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We present a parallel implementation framework for a new dynamic/thermodynamic sea-
ice model, called neXtSIM, based on the Elasto–Brittle rheology and using an adaptive 
mesh. The spatial discretisation of the model is done using the finite-element method. 
The temporal discretisation is semi-implicit and the advection is achieved using either a 
pure Lagrangian scheme or an Arbitrary Lagrangian Eulerian scheme (ALE). The parallel 
implementation presented here focuses on the distributed-memory approach using the 
message-passing library MPI. The efficiency and the scalability of the parallel algorithms 
are illustrated by the numerical experiments performed using up to 500 processor cores 
of a cluster computing system. The performance obtained by the proposed parallel 
implementation of the neXtSIM code is shown being sufficient to perform simulations 
for state-of-the-art sea ice forecasting and geophysical process studies over geographical 
domain of several millions squared kilometers like the Arctic region.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Sea ice is a unique material in the geophysical context. It can be viewed as an extremely thin solid, relative to its 
extent, which clearly displays the behaviour of a solid body through faulting and fracturing, but also moves and flows on 
the scales of the underlying ocean gyres and the pressure systems of the atmosphere. Its most closely related counterpart 
is probably the earth’s crust, but the Arctic sea-ice cover is composed of floes many orders of magnitude more numerous 
than the crustal plates and the amount of deformation a single ice floe undergoes in a winter is comparable to the amount 
of deformation a crustal plate undergoes for the entire lifetime of the planet. As such, modelling sea-ice ideally requires 
expertise and knowledge of both solid and fluid dynamics, as well as an understanding of fracture mechanics. The mixture 
of solid and fluid behaviour displayed by the ice makes modelling it demanding, both from a physical and a numerical 
perspective.

Traditional sea-ice models trace their origin to the seminal paper of [1], which introduces the viscous-plastic model for 
sea-ice dynamics. Virtually all sea-ice models used today by the climate and ocean modelling communities are based on the 
viscous-plastic model. The original model, as well as many of its derivatives, was tightly coupled to the underlying ocean 
model, running on the same Eulerian grid and using the same time step as the ocean model. The momentum equation was 
solved using a finite difference scheme with an implicit solver (SOR) acting on a linearised version of the original non-linear 
equation. Advection was performed using a simple up-wind scheme. Later incarnations of the viscous-plastic model have 
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used an explicit solver with an additional relaxation term [2], improved implicit solvers [3], higher order advection schemes 
[4], and model set-ups where the sea-ice model is separated from the ocean model. Current uses of the viscous-plastic 
model range from uses in paleo-climate studies, run at a grid resolution down to about 100 km with runtime up to thou-
sands of years, climate simulations and predictions at about 50 km resolution and run for up to 100 years, basin scale Arctic 
and Antarctic wide simulations at down to about 10 km resolution and run for up to tens of years, and regional downscaling 
and short term forecasting simulations at down to a few kilometers resolution and run for up to a year.

The neXtSIM model breaks from the traditional viscous-plastic approach, and it was developed to model the ice as 
a solid, as opposed to the more fluid mechanical approach taken in the viscous-plastic model. The internal ice strength is 
modelled in an elasto-brittle manner, giving rise to cracking via sharp discontinuities in the velocity field [5]. In order to pre-
serve these discontinuities the model uses a pure Lagrangian advection scheme with a moving triangular mesh. NeXtSIM
is unique in the sea-ice modelling community in that it is the only model to use a moving mesh and the only large scale 
model using the elasto-brittle rheology [6]. NeXtSIM has also been shown to reproduce well the observed statistics of sea-
ice deformation, and is the only model so far demonstrated to reproduce the multi-fractal scaling of deformation [6]. Initial 
versions of the model focused on short time scales [5,6] where mesh distortions could be ignored. A subsequent version 
that includes a remeshing mechanism has provided a full year simulation, covering the Arctic basin at a 10 km resolution, 
requiring 2.5 × 105 finite element nodes [7]. In order to run the model at higher resolution, i.e. like 5 km as in some of 
the state-of-the-art sea ice–ocean platforms that produce operational forecasts nowadays (e.g. TOPAZ [8], ACNFS [9], GIOPS 
[10]), or for time spans of several decades as if coupled into the future generation of climate models, it is necessary to 
parallelise it and run it on a potentially large number of processor nodes.

The main challenge in parallelising a model running on a moving and adaptive mesh resides in the choice of a strategy 
for domain decomposition, as well as on how to treat the communications between the domains when their boundaries are 
moving. Also, the set-up of these communications must ensure to have no impact on the sea ice properties generated by the 
physical model, like e.g. the sharp gradients in the modelled sea ice fields that are associated to the simulation of cracks, 
leads and ridges in the ice cover. In this paper, we present a parallel implementation framework that tackles this challenge, 
and apply it to the sea ice model neXtSIM. In section 2, we briefly describe the equations of the model. In section 3, 
we detail the spatial and temporal discretisation of the equations. Section 4 is focusing on the parallel implementation 
of the model, especially the parallelisation strategies we chose for the mesh processing, finite-element analysis and mesh 
adaptation. Section 5 presents a scalability analysis of the parallel code of neXtSIM that uses the approach described in 
section 4 in a configuration using a 5 km-resolution mesh. Our main conclusions are recapped in section 6.

2. Model description

The neXtSIM model has been firstly introduced in a simplified form, mainly focused on the non-linear dynamical core, 
in [6]. A more advanced and comprehensive formulation of the model, including the thermodynamical components, was 
presented later in [7]. The sea ice variables, which can be scalar, vectorial or tensorial, defined in the model are listed in 
Table 2.1.

The evolution equation for sea ice velocity comes from vertically integrating the sea ice momentum equation as follows:

ρih
Du

Dt
= ∇ · (hσ

) − ∇ P + A
(
τ a + τ w

) − ρih
(

f k × u + g∇η
)

(2.1)

where 
Dφ

Dt
is the material derivative that is defined for any scalar and vector as

Dφ

Dt
= ∂φ

∂t
+ (u · ∇)φ. (2.2)

The parameter ρi is the ice density, τ a and τ w are the surface wind (air) and ocean (water) stresses, respectively. 
These stresses are defined in equations (2.3a) and (2.3b). The parameter f is the Coriolis frequency, k the upward pointing 
unit vector, g the gravity acceleration and η the ocean surface elevation. The function P , pressure term parameterized in 
equation (2.4), is a vertically integrated sea ice pressure term that provides a resistance to the compaction.

τ a = ρaca |ua|
(

ua cos θa + k × ua sin θa

)
(2.3a)

τ w = ρw cw |uw − u|
((

uw − u
)

cos θw + k × (
uw − u

)
sin θw

)
(2.3b)

In the equation (2.3a), the field ua denotes the air velocity. The parameters ρa , ca and θa are the air density, the air drag 
coefficient and the air turning angle, respectively. The field uw used in the equation (2.3b) denotes the ocean velocity and 
the parameters ρw , cw and θw are the reference density of seawater, the water drag coefficient and the water turning angle, 
respectively.

The pressure P is parameterized as follows:

P = max

{
0,− P∗h2e−α(1−A)∇ · u

|∇ · u| + εmin

}
, (2.4)
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Table 2.1
Sea ice variables used in neXtSIM.

Symbol Name Description Unit

h thickness volume of ice per unit area m
A concentration surface of ice per unit area –
d damage from 0 (undamaged) to 1 (completely damaged) –
u velocity horizontal sea ice velocity vector ms−1

σ internal stress planar internal stress tensor Pa

where P∗ is the pressure parameter and α the compactness parameter. The parameter εmin is set to a small value to 
regularise the transition when the divergence rate is close to 0.

The evolution equation for the internal stress combines a term coming from Hooke’s law (planar stress and linear elas-
ticity) and a sink term Sσ as follows:

Dσ

Dt
= E(A,d)K : ε̇(u) + Sσ (2.5)

where E(A, d) is the effective elastic modulus, ε̇ is the deformation rate tensor defined as

ε̇(u) = 1

2

(
∇u + (∇u)T

)
(2.6)

and K is a stiffness tensor defined such that⎡
⎣(K : ε)11

(K : ε)22
(K : ε)12

⎤
⎦ = 1

1 − ν2

⎛
⎜⎝

1 ν 0
ν 1 0

0 0
1 − ν

2

⎞
⎟⎠

⎡
⎣ ε11

ε22
2ε12

⎤
⎦ (2.7)

for any symmetric tensor εi j (i, j = 1, 2). The effective elastic stiffness E(A, d) is defined as:

E(A,d) = (1 − d)Y f (A), f (A) = eα(1−A) (2.8)

where Y is the sea ice elastic modulus (Young’s modulus) and α is the compactness parameter. The sink term Sσ represents 
the damaging process and is here defined so that the internal stress is decreased when the ice is damaged as in [7]. In the 
case of large drift and deformation, the material derivative of the internal stress tensor is defined as

Dσ

Dt
= ∂σ

∂t
+ (u · ∇)σ + βa(∇u,σ ) (2.9)

where βa is a non-linear term that represents the effect of rotation and deformation when advecting a tensor.
The evolution equations for h, A and d are given in the following form:

Dφ

Dt
= −φ(∇ · u) + Sφ (2.10)

where φ ∈ {h, A, d} and Sφ is a source/sink term. In this paper, thermodynamics are disabled. As a consequence, Sh is set 
to 0 and S A is only active to ensure that A ≤ 1. Sd is composed of two parts, a constant healing term − 1

td
and a damaging 

term that is only active and positive when the internal stress is out of the Mohr–Coulomb failure envelope (see [7]). The 
damage values are bounded between 0 (undamaged) and 1 (fully damage).

3. Model discretization

The choice of spatial and temporal discretization are dictated by the characteristics of large scale sea ice dynamics, which 
are dominated by intermittent and localised deformation events, similar to those caused by stick-slip motion between faults 
in Earth crust dynamics. These dynamics imply that sea ice deformation is scale dependent over a large range of temporal 
scales (from hours to months) and spatial scales (from hundreds of meters to hundreds of kilometres). This scale dependence 
follows a multi-fractal behaviour, where the moments of the distribution scale as power-law functions of the spatial and 
temporal scales with exponents increasing as a quadratic function of the moment order. In other words, multifractality 
means that the extreme values of deformation rate are more localised in time and space than the lower values. Reproducing 
these high values of deformation as observed from space and their impacts on the sea ice state (mainly on the thickness 
and concentration) is crucial for many applications and is one of the main motivation for building the neXtSIM model.

The neXtSIM model is designed to run at resolutions that are within the range for which multi-fractal scaling is ob-
served. At these resolutions, sea ice motion is discontinuous in space and its gradient (i.e., the deformation or strain rate) 
then localises at the scale of the model element. The rheology implemented in neXtSIM allows the strain rate to localise 



A. Samaké et al. / Journal of Computational Physics 350 (2017) 84–96 87
Fig. 3.1. Example of sea ice concentration fields at Fram Strait and the underlying moving mesh coming from a one-year simulation using neXtSIM in a full 
Arctic configuration and with a resolution of about 10 km. The maps show how the localized divergence generate discontinuities in the ice cover at the 
scale of the mesh resolution and how these discontinuities are preserved over time by the Lagrangian advection scheme.

at the scale of the model element and to vary very rapidly in time. Having such a model that explicitly reproduces localisa-
tion implies that the simulated thickness, concentration and damage fields will also exhibit one cell wide localisation (see 
an example for the concentration in Fig. 3.1) and rapid variations in time. These characteristics need to be preserved by 
the discretization and this requires specific choices for the spatial and temporal discretization as well as for the advection 
scheme as described here after.

3.1. Spatial discretization

neXtSIM is discretized on a triangular mesh having a uniform resolution. The velocity field is defined as a piecewise 
linear function with nodal values defined at the element vertices. The velocity gradient (i.e., the deformation rate) is a 
constant within each mesh element. The sea ice thickness, concentration and damage are defined as constants over each 
mesh element. The internal stress tensor is also constant per element as its evolution is a function of the deformation rate.

To limit numerical diffusion that often arises with Eulerian advection schemes, a Lagrangian advection scheme has been 
implemented [7], where the position of the nodes themselves are a variable of the model. The nodes positions evolve as

D X

Dt
= um (3.1)

where um is the mesh nodes velocity. When the mesh nodes velocity is defined as um = u, the mesh moves with the same 
velocity as sea ice and the advection scheme is purely Lagrangian. A remeshing procedure is then required as described in 
section 4.2.3.

In this paper we present a modification of the advection scheme that allows to use either a purely Lagrangian, an 
Eulerian or an Arbitrary Lagrangian–Eulerian (ALE) advection scheme. The choice of advection scheme is simply dictated 
by the definition of the mesh nodes velocity um . For the Eulerian scheme, um is set to zero and the mesh does not move, 
meaning that no remeshing is required. In the case of ALE advection, the mesh velocity is defined as a smoothed version 
of the simulated sea ice velocity, so that the frequency of remeshing is reduced. The smoothing is applied by an iterative 
process where for each node, except the boundary nodes, the value of ui

m is updated to the mean value of ui−1
m over its 

directly connected nodes. The iterative process is initiated by setting u0
m to u. We find that using 2 steps (until i = 2) 

typically reduces the remeshing frequency by a factor 10, which is enough for our application. The results with the ALE 
scheme discussed in this study are all obtained with 2 smoothing steps.

For the scalar quantities φ ∈ {h, A, d}, the advection scheme is derived as in the finite volume approach by integrating 
φ over each model element and taking the time derivative of this local quantity (e.g., when φ is h, the local quantity is 
the volume of ice contained in each element). The discrete formulation is obtained by applying then the Reynolds transport 
theorem, introducing in equation (2.10) and regrouping some terms, as follows

d

dt

∫
S(t)

φdS =
∫

S(t)

δφ

δt
dS +

∫
δS(t)

φ (um · n)dL

=
∫

S(t)

(
− ∇ · (φu) + Sφ

)
dS +

∫
δS(t)

φ (um · n)dL

=
∫

S(t)

SφdS +
∫

δS(t)

φ
(
(um − u) · n

)
dL

(3.2)

where S(t) and δS(t) are the surface and boundary of each triangle of the mesh, and n is the normal to δS(t). As φ and Sφ

are constant per element, the discrete form of equation (3.2) is
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d

dt
Se(t)φe = Se(t)Sφe +

∑
j=1:3

F (φ)ej Lej (3.3)

where e is the index of the element, Se is its surface that may evolve in time, j is the local index of the element edges, Lej
is the length of the edges and F (φ)ej is the flux through the edge of index j.

To ensure conservation, the flux F (φ)ej is, by construction, the same on both sides of an edge. We here use an upwind 
scheme where

F (φ)ej = φejup (um − u)|c · nej (3.4)

and φejup is the upwind value of the advected field. The velocity (um − u)|c is evaluated at the middle of the element edges. 
When used with an explicit scheme, the upwind scheme has the advantage of being purely local, with no linear system to 
solve (see section 3.2).

This formulation of the advection scheme is also used for the open boundaries, but with a slight modification to avoid 
the model domain to change during a simulation. On these boundaries, the computed velocity u may not be equal to zero, 
meaning that the model domain would change with the ALE and Lagrangian schemes. To avoid that, we set um to zero on 
the open boundary nodes (i.e., the nodes connected to two open boundary edges). The fluxes are then computed as for any 
other edge by equation (3.4). The only difference with the other edges is the definition of the upwind value of the advected 
fields when the fluxes are incoming. One could either impose a value coming from another model run or from observations, 
or replace the upwind value by the downwind value. For the study, we chose the second option to do not have to set up 
a value on the open boundaries. This treatment of open boundary could become problematic in a domain with large open 
boundaries where one can expect considerable influx through the boundary. In the current setup, however, the only open 
boundary where any influx can be expected is the Bering Strait, and there only limited influx for a limited time is to be 
expected.

For the sea ice velocity, strict conservation is usually not required as the advection of momentum is negligible compared 
to the other terms of equation (2.1) [11]. In this implementation, the material derivative of the ice velocity is computed as

Du

Dt
= ∂u

∂t

∣∣∣∣
X(t)

(3.5)

where X(t) the position of the nodes evolves as in equation (3.1). In the purely Eulerian case, the advection of momentum is 
then completely neglected, whereas it is fully preserved in the purely Lagrangian case. The equation (2.1) is then discretized 
by using the finite-element methods as described in section 3.3.

For the internal stress, the effect of advection is also minor compared to the other terms of equation (2.9). In this 
implementation, the material derivative for the internal stress is computed as

Dσ

Dt
= ∂σ

∂t

∣∣∣∣
X(t)

(3.6)

where the effect of rotation and deformation are neglected. The effect of constant advection is only fully represented for 
the purely Lagrangian case.

3.2. Temporal discretization

At the temporal scale of interest (about 1 day), the evolution of sea ice velocity, internal stress and damage may be 
discontinuous and then requires a specific temporal discretization. A classical approach in progressive damage modelling is 
to involve sub-iterations to allow discontinuities to develop during one model time step. In [6], we found that an equivalent 
behaviour can be obtained without sub-iteration by simply using a sufficiently small time step (typically 200 seconds) 
compared to the time scale of interest (typically 1 day).

In this implementation, the equations for the velocity and internal stress are first solved together with an implicit 
scheme. Using an explicit scheme would require a much smaller time step that 200 seconds, as the speed of propagation of 
(shear) elastic waves in sea ice is about 500 m/s. The scalar quantities, such as the concentration, thickness and damage are 
then updated with an explicit scheme.

The momentum equation (2.1) is discretised in time as follows:

ρih
n un+1 − un

t
=∇ · (hnσ ′)

+ Anρaca |ua|e
(

ua cos θa + k × ua sin θa

)
+ Anρw cw

∣∣uw − un
∣∣
e

(
uw − un+1

)
cos θw

+ Anρw cw
∣∣uw − un

∣∣
e

(
uw − un+1

)
sin θw

− ρ hn( f k × u∗ + g∇η
)

(3.7)
i
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where

σ ′ = σ n + t E(An,dn)K : ε̇n+1 (3.8)

and the operator |·|e denotes the norm over a mesh element. The sea ice velocity u∗ is defined by

u∗ = β0un + β1un−1 + β2un−2, (3.9)

where the parameters β0, β1 and β2 are the coefficients of the third order Adams–Bashfort scheme, given by β0 = 23/12, 
β1 = −16/12 and β2 = 5/12, respectively. These parameters are chosen for the stability of the scheme, see [12]. Using lower 
order schemes could be sufficient in the case of sea ice but it has not been investigated in the present study.

Remark 1. The symmetric part of the ocean drag term is treated implicitly, whereas the anti-symmetric part is treated 
explicitly to preserve the symmetry of the system that we need to solve. The Coriolis term is also treated explicitly.

The internal stress is updated using

σ n+1 = σ n + t E(An,dn)K : ε̇n+1 + Sn+1
σ (3.10)

The sea ice thickness, concentration and damage are then updated by using an explicit time integration, leading to the 
following expression for the update of φ:

φn+1 Sn+1 = φn Sn + t Sφ Sn + t
∑
j=1:3

F (φ) j L j (3.11)

where the monotonicity (positivity for the ice thickness, concentration and damage) is ensured by limiting the outward 
fluxes through one edge to be maximum 1/3 of the quantity stored in the giving element. The fluxes are then limited to 
fulfil the equation (3.12).

3
∣∣F (φ) j

∣∣tL j ≤ (φn
up + t Sφ)Sn

up (3.12)

This upwind explicit scheme is conservative, monotonous and local (i.e., no system needs to be solved). However if used 
with the purely Eulerian approach, this scheme is known to be very diffusive. In this study, we only use this upwind scheme 
for the ALE method, so that numerical diffusion is only active where the sea ice velocity field has sharp gradients that are 
smoothed out in the definition of um . In the purely Lagrangian case, the fluxes are zero by construction but numerical 
diffusion may still arise during the necessary remeshing steps that are applied when the mesh is highly deformed (see 
section 4.2.3). No quantitative analysis of the numerical diffusion has been made but visual inspection shows that the 
ALE scheme and the Lagrangian scheme exhibit similar numerical diffusion that is limited, and only located where large 
deformation occurs.

3.3. Finite-element method

The finite-element method [13,14] is used for the spatial discretization of the problem. This discretization method is 
one of the most common techniques used to compute the approximate solution of complex problems, usually expressed in 
terms of partial differential equations (PDEs) describing physical processes in science and engineering. As this method is 
rarely used in the case of sea ice and ocean modelling, we here recap its main steps. Readers used to play with the classical 
finite element method can directly jump to section 4.

The main steps involved in the finite-element analysis are:
(i) the problem definition (ii) the discretization: triangulation and definition of approximation space (iii) the definition 

of the variational (or weak) formulation (iv) the system assembling: local (on each mesh element) and global (on the entire 
mesh) (v) the solution of the resulting linear system.

The problem is defined on a bounded domain � of R2. We denote ∂� the boundary of the domain �, that is decomposed 
as ∂� = ∂�D

⋃
∂�N with ∂�D

⋂
∂�N = ∅, where ∂�D and ∂�N are respectively the closed (Dirichlet) and open (Neumann) 

boundaries.
From the temporal discretization (see equation (3.8)), the resolution of the momentum equation consists in solving the 

following problem: find un+1 such that⎧⎪⎨
⎪⎩

kun+1 + ∇ · (hnσ ′) + f = 0 in �

un+1 = 0 on ∂�D

n · (hnσ ′) = 0 on ∂�N

(3.13)

where n is the outward-pointing normal on ∂�N , k a scalar function that does not depend on un+1 and f is the vector 
regrouping all the terms that do not depend on un+1 nor σ ′ .
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Let Tδ be a triangulation (or, equivalently mesh) of �, where δ refers to the maximum characteristic length of the mesh. 
We denote Vδ the piecewise linear finite-element space defined on Tδ with vanishing value at closed boundary ∂�D:

Vδ =
{

v ∈ C0(�)
∣∣ v is linear on K , K ∈ Tδ

}⋂
H1

0,∂�D
(3.14)

where H1
0,∂�D

is the Hilbert–Sobolev space of order 1, satisfying an homogeneous Dirichlet condition on the closed boundary 
∂�D . C0(�) is the set of continuous function defined on � (the closure of �).

The variational form of the problem (3.13), by using the expression of σ ′ as linear combination of σ n and the deforma-
tion rate tensor ε̇ introduced in equation (2.9), is written:

find u ∈ Vδ such that

∫
�

(
ku + ∇ ·

(
hn(σ n + t E(An,dn)K : ε̇(u)

)) + f

)
v = 0 ∀ v ∈ Vδ (3.15)

where u refers to un+1.
By integrating by parts the equation (3.15) and taking into account the boundary (closed and open) conditions as defined 

in the problem (3.13), the following weak form holds:

k

∫
�

uv − hnt

∫
�

(
ε̇(v) : E(An,dn)K : ε̇(u)

)
= hn

∫
�

(∇v
) : σ n −

∫
�

f v (3.16)

Equation (3.16) is ill defined where no ice is present, as no sea ice velocity is defined. The classical approach is to set 
the variable u to zero when no ice or too little ice is present in a cell. Some implementations set the velocity of cells 
with very low ice content equal to the ocean velocity. We propose another approach where a Laplacian-like equation is 
solved on the ocean cells (here defined as the cells where sea ice concentration is less than 1%) so that the velocity linearly 
decreases from the ice edge to the nearest coast. This approach is applied whatever the advection scheme is. In the case 
of the purely Eulerian approach, it limits potential artificial accumulation of sea ice in the first ocean cells. In the case 
of the purely Lagrangian scheme, it reduces the problem of large mesh deformation occurring in the first ocean cells and 
inducing large numerical diffusion due to frequent remeshing. In general though, the treatment of the low concentration 
cells at the ice edge does not affect the interior of the domain because information is only transmitted between cells when 
concentration is high (see equations (2.1), (2.4), and (2.8)). The “moving empty-cells” method however does not help where 
the ice edge is close to the coast, which is always occurring when running on Arctic wide domain. To limit the frequency 
of mesh adaptation, we found that using the ALE advection in conjunction with the “moving empty cell” works particularly 
well and this has become the default option when running in parallel. Numerically, the “moving empty cells” method is 
simply applied by replacing (3.16) over ocean cells, by this equation

t

∫
�

(
ε̇(v) : E0 K : ε̇(u)

)
= 0 (3.17)

where E0 is set to a much smaller value than the Young modulus, so that this additional term does not impact the calcula-
tion of u over non-empty cells.

The weak form (3.16) can also be written:

Q (u, v) = R(v). (3.18)

Let B =
{
φi

}Nδ

i=1
be a set of basis functions of V δ . The approximate solution u ∈ V δ can be expressed as

u =
Nδ∑

i=1

uiφi (3.19)

where ui, (i = 1, . . . , Nδ) are nodal values. By using the equations (3.19) and (3.18), the following discrete form of the 
problem holds:

Nδ∑
i=1

ui Q (φi, φ j) = R(φ j), ∀ j = 1, . . . , Nδ. (3.20)
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4. Parallel implementation

4.1. Computational issues and challenges

The main objective with the development of neXtSIM is to reproduce the mechanical behaviour and state of the Arctic 
sea ice cover. This task requires the model to have grid resolutions of about a few kilometers. With a computational domain 
of about 14 million km2, resolving the entire Arctic at such resolutions requires around one million mesh elements. Solving 
a problem of such size in a timely manner requires the use of parallel computing [15,16]. In practice this requires at 
least a distributed memory parallelisation, where the model domain is partitioned and the equations are solved on the 
computational subdomains in parallel.

The key difficulty in the parallel implementation of neXtSIM lies in the fact that since the model uses a Lagrangian 
advection scheme, the mesh nodes move with the sea ice velocity u (see equation (3.1)). The computational mesh therefore 
deforms as the ice cover itself deforms. If the mesh becomes too deformed the finite element method will fail, requiring 
an adaptation of the mesh, referred to here as a remeshing. For this first implementation, we used the same library for 
remeshing as in the serial code presented in [7]. This library called BAMG (Bidimensional Anisotropic Mesh Generator, 
[17]) does not have parallel capabilities and is then called by the root processor on the whole domain. Once the mesh has 
been adapted the model fields need to be remapped from the old mesh to the new one. The remeshing process and the 
remapping that follows are particularly challenging for the parallel implementation, since each remeshing may require a 
new partitioning that no longer matches with the previous one. Hence the remapping can not be carried out locally in each 
computational subdomain. The mesh partitioning and the parallel finite element data structure remain unchanged between 
remeshings, and therefore the MPI communication patterns.

To avoid to constantly update the forcings terms and the spatial operators such as the gradients, we adopt a mixed 
approach, where the position of the model nodes X(t) are decomposed into two parts, X(t) = Xm + Um(t), where Xm is the 
position of the computational mesh that is kept fixed between two remeshing steps, and Um(t) is the actual displacement 
of the nodes relative to the computational mesh. The terms that are computationally expensive to evaluate, such as the 
forcings that need to be interpolated in space and the spatial derivative operators, are computed with the position of the 
computational mesh. The forcings are then spatially interpolated only after each remeshing, or when new forcing fields are 
required. The spatial derivative are computed only after each remeshing. We checked that this method gives almost identical 
results as when we update the computational mesh every time step. Indeed, as the remeshing criterion is global the error 
in the position of the nodes is in practice never larger than the size of a single model element. Given a relatively high 
resolution mesh, the forcing fields are generally too smooth and too coarsely resolved for this error to have any substantial 
effect. These features are particularly interesting for the parallel implementation, and contribute strongly to the relevance 
and efficiency of the proposed framework. In a coupled system where the ocean or atmosphere would respond to sea ice 
changes at the scale of the model mesh, one should develop another approach to efficiently handle communication between 
the moving mesh of the sea ice model and the fixed meshes of the ocean and atmosphere models.

4.2. Parallelization strategy

The main parallel programming paradigms are shared memory (OpenMP), distributed memory with message passing 
(MPI), and hybrid computing (MPI and OpenMPI). In this framework we consider the distributed-memory programming 
approach based on MPI [18]. The inter-process communications are handled by using Boost.MPI, a Boost library [19] that 
is an abstraction layer over the standard MPI for simplifying the usage interface. The parallel code of neXtSIM is based 
on modern C++ (C++11/14) programming and is structured as follows: (i) the mesh processing (including mesh generation 
and mesh partitioning) (ii) the parallel finite-element analysis (iii) the mesh adaptation and spatial interpolation.

4.2.1. Mesh processing
The initial computational mesh is generated in pre-processing over a pan-Arctic region by using Gmsh [20], a three-

dimensional finite-element mesh generator. This mesh is loaded by the root process (that has the rank 0) and then 
partitioned using the partitioning library METIS [21], which is called from within Gmsh using the existing Gmsh data 
structures. The number of mesh partitions corresponds to the size of the MPI communicator. The partitioned mesh is saved 
on the hard disk and loaded independently by all processor cores, each of which extracts only the partition number corre-
sponding to its rank plus the inter-process, or ghost elements. This way all the elements needed for the finite-element basis 
functions are locally available, removing the need for communication during the finite-element assembly. The root process 
keeps the information on the entire mesh in memory, so that it can be used in the next remeshing. This runtime mesh 
partitioning can be considered as a pre-processing step, which is performed automatically and on-line instead of manually 
and off-line before the simulation starts.

4.2.2. Parallel finite-element analysis
Let us start by constructing the set of the degrees of freedom (DOFs) required for the finite-element discretization. This 

step is done locally in each processor core on its local mesh. Each processor has its own numbering of DOFs in the local 
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mesh, called local numbering which is associated to a global numbering (that requires inter-process communications) on 
the entire problem. These associative relationships are called the local-to-global maps (LtGMs).

The linear algebra operations are managed using the PETSc [22] wrappers and the parallel sparse matrices are stored 
in the CSR (Compressed Sparse Row) format. The finite-element assembly is performed locally on each processor core, by 
computing the matrix entries (corresponding to the local DOFs) and adding them to the global parallel matrix, using the 
map LtGM. For applying the homogeneous Dirichlet boundary conditions (see equation (3.13)) we modify the matrix after 
assembly, using the PETSc function MatZeroRowsColumns, that sets to zero all entries (except the main diagonal which 
is set to 1) of the row and column corresponding to each node on the closed boundary ∂�D , and update the vector to keep 
the system consistent. These operations are carried out locally and preserve the symmetry of the matrix.

4.2.3. Mesh adaptation
When using a Lagrangian advection scheme the computational mesh moves and deforms with the ice cover. The move-

ment of the ice inevitably leads to distortions of the grid that are too large for the finite element method to produce an 
accurate result. The mesh therefore needs to be periodically adapted to counteract mesh distortions and ensure the quality 
and numerical integrity of the mesh [23].

The main mesh adaptation techniques discussed in the literature [24,25] are the h-adaptive, p-adaptive and r-adaptive
methods. We will consider here the h-adaptive approach, which is more flexible for our context, and adapts the mesh 
(locally or globally) by adjusting the size of its elements (isotropically or anisotropically) according to a given criterion, 
such as the mesh characteristic lengths. The mesh connectivity changes dynamically when nodes are added or deleted. 
In neXtSIM the mesh adaptation is performed using a global, h-adaptive based, and anisotropic mesh generator called 
BAMG (Bidimensional Anisotropic Mesh Generator). This software has many powerful mesh adaptation capabilities and can 
importantly preserve as many of the nodes from the old mesh as possible. We use a C++ object-based implementation 
of this library from the Ice Sheet System Model [26] and inspired to the original approach introduced in [17]. This BAMG 
implementation provides various interesting features and simplified user interfaces which are useful and adapted to our 
model.

In neXtSIM, we consider the mesh too distorted if the smallest angle of any triangle of the mesh is smaller than 
a critical angle θmin , the remeshing is triggered when this criterion is reached during the simulation. The new mesh is 
generated by BAMG according to the constraints based on the minimum and maximum characteristic lengths of the initial 
mesh, �min and �max , respectively. This means that in the new mesh, the length of any edge of any triangle is bounded by 
�min and �max . The new mesh satisfies the Delaunay criterion and has the same spatial resolution as the initial mesh.

Algorithm 4.1 Remeshing and interpolation procedures.
Let tn = t0 + t be the current model time
if minimum angle threshold is reached then
#Gather all fields required on the root process (rank 0)
for each process p do

send T U n,(p), un,(p), σ n,(p), hn,(p), An,(p), dn,(p) to root process (#0)
end for
synchronize all processes
on the root process:

#Get fields from each process
receive T U n,(p), un,(p), σ n,(p), hn,(p), An,(p), dn,(p) from each process p

#Mesh adaptation
T U n ←− (T U n,(0), . . . , T U n,(np)) # global displacement vector on root
Xn+1 ←− Xn + T U n # update mesh nodes positions
call BAMG # remeshing process
partition the new mesh (in memory) # using METIS from Gmsh
save the new partitioned mesh on the disk # in Gmsh format

#Spatial interpolation from old mesh to new mesh
linear (P1) interpolation for un # nodal interpolation for velocity
P0 interpolation for σn, hn, An, dn # conservative using cavities

#Dispatch interpolated fields from root to each process
scatter un,(p), σ n,(p), hn,(p), An,(p), dn,(p) to each process p

#Receive fields from root process (rank 0)
for each process p do

receive un,(p), σ n,(p), hn,(p), An,(p), dn,(p) from root process
end for

end if

During the mesh adaptation, the mesh is only modified in a limited number of locations, the so-called cavities, since 
we instruct BAMG to preserve as many of the nodes from the old mesh as possible. This allows the model to track large 
expanses of drifting ice that is deforming very little, without any artificial diffusion, since it is only necessary to interpolate 
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values from the old mesh to the new one inside the cavities. Outside the cavities the tracer values are not affected by the 
mesh adaptation (see [7] for more details).

For the variables defined at the nodes (i.e. the sea ice velocities, etc.), a non-conservative linear interpolation is performed 
for the new mesh nodes. For the quantities that are defined at the centre of the elements, a conservative interpolation 
scheme is applied to each cavity independently. The cavities are defined as the smallest partitions of the mesh for which 
the external edges are the same before and after the mesh adaptation.

We implemented a fast algorithm using the information provided by BAMG for efficiently detecting the cavities and the 
intersections between the mesh elements of the old and new meshes. For each intersection, the corresponding integrated 
quantities are transferred from the old mesh to the new one. This process is fully conservative.

5. Numerical experiments

The simulations have been performed at the Bergen High Technological Center (HiB) on the supercomputer machine 
Hexagon, which is managed and operated by the University of Bergen (UiB). Hexagon is a supercomputer with 22272 
processor cores on 696 compute nodes interconnected with a high-bandwidth low-latency switch network (Gemini, 2.5D 
torus). Each node has two 16-core AMD Opteron “Interlagos” processors (2.3 Ghz) and 32GB of memory. The operating 
system is Cray Linux Environment CLE 5.2 (Based on Novell Linux SLES11sp3) and the file system is Lustre. Hexagon has a 
peak performance of 204.9 TFlops.

In order to measure the performance of our parallel algorithms, we perform the strong scalability (also called speedup) 
analysis [27, chapter 1]. This speedup, that allows to evaluate the quality of a parallel algorithm running on a parallel 
computing platform, is defined as the time for running a problem on one processor core divided by the time taking to run 
the same problem (fixed size) using p (p > 1) processor cores.

The numerical experiments were carried-out using a computational mesh with the mean spatial resolution in x-direction 
(x) of about 5 km. This mesh is defined on a domain that covers the whole Arctic Ocean and extends to the South until 
the Gulf of Saint Laurent (see an example in Fig. 5.1). This mesh is comparable in terms of the region covered and spatial 
resolution to the ones used nowadays for state-of-the-art coupled sea ice–ocean simulations, to either produce operational 
forecasts or study climate processes in Arctic. The number of mesh elements (triangles) is ≈ 8 × 105 and the number of 
nodes is ≈ 4 × 105. We consider both advection schemes (ALE and pure Lagrangian) described above. The physical time-step 
(t) is set to 100 s and the duration of the simulation is 25 days. The total number of unknowns (the size of the linear 
system) at each time-step is roughly equal to 8 × 105. The physical parameters used for the simulations are reported in the 
Table 5.1. The computations are achieved using 2p(p = 3, . . . , 9) processor cores.

Using the ALE advection (see the Fig. 5.2.1), the speedup relative to 8 cores when employing 512 cores is 60.48 while 
the linear speedup is 64. This performance represents an efficiency of 94.50%. This result shows that our parallel algorithm 
scales well until 512 processor cores and demonstrates the good computational properties for the neXtSIM model when 
using the ALE advection scheme.

Fig. 5.1. Example of computational mesh at 30 km resolution covering roughly the same domain as used for our numerical experiments. The colours 
correspond to the 4 subdomains obtained after a mesh partitioning processed by METIS.
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Table 5.1
Parameters used in neXtSIM.

Symbol Name Value Unit

ρa air density 1.3 kg m−3

ca air drag coefficient 7.6 × 10−3 –
θa air turning angle 0 ◦
ρw water density 1025.0 kg m−3

cw water drag coefficient 5.5 × 10−3 –
θw water turning angle 25.0 degree
ρi ice density 917 kg m−3

ν Poisson coefficient 0.3 –
μ internal friction coefficient 0.7 –
Y elastic modulus 9.0 GPa
Td damage relaxation time 28.0 days
c cohesion parameter 8.0 kPa
α compactness parameter −20.0 –

Fig. 5.2. Strong scalability analysis.

Fig. 5.3. Strong scalability analysis: total timer for assemble and solver.

Using the pure Lagrangian advection (see the Fig. 5.2.2), the speedup relative to 8 cores when employing 512 processor 
cores is 48.76. This speedup is significantly lower than the linear speedup 64 and the corresponding efficiency is 76.18%. The 
poverty of this result can be explained by the too high frequency of remeshing, which takes place on the root processor, and 
is consequently not scalable. In addition, the remeshing is followed by a new mesh partitioning and, as already mentioned in 
previous section, by a local and conservative interpolation procedure in “cavities”, both also performed on the root process.

The scalability results presented above are summarised in the Fig. 5.2.
Usually in a finite element code, the most expensive parts in computing time are assembly and solver processes. In 

addition to the strong scalability analysis for the entire model presented above, we report the strong scaling (speedup) for 
the finite element assembly and solver in Fig. 5.3.1 and Fig. 5.3.2, respectively. As we can see, these results show that the 
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assembly and solver scale well respectively with 86.15% and 98.75% on up to 512 computing cores, compared to the linear 
speed-up . This is a good indicator that the degradation observed in the strong scaling for the entire model, especially using 
the pure Lagrangian advection (see the Fig. 5.2.2) is mainly due to the other parts of the code, particularly the remeshing 
and repartitioning processes.

6. Conclusion

In this paper we have presented a parallel computational framework for the next generation sea-ice model, neXtSIM.
NeXtSIM is a stand-alone dynamic/thermodynamic model based on the elasto-brittle rheology, using a moving adaptive 
mesh to better preserve the discontinuities produced by this rheology. The moving mesh, while central to the good per-
formance of the model, makes the parallelisation of the model more challenging than otherwise. NeXtSIM is the only 
large-scale sea-ice model using a moving mesh, consequently making this the first parallel implementation of a sea-ice 
model on a moving mesh.

The framework presented here was shown to scale with acceptable efficiency for the specified requirements. The finite 
element assembly and solver were shown to scale with 86.15% and 98.75% efficiency on up to 512 cores, compared to the 
linear speed-up. However, as the remeshing is always done on the root processor, the efficiency of the scaling for the entire 
model is much lower. For the pure Lagrangian scheme the scaling efficiency is 76%, while using the arbitrary Lagrangian 
Eulerian (ALE) scheme increases that efficiency to 95%.

These results show that the best way to improve the model scalability when using the pure Lagrangian advection scheme 
is to parallelise also the remeshing. Parallel remeshing has already been proposed [e.g. by 28], but it remains to be seen 
to which extent this work is applicable to the current model. The remeshing parallelisation will be in particular needed 
to go to higher spatial resolutions than presented in this paper with the neXtSIM model, e.g. � 1 km. As it stands, the 
current parallelised model can be run at a reasonable cost for several years at a resolution as high as approximately 5 km 
over the entire Arctic (4 × 105 mesh nodes). This makes neXtSIM capable of handling resolutions similar to, or higher than 
other state-of-the art sea-ice models, and the model can thus be used for both realistic short-term forecast applications at 
regional scales and for climate simulations in coupled geophysical systems.
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