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Abstract. In this paper we describe a waves-in-ice model
(WIM), which calculates ice breakage and the wave radi-
ation stress (WRS). This WIM is then coupled to the new
sea-ice model neXtSIM, which is based on the elasto-brittle
(EB) rheology. We highlight some numerical issues involved
in the coupling and investigate the impact of the WRS, and
of modifying the EB rheology to lower the stiffness of the
ice in the area where the ice has broken up (the marginal ice
zone or MIZ). In experiments in the absence of wind, we
find that wind waves can produce noticeable movement of
the ice edge in loose ice (concentration around 70 %) – up to
36 km, depending on the material parameters of the ice that
are used and the dynamical model used for the broken ice.
The ice edge position is unaffected by the WRS if the ini-
tial concentration is higher (& 0.9). Swell waves (monochro-
matic waves with low frequency) do not affect the ice edge
location (even for loose ice), as they are attenuated much less
than the higher-frequency components of a wind wave spec-
trum, and so consequently produce a much lower WRS (by
about an order of magnitude at least).

In the presence of wind, we find that the wind stress dom-
inates the WRS, which, while large near the ice edge, decays
exponentially away from it. This is in contrast to the wind
stress, which is applied over a much larger ice area. In this
case (when wind is present) the dynamical model for the MIZ
has more impact than the WRS, although that effect too is
relatively modest. When the stiffness in the MIZ is lowered
due to ice breakage, we find that on-ice winds produce more
compression in the MIZ than in the pack, while off-ice winds
can cause the MIZ to be separated from the pack ice.

1 Introduction

Wave–ice interactions have received a great deal of attention
in recent years (e.g. Dumont et al., 2011; Kohout et al., 2014;
Ardhuin et al., 2016, 2017), with progress in both modelling
and measuring (particularly via synthetic aperture radar im-
agery or SAR) waves in ice. To a large extent, this is due to
climate change, with a series of record lows in both mini-
mum and maximum Arctic sea-ice extents in the last decade
(e.g. Meier, 2017).

Specifically, large parts of the Arctic are becoming, and
are expected to become, even more accessible for resource
exploitation and shipping in the summer, whereas 10 years
ago they were not (e.g. Stephenson et al., 2011). Associated
with this low sea-ice extent is an increased open-water fetch
available for wave generation, which means there are poten-
tially more large-wave events in the Arctic in summer (e.g. in
the Beaufort Sea in summer 2012; Thomson and Rogers,
2014). As well as being dangerous for shipping in them-
selves, large waves also increase the amount of ice breakage
in the marginal ice zone (MIZ), creating an extra hazard as
small floes could potentially be thrown onto a ship deck, for
example.

Closely connected to waves in ice, but with other con-
trolling factors apart from waves, is the concept of floe-size
distribution (FSD; e.g. Toyota et al., 2011; Herman, 2010).
This can influence both the dynamics and thermodynamics
of the ice, ocean and atmosphere in the MIZ. For example,
it affects sea-ice rheology (Herman, 2012; Feltham, 2005)
and can increase wind/ocean drag and consequently increase
the stresses applied to the ice. It can also enhance lateral
melting in summer (Horvat et al., 2016; Steele, 1992). Hor-
vat et al. (2016) showed that increased horizontal salinity
gradients at the floe edges produced eddies which allowed
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warm water to travel under the ice floes and enhance the
melting from the edges. This was true even for large floes
(∼ 1 km), when the lateral-to-horizontal surface-area ratio is
quite small. Previously, this ratio was used to compute results
which indicated lateral melting was unimportant for floes
larger than ∼ 100 m; Steele, 1992. Models for full numeri-
cal FSDs (Zhang et al., 2016), where a histogram of floe-
size bins can evolve in time as well as joint ice thickness
and floe-size distributions, have been proposed (Horvat and
Tziperman, 2015). In the latter model, each thickness cat-
egory can have its own FSD. More parametric approaches
have also been used (Dumont et al., 2011; Williams et al.,
2013a; Bennetts et al., 2017).

On the sea-ice modelling side, there has been a lot of
progress in making sea-ice dynamics more realistic, espe-
cially in the Arctic pack. Rampal et al. (2016) presented a
validation of the neXt-generation Sea Ice Model (neXtSIM),
looking at sea-ice area and extent, sea-ice drift and the spa-
tial scaling of sea-ice deformation derived from SAR (see
also Bouillon and Rampal, 2015b). The dynamical core of
neXtSIM is the EB sea-ice rheology, which is a thin elastic
plate model with stresses constrained by a Mohr–Coulomb
failure envelope. If stresses become too large and leave this
envelope in a grid cell, the ice stiffness inside that cell is re-
duced (in practice a parameter called “damage” is increased)
in order to bring the stresses back onto the failure envelope
(see Rampal et al., 2016, for more details). When one cell is
highly damaged, the likelihood of the surrounding cells also
becoming damaged is increased, leading to the rapid (i.e. af-
ter a few sea-ice-model time steps) emergence of very lo-
calised lines of damaged cells where sea ice can deform al-
most freely. These lines of concentrated damage can accom-
modate large deformation (i.e. opening, ridging and shear-
ing) in a way that is similar to the so-called linear kinematic
features that are observed from satellites (Kwok, 2001).

In this paper we demonstrate the coupling of a waves-in-
ice model (WIM) to neXtSIM in an idealised domain. The
physical effects included in the coupling are the break-up of
ice by waves, the wave radiation stress (WRS) and an ad-
ditional (optional) feedback to the sea-ice model where the
ice stiffness is reduced where the ice is broken (in the MIZ).
We conduct experiments with waves by themselves to see
the impact of the WRS on the ice edge location and also with
wind to see the relative importance of the wind stress and the
WRS. In addition, we carry out some simulations to see the
particular effects of the rheological change.

We also highlight some general numerical issues involved
with coupling wave models and sea-ice models on different
grids. In addition, we carry out some theoretical reformula-
tions of the WIM to put the ice break-up model in the con-
text of Mohr–Coulomb failure and test the sensitivity of the
MIZ width to the Young’s modulus in particular, as well as
the small-scale “cohesion” parameter in the WIM-breaking
model. Its response to the Young’s modulus was previously
uninvestigated.

2 Sea-ice model

2.1 Evolution equations

The ice is modelled as a thin elastic plate (e.g. Fung, 1965,
Sect. 16.8) with a constitutive relation:

σ = C(Y∗,ν)ε, (1)

or in fullσ11
σ22
σ12

= Y∗

1− ν2

1 ν 0
ν 1 0
0 0 (1− ν)/2

 ε11
ε22

2ε12

 , (2)

where σij and εij (i,j = 1,2) are respectively the stress and
strain tensors, ν is Poisson’s ratio and Y∗ is the effective
Young’s modulus (depending on the concentration c and the
damage d), given by

Y∗(c,d)= Y0(1− d)e−C(1−c), (3)

where C is the compactness parameter, and Y0 is the Young’s
modulus of fully compacted, undamaged ice.

The momentum balance equation we will use is the fol-
lowing:

ρih
Du
Dt
= ∇ · (σh)−∇P + τ a+ τ o+ τw,i. (4)

Here ρi, h and u are the density, actual thickness, velocity
and internal stress tensor of the ice, ∇ = (∂x,∂y)T is the hor-
izontal gradient, and τ o and τ a are the applied stresses by
the ocean and the atmosphere. These latter stresses come
from quadratic drag laws. Note that we neglect the Corio-
lis force and the gravitational force due to the slope of the
ocean surface because of our idealised domain. Also appear-
ing in Eq. (4) are the WRS, τw,i and the term involving P ,
which is a strictly positive pressure that provides resistance
to compaction and ridging (i.e. it is only activated when the
divergence ∇ ·u< 0):

P =max

{
0,−

P∗h
2e−C(1−c)∇ ·u
|∇ ·u| + ε̇min

}
, (5)

where P∗ is the pressure parameter, and ε̇min =

(0.01/86400) s−1 is the minimum divergence rate. If
the ice becomes very damaged and loses its stiffness, this
term prevents the ice from piling up and becoming too thick.
As a default, we use the standard value of P∗ = 12 kPa,
as suggested by Thorndike et al. (1975), but we will test
the sensitivity of our results to C (see Sect. 5.3). C = 20
is commonly used in the standard sea-ice models using a
Viscous Plastic (VP) rheology, so the pressure drops by a
factor of about 55 when the open-water fraction increases
from 0 to 20 %. So, for example, increasing C to 40 means
the open-water fraction only needs to be 10 % for the
pressure to reduce by 55.
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We also have equations for the evolution of any conserved
quantity φ:

Dφ
Dt
= −φ(∇ ·u)+ Sφ . (6)

φ could be concentration (c, also requiring c ≤ 1), volume
(ch) or variables relating to the damage (retrieved from (1−
d)−1). The terms Sφ are thermodynamic source/sink terms
which are switched off for this paper, since the simulations
are in an idealised setting and run for short durations. In an
Eulerian frame of reference,

Dφ
Dt
=
∂φ

∂t
+u · ∇φ, (7)

but since we work in a Lagrangian frame the relationship is
simply Dφ/Dt = dφ/dt . The −φ(∇ ·u) term represents the
conserved quantity decreasing if the divergence is positive
e.g. if a triangle in the finite element mesh increased in area
then φ should drop in that triangle.

Like Williams et al. (2013a), we will parameterise the
floe-size distribution in terms of the maximum floe size,
Dmax (see Sect. 3.3), which we wish to advect like a tracer:
D(Dmax)/Dt = 0. In the Lagrangian framework, advection is
usually exact, unless a local remeshing is required. This hap-
pens if the triangles of the mesh become too deformed and
requires (local) interpolation of the advected variable. De-
tails on the remeshing procedure in the neXtSIM model can
be found in Rampal et al. (2016). Additional (global) inter-
polation is required to obtain Dmax on the fixed grid of the
WIM (see Sect. 4). We found that transporting and interpo-
lating Dmax itself led to some errors, which were reduced by
transporting an auxiliary variable Nfloes = c/D

2
max according

to

D
Dt

(
log(Nfloes)

)
=

D
Dt

(
log(c)

)
, (8)

or to progress from the neXtSIM time step n to n+ 1. Nfloes

should change according to N (n+1)
floes = c

(n+1)N
(n)
floes/c

(n) and
be interpolated when either regridding or communication
with the WIM is required.

The evolution of stress and damage from time step n to
n+ 1 is done via an intermediate stress calculation:

σ ′ = σ (n)+C(c,d)ε̇1t, (9a)

σ (n+1)
=9σ ′, (9b)

d(n+1)
= 1−9(1− d(n))+8d1t, (9c)

where 8d is a thermodynamic source term (again not used
here), while 9 (0<9 ≤ 1) is a factor determined from the
position of the stress vector relative to the Mohr–Coulomb
failure envelope, described in Sect. 2.3. There is no continu-
ous version of Eq. (9), since fracturing is an extremely rapid
process, well below our typical time step 1t .

2.2 Uncoupled neXtSIM simulation

Since the damage variable d is probably unfamiliar to most
readers, here we include an example simulation illustrating
its main role in the EB rheology. Figure 1 shows four fields
after a 2-day simulation. The wind stress plotted is calculated
from the quadratic drag law

τ a = ρaCd,a|ua−u|(ua−u), (10)

where ρa = 1.3 kg m−3 and ua are the density and 10 m-
velocity of the air, while Cd,a = 7.6× 10−3 is the drag coef-
ficient of the wind on the ice. The gradient in the wind stress
comes from the differences in relative velocity. We have plot-
ted this stress as a reference for when we discuss the WRS.

Initially, the concentration was relatively low, so the inter-
nal stress was also low (see the formulae for Y∗ and P in
Eqs. 3, 5), meaning the ice was almost in free drift, being
compressed against the right-hand boundary. As the concen-
tration increased, the internal stress increased, causing it to
fail (increase d) in localised regions. Comparing the dam-
age with the concentration and thickness, it can be seen that
the regions of high compression and thickening correspond
to the regions where the damage is highest. This is the usual
role (without waves) of the damage – to produce localised de-
formation and features such as thicker regions (under shear-
ing or convergent conditions, such as in the current simula-
tion) and leads (under shearing or divergent conditions). We
note here that the initial combination of c = 0.7 (loose ice)
with no damage is not inconsistent since the damage only in-
creases if the concentration is high, although the reasons for
it usually being initialised to zero are (i) for simplicity and
(ii) since it is not an observable variable. It then evolves with
the other variables in response to the applied forcings.

2.3 Mohr–Coulomb failure

Let σ1 and σ2 be the principal stresses, with compressions
corresponding to positive stresses. Then a stress state is
within the Mohr–Coulomb failure envelope if the conditions

σ2 ≤ σc+ qσ1, σ1 ≤ σc+ qσ2, (11a)

σN,min ≤ σN ≡
1
2
(σ1+ σ2)≤ σN,max, (11b)

are satisfied (Schulson et al., 2006; Dansereau et al., 2016;
Rampal et al., 2016), where

σc =
2τ0√

µ2+ 1−µ
, q =

(√
µ2+ 1+µ

)2
,

σN,min =−
5σc

6(q − 1)
, σN,max =

75
4
τ0,

and τ0 is the cohesion, and µ is the internal friction coeffi-
cient. See Fig. 2a for some example envelopes (τ0 = 629 and
989 kPa). The lines σ2 = σc+ qσ1 and σ1 = σc+ qσ2 in the
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Figure 1. Results after forcing from uniform, steady wind (with speed 14.9 m s−1, from the left) have been applied for 48 h. Initially, constant
ice conditions were applied (c = 0.7, h= 1 m, d = 0) to the right of the ice edge, which corresponded to approximately x = 124 km. The
upper, lower and right-hand boundaries are closed. Fields plotted are (a) concentration, (b) effective thickness, (c) the damage (with blue
being more damaged and red less) and (d) the x component of the wind stress τ a. There are no wave interactions considered, C = 40 and
τL

0 = 4 kPa.

space of principal stresses (Schulson et al., 2006; Dansereau
et al., 2016) correspond to the lines |τ | −µσN = τ0, so the
material fails when the applied shear force |τ | reaches the
sum of the frictional force inside the material (µσN) and the
cohesion of the material (τ0). Now

|τ | =
1
2
(σ1− σ2)(sin(2ϑ)+µcos(2ϑ))

≤
1
2
(σ1− σ2)

√
µ2+ 1 (12)

(Schulson et al., 2006), where ϑ is the angle between the
maximum principal stress (taken as the most compressive
stress), σ1 and the failure plane. This reaches its maximum
value when tan(2ϑ)= 1/µ, so if µ= 0.7, the failure plane
is oriented at about 27.5◦ from the direction of σ1. Equa-
tion (12) also lets us derive the expressions for q and σc.

The conditions (11b) are less certain since there are fewer
measurements in pure tension or compression. In particular,
extending the Coulomb branches into the third quadrant in
principal stress space (see Fig. 2 of Dansereau et al., 2016,
who instead apply tensile failure criteria σ1,σ2 ≥−σc/q)
could be seen as theoretically suspect (since there should be
no friction under tension), but the observations of Weiss et al.
(2007; see Fig. 2) seem to support this approach. In practice,
using σN ≥ σN,min or σ1,σ2 ≥−σc/q was found to make lit-
tle difference to large-scale simulations. Similarly, σN,max is
set large enough that it is not reached in simulations, which is

reasonable since few examples of large biaxial compressive
stresses have been observed (Weiss et al., 2007). Note that
Dansereau et al. (2016) chose not to close the failure enve-
lope at all for this same reason.

Returning to Eq. (9), if σ ′ is outside the envelope it is
scaled back onto the nearest branch of the envelope by set-
ting σ (n+1)

=9σ ′, where9 < 1. This ensures that the stress
always remains within the envelope, but the damage d is in-
creased if this happens. Otherwise, if σ ′ is inside the enve-
lope, 9 = 1 and the damage is unchanged.

2.4 Scaling of the Mohr–Coulomb envelope

Mohr–Coulomb envelopes have been observed on many dif-
ferent scales in rock mechanics and have also been seen in
ice. The parameter µ controls the orientation of fractures that
form, while the cohesion sets the sizes of the stresses which
cause any fractures and so is more influential.

This property should scale as τ0 ∝ L
−1/2
c , where Lc is the

size of the defects or “stress concentrators” (Weiss, 2013,
Sect. 4.2). Put in another way,

τ0,0

τ0,1
=

√
Lc,1

Lc,0
, (13)

where the additional indices 0 or 1 correspond to different
scales on which fracture is occurring. Table 1 shows the
Mohr–Coulomb parameters and the estimated defect sizes,
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which have been fitted to various time series of stress mea-
surements.

Note that these values do not necessarily correspond to the
breaking stress of ice since the measurements are not exactly
taken at the point of fracture. The lab measurement (uni-axial
compression test) should be closer since we know the ice
did actually break and the scale of the measurement; the in
situ measurements are certainly underestimations since the
ice did not break, and in fact the value of 1 kPa was derived
from a 3-day subset of the time series, which was bounded
by the envelope with cohesion 40 kPa. That is, the lower in
situ value corresponds to more remote fracturing or fractur-
ing over a larger scale.

In their presentation of the dynamical core of the neXtSIM
model (using a resolution of approximately 10 km), Bouillon
and Rampal (2015a) found that the model was quite sensi-
tive to the cohesion value when it varied between 0.5 and
8 kPa. However, the results for τL

0 = 8 kPa (the superscript
“L” here indicates it is the large-scale cohesion as opposed
to the small-scale one discussed below) and τL

0 = 4 kPa were
similar. In the follow-up paper of the aforementioned one,
Rampal et al. (2016) used τL

0 = 8 kPa or Lc ≈ 25 m. This
resulted in a good agreement with the deformation-scaling
statistics.

For the simulations in this paper we will use a model res-
olution of 4 km, so we will test a range of cohesions from 4
to 13 kPa to be somewhat consistent with the above choice.
Also, we will discuss the ice breakage by waves (below in
Sect. 3.4.1) in terms of Mohr–Coulomb failure and define an
additional small-scale cohesion τS

0 and defect scale Lc for
the breaking criterion that we settled on in Sect. 3.4.2.

3 Waves-in-ice model

3.1 Attenuation

The amount of attenuation that waves in ice experience is
the main factor in determining the amount of momentum
transferred to the ice. However, a definitive confirmation of
any particular physical model for this is still lacking. Mey-
lan et al. (2014) came up with an empirical formula fitted to
Antarctic attenuation from the experiments reported by Ko-
hout et al. (2014). Ardhuin et al. (2016) compared the creep
model of Wadhams (1973) (see also Tolman et al., 2016,
Sect. 2.4) with drifting buoy data from within the ice and
had some success in the timing of the peaks in wave heights.
Other theoretical models that have been used are a viscoelas-
tic attenuation model (Wang and Shen, 2010) and “localisa-
tion” predicted by 1-D multiple scattering models (Kohout
and Meylan, 2008; Bennetts and Squire, 2012). In the wave-
scattering context, localisation refers to how these models
predict the exponential decay of waves as they travel into
the ice. In other words, the wave energy is localised in the
vicinity of the ice edge.

Doble and Bidlot (2013) used the model of Kohout and
Meylan (2008) in Antarctic simulations using WAM, while
Williams et al. (2013a) used a theoretical result from Ben-
netts and Squire (2012) to investigate break-up by waves.
Tolman et al. (2016, Sect. 2.4) give a full summary of waves-
in-ice parameterisations implemented in WaveWatch III.

Our attenuation model is essentially model B from
Williams et al. (2013a), slightly modified to allow Young’s
modulus to be varied. It has a scattering component deter-
mined from the expected number of floes per unit length
and a dissipative component coming from the drag model of
Robinson and Palmer (1990):

αscat =
αc

〈D〉
, αdis = 2cβ. (14)

Here, α is the scattering per floe, while β is the imaginary
part of the wave number satisfying the dispersion relation of
Robinson and Palmer (1990), calculated using the method of
Williams et al. (2013a, Appendix A) with drag coefficient
0 = 13Pa s m−1.

As stated above, the choice of attenuation model is crucial
in determining the wave radiation stress, yet physical mech-
anisms are still relatively uncertain. However, we can still
calculate the response of the ice to waves attenuated by our
model and make conclusions which should still hold for sim-
ilar ranges of the WRS.

3.2 Energy transport

A general formulation for wave energy transport is

∂E

∂t
+Cg · ∇E = Sin+ Snl+ Sice, (15a)

1
cg
Sice(x, t;ω,θ)= (Lscat−αdis)E(x, t;ω,θ), (15b)

LscatE =−αscatE+

2π∫
0

K(θ − θ ′)E(x, t;ω,θ ′)dθ ′, (15c)

where Cg = cg(cosθ,sinθ)T is the group velocity vector,
cg = dω/dk, ω is the radial frequency, k is the wave number,
and E is the spectral density function (SDF) of the variance
of the wave elevation η:〈
η2〉
=m0,

mn =

∞∫
0

2π∫
0

E(x, t;ω,θ)ωn dθ dω (n= 0,1,2, . . .). (16)

The SDF of the time-averaged energy is E′ = ρwgE, where
ρw is the water density and g the acceleration due to grav-
ity. We neglect the terms Sin and Snl, which represent wind
generation and non-linear energy transfer between frequen-
cies and directions. The term Snl moves energy from high
frequencies to lower ones and becomes more significant if
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Table 1. Cohesion values, internal friction coefficient from measured Mohr–Coulomb failure envelopes. Also given are approximate defect
sizes deduced from these envelopes, using the scaling law (13). These defect sizes, or sizes of stress concentrators, are only meant to give
an idea of the relative sizes compared to those corresponding to the second cohesion value which is approximated to be around 1 m which
is of the same order as the ice thickness. The first defect size is of the same order as the grain size – the grains measured in the sample
were columns of diameter 3.9 mm and length 1 cm. For some additional context, we also give the value used in the reference simulation of
Bouillon and Rampal (2015a). This large-scale cohesion is in contrast to our small-scale cohesion (Lc ∼ 1 cm), which we use to determine
whether single ice floes will fracture due to wave flexure.

Measurement type τ0 µ Lc Reference

Lab 1.1 MPa 0.92 1.3 mm Schulson et al. (2006)
In situ 40 kPa 0.7 1 m Weiss et al. (2007)
Reference simulation 4 kPa 0.7 100 m Bouillon and Rampal (2015a)
In situ 1 kPa 0.7 1.6 km Weiss et al. (2007)

E is larger. For example, Kohout et al. (2014) described a
storm event off Antarctica (with approximate latitude 61◦ S
and longitude 125◦ E) where the significant wave height
was measured to decay linearly with distance into the ice,
whereas it decayed exponentially during calmer periods. Li
et al. (2015) attributed this to the effect of Snl, and the fact
that lower frequencies are attenuated less than higher ones.
Thus we need to remember that our results could change (e.g.
waves could induce ice breakage further from the edge) if
our wave forcing becomes very large. In particular, the WRS
may also persist further than predicted with our linear model
– however, it would also have a smaller size since the longer
waves are attenuated less.

The scattering kernel K distributes energy from the inci-
dent wave among the other directions and is discussed fur-
ther in the next section. Various authors (e.g. Perrie and Hu,
1996; Masson and LeBlond, 1989) have used the solution
for a rigid circular floating disc to deduce an expression for
K; Meylan et al. (1997) extended this to make the disc elas-
tic, and this solution was also used by Zhao and Shen (2016).
Ardhuin et al. (2016) used the simpler kernelK = αscat/(2π)
to distribute the incident energy uniformly in all directions.
However, due to the fact that these models conserve energy,
i.e.

2π∫
0

LscatE dθ = 0, or

αscat =

2π∫
0

K(θ − θ ′)dθ for 0≤ θ ′ ≤ 2π, (17)

the operator Lscat has some zero eigenvalues. This is most
easily seen by considering the discretised version of (17) –
i.e. considering only a finite number of directions – which
would state that all the columns of the matrix representing
Lscat add to zero. Thus the rows are linearly dependant and
the matrix will have at least one zero eigenvalue. This usually
means that the solution E of Eq. (15) will usually not decay
exponentially into the ice (in the absence of dissipation). This

decay depends on the eigenvector(s) corresponding to the
zero eigenvalue, of course, but in general they are such that
E does not decay into the ice. As a result, the results of Ard-
huin et al. (2016), which included scattering in this way, were
quite unrepresentative of phase-resolving multiple-scattering
models such as those of Kohout and Meylan (2008) and Ben-
netts and Squire (2012). Consequently, we will use K = 0
and not conserve energy, since we think that it is preferable
to preserve the localisation predicted by the scattering mod-
els.

3.3 Floe-size distribution

We use a parametric form of the FSD. We initially require
that Dmax ≥Dmin and that large floes (> 200 m) have a
uniform floe-size distribution – i.e. p(D|Dmax > 200m)=
δ(D− 200m). This latter assumption is somewhat vestigial
but was related to the fact that wavelengths that break in the
ice are usually less than about 400 m. The rest of our ap-
proximation is similar to the FSD used by Dumont et al.
(2011), which was based on the renormalisation group (RG)
approach to the same problem, used by Toyota et al. (2011).
However, this formula made the mean floe size a discontin-
uous function of the maximum floe size, so we have mod-
ified it to a continuous (as opposed to discrete) FSD – a
power-law-type probability density function p(D) truncated
at D =Dmax, but with the same exponent as before:

p(D|Dmax ≤ 200m)

=


γD

γ

minD
γ
max

D
γ
max−D

γ

min
D−(1+γ ) for Dmin ≤D ≤Dmax,

0 otherwise
(18)

where γ = 2+logf/ logξ , f is the fragility in the RG formu-
lation of Toyota et al. (2011), and ξ2 is the number of pieces
formed during each successive break-up in the same RG for-
mulation. We use Dmin = 20 m, f = 0.9 and ξ = 2, making
γ ≈ 1.84.

Results for the MIZ width (not shown) with the RG ap-
proach are similar to those with the FSD (18), but the mo-
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mentum flux is less smooth, which could cause numerical
problems. We recognise that both parameterisations are com-
pletely arbitrary, and that numerical histograms (e.g. as used
by Horvat and Tziperman, 2015) are preferable in terms of
being able to let the wave spectrum try to produce the FSD
naturally. They also let other factors influence the FSD more
easily. However, the FSD itself is not the focus of this current
paper, and these alternative models are quite costly and not
trivial to implement, so we do not try them out here.

3.4 Ice breakage due to waves

3.4.1 Plane strain and Mohr–Coulomb failure

It is instructive to put the situation of ice breakage due to
a plane wave in the context of the discussion in Sect. 2.3.
We also use a thin elastic plate model, so the constitutive
relation is similar to Eqs. (1–2): σ = C(Y,ν)ε, where Y is
the Young’s modulus for an ice floe. However, for waves
we are interested in the stresses that are induced by a ver-
tical displacement η. The stresses are assumed to be con-
fined to the horizontal plane and vary linearly with the ver-
tical coordinate z= x3 (z= 0 is the middle of the plate and
−

1
2h≤ z ≤

1
2h; Fung (1965, Sect. 16.9). We then have the

following results for stresses and strains:

σ3i = σi3 = σ33 = ε3i = εi3 = 0 for i = 1,2, (19a)

εij=−z∂xi ∂xj η, ε33 =−ν(σ11+ σ22)

=−
ν

1− ν

2∑
k=1

εkk for i,j = 1,2, (19b)

where x1 = x and x2 = y. For a plane wave (travelling in
the x direction with amplitude A) in a thin elastic plate,
η = Acos(kx−ωt), ε11 = k

2zη, ε22 = ε12 = σ12 = 0, and so
the only non-trivial stresses are given by

σ1 = σ11 =
Yε11

1− ν2 , σ2 = σ22 = ν
Yε11

1− ν2 = νσ1, (20)

where σ1 and σ2 are the principal stresses in the horizontal
plane. This meets the upper Mohr–Coulomb branch when

σ2 = νσ1 = σc+ qσ1, (21a)

σ1 = σ
(tens)
1 ≡−

σc

q − ν
=−

(2τS
0 )/(q − ν)√
µ2+ 1−µ

≈−1.13τS
0 (21b)

If µ= 0.7, it does not meet the lower branch, σ1 = σc+qσ2,
if σN ≥ σN,min. Note that here the shape of the tip of the
failure envelope makes a difference, since a pure tensile
failure criterion would increase the lower limit of σ1 to
−σc/q ≈−1.04τS

0 (which would be reached at smaller wave
amplitudes). However, given the uncertainty of the failure en-
velope under pure tension and high compression and to en-
sure that our small- and large-scale envelopes have the same
shape, we use Eq. (11) for wave failure also.

Figure 2. (a) Mohr–Coulomb fracture envelope for different val-
ues of the cohesion. The red line shows the line σ2 = νσ1, where
ν = 0.3 is Poisson’s ratio – this gives the relationship for plane
waves in a thin elastic plate. When the ice has thickness 1 m,
Young’s modulus 5.49 GPa, and the wave period is 12 s, the red
line meets the black one when the wave height is about 60 cm.
The dashed line shows the symmetry of the envelopes in the line
σ2 = σ1. (b) Breaking strain for different values of the cohesion and
Young’s modulus (Y ). The dotted line corresponds to εc = 5×10−5.

Figure 2a plots the failure envelopes for two values of the
cohesion. The figure also shows where the line correspond-
ing to the stress state for plane waves, σ2 = νσ1, meets these
Mohr–Coulomb envelopes (i.e. when σ1 = σ

(tens)
1 ).

3.4.2 Breaking criterion

The maximum strains are produced when z=±h/2 (at the
upper and lower surfaces of the ice), and so for a plane wave

ε ≡max{ε11} =
1
2
k2Ah. (22)

Williams et al. (2013a) imposed a strain criterion for
breaking, supposing that ice would break if ε ≥ εest

c =

σ est
f /Y , where σ est

f is the flexural strength estimated from
measurements. Timco and Weeks (2010) compiled many
measurements for the flexural strength, fitting the formula

10−6σ est
f = 1.76e−5.88

√
vb , (23)

where vb is the brine volume fraction. It should be noted,
however, that Karulina et al. (2013) found a different rela-
tionship for Barents Sea sea ice. When considering flexu-
ral strength measurements, however, it is useful to remem-
ber how they are obtained. In a cantilever situation, an ice
beam is subjected to a force Fc at one end until it breaks at
the other. The force is then converted to a stress in order to
remove the effects of the beam dimensions according to the
formula

σ est
f =

6FcL

h2b
(24)
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(Frederking and Svec, 1985), where L and b are the length
and breadth of the beam respectively. Similar formulae exist
for three-and four-point-bending tests. This conversion as-
sumes that the beam can be modelled as an Euler–Bernoulli
beam (e.g. infinitesimally thin and wide). With this model,
the only non-zero stress is σ11 = Yε11 which would produce
Mohr–Coulomb/tensile failure when σ11 =−σc/q. Hence
the flexural strength can be used to estimate the small-scale
cohesion by

σ est
f =

2τS,est
0 /q√

µ2+ 1−µ
≈ 1.04τS,est

0 . (25)

The lab measurement of cohesion (τS
0 = 1.1 MPa, Schul-

son, 2009, also see Table 1) used a sample with vb = 0.05,
so σ est

f ≈ 473 kPa and τ
S,est
0 ≈ 454kPa – that is, the esti-

mated failure stress and cohesion are too small, by a fac-
tor of approximately 2.42. A similar factor was obtained by
Marchenko et al. (2014), who used a full finite element 3-D
solver (COMSOL) to estimate the stress at the fixed end of a
cantilever at the time of breaking and found it to be approxi-
mately 2.6σ est

f . Now, the results of these simulations depend
on the boundary conditions used (e.g. the properties of the
spring foundation used; free surface conditions when the ice
was partially submerged), and some predictions were not ob-
served (e.g. they predicted the force measured in the tests
should increase when the radius of the holes drilled near the
beam root increased: Marchenko et al., 2017). However, it
gives further indication that σ est

f could definitely be a sig-
nificant underestimation of the actual breaking stress. If we
wanted to be consistent with the lab-scale measurement of
the cohesion over a range of brine volume fractions, we could
propose the relationship τS

0 ≈ 2.42τS,est
0 ≈ 2.33σ est

f . In prac-
tice though, the sensitivity studies are conducted by varying
the small-scale cohesion directly and seeing the range of MIZ
widths obtained. However, more observations with regard to
ice breakage by waves are needed to set a definitive break-
ing criterion. Some laboratory experiments to this effect are
planned to occur in 2018 in the wave/ice tank in Aalto, Fin-
land, as part of the Hydralab+ programme, but field observa-
tions would also be very useful.

When we return to our plane wave in an elastic plate, the
Mohr–Coulomb criterion is equivalent to the strain criterion

ε ≥ εc =
1
Y
(1− ν2)

∣∣∣σ (tens)
1

∣∣∣≈ 1.03
τS

0
Y
, (26)

instead of using εest
c . Due to cancellation of unrelated but

similar factors this is approximately the same as the break-
ing strain of Williams et al. (2013a) (σ est

f /Y ). This (εc) is
plotted in Fig. 2b as a function of Y . The breaking strain
for sea ice (from beam tests) is typically thought to be about
3− 10× 10−5 (e.g. Langhorne et al., 1998), but this number
contains a lot of assumptions, e.g. about the value of Young’s
modulus and the stress at the time of breaking (see the dis-
cussion below about the flexural strength). In fact, we are

not aware of any strain measurements for ice which actually
broke. Langhorne et al. (2001) measured strains up to about
3.6×10−6 in landfast ice, which was experiencing incoming
waves but which did not break. Figure 2b shows the breaking
strains are in about the right order (5× 10−5 is plotted as a
dotted line for reference), although higher values of the co-
hesion combined with lower values of Young’s modulus can
take them up to 10−3.

When we have a spectrum of waves, the corresponding
quantity to (22) is related to the maximum mean square strain
by

ε2

2
≡
〈
max{ε11}

2〉
=mε,

mε ≡
h2

4

∞∫
0

2π∫
0

E(x, t;ω,θ)k4 dθ dω. (27)

If all the wave energy is travelling in one direction (which
direction is not relevant, since we also do not attempt to con-
sider an anisotropic wave medium), Eq. (26) is still equiv-
alent to the Mohr–Coulomb criterion since we still have
σ2 = νσ1. However, we now have a statistical (approximately
normal) distribution of strains max{ε11} instead of a fixed
strain amplitude. Thus Eq. (26) corresponds to a condition
on the probability of max{ε11} exceeding εc

P(max{ε11}> εc)≥ Pc, (28)

where Pc is some critical probability. An alternative to
Eq. (26) could be to choose Pc another way (e.g. defining
it as the ratio of a breaking timescale to the mean wave pe-
riod), or else P(max{ε11}> εc) could be used directly in a
similar formulation to Horvat and Tziperman (2015). How-
ever, for now we use Eq. (26) so that the criterion agrees with
the criterion for a plane wave (e.g. a swell wave).

When the wave energy is not unidirectional, the stresses
are no longer distributed on the line σ2 = νσ1, so the prob-
ability condition (28) is no longer equivalent to the Mohr–
Coulomb criterion. A simple numerical experiment gener-
ating random waves in an ice sheet and creating an arti-
ficial time series (not shown) found that P(max{ε11}> εc)

was significantly lower than the probability of the stresses
leaving the failure envelope (about 45 % compared to about
65 % in one example). However, for now we will leave this
as a caveat and attempt a fuller investigation of the Mohr–
Coulomb failure in a random sea at a later date.

3.4.3 Ice break-up

When (26) is satisfied, we calculate the mean zero crossing
frequency from

〈ω2
02〉 =

m2

m0
(29)

and convert this to a wavelength λ02 using the dispersion
relation for a thin elastic plate (Williams et al., 2013a, Ap-
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pendix A). Then Dmax is reduced to λ02/2, requiring that it
stays above Dmin = 20 m, and that it is actually reduced –
i.e. it cannot increase, since we do not consider thermody-
namic effects in this paper.

3.5 Momentum loss due to attenuation

Following Phillips (1977, Chap. 3), we first connect the mean
energy per unit area (integrated over the entire water column)
for a single plane wave to the mean momentum per unit area.
The mean kinetic energy density is

EK = ρw

〈 η∫
zbot

(
u2

w+ v
2
w
)
dz

〉
≈ ρw

0∫
zbot

〈
u2

w+ v
2
w

〉
dz

= ρwω
2A

2

4k
cosh(kZ)= ρwg

A2

4
, (30)

where uw and vw are the horizontal and vertical wave orbital
velocities, andZ is the water depth. In a conservative system,
the mean potential energy and the mean kinetic energy are
equal, so the mean energy density is simply

Etot = 2EK = ρwg
A2

2
= ρwg

〈
η2
〉
. (31)

The mean momentum per unit area is

M =

〈 η∫
−Z

(
uw,vw

)
dz

〉
=−ρw

〈
8z=η∇η

〉
≈−ρw 〈8z=0∇η〉

= ρwg
kA2

2ω

(
cosθ,sinθ

)
=
Etot

cp

(
cosθ,sinθ

)
, (32)

where cp = ω/k is the phase velocity.
When we consider a complete wave spectrum, then

M = ρwg

∞∫
0

2π∫
0

1
cp
E(x;ω,θ)

(
cosθ,sinθ

)
dθdω, (33)

and its flux is

D
Dt
M = ρwg

∞∫
0

2π∫
0

1
cp
×

D
Dt
E(x;ω,θ)

(
cosθ,sinθ

)
dθdω

= ρwg

∞∫
0

2π∫
0

1
cp
Sice(x;ω,θ)

(
cosθ,sinθ

)
dθdω. (34)

This quantity can then be transferred to the ice, ocean and
atmosphere, according to the different attenuation mecha-
nisms, i.e.

−
D
Dt
M = τw,i+ τw,o+ τw,a. (35)

For this study we assume that all the momentum goes to the
ice – i.e. τw,o = τw,a = 0.

Figure 3. Schematic showing the information that passed between
neXtSIM and the WIM. Note that Nfloes is modified by both the
WIM and neXtSIM (which use different grids), so must be treated
carefully to avoid numerical diffusion. Also input to the WIM are
incident wave fields, and it also outputs diagnostic fields of the
waves in the ice. The WIM may also update the damage d .

4 Coupling to the WIM

Figure 3 shows a schematic diagram of the information that
passed between the WIM and neXtSIM, as well as external
inputs and outputs to and from the WIM. Each time the WIM
is called, it takes in the following fields from neXtSIM: c,
h and Nfloes. Between calls, these will have changed due to
dynamic (advection) and thermodynamic processes (melting,
freezing). These are interpolated from the neXtSIM mesh to
the WIM grid, and Dmax is retrieved from Nfloes. After the
call to the WIM, Nfloes is passed back onto the centre of the
mesh, and the stresses τw,i are interpolated from the grid cen-
tres onto the nodes of the mesh and used in the solution of the
momentum equation. These stresses are kept constant until
the next call to the WIM – since the mesh is moving, this
requires reinterpolation at each neXtSIM time step.

In an initial, more naive implementation of the coupling,
Nfloes was computed only on the WIM grid, then interpo-
lated back onto the mesh. However, passing this field to and
fro between the mesh leads to a large amount of numerical
diffusion. To solve this problem, the WIM model takes in the
neXtSIM mesh, and at each WIM time step the smoother in-
tegrals m0, m2 and mε are interpolated from the grid to the
mesh. This allows the breaking calculation to take place on
the mesh in parallel to the one on the grid – thus Nfloes does
not need to be interpolated back to the mesh. This also re-
duced the diffusion in Nfloes significantly (see Figs. 7–8 be-
low).

The directional wave spectrum is remembered from the
previous call, and if necessary can be updated regularly us-
ing forcing from an external model or, as in the simulations
presented in this paper, using idealised (constant) wave forc-
ing.

We can also change the dynamics of the broken ice. The
default, R0 or rheology 0, does not change the underlying EB
rheology. For the alternative, R1 or rheology 1, we increase
the damage parameter d to an arbitrary high value dbroken
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when the ice is broken by waves. This reduces the internal
stress, apart from a pressure term which resists compression,
causing the ice velocity to be closer to the free drift velocity.

Alternative continuum approaches to MIZ dynamics are
based on the idea of a “granular temperature” (kinetic energy
associated with velocity fluctuations relative to the mean flow
field). Most recently, Feltham (2005) used a binary collision
model to formulate an equation for the granular temperature.
Previously, Shen et al. (1986, 1987) had used a similar but
simpler approach, where the granular temperature was ap-
proximated to be in steady state. This enabled the granular
temperature to be found analytically and the constitutive re-
lation to be directly modified without solving any other equa-
tions apart from the momentum equations. Shen et al. (1987)
compared the granular temperature to field data from the
MIZEX campaign of 1983 (Hibler and Leppäranta, 1984),
and found it to be correlated, but found that it was an order
of magnitude too small. The internal ice stresses were also
very low. Feltham (2005) was able to produce some qualita-
tive features such as ice jets in a one-dimensional simulation,
but no further comparisons were done. This model is now be-
ing introduced into CICE-E (Community ICE CodE, version
E; Rynders et al., 2016).

However, in the field of 3-D granular flows, different types
of flow regimes have also been observed. For example, the
introduction of Guo and Campbell (2016) describes a tran-
sition from an inertial collision regime to an inertial non-
collisional regime where the stresses follow Bagnold’s law
(Bagnold, 1954) as the concentration and shear rate increase.
Then there is a further transition to what they call the elas-
tic regime as the concentration and shear rate increase even
more. This regime is characterised by the formation of force
chains at high concentrations and shear rates, which deform
elastically to support the applied stresses.

There have also been a number of direct (discrete) numer-
ical simulations of collections of floes (e.g. Herman, 2013;
Rabatel et al., 2015). They have also observed phenomena
similar to the force chains mentioned above, where elaborate
force contact networks were observed over the full domain
of simulation. To summarise, the binary collisional models
represent only a small fraction of the types of granular flows
observed, so there is much more work required before a com-
plete “MIZ rheology” is ready that could be substituted for
our simple modification.

5 Results

5.1 Note on wave and wind forcing

In our results section we will partly use incident wind wave
spectra based on the Bretschneider spectrum:

EB(ω;Hs,ωp)=
5H 2

s ω
4
p

16ω5 e−(5ω
4
p)/(4ω

4)
, (36)

where Hs is the significant wave height, ωp = 2π/Tp, and Tp
is the peak period.

SinceHs and Tp are not totally independent, to try to make
them roughly consistent we will also use a special case of
(36), the Pierson–Moskowitz spectrum which was defined as
an approximation for fully developed wind seas:

EPM(ω;ω0)=
aPMg

2

ω5 e−bPM(ω0/ω)
4
, (37)

where aPM = 8.1× 10−3, bPM = 0.74, and ω0 = g/U19.5 ≈

g/(1.026U10). Here U19.5 and U10 are the wind speeds at
19.5 and 10 m above the sea – note that these wind speeds
are linked to the incident wave parameters, and we will also
try to keep them consistent when we are presenting coupled
WIM-neXtSIM results. The Bretschneider parameters corre-
sponding to the Pierson–Moskowitz parameters are as fol-
lows:

ωp = (4bPM/5)1/4ω0 ≈ 0.877ω0, (38a)

Hs =
4g
ω2

p

√
aPM

5
. (38b)

Our incident wind wave spectra will then combine a
Bretschneider frequency spectrum with some directional
spreading:

Einc(ω,θ;Hs,ωp)= EB(ω;Hs,ωp)Dinc(θ),

Dinc(θ)=
2
π

cos2θ ×H(|θ | −π/2), (39)

where H is the Heaviside step function. Note that the mean
wave direction is zero, ie to the right in our model domain,
which can be seen in Fig. 1. We will also look at so-called
swell waves, which are not locally generated, generally quite
long (wave period greater than about 10 s or longer) and are
monochromatic and mono-directional:

Eswell(ω,θ;Hswell,ωswell)=
1
8
H 2

swellδ(ω−ωswell)δ(θ). (40)

5.2 Sensitivity of MIZ width to Young’s modulus and
small-scale cohesion

The purpose of this section is to test sensitivity to the Young’s
modulus and the small-scale cohesion, not necessarily to de-
cide on “correct” values, which are best determined from fu-
ture observations. The experiments are similar to those of
Williams et al. (2013b), although the effect of the Young’s
modulus was not tested in that paper. This is an interesting
parameter since increasing it makes the ice less compliant
and easier to break (i.e. a given wave amplitude produces
a higher stress in the ice) – potentially increasing the MIZ
width – but this also increases the attenuation, which could
potentially reduce the MIZ width. The effect of the small-
scale cohesion will play a similar role to the breaking strain
in that paper.
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Figure 4. Variation of MIZ width (a) and maximum WRS (b)
with peak wave period and Young’s modulus. Dashed curves:
Pierson–Moskowitz spectra are used for the forcing. Solid curves:
Bretschneider spectra are used with the significant wave height be-
ing 4 m. The concentration was 0.7, the thickness was 1 m, and the
small-scale cohesion used was 629 kPa. The WIM is not coupled to
neXtSIM.

The Young’s modulus is typically somewhere in the range
of 1–10 GPa. Williams et al. (2013a) argued for values within
the interval 5–7 GPa (depending on the brine volume frac-
tion), proposing that the effective elastic modulus, which
includes a response to primary, recoverable creep, should
cause it to drop somewhat from the relationship of Timco
and Weeks (2010). However, Marchenko et al. (2013) de-
rived significantly lower values of Young’s modulus (about
1.5 GPa) in Svalbard fjord ice. Marchenko et al. (2017) also
measured lower values in the Barents Sea, ranging between
1 and 4 GPa, with no obvious dependance on the brine vol-
ume. Therefore, we carry out some tests of the sensitivity of
the MIZ width and the maximum WRS to this parameter.

Figure 4 shows the variation of the MIZ width (panel a)
and the maximum WRS (panel b) with peak period for dif-
ferent values of the Young’s modulus. Since increasing the
Young’s modulus increases the attenuation, the waves lose
more momentum and so the maximum radiation stress in-
creases, and this is clearly seen in Fig. 4b. However, Fig. 4a
clearly shows that the MIZ width increases with increas-
ing Young’s modulus, so its effect on the breaking criterion
clearly dominates its effect on the attenuation. The mag-
nitude of the maximum radiation stress is of the order of
0.1–1 Pa, which is comparable to the wind stress from 10
to 15 m s−1 winds (see Fig. 1d). However, while stresses of
this size are significant, they are very much localised around
the ice edge as opposed to being applied over large areas (as
wind stresses are – see Fig. 1d).
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Figure 5. Variation of MIZ width (a) and maximum radiation stress
(b) with peak wave period and Young’s modulus for swells of height
3 m. The concentration was 0.7, the thickness was 1 m, and the
small-scale cohesion used was 629 kPa. The WIM is not coupled
to neXtSIM.

The dashed curves use fully developed seas (Pierson–
Moskowitz spectra), where Hs increases with Tp for wave
forcing. Although waves of higher periods are attenuated
less, the increasing wave height overcomes this effect and
both the MIZ width and maximum radiation stress increases
monotonically with peak period.

The solid curves in Fig. 4 are created using an inci-
dent wave spectrum based on a Bretschneider spectrum with
a constant significant wave height of Hs = 4 m. Like with
the dashed curves (fully developed seas), larger values of
Young’s modulus cause the MIZ width to increase monoton-
ically as peak period increases (in the plotted range of peri-
ods). However, when Y = 1 GPa, as peak period is increased,
the MIZ width is initially 8 km. Then it increases to a maxi-
mum of 12 km as the wave frequencies with the most energy
are attenuated less, before dropping down to 8 km again as
the waves with the most energy, while still being attenuated
less strongly, now produce less strain (see Eqs. 22–27).

This latter result (Y = 1 GPa, constant wave height) is sim-
ilar to results for constant-amplitude swell waves, plotted in
Fig. 5. Very low periods are attenuated too strongly to do
much breaking, so the MIZ width is zero. Above a certain
period the MIZ width increases (with period) to a maximum
then drops back down to zero when the induced strain is no
longer large enough to cause breakage. For this wave height
of 3 m, which is relatively large, but not unrealistic for the
usual range of swell periods (ca. 10–20 s), the maximum ra-
diation stress drops from about 0.1 Pa to about 0.01 Pa, show-
ing the reduced ability of swells to produce wave drift in
comparison to wind seas.
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Figure 6 shows the variation of the MIZ width with the
peak period and the small-scale cohesion. Unlike the Young’s
modulus, this parameter does not change the attenuation di-
rectly, and so the maximum radiation stress is essentially the
same for all values of the cohesion (notwithstanding small
differences, mainly due to the different MIZ widths, since
the attenuation is higher in the MIZ in our model).

The three values chosen are 270 kPa (approximately the
flexural strength when vb = 0.1, 274 kPa), 629 kPa (approxi-
mately 2.33× 274= 638 kPa) and 1.08 MPa (approximately
1.1 MPa, the laboratory value of the cohesion). The results
for the MIZ width are significantly different but all are of
the correct order of magnitude (a few tens of kilometres).
Therefore we will use τ0 = 629 kPa throughout the rest of
the paper. We will also use a Young’s modulus of Y0 = Y∗ =

5.49 GPa (i.e. the same value in neXtSIM and the WIM).

5.3 Coupled waves-in-ice results

Figure 7 shows plots of different fields after a 2-day simula-
tion with neXtSIM coupled to the WIM. There is no wind,
only waves arriving from the left (the initial wave state is
shown in Fig. 7a), breaking the ice and pushing it to the right
by about 24 km by the end of the 48 h simulation. The ini-
tial ice state is the same as in Fig. 1, but with the addition
of unbroken ice (Dmax = 300 m everywhere where c > 0), as
shown in Fig. 7b. This could correspond to summer ice in
the Fram Strait where there can be large floes with large gaps
between them (perhaps due to smaller floes melting faster),
producing a low concentration.

The resulting MIZ width is about 50 km, which is not un-
realistic. Following Eq. (39), there is a cos-squared type of
directional spreading applied (16 directions used) and the
upper and lower grid cells, which contain land, act to com-
pletely absorb the waves. Therefore, in Fig. 7c, the waves are

slightly lower (by about 1 m) near the coast than they are at
the centre. In Fig. 7f, the x component of the WRS is plotted
– note that while it reaches 1 Pa in the vicinity of the ice edge,
it decays exponentially further into the ice. This is reflected
in the concentration field (Fig. 7e), which shows that the ice
is much more compact at the ice edge. Note that the WRS
does not vary significantly in the y direction, showing that
the boundary conditions used for the waves at the coast do
not have too much influence. Also note that the pack and the
MIZ, as shown in the Dmax field (Fig. 7d), are separated by
quite a sharp boundary. This has been preserved by breaking
on the mesh in parallel to the breaking on the grid as op-
posed to simply interpolating Dmax back to the mesh after
doing breaking on the grid. Figure 8 shows the same plot as
Fig. 7d, but with this latter, more naive, method of coupling.
The sharp MIZ-pack boundary has now become extremely
diffuse compared to the former scheme.

Figure 9 tests the sensitivity of the ice edge motion to the
rheological parameters C and τL0 when the ice is subjected
to steady waves of varying heights (and periods). In Fig. 9a,
the damage is set to 0.9999 everywhere and the ice is broken
by the waves, while in Fig. 9b the damage and cohesion are
unchanged by ice breakage due to waves. Consequently in
Fig. 9a for higher concentrations the internal stress is mainly
coming from the ice pressure P , while in Fig. 9b σ also plays
a role, since it is not damaged.

There is a strong response to the compactness factor, C,
which is used in the neXtSIM model to determine how high
the concentration needs to be to increase the effective elastic
stiffness and the resistance to ridging to their maximum val-
ues. In Fig. 9a, for this initial value of concentration (70 %),
lowering C by 10 roughly reduces the ice movement by half.
Comparing Fig. 9b to Fig. 9a, if C = 40, σ makes a differ-
ence of between 8 and 15 km; if it drops to 30, the ice edge

The Cryosphere, 11, 2117–2135, 2017 www.the-cryosphere.net/11/2117/2017/



T. D. Williams, et al.: Wave–ice interactions in neXtSIM 2129

0 100 200 300 400
0

50

100

150

200

x, km

y,
 k

m

 

 

H
s, m

0

1

2

3

4

5

0 100 200 300 400
0

50

100

150

200

x, km

y,
 k

m

 

 

D
m

ax
, m

0

150

300

0 100 200 300 400
0

50

100

150

200

x, km

y,
 k

m

 

 

H
s, m

0

1

2

3

4

5

0 100 200 300 400
0

50

100

150

200

x, km

y,
 k

m

 

 

D
m

ax
, m

0

150

300

50 100 150 200 250 300 350 400

50

100

150

200

x, km

y,
 k

m

 

 

c

0

0.5

1

50 100 150 200 250 300 350 400

50

100

150

200

x, km

y,
 k

m

 

 

lo
g 10

(
x),

 P
a

−2

−1

0
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0 = 4 kPa, τS
0 = 629 kPa, and d is increased to dbreak = 0.9999 if the ice is broken.

movement is approximately reduced by half; if it drops even
further to 20, then the ice edge no longer moves at all.

However, the large-scale cohesion makes little difference
in these simulations where the ice is not failing. Part of the
reason for this is that the wave radiation stress is a compres-
sive stress, so the stresses need to be larger to move out-
side the Mohr–Coulomb envelope than if they were tensile
or shear stresses (see Fig. 2: the tensile and shear stresses are
near the points of the triangles, while compressive stresses
are near their bases).

Some of the runs from Fig. 9 (those with C = 40 and
τL

0 = 4 kPa) were repeated with swell waves (of a single fre-
quency and direction), with amplitude of 3 m and periods
ranging from 10 to 14 s (recalling that the maximum WRS
dropped with wave period – Fig. 5b). These were not able to
produce any movement of the ice edge though. Therefore,
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Figure 8. Same as 7b, but where Nfloes is simply interpolated from
the neXtSIM mesh onto the WIM grid and then back again after
each coupling time step. Note the boundary between the pack ice
and the MIZ has diffused over a large number of grid cells, whereas
it remains much sharper when Nfloes is calculated directly on the
neXtSIM mesh.
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Figure 9. Maximum movement of the ice edge over 2 days for different pairs (C,τL
0 ) of the compactness factor and the large-scale cohesion

(in kPa). Initial concentration is 0.7, initial thickness is 1 m. Wave forcing is from Pierson–Moskowitz spectra. (a) Damage is set to dbreak =
0.9999 if the ice is broken. (b) Damage is unchanged if the ice is broken.

the main influence of swell will be due to their changing
of the dynamical and thermodynamical properties of the ice
through the ice break-up. As can be seen from Figs. 5–6, they
are attenuated less and so they can produce break-up further
into the ice than wind waves.

Figure 10 shows the combined effects of wind and waves
on the concentration (c) and the effective thickness (ch). For
reference, Fig. 10a, b only have waves (5 m waves following
a Pierson–Moskowitz spectrum) and no wind (Fig. 10a is the
same as Fig. 7e), while Fig. 10c, d have no waves, but only
a 15 m s−1 wind from the left (as in Fig. 1). This wind speed
is consistent with the wind wave spectrum in Fig. 10a, b.
Figures 10e–h have both 5 m waves and 15 m s−1 wind. All
figures with wind (Fig. 10c–h) exhibit similar ice edge lo-
cations, and all show thickening at the far right “coastline”,
concentrated in thin ridges. The area over which the ridging
is concentrated also seems similar for all the runs. However,
while the pattern of thickening between the three runs seems
quite different, perturbations to certain parameters in the run
with the R1 modification to the EB rheology (Fig. 10g, h),
such as dbreak (0.99 and 0.999 were tried) or the minimum
concentration of ice required to cause attenuation (0 or 5 %
were tried), produce similar degrees of differences. Therefore
we conclude that the actual ridging patterns are not signifi-
cant in themselves. The main differences between the R1 run
and the other two are therefore in the concentrations at the ice
edge (the actual thickness, h, which is not plotted, is constant
near the edge). In this run, when the damage is increased if
ice breakage occurs, the ice is noticeably more concentrated
in a region approximately corresponding to the MIZ. Addi-
tionally, the ice edge is more diffuse, possibly due to some
feedback effect where if the ice starts to become less concen-
trated at the ice edge, the attenuation reduces and therefore
so does the wave radiation stress. It then moves more slowly
compared to the more concentrated ice, which will experi-
ence a higher radiation stress – an effect enhanced by the

high degree of damage, which keeps the more compressed
ice quite mobile (as opposed to the run where the rheology is
not modified).

Figure 11a quantifies the results of Fig. 10 with respect
to the ice edge location, as well as varying the wind speed.
As can be seen from the figure, the waves only increase the
movement by 4 km (no damage in the MIZ due to breakage)
or 8 km (damage is dbreak = 0.9999 in the MIZ when the ice
is broken). That is, the effect of the WRS on the ice edge
position is almost completely dominated by the wind stress.
When the initial concentration was increased to 95 %, the dif-
ference was even less (0–4 km), as then the stress and ice
pressure P increased due to their e−C(1−c) factors becoming
closer to 1.

To repeat what we have seen in Fig. 10, when the ice was
subjected to on-ice winds in addition to waves, the main ef-
fect of linking the damage to the break-up due to waves was
that the MIZ region became more highly compressed than
the ice immediately further in. In Fig. 11b, we see the effects
of off-ice winds on ice preconditioned by swell waves. For
the wind speed used in the figure shown (2 m s−1), the wind
stress is not able to move the pack ice at all, but the MIZ,
which is about 60 km wide and has damage dbreak = 0.9999,
has started to detach from the pack. The ice edge has moved
about 15 km to the left in the centre of the domain, with less
movement at the coasts since there is still some friction there
(due to the condition of no slip applied at the top and bottom
boundaries).

6 Conclusions and discussions

In this paper, we have investigated the impact of the WRS
on sea-ice state and drift in an idealised domain. While this
stress can be quite large (∼ 0.1–1 Pa), depending on the wave
conditions, it is extremely localised – decaying exponentially
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Figure 10. (a, b) Concentration (c) and effective thickness (ch) after the same experiment as Fig. 7. (c, d) Same as Fig. 1c, d: wind forcing
only. Panel (e–h) show results when steady waves (with Hs = 5 m, Tp = 11.2 s, from the left) are applied in addition to the wind forcing.
Initial ice conditions are the same as in Fig. 7. In (e, f) the ice rheology is not affected by the ice breakage, but in (g, h) damage is set to
dbreak =0.9999. The large-scale cohesion is τL

0 =4 kPa, C = 40, and the small-scale cohesion is τS
0 =629 kPa.
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Figure 11. Panel (a) shows the maximum movement of the ice edge as a function of wind speed. The different curves show the response
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wind forcing is then applied for a further 48 h, at a speed of 2 m s−1. The large-scale cohesion is 13 kPa, and C = 40.

away from the ice edge. Probably as a consequence of this
localisation, overall we found its effects on ice edge loca-
tion were quite modest, with the most noticeable effects be-
ing seen when a wind wave spectrum was applied steadily
to the ice in the absence of wind. Then, depending on the
initial concentration, the rheological parameters used and the
response to the ice breakage by waves, the radiation stress
could produce a movement of the ice edge of between 0 and
36 km over 2 days. However, this experiment is more hypo-
thetical since wind waves are by definition associated with
wind. Indeed, in the presence of wind, the wind stress domi-
nated the WRS with almost no difference in ice edge position
between experiments with and without waves. There were
differences in the ridging patterns in the presence of waves
but these were probably not significant. However, when we
modified the damage parameter after ice breakage, additional
compression was observed in the MIZ after the ice was bro-
ken. Consequently, it seems that the WRS has a very limited
effect in general, although it could be a very efficient process
to precondition the ice cover and its mechanical properties
via the formation of a MIZ area filled with highly damaged
ice.

Having said this, however, there are many uncertainties re-
garding the WRS, and we have certainly not included all of
its potential effects, especially since the wave and ice models
are not coupled to the ocean yet. For example, the attenu-
ation models are still uncertain (they determine the WRS),
and how the partitioning of the WRS between the ice and the
ocean should be done is also unknown. On the face of it, if
less of the WRS is applied to the ice, it should have even less
effect than we find in our current paper. However, perhaps it
could then produce similar effects to those discussed and re-
ported by Suzuki and Fox-Kemper (2016) and Suzuki et al.
(2016) in relation to overturning circulation produced by the

Stokes shear force and thereby change the currents and heat
fluxes acting on the ice.

We also highlighted the problem of numerical diffusion
of Nfloes due to it being modified by both neXtSIM and
the WIM, and therefore having to be communicated in both
directions. We presented a solution to this problem, where
Nfloes was calculated on the neXtSIM mesh each WIM time
step, after interpolating smoother wave fields. While not un-
feasible, this is somewhat costly and we will continue to look
for alternative solutions.

As touched on in the discussion of the WRS above, we also
introduced a simple MIZ rheology by increasing the dam-
age where ice was broken, effectively putting the MIZ into
free drift, with the addition of the ice pressure, which resists
compression. Under compressive wind forcing this led to in-
creased compression in the MIZ relative to the pack ice in
its vicinity. This modification also influenced the ice flow
when off-ice winds were applied to ice that had previously
been broken by swell waves. At lower wind speeds, the MIZ
was able to be move relatively freely with the wind, while the
pack was still stationary. These effects would undoubtedly be
reduced in magnitude were a rheology that represented true
granular flow to be used, but could still occur. However, it is
difficult to know for certain without the existence of such a
rheology. Direct numerical simulations such as those done by
Herman (2016) could possibly reproduce some of the effects
observed here. Similarly, the granular temperature model of
Feltham (2005) could be tried, although this would be limited
to flow regimes where large force networks are not expected
to be present.

So far we have also restricted ourselves to a simple ide-
alised domain and with very idealised forcings. Work to set
up the current model in a pan-Arctic domain is ongoing, and
perhaps studies with forcings with more realistic temporal
and spatial variability could find that the WRS will have more
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impact. In addition, the study of Horvat et al. (2016) sug-
gests that including the thermodynamic effects of ice break-
age by waves could be important. We are also currently im-
plementing the more conservative lateral melting model of
Steele (1992) in our model to include this effect to some
extent. With simulations using a WIM coupled to a stand-
alone version of CICE-E, which contains the model of Steele
(1992), Bennetts et al. (2017) found that the concentration in
the vicinity of the Antarctic ice edge could drop by a modest
amount (of the order of 10 %) in the summer. However, this
could also change with coupling to an ocean model, as well
as if a different parameterisation that reflects the increased
lateral melting of larger floes was used.
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