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Abstract
The continuously growing amount of seismic data collected world-
wide is outpacing our abilities for analysis, since to date, such
datasets have been analyzed in a human-expert-intensive, super-
vised fashion. Moreover, analyses that are conducted can be
strongly biased by the standard models employed by seismologists.
In response to both of these challenges, we develop a new unsu-
pervised machine learning framework for detecting and clustering
seismic signals in continuous seismic records. Our approach com-
bines a deep scattering network and a Gaussian mixture model to
cluster seismic signal segments and detect novel structures. To
illustrate the power of the framework, we analyze seismic data
acquired during the June 2017 Nuugaatsiaq, Greenland landslide.
We demonstrate the blind detection and recovery of the repeating
precursory seismicity that was recorded before the main landslide
rupture, which suggests that our approach could lead to more in-
formative forecasting of the seismic activity in seismogenic areas.

Introduction
Current analysis tools for seismic data lack the capacity to investi-
gate the massive volumes of data collected worldwide in a timely
fashion, likely leaving crucial information undiscovered. The cur-
rent reliance on human-expert analysis of seismic records is not
only unscalable, but it can also impart a strong bias that favors the
observation of already known signals [1]. As a case in point, con-
sider the detection and characterization of non-volcanic tremors,
which were first observed in the southwestern Japan subduction
zone two decades ago [2]. The complex signals generated by such
tremors are hard to detect in some regions due to their weak ampli-
tude. Robustly detecting new classes of seismic signals in a model-
free fashion would have a major impact in seismology (e.g., for
the purpose of forecasting earthquakes), since we would better un-
derstand the physical processes of seismogenic zones (subduction,
faults, etc.).

Recently, techniques from machine learning have opened up
new avenues for rapidly exploring large seismic datasets with min-
imum a priori knowledge. Machine learning algorithms are data-
driven tools that approximate non-linear relationships between ob-
servations and labels (supervised learning) or that reveal patterns
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from unlabeled data (unsupervised learning). Supervised algo-
rithms rely on the quality of the predefined labels, often obtained
via classical algorithms [3, 4] or even manually [5, 6, 7, 8]. Inher-
ently, supervised strategies are used to detect or classify specific
classes of already-known signals and, therefore, cannot be used for
discovering new classes of seismic signals. Unsupervised tools are
likely the best candidates to explore seismic data without using any
explicit signal model and hence, discover new classes of seismic
signals. For this reason, unsupervised methods are more relevant
for seismology, where the data is mostly unlabeled and new classes
of seismic signals should be sought. While supervised strategies
are often easier to implement thanks to the evaluation of a predic-
tion error, unsupervised strategies mostly rely on implicit models
that are challenging to design. Unsupervised-learning based stud-
ies have mostly been applied to data from volcano monitoring sys-
tems, where a large variety of seismo-volcanic signals is usually
observed [9, 10, 11, 12]. Some unsupervised methods have also
been recently applied to induced seismicity [13, 14], global seis-
micity [15], and local-vs-distance earthquakes [16]. In both cases
(supervised or unsupervised), the keystone to success lies in the
data representation namely, we need to define an appropriate set of
waveform features for solving the task of interest. The features can
be manually defined [17, 7, 18] or learned with appropriates tech-
niques such as artificial neural networks [5, 3], the latter belonging
to the field of deep learning.

In this paper, we develop a new unsupervised deep-learning
method for clustering signals in continuous multichannel seis-
mic time-series. Our strategy combines a deep scattering net-
work [19, 20] for automatic feature extraction and a Gaussian
mixture model for clustering. Deep scattering networks belong
to the family of deep convolutional neural networks, where the
convolutional filters are restricted to wavelets with modulus ac-
tivations [19]. The restriction to wavelets filters allows the deep
scattering networks to have explicit and physics-related properties
(frequency band, time scales of interest, amplitudes) that greatly
simplifies the architecture design in contrast with classical deep
convolutional neural network. Scattering networks have shown to
perform high-quality classification of audio signals [21, 20, 22]
and electrocardiograms [23]. A deep scattering network decom-
poses the signal’s structure through a tree of wavelet convolutions,
modulus operations and average-pooling, providing a stable repre-
sentation at multiple time and frequency scales [20]. The resulting
representation is particularly suitable for discriminating complex
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seismic signals that may differ in nature (source and propagation
effects) with several order of different durations, amplitudes and
frequency contents. After decomposing the time series with the
deep scattering network, we exploit the representation in a two-
dimensional feature space that results from a dimension reduc-
tion for visualization and hence, interpretation purposes. The two-
dimensional features are finally fed to a Gaussian mixture model
for clustering the different time segments.

The design of the wavelet filters have been conducted in many
studies, and in each case led to data-adapted filter banks based on
intuition on the underlying physics [24, 25, 26] (e.g. music classi-
fication, speech processing, bioacoustics, etc.). In order to follow
the idea of optimal wavelet design in a fully explorative way, we
propose to learn the mother wavelet of each filter bank with respect
to the clustering loss. By imposing a reconstruction constraint to
the different layers of the deep scattering network, we guarantee
to fully fit the data distribution together with improving the clus-
tering quality. Our approach therefore preserves the structure of
a deep scattering network while learning a representation relevant
for clustering. It is an unsupervised representation learning method
located in between the time-frequency analysis widely used in seis-
mology and the deep convolutional neural networks. While classi-
cal convolutional networks usually require a large amount of data
for learning numerous coefficients, our strategy can still work with
small datasets thanks to the restriction to wavelet filters. In ad-
dition, the architecture of the deep scattering network is dictated
by physical intuitions (frequency and time scales of interest). This
is in contrast to the tedious task of designing deep convolutional
neural networks, which today is typically pursued empirically.

In this study, we develop and apply our strategy to the continu-
ous seismograms collected during the massive Nuugaatsiaq land-
slide [28]. We perform a short- and a long-term cluster analysis
and identify many types of seismic signals. In particular, we iden-
tify long-duration storm-generated signals, accelerating percursory
signals and different other seismic events. Furthermore, we discuss
key properties of our network architecture.

Results
Seismic records of the 2017 Nuugaatsiaq landslide We apply
our strategy for clustering and detecting the low-amplitude pre-
cursory seismicity to the June 2017 landslide that occurred near
Nuugaatsiaq, Greenland [27]. The volume of the rockfall was esti-
mated between 35 to 51 million cubic meters by differential digital
elevation models, forming a massive landslide [28]. This landslide
triggered tsunami waves that impacted the small town of Nuugaat-
siaq and caused four injuries [28].

The continuous seismic wavefield was recorded by a three-
component broadband seismic station (NUUG) located 30 km
away from the landslide (Fig. 1A). We select the daylong three-
component seismograms from 2017-06-17 00:00 to 2017-06-17
23:38 in order to disregard the mainshock signal (at 23:39) and
focus on seismic data recorded before. A detailed inspection of
the east component records revealed that a small event was oc-
curring repetitively before the landslide, starting approximately
9 hours before the rupture and accelerating over time [27, 29].
The accelerating behavior of this seismicity suggests that an un-
stable initiation was at work before the landslide. This signal is
not directly visible in raw seismic records; it is of weak ampli-
tude, has a smooth envelope, and exhibits energy in between 2 and
8 Hz (Fig. 1B and C). While some of these events may be visible
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Figure 1: Geological context and seismic data. A Location of the landslide
(red star) and the seismic station NUUG (yellow triangle). The seismic sta-
tion is located in the vicinity of the small town of Nuugaatsiaq, Greenland
(top-right inset). B Raw record of the seismic wavefield collected between
21:00 UTC and 00:00 UTC on 2017-06-17. The seismic waves generated by
the landslidemain rupture are visible after 23:39UTC.C Fourier spectrogram
of the signal from B obtained over 35-second long windows.

in the seismograms filtered between 2 and 8 Hz at times close to
the landslide, a large part are hidden in the background noise. A
proper identification of this signal cannot be done with classical
detection routines such as STA/LTA (the ratio between the Short-
Term and the Long-Term Average of the seismogram [30]) because
these techniques are only sensitive to sharp signal changes with de-
cent signal-to-noise ratios [15], and do not provide information on
waveform similarity. These detection routines would potentially
allow to detect a subset of these signals with many additional other
signals, and would not allow to identify the accelerating behaviour
of these specific events. For this reason, the events were not inves-
tigated with STA/LTA but with three-component template match-
ing instead in [27].

The template matching strategy consists in a search for similar
events in a time series with evaluating a similarity function (cross-
correlation) between a pre-defined template event (often manually
defined) and the continuous records. This method is sensitive to the
analyzed frequency band, the template duration and quality, mak-
ing the template matching strategy a severely supervised strategy,
yet powerful [31]. Revealing this kind of seismicity with an un-
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Figure 2: Deep learnable scattering network with Gaussian mixture model clustering. The network consists in a tree of convolution and modulus oper-
ations successively applied to the multichannel time series (conv1–3). A reconstruction loss in calculated at each layer in order to constrain the network
not to cancel out any part of the signal (Eq. 13, Methods). From one layer to another, the convolution layers are downsampled with an average pooling
operation (pool1–2), except for the last layer which can be directly used to compute the scattering coefficients. This allows to analyze large time scales
of the signal structure with the increasing depth of the deep scattering network at reasonable computational cost. The scattering coefficients are finally
obtained from the equal pooling and concatenation of the pool layers, forming a stable high-dimensional and multiple time and frequency scale represen-
tation of input multichannel time series. We finally apply a dimension reduction to the set of scattering coefficients obtained at each channel in order to
form the low-dimensional latent space (here two-dimensional as defined in Eq. 10, Methods). We use a Gaussian mixture model in order to cluster the data
in the latent space (Eq. 11, Methods). The negative log-likelihood of the clustering is used to optimize the mother wavelet at each layer (inset) with Adam
stochastic gradient descent [39] described in Eq. 14 (Methods). The filter bank of each layer ` is then obtained by interpolating the mother wavelet in the
temporal domain ψ(`)

0 (t) with Hermite cubic splines (Eq. 9, Methods), and dilating it over the total number of filters J(`)Q(`) (Eq. 2, Methods).

supervised template-matching based strategy could be done with
performing the cross-correlation of all time segments (autocorrela-
tion), testing every time segments as potential template event [32].
Considering that several durations, frequency bands, etc. should
be tested, this approach is nearly impossible to perform onto large
datasets for computational limitations [15].

In the present study, we propose to highlight this precursory
event in a blind way over a daylong, raw seismic record. Our goal
is to show that even if the precursory signal was not visible af-
ter a detailed manual inspection of the seismograms, it could have
been correctly detected by our approach. The reader should bear
in mind that clustering is an exploratory task [33]; we do not aim
at overperforming techniques like template matching, but to pro-
vide a first, preliminary statistical result that could simplify further
detailed analyses like template selection for template matching de-
tection.

Feature extraction from a learnable deep scattering network
A diagram of the proposed clustering algorithm is shown in Fig 2.
The theoretical definitions are presented in the Methods section.
Our model first builds a deep scattering network that consists in a
tree of wavelet convolutions and modulus operations (Eq. 5, Meth-
ods). At each layer, we define wavelet filterbank with constant
quality factor from dilations and stretching of a mother wavelet
(see Eq. 2, Methods). This is done according to a geometric pro-

gression in the time domain in order to cover a frequency range of
interest. The input seismic signal is initially convolved with a first
bank of wavelets, which modulus leads to a first-order scalogram
(conv1), a time and frequency representation of one-dimensional
signals widely used in seismology [34]. In order to speed up com-
putations, we low-pass filter the coefficients in conv1, and perform
a temporal downsampling (pool1) with an average-pooling oper-
ation [35]. The coefficients of pool1 are then convolved with a
second wavelet bank, forming the second-order convolution layer
(conv2). These succession of operations can be seen as a two-
layer demodulation, where the input signal’s envelope is extracted
at the first layer (conv1) for several carrier frequencies, and where
the frequency content of each envelope is decomposed again at the
second layer (conv2) [20].

We define a deep scattering network as the sequence of
convolution-modulus operations performed at higher orders, al-
lowing to scatter the signal structure through the tree of time and
frequency analyses. We finally obtain a locally invariant signal
representation by applying an average-pooling operation to the
all-order pooling layers [19, 21, 20]. This pooling operation is
adapted for concatenation, with an equal number of time samples
at each layer (Fig. 2). The scattering coefficients are invariant to
local time translation, small signal deformations and signal over-
lapping. They incorporate multiple time scales (at different lay-
ers) and frequencies scales (different wavelets). The tree of oper-
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Figure 3: Learning results. Scattering coefficients in the latent space at initialization (A) and after learning (B). The covariance of each component of
the Gaussian mixture model is represented by a colored ellipse centered at each component mean. All of the 10 components are used at initial stage
with a steadily decaying number of elements per clusters, while only 4 are used at final stage with unbalanced population size. The clustering negative
log-likelihood (C, top) decreases with the learning epochs indicating that the clustering quality is improved by the learned representation. We also observe
that the reconstruction loss fluctuates and remains as low as possible (C, bottom). The number of cluster with respect to the increasing training epoch is
shown in (D). Finally, the initial, intermediate and final wavelets at each layer (E) are shown in the time domain interpolated from 11 knots.

ations in a scattering network forms a deep convolutional neural
network, with convolutional filters restricted to wavelets, and with
modulus operator as activation function [19]. Scattering networks
are located in between (1) classical time and frequency analysis
routinely applied in seismology (2) deep convolutional neural net-
works where the unconstrained filters are often hard to interpret,
and where the network architecture is often challenging to define.
In contrast, deep scattering networks can be designed in a straight-
forward way, thanks to the analytic framework defined in [19].

From one layer to another, we increase the filterbanks frequency
range in order to consider at the same time small-duration details
and larger-duration histories (see Table 1, case D for the selected
architecture in the present study). The number of wavelets per oc-
taves and number of octaves define the frequency resolution and
bandwidth of each layer. The scattering network depth (total num-
ber of layers) controls the final temporal resolution of the analysis.
Following the recommendations cross-validated onto audio signal
classification [20], we use a large number of filters at the first layer,
and we gradually increase the number of octaves while reducing
the number of wavelets per octave from the first to the last layer
(Table 1, case D). That way, the representation is dense at the layer
conv1 and gets sparser at the higher-order layers conv2 and conv3.
This has the main effect of improving the contrast between signals
of different nature [20]. We finally choose the network depth based
on the range of time scales of interest. In the present study, we
aim at investigating mostly impulsive earthquake-like signals that
may last between several seconds to less that one minute. A deeper
scattering network could be of interest in order to analyze the prop-
erties of longer-duration signals such as seismic tremors [36] or
background seismic noise. Finally, with our choice of pooling fac-
tors, we obtain a temporal resolution of 35 seconds for each scat-
tering coefficient.

Clustering seismic signals The scattering coefficients are built
in order to be linearly separable [23] so that the need for a high-
dimensional scattering representation is greatly reduced. In fact, it
is even possible to enforce the learning to favor wavelets that not
only solve the task but also provide a lower-dimensional represen-
tation of the signal. We do so by reducing the dimension of the
scattering coefficients with projection onto the first two principal
components (Eq. 10, Methods). This also improves the data rep-
resentation in two dimensions and eases the interpretation. More
flexibility could be also obtained by using the latent representa-
tion of an autoencoder because autoencoders can lower the dimen-
sion of any datasets with non-linear projections. However, such
dimension reduction must be thoroughly investigated because it
adds a higher-level complexity to the overall procedure (autoen-
coder learning rate, architecture, etc.), and will define the goal of
future studies.

The two-dimensional scattering coefficients are used to cluster
the seismic data. We use a Gaussian mixture model [37] for clus-
tering, where the idea is to find the set ofK normal distributions of
mean µk and covariance Σk (where k = 1 . . .K) that best describe
the overall data (Fig. 2 inset and Eq. 11, Methods). A categori-
cal variable is also inferred in order to allocate each data sample
into each cluster, which is the final result of our algorithm. Gaus-
sian mixture model clustering can be seen as a probabilistic and
more flexible version of the K-means clustering algorithm, where
each covariance can be anisotropic, the clusters can be unbalanced
in term of internal variance, and where the decision boundary is
soft [37].

Initialized with Gabor wavelets [38], we learn the parameters
governing the shape of the wavelets with respect to the clustering
loss (Eqs. 7 and 8, Methods) with the Adam stochastic gradient
descent [39] (Eq. 14, Methods). The clustering loss is defined as
the negative log-likelihood of the data to be fully described by the
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Data Scattering network Learning

Ref. Start End J(`) Q(`) K Pool. Clusters Loss (clus.) Loss (rec.)

A 15:00 23:30 3, 6, 6 8, 2, 1 7 210 10 → 4 3.79 4.20
B 15:00 23:30 3, 6, 6 8, 2, 1 11 210 10 → 3 3.42 5.40
C 15:00 23:30 3, 6, 6 8, 2, 1 15 210 10 → 3 3.17 5.49

? D 00:30 23:30 4, 6, 6 8, 4, 3 11 210 10 → 4 2.96 3.06
E 00:30 23:30 3, 6, 6 8, 2, 1 11 29 10 → 6 3.67 1.76
F 00:30 23:30 3, 6, 6 8, 2, 1 11 211 10 → 4 3.11 3.06

Table 1: Set of different tested parameters (with corresponding cumulative detection curves shown in Supplementary Figure 1). The results presented in
Figs. 3 and 4 are obtained with the set of parameters D (black star and bold typeface), with the lowest clustering loss. See the Supplementary Note 3 and
Supplementary Figure 1 for further details.

set of normal distributions. We define the wavelets onto specific
knots, and interpolate them with Hermite cubic splines onto the
same time basis of the seismic data for applying the convolution
(see the Methods section for more details). We ensure that the
mother wavelet at each layer satisfies the mathematical definition
of a wavelet filter in order to keep all the properties of a deep scat-
tering network [23]. We finally add a constraint on the network in
order to prevent the learning to dropout some signals that make the
clustering task hard (e.g. outlier signals). This is done by imposing
a reconstruction loss from one layer to its parent signal, noticing
that a signal should be reconstructed from the sum of the convolu-
tions of itself with a wavelet filterbank (Eq. 13, Methods).

The number of clusters is also inferred by our procedure. We
initialize the Gaussian mixture clustering algorithm with a (rela-
tively large) number K = 10 clusters at the first epoch, and let
all of these components be used by the expectation-minimization
strategy [37]. This is shown at the first epoch in the latent space
in Fig. 3A, where the Gaussian component mean and covariance
are shown in color with the corresponding population cardinality
on the right inset. As the learning evolves, we expect the represen-
tation to change the coordinates of the two-dimensional scattering
coefficients in the latent space (black dots), leading to Gaussian
components that do not contribute anymore to fit the data distri-
bution, and therefore to be automatically disregarded in the next
iteration. We can therefore infer a number of clusters from a maxi-
mal value. At the first epoch (Fig. 3A), we observe that the seismic
data samples are scattered in the latent space, and that the Gaussian
mixture model used all of the 10 components.

The clustering loss decreases with the learning epochs (Fig. 3C).
We declare the clustering to be optimal when the loss stagnates
(reached after approximately 7,000 epochs). The learning is done
with batch-processing, a technique that allows for faster computa-
tion by randomly selecting smaller subsets of the dataset. This also
avoids falling into local minima (as observed around epoch 3,500),
and guarantees to reach a stable minimum that does not evolve any-
more after epoch 7,000 (Fig. 3C). After 10,000 training epochs, as
expected, the scattering coefficients have been concentrated around
the clusters centroids (Fig. 3B). The set of useful components have
been reduced to 4, a consequence of a better learned representation
due to the learned wavelets at the last epoch (Fig. 3D). The clus-
ter colors range from colder to warmer colors depending on the
population size.

The clustering loss improves by a factor of approximately 4.5
between the first and the last epoch (Fig. 3C). At the same time, the
reconstruction loss is more than 15 times smaller than at the first
training epoch (Table 1). This indicates that the basis of wavelets
filterbanks used in the deep scattering network is powerful to ac-
curately represent the seismic data with ensuring a good-quality
clustering at the same time.

Analysis of clusters The temporal evolution of each clusters is
presented in Fig. 4. The within-cluster cumulative detections ob-
tained after training are presented in Fig. 4A for clusters 1 and
2, and in Fig. 4B for clusters 2 and 3. The two most populated
clusters (1 and 2, Fig. 4A) gather more than 90% of the overall
data (Fig. 3B). They both show a linear detection rate over the day
with no particular concentration in time and, therefore, relate to
the background seismic noise. Clusters 3 and 4 (Fig. 4B) show
different non-linear trends that include 10% of the remaining data.

The temporal evolution of cluster 4 is presented in Fig. 4B. The
time segments that belong to cluster 4 are extracted and aligned to
a reference event (at the top) with local cross-correlation for better
readability (see Supplementary Note 1). These waveforms contain
seismic events localized in time with relatively high signal-to-noise
ratio and sharp envelope. These events do not show a strong simi-
larity in time, but they strongly differ from the event belonging to
other clusters, explaining why they have been gathered in the same
cluster. The detection rate is sparse in time, indicating that cluster 4
is mostly related to a random background seismicity or other sig-
nals which interest is beyond the scope of the present manuscript.

The temporal evolution of cluster 3 shows three behaviors. First,
we observe a nearly-constant detection rate from the beginning
of the day to approximately 07:00. Second, the detection rate
lowers between 07:00 and 13:00 where only 4% of the within-
cluster detections are observed. An accelerating seismicity is fi-
nally observed from 13:00 up to the landslide time (23:39 UTC).
The time segments belonging to cluster 3 are reported on Fig. 4D
in gray colorscale, and aligned with local cross-correlation with
a reference (top) time segment. The correlation coefficients ob-
tained for the best-matching lagtime are indicated in orange color
in Fig. 4E. As with the template matching strategy, we clearly
observe the increasing correlation coefficient with the increasing
event index [27], indicating that the signal-to-noise ratio increases
towards the landslide. This suggests that the repeating event may
exist earlier in the data before 15:00, but that the detection thresh-
old of the template matching method is limited by the signal-to-
noise ratio [27]. Because our clustering approach is probabilistic,
it is possibile that some time segments share sufficient similarity
with the precursory events to have been placed in the same cluster.
The pertinence of our approach could be further tested by simi-
larity tests specific to the precursory signals, which is beyond the
scope of the present study. We note that the probability of these
171 events to belong to the same cluster remains high according to
our clustering (Figure 4E). We also note that 97% of the precursory
events previously found [27] are recovered.

An interesting observation is the change of behavior in the de-
tection rate of this cluster at nearly 07:00 (Fig. 4B). The events that
happened before 07:00 have all a relatively high probability to be-
long to cluster 3, refuting the hypothesis that noise samples have

5



Seydoux et al. (2020) NATURE COMMUNICATIONS https://doi.org/10.1038/s41467-020-17841-x

0.00

0.25

0.50

0.75

1.00

Jo
in
tp
ro
ba
bi
liy

0.00

0.25

0.50

0.75

1.00

Jo
in
tp
ro
ba
bi
liy

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
0

500

1000

1500

2000

C
um

ul
at
iv
e
de
te
ct
io
ns

A

1
2

00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00
Time of 2017-06-17

0

50

100

150

200

C
um

ul
at
iv
e
de
te
ct
io
ns

B

3
4

0 10 20 30
Time (seconds)

0

10

20

30

E
ve
nt
in
de
x

C

0 10 20 30
Time (seconds)

0

25

50

75

100

125

150
E
ve
nt
in
de
x

D

0 1
Similarity

0

25

50

75

100

125

150

E
Probability
Correlation

Figure 4: Analysis of clusters in the time domain. Within-cluster cumulative number of detection of events in clusters 1 and 2 (A) and clusters 3 and 4 (B)
at epoch 10,000. The relative probability for each time window to belong to each cluster is represented with lighter bars. The waveforms extracted within
the last two clusters (purple and red) are extracted and aligned with respect to a reference waveform within the cluster, for cluster 4 (C) and cluster 3 (D).
The seismic data have been bandpass-filtered between 2 and 8 Hz for better visualization of the different seismic events. (E) similarity measurement in
the time domain (correlation) and in the latent space (probability) for the precursory signal.

randomly been misclassified by our strategy (Fig. 4E). The tempo-
ral similarity of all these events in Fig. 4D is particularly visible
for later events (high index) because the signal-to-noise ratio of
these events increases towards the landslide [27]. The two trends
may be either related to similar signals generated at same posi-
tion (same propagation) with a different source, or by two types of
alike-looking events that differ in nature, but that may have been
gathered in the same cluster because they strongly differ from the
other clusters. This last hypothesis can be tested with using hierar-
chical clustering [40]. Our clustering procedure highlighted those
171 similar events in a totally unsupervised way, without the need
of defining any template from the seismic data. The stack of the
171 waveforms is shown in black solid line in Fig. 4D, indicating
that the template of these events is defined in a blind way thanks
to our procedure. In addition, these events have very similar prop-
erties (duration, seismic phases, envelope) in comparison with the
template defined in [27].

Discussion

We have developed a novel strategy for clustering and detecting
seismic events in continuous seismic data. Our approach extends a
deterministic deep scattering network by learning the wavelet fil-
terbanks and applying a Gaussian mixture model. While scattering
networks correspond to a special deep convolutional neural net-

work with fixed wavelet filterbanks, we allow it to fit the data dis-
tribution by learnability of the different mother wavelets; yet we
preserve the structure of the deep scattering network allowing in-
terpretability and theoretical guarantees. We combine the powerful
representation of the learnable scattering network with Gaussian
mixture clustering by learning the wavelet filters according to the
clustering loss. This allows to learn a representation of multichan-
nel seismic signals that maximizes the quality of clustering, lead-
ing to an unsupervised way of exploring possibly large datasets.
We also impose a reconstruction loss as each layer of the deep scat-
tering network, following the ideas of convolutional autoencoders,
and preventing to learn trivial solutions such as zero-valued filters.

Our strategy is capable of blindly recovering the small-
amplitude precursory signal reported in [27, 29]. This indicates
that waveform templates can be recovered from our method with-
out the need of any manual inspection of the seismic data prior to
the clustering process, and tedious selection of waveform template
in order to perform high-quality detection. Such unsupervised
strategy is of strong interest for seismic data exploration, where
the structure of seismic signals can be complex (low-frequency
earthquakes, non-volcanic tremors, distant vs. local earthquakes,
etc.), and where some class of unknown signals is likely to be dis-
regarded by a human expert.

In the proposed workflow, only a few parameters need be cho-
sen, namely the number of octaves and wavelets per octave at each
layer J (`) and Q(`), the number of knots K the pooling factors
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Figure 5: Clustering results obtained from long-duration seismic data. The broadband seismogram recorded by the station NUUG (Fig. 1) is presented in
the top plot. The hourly within-cluster detection rate is presented for each of the 9 clusters (A to I). The right-hand side insets indicate the relative population
size of each clusters. The best-correlating microseismic energy have been reported on top of clusters C and D, respectively identified from offshore the
city of Nuugastiaq, and in the middle of the North Atlantic (see Supplementary Note 3 and Supplementary Figures 2 and 3 for more details).

and the network depth M . This choice of parameters is extremely
constrained by the underlying physics. The number of octaves at
each layer controls the lowest analyzed frequency at each layer,
and therefore, the largest time scale. The pooling factor and num-
ber of layers M should be chosen according to the analyzed time
scale at each layer, and the final maximal time scale of interest for

the user. We discuss our choice of parameters with testing sev-
eral parameter sets summarized in Table 1 and with corresponding
results presented in Supplementary Figure 1 for the cumulative de-
tection curves, within-cluster population sizes and learned mother
wavelets (Supplementary Note 2). All the results obtained with dif-
ferent parameters show extremely similar cluster shapes in the time
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Figure 6: Hierarchical clustering of long duration seismic data. A Within-cluster cumulative detection overseen for second-order clustering of former
clusters F to I presented in the Supplementary Figure 1 from 2017-06-01 to 2017-06-18. B Zoom on the day 2017-06-17 from the detections presented in A.
Similarly to Fig. 3, the relative probability for each time window to belong to each cluster is represented with lighter bars.

domain, and the precursory signal accelerating shape is always re-
covered. We see that a low number of 3 or 4 clusters are found in
almost all cases, with a similar detection rates over the day. Fur-
thermore, we observe that the shapes of the learned wavelets is sta-
ble for different data-driven tests, and in particular, the third-order
wavelet is similar with all the tested parameters (Fig. 5G). This re-
sult makes sense because the coefficients that output from the last
convolutional layer conv3 are over-represented in comparison with
the other ones. We also observe that the procedure still works with
only a few amount of data (Fig. 5A–C), a very strong advantage
compared with classical deep convolutional neural networks that
often require a large amount of data to be successfully applied.

Besides being adapted to small amount of data, our strategy can
also work with large datasets, as scalability is guaranteed by batch
processing, and using only small-complexity operators (convolu-
tion and pooling). Indeed, batch processing allows to control the
amount of data seen by the scattering network and GMM at a single
iteration, each epoch being defined when the whole dataset have
been analyzed. There is no limitation to the total amount of data
being analyzed because only the selected segments at each itera-
tion are fed to the network. At longer time scales, the number of
clusters needed to fit the seismic data must change, however, with
an expectation that the imbalance between clusters should increase.
We illustrate this point with another experiment performed on the
continuous seismogram recorded at the same station over 17 days,
including the date of the landslide (from 2017-06-01 to 2017-06-
18). With this larger amount of data, the clustering procedure still
converges and exhibit 9 new clusters. The hourly within-clusters
detections of these new clusters are presented in Fig. 5. Among
the different clusters found by our strategy, we observe that more
than 93% of the data is identified in slowly evolving clusters, most
likely related to fluctuations of the ambient seismic noise (Fig. 5,
clusters A to E). The most populated clusters (A and B) occupy
more than 61% of the time, and are most likely related to a diffuse
wavefield without any particular dominating source. Interestingly,
we observe two other clusters with large population with a strong
localisation in time (clusters C and D in Fig. 5). A detailed analy-

sis of the ocean-radiated microseismic energy [44, 45] allowed us
to identify the location and dominating frequency of the sources
reponsible for these clusters to be identified (explained in Supple-
mentary Note 3 and illustrated in Supplementary Figures 2 and 3).
The seismic excitation history provided by these oceanographic
models of the best-matching microseismic sources have been re-
ported on clusters C and D in Fig. 5.

Compared with these long-duration clusters, the clustering pro-
cedure also reports very sparse clusters where less than 7% of the
seismic data are present. Because of clustering instabilities caused
by the large class imbalance of the seismic data, we decided to
perform a second-order clustering on the low-populated clusters.
This strategy follows the idea of hierarchical clustering [40], where
the initially identified clusters are analyzed several consecutive
times in order to discover within-cluster families. For the sake
of brevity, we do not intend to perform a deep-hirarchical cluster-
ing in the present manuscript, but to illustrate the potential strength
of such strategy in seismology, where the data is essentially class-
imbalanced. We perform a new clustering from the data obtained in
the merged low-populated clusters (F to I in Fig. 5). This additional
clustering procedure detected two clusters presented in Fig. 6A.
These two clusters have different temporal cumulated detections
and exhibit different population sizes. A zoom of the cumulated
within-cluster detections is presented in Fig. 6B, and show a high
similarity with clusters 3 and 4 previously obtained in Fig. 3 from
the daylong seismogram. This result clearly proves that the accel-
erating precursor is captured by our strategy even when the data
is highly imbalanced. If the scattering network provides highly
relevant features, clustering seismic data with simple clustering al-
gorithms can be a hard task that can be solved with hierarchical
clustering, as illustrated in the present study. This problem can
also be better tackled by other clustering algorithms such as spec-
tral clustering [41] which has the additional ability to detect out-
liers. Clustering the outlier signals may then be an alternative to
GMM in that case. Another possibility would be to use the local
similarity search with hashing functions [15] in order to improve
our detection database on large amount of seismic data.
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The structure of the scattering network shares some similar-
ities with the FAST algorithm (for Fingerprint And Similarity
Search [15]) from a architectural point of view. FAST uses a
suite of deterministic operations in order to extract waveforms fea-
tures and feed it to a hashing system in order to perform a sim-
ilarity search. The features are extracted from the calculation of
the spectrogram, Haar wavelet transforms and thresholding oper-
ations. While being similar, the FAST algorithm involves a num-
ber of paramaters that are not connected to the underlying physics.
For instance, the thresholding operation has to be manually in-
spected [15], as well as the size of the analyzing window. In com-
parison, our architecture and weights are physically informed, and
does not imply any signal windowing (only the resolution of the
final result can be controlled). FAST is not a machine learning
strategy because no learning is involved; in contrast, we do learn
the representation of the seismic data that best solves the task of
clustering. While FAST needs a large amount of data to be run in
an optimal way [15], our algorithm still works with a few number
of samples.

This work shows that learning a representation of seismic data
in order to cluster seismic events in continuous waveforms is a
challenging task that can be tackled with deep learnable scatter-
ing networks. The blind detection of the seismic precursors to the
2017 Landslide of Nuugaatsiaq with a deep learnable scattering
network is a strong evidence that weak seismic events of complex
shape can be detected with a minimum amount of prior knowledge.
Discovering new classes of seismic signals in continuous data can,
therefore, be better addressed with such strategy, and could lead to
a better forecasting of the seismic activity in seismogenic areas.

Methods
Deep scattering network A complex wavelet ψ ∈ L is a filter
localized in frequency with zero average, center frequency ω0 and
bandwidth δω. We define the functional space L of any complex
wavelet ψ as

L =

{
ψ ∈ L2

c(C),

∫
ψ(t)dt = 0

}
, (1)

where L2
c(C) represents the space of square integrable functions

with compact time support c on C. At each layer, the mother
wavelet ψ0 ∈ L is used to derive a number of JQ wavelets of
the filter bank ψj with dilating the mother wavelet by means of
scaling factors λj ∈ R such as

ψj(t) = λjψ0(tλj), ∀j = 0 . . . JQ− 1 . (2)

where the mother wavelet is centered at the highest possible fre-
quency (Nyquist frequency). The scaling factor λj = 2−j/Q is
defined as powers of 2 in order to divide the frequency axis in por-
tions of octaves depending on the desired number of wavelets per
octaves Q and total number of octaves J which controls the fre-
quency axis limits and resolution at each layer. The scales are de-
signed to cover the whole frequency axis, from the Nyquist angular
frequency ω0 = π down to a smallest frequency ωQJ−1 = ω0λJ
defined by the user.

We define the first convolution layer of the scattering network
(conv1 in Fig. 2) as the convolution of any signal x(t) ∈ RC
(where C denotes the number of channels) with the set of J (1)Q(1)

wavelet filters ψ(1)
j (t) ∈ L as

U
(1)
j (t) =

∣∣∣x ∗ ψ(1)
j

∣∣∣ (t) ∈ RC×J
(1)×Q(1)

, (3)

where ∗ represents the convolution operation. The first layer of
the scattering network defines a scalogram, a time-frequency rep-
resentation of the signal x(t) according to the shape of the moher
wavelet ψ(1)

0 widely used in the analysis of one-dimensional sig-
nals including seismology.

The first-order scattering coefficients S(1)
j (t) are obtained after

applying an average-pooling operation φ(t) over time to the first-
order scalogram U

(1)
j (t)

S
(1)
j (t) =

(
U

(1)
j ∗ φ1

)
(t) = (|x ∗ ψj1 | ∗ φ1) (t). (4)

The average-pooling operation is equivalent to a low-pass filtering
followed by a downsampling operation [35]. It ensures the scatter-
ing coefficients to be locally stable with respect to time, providing
a representation stable to local deformations and translations [21].
This property is essential in the analysis of complex signals such as
seismic signals that can often be perturbed by scattering or present
a complex source time function.

The small details information that has been removed by the pool-
ing operation with Eq. 4 could be of importance to properly cluster
different seismic signals. It is recovered by cascading the convo-
lution, modulus and pooling operations on higher-order convolu-
tions performed on the first convolution layer (thus defining the
high-order convolution layers shown in Fig. 2):

S
(`)
j (t) = U

(`)
j (t) ∗ φ(`)

j (t), (5)

where U (0)(t) = x(t) is the (possibly multichannel) input signal
(Fig. 2). The scattering coefficients are obtained at each layers
from the successive convolution of the input signal with different
filters banks ψ(`)(t). In addition, we apply an average pooling op-
eration to the output of the convolution-modulus operators in order
to downsample the successive convolutions without aliasing. This
allow for observing larger and larger time scales in the structure of
the input signal at reasonnable computational cost.

We define the relevant features S(t) of the continuous seismic
signal to be the concatenation of all-orders scattering coefficients
obtained at each time t as

S(t) = {S(`)}`=1...M ∈ RF , (6)

with M standing for the depth of the scattering network, and F =
J (1)Q(1)(1 + . . . (1 + J (M)Q(M))) is the total number of scatter-
ing coefficients (or features). When dealing with multiple-channel
data, we also concatenate the scattering coefficients obtained at all
channels. The feature space therefore is a high-dimensional repre-
sentation that encodes multiple time-scales properties of the signal
over a time interval [t, t+ δt]. The time resolution δt of this repre-
sentation then depends on the size of the pooling operations. The
choice of the scattering network depth thus should be chosen so
that the final resolution of analysis is larger that maximal duration
of the analyzed signals.

Seismic signals can have several orders of different magnitude,
even for signals lying in the same class. In order to make our anal-
ysis independent from the amplitude, we normalize the scattering
coefficient by the amplitude of their “parent”. The scattering co-
efficients of order m are normalized by the amplitude of the co-
efficients m − 1 down to m = 2. For the first layer (which has
no parent), the scattering coefficients are normalized by the coeffi-
cients of the absolute value of the signal [42].
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Adaptive Hermite cubic splines Instead of learning all the co-
efficients of the mother wavelet ψ(`)

0 at each layer in the frequency
domain, as one would do in a convolutional neural network, we
restrict the learning to the amplitude and the derivative on a spe-
cific set of K knots {tk ∈ c}k=1...K laying in the compact tem-
poral support c (see Eq. 1). The mother wavelet ψ(`)

0 can then be
approximated with Hermite cubic splines [23], a third-order poly-
nomial defined on the interval defined by two consecutive knots
τk = [tk, tk+1]. The four equality constraints

ψ
(`)
0 (tk) = γk

ψ
(`)
0 (tk+1) = γk+1

ψ̇
(`)
0 (tk) = θk

ψ̇
(`)
0 (tk+1) = θk+1

, (7)

uniquely determine the Hermite cubic spline solution piecewise on
the consecutive time segments τk, given by

ψ
(`)
0,Γ,Θ(t) =

K−1∑
k=1

γkf1 (xk(t))+γk+1f2 (xk(t))+θkf3 (xk(t))+θk+1f4 (xk(t))1τk ,

(8)
where Γ = {γk}k=1...K−1 and Θ = {θk}k=1...K−1 respectively
are the set of value and derivative of the wavelets on the knots,
where x(t) = t−tk

tk+1−tk is the normalized time on the interval τk,
and where the Hermite cubic functions fi(t) are defined as

f1(t) = 2t3 − 3t2 + 1,

f2(t) = −2t3 + 3t2,

f3(t) = t3 − 2t2 + t,

f4(t) = t3 − 2t2.

(9)

We finally ensure that the Hermite spline solution lays in the
wavelets functional space L defined in Eq. 1 by additionnaly im-
posing

• the compactness of the support: γ1 = θ1 = θK = γK = 0,

• the null average: γk = −
∑
n 6=k γn,

• that the coefficients are bounded: max
t

γt <∞.

The parameters γk and θk solely control the shape of the mother
wavelet and are the only parameters that we learn in our strategy.
Notice that thanks to the above constraints, for any value of those
parameters, the obtained wavelet is guaranteed to belong into the
functional space of wavelets L defined in Eq. 1 with compact sup-
port. By simple approximation argument, Hermite cubic splines
can approximate arbitrary functions with a quadratically decreas-
ing error with respect to the increasing number of knots K. Once
the mother filter has been interpolated, the entire filter-bank is de-
rived according to Eq. 2.

Clustering in a low-dimensional space We decompose the scat-
tering coefficients S onto its two first principal components by
means of singular value decomposition S = UDV†, where U ∈
RF×F and V ∈ RT×T are respectively the feature- and time-
dependant singular matrices gathering the singular vectors column-
wise, D are the singular values, and where T is the total number
of time samples in the scattering representation. We define the
latent space L ∈ R2×T as the projection of the scattering coeffi-
cients onto the first two feature-dependent singular vectors. Noting

U = {ui}i∈[1...F ] and V = {vj}j∈[1...T ] where ui and vj are re-
spectively the singular vectors, the latent space is defined as

R2×T 3 L =

2∑
i=1

Sui (10)

To tackle clustering tasks, it is common to resort to centroidal-
based clustering. In such strategy, the observations are compared
to cluster prototypes and associated to the clusters with prototype
the closest to the observation. The most-famous centroidal cluster-
ing algorithm is probably the K-means algorithm. Its extension,
the Gaussian mixture model extends it by allowing non uniform
prior over the clustering (unbalanced in the clusters) and by al-
lowing to adapt the metric used to compare an observation to a
prototype by means of a covariance matrix. To do so, Gaussian
mixture model resorts to a generative modeling of the data. When
using a Gaussian mixture model, the data are assumed to be gener-
ated according to a mixture of K independant normal (Gaussian)
processes N (µk,Σk) as in

x ∼
K∏
k=1

N (µk,Σk)1{t=k} (11)

where t is a Categorical variable governed by t ∼ Cat(π). As
such, the parameters of the model are {µk,Σk, k = 1 . . .K}∪{π}.
The graphical model is given by p(x, t) = p(x|t)p(t) and the pa-
rameters are learned by maximum likelihood with the expectation-
maximization technique, where for each input x, the missing vari-
able (unobserved) t is inferred using expectation with respect to
the posterior distribution as Ep(t|x)(p(x|t)p(t)). Once this latent
variable estimation has been done, the parameters are optimized
with their maximum likelihood estimator. This two step process is
then repeated until convergence which is guaranteed [43].

Learning the wavelets with gradient descent The clustering
quality is measured in term of negative log-likelihood T with re-
spect to the Gaussian mixture model formulation (here calculated
with the expectation-minimization method). The negative log-
likelihood is used to learn and adapt the Gaussian mixture model
parameters (via their maximum likelihood estimates) in order to fit
the model to the data. We aim at adapting our learnable scatter-
ing filter-banks in accordance to the clustering task to increase the
clustering quality. The negative log-likelihood will thus be used to
adapt the filter-bank parameters.

This formulation alone contains a trivial optimum at which the
filter-banks disregard any non stationary event leading to a trivial
single cluster and the absence of representation of any other event.
This would be the simplest clustering task and would minimize
the negative log-likelihood. As such it is necessary to force the
filter-banks to not just learn a representation more suited for Gaus-
sian mixture model clustering but also not to disregard information
from the input signal. This can be done naturally by enforcing the
representation of each scattering to contain enough information to
reconstruct the layer input signal. Thus, the parameters of the fil-
ters are learned to jointly minimize the negative log-likelihood and
a loss of reconstruction.

Reconstruction loss The reconstruction x̂(t) of any input signal
x(t) can be formally written in the single-layer case as

x̂(t) =

JQ∑
i=1

1

C(λi)

∑
t′

ψi(t− t′) |(x ∗ ψi) (t′)| , (12)
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where C(λi) is a renormalization constant at scale λi, and ∗
stands for convolution. While some analytical constant can be
derived from the analytical form of the wavelet filter, we in-
stead propose a learnable coefficient obtained by incorporating
a batch-normalization operator. The model thus considers x̂ =
(BatchNorm◦Deconv◦ | · | ◦BatchNorm◦Conv)(x). From this,
the reconstruction loss is simply given by the expression

L(x) = ‖x− x̂‖22. (13)

We use this reconstruction loss for each of the scattering layers.

Stochastic gradient descent With all the losses defined above
we are able to leverage some flavor of gradient descent [39] in or-
der to learn the filter parameters. Resorting to gradient descent is
here required as analytical optimum is not available for the wavelet
parameters as we do not face a convex optimization problem. Dur-
ing training, we thus iterate over our dataset by means of mini-
batches (a small collection of examples seen simultaneously) and
compute the gradients of the loss function with respect to each of
the wavelet parameters as

G(θ) =
1

|B|
∑
n∈B

(
∂T
∂θ

(xn) +
∑̀
i=1

∂L(i)

∂θ

(
x(i)
n

))
, (14)

with B being the collection of indices in the current batch and θ
being one of the wavelet parameters (the same is performed for all
parameters of all wavelet layers). The ` superscript on the recon-
struction loss represent the reconstruction loss for layer `. Then,
the parameter is updated following

θt+1 = θt − αG(θ) (15)

with α the learning rate. Doing so in parallel for all the wavelet
parameters concludes the gradient descent update of the current
batch at time t. This is repeated multiple time over different mini-
batches until convergence.

Data availability
The facilities of IRIS Data Services, and specifically the IRIS Data
Management Center, were used for access to waveforms and re-
lated metadata used in this study. IRIS Data Services are funded
through the Seismological Facilities for the Advancement of Geo-
science and EarthScope (SAGE) Project funded by the NSF under
Cooperative Agreement EAR-1261681.

Code availability
The codes used in the present study are freely available online at
https://github.com/leonard-seydoux/scatnet.
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