T. R. Group, The Clean Home Page, Radboud University, Nijmegen.

[28] R. Echahed, J. Janodet, Parallel admissible graph rewriting, in: Recent Trends in Algebraic Development Techniques,
13th International Workshop WADT’98, Selected Papers, Vol. 1589 of LNCS, Springer, 1999, pp. 122–137.

[29] H. Kreowski, S. Kuske, Graph multiset transformation: a new framework for massively parallel computation inspired
by DNA computing, Natural Computing 10 (2) (2011) 961–986.

[30] O. Kniemeyer, G. Barczik, R. Hemmerling, W. Kurth, Relational growth grammars - A parallel graph transformation
approach with applications in biology and architecture, in: Third International Symposium AGTIVE, Revised Selected
and Invited Papers, 2007, pp. 152–167.

[31] R. Echahed, A. Maignan, Parallel graph rewriting with overlapping rules, CoRR (abs/1701.06790).

[32] P. Degano, U. Montanari, A model for distributed systems based on graph rewriting, Journal of the ACM 34 (2)
(1987) 411–449.

[33] F. Drewes, H.-J. Kreowski, A. Habel, Hyperedge replacement, graph grammars, in: Rozenberg [1], pp. 95–162.

[34] I. Lanese, U. Montanari, Synchronization algebras with mobility for graph transformations, Electr. Notes Theor.
Comput. Sci 138 (1) (2005) 43–60.

[35] T. Boy de la Tour, R. Echahed, Parallel coherent graph transformations, in: Proceedings of WADT 2020, the 25th
International Workshop on Algebraic Development Techniques, LNCS, Springer, to appear.

[36] T. Boy de la Tour, Parallelism theorem and derived rules for parallel coherent transformations, CoRR (abs/1907.06585).

[37] S. Wolfram, A new kind of science, Wolfram-Media, 2002.

[38] J. H. Brenas, R. Echahed, M. Strecker, Verifying graph transformation systems with description logics, in: 11th ICGT,
Vol. 10887 of LNCS, Springer, 2018, pp. 155–170.

[39] A. Corradini, D. Duval, R. Echahed, F. Prost, L. Ribeiro, AGREE - algebraic graph rewriting with controlled embed-
ding, in: 8th ICGT, Vol. 9151 of LNCS, Springer, 2015, pp. 35–51.

28

